i386.c (enum pta_flags): Move out of struct scope...
[gcc.git] / gcc / lambda-code.c
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
42 #include "vec.h"
43 #include "lambda.h"
44 #include "vecprim.h"
45
46 /* This loop nest code generation is based on non-singular matrix
47 math.
48
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
52 correct.
53
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
57 of basis vectors.
58
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
62
63 for i = 1 to 3, step 1 is a dense iteration space.
64
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
67
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
69 2 is skipped.
70
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
74
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
80 space.
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
83
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
88
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
94 space.
95
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
105
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
110 result.
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
114
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
116 of the lattice. */
117
118 static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
119 VEC(tree,heap) *, VEC(int,heap) *,
120 VEC(tree,heap) *);
121 /* Lattice stuff that is internal to the code generation algorithm. */
122
123 typedef struct
124 {
125 /* Lattice base matrix. */
126 lambda_matrix base;
127 /* Lattice dimension. */
128 int dimension;
129 /* Origin vector for the coefficients. */
130 lambda_vector origin;
131 /* Origin matrix for the invariants. */
132 lambda_matrix origin_invariants;
133 /* Number of invariants. */
134 int invariants;
135 } *lambda_lattice;
136
137 #define LATTICE_BASE(T) ((T)->base)
138 #define LATTICE_DIMENSION(T) ((T)->dimension)
139 #define LATTICE_ORIGIN(T) ((T)->origin)
140 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
141 #define LATTICE_INVARIANTS(T) ((T)->invariants)
142
143 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
144 int, int);
145 static lambda_lattice lambda_lattice_new (int, int);
146 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
147
148 static tree find_induction_var_from_exit_cond (struct loop *);
149 static bool can_convert_to_perfect_nest (struct loop *);
150
151 /* Create a new lambda body vector. */
152
153 lambda_body_vector
154 lambda_body_vector_new (int size)
155 {
156 lambda_body_vector ret;
157
158 ret = ggc_alloc (sizeof (*ret));
159 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
160 LBV_SIZE (ret) = size;
161 LBV_DENOMINATOR (ret) = 1;
162 return ret;
163 }
164
165 /* Compute the new coefficients for the vector based on the
166 *inverse* of the transformation matrix. */
167
168 lambda_body_vector
169 lambda_body_vector_compute_new (lambda_trans_matrix transform,
170 lambda_body_vector vect)
171 {
172 lambda_body_vector temp;
173 int depth;
174
175 /* Make sure the matrix is square. */
176 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
177
178 depth = LTM_ROWSIZE (transform);
179
180 temp = lambda_body_vector_new (depth);
181 LBV_DENOMINATOR (temp) =
182 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
183 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
184 LTM_MATRIX (transform), depth,
185 LBV_COEFFICIENTS (temp));
186 LBV_SIZE (temp) = LBV_SIZE (vect);
187 return temp;
188 }
189
190 /* Print out a lambda body vector. */
191
192 void
193 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
194 {
195 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
196 }
197
198 /* Return TRUE if two linear expressions are equal. */
199
200 static bool
201 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
202 int depth, int invariants)
203 {
204 int i;
205
206 if (lle1 == NULL || lle2 == NULL)
207 return false;
208 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
209 return false;
210 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
211 return false;
212 for (i = 0; i < depth; i++)
213 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
214 return false;
215 for (i = 0; i < invariants; i++)
216 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
217 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
218 return false;
219 return true;
220 }
221
222 /* Create a new linear expression with dimension DIM, and total number
223 of invariants INVARIANTS. */
224
225 lambda_linear_expression
226 lambda_linear_expression_new (int dim, int invariants)
227 {
228 lambda_linear_expression ret;
229
230 ret = ggc_alloc_cleared (sizeof (*ret));
231
232 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
233 LLE_CONSTANT (ret) = 0;
234 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
235 LLE_DENOMINATOR (ret) = 1;
236 LLE_NEXT (ret) = NULL;
237
238 return ret;
239 }
240
241 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
242 The starting letter used for variable names is START. */
243
244 static void
245 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
246 char start)
247 {
248 int i;
249 bool first = true;
250 for (i = 0; i < size; i++)
251 {
252 if (expr[i] != 0)
253 {
254 if (first)
255 {
256 if (expr[i] < 0)
257 fprintf (outfile, "-");
258 first = false;
259 }
260 else if (expr[i] > 0)
261 fprintf (outfile, " + ");
262 else
263 fprintf (outfile, " - ");
264 if (abs (expr[i]) == 1)
265 fprintf (outfile, "%c", start + i);
266 else
267 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
268 }
269 }
270 }
271
272 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
273 depth/number of coefficients is given by DEPTH, the number of invariants is
274 given by INVARIANTS, and the character to start variable names with is given
275 by START. */
276
277 void
278 print_lambda_linear_expression (FILE * outfile,
279 lambda_linear_expression expr,
280 int depth, int invariants, char start)
281 {
282 fprintf (outfile, "\tLinear expression: ");
283 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
284 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
285 fprintf (outfile, " invariants: ");
286 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
287 invariants, 'A');
288 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
289 }
290
291 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
292 coefficients is given by DEPTH, the number of invariants is
293 given by INVARIANTS, and the character to start variable names with is given
294 by START. */
295
296 void
297 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
298 int invariants, char start)
299 {
300 int step;
301 lambda_linear_expression expr;
302
303 gcc_assert (loop);
304
305 expr = LL_LINEAR_OFFSET (loop);
306 step = LL_STEP (loop);
307 fprintf (outfile, " step size = %d \n", step);
308
309 if (expr)
310 {
311 fprintf (outfile, " linear offset: \n");
312 print_lambda_linear_expression (outfile, expr, depth, invariants,
313 start);
314 }
315
316 fprintf (outfile, " lower bound: \n");
317 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
318 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
319 fprintf (outfile, " upper bound: \n");
320 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
321 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
322 }
323
324 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
325 number of invariants. */
326
327 lambda_loopnest
328 lambda_loopnest_new (int depth, int invariants)
329 {
330 lambda_loopnest ret;
331 ret = ggc_alloc (sizeof (*ret));
332
333 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
334 LN_DEPTH (ret) = depth;
335 LN_INVARIANTS (ret) = invariants;
336
337 return ret;
338 }
339
340 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
341 character to use for loop names is given by START. */
342
343 void
344 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
345 {
346 int i;
347 for (i = 0; i < LN_DEPTH (nest); i++)
348 {
349 fprintf (outfile, "Loop %c\n", start + i);
350 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
351 LN_INVARIANTS (nest), 'i');
352 fprintf (outfile, "\n");
353 }
354 }
355
356 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
357 of invariants. */
358
359 static lambda_lattice
360 lambda_lattice_new (int depth, int invariants)
361 {
362 lambda_lattice ret;
363 ret = ggc_alloc (sizeof (*ret));
364 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
365 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
366 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
367 LATTICE_DIMENSION (ret) = depth;
368 LATTICE_INVARIANTS (ret) = invariants;
369 return ret;
370 }
371
372 /* Compute the lattice base for NEST. The lattice base is essentially a
373 non-singular transform from a dense base space to a sparse iteration space.
374 We use it so that we don't have to specially handle the case of a sparse
375 iteration space in other parts of the algorithm. As a result, this routine
376 only does something interesting (IE produce a matrix that isn't the
377 identity matrix) if NEST is a sparse space. */
378
379 static lambda_lattice
380 lambda_lattice_compute_base (lambda_loopnest nest)
381 {
382 lambda_lattice ret;
383 int depth, invariants;
384 lambda_matrix base;
385
386 int i, j, step;
387 lambda_loop loop;
388 lambda_linear_expression expression;
389
390 depth = LN_DEPTH (nest);
391 invariants = LN_INVARIANTS (nest);
392
393 ret = lambda_lattice_new (depth, invariants);
394 base = LATTICE_BASE (ret);
395 for (i = 0; i < depth; i++)
396 {
397 loop = LN_LOOPS (nest)[i];
398 gcc_assert (loop);
399 step = LL_STEP (loop);
400 /* If we have a step of 1, then the base is one, and the
401 origin and invariant coefficients are 0. */
402 if (step == 1)
403 {
404 for (j = 0; j < depth; j++)
405 base[i][j] = 0;
406 base[i][i] = 1;
407 LATTICE_ORIGIN (ret)[i] = 0;
408 for (j = 0; j < invariants; j++)
409 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
410 }
411 else
412 {
413 /* Otherwise, we need the lower bound expression (which must
414 be an affine function) to determine the base. */
415 expression = LL_LOWER_BOUND (loop);
416 gcc_assert (expression && !LLE_NEXT (expression)
417 && LLE_DENOMINATOR (expression) == 1);
418
419 /* The lower triangular portion of the base is going to be the
420 coefficient times the step */
421 for (j = 0; j < i; j++)
422 base[i][j] = LLE_COEFFICIENTS (expression)[j]
423 * LL_STEP (LN_LOOPS (nest)[j]);
424 base[i][i] = step;
425 for (j = i + 1; j < depth; j++)
426 base[i][j] = 0;
427
428 /* Origin for this loop is the constant of the lower bound
429 expression. */
430 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
431
432 /* Coefficient for the invariants are equal to the invariant
433 coefficients in the expression. */
434 for (j = 0; j < invariants; j++)
435 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
436 LLE_INVARIANT_COEFFICIENTS (expression)[j];
437 }
438 }
439 return ret;
440 }
441
442 /* Compute the least common multiple of two numbers A and B . */
443
444 int
445 least_common_multiple (int a, int b)
446 {
447 return (abs (a) * abs (b) / gcd (a, b));
448 }
449
450 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
451 auxiliary nest.
