re PR rtl-optimization/39077 (GCSE-optimization causes enormous binary size increase...
[gcc.git] / gcc / lcm.c
1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
3 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* These routines are meant to be used by various optimization
22 passes which can be modeled as lazy code motion problems.
23 Including, but not limited to:
24
25 * Traditional partial redundancy elimination.
26
27 * Placement of caller/caller register save/restores.
28
29 * Load/store motion.
30
31 * Copy motion.
32
33 * Conversion of flat register files to a stacked register
34 model.
35
36 * Dead load/store elimination.
37
38 These routines accept as input:
39
40 * Basic block information (number of blocks, lists of
41 predecessors and successors). Note the granularity
42 does not need to be basic block, they could be statements
43 or functions.
44
45 * Bitmaps of local properties (computed, transparent and
46 anticipatable expressions).
47
48 The output of these routines is bitmap of redundant computations
49 and a bitmap of optimal placement points. */
50
51
52 #include "config.h"
53 #include "system.h"
54 #include "coretypes.h"
55 #include "tm.h"
56 #include "rtl.h"
57 #include "regs.h"
58 #include "hard-reg-set.h"
59 #include "flags.h"
60 #include "insn-config.h"
61 #include "recog.h"
62 #include "basic-block.h"
63 #include "output.h"
64 #include "tm_p.h"
65 #include "function.h"
66 #include "sbitmap.h"
67
68 /* We want target macros for the mode switching code to be able to refer
69 to instruction attribute values. */
70 #include "insn-attr.h"
71
72 /* Edge based LCM routines. */
73 static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
74 static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
75 sbitmap *, sbitmap *, sbitmap *);
76 static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
77 sbitmap *, sbitmap *);
78 static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
79 sbitmap *, sbitmap *, sbitmap *, sbitmap *);
80
81 /* Edge based LCM routines on a reverse flowgraph. */
82 static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
83 sbitmap*, sbitmap *, sbitmap *);
84 static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
85 sbitmap *, sbitmap *);
86 static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
87 sbitmap *, sbitmap *, sbitmap *,
88 sbitmap *);
89 \f
90 /* Edge based lcm routines. */
91
92 /* Compute expression anticipatability at entrance and exit of each block.
93 This is done based on the flow graph, and not on the pred-succ lists.
94 Other than that, its pretty much identical to compute_antinout. */
95
96 static void
97 compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
98 sbitmap *antout)
99 {
100 basic_block bb;
101 edge e;
102 basic_block *worklist, *qin, *qout, *qend;
103 unsigned int qlen;
104 edge_iterator ei;
105
106 /* Allocate a worklist array/queue. Entries are only added to the
107 list if they were not already on the list. So the size is
108 bounded by the number of basic blocks. */
109 qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks);
110
111 /* We want a maximal solution, so make an optimistic initialization of
112 ANTIN. */
113 sbitmap_vector_ones (antin, last_basic_block);
114
115 /* Put every block on the worklist; this is necessary because of the
116 optimistic initialization of ANTIN above. */
117 FOR_EACH_BB_REVERSE (bb)
118 {
119 *qin++ = bb;
120 bb->aux = bb;
121 }
122
123 qin = worklist;
124 qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
125 qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
126
127 /* Mark blocks which are predecessors of the exit block so that we
128 can easily identify them below. */
129 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
130 e->src->aux = EXIT_BLOCK_PTR;
131
132 /* Iterate until the worklist is empty. */
133 while (qlen)
134 {
135 /* Take the first entry off the worklist. */
136 bb = *qout++;
137 qlen--;
138
139 if (qout >= qend)
140 qout = worklist;
141
142 if (bb->aux == EXIT_BLOCK_PTR)
143 /* Do not clear the aux field for blocks which are predecessors of
144 the EXIT block. That way we never add then to the worklist
145 again. */
146 sbitmap_zero (antout[bb->index]);
147 else
148 {
