lcm.c (optimize_mode_switching): Free ptr even when mode_set is NULL_RTX.
[gcc.git] / gcc / lcm.c
1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* These routines are meant to be used by various optimization
23 passes which can be modeled as lazy code motion problems.
24 Including, but not limited to:
25
26 * Traditional partial redundancy elimination.
27
28 * Placement of caller/caller register save/restores.
29
30 * Load/store motion.
31
32 * Copy motion.
33
34 * Conversion of flat register files to a stacked register
35 model.
36
37 * Dead load/store elimination.
38
39 These routines accept as input:
40
41 * Basic block information (number of blocks, lists of
42 predecessors and successors). Note the granularity
43 does not need to be basic block, they could be statements
44 or functions.
45
46 * Bitmaps of local properties (computed, transparent and
47 anticipatable expressions).
48
49 The output of these routines is bitmap of redundant computations
50 and a bitmap of optimal placement points. */
51
52
53 #include "config.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "regs.h"
59 #include "hard-reg-set.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "insn-config.h"
63 #include "recog.h"
64 #include "basic-block.h"
65 #include "output.h"
66 #include "tm_p.h"
67 #include "function.h"
68
69 /* We want target macros for the mode switching code to be able to refer
70 to instruction attribute values. */
71 #include "insn-attr.h"
72
73 /* Edge based LCM routines. */
74 static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
75 static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
76 sbitmap *, sbitmap *, sbitmap *);
77 static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
78 sbitmap *, sbitmap *);
79 static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
80 sbitmap *, sbitmap *, sbitmap *, sbitmap *);
81
82 /* Edge based LCM routines on a reverse flowgraph. */
83 static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
84 sbitmap*, sbitmap *, sbitmap *);
85 static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
86 sbitmap *, sbitmap *);
87 static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
88 sbitmap *, sbitmap *, sbitmap *,
89 sbitmap *);
90 \f
91 /* Edge based lcm routines. */
92
93 /* Compute expression anticipatability at entrance and exit of each block.
94 This is done based on the flow graph, and not on the pred-succ lists.
95 Other than that, its pretty much identical to compute_antinout. */
96
97 static void
98 compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
99 sbitmap *antout)
100 {
101 basic_block bb;
102 edge e;
103 basic_block *worklist, *qin, *qout, *qend;
104 unsigned int qlen;
105 edge_iterator ei;
106
107 /* Allocate a worklist array/queue. Entries are only added to the
108 list if they were not already on the list. So the size is
109 bounded by the number of basic blocks. */
110 qin = qout = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
111
112 /* We want a maximal solution, so make an optimistic initialization of
113 ANTIN. */
114 sbitmap_vector_ones (antin, last_basic_block);
115
116 /* Put every block on the worklist; this is necessary because of the
117 optimistic initialization of ANTIN above. */
118 FOR_EACH_BB_REVERSE (bb)
119 {
120 *qin++ = bb;
121 bb->aux = bb;
122 }
123
124 qin = worklist;
125 qend = &worklist[n_basic_blocks];
126 qlen = n_basic_blocks;
127
128 /* Mark blocks which are predecessors of the exit block so that we
129 can easily identify them below. */
130 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
131 e->src->aux = EXIT_BLOCK_PTR;
132
133 /* Iterate until the worklist is empty. */
134 while (qlen)
135 {
136 /* Take the first entry off the worklist. */
137 bb = *qout++;
138 qlen--;
139
140 if (qout >= qend)
141 qout = worklist;
142
143 if (bb->aux == EXIT_BLOCK_PTR)
144 /* Do not clear the aux field for blocks which are predecessors of
145 the EXIT block. That way we never add then to the worklist
146 again. */
147 sbitmap_zero (antout[bb->index]);
148 else
149 {
150 /* Clear the aux field of this block so that it can be added to
151 the worklist again if necessary. */
152 bb->aux = NULL;
153 sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index);
154 }
155
156 if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index],
157 transp[bb->index], antout[bb->index]))
158 /* If the in state of this block changed, then we need
159 to add the predecessors of this block to the worklist
160 if they are not already on the worklist. */
161 FOR_EACH_EDGE (e, ei, bb->preds)
162 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
163 {
164 *qin++ = e->src;
165 e->src->aux = e;
166 qlen++;
167 if (qin >= qend)
168 qin = worklist;
169 }
170 }
171
172 clear_aux_for_edges ();
173 clear_aux_for_blocks ();
174 free (worklist);
175 }
176
177 /* Compute the earliest vector for edge based lcm. */
178
179 static void
180 compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
181 sbitmap *antout, sbitmap *avout, sbitmap *kill,
182 sbitmap *earliest)
183 {
184 sbitmap difference, temp_bitmap;
185 int x, num_edges;
186 basic_block pred, succ;
187
188 num_edges = NUM_EDGES (edge_list);
189
190 difference = sbitmap_alloc (n_exprs);
191 temp_bitmap = sbitmap_alloc (n_exprs);
192
193 for (x = 0; x < num_edges; x++)
194 {
195 pred = INDEX_EDGE_PRED_BB (edge_list, x);
196 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
197 if (pred == ENTRY_BLOCK_PTR)
198 sbitmap_copy (earliest[x], antin[succ->index]);
199 else
200 {
201 if (succ == EXIT_BLOCK_PTR)
202 sbitmap_zero (earliest[x]);
203 else
204 {
205 sbitmap_difference (difference, antin[succ->index],
206 avout[pred->index]);
207 sbitmap_not (temp_bitmap, antout[pred->index]);
208 sbitmap_a_and_b_or_c (earliest[x], difference,
209 kill[pred->index], temp_bitmap);
210 }
211 }
212 }
213
214 sbitmap_free (temp_bitmap);
215 sbitmap_free (difference);
216 }
217
218 /* later(p,s) is dependent on the calculation of laterin(p).
