target.h (globalize_decl_name): New.
[gcc.git] / gcc / lambda.h
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #ifndef LAMBDA_H
23 #define LAMBDA_H
24
25 #include "vec.h"
26
27 /* An integer vector. A vector formally consists of an element of a vector
28 space. A vector space is a set that is closed under vector addition
29 and scalar multiplication. In this vector space, an element is a list of
30 integers. */
31 typedef int *lambda_vector;
32
33 DEF_VEC_P(lambda_vector);
34 DEF_VEC_ALLOC_P(lambda_vector,heap);
35
36 /* An integer matrix. A matrix consists of m vectors of length n (IE
37 all vectors are the same length). */
38 typedef lambda_vector *lambda_matrix;
39
40 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
41 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
42 represents the denominator for every element in the matrix. */
43 typedef struct
44 {
45 lambda_matrix matrix;
46 int rowsize;
47 int colsize;
48 int denominator;
49 } *lambda_trans_matrix;
50 #define LTM_MATRIX(T) ((T)->matrix)
51 #define LTM_ROWSIZE(T) ((T)->rowsize)
52 #define LTM_COLSIZE(T) ((T)->colsize)
53 #define LTM_DENOMINATOR(T) ((T)->denominator)
54
55 /* A vector representing a statement in the body of a loop.
56 The COEFFICIENTS vector contains a coefficient for each induction variable
57 in the loop nest containing the statement.
58 The DENOMINATOR represents the denominator for each coefficient in the
59 COEFFICIENT vector.
60
61 This structure is used during code generation in order to rewrite the old
62 induction variable uses in a statement in terms of the newly created
63 induction variables. */
64 typedef struct
65 {
66 lambda_vector coefficients;
67 int size;
68 int denominator;
69 } *lambda_body_vector;
70 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
71 #define LBV_SIZE(T) ((T)->size)
72 #define LBV_DENOMINATOR(T) ((T)->denominator)
73
74 /* Piecewise linear expression.
75 This structure represents a linear expression with terms for the invariants
76 and induction variables of a loop.
77 COEFFICIENTS is a vector of coefficients for the induction variables, one
78 per loop in the loop nest.
79 CONSTANT is the constant portion of the linear expression
80 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
81 one per invariant.
82 DENOMINATOR is the denominator for all of the coefficients and constants in
83 the expression.
84 The linear expressions can be linked together using the NEXT field, in
85 order to represent MAX or MIN of a group of linear expressions. */
86 typedef struct lambda_linear_expression_s
87 {
88 lambda_vector coefficients;
89 int constant;
90 lambda_vector invariant_coefficients;
91 int denominator;
92 struct lambda_linear_expression_s *next;
93 } *lambda_linear_expression;
94
95 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
96 #define LLE_CONSTANT(T) ((T)->constant)
97 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
98 #define LLE_DENOMINATOR(T) ((T)->denominator)
99 #define LLE_NEXT(T) ((T)->next)
100
101 lambda_linear_expression lambda_linear_expression_new (int, int);
102 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
103 int, char);
104
105 /* Loop structure. Our loop structure consists of a constant representing the
106 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
107 of the loop, a set of linear expressions representing the UPPER_BOUND of
108 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
109 the loop. The linear offset is a set of linear expressions that are
110 applied to *both* the lower bound, and the upper bound. */
111 typedef struct lambda_loop_s
112 {
113 lambda_linear_expression lower_bound;
114 lambda_linear_expression upper_bound;
115 lambda_linear_expression linear_offset;
116 int step;
117 } *lambda_loop;
118
119 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
120 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
121 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
122 #define LL_STEP(T) ((T)->step)
123
124 /* Loop nest structure.
125 The loop nest structure consists of a set of loop structures (defined
126 above) in LOOPS, along with an integer representing the DEPTH of the loop,
127 and an integer representing the number of INVARIANTS in the loop. Both of
128 these integers are used to size the associated coefficient vectors in the
129 linear expression structures. */
130 typedef struct
131 {
132 lambda_loop *loops;
133 int depth;
134 int invariants;
135 } *lambda_loopnest;
136
137 #define LN_LOOPS(T) ((T)->loops)
138 #define LN_DEPTH(T) ((T)->depth)
139 #define LN_INVARIANTS(T) ((T)->invariants)
140
141 lambda_loopnest lambda_loopnest_new (int, int);
142 lambda_loopnest lambda_loopnest_transform (lambda_loopnest, lambda_trans_matrix);
143 struct loop;
144 bool perfect_nest_p (struct loop *);
145 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
146
147 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
148
149 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
150
151 lambda_matrix lambda_matrix_new (int, int);
152
153 void lambda_matrix_id (lambda_matrix, int);
154 bool lambda_matrix_id_p (lambda_matrix, int);
155 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
156 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
157 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
158 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
159 int);
160 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
161 lambda_matrix, int, int);
162 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
163 int, int, int);
164 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
165 void lambda_matrix_row_exchange (lambda_matrix, int, int);
166 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
167 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
168 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
169 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
170 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
171 void lambda_matrix_col_negate (lambda_matrix, int, int);
172 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
173 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
174 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
175 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
176 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
177 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
178 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
179 lambda_vector);
180 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
181