149 /* Clear the aux field of this block so that it can be added to
150 the worklist again if necessary. */
151 bb->aux = NULL;
152 sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index);
153 }
154
155 if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index],
156 transp[bb->index], antout[bb->index]))
157 /* If the in state of this block changed, then we need
158 to add the predecessors of this block to the worklist
159 if they are not already on the worklist. */
160 FOR_EACH_EDGE (e, ei, bb->preds)
161 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
162 {
163 *qin++ = e->src;
164 e->src->aux = e;
165 qlen++;
166 if (qin >= qend)
167 qin = worklist;
168 }
169 }
170
171 clear_aux_for_edges ();
172 clear_aux_for_blocks ();
173 free (worklist);
174 }
175
176 /* Compute the earliest vector for edge based lcm. */
177
178 static void
179 compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
180 sbitmap *antout, sbitmap *avout, sbitmap *kill,
181 sbitmap *earliest)
182 {
183 sbitmap difference, temp_bitmap;
184 int x, num_edges;
185 basic_block pred, succ;
186
187 num_edges = NUM_EDGES (edge_list);
188
189 difference = sbitmap_alloc (n_exprs);
190 temp_bitmap = sbitmap_alloc (n_exprs);
191
192 for (x = 0; x < num_edges; x++)
193 {
194 pred = INDEX_EDGE_PRED_BB (edge_list, x);
195 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
196 if (pred == ENTRY_BLOCK_PTR)
197 sbitmap_copy (earliest[x], antin[succ->index]);
198 else
199 {
200 if (succ == EXIT_BLOCK_PTR)
201 sbitmap_zero (earliest[x]);
202 else
203 {
204 sbitmap_difference (difference, antin[succ->index],
205 avout[pred->index]);
206 sbitmap_not (temp_bitmap, antout[pred->index]);
207 sbitmap_a_and_b_or_c (earliest[x], difference,
208 kill[pred->index], temp_bitmap);
209 }
210 }
211 }
212
213 sbitmap_free (temp_bitmap);
214 sbitmap_free (difference);
215 }
216
217 /* later(p,s) is dependent on the calculation of laterin(p).
218 laterin(p) is dependent on the calculation of later(p2,p).
219
220 laterin(ENTRY) is defined as all 0's
221 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
222 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
223
224 If we progress in this manner, starting with all basic blocks
225 in the work list, anytime we change later(bb), we need to add
226 succs(bb) to the worklist if they are not already on the worklist.
227
228 Boundary conditions:
229
230 We prime the worklist all the normal basic blocks. The ENTRY block can
231 never be added to the worklist since it is never the successor of any
232 block. We explicitly prevent the EXIT block from being added to the
233 worklist.
234
235 We optimistically initialize LATER. That is the only time this routine
236 will compute LATER for an edge out of the entry block since the entry
237 block is never on the worklist. Thus, LATERIN is neither used nor
238 computed for the ENTRY block.
239
240 Since the EXIT block is never added to the worklist, we will neither
241 use nor compute LATERIN for the exit block. Edges which reach the
242 EXIT block are handled in the normal fashion inside the loop. However,
243 the insertion/deletion computation needs LATERIN(EXIT), so we have
244 to compute it. */
245
246 static void
247 compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
248 sbitmap *antloc, sbitmap *later, sbitmap *laterin)
249 {
250 int num_edges, i;
251 edge e;
252 basic_block *worklist, *qin, *qout, *qend, bb;
253 unsigned int qlen;
254 edge_iterator ei;
255
256 num_edges = NUM_EDGES (edge_list);
257
258 /* Allocate a worklist array/queue. Entries are only added to the
259 list if they were not already on the list. So the size is
260 bounded by the number of basic blocks. */
261 qin = qout = worklist
262 = XNEWVEC (basic_block, n_basic_blocks);
263
264 /* Initialize a mapping from each edge to its index. */
265 for (i = 0; i < num_edges; i++)
266 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
267
268 /* We want a maximal solution, so initially consider LATER true for
269 all edges. This allows propagation through a loop since the incoming
270 loop edge will have LATER set, so if all the other incoming edges
271 to the loop are set, then LATERIN will be set for the head of the
272 loop.