219 laterin(p) is dependent on the calculation of later(p2,p).
220
221 laterin(ENTRY) is defined as all 0's
222 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
223 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
224
225 If we progress in this manner, starting with all basic blocks
226 in the work list, anytime we change later(bb), we need to add
227 succs(bb) to the worklist if they are not already on the worklist.
228
229 Boundary conditions:
230
231 We prime the worklist all the normal basic blocks. The ENTRY block can
232 never be added to the worklist since it is never the successor of any
233 block. We explicitly prevent the EXIT block from being added to the
234 worklist.
235
236 We optimistically initialize LATER. That is the only time this routine
237 will compute LATER for an edge out of the entry block since the entry
238 block is never on the worklist. Thus, LATERIN is neither used nor
239 computed for the ENTRY block.
240
241 Since the EXIT block is never added to the worklist, we will neither
242 use nor compute LATERIN for the exit block. Edges which reach the
243 EXIT block are handled in the normal fashion inside the loop. However,
244 the insertion/deletion computation needs LATERIN(EXIT), so we have
245 to compute it. */
246
247 static void
248 compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
249 sbitmap *antloc, sbitmap *later, sbitmap *laterin)
250 {
251 int num_edges, i;
252 edge e;
253 basic_block *worklist, *qin, *qout, *qend, bb;
254 unsigned int qlen;
255 edge_iterator ei;
256
257 num_edges = NUM_EDGES (edge_list);
258
259 /* Allocate a worklist array/queue. Entries are only added to the
260 list if they were not already on the list. So the size is
261 bounded by the number of basic blocks. */
262 qin = qout = worklist
263 = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
264
265 /* Initialize a mapping from each edge to its index. */
266 for (i = 0; i < num_edges; i++)
267 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
268
269 /* We want a maximal solution, so initially consider LATER true for
270 all edges. This allows propagation through a loop since the incoming
271 loop edge will have LATER set, so if all the other incoming edges
272 to the loop are set, then LATERIN will be set for the head of the
273 loop.
274
275 If the optimistic setting of LATER on that edge was incorrect (for
276 example the expression is ANTLOC in a block within the loop) then
277 this algorithm will detect it when we process the block at the head
278 of the optimistic edge. That will requeue the affected blocks. */
279 sbitmap_vector_ones (later, num_edges);
280
281 /* Note that even though we want an optimistic setting of LATER, we
282 do not want to be overly optimistic. Consider an outgoing edge from
283 the entry block. That edge should always have a LATER value the
284 same as EARLIEST for that edge. */
285 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
286 sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
287
288 /* Add all the blocks to the worklist. This prevents an early exit from
289 the loop given our optimistic initialization of LATER above. */
290 FOR_EACH_BB (bb)
291 {
292 *qin++ = bb;
293 bb->aux = bb;
294 }
295
296 /* Note that we do not use the last allocated element for our queue,
297 as EXIT_BLOCK is never inserted into it. In fact the above allocation
298 of n_basic_blocks + 1 elements is not necessary. */
299 qin = worklist;
300 qend = &worklist[n_basic_blocks];
301 qlen = n_basic_blocks;
302
303 /* Iterate until the worklist is empty. */
304 while (qlen)
305 {
306 /* Take the first entry off the worklist. */
307 bb = *qout++;
308 bb->aux = NULL;
309 qlen--;
310 if (qout >= qend)
311 qout = worklist;
312
313 /* Compute the intersection of LATERIN for each incoming edge to B. */
314 sbitmap_ones (laterin[bb->index]);
315 FOR_EACH_EDGE (e, ei, bb->preds)
316 sbitmap_a_and_b (laterin[bb->index], laterin[bb->index],
317 later[(size_t)e->aux]);
318
319 /* Calculate LATER for all outgoing edges. */
320 FOR_EACH_EDGE (e, ei, bb->succs)
321 if (sbitmap_union_of_diff_cg (later[(size_t) e->aux],
322 earliest[(size_t) e->aux],
323 laterin[e->src->index],
324 antloc[e->src->index])
325 /* If LATER for an outgoing edge was changed, then we need
326 to add the target of the outgoing edge to the worklist. */
327 && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
328 {
329 *qin++ = e->dest;
330 e->dest->aux = e;
331 qlen++;
332 if (qin >= qend)
333 qin = worklist;
334 }
335 }
336
337 /* Computation of insertion and deletion points requires computing LATERIN
338 for the EXIT block. We allocated an extra entry in the LATERIN array
339 for just this purpose. */
340 sbitmap_ones (laterin[last_basic_block]);
341 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
342 sbitmap_a_and_b (laterin[last_basic_block],
343 laterin[last_basic_block],
344 later[(size_t) e->aux]);
345
346 clear_aux_for_edges ();
347 free (worklist);
348 }
349
350 /* Compute the insertion and deletion points for edge based LCM. */
351
352 static void
353 compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
354 sbitmap *later, sbitmap *laterin, sbitmap *insert,
355 sbitmap *delete)
356 {
357 int x;
358 basic_block bb;
359
360 FOR_EACH_BB (bb)