452 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
453 it is easy to calculate the answer and bounds.
454 A sketch of how it works:
455 Given a system of linear inequalities, ai * xj >= bk, you can always
456 rewrite the constraints so they are all of the form
457 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
458 in b1 ... bk, and some a in a1...ai)
459 You can then eliminate this x from the non-constant inequalities by
460 rewriting these as a <= b, x >= constant, and delete the x variable.
461 You can then repeat this for any remaining x variables, and then we have
462 an easy to use variable <= constant (or no variables at all) form that we
463 can construct our bounds from.
464
465 In our case, each time we eliminate, we construct part of the bound from
466 the ith variable, then delete the ith variable.
467
468 Remember the constant are in our vector a, our coefficient matrix is A,
469 and our invariant coefficient matrix is B.
470
471 SIZE is the size of the matrices being passed.
472 DEPTH is the loop nest depth.
473 INVARIANTS is the number of loop invariants.
474 A, B, and a are the coefficient matrix, invariant coefficient, and a
475 vector of constants, respectively. */
476
477 static lambda_loopnest
478 compute_nest_using_fourier_motzkin (int size,
479 int depth,
480 int invariants,
481 lambda_matrix A,
482 lambda_matrix B,
483 lambda_vector a)
484 {
485
486 int multiple, f1, f2;
487 int i, j, k;
488 lambda_linear_expression expression;
489 lambda_loop loop;
490 lambda_loopnest auxillary_nest;
491 lambda_matrix swapmatrix, A1, B1;
492 lambda_vector swapvector, a1;
493 int newsize;
494
495 A1 = lambda_matrix_new (128, depth);
496 B1 = lambda_matrix_new (128, invariants);
497 a1 = lambda_vector_new (128);
498
499 auxillary_nest = lambda_loopnest_new (depth, invariants);
500
501 for (i = depth - 1; i >= 0; i--)
502 {
503 loop = lambda_loop_new ();
504 LN_LOOPS (auxillary_nest)[i] = loop;
505 LL_STEP (loop) = 1;
506
507 for (j = 0; j < size; j++)
508 {
509 if (A[j][i] < 0)
510 {
511 /* Any linear expression in the matrix with a coefficient less
512 than 0 becomes part of the new lower bound. */
513 expression = lambda_linear_expression_new (depth, invariants);
514
515 for (k = 0; k < i; k++)
516 LLE_COEFFICIENTS (expression)[k] = A[j][k];
517
518 for (k = 0; k < invariants; k++)
519 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
520
521 LLE_DENOMINATOR (expression) = -1 * A[j][i];
522 LLE_CONSTANT (expression) = -1 * a[j];
523
524 /* Ignore if identical to the existing lower bound. */
525 if (!lle_equal (LL_LOWER_BOUND (loop),
526 expression, depth, invariants))
527 {
528 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
529 LL_LOWER_BOUND (loop) = expression;
530 }
531
532 }
533 else if (A[j][i] > 0)
534 {
535 /* Any linear expression with a coefficient greater than 0
536 becomes part of the new upper bound. */
537 expression = lambda_linear_expression_new (depth, invariants);
538 for (k = 0; k < i; k++)
539 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
540
541 for (k = 0; k < invariants; k++)
542 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
543
544 LLE_DENOMINATOR (expression) = A[j][i];
545 LLE_CONSTANT (expression) = a[j];
546
547 /* Ignore if identical to the existing upper bound. */
548 if (!lle_equal (LL_UPPER_BOUND (loop),
549 expression, depth, invariants))
550 {
551 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
552 LL_UPPER_BOUND (loop) = expression;
553 }
554
555 }
556 }
557
558 /* This portion creates a new system of linear inequalities by deleting
559 the i'th variable, reducing the system by one variable. */
560 newsize = 0;
561 for (j = 0; j < size; j++)
562 {
563 /* If the coefficient for the i'th variable is 0, then we can just
564 eliminate the variable straightaway. Otherwise, we have to
565 multiply through by the coefficients we are eliminating. */
566 if (A[j][i] == 0)
567 {
568 lambda_vector_copy (A[j], A1[newsize], depth);
569 lambda_vector_copy (B[j], B1[newsize], invariants);
570 a1[newsize] = a[j];
571 newsize++;
572 }
573 else if (A[j][i] > 0)
574 {
575 for (k = 0; k < size; k++)
576 {
577 if (A[k][i] < 0)
578 {
579 multiple = least_common_multiple (A[j][i], A[k][i]);
580 f1 = multiple / A[j][i];
581 f2 = -1 * multiple / A[k][i];
582
583 lambda_vector_add_mc (A[j], f1, A[k], f2,
584 A1[newsize], depth);
585 lambda_vector_add_mc (B[j], f1, B[k], f2,
586 B1[newsize], invariants);
587 a1[newsize] = f1 * a[j] + f2 * a[k];
588 newsize++;
589 }
590 }
591 }
592 }
593
594 swapmatrix = A;
595 A = A1;
596 A1 = swapmatrix;
597
598 swapmatrix = B;
599 B = B1;
600 B1 = swapmatrix;
601
602 swapvector = a;
603 a = a1;
604 a1 = swapvector;
605
606 size = newsize;
607 }
608
609 return auxillary_nest;
610 }
611
612 /* Compute the loop bounds for the auxiliary space NEST.
613 Input system used is Ax <= b. TRANS is the unimodular transformation.
614 Given the original nest, this function will
615 1. Convert the nest into matrix form, which consists of a matrix for the
616 coefficients, a matrix for the
617 invariant coefficients, and a vector for the constants.
618 2. Use the matrix form to calculate the lattice base for the nest (which is
619 a dense space)
620 3. Compose the dense space transform with the user specified transform, to
621 get a transform we can easily calculate transformed bounds for.
622 4. Multiply the composed transformation matrix times the matrix form of the
623 loop.
624 5. Transform the newly created matrix (from step 4) back into a loop nest
625 using Fourier-Motzkin elimination to figure out the bounds. */
626
627 static lambda_loopnest
628 lambda_compute_auxillary_space (lambda_loopnest nest,
629 lambda_trans_matrix trans)
630 {
631 lambda_matrix A, B, A1, B1;
632 lambda_vector a, a1;
633 lambda_matrix invertedtrans;
634 int depth, invariants, size;
635 int i, j;
636 lambda_loop loop;
637 lambda_linear_expression expression;
638 lambda_lattice lattice;
639
640 depth = LN_DEPTH (nest);
641 invariants = LN_INVARIANTS (nest);
642
643 /* Unfortunately, we can't know the number of constraints we'll have
644 ahead of time, but this should be enough even in ridiculous loop nest
645 cases. We must not go over this limit. */
646 A = lambda_matrix_new (128, depth);
647 B = lambda_matrix_new (128, invariants);
648 a = lambda_vector_new (128);
649
650 A1 = lambda_matrix_new (128, depth);
651 B1 = lambda_matrix_new (128, invariants);
652 a1 = lambda_vector_new (128);
653
654 /* Store the bounds in the equation matrix A, constant vector a, and
655 invariant matrix B, so that we have Ax <= a + B.
656 This requires a little equation rearranging so that everything is on the
657 correct side of the inequality. */
658 size = 0;
659 for (i = 0; i < depth; i++)
660 {
661 loop = LN_LOOPS (nest)[i];
662
663 /* First we do the lower bound. */
664 if (LL_STEP (loop) > 0)
665 expression = LL_LOWER_BOUND (loop);
666 else
667 expression = LL_UPPER_BOUND (loop);
668
669 for (; expression != NULL; expression = LLE_NEXT (expression))
670 {
671 /* Fill in the coefficient. */
672 for (j = 0; j < i; j++)
673 A[size][j] = LLE_COEFFICIENTS (expression)[j];
674
675 /* And the invariant coefficient. */
676 for (j = 0; j < invariants; j++)
677 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
678
679 /* And the constant. */
680 a[size] = LLE_CONSTANT (expression);
681
682 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
683 constants and single variables on */
684 A[size][i] = -1 * LLE_DENOMINATOR (expression);
685 a[size] *= -1;
686 for (j = 0; j < invariants; j++)
687 B[size][j] *= -1;
688
689 size++;
690 /* Need to increase matrix sizes above. */
691 gcc_assert (size <= 127);
692
693 }
694
695 /* Then do the exact same thing for the upper bounds. */
696 if (LL_STEP (loop) > 0)
697 expression = LL_UPPER_BOUND (loop);
698 else
699 expression = LL_LOWER_BOUND (loop);
700
701 for (; expression != NULL; expression = LLE_NEXT (expression))
702 {
703 /* Fill in the coefficient. */
704 for (j = 0; j < i; j++)
705 A[size][j] = LLE_COEFFICIENTS (expression)[j];
706
707 /* And the invariant coefficient. */
708 for (j = 0; j < invariants; j++)
709 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
710
711 /* And the constant. */
712 a[size] = LLE_CONSTANT (expression);
713
714 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
715 for (j = 0; j < i; j++)
716 A[size][j] *= -1;
717 A[size][i] = LLE_DENOMINATOR (expression);
718 size++;
719 /* Need to increase matrix sizes above. */
720 gcc_assert (size <= 127);
721
722 }
723 }
724
725 /* Compute the lattice base x = base * y + origin, where y is the
726 base space. */
727 lattice = lambda_lattice_compute_base (nest);
728
729 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
730
731 /* A1 = A * L */
732 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
733
734 /* a1 = a - A * origin constant. */
735 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
736 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
737
738 /* B1 = B - A * origin invariant. */
739 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
740 invariants);
741 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
742
743 /* Now compute the auxiliary space bounds by first inverting U, multiplying
744 it by A1, then performing Fourier-Motzkin. */
745
746 invertedtrans = lambda_matrix_new (depth, depth);
747
748 /* Compute the inverse of U. */
749 lambda_matrix_inverse (LTM_MATRIX (trans),
750 invertedtrans, depth);
751
752 /* A = A1 inv(U). */
753 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
754
755 return compute_nest_using_fourier_motzkin (size, depth, invariants,
756 A, B1, a1);
757 }
758
759 /* Compute the loop bounds for the target space, using the bounds of
760 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
761 The target space loop bounds are computed by multiplying the triangular
762 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
763 the loop steps (positive or negative) is then used to swap the bounds if
764 the loop counts downwards.
