inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / lambda.h
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef LAMBDA_H
23 #define LAMBDA_H
24
25 #include "vec.h"
26
27 /* An integer vector. A vector formally consists of an element of a vector
28 space. A vector space is a set that is closed under vector addition
29 and scalar multiplication. In this vector space, an element is a list of
30 integers. */
31 typedef int *lambda_vector;
32 DEF_VEC_P(lambda_vector);
33 DEF_VEC_ALLOC_P(lambda_vector,heap);
34 DEF_VEC_ALLOC_P(lambda_vector,gc);
35
36 typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
37 DEF_VEC_P (lambda_vector_vec_p);
38 DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
39
40 /* An integer matrix. A matrix consists of m vectors of length n (IE
41 all vectors are the same length). */
42 typedef lambda_vector *lambda_matrix;
43
44 DEF_VEC_P (lambda_matrix);
45 DEF_VEC_ALLOC_P (lambda_matrix, heap);
46
47 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
48 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
49 represents the denominator for every element in the matrix. */
50 typedef struct lambda_trans_matrix_s
51 {
52 lambda_matrix matrix;
53 int rowsize;
54 int colsize;
55 int denominator;
56 } *lambda_trans_matrix;
57 #define LTM_MATRIX(T) ((T)->matrix)
58 #define LTM_ROWSIZE(T) ((T)->rowsize)
59 #define LTM_COLSIZE(T) ((T)->colsize)
60 #define LTM_DENOMINATOR(T) ((T)->denominator)
61
62 /* A vector representing a statement in the body of a loop.
63 The COEFFICIENTS vector contains a coefficient for each induction variable
64 in the loop nest containing the statement.
65 The DENOMINATOR represents the denominator for each coefficient in the
66 COEFFICIENT vector.
67
68 This structure is used during code generation in order to rewrite the old
69 induction variable uses in a statement in terms of the newly created
70 induction variables. */
71 typedef struct lambda_body_vector_s
72 {
73 lambda_vector coefficients;
74 int size;
75 int denominator;
76 } *lambda_body_vector;
77 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
78 #define LBV_SIZE(T) ((T)->size)
79 #define LBV_DENOMINATOR(T) ((T)->denominator)
80
81 /* Piecewise linear expression.
82 This structure represents a linear expression with terms for the invariants
83 and induction variables of a loop.
84 COEFFICIENTS is a vector of coefficients for the induction variables, one
85 per loop in the loop nest.
86 CONSTANT is the constant portion of the linear expression
87 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
88 one per invariant.
89 DENOMINATOR is the denominator for all of the coefficients and constants in
90 the expression.
91 The linear expressions can be linked together using the NEXT field, in
92 order to represent MAX or MIN of a group of linear expressions. */
93 typedef struct lambda_linear_expression_s
94 {
95 lambda_vector coefficients;
96 int constant;
97 lambda_vector invariant_coefficients;
98 int denominator;
99 struct lambda_linear_expression_s *next;
100 } *lambda_linear_expression;
101
102 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
103 #define LLE_CONSTANT(T) ((T)->constant)
104 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
105 #define LLE_DENOMINATOR(T) ((T)->denominator)
106 #define LLE_NEXT(T) ((T)->next)
107
108 struct obstack;
109
110 lambda_linear_expression lambda_linear_expression_new (int, int,
111 struct obstack *);
112 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
113 int, char);
114
115 /* Loop structure. Our loop structure consists of a constant representing the
116 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
117 of the loop, a set of linear expressions representing the UPPER_BOUND of
118 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
119 the loop. The linear offset is a set of linear expressions that are
120 applied to *both* the lower bound, and the upper bound. */
121 typedef struct lambda_loop_s
122 {
123 lambda_linear_expression lower_bound;
124 lambda_linear_expression upper_bound;
125 lambda_linear_expression linear_offset;
126 int step;
127 } *lambda_loop;
128
129 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
130 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
131 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
132 #define LL_STEP(T) ((T)->step)
133
134 /* Loop nest structure.