361 sbitmap_difference (delete[bb->index], antloc[bb->index],
362 laterin[bb->index]);
363
364 for (x = 0; x < NUM_EDGES (edge_list); x++)
365 {
366 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
367
368 if (b == EXIT_BLOCK_PTR)
369 sbitmap_difference (insert[x], later[x], laterin[last_basic_block]);
370 else
371 sbitmap_difference (insert[x], later[x], laterin[b->index]);
372 }
373 }
374
375 /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
376 delete vectors for edge based LCM. Returns an edgelist which is used to
377 map the insert vector to what edge an expression should be inserted on. */
378
379 struct edge_list *
380 pre_edge_lcm (FILE *file ATTRIBUTE_UNUSED, int n_exprs, sbitmap *transp,
381 sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
382 sbitmap **insert, sbitmap **delete)
383 {
384 sbitmap *antin, *antout, *earliest;
385 sbitmap *avin, *avout;
386 sbitmap *later, *laterin;
387 struct edge_list *edge_list;
388 int num_edges;
389
390 edge_list = create_edge_list ();
391 num_edges = NUM_EDGES (edge_list);
392
393 #ifdef LCM_DEBUG_INFO
394 if (file)
395 {
396 fprintf (file, "Edge List:\n");
397 verify_edge_list (file, edge_list);
398 print_edge_list (file, edge_list);
399 dump_sbitmap_vector (file, "transp", "", transp, last_basic_block);
400 dump_sbitmap_vector (file, "antloc", "", antloc, last_basic_block);
401 dump_sbitmap_vector (file, "avloc", "", avloc, last_basic_block);
402 dump_sbitmap_vector (file, "kill", "", kill, last_basic_block);
403 }
404 #endif
405
406 /* Compute global availability. */
407 avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
408 avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
409 compute_available (avloc, kill, avout, avin);
410 sbitmap_vector_free (avin);
411
412 /* Compute global anticipatability. */
413 antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
414 antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
415 compute_antinout_edge (antloc, transp, antin, antout);
416
417 #ifdef LCM_DEBUG_INFO
418 if (file)
419 {
420 dump_sbitmap_vector (file, "antin", "", antin, last_basic_block);
421 dump_sbitmap_vector (file, "antout", "", antout, last_basic_block);
422 }
423 #endif
424
425 /* Compute earliestness. */
426 earliest = sbitmap_vector_alloc (num_edges, n_exprs);
427 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
428
429 #ifdef LCM_DEBUG_INFO
430 if (file)
431 dump_sbitmap_vector (file, "earliest", "", earliest, num_edges);
432 #endif
433
434 sbitmap_vector_free (antout);
435 sbitmap_vector_free (antin);
436 sbitmap_vector_free (avout);
437
438 later = sbitmap_vector_alloc (num_edges, n_exprs);
439
440 /* Allocate an extra element for the exit block in the laterin vector. */
441 laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
442 compute_laterin (edge_list, earliest, antloc, later, laterin);
443
444 #ifdef LCM_DEBUG_INFO
445 if (file)
446 {
447 dump_sbitmap_vector (file, "laterin", "", laterin, last_basic_block + 1);
448 dump_sbitmap_vector (file, "later", "", later, num_edges);
449 }
450 #endif
451
452 sbitmap_vector_free (earliest);
453
454 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
455 *delete = sbitmap_vector_alloc (last_basic_block, n_exprs);
456 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete);
457
458 sbitmap_vector_free (laterin);
459 sbitmap_vector_free (later);
460
461 #ifdef LCM_DEBUG_INFO
462 if (file)
463 {
464 dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
465 dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
466 last_basic_block);
467 }
468 #endif
469
470 return edge_list;
471 }
472
473 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
474 Return the number of passes we performed to iterate to a solution. */
475
476 void
477 compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
478 sbitmap *avin)
479 {
480 edge e;
481 basic_block *worklist, *qin, *qout, *qend, bb;
482 unsigned int qlen;
483 edge_iterator ei;
484
485 /* Allocate a worklist array/queue. Entries are only added to the
486 list if they were not already on the list. So the size is
487 bounded by the number of basic blocks. */
488 qin = qout = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
489
490 /* We want a maximal solution. */
491 sbitmap_vector_ones (avout, last_basic_block);
492
493 /* Put every block on the worklist; this is necessary because of the
494 optimistic initialization of AVOUT above. */
495 FOR_EACH_BB (bb)
496 {
497 *qin++ = bb;
498 bb->aux = bb;
499 }
500
501 qin = worklist;
502 qend = &worklist[n_basic_blocks];
503 qlen = n_basic_blocks;
504
505 /* Mark blocks which are successors of the entry block so that we
506 can easily identify them below. */
507 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
508 e->dest->aux = ENTRY_BLOCK_PTR;
509
510 /* Iterate until the worklist is empty. */
511 while (qlen)
512 {
513 /* Take the first entry off the worklist. */
514 bb = *qout++;
515 qlen--;
516
517 if (qout >= qend)
518 qout = worklist;
519
520 /* If one of the predecessor blocks is the ENTRY block, then the
521 intersection of avouts is the null set. We can identify such blocks
522 by the special value in the AUX field in the block structure. */
523 if (bb->aux == ENTRY_BLOCK_PTR)
524 /* Do not clear the aux field for blocks which are successors of the