765 Return the target loopnest. */
766
767 static lambda_loopnest
768 lambda_compute_target_space (lambda_loopnest auxillary_nest,
769 lambda_trans_matrix H, lambda_vector stepsigns)
770 {
771 lambda_matrix inverse, H1;
772 int determinant, i, j;
773 int gcd1, gcd2;
774 int factor;
775
776 lambda_loopnest target_nest;
777 int depth, invariants;
778 lambda_matrix target;
779
780 lambda_loop auxillary_loop, target_loop;
781 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
782
783 depth = LN_DEPTH (auxillary_nest);
784 invariants = LN_INVARIANTS (auxillary_nest);
785
786 inverse = lambda_matrix_new (depth, depth);
787 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
788
789 /* H1 is H excluding its diagonal. */
790 H1 = lambda_matrix_new (depth, depth);
791 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
792
793 for (i = 0; i < depth; i++)
794 H1[i][i] = 0;
795
796 /* Computes the linear offsets of the loop bounds. */
797 target = lambda_matrix_new (depth, depth);
798 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
799
800 target_nest = lambda_loopnest_new (depth, invariants);
801
802 for (i = 0; i < depth; i++)
803 {
804
805 /* Get a new loop structure. */
806 target_loop = lambda_loop_new ();
807 LN_LOOPS (target_nest)[i] = target_loop;
808
809 /* Computes the gcd of the coefficients of the linear part. */
810 gcd1 = lambda_vector_gcd (target[i], i);
811
812 /* Include the denominator in the GCD. */
813 gcd1 = gcd (gcd1, determinant);
814
815 /* Now divide through by the gcd. */
816 for (j = 0; j < i; j++)
817 target[i][j] = target[i][j] / gcd1;
818
819 expression = lambda_linear_expression_new (depth, invariants);
820 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
821 LLE_DENOMINATOR (expression) = determinant / gcd1;
822 LLE_CONSTANT (expression) = 0;
823 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
824 invariants);
825 LL_LINEAR_OFFSET (target_loop) = expression;
826 }
827
828 /* For each loop, compute the new bounds from H. */
829 for (i = 0; i < depth; i++)
830 {
831 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
832 target_loop = LN_LOOPS (target_nest)[i];
833 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
834 factor = LTM_MATRIX (H)[i][i];
835
836 /* First we do the lower bound. */
837 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
838
839 for (; auxillary_expr != NULL;
840 auxillary_expr = LLE_NEXT (auxillary_expr))
841 {
842 target_expr = lambda_linear_expression_new (depth, invariants);
843 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
844 depth, inverse, depth,
845 LLE_COEFFICIENTS (target_expr));
846 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
847 LLE_COEFFICIENTS (target_expr), depth,
848 factor);
849
850 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
851 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
852 LLE_INVARIANT_COEFFICIENTS (target_expr),
853 invariants);
854 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
855 LLE_INVARIANT_COEFFICIENTS (target_expr),
856 invariants, factor);
857 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
858
859 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
860 {
861 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
862 * determinant;
863 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
864 (target_expr),
865 LLE_INVARIANT_COEFFICIENTS
866 (target_expr), invariants,
867 determinant);
868 LLE_DENOMINATOR (target_expr) =
869 LLE_DENOMINATOR (target_expr) * determinant;
870 }
871 /* Find the gcd and divide by it here, rather than doing it
872 at the tree level. */
873 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
874 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
875 invariants);
876 gcd1 = gcd (gcd1, gcd2);
877 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
878 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
879 for (j = 0; j < depth; j++)
880 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
881 for (j = 0; j < invariants; j++)
882 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
883 LLE_CONSTANT (target_expr) /= gcd1;
884 LLE_DENOMINATOR (target_expr) /= gcd1;
885 /* Ignore if identical to existing bound. */
886 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
887 invariants))
888 {
889 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
890 LL_LOWER_BOUND (target_loop) = target_expr;
891 }
892 }
893 /* Now do the upper bound. */
894 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
895
896 for (; auxillary_expr != NULL;
897 auxillary_expr = LLE_NEXT (auxillary_expr))
898 {
899 target_expr = lambda_linear_expression_new (depth, invariants);
900 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
901 depth, inverse, depth,
902 LLE_COEFFICIENTS (target_expr));
903 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
904 LLE_COEFFICIENTS (target_expr), depth,
905 factor);
906 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
907 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
908 LLE_INVARIANT_COEFFICIENTS (target_expr),
909 invariants);
910 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
911 LLE_INVARIANT_COEFFICIENTS (target_expr),
912 invariants, factor);
913 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
914
915 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
916 {
917 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
918 * determinant;
919 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
920 (target_expr),
921 LLE_INVARIANT_COEFFICIENTS
922 (target_expr), invariants,
923 determinant);
924 LLE_DENOMINATOR (target_expr) =
925 LLE_DENOMINATOR (target_expr) * determinant;
926 }
927 /* Find the gcd and divide by it here, instead of at the
928 tree level. */
929 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
930 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
931 invariants);
932 gcd1 = gcd (gcd1, gcd2);
933 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
934 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
935 for (j = 0; j < depth; j++)
936 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
937 for (j = 0; j < invariants; j++)
938 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
939 LLE_CONSTANT (target_expr) /= gcd1;
940 LLE_DENOMINATOR (target_expr) /= gcd1;
941 /* Ignore if equal to existing bound. */
942 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
943 invariants))
944 {
945 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
946 LL_UPPER_BOUND (target_loop) = target_expr;
947 }
948 }
949 }
950 for (i = 0; i < depth; i++)
951 {
952 target_loop = LN_LOOPS (target_nest)[i];
953 /* If necessary, exchange the upper and lower bounds and negate
954 the step size. */
955 if (stepsigns[i] < 0)
956 {
957 LL_STEP (target_loop) *= -1;
958 tmp_expr = LL_LOWER_BOUND (target_loop);
959 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
960 LL_UPPER_BOUND (target_loop) = tmp_expr;
961 }
962 }
963 return target_nest;
964 }
965
966 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
967 result. */
968
969 static lambda_vector
970 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
971 {
972 lambda_matrix matrix, H;
973 int size;
974 lambda_vector newsteps;
975 int i, j, factor, minimum_column;
976 int temp;
977
978 matrix = LTM_MATRIX (trans);
979 size = LTM_ROWSIZE (trans);
980 H = lambda_matrix_new (size, size);
981
982 newsteps = lambda_vector_new (size);
983 lambda_vector_copy (stepsigns, newsteps, size);
984
985 lambda_matrix_copy (matrix, H, size, size);
986
987 for (j = 0; j < size; j++)
988 {
989 lambda_vector row;
990 row = H[j];
991 for (i = j; i < size; i++)
992 if (row[i] < 0)
993 lambda_matrix_col_negate (H, size, i);
994 while (lambda_vector_first_nz (row, size, j + 1) < size)
995 {
996 minimum_column = lambda_vector_min_nz (row, size, j);
997 lambda_matrix_col_exchange (H, size, j, minimum_column);
998
999 temp = newsteps[j];
1000 newsteps[j] = newsteps[minimum_column];
1001 newsteps[minimum_column] = temp;
1002
1003 for (i = j + 1; i < size; i++)
1004 {
1005 factor = row[i] / row[j];
1006 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1007 }
1008 }
1009 }
1010 return newsteps;
1011 }
1012
1013 /* Transform NEST according to TRANS, and return the new loopnest.
1014 This involves
1015 1. Computing a lattice base for the transformation
1016 2. Composing the dense base with the specified transformation (TRANS)
1017 3. Decomposing the combined transformation into a lower triangular portion,
1018 and a unimodular portion.
1019 4. Computing the auxiliary nest using the unimodular portion.