273
274 If the optimistic setting of LATER on that edge was incorrect (for
275 example the expression is ANTLOC in a block within the loop) then
276 this algorithm will detect it when we process the block at the head
277 of the optimistic edge. That will requeue the affected blocks. */
278 sbitmap_vector_ones (later, num_edges);
279
280 /* Note that even though we want an optimistic setting of LATER, we
281 do not want to be overly optimistic. Consider an outgoing edge from
282 the entry block. That edge should always have a LATER value the
283 same as EARLIEST for that edge. */
284 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
285 sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
286
287 /* Add all the blocks to the worklist. This prevents an early exit from
288 the loop given our optimistic initialization of LATER above. */
289 FOR_EACH_BB (bb)
290 {
291 *qin++ = bb;
292 bb->aux = bb;
293 }
294
295 /* Note that we do not use the last allocated element for our queue,
296 as EXIT_BLOCK is never inserted into it. */
297 qin = worklist;
298 qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
299 qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
300
301 /* Iterate until the worklist is empty. */
302 while (qlen)
303 {
304 /* Take the first entry off the worklist. */
305 bb = *qout++;
306 bb->aux = NULL;
307 qlen--;
308 if (qout >= qend)
309 qout = worklist;
310
311 /* Compute the intersection of LATERIN for each incoming edge to B. */
312 sbitmap_ones (laterin[bb->index]);
313 FOR_EACH_EDGE (e, ei, bb->preds)
314 sbitmap_a_and_b (laterin[bb->index], laterin[bb->index],
315 later[(size_t)e->aux]);
316
317 /* Calculate LATER for all outgoing edges. */
318 FOR_EACH_EDGE (e, ei, bb->succs)
319 if (sbitmap_union_of_diff_cg (later[(size_t) e->aux],
320 earliest[(size_t) e->aux],
321 laterin[e->src->index],
322 antloc[e->src->index])
323 /* If LATER for an outgoing edge was changed, then we need
324 to add the target of the outgoing edge to the worklist. */
325 && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
326 {
327 *qin++ = e->dest;
328 e->dest->aux = e;
329 qlen++;
330 if (qin >= qend)
331 qin = worklist;
332 }
333 }
334
335 /* Computation of insertion and deletion points requires computing LATERIN
336 for the EXIT block. We allocated an extra entry in the LATERIN array
337 for just this purpose. */
338 sbitmap_ones (laterin[last_basic_block]);
339 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
340 sbitmap_a_and_b (laterin[last_basic_block],
341 laterin[last_basic_block],
342 later[(size_t) e->aux]);
343
344 clear_aux_for_edges ();
345 free (worklist);
346 }
347
348 /* Compute the insertion and deletion points for edge based LCM. */
349
350 static void
351 compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
352 sbitmap *later, sbitmap *laterin, sbitmap *insert,
353 sbitmap *del)
354 {
355 int x;
356 basic_block bb;
357
358 FOR_EACH_BB (bb)
359 sbitmap_difference (del[bb->index], antloc[bb->index],
360 laterin[bb->index]);
361
362 for (x = 0; x < NUM_EDGES (edge_list); x++)
363 {
364 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
365
366 if (b == EXIT_BLOCK_PTR)
367 sbitmap_difference (insert[x], later[x], laterin[last_basic_block]);
368 else
369 sbitmap_difference (insert[x], later[x], laterin[b->index]);
370 }
371 }
372
373 /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
374 delete vectors for edge based LCM. Returns an edgelist which is used to
375 map the insert vector to what edge an expression should be inserted on. */
376
377 struct edge_list *
378 pre_edge_lcm (int n_exprs, sbitmap *transp,
379 sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
380 sbitmap **insert, sbitmap **del)
381 {
382 sbitmap *antin, *antout, *earliest;
383 sbitmap *avin, *avout;
384 sbitmap *later, *laterin;
385 struct edge_list *edge_list;
386 int num_edges;
387
388 edge_list = create_edge_list ();
389 num_edges = NUM_EDGES (edge_list);
390
391 #ifdef LCM_DEBUG_INFO
392 if (dump_file)
393 {
394 fprintf (dump_file, "Edge List:\n");
395 verify_edge_list (dump_file, edge_list);
396 print_edge_list (dump_file, edge_list);
397 dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
398 dump_sbitmap_vector (dump_file, "antloc", "", antloc, last_basic_block);
399 dump_sbitmap_vector (dump_file, "avloc", "", avloc, last_basic_block);
400 dump_sbitmap_vector (dump_file, "kill", "", kill, last_basic_block);