525 ENTRY block. That way we never add then to the worklist again. */
526 sbitmap_zero (avin[bb->index]);
527 else
528 {
529 /* Clear the aux field of this block so that it can be added to
530 the worklist again if necessary. */
531 bb->aux = NULL;
532 sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index);
533 }
534
535 if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index],
536 avin[bb->index], kill[bb->index]))
537 /* If the out state of this block changed, then we need
538 to add the successors of this block to the worklist
539 if they are not already on the worklist. */
540 FOR_EACH_EDGE (e, ei, bb->succs)
541 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
542 {
543 *qin++ = e->dest;
544 e->dest->aux = e;
545 qlen++;
546
547 if (qin >= qend)
548 qin = worklist;
549 }
550 }
551
552 clear_aux_for_edges ();
553 clear_aux_for_blocks ();
554 free (worklist);
555 }
556
557 /* Compute the farthest vector for edge based lcm. */
558
559 static void
560 compute_farthest (struct edge_list *edge_list, int n_exprs,
561 sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
562 sbitmap *kill, sbitmap *farthest)
563 {
564 sbitmap difference, temp_bitmap;
565 int x, num_edges;
566 basic_block pred, succ;
567
568 num_edges = NUM_EDGES (edge_list);
569
570 difference = sbitmap_alloc (n_exprs);
571 temp_bitmap = sbitmap_alloc (n_exprs);
572
573 for (x = 0; x < num_edges; x++)
574 {
575 pred = INDEX_EDGE_PRED_BB (edge_list, x);
576 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
577 if (succ == EXIT_BLOCK_PTR)
578 sbitmap_copy (farthest[x], st_avout[pred->index]);
579 else
580 {
581 if (pred == ENTRY_BLOCK_PTR)
582 sbitmap_zero (farthest[x]);
583 else
584 {
585 sbitmap_difference (difference, st_avout[pred->index],
586 st_antin[succ->index]);
587 sbitmap_not (temp_bitmap, st_avin[succ->index]);
588 sbitmap_a_and_b_or_c (farthest[x], difference,
589 kill[succ->index], temp_bitmap);
590 }
591 }
592 }
593
594 sbitmap_free (temp_bitmap);
595 sbitmap_free (difference);
596 }
597
598 /* Compute nearer and nearerout vectors for edge based lcm.
599
600 This is the mirror of compute_laterin, additional comments on the
601 implementation can be found before compute_laterin. */
602
603 static void
604 compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
605 sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
606 {
607 int num_edges, i;
608 edge e;
609 basic_block *worklist, *tos, bb;
610 edge_iterator ei;
611
612 num_edges = NUM_EDGES (edge_list);
613
614 /* Allocate a worklist array/queue. Entries are only added to the
615 list if they were not already on the list. So the size is
616 bounded by the number of basic blocks. */
617 tos = worklist = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
618
619 /* Initialize NEARER for each edge and build a mapping from an edge to
620 its index. */
621 for (i = 0; i < num_edges; i++)
622 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
623
624 /* We want a maximal solution. */
625 sbitmap_vector_ones (nearer, num_edges);
626
627 /* Note that even though we want an optimistic setting of NEARER, we
628 do not want to be overly optimistic. Consider an incoming edge to
629 the exit block. That edge should always have a NEARER value the
630 same as FARTHEST for that edge. */
631 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
632 sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
633
634 /* Add all the blocks to the worklist. This prevents an early exit
635 from the loop given our optimistic initialization of NEARER. */
636 FOR_EACH_BB (bb)
637 {
638 *tos++ = bb;
639 bb->aux = bb;
640 }
641
642 /* Iterate until the worklist is empty. */
643 while (tos != worklist)
644 {
645 /* Take the first entry off the worklist. */
646 bb = *--tos;
647 bb->aux = NULL;
648
649 /* Compute the intersection of NEARER for each outgoing edge from B. */
650 sbitmap_ones (nearerout[bb->index]);
651 FOR_EACH_EDGE (e, ei, bb->succs)
652 sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index],
653 nearer[(size_t) e->aux]);
654
655 /* Calculate NEARER for all incoming edges. */
656 FOR_EACH_EDGE (e, ei, bb->preds)
657 if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux],
658 farthest[(size_t) e->aux],
659 nearerout[e->dest->index],
660 st_avloc[e->dest->index])
661 /* If NEARER for an incoming edge was changed, then we need
662 to add the source of the incoming edge to the worklist. */
663 && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
664 {
665 *tos++ = e->src;
666 e->src->aux = e;
667 }
668 }
669
670 /* Computation of insertion and deletion points requires computing NEAREROUT
671 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
672 for just this purpose. */
673 sbitmap_ones (nearerout[last_basic_block]);
674 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
675 sbitmap_a_and_b (nearerout[last_basic_block],
676 nearerout[last_basic_block],
677 nearer[(size_t) e->aux]);
678
679 clear_aux_for_edges ();
680 free (tos);
681 }
682
683 /* Compute the insertion and deletion points for edge based LCM. */
684
685 static void
686 compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
687 sbitmap *nearer, sbitmap *nearerout,
688 sbitmap *insert, sbitmap *delete)
689 {
690 int x;
691 basic_block bb;
692
693 FOR_EACH_BB (bb)
694 sbitmap_difference (delete[bb->index], st_avloc[bb->index],