135 The loop nest structure consists of a set of loop structures (defined
136 above) in LOOPS, along with an integer representing the DEPTH of the loop,
137 and an integer representing the number of INVARIANTS in the loop. Both of
138 these integers are used to size the associated coefficient vectors in the
139 linear expression structures. */
140 typedef struct lambda_loopnest_s
141 {
142 lambda_loop *loops;
143 int depth;
144 int invariants;
145 } *lambda_loopnest;
146
147 #define LN_LOOPS(T) ((T)->loops)
148 #define LN_DEPTH(T) ((T)->depth)
149 #define LN_INVARIANTS(T) ((T)->invariants)
150
151 lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
152 lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
153 lambda_trans_matrix,
154 struct obstack *);
155 struct loop;
156 bool perfect_nest_p (struct loop *);
157 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
158
159 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
160
161 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
162
163 lambda_matrix lambda_matrix_new (int, int);
164
165 void lambda_matrix_id (lambda_matrix, int);
166 bool lambda_matrix_id_p (lambda_matrix, int);
167 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
168 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
169 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
170 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
171 int);
172 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
173 lambda_matrix, int, int);
174 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
175 int, int, int);
176 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
177 void lambda_matrix_row_exchange (lambda_matrix, int, int);
178 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
179 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
180 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
181 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
182 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
183 void lambda_matrix_col_negate (lambda_matrix, int, int);
184 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
185 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
186 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
187 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
188 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
189 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
190 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
191 lambda_vector);
192 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
193
194 lambda_trans_matrix lambda_trans_matrix_new (int, int);
195 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
196 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
197 int lambda_trans_matrix_rank (lambda_trans_matrix);
198 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
199 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
200 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
201 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
202 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
203 lambda_vector);
204 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
205
206 lambda_body_vector lambda_body_vector_new (int, struct obstack *);
207 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
208 lambda_body_vector,
209 struct obstack *);
210 void print_lambda_body_vector (FILE *, lambda_body_vector);
211 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
212 VEC(tree,heap) **,
213 VEC(tree,heap) **,
214 struct obstack *);
215 void lambda_loopnest_to_gcc_loopnest (struct loop *,
216 VEC(tree,heap) *, VEC(tree,heap) *,
217 VEC(gimple,heap) **,
218 lambda_loopnest, lambda_trans_matrix,
219 struct obstack *);
220 void remove_iv (gimple);
221 tree find_induction_var_from_exit_cond (struct loop *);
222
223 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
224 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
225 static inline void lambda_vector_add (lambda_vector, lambda_vector,
226 lambda_vector, int);
227 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
228 lambda_vector, int);
229 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
230 static inline bool lambda_vector_zerop (lambda_vector, int);
231 static inline void lambda_vector_clear (lambda_vector, int);
232 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
233 static inline int lambda_vector_min_nz (lambda_vector, int, int);
234 static inline int lambda_vector_first_nz (lambda_vector, int, int);
235 static inline void print_lambda_vector (FILE *, lambda_vector, int);
236
237 /* Allocate a new vector of given SIZE. */
238
239 static inline lambda_vector
240 lambda_vector_new (int size)
241 {
242 return GGC_CNEWVEC (int, size);
243 }
244
245
246
247 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
248 and store the result in VEC2. */
249
250 static inline void
251 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
252 int size, int const1)
253 {
254 int i;
255
256 if (const1 == 0)
257 lambda_vector_clear (vec2, size);
258 else
259 for (i = 0; i < size; i++)
260 vec2[i] = const1 * vec1[i];
261 }
262
263 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
264
265 static inline void
266 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
267 int size)
268 {
269 lambda_vector_mult_const (vec1, vec2, size, -1);
270 }
271
272 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
273
274 static inline void
275 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
276 lambda_vector vec3, int size)
277 {
278 int i;
279 for (i = 0; i < size; i++)
280 vec3[i] = vec1[i] + vec2[i];
281 }
282
283 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
284
285 static inline void
286 lambda_vector_add_mc (lambda_vector vec1, int const1,
287 lambda_vector vec2, int const2,
288 lambda_vector vec3, int size)
289 {
290 int i;
291 for (i = 0; i < size; i++)
292 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
293 }
294
295 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
296
297 static inline void
298 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
299 int size)
300 {
301 memcpy (vec2, vec1, size * sizeof (*vec1));
302 }
303
304 /* Return true if vector VEC1 of length SIZE is the zero vector. */
305
306 static inline bool
307 lambda_vector_zerop (lambda_vector vec1, int size)
308 {
309 int i;
310 for (i = 0; i < size; i++)
311 if (vec1[i] != 0)
312 return false;
313 return true;
314 }
315
316 /* Clear out vector VEC1 of length SIZE. */
317
318 static inline void
319 lambda_vector_clear (lambda_vector vec1, int size)
320 {
321 memset (vec1, 0, size * sizeof (*vec1));
322 }
323
324 /* Return true if two vectors are equal. */
325
326 static inline bool
327 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
328 {
329 int i;
330 for (i = 0; i < size; i++)
331 if (vec1[i] != vec2[i])
332 return false;
333 return true;
334 }
335
336 /* Return the minimum nonzero element in vector VEC1 between START and N.