1020 5. Computing the target nest using the auxiliary nest and the lower
1021 triangular portion. */
1022
1023 lambda_loopnest
1024 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1025 {
1026 lambda_loopnest auxillary_nest, target_nest;
1027
1028 int depth, invariants;
1029 int i, j;
1030 lambda_lattice lattice;
1031 lambda_trans_matrix trans1, H, U;
1032 lambda_loop loop;
1033 lambda_linear_expression expression;
1034 lambda_vector origin;
1035 lambda_matrix origin_invariants;
1036 lambda_vector stepsigns;
1037 int f;
1038
1039 depth = LN_DEPTH (nest);
1040 invariants = LN_INVARIANTS (nest);
1041
1042 /* Keep track of the signs of the loop steps. */
1043 stepsigns = lambda_vector_new (depth);
1044 for (i = 0; i < depth; i++)
1045 {
1046 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1047 stepsigns[i] = 1;
1048 else
1049 stepsigns[i] = -1;
1050 }
1051
1052 /* Compute the lattice base. */
1053 lattice = lambda_lattice_compute_base (nest);
1054 trans1 = lambda_trans_matrix_new (depth, depth);
1055
1056 /* Multiply the transformation matrix by the lattice base. */
1057
1058 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1059 LTM_MATRIX (trans1), depth, depth, depth);
1060
1061 /* Compute the Hermite normal form for the new transformation matrix. */
1062 H = lambda_trans_matrix_new (depth, depth);
1063 U = lambda_trans_matrix_new (depth, depth);
1064 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1065 LTM_MATRIX (U));
1066
1067 /* Compute the auxiliary loop nest's space from the unimodular
1068 portion. */
1069 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1070
1071 /* Compute the loop step signs from the old step signs and the
1072 transformation matrix. */
1073 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1074
1075 /* Compute the target loop nest space from the auxiliary nest and
1076 the lower triangular matrix H. */
1077 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1078 origin = lambda_vector_new (depth);
1079 origin_invariants = lambda_matrix_new (depth, invariants);
1080 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1081 LATTICE_ORIGIN (lattice), origin);
1082 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1083 origin_invariants, depth, depth, invariants);
1084
1085 for (i = 0; i < depth; i++)
1086 {
1087 loop = LN_LOOPS (target_nest)[i];
1088 expression = LL_LINEAR_OFFSET (loop);
1089 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1090 f = 1;
1091 else
1092 f = LLE_DENOMINATOR (expression);
1093
1094 LLE_CONSTANT (expression) += f * origin[i];
1095
1096 for (j = 0; j < invariants; j++)
1097 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1098 f * origin_invariants[i][j];
1099 }
1100
1101 return target_nest;
1102
1103 }
1104
1105 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1106 return the new expression. DEPTH is the depth of the loopnest.
1107 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1108 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1109 is the amount we have to add/subtract from the expression because of the
1110 type of comparison it is used in. */
1111
1112 static lambda_linear_expression
1113 gcc_tree_to_linear_expression (int depth, tree expr,
1114 VEC(tree,heap) *outerinductionvars,
1115 VEC(tree,heap) *invariants, int extra)
1116 {
1117 lambda_linear_expression lle = NULL;
1118 switch (TREE_CODE (expr))
1119 {
1120 case INTEGER_CST:
1121 {
1122 lle = lambda_linear_expression_new (depth, 2 * depth);
1123 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1124 if (extra != 0)
1125 LLE_CONSTANT (lle) += extra;
1126
1127 LLE_DENOMINATOR (lle) = 1;
1128 }
1129 break;
1130 case SSA_NAME:
1131 {
1132 tree iv, invar;
1133 size_t i;
1134 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1135 if (iv != NULL)
1136 {
1137 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1138 {
1139 lle = lambda_linear_expression_new (depth, 2 * depth);
1140 LLE_COEFFICIENTS (lle)[i] = 1;
1141 if (extra != 0)
1142 LLE_CONSTANT (lle) = extra;
1143
1144 LLE_DENOMINATOR (lle) = 1;
1145 }
1146 }
1147 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1148 if (invar != NULL)
1149 {
1150 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1151 {
1152 lle = lambda_linear_expression_new (depth, 2 * depth);
1153 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1154 if (extra != 0)
1155 LLE_CONSTANT (lle) = extra;
1156 LLE_DENOMINATOR (lle) = 1;
1157 }
1158 }
1159 }
1160 break;
1161 default:
1162 return NULL;
1163 }
1164
1165 return lle;
1166 }
1167
1168 /* Return the depth of the loopnest NEST */
1169
1170 static int
1171 depth_of_nest (struct loop *nest)
1172 {
1173 size_t depth = 0;
1174 while (nest)
1175 {
1176 depth++;
1177 nest = nest->inner;
1178 }
1179 return depth;
1180 }
1181
1182
1183 /* Return true if OP is invariant in LOOP and all outer loops. */
1184
1185 static bool
1186 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1187 {
1188 if (is_gimple_min_invariant (op))
1189 return true;
1190 if (loop_depth (loop) == 0)
1191 return true;
1192 if (!expr_invariant_in_loop_p (loop, op))
1193 return false;
1194 if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
1195 return false;
1196 return true;
1197 }
1198
1199 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1200 or NULL if it could not be converted.
1201 DEPTH is the depth of the loop.
1202 INVARIANTS is a pointer to the array of loop invariants.
1203 The induction variable for this loop should be stored in the parameter
1204 OURINDUCTIONVAR.
1205 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1206
1207 static lambda_loop
1208 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1209 VEC(tree,heap) ** invariants,
1210 tree * ourinductionvar,
1211 VEC(tree,heap) * outerinductionvars,
1212 VEC(tree,heap) ** lboundvars,
1213 VEC(tree,heap) ** uboundvars,
1214 VEC(int,heap) ** steps)
1215 {
1216 tree phi;
1217 tree exit_cond;
1218 tree access_fn, inductionvar;
1219 tree step;
1220 lambda_loop lloop = NULL;
1221 lambda_linear_expression lbound, ubound;
1222 tree test;
1223 int stepint;
1224 int extra = 0;
1225 tree lboundvar, uboundvar, uboundresult;
1226
1227 /* Find out induction var and exit condition. */
1228 inductionvar = find_induction_var_from_exit_cond (loop);
1229 exit_cond = get_loop_exit_condition (loop);
1230
1231 if (inductionvar == NULL || exit_cond == NULL)
1232 {
1233 if (dump_file && (dump_flags & TDF_DETAILS))
1234 fprintf (dump_file,
1235 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1236 return NULL;
1237 }
1238
1239 test = TREE_OPERAND (exit_cond, 0);
1240
1241 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1242 {
1243
1244 if (dump_file && (dump_flags & TDF_DETAILS))
1245 fprintf (dump_file,
1246 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1247
1248 return NULL;
1249 }
1250
1251 phi = SSA_NAME_DEF_STMT (inductionvar);
1252 if (TREE_CODE (phi) != PHI_NODE)
1253 {
1254 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1255 if (!phi)
1256 {
1257
1258 if (dump_file && (dump_flags & TDF_DETAILS))
1259 fprintf (dump_file,
1260 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1261
1262 return NULL;
1263 }
1264
1265 phi = SSA_NAME_DEF_STMT (phi);
1266 if (TREE_CODE (phi) != PHI_NODE)
1267 {
1268
1269 if (dump_file && (dump_flags & TDF_DETAILS))
1270 fprintf (dump_file,
1271 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1272 return NULL;
1273 }
1274
1275 }
1276
1277 /* The induction variable name/version we want to put in the array is the
1278 result of the induction variable phi node. */
1279 *ourinductionvar = PHI_RESULT (phi);
1280 access_fn = instantiate_parameters
1281 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1282 if (access_fn == chrec_dont_know)
1283 {
1284 if (dump_file && (dump_flags & TDF_DETAILS))
1285 fprintf (dump_file,
1286 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1287
1288 return NULL;
1289 }
1290
1291 step = evolution_part_in_loop_num (access_fn, loop->num);
1292 if (!step || step == chrec_dont_know)
1293 {
1294 if (dump_file && (dump_flags & TDF_DETAILS))
1295 fprintf (dump_file,
1296 "Unable to convert loop: Cannot determine step of loop.\n");
1297
1298 return NULL;
1299 }
1300 if (TREE_CODE (step) != INTEGER_CST)
1301 {
1302
1303 if (dump_file && (dump_flags & TDF_DETAILS))
1304 fprintf (dump_file,
1305 "Unable to convert loop: Step of loop is not integer.\n");
1306 return NULL;
1307 }
1308
1309 stepint = TREE_INT_CST_LOW (step);
1310
1311 /* Only want phis for induction vars, which will have two
1312 arguments. */
1313 if (PHI_NUM_ARGS (phi) != 2)
1314 {
1315 if (dump_file && (dump_flags & TDF_DETAILS))
1316 fprintf (dump_file,
1317 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1318 return NULL;
1319 }
1320
1321 /* Another induction variable check. One argument's source should be
1322 in the loop, one outside the loop. */
1323 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1324 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1325 {
1326
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 fprintf (dump_file,
1329 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1330
1331 return NULL;
1332 }
1333
1334 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1335 {
1336 lboundvar = PHI_ARG_DEF (phi, 1);
1337 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1338 outerinductionvars, *invariants,
1339 0);
1340 }
1341 else
1342 {
1343 lboundvar = PHI_ARG_DEF (phi, 0);
1344 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1345 outerinductionvars, *invariants,
1346 0);
1347 }
1348
1349 if (!lbound)
1350 {
1351
1352 if (dump_file && (dump_flags & TDF_DETAILS))
1353 fprintf (dump_file,
1354 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1355
1356 return NULL;
1357 }
1358 /* One part of the test may be a loop invariant tree. */
1359 VEC_reserve (tree, heap, *invariants, 1);
1360 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1361 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1362 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1363 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1364 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1365 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1366
1367 /* The non-induction variable part of the test is the upper bound variable.