695 nearerout[bb->index]);
696
697 for (x = 0; x < NUM_EDGES (edge_list); x++)
698 {
699 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
700 if (b == ENTRY_BLOCK_PTR)
701 sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]);
702 else
703 sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
704 }
705 }
706
707 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
708 insert and delete vectors for edge based reverse LCM. Returns an
709 edgelist which is used to map the insert vector to what edge
710 an expression should be inserted on. */
711
712 struct edge_list *
713 pre_edge_rev_lcm (FILE *file ATTRIBUTE_UNUSED, int n_exprs, sbitmap *transp,
714 sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
715 sbitmap **insert, sbitmap **delete)
716 {
717 sbitmap *st_antin, *st_antout;
718 sbitmap *st_avout, *st_avin, *farthest;
719 sbitmap *nearer, *nearerout;
720 struct edge_list *edge_list;
721 int num_edges;
722
723 edge_list = create_edge_list ();
724 num_edges = NUM_EDGES (edge_list);
725
726 st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
727 st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
728 sbitmap_vector_zero (st_antin, last_basic_block);
729 sbitmap_vector_zero (st_antout, last_basic_block);
730 compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
731
732 /* Compute global anticipatability. */
733 st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
734 st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
735 compute_available (st_avloc, kill, st_avout, st_avin);
736
737 #ifdef LCM_DEBUG_INFO
738 if (file)
739 {
740 fprintf (file, "Edge List:\n");
741 verify_edge_list (file, edge_list);
742 print_edge_list (file, edge_list);
743 dump_sbitmap_vector (file, "transp", "", transp, last_basic_block);
744 dump_sbitmap_vector (file, "st_avloc", "", st_avloc, last_basic_block);
745 dump_sbitmap_vector (file, "st_antloc", "", st_antloc, last_basic_block);
746 dump_sbitmap_vector (file, "st_antin", "", st_antin, last_basic_block);
747 dump_sbitmap_vector (file, "st_antout", "", st_antout, last_basic_block);
748 dump_sbitmap_vector (file, "st_kill", "", kill, last_basic_block);
749 }
750 #endif
751
752 #ifdef LCM_DEBUG_INFO
753 if (file)
754 {
755 dump_sbitmap_vector (file, "st_avout", "", st_avout, last_basic_block);
756 dump_sbitmap_vector (file, "st_avin", "", st_avin, last_basic_block);
757 }
758 #endif
759
760 /* Compute farthestness. */
761 farthest = sbitmap_vector_alloc (num_edges, n_exprs);
762 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
763 kill, farthest);
764
765 #ifdef LCM_DEBUG_INFO
766 if (file)
767 dump_sbitmap_vector (file, "farthest", "", farthest, num_edges);
768 #endif
769
770 sbitmap_vector_free (st_antin);
771 sbitmap_vector_free (st_antout);
772
773 sbitmap_vector_free (st_avin);
774 sbitmap_vector_free (st_avout);
775
776 nearer = sbitmap_vector_alloc (num_edges, n_exprs);
777
778 /* Allocate an extra element for the entry block. */
779 nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
780 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
781
782 #ifdef LCM_DEBUG_INFO
783 if (file)
784 {
785 dump_sbitmap_vector (file, "nearerout", "", nearerout,
786 last_basic_block + 1);
787 dump_sbitmap_vector (file, "nearer", "", nearer, num_edges);
788 }
789 #endif
790
791 sbitmap_vector_free (farthest);
792
793 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
794 *delete = sbitmap_vector_alloc (last_basic_block, n_exprs);
795 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
796 *insert, *delete);
797
798 sbitmap_vector_free (nearerout);
799 sbitmap_vector_free (nearer);
800
801 #ifdef LCM_DEBUG_INFO
802 if (file)
803 {
804 dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
805 dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
806 last_basic_block);
807 }
808 #endif
809 return edge_list;
810 }
811
812 /* Mode switching:
813
814 The algorithm for setting the modes consists of scanning the insn list
815 and finding all the insns which require a specific mode. Each insn gets
816 a unique struct seginfo element. These structures are inserted into a list
817 for each basic block. For each entity, there is an array of bb_info over
818 the flow graph basic blocks (local var 'bb_info'), and contains a list
819 of all insns within that basic block, in the order they are encountered.
820
821 For each entity, any basic block WITHOUT any insns requiring a specific
822 mode are given a single entry, without a mode. (Each basic block
823 in the flow graph must have at least one entry in the segment table.)
824
825 The LCM algorithm is then run over the flow graph to determine where to
826 place the sets to the highest-priority value in respect of first the first
827 insn in any one block. Any adjustments required to the transparency
828 vectors are made, then the next iteration starts for the next-lower
829 priority mode, till for each entity all modes are exhausted.
830
831 More details are located in the code for optimize_mode_switching(). */
832
833 /* This structure contains the information for each insn which requires
834 either single or double mode to be set.
835 MODE is the mode this insn must be executed in.
836 INSN_PTR is the insn to be executed (may be the note that marks the
837 beginning of a basic block).