401 }
402 #endif
403
404 /* Compute global availability. */
405 avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
406 avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
407 compute_available (avloc, kill, avout, avin);
408 sbitmap_vector_free (avin);
409
410 /* Compute global anticipatability. */
411 antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
412 antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
413 compute_antinout_edge (antloc, transp, antin, antout);
414
415 #ifdef LCM_DEBUG_INFO
416 if (dump_file)
417 {
418 dump_sbitmap_vector (dump_file, "antin", "", antin, last_basic_block);
419 dump_sbitmap_vector (dump_file, "antout", "", antout, last_basic_block);
420 }
421 #endif
422
423 /* Compute earliestness. */
424 earliest = sbitmap_vector_alloc (num_edges, n_exprs);
425 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
426
427 #ifdef LCM_DEBUG_INFO
428 if (dump_file)
429 dump_sbitmap_vector (dump_file, "earliest", "", earliest, num_edges);
430 #endif
431
432 sbitmap_vector_free (antout);
433 sbitmap_vector_free (antin);
434 sbitmap_vector_free (avout);
435
436 later = sbitmap_vector_alloc (num_edges, n_exprs);
437
438 /* Allocate an extra element for the exit block in the laterin vector. */
439 laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
440 compute_laterin (edge_list, earliest, antloc, later, laterin);
441
442 #ifdef LCM_DEBUG_INFO
443 if (dump_file)
444 {
445 dump_sbitmap_vector (dump_file, "laterin", "", laterin, last_basic_block + 1);
446 dump_sbitmap_vector (dump_file, "later", "", later, num_edges);
447 }
448 #endif
449
450 sbitmap_vector_free (earliest);
451
452 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
453 *del = sbitmap_vector_alloc (last_basic_block, n_exprs);
454 sbitmap_vector_zero (*insert, num_edges);
455 sbitmap_vector_zero (*del, last_basic_block);
456 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del);
457
458 sbitmap_vector_free (laterin);
459 sbitmap_vector_free (later);
460
461 #ifdef LCM_DEBUG_INFO
462 if (dump_file)
463 {
464 dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
465 dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del,
466 last_basic_block);
467 }
468 #endif
469
470 return edge_list;
471 }
472
473 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
474 Return the number of passes we performed to iterate to a solution. */
475
476 void
477 compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
478 sbitmap *avin)
479 {
480 edge e;
481 basic_block *worklist, *qin, *qout, *qend, bb;
482 unsigned int qlen;
483 edge_iterator ei;
484
485 /* Allocate a worklist array/queue. Entries are only added to the
486 list if they were not already on the list. So the size is
487 bounded by the number of basic blocks. */
488 qin = qout = worklist =
489 XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS);
490
491 /* We want a maximal solution. */
492 sbitmap_vector_ones (avout, last_basic_block);
493
494 /* Put every block on the worklist; this is necessary because of the
495 optimistic initialization of AVOUT above. */
496 FOR_EACH_BB (bb)
497 {
498 *qin++ = bb;
499 bb->aux = bb;
500 }
501
502 qin = worklist;
503 qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
504 qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
505
506 /* Mark blocks which are successors of the entry block so that we
507 can easily identify them below. */
508 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
509 e->dest->aux = ENTRY_BLOCK_PTR;
510
511 /* Iterate until the worklist is empty. */
512 while (qlen)
513 {
514 /* Take the first entry off the worklist. */
515 bb = *qout++;
516 qlen--;
517
518 if (qout >= qend)
519 qout = worklist;
520
521 /* If one of the predecessor blocks is the ENTRY block, then the
522 intersection of avouts is the null set. We can identify such blocks
523 by the special value in the AUX field in the block structure. */
524 if (bb->aux == ENTRY_BLOCK_PTR)
525 /* Do not clear the aux field for blocks which are successors of the
526 ENTRY block. That way we never add then to the worklist again. */
527 sbitmap_zero (avin[bb->index]);
528 else
529 {
530 /* Clear the aux field of this block so that it can be added to
531 the worklist again if necessary. */
532 bb->aux = NULL;
533 sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index);
534 }
535
536 if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index],