182 lambda_trans_matrix lambda_trans_matrix_new (int, int);
183 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
184 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
185 int lambda_trans_matrix_rank (lambda_trans_matrix);
186 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
187 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
188 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
189 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
190 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
191 lambda_vector);
192 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
193
194 lambda_body_vector lambda_body_vector_new (int);
195 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
196 lambda_body_vector);
197 void print_lambda_body_vector (FILE *, lambda_body_vector);
198 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
199 VEC(tree,heap) **,
200 VEC(tree,heap) **);
201 void lambda_loopnest_to_gcc_loopnest (struct loop *,
202 VEC(tree,heap) *, VEC(tree,heap) *,
203 lambda_loopnest, lambda_trans_matrix);
204
205
206 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
207 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
208 static inline void lambda_vector_add (lambda_vector, lambda_vector,
209 lambda_vector, int);
210 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
211 lambda_vector, int);
212 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
213 static inline bool lambda_vector_zerop (lambda_vector, int);
214 static inline void lambda_vector_clear (lambda_vector, int);
215 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
216 static inline int lambda_vector_min_nz (lambda_vector, int, int);
217 static inline int lambda_vector_first_nz (lambda_vector, int, int);
218 static inline void print_lambda_vector (FILE *, lambda_vector, int);
219
220 /* Allocate a new vector of given SIZE. */
221
222 static inline lambda_vector
223 lambda_vector_new (int size)
224 {
225 return GGC_CNEWVEC (int, size);
226 }
227
228
229
230 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
231 and store the result in VEC2. */
232
233 static inline void
234 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
235 int size, int const1)
236 {
237 int i;
238
239 if (const1 == 0)
240 lambda_vector_clear (vec2, size);
241 else
242 for (i = 0; i < size; i++)
243 vec2[i] = const1 * vec1[i];
244 }
245
246 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
247
248 static inline void
249 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
250 int size)
251 {
252 lambda_vector_mult_const (vec1, vec2, size, -1);
253 }
254
255 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
256
257 static inline void
258 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
259 lambda_vector vec3, int size)
260 {
261 int i;
262 for (i = 0; i < size; i++)
263 vec3[i] = vec1[i] + vec2[i];
264 }
265
266 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
267
268 static inline void
269 lambda_vector_add_mc (lambda_vector vec1, int const1,
270 lambda_vector vec2, int const2,
271 lambda_vector vec3, int size)
272 {
273 int i;
274 for (i = 0; i < size; i++)
275 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
276 }
277
278 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
279
280 static inline void
281 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
282 int size)
283 {
284 memcpy (vec2, vec1, size * sizeof (*vec1));
285 }
286
287 /* Return true if vector VEC1 of length SIZE is the zero vector. */
288
289 static inline bool
290 lambda_vector_zerop (lambda_vector vec1, int size)
291 {
292 int i;
293 for (i = 0; i < size; i++)
294 if (vec1[i] != 0)
295 return false;
296 return true;
297 }
298
299 /* Clear out vector VEC1 of length SIZE. */
300
301 static inline void
302 lambda_vector_clear (lambda_vector vec1, int size)
303 {
304 memset (vec1, 0, size * sizeof (*vec1));
305 }
306
307 /* Return true if two vectors are equal. */
308
309 static inline bool
310 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
311 {
312 int i;
313 for (i = 0; i < size; i++)
314 if (vec1[i] != vec2[i])
315 return false;
316 return true;
317 }
318
319 /* Return the minimum nonzero element in vector VEC1 between START and N.
320 We must have START <= N. */
321
322 static inline int
323 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
324 {
325 int j;
326 int min = -1;
327
328 gcc_assert (start <= n);
329 for (j = start; j < n; j++)
330 {
331 if (vec1[j])
332 if (min < 0 || vec1[j] < vec1[min])
333 min = j;
334 }
335 gcc_assert (min >= 0);
336
337 return min;
338 }
339
340 /* Return the first nonzero element of vector VEC1 between START and N.
341 We must have START <= N. Returns N if VEC1 is the zero vector. */
342
343 static inline int
344 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
345 {
346 int j = start;
347 while (j < n && vec1[j] == 0)
348 j++;
349 return j;
350 }
351
352
353 /* Multiply a vector by a matrix. */
354
355 static inline void
356 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
357 int n, lambda_vector dest)
358 {
359 int i, j;
360 lambda_vector_clear (dest, n);
361 for (i = 0; i < n; i++)
362 for (j = 0; j < m; j++)
363 dest[i] += mat[j][i] * vect[j];
364 }
365
366
367 /* Print out a vector VEC of length N to OUTFILE. */
368
369 static inline void
370 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
371 {
372 int i;
373
374 for (i = 0; i < n; i++)
375 fprintf (outfile, "%3d ", vector[i]);
376 fprintf (outfile, "\n");
377 }
378
379 /* Compute the greatest common divisor of two numbers using
380 Euclid's algorithm. */
381
382 static inline int
383 gcd (int a, int b)
384 {
385 int x, y, z;
386
387 x = abs (a);
388 y = abs (b);
389
390 while (x > 0)
391 {
392 z = y % x;
393 y = x;
394 x = z;
395 }
396
397 return y;
398 }
399
400 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
401
402 static inline int
403 lambda_vector_gcd (lambda_vector vector, int size)
404 {
405 int i;
406 int gcd1 = 0;
407
408 if (size > 0)
409 {
410 gcd1 = vector[0];
411 for (i = 1; i < size; i++)
412 gcd1 = gcd (gcd1, vector[i]);
413 }
414 return gcd1;
415 }
416
417 /* Returns true when the vector V is lexicographically positive, in
418 other words, when the first nonzero element is positive. */
419
420 static inline bool
421 lambda_vector_lexico_pos (lambda_vector v,
422 unsigned n)
423 {
424 unsigned i;
425 for (i = 0; i < n; i++)
426 {
427 if (v[i] == 0)
428 continue;
429 if (v[i] < 0)
430 return false;
431 if (v[i] > 0)
432 return true;
433 }
434 return true;
435 }
436
437 #endif /* LAMBDA_H */
438