1368 */
1369 if (TREE_OPERAND (test, 0) == inductionvar)
1370 uboundvar = TREE_OPERAND (test, 1);
1371 else
1372 uboundvar = TREE_OPERAND (test, 0);
1373
1374
1375 /* We only size the vectors assuming we have, at max, 2 times as many
1376 invariants as we do loops (one for each bound).
1377 This is just an arbitrary number, but it has to be matched against the
1378 code below. */
1379 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1380
1381
1382 /* We might have some leftover. */
1383 if (TREE_CODE (test) == LT_EXPR)
1384 extra = -1 * stepint;
1385 else if (TREE_CODE (test) == NE_EXPR)
1386 extra = -1 * stepint;
1387 else if (TREE_CODE (test) == GT_EXPR)
1388 extra = -1 * stepint;
1389 else if (TREE_CODE (test) == EQ_EXPR)
1390 extra = 1 * stepint;
1391
1392 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1393 outerinductionvars,
1394 *invariants, extra);
1395 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1396 build_int_cst (TREE_TYPE (uboundvar), extra));
1397 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1398 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1399 VEC_safe_push (int, heap, *steps, stepint);
1400 if (!ubound)
1401 {
1402 if (dump_file && (dump_flags & TDF_DETAILS))
1403 fprintf (dump_file,
1404 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1405 return NULL;
1406 }
1407
1408 lloop = lambda_loop_new ();
1409 LL_STEP (lloop) = stepint;
1410 LL_LOWER_BOUND (lloop) = lbound;
1411 LL_UPPER_BOUND (lloop) = ubound;
1412 return lloop;
1413 }
1414
1415 /* Given a LOOP, find the induction variable it is testing against in the exit
1416 condition. Return the induction variable if found, NULL otherwise. */
1417
1418 static tree
1419 find_induction_var_from_exit_cond (struct loop *loop)
1420 {
1421 tree expr = get_loop_exit_condition (loop);
1422 tree ivarop;
1423 tree test;
1424 if (expr == NULL_TREE)
1425 return NULL_TREE;
1426 if (TREE_CODE (expr) != COND_EXPR)
1427 return NULL_TREE;
1428 test = TREE_OPERAND (expr, 0);
1429 if (!COMPARISON_CLASS_P (test))
1430 return NULL_TREE;
1431
1432 /* Find the side that is invariant in this loop. The ivar must be the other
1433 side. */
1434
1435 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1436 ivarop = TREE_OPERAND (test, 1);
1437 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1438 ivarop = TREE_OPERAND (test, 0);
1439 else
1440 return NULL_TREE;
1441
1442 if (TREE_CODE (ivarop) != SSA_NAME)
1443 return NULL_TREE;
1444 return ivarop;
1445 }
1446
1447 DEF_VEC_P(lambda_loop);
1448 DEF_VEC_ALLOC_P(lambda_loop,heap);
1449
1450 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1451 Return the new loop nest.
1452 INDUCTIONVARS is a pointer to an array of induction variables for the
1453 loopnest that will be filled in during this process.
1454 INVARIANTS is a pointer to an array of invariants that will be filled in
1455 during this process. */
1456
1457 lambda_loopnest
1458 gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
1459 VEC(tree,heap) **inductionvars,
1460 VEC(tree,heap) **invariants)
1461 {
1462 lambda_loopnest ret = NULL;
1463 struct loop *temp = loop_nest;
1464 int depth = depth_of_nest (loop_nest);
1465 size_t i;
1466 VEC(lambda_loop,heap) *loops = NULL;
1467 VEC(tree,heap) *uboundvars = NULL;
1468 VEC(tree,heap) *lboundvars = NULL;
1469 VEC(int,heap) *steps = NULL;
1470 lambda_loop newloop;
1471 tree inductionvar = NULL;
1472 bool perfect_nest = perfect_nest_p (loop_nest);
1473
1474 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1475 goto fail;
1476
1477 while (temp)
1478 {
1479 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1480 &inductionvar, *inductionvars,
1481 &lboundvars, &uboundvars,
1482 &steps);
1483 if (!newloop)
1484 goto fail;
1485
1486 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1487 VEC_safe_push (lambda_loop, heap, loops, newloop);
1488 temp = temp->inner;
1489 }
1490
1491 if (!perfect_nest)
1492 {
1493 if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
1494 *inductionvars))
1495 {
1496 if (dump_file)
1497 fprintf (dump_file,
1498 "Not a perfect loop nest and couldn't convert to one.\n");
1499 goto fail;
1500 }
1501 else if (dump_file)
1502 fprintf (dump_file,
1503 "Successfully converted loop nest to perfect loop nest.\n");
1504 }
1505
1506 ret = lambda_loopnest_new (depth, 2 * depth);
1507
1508 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1509 LN_LOOPS (ret)[i] = newloop;
1510
1511 fail:
1512 VEC_free (lambda_loop, heap, loops);
1513 VEC_free (tree, heap, uboundvars);
1514 VEC_free (tree, heap, lboundvars);
1515 VEC_free (int, heap, steps);
1516
1517 return ret;
1518 }
1519
1520 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1521 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1522 inserted for us are stored. INDUCTION_VARS is the array of induction
1523 variables for the loop this LBV is from. TYPE is the tree type to use for
1524 the variables and trees involved. */
1525
1526 static tree
1527 lbv_to_gcc_expression (lambda_body_vector lbv,
1528 tree type, VEC(tree,heap) *induction_vars,
1529 tree *stmts_to_insert)
1530 {
1531 int k;
1532 tree resvar;
1533 tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
1534
1535 k = LBV_DENOMINATOR (lbv);
1536 gcc_assert (k != 0);
1537 if (k != 1)
1538 expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
1539
1540 resvar = create_tmp_var (type, "lbvtmp");
1541 add_referenced_var (resvar);
1542 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1543 }
1544
1545 /* Convert a linear expression from coefficient and constant form to a
1546 gcc tree.
1547 Return the tree that represents the final value of the expression.
1548 LLE is the linear expression to convert.
1549 OFFSET is the linear offset to apply to the expression.
1550 TYPE is the tree type to use for the variables and math.
1551 INDUCTION_VARS is a vector of induction variables for the loops.
1552 INVARIANTS is a vector of the loop nest invariants.
1553 WRAP specifies what tree code to wrap the results in, if there is more than
1554 one (it is either MAX_EXPR, or MIN_EXPR).
1555 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1556 statements that need to be inserted for the linear expression. */
1557
1558 static tree
1559 lle_to_gcc_expression (lambda_linear_expression lle,
1560 lambda_linear_expression offset,
1561 tree type,
1562 VEC(tree,heap) *induction_vars,
1563 VEC(tree,heap) *invariants,
1564 enum tree_code wrap, tree *stmts_to_insert)
1565 {
1566 int k;
1567 tree resvar;
1568 tree expr = NULL_TREE;
1569 VEC(tree,heap) *results = NULL;
1570
1571 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1572
1573 /* Build up the linear expressions. */
1574 for (; lle != NULL; lle = LLE_NEXT (lle))
1575 {
1576 expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
1577 expr = fold_build2 (PLUS_EXPR, type, expr,
1578 build_linear_expr (type,
1579 LLE_INVARIANT_COEFFICIENTS (lle),
1580 invariants));
1581
1582 k = LLE_CONSTANT (lle);
1583 if (k)
1584 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1585
1586 k = LLE_CONSTANT (offset);
1587 if (k)
1588 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1589
1590 k = LLE_DENOMINATOR (lle);
1591 if (k != 1)
1592 expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1593 type, expr, build_int_cst (type, k));
1594
1595 expr = fold (expr);
1596 VEC_safe_push (tree, heap, results, expr);
1597 }
1598
1599 gcc_assert (expr);
1600
1601 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1602 if (VEC_length (tree, results) > 1)
1603 {
1604 size_t i;
1605 tree op;
1606
1607 expr = VEC_index (tree, results, 0);
1608 for (i = 1; VEC_iterate (tree, results, i, op); i++)
1609 expr = fold_build2 (wrap, type, expr, op);
1610 }
1611
1612 VEC_free (tree, heap, results);
1613
1614 resvar = create_tmp_var (type, "lletmp");
1615 add_referenced_var (resvar);
1616 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1617 }
1618
1619 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1620 it, back into gcc code. This changes the
1621 loops, their induction variables, and their bodies, so that they
1622 match the transformed loopnest.
1623 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1624 loopnest.