537 avin[bb->index], kill[bb->index]))
538 /* If the out state of this block changed, then we need
539 to add the successors of this block to the worklist
540 if they are not already on the worklist. */
541 FOR_EACH_EDGE (e, ei, bb->succs)
542 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
543 {
544 *qin++ = e->dest;
545 e->dest->aux = e;
546 qlen++;
547
548 if (qin >= qend)
549 qin = worklist;
550 }
551 }
552
553 clear_aux_for_edges ();
554 clear_aux_for_blocks ();
555 free (worklist);
556 }
557
558 /* Compute the farthest vector for edge based lcm. */
559
560 static void
561 compute_farthest (struct edge_list *edge_list, int n_exprs,
562 sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
563 sbitmap *kill, sbitmap *farthest)
564 {
565 sbitmap difference, temp_bitmap;
566 int x, num_edges;
567 basic_block pred, succ;
568
569 num_edges = NUM_EDGES (edge_list);
570
571 difference = sbitmap_alloc (n_exprs);
572 temp_bitmap = sbitmap_alloc (n_exprs);
573
574 for (x = 0; x < num_edges; x++)
575 {
576 pred = INDEX_EDGE_PRED_BB (edge_list, x);
577 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
578 if (succ == EXIT_BLOCK_PTR)
579 sbitmap_copy (farthest[x], st_avout[pred->index]);
580 else
581 {
582 if (pred == ENTRY_BLOCK_PTR)
583 sbitmap_zero (farthest[x]);
584 else
585 {
586 sbitmap_difference (difference, st_avout[pred->index],
587 st_antin[succ->index]);
588 sbitmap_not (temp_bitmap, st_avin[succ->index]);
589 sbitmap_a_and_b_or_c (farthest[x], difference,
590 kill[succ->index], temp_bitmap);
591 }
592 }
593 }
594
595 sbitmap_free (temp_bitmap);
596 sbitmap_free (difference);
597 }
598
599 /* Compute nearer and nearerout vectors for edge based lcm.
600
601 This is the mirror of compute_laterin, additional comments on the
602 implementation can be found before compute_laterin. */
603
604 static void
605 compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
606 sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
607 {
608 int num_edges, i;
609 edge e;
610 basic_block *worklist, *tos, bb;
611 edge_iterator ei;
612
613 num_edges = NUM_EDGES (edge_list);
614
615 /* Allocate a worklist array/queue. Entries are only added to the
616 list if they were not already on the list. So the size is
617 bounded by the number of basic blocks. */
618 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
619
620 /* Initialize NEARER for each edge and build a mapping from an edge to
621 its index. */
622 for (i = 0; i < num_edges; i++)
623 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
624
625 /* We want a maximal solution. */
626 sbitmap_vector_ones (nearer, num_edges);
627
628 /* Note that even though we want an optimistic setting of NEARER, we
629 do not want to be overly optimistic. Consider an incoming edge to
630 the exit block. That edge should always have a NEARER value the
631 same as FARTHEST for that edge. */
632 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
633 sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
634
635 /* Add all the blocks to the worklist. This prevents an early exit
636 from the loop given our optimistic initialization of NEARER. */
637 FOR_EACH_BB (bb)
638 {
639 *tos++ = bb;
640 bb->aux = bb;
641 }
642
643 /* Iterate until the worklist is empty. */
644 while (tos != worklist)
645 {
646 /* Take the first entry off the worklist. */
647 bb = *--tos;
648 bb->aux = NULL;
649
650 /* Compute the intersection of NEARER for each outgoing edge from B. */
651 sbitmap_ones (nearerout[bb->index]);
652 FOR_EACH_EDGE (e, ei, bb->succs)
653 sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index],
654 nearer[(size_t) e->aux]);
655
656 /* Calculate NEARER for all incoming edges. */
657 FOR_EACH_EDGE (e, ei, bb->preds)
658 if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux],
659 farthest[(size_t) e->aux],
660 nearerout[e->dest->index],
661 st_avloc[e->dest->index])
662 /* If NEARER for an incoming edge was changed, then we need
663 to add the source of the incoming edge to the worklist. */
664 && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
665 {
666 *tos++ = e->src;
667 e->src->aux = e;
668 }
669 }
670
671 /* Computation of insertion and deletion points requires computing NEAREROUT
672 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
673 for just this purpose. */
674 sbitmap_ones (nearerout[last_basic_block]);
675 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