838 BBNUM is the flow graph basic block this insn occurs in.
839 NEXT is the next insn in the same basic block. */
840 struct seginfo
841 {
842 int mode;
843 rtx insn_ptr;
844 int bbnum;
845 struct seginfo *next;
846 HARD_REG_SET regs_live;
847 };
848
849 struct bb_info
850 {
851 struct seginfo *seginfo;
852 int computing;
853 };
854
855 /* These bitmaps are used for the LCM algorithm. */
856
857 #ifdef OPTIMIZE_MODE_SWITCHING
858 static sbitmap *antic;
859 static sbitmap *transp;
860 static sbitmap *comp;
861
862 static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
863 static void add_seginfo (struct bb_info *, struct seginfo *);
864 static void reg_dies (rtx, HARD_REG_SET);
865 static void reg_becomes_live (rtx, rtx, void *);
866 static void make_preds_opaque (basic_block, int);
867 #endif
868 \f
869 #ifdef OPTIMIZE_MODE_SWITCHING
870
871 /* This function will allocate a new BBINFO structure, initialized
872 with the MODE, INSN, and basic block BB parameters. */
873
874 static struct seginfo *
875 new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
876 {
877 struct seginfo *ptr;
878 ptr = xmalloc (sizeof (struct seginfo));
879 ptr->mode = mode;
880 ptr->insn_ptr = insn;
881 ptr->bbnum = bb;
882 ptr->next = NULL;
883 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
884 return ptr;
885 }
886
887 /* Add a seginfo element to the end of a list.
888 HEAD is a pointer to the list beginning.
889 INFO is the structure to be linked in. */
890
891 static void
892 add_seginfo (struct bb_info *head, struct seginfo *info)
893 {
894 struct seginfo *ptr;
895
896 if (head->seginfo == NULL)
897 head->seginfo = info;
898 else
899 {
900 ptr = head->seginfo;
901 while (ptr->next != NULL)
902 ptr = ptr->next;
903 ptr->next = info;
904 }
905 }
906
907 /* Make all predecessors of basic block B opaque, recursively, till we hit
908 some that are already non-transparent, or an edge where aux is set; that
909 denotes that a mode set is to be done on that edge.
910 J is the bit number in the bitmaps that corresponds to the entity that
911 we are currently handling mode-switching for. */
912
913 static void
914 make_preds_opaque (basic_block b, int j)
915 {
916 edge e;
917 edge_iterator ei;
918
919 FOR_EACH_EDGE (e, ei, b->preds)
920 {
921 basic_block pb = e->src;
922
923 if (e->aux || ! TEST_BIT (transp[pb->index], j))
924 continue;
925
926 RESET_BIT (transp[pb->index], j);
927 make_preds_opaque (pb, j);
928 }
929 }
930
931 /* Record in LIVE that register REG died. */
932
933 static void
934 reg_dies (rtx reg, HARD_REG_SET live)
935 {
936 int regno, nregs;
937
938 if (!REG_P (reg))
939 return;
940
941 regno = REGNO (reg);
942 if (regno < FIRST_PSEUDO_REGISTER)
943 for (nregs = hard_regno_nregs[regno][GET_MODE (reg)] - 1; nregs >= 0;
944 nregs--)
945 CLEAR_HARD_REG_BIT (live, regno + nregs);
946 }
947
948 /* Record in LIVE that register REG became live.
949 This is called via note_stores. */
950
951 static void
952 reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *live)
953 {
954 int regno, nregs;
955
956 if (GET_CODE (reg) == SUBREG)
957 reg = SUBREG_REG (reg);
958
959 if (!REG_P (reg))
960 return;
961
962 regno = REGNO (reg);
963 if (regno < FIRST_PSEUDO_REGISTER)
964 for (nregs = hard_regno_nregs[regno][GET_MODE (reg)] - 1; nregs >= 0;
965 nregs--)
966 SET_HARD_REG_BIT (* (HARD_REG_SET *) live, regno + nregs);
967 }
968
969 /* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
970 and vice versa. */
971 #if defined (MODE_ENTRY) != defined (MODE_EXIT)
972 #error "Both MODE_ENTRY and MODE_EXIT must be defined"
973 #endif
974
975 /* Find all insns that need a particular mode setting, and insert the
976 necessary mode switches. Return true if we did work. */
977
978 int
979 optimize_mode_switching (FILE *file)
980 {
981 rtx insn;
982 int e;
983 basic_block bb;
984 int need_commit = 0;
985 sbitmap *kill;
986 struct edge_list *edge_list;
987 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
988 #define N_ENTITIES ARRAY_SIZE (num_modes)
989 int entity_map[N_ENTITIES];
990 struct bb_info *bb_info[N_ENTITIES];
991 int i, j;
992 int n_entities;
993 int max_num_modes = 0;
994 bool emited = false;
995 basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
996
997 clear_bb_flags ();
998
999 for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
1000 if (OPTIMIZE_MODE_SWITCHING (e))
1001 {
1002 int entry_exit_extra = 0;
1003
1004 /* Create the list of segments within each basic block.