1625 OLD_IVS is a vector of induction variables from the old loopnest.
1626 INVARIANTS is a vector of loop invariants from the old loopnest.
1627 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1628 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1629 NEW_LOOPNEST. */
1630
1631 void
1632 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1633 VEC(tree,heap) *old_ivs,
1634 VEC(tree,heap) *invariants,
1635 lambda_loopnest new_loopnest,
1636 lambda_trans_matrix transform)
1637 {
1638 struct loop *temp;
1639 size_t i = 0;
1640 size_t depth = 0;
1641 VEC(tree,heap) *new_ivs = NULL;
1642 tree oldiv;
1643
1644 block_stmt_iterator bsi;
1645
1646 if (dump_file)
1647 {
1648 transform = lambda_trans_matrix_inverse (transform);
1649 fprintf (dump_file, "Inverse of transformation matrix:\n");
1650 print_lambda_trans_matrix (dump_file, transform);
1651 }
1652 depth = depth_of_nest (old_loopnest);
1653 temp = old_loopnest;
1654
1655 while (temp)
1656 {
1657 lambda_loop newloop;
1658 basic_block bb;
1659 edge exit;
1660 tree ivvar, ivvarinced, exitcond, stmts;
1661 enum tree_code testtype;
1662 tree newupperbound, newlowerbound;
1663 lambda_linear_expression offset;
1664 tree type;
1665 bool insert_after;
1666 tree inc_stmt;
1667
1668 oldiv = VEC_index (tree, old_ivs, i);
1669 type = TREE_TYPE (oldiv);
1670
1671 /* First, build the new induction variable temporary */
1672
1673 ivvar = create_tmp_var (type, "lnivtmp");
1674 add_referenced_var (ivvar);
1675
1676 VEC_safe_push (tree, heap, new_ivs, ivvar);
1677
1678 newloop = LN_LOOPS (new_loopnest)[i];
1679
1680 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1681 cases for now. */
1682 offset = LL_LINEAR_OFFSET (newloop);
1683
1684 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1685 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1686
1687 /* Now build the new lower bounds, and insert the statements
1688 necessary to generate it on the loop preheader. */
1689 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1690 LL_LINEAR_OFFSET (newloop),
1691 type,
1692 new_ivs,
1693 invariants, MAX_EXPR, &stmts);
1694
1695 if (stmts)
1696 {
1697 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1698 bsi_commit_edge_inserts ();
1699 }
1700 /* Build the new upper bound and insert its statements in the
1701 basic block of the exit condition */
1702 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1703 LL_LINEAR_OFFSET (newloop),
1704 type,
1705 new_ivs,
1706 invariants, MIN_EXPR, &stmts);
1707 exit = single_exit (temp);
1708 exitcond = get_loop_exit_condition (temp);
1709 bb = bb_for_stmt (exitcond);
1710 bsi = bsi_after_labels (bb);
1711 if (stmts)
1712 bsi_insert_before (&bsi, stmts, BSI_NEW_STMT);
1713
1714 /* Create the new iv. */
1715
1716 standard_iv_increment_position (temp, &bsi, &insert_after);
1717 create_iv (newlowerbound,
1718 build_int_cst (type, LL_STEP (newloop)),
1719 ivvar, temp, &bsi, insert_after, &ivvar,
1720 NULL);
1721
1722 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1723 dominate the block containing the exit condition.
1724 So we simply create our own incremented iv to use in the new exit
1725 test, and let redundancy elimination sort it out. */
1726 inc_stmt = build2 (PLUS_EXPR, type,
1727 ivvar, build_int_cst (type, LL_STEP (newloop)));
1728 inc_stmt = build_gimple_modify_stmt (SSA_NAME_VAR (ivvar), inc_stmt);
1729 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1730 GIMPLE_STMT_OPERAND (inc_stmt, 0) = ivvarinced;
1731 bsi = bsi_for_stmt (exitcond);
1732 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1733
1734 /* Replace the exit condition with the new upper bound
1735 comparison. */
1736
1737 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1738
1739 /* We want to build a conditional where true means exit the loop, and
1740 false means continue the loop.
1741 So swap the testtype if this isn't the way things are.*/
1742
1743 if (exit->flags & EDGE_FALSE_VALUE)
1744 testtype = swap_tree_comparison (testtype);
1745
1746 COND_EXPR_COND (exitcond) = build2 (testtype,
1747 boolean_type_node,
1748 newupperbound, ivvarinced);
1749 update_stmt (exitcond);
1750 VEC_replace (tree, new_ivs, i, ivvar);
1751
1752 i++;
1753 temp = temp->inner;
1754 }
1755
1756 /* Rewrite uses of the old ivs so that they are now specified in terms of
1757 the new ivs. */
1758
1759 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1760 {
1761 imm_use_iterator imm_iter;
1762 use_operand_p use_p;
1763 tree oldiv_def;
1764 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1765 tree stmt;
1766
1767 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1768 oldiv_def = PHI_RESULT (oldiv_stmt);
1769 else
1770 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1771 gcc_assert (oldiv_def != NULL_TREE);
1772
1773 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1774 {
1775 tree newiv, stmts;
1776 lambda_body_vector lbv, newlbv;
1777
1778 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1779
1780 /* Compute the new expression for the induction
1781 variable. */
1782 depth = VEC_length (tree, new_ivs);
1783 lbv = lambda_body_vector_new (depth);
1784 LBV_COEFFICIENTS (lbv)[i] = 1;
1785
1786 newlbv = lambda_body_vector_compute_new (transform, lbv);
1787
1788 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1789 new_ivs, &stmts);
1790 if (stmts)
1791 {
1792 bsi = bsi_for_stmt (stmt);
1793 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1794 }
1795
1796 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1797 propagate_value (use_p, newiv);
1798 update_stmt (stmt);
1799 }
1800 }
1801 VEC_free (tree, heap, new_ivs);
1802 }
1803
1804 /* Return TRUE if this is not interesting statement from the perspective of
1805 determining if we have a perfect loop nest. */
1806
1807 static bool
1808 not_interesting_stmt (tree stmt)
1809 {
1810 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1811 loop, we would have already failed the number of exits tests. */
1812 if (TREE_CODE (stmt) == LABEL_EXPR
1813 || TREE_CODE (stmt) == GOTO_EXPR
1814 || TREE_CODE (stmt) == COND_EXPR)
1815 return true;
1816 return false;
1817 }
1818
1819 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1820
1821 static bool
1822 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
1823 {
1824 int i;
1825 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1826 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
1827 if (PHI_ARG_DEF (phi, i) == def)
1828 return true;
1829 return false;
1830 }
1831
1832 /* Return TRUE if STMT is a use of PHI_RESULT. */
1833
1834 static bool
1835 stmt_uses_phi_result (tree stmt, tree phi_result)
1836 {
1837 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1838
1839 /* This is conservatively true, because we only want SIMPLE bumpers
1840 of the form x +- constant for our pass. */
1841 return (use == phi_result);
1842 }
1843
1844 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
1845 in-loop-edge in a phi node, and the operand it uses is the result of that
1846 phi node.
1847 I.E. i_29 = i_3 + 1
1848 i_3 = PHI (0, i_29); */
1849
1850 static bool
1851 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
1852 {
1853 tree use;
1854 tree def;
1855 imm_use_iterator iter;
1856 use_operand_p use_p;
1857
1858 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
1859 if (!def)
1860 return false;
1861
1862 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
1863 {
1864 use = USE_STMT (use_p);
1865 if (TREE_CODE (use) == PHI_NODE)
1866 {
1867 if (phi_loop_edge_uses_def (loop, use, def))
1868 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
1869 return true;
1870 }
1871 }
1872 return false;
1873 }
1874
1875
1876 /* Return true if LOOP is a perfect loop nest.
1877 Perfect loop nests are those loop nests where all code occurs in the
1878 innermost loop body.
1879 If S is a program statement, then
1880
1881 i.e.
1882 DO I = 1, 20
1883 S1
1884 DO J = 1, 20
1885 ...
1886 END DO
1887 END DO
1888 is not a perfect loop nest because of S1.
1889
1890 DO I = 1, 20
1891 DO J = 1, 20
1892 S1
1893 ...
1894 END DO
1895 END DO
1896 is a perfect loop nest.