676 sbitmap_a_and_b (nearerout[last_basic_block],
677 nearerout[last_basic_block],
678 nearer[(size_t) e->aux]);
679
680 clear_aux_for_edges ();
681 free (tos);
682 }
683
684 /* Compute the insertion and deletion points for edge based LCM. */
685
686 static void
687 compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
688 sbitmap *nearer, sbitmap *nearerout,
689 sbitmap *insert, sbitmap *del)
690 {
691 int x;
692 basic_block bb;
693
694 FOR_EACH_BB (bb)
695 sbitmap_difference (del[bb->index], st_avloc[bb->index],
696 nearerout[bb->index]);
697
698 for (x = 0; x < NUM_EDGES (edge_list); x++)
699 {
700 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
701 if (b == ENTRY_BLOCK_PTR)
702 sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]);
703 else
704 sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
705 }
706 }
707
708 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
709 insert and delete vectors for edge based reverse LCM. Returns an
710 edgelist which is used to map the insert vector to what edge
711 an expression should be inserted on. */
712
713 struct edge_list *
714 pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
715 sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
716 sbitmap **insert, sbitmap **del)
717 {
718 sbitmap *st_antin, *st_antout;
719 sbitmap *st_avout, *st_avin, *farthest;
720 sbitmap *nearer, *nearerout;
721 struct edge_list *edge_list;
722 int num_edges;
723
724 edge_list = create_edge_list ();
725 num_edges = NUM_EDGES (edge_list);
726
727 st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
728 st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
729 sbitmap_vector_zero (st_antin, last_basic_block);
730 sbitmap_vector_zero (st_antout, last_basic_block);
731 compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
732
733 /* Compute global anticipatability. */
734 st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
735 st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
736 compute_available (st_avloc, kill, st_avout, st_avin);
737
738 #ifdef LCM_DEBUG_INFO
739 if (dump_file)
740 {
741 fprintf (dump_file, "Edge List:\n");
742 verify_edge_list (dump_file, edge_list);
743 print_edge_list (dump_file, edge_list);
744 dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
745 dump_sbitmap_vector (dump_file, "st_avloc", "", st_avloc, last_basic_block);
746 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
747 dump_sbitmap_vector (dump_file, "st_antin", "", st_antin, last_basic_block);
748 dump_sbitmap_vector (dump_file, "st_antout", "", st_antout, last_basic_block);
749 dump_sbitmap_vector (dump_file, "st_kill", "", kill, last_basic_block);
750 }
751 #endif
752
753 #ifdef LCM_DEBUG_INFO
754 if (dump_file)
755 {
756 dump_sbitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block);
757 dump_sbitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block);
758 }
759 #endif
760
761 /* Compute farthestness. */
762 farthest = sbitmap_vector_alloc (num_edges, n_exprs);
763 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
764 kill, farthest);
765
766 #ifdef LCM_DEBUG_INFO
767 if (dump_file)
768 dump_sbitmap_vector (dump_file, "farthest", "", farthest, num_edges);
769 #endif
770
771 sbitmap_vector_free (st_antin);
772 sbitmap_vector_free (st_antout);
773
774 sbitmap_vector_free (st_avin);
775 sbitmap_vector_free (st_avout);
776
777 nearer = sbitmap_vector_alloc (num_edges, n_exprs);
778
779 /* Allocate an extra element for the entry block. */
780 nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
781 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
782
783 #ifdef LCM_DEBUG_INFO
784 if (dump_file)
785 {
786 dump_sbitmap_vector (dump_file, "nearerout", "", nearerout,
787 last_basic_block + 1);
788 dump_sbitmap_vector (dump_file, "nearer", "", nearer, num_edges);
789 }
790 #endif
791
792 sbitmap_vector_free (farthest);
793
794 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
795 *del = sbitmap_vector_alloc (last_basic_block, n_exprs);
796 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
797 *insert, *del);
798
799 sbitmap_vector_free (nearerout);
800 sbitmap_vector_free (nearer);
801
802 #ifdef LCM_DEBUG_INFO
803 if (dump_file)
804 {
805 dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
806 dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del,
807 last_basic_block);
808 }
809 #endif
810 return edge_list;
811 }
812