1005 If NORMAL_MODE is defined, allow for two extra
1006 blocks split from the entry and exit block. */
1007 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
1008 entry_exit_extra = 2;
1009 #endif
1010 bb_info[n_entities]
1011 = xcalloc (last_basic_block + entry_exit_extra, sizeof **bb_info);
1012 entity_map[n_entities++] = e;
1013 if (num_modes[e] > max_num_modes)
1014 max_num_modes = num_modes[e];
1015 }
1016
1017 if (! n_entities)
1018 return 0;
1019
1020 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
1021 {
1022 /* Split the edge from the entry block and the fallthrough edge to the
1023 exit block, so that we can note that there NORMAL_MODE is supplied /
1024 required. */
1025 edge eg;
1026 edge_iterator ei;
1027 post_entry = split_edge (EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
1028 /* The only non-call predecessor at this stage is a block with a
1029 fallthrough edge; there can be at most one, but there could be
1030 none at all, e.g. when exit is called. */
1031 pre_exit = 0;
1032 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR->preds)
1033 if (eg->flags & EDGE_FALLTHRU)
1034 {
1035 regset live_at_end = eg->src->global_live_at_end;
1036
1037 gcc_assert (!pre_exit);
1038 pre_exit = split_edge (eg);
1039 COPY_REG_SET (pre_exit->global_live_at_start, live_at_end);
1040 COPY_REG_SET (pre_exit->global_live_at_end, live_at_end);
1041 }
1042 }
1043 #endif
1044
1045 /* Create the bitmap vectors. */
1046
1047 antic = sbitmap_vector_alloc (last_basic_block, n_entities);
1048 transp = sbitmap_vector_alloc (last_basic_block, n_entities);
1049 comp = sbitmap_vector_alloc (last_basic_block, n_entities);
1050
1051 sbitmap_vector_ones (transp, last_basic_block);
1052
1053 for (j = n_entities - 1; j >= 0; j--)
1054 {
1055 int e = entity_map[j];
1056 int no_mode = num_modes[e];
1057 struct bb_info *info = bb_info[j];
1058
1059 /* Determine what the first use (if any) need for a mode of entity E is.
1060 This will be the mode that is anticipatable for this block.
1061 Also compute the initial transparency settings. */
1062 FOR_EACH_BB (bb)
1063 {
1064 struct seginfo *ptr;
1065 int last_mode = no_mode;
1066 HARD_REG_SET live_now;
1067
1068 REG_SET_TO_HARD_REG_SET (live_now,
1069 bb->global_live_at_start);
1070 for (insn = BB_HEAD (bb);
1071 insn != NULL && insn != NEXT_INSN (BB_END (bb));
1072 insn = NEXT_INSN (insn))
1073 {
1074 if (INSN_P (insn))
1075 {
1076 int mode = MODE_NEEDED (e, insn);
1077 rtx link;
1078
1079 if (mode != no_mode && mode != last_mode)
1080 {
1081 last_mode = mode;
1082 ptr = new_seginfo (mode, insn, bb->index, live_now);
1083 add_seginfo (info + bb->index, ptr);
1084 RESET_BIT (transp[bb->index], j);
1085 }
1086 #ifdef MODE_AFTER
1087 last_mode = MODE_AFTER (last_mode, insn);
1088 #endif
1089 /* Update LIVE_NOW. */
1090 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1091 if (REG_NOTE_KIND (link) == REG_DEAD)
1092 reg_dies (XEXP (link, 0), live_now);
1093
1094 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
1095 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1096 if (REG_NOTE_KIND (link) == REG_UNUSED)
1097 reg_dies (XEXP (link, 0), live_now);
1098 }
1099 }
1100
1101 info[bb->index].computing = last_mode;
1102 /* Check for blocks without ANY mode requirements. */
1103 if (last_mode == no_mode)
1104 {
1105 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
1106 add_seginfo (info + bb->index, ptr);
1107 }
1108 }
1109 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
1110 {
1111 int mode = MODE_ENTRY (e);
1112
1113 if (mode != no_mode)
1114 {
1115 bb = post_entry;
1116
1117 /* By always making this nontransparent, we save
1118 an extra check in make_preds_opaque. We also
1119 need this to avoid confusing pre_edge_lcm when
1120 antic is cleared but transp and comp are set. */
1121 RESET_BIT (transp[bb->index], j);
1122
1123 /* Insert a fake computing definition of MODE into entry
1124 blocks which compute no mode. This represents the mode on
1125 entry. */
1126 info[bb->index].computing = mode;
1127
1128 if (pre_exit)
1129 info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
1130 }
1131 }
1132 #endif /* NORMAL_MODE */
1133 }
1134
1135 kill = sbitmap_vector_alloc (last_basic_block, n_entities);
1136 for (i = 0; i < max_num_modes; i++)
1137 {
1138 int current_mode[N_ENTITIES];
1139 sbitmap *delete;
1140 sbitmap *insert;
1141
1142 /* Set the anticipatable and computing arrays. */
1143 sbitmap_vector_zero (antic, last_basic_block);
1144 sbitmap_vector_zero (comp, last_basic_block);
1145 for (j = n_entities - 1; j >= 0; j--)
1146 {
1147 int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
1148 struct bb_info *info = bb_info[j];
1149
1150 FOR_EACH_BB (bb)
1151 {
1152 if (info[bb->index].seginfo->mode == m)
1153 SET_BIT (antic[bb->index], j);
1154
1155 if (info[bb->index].computing == m)