1897
1898 Since we don't have high level loops anymore, we basically have to walk our
1899 statements and ignore those that are there because the loop needs them (IE
1900 the induction variable increment, and jump back to the top of the loop). */
1901
1902 bool
1903 perfect_nest_p (struct loop *loop)
1904 {
1905 basic_block *bbs;
1906 size_t i;
1907 tree exit_cond;
1908
1909 if (!loop->inner)
1910 return true;
1911 bbs = get_loop_body (loop);
1912 exit_cond = get_loop_exit_condition (loop);
1913 for (i = 0; i < loop->num_nodes; i++)
1914 {
1915 if (bbs[i]->loop_father == loop)
1916 {
1917 block_stmt_iterator bsi;
1918 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
1919 {
1920 tree stmt = bsi_stmt (bsi);
1921 if (stmt == exit_cond
1922 || not_interesting_stmt (stmt)
1923 || stmt_is_bumper_for_loop (loop, stmt))
1924 continue;
1925 free (bbs);
1926 return false;
1927 }
1928 }
1929 }
1930 free (bbs);
1931 /* See if the inner loops are perfectly nested as well. */
1932 if (loop->inner)
1933 return perfect_nest_p (loop->inner);
1934 return true;
1935 }
1936
1937 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
1938 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
1939 avoid creating duplicate temporaries and FIRSTBSI is statement
1940 iterator where new temporaries should be inserted at the beginning
1941 of body basic block. */
1942
1943 static void
1944 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
1945 int xstep, tree y, tree yinit,
1946 htab_t replacements,
1947 block_stmt_iterator *firstbsi)
1948 {
1949 ssa_op_iter iter;
1950 use_operand_p use_p;
1951
1952 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1953 {
1954 tree use = USE_FROM_PTR (use_p);
1955 tree step = NULL_TREE;
1956 tree scev, init, val, var, setstmt;
1957 struct tree_map *h, in;
1958 void **loc;
1959
1960 /* Replace uses of X with Y right away. */
1961 if (use == x)
1962 {
1963 SET_USE (use_p, y);
1964 continue;
1965 }
1966
1967 scev = instantiate_parameters (loop,
1968 analyze_scalar_evolution (loop, use));
1969
1970 if (scev == NULL || scev == chrec_dont_know)
1971 continue;
1972
1973 step = evolution_part_in_loop_num (scev, loop->num);
1974 if (step == NULL
1975 || step == chrec_dont_know
1976 || TREE_CODE (step) != INTEGER_CST
1977 || int_cst_value (step) != xstep)
1978 continue;
1979
1980 /* Use REPLACEMENTS hash table to cache already created
1981 temporaries. */
1982 in.hash = htab_hash_pointer (use);
1983 in.base.from = use;
1984 h = htab_find_with_hash (replacements, &in, in.hash);
1985 if (h != NULL)
1986 {
1987 SET_USE (use_p, h->to);
1988 continue;
1989 }
1990
1991 /* USE which has the same step as X should be replaced
1992 with a temporary set to Y + YINIT - INIT. */
1993 init = initial_condition_in_loop_num (scev, loop->num);
1994 gcc_assert (init != NULL && init != chrec_dont_know);
1995 if (TREE_TYPE (use) == TREE_TYPE (y))
1996 {
1997 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
1998 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
1999 if (val == y)
2000 {
2001 /* If X has the same type as USE, the same step
2002 and same initial value, it can be replaced by Y. */
2003 SET_USE (use_p, y);
2004 continue;
2005 }
2006 }
2007 else
2008 {
2009 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2010 val = fold_convert (TREE_TYPE (use), val);
2011 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2012 }
2013
2014 /* Create a temporary variable and insert it at the beginning
2015 of the loop body basic block, right after the PHI node
2016 which sets Y. */
2017 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2018 add_referenced_var (var);
2019 val = force_gimple_operand_bsi (firstbsi, val, false, NULL);
2020 setstmt = build_gimple_modify_stmt (var, val);
2021 var = make_ssa_name (var, setstmt);
2022 GIMPLE_STMT_OPERAND (setstmt, 0) = var;
2023 bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
2024 update_stmt (setstmt);
2025 SET_USE (use_p, var);
2026 h = ggc_alloc (sizeof (struct tree_map));
2027 h->hash = in.hash;
2028 h->base.from = use;
2029 h->to = var;
2030 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2031 gcc_assert ((*(struct tree_map **)loc) == NULL);
2032 *(struct tree_map **) loc = h;
2033 }
2034 }
2035
2036 /* Return true if STMT is an exit PHI for LOOP */
2037
2038 static bool
2039 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2040 {
2041
2042 if (TREE_CODE (stmt) != PHI_NODE
2043 || PHI_NUM_ARGS (stmt) != 1
2044 || bb_for_stmt (stmt) != single_exit (loop)->dest)
2045 return false;
2046
2047 return true;
2048 }
2049
2050 /* Return true if STMT can be put back into the loop INNER, by
2051 copying it to the beginning of that loop and changing the uses. */
2052
2053 static bool
2054 can_put_in_inner_loop (struct loop *inner, tree stmt)
2055 {
2056 imm_use_iterator imm_iter;
2057 use_operand_p use_p;
2058
2059 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
2060 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2061 || !expr_invariant_in_loop_p (inner, GIMPLE_STMT_OPERAND (stmt, 1)))
2062 return false;
2063
2064 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2065 {
2066 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2067 {
2068 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2069
2070 if (!flow_bb_inside_loop_p (inner, immbb))
2071 return false;
2072 }
2073 }
2074 return true;
2075 }
2076
2077 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2078 static bool
2079 can_put_after_inner_loop (struct loop *loop, tree stmt)
2080 {
2081 imm_use_iterator imm_iter;
2082 use_operand_p use_p;
2083
2084 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2085 return false;
2086
2087 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2088 {
2089 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2090 {
2091 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2092
2093 if (!dominated_by_p (CDI_DOMINATORS,
2094 immbb,
2095 loop->inner->header)
2096 && !can_put_in_inner_loop (loop->inner, stmt))
2097 return false;
2098 }
2099 }
2100 return true;
2101 }
2102
2103
2104
2105 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2106 perfect one. At the moment, we only handle imperfect nests of
2107 depth 2, where all of the statements occur after the inner loop. */
2108
2109 static bool
2110 can_convert_to_perfect_nest (struct loop *loop)
2111 {
2112 basic_block *bbs;
2113 tree exit_condition, phi;
2114 size_t i;
2115 block_stmt_iterator bsi;
2116 basic_block exitdest;
2117
2118 /* Can't handle triply nested+ loops yet. */
2119 if (!loop->inner || loop->inner->inner)
2120 return false;
2121
2122 bbs = get_loop_body (loop);
2123 exit_condition = get_loop_exit_condition (loop);
2124 for (i = 0; i < loop->num_nodes; i++)
2125 {
2126 if (bbs[i]->loop_father == loop)
2127 {
2128 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2129 {
2130 tree stmt = bsi_stmt (bsi);
2131
2132 if (stmt == exit_condition
2133 || not_interesting_stmt (stmt)
2134 || stmt_is_bumper_for_loop (loop, stmt))
2135 continue;
2136
2137 /* If this is a scalar operation that can be put back
2138 into the inner loop, or after the inner loop, through
2139 copying, then do so. This works on the theory that
2140 any amount of scalar code we have to reduplicate
2141 into or after the loops is less expensive that the
2142 win we get from rearranging the memory walk
2143 the loop is doing so that it has better
2144 cache behavior. */
2145 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
2146 {
2147 use_operand_p use_a, use_b;
2148 imm_use_iterator imm_iter;
2149 ssa_op_iter op_iter, op_iter1;
2150 tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
2151 tree scev = instantiate_parameters
2152 (loop, analyze_scalar_evolution (loop, op0));
2153
2154 /* If the IV is simple, it can be duplicated. */
2155 if (!automatically_generated_chrec_p (scev))
2156 {
2157 tree step = evolution_part_in_loop_num (scev, loop->num);
2158 if (step && step != chrec_dont_know
2159 && TREE_CODE (step) == INTEGER_CST)
2160 continue;
2161 }
2162
2163 /* The statement should not define a variable used
2164 in the inner loop. */
2165 if (TREE_CODE (op0) == SSA_NAME)
2166 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2167 if (bb_for_stmt (USE_STMT (use_a))->loop_father
2168 == loop->inner)
2169 goto fail;
2170
2171 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2172 {
2173 tree node, op = USE_FROM_PTR (use_a);
2174
2175 /* The variables should not be used in both loops. */
2176 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2177 if (bb_for_stmt (USE_STMT (use_b))->loop_father
2178 == loop->inner)
2179 goto fail;
2180
2181 /* The statement should not use the value of a
2182 scalar that was modified in the loop. */
2183 node = SSA_NAME_DEF_STMT (op);
2184 if (TREE_CODE (node) == PHI_NODE)
2185 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2186 {
2187 tree arg = USE_FROM_PTR (use_b);
2188
2189 if (TREE_CODE (arg) == SSA_NAME)
2190 {
2191 tree arg_stmt = SSA_NAME_DEF_STMT (arg);
2192
2193 if (bb_for_stmt (arg_stmt)
2194 && (bb_for_stmt (arg_stmt)->loop_father
2195 == loop->inner))
2196 goto fail;
2197 }
2198 }
2199 }
2200
2201 if (can_put_in_inner_loop (loop->inner, stmt)
2202 || can_put_after_inner_loop (loop, stmt))
2203 continue;
2204 }
2205
2206 /* Otherwise, if the bb of a statement we care about isn't
2207 dominated by the header of the inner loop, then we can't
2208 handle this case right now. This test ensures that the
2209 statement comes completely *after* the inner loop. */
2210 if (!dominated_by_p (CDI_DOMINATORS,
2211 bb_for_stmt (stmt),
2212 loop->inner->header))
2213 goto fail;
2214 }
2215 }
2216 }
2217
2218 /* We also need to make sure the loop exit only has simple copy phis in it,
2219 otherwise we don't know how to transform it into a perfect nest right
2220 now. */
2221 exitdest = single_exit (loop)->dest;
2222
2223 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2224 if (PHI_NUM_ARGS (phi) != 1)
2225 goto fail;
2226
2227 free (bbs);
2228 return true;
2229
2230 fail:
2231 free (bbs);
2232 return false;
2233 }
2234
2235 /* Transform the loop nest into a perfect nest, if possible.