337 We must have START <= N. */
338
339 static inline int
340 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
341 {
342 int j;
343 int min = -1;
344
345 gcc_assert (start <= n);
346 for (j = start; j < n; j++)
347 {
348 if (vec1[j])
349 if (min < 0 || vec1[j] < vec1[min])
350 min = j;
351 }
352 gcc_assert (min >= 0);
353
354 return min;
355 }
356
357 /* Return the first nonzero element of vector VEC1 between START and N.
358 We must have START <= N. Returns N if VEC1 is the zero vector. */
359
360 static inline int
361 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
362 {
363 int j = start;
364 while (j < n && vec1[j] == 0)
365 j++;
366 return j;
367 }
368
369
370 /* Multiply a vector by a matrix. */
371
372 static inline void
373 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
374 int n, lambda_vector dest)
375 {
376 int i, j;
377 lambda_vector_clear (dest, n);
378 for (i = 0; i < n; i++)
379 for (j = 0; j < m; j++)
380 dest[i] += mat[j][i] * vect[j];
381 }
382
383 /* Compare two vectors returning an integer less than, equal to, or
384 greater than zero if the first argument is considered to be respectively
385 less than, equal to, or greater than the second.
386 We use the lexicographic order. */
387
388 static inline int
389 lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
390 int length2)
391 {
392 int min_length;
393 int i;
394
395 if (length1 < length2)
396 min_length = length1;
397 else
398 min_length = length2;
399
400 for (i = 0; i < min_length; i++)
401 if (vec1[i] < vec2[i])
402 return -1;
403 else if (vec1[i] > vec2[i])
404 return 1;
405 else
406 continue;
407
408 return length1 - length2;
409 }
410
411 /* Print out a vector VEC of length N to OUTFILE. */
412
413 static inline void
414 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
415 {
416 int i;
417
418 for (i = 0; i < n; i++)
419 fprintf (outfile, "%3d ", vector[i]);
420 fprintf (outfile, "\n");
421 }
422
423 /* Compute the greatest common divisor of two numbers using
424 Euclid's algorithm. */
425
426 static inline int
427 gcd (int a, int b)
428 {
429 int x, y, z;
430
431 x = abs (a);
432 y = abs (b);
433
434 while (x > 0)
435 {
436 z = y % x;
437 y = x;
438 x = z;
439 }
440
441 return y;
442 }
443
444 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
445
446 static inline int
447 lambda_vector_gcd (lambda_vector vector, int size)
448 {
449 int i;
450 int gcd1 = 0;
451
452 if (size > 0)
453 {
454 gcd1 = vector[0];
455 for (i = 1; i < size; i++)
456 gcd1 = gcd (gcd1, vector[i]);
457 }
458 return gcd1;
459 }
460
461 /* Returns true when the vector V is lexicographically positive, in
462 other words, when the first nonzero element is positive. */
463
464 static inline bool
465 lambda_vector_lexico_pos (lambda_vector v,
466 unsigned n)
467 {
468 unsigned i;
469 for (i = 0; i < n; i++)
470 {
471 if (v[i] == 0)
472 continue;
473 if (v[i] < 0)
474 return false;
475 if (v[i] > 0)
476 return true;
477 }
478 return true;
479 }
480
481 /* Given a vector of induction variables IVS, and a vector of
482 coefficients COEFS, build a tree that is a linear combination of
483 the induction variables. */
484
485 static inline tree
486 build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
487 {
488 unsigned i;
489 tree iv;
490 tree expr = fold_convert (type, integer_zero_node);
491
492 for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
493 {
494 int k = coefs[i];
495
496 if (k == 1)
497 expr = fold_build2 (PLUS_EXPR, type, expr, iv);
498
499 else if (k != 0)
500 expr = fold_build2 (PLUS_EXPR, type, expr,
501 fold_build2 (MULT_EXPR, type, iv,
502 build_int_cst (type, k)));
503 }
504
505 return expr;
506 }
507
508 /* Returns the dependence level for a vector DIST of size LENGTH.
509 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
510 to the sequence of statements, not carried by any loop. */
511
512
513 static inline unsigned
514 dependence_level (lambda_vector dist_vect, int length)
515 {
516 int i;
517
518 for (i = 0; i < length; i++)
519 if (dist_vect[i] != 0)
520 return i + 1;
521
522 return 0;
523 }
524
525 #endif /* LAMBDA_H */