1156 SET_BIT (comp[bb->index], j);
1157 }
1158 }
1159
1160 /* Calculate the optimal locations for the
1161 placement mode switches to modes with priority I. */
1162
1163 FOR_EACH_BB (bb)
1164 sbitmap_not (kill[bb->index], transp[bb->index]);
1165 edge_list = pre_edge_lcm (file, 1, transp, comp, antic,
1166 kill, &insert, &delete);
1167
1168 for (j = n_entities - 1; j >= 0; j--)
1169 {
1170 /* Insert all mode sets that have been inserted by lcm. */
1171 int no_mode = num_modes[entity_map[j]];
1172
1173 /* Wherever we have moved a mode setting upwards in the flow graph,
1174 the blocks between the new setting site and the now redundant
1175 computation ceases to be transparent for any lower-priority
1176 mode of the same entity. First set the aux field of each
1177 insertion site edge non-transparent, then propagate the new
1178 non-transparency from the redundant computation upwards till
1179 we hit an insertion site or an already non-transparent block. */
1180 for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
1181 {
1182 edge eg = INDEX_EDGE (edge_list, e);
1183 int mode;
1184 basic_block src_bb;
1185 HARD_REG_SET live_at_edge;
1186 rtx mode_set;
1187
1188 eg->aux = 0;
1189
1190 if (! TEST_BIT (insert[e], j))
1191 continue;
1192
1193 eg->aux = (void *)1;
1194
1195 mode = current_mode[j];
1196 src_bb = eg->src;
1197
1198 REG_SET_TO_HARD_REG_SET (live_at_edge,
1199 src_bb->global_live_at_end);
1200
1201 start_sequence ();
1202 EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
1203 mode_set = get_insns ();
1204 end_sequence ();
1205
1206 /* Do not bother to insert empty sequence. */
1207 if (mode_set == NULL_RTX)
1208 continue;
1209
1210 /* If this is an abnormal edge, we'll insert at the end
1211 of the previous block. */
1212 if (eg->flags & EDGE_ABNORMAL)
1213 {
1214 emited = true;
1215 if (JUMP_P (BB_END (src_bb)))
1216 emit_insn_before (mode_set, BB_END (src_bb));
1217 /* It doesn't make sense to switch to normal mode
1218 after a CALL_INSN, so we're going to abort if we
1219 find one. The cases in which a CALL_INSN may
1220 have an abnormal edge are sibcalls and EH edges.
1221 In the case of sibcalls, the dest basic-block is
1222 the EXIT_BLOCK, that runs in normal mode; it is
1223 assumed that a sibcall insn requires normal mode
1224 itself, so no mode switch would be required after
1225 the call (it wouldn't make sense, anyway). In
1226 the case of EH edges, EH entry points also start
1227 in normal mode, so a similar reasoning applies. */
1228 else if (NONJUMP_INSN_P (BB_END (src_bb)))
1229 emit_insn_after (mode_set, BB_END (src_bb));
1230 else
1231 abort ();
1232 bb_info[j][src_bb->index].computing = mode;
1233 RESET_BIT (transp[src_bb->index], j);
1234 }
1235 else
1236 {
1237 need_commit = 1;
1238 insert_insn_on_edge (mode_set, eg);
1239 }
1240 }
1241
1242 FOR_EACH_BB_REVERSE (bb)
1243 if (TEST_BIT (delete[bb->index], j))
1244 {
1245 make_preds_opaque (bb, j);
1246 /* Cancel the 'deleted' mode set. */
1247 bb_info[j][bb->index].seginfo->mode = no_mode;
1248 }
1249 }
1250
1251 sbitmap_vector_free (delete);
1252 sbitmap_vector_free (insert);
1253 clear_aux_for_edges ();
1254 free_edge_list (edge_list);
1255 }
1256
1257 /* Now output the remaining mode sets in all the segments. */
1258 for (j = n_entities - 1; j >= 0; j--)
1259 {
1260 int no_mode = num_modes[entity_map[j]];
1261
1262 FOR_EACH_BB_REVERSE (bb)
1263 {
1264 struct seginfo *ptr, *next;
1265 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
1266 {
1267 next = ptr->next;
1268 if (ptr->mode != no_mode)
1269 {
1270 rtx mode_set;
1271
1272 start_sequence ();
1273 EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
1274 mode_set = get_insns ();
1275 end_sequence ();
1276
1277 /* Insert MODE_SET only if it is nonempty. */
1278 if (mode_set != NULL_RTX)
1279 {
1280 emited = true;
1281 if (NOTE_P (ptr->insn_ptr)
1282 && (NOTE_LINE_NUMBER (ptr->insn_ptr)
1283 == NOTE_INSN_BASIC_BLOCK))
1284 emit_insn_after (mode_set, ptr->insn_ptr);
1285 else
1286 emit_insn_before (mode_set, ptr->insn_ptr);
1287 }
1288 }
1289
1290 free (ptr);
1291 }
1292 }
1293
1294 free (bb_info[j]);
1295 }
1296
1297 /* Finished. Free up all the things we've allocated. */
1298
1299 sbitmap_vector_free (kill);
1300 sbitmap_vector_free (antic);
1301 sbitmap_vector_free (transp);
1302 sbitmap_vector_free (comp);
1303
1304 if (need_commit)
1305 commit_edge_insertions ();
1306
1307 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
1308 cleanup_cfg (CLEANUP_NO_INSN_DEL);
1309 #else
1310 if (!need_commit && !emited)
1311 return 0;
1312 #endif
1313
1314 max_regno = max_reg_num ();
1315 allocate_reg_info (max_regno, FALSE, FALSE);
1316 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1317 (PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE
1318 | PROP_SCAN_DEAD_CODE));
1319
1320 return 1;
1321 }
1322 #endif /* OPTIMIZE_MODE_SWITCHING */