2236 LOOP is the loop nest to transform into a perfect nest
2237 LBOUNDS are the lower bounds for the loops to transform
2238 UBOUNDS are the upper bounds for the loops to transform
2239 STEPS is the STEPS for the loops to transform.
2240 LOOPIVS is the induction variables for the loops to transform.
2241
2242 Basically, for the case of
2243
2244 FOR (i = 0; i < 50; i++)
2245 {
2246 FOR (j =0; j < 50; j++)
2247 {
2248 <whatever>
2249 }
2250 <some code>
2251 }
2252
2253 This function will transform it into a perfect loop nest by splitting the
2254 outer loop into two loops, like so:
2255
2256 FOR (i = 0; i < 50; i++)
2257 {
2258 FOR (j = 0; j < 50; j++)
2259 {
2260 <whatever>
2261 }
2262 }
2263
2264 FOR (i = 0; i < 50; i ++)
2265 {
2266 <some code>
2267 }
2268
2269 Return FALSE if we can't make this loop into a perfect nest. */
2270
2271 static bool
2272 perfect_nestify (struct loop *loop,
2273 VEC(tree,heap) *lbounds,
2274 VEC(tree,heap) *ubounds,
2275 VEC(int,heap) *steps,
2276 VEC(tree,heap) *loopivs)
2277 {
2278 basic_block *bbs;
2279 tree exit_condition;
2280 tree cond_stmt;
2281 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2282 int i;
2283 block_stmt_iterator bsi, firstbsi;
2284 bool insert_after;
2285 edge e;
2286 struct loop *newloop;
2287 tree phi;
2288 tree uboundvar;
2289 tree stmt;
2290 tree oldivvar, ivvar, ivvarinced;
2291 VEC(tree,heap) *phis = NULL;
2292 htab_t replacements = NULL;
2293
2294 /* Create the new loop. */
2295 olddest = single_exit (loop)->dest;
2296 preheaderbb = split_edge (single_exit (loop));
2297 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2298
2299 /* Push the exit phi nodes that we are moving. */
2300 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2301 {
2302 VEC_reserve (tree, heap, phis, 2);
2303 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2304 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2305 }
2306 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2307
2308 /* Remove the exit phis from the old basic block. */
2309 while (phi_nodes (olddest) != NULL)
2310 remove_phi_node (phi_nodes (olddest), NULL, false);
2311
2312 /* and add them back to the new basic block. */
2313 while (VEC_length (tree, phis) != 0)
2314 {
2315 tree def;
2316 tree phiname;
2317 def = VEC_pop (tree, phis);
2318 phiname = VEC_pop (tree, phis);
2319 phi = create_phi_node (phiname, preheaderbb);
2320 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2321 }
2322 flush_pending_stmts (e);
2323 VEC_free (tree, heap, phis);
2324
2325 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2326 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2327 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2328 cond_stmt = build3 (COND_EXPR, void_type_node,
2329 build2 (NE_EXPR, boolean_type_node,
2330 integer_one_node,
2331 integer_zero_node),
2332 NULL_TREE, NULL_TREE);
2333 bsi = bsi_start (bodybb);
2334 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2335 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2336 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2337 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2338
2339 /* Update the loop structures. */
2340 newloop = duplicate_loop (loop, olddest->loop_father);
2341 newloop->header = headerbb;
2342 newloop->latch = latchbb;
2343 add_bb_to_loop (latchbb, newloop);
2344 add_bb_to_loop (bodybb, newloop);
2345 add_bb_to_loop (headerbb, newloop);
2346 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2347 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2348 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2349 single_exit (loop)->src);
2350 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2351 set_immediate_dominator (CDI_DOMINATORS, olddest,
2352 recompute_dominator (CDI_DOMINATORS, olddest));
2353 /* Create the new iv. */
2354 oldivvar = VEC_index (tree, loopivs, 0);
2355 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2356 add_referenced_var (ivvar);
2357 standard_iv_increment_position (newloop, &bsi, &insert_after);
2358 create_iv (VEC_index (tree, lbounds, 0),
2359 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2360 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2361
2362 /* Create the new upper bound. This may be not just a variable, so we copy
2363 it to one just in case. */
2364
2365 exit_condition = get_loop_exit_condition (newloop);
2366 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2367 add_referenced_var (uboundvar);
2368 stmt = build_gimple_modify_stmt (uboundvar, VEC_index (tree, ubounds, 0));
2369 uboundvar = make_ssa_name (uboundvar, stmt);
2370 GIMPLE_STMT_OPERAND (stmt, 0) = uboundvar;
2371
2372 if (insert_after)
2373 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2374 else
2375 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2376 update_stmt (stmt);
2377 COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
2378 boolean_type_node,
2379 uboundvar,
2380 ivvarinced);
2381 update_stmt (exit_condition);
2382 replacements = htab_create_ggc (20, tree_map_hash,
2383 tree_map_eq, NULL);
2384 bbs = get_loop_body_in_dom_order (loop);
2385 /* Now move the statements, and replace the induction variable in the moved
2386 statements with the correct loop induction variable. */
2387 oldivvar = VEC_index (tree, loopivs, 0);
2388 firstbsi = bsi_start (bodybb);
2389 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2390 {
2391 block_stmt_iterator tobsi = bsi_last (bodybb);
2392 if (bbs[i]->loop_father == loop)
2393 {
2394 /* If this is true, we are *before* the inner loop.
2395 If this isn't true, we are *after* it.
2396
2397 The only time can_convert_to_perfect_nest returns true when we
2398 have statements before the inner loop is if they can be moved
2399 into the inner loop.
2400
2401 The only time can_convert_to_perfect_nest returns true when we
2402 have statements after the inner loop is if they can be moved into
2403 the new split loop. */
2404
2405 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2406 {
2407 block_stmt_iterator header_bsi
2408 = bsi_after_labels (loop->inner->header);
2409
2410 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2411 {
2412 tree stmt = bsi_stmt (bsi);
2413
2414 if (stmt == exit_condition
2415 || not_interesting_stmt (stmt)
2416 || stmt_is_bumper_for_loop (loop, stmt))
2417 {
2418 bsi_next (&bsi);
2419 continue;
2420 }
2421
2422 bsi_move_before (&bsi, &header_bsi);
2423 }
2424 }
2425 else
2426 {
2427 /* Note that the bsi only needs to be explicitly incremented
2428 when we don't move something, since it is automatically
2429 incremented when we do. */
2430 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2431 {
2432 ssa_op_iter i;
2433 tree n, stmt = bsi_stmt (bsi);
2434
2435 if (stmt == exit_condition
2436 || not_interesting_stmt (stmt)
2437 || stmt_is_bumper_for_loop (loop, stmt))
2438 {
2439 bsi_next (&bsi);
2440 continue;
2441 }
2442
2443 replace_uses_equiv_to_x_with_y
2444 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2445 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2446
2447 bsi_move_before (&bsi, &tobsi);
2448
2449 /* If the statement has any virtual operands, they may
2450 need to be rewired because the original loop may
2451 still reference them. */
2452 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2453 mark_sym_for_renaming (SSA_NAME_VAR (n));
2454 }
2455 }
2456
2457 }
2458 }
2459
2460 free (bbs);
2461 htab_delete (replacements);
2462 return perfect_nest_p (loop);
2463 }
2464
2465 /* Return true if TRANS is a legal transformation matrix that respects
2466 the dependence vectors in DISTS and DIRS. The conservative answer
2467 is false.
2468
2469 "Wolfe proves that a unimodular transformation represented by the
2470 matrix T is legal when applied to a loop nest with a set of
2471 lexicographically non-negative distance vectors RDG if and only if
2472 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2473 i.e.: if and only if it transforms the lexicographically positive
2474 distance vectors to lexicographically positive vectors. Note that
2475 a unimodular matrix must transform the zero vector (and only it) to
2476 the zero vector." S.Muchnick. */
2477
2478 bool
2479 lambda_transform_legal_p (lambda_trans_matrix trans,
2480 int nb_loops,
2481 VEC (ddr_p, heap) *dependence_relations)
2482 {
2483 unsigned int i, j;
2484 lambda_vector distres;
2485 struct data_dependence_relation *ddr;
2486
2487 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2488 && LTM_ROWSIZE (trans) == nb_loops);
2489
2490 /* When there is an unknown relation in the dependence_relations, we
2491 know that it is no worth looking at this loop nest: give up. */
2492 ddr = VEC_index (ddr_p, dependence_relations, 0);
2493 if (ddr == NULL)
2494 return true;
2495 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2496 return false;
2497
2498 distres = lambda_vector_new (nb_loops);
2499
2500 /* For each distance vector in the dependence graph. */
2501 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2502 {
2503 /* Don't care about relations for which we know that there is no
2504 dependence, nor about read-read (aka. output-dependences):
2505 these data accesses can happen in any order. */
2506 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2507 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2508 continue;
2509
2510 /* Conservatively answer: "this transformation is not valid". */
2511 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2512 return false;
2513
2514 /* If the dependence could not be captured by a distance vector,
2515 conservatively answer that the transform is not valid. */
2516 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2517 return false;
2518
2519 /* Compute trans.dist_vect */
2520 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2521 {
2522 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2523 DDR_DIST_VECT (ddr, j), distres);
2524
2525 if (!lambda_vector_lexico_pos (distres, nb_loops))
2526 return false;
2527 }
2528 }
2529 return true;
2530 }