errors.h (warning, [...]): Mark as cold.
[gcc.git] / gcc / libgcc2.c
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
21
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
30 02110-1301, USA. */
31
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "coretypes.h"
35 #include "tm.h"
36
37 #ifdef HAVE_GAS_HIDDEN
38 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
39 #else
40 #define ATTRIBUTE_HIDDEN
41 #endif
42
43 #ifndef MIN_UNITS_PER_WORD
44 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
45 #endif
46
47 /* Work out the largest "word" size that we can deal with on this target. */
48 #if MIN_UNITS_PER_WORD > 4
49 # define LIBGCC2_MAX_UNITS_PER_WORD 8
50 #elif (MIN_UNITS_PER_WORD > 2 \
51 || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
52 # define LIBGCC2_MAX_UNITS_PER_WORD 4
53 #else
54 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
55 #endif
56
57 /* Work out what word size we are using for this compilation.
58 The value can be set on the command line. */
59 #ifndef LIBGCC2_UNITS_PER_WORD
60 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
61 #endif
62
63 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
64
65 #include "libgcc2.h"
66 \f
67 #ifdef DECLARE_LIBRARY_RENAMES
68 DECLARE_LIBRARY_RENAMES
69 #endif
70
71 #if defined (L_negdi2)
72 DWtype
73 __negdi2 (DWtype u)
74 {
75 const DWunion uu = {.ll = u};
76 const DWunion w = { {.low = -uu.s.low,
77 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
78
79 return w.ll;
80 }
81 #endif
82
83 #ifdef L_addvsi3
84 Wtype
85 __addvSI3 (Wtype a, Wtype b)
86 {
87 const Wtype w = a + b;
88
89 if (b >= 0 ? w < a : w > a)
90 abort ();
91
92 return w;
93 }
94 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
95 SItype
96 __addvsi3 (SItype a, SItype b)
97 {
98 const SItype w = a + b;
99
100 if (b >= 0 ? w < a : w > a)
101 abort ();
102
103 return w;
104 }
105 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
106 #endif
107 \f
108 #ifdef L_addvdi3
109 DWtype
110 __addvDI3 (DWtype a, DWtype b)
111 {
112 const DWtype w = a + b;
113
114 if (b >= 0 ? w < a : w > a)
115 abort ();
116
117 return w;
118 }
119 #endif
120 \f
121 #ifdef L_subvsi3
122 Wtype
123 __subvSI3 (Wtype a, Wtype b)
124 {
125 const Wtype w = a - b;
126
127 if (b >= 0 ? w > a : w < a)
128 abort ();
129
130 return w;
131 }
132 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
133 SItype
134 __subvsi3 (SItype a, SItype b)
135 {
136 const SItype w = a - b;
137
138 if (b >= 0 ? w > a : w < a)
139 abort ();
140
141 return w;
142 }
143 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
144 #endif
145 \f
146 #ifdef L_subvdi3
147 DWtype
148 __subvDI3 (DWtype a, DWtype b)
149 {
150 const DWtype w = a - b;
151
152 if (b >= 0 ? w > a : w < a)
153 abort ();
154
155 return w;
156 }
157 #endif
158 \f
159 #ifdef L_mulvsi3
160 Wtype
161 __mulvSI3 (Wtype a, Wtype b)
162 {
163 const DWtype w = (DWtype) a * (DWtype) b;
164
165 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
166 abort ();
167
168 return w;
169 }
170 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
171 #undef WORD_SIZE
172 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
173 SItype
174 __mulvsi3 (SItype a, SItype b)
175 {
176 const DItype w = (DItype) a * (DItype) b;
177
178 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
179 abort ();
180
181 return w;
182 }
183 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
184 #endif
185 \f
186 #ifdef L_negvsi2
187 Wtype
188 __negvSI2 (Wtype a)
189 {
190 const Wtype w = -a;
191
192 if (a >= 0 ? w > 0 : w < 0)
193 abort ();
194
195 return w;
196 }
197 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
198 SItype
199 __negvsi2 (SItype a)
200 {
201 const SItype w = -a;
202
203 if (a >= 0 ? w > 0 : w < 0)
204 abort ();
205
206 return w;
207 }
208 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
209 #endif
210 \f
211 #ifdef L_negvdi2
212 DWtype
213 __negvDI2 (DWtype a)
214 {
215 const DWtype w = -a;
216
217 if (a >= 0 ? w > 0 : w < 0)
218 abort ();
219
220 return w;
221 }
222 #endif
223 \f
224 #ifdef L_absvsi2
225 Wtype
226 __absvSI2 (Wtype a)
227 {
228 Wtype w = a;
229
230 if (a < 0)
231 #ifdef L_negvsi2
232 w = __negvSI2 (a);
233 #else
234 w = -a;
235
236 if (w < 0)
237 abort ();
238 #endif
239
240 return w;
241 }
242 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
243 SItype
244 __absvsi2 (SItype a)
245 {
246 SItype w = a;
247
248 if (a < 0)
249 #ifdef L_negvsi2
250 w = __negvsi2 (a);
251 #else
252 w = -a;
253
254 if (w < 0)
255 abort ();
256 #endif
257
258 return w;
259 }
260 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
261 #endif
262 \f
263 #ifdef L_absvdi2
264 DWtype
265 __absvDI2 (DWtype a)
266 {
267 DWtype w = a;
268
269 if (a < 0)
270 #ifdef L_negvdi2
271 w = __negvDI2 (a);
272 #else
273 w = -a;
274
275 if (w < 0)
276 abort ();
277 #endif
278
279 return w;
280 }
281 #endif
282 \f
283 #ifdef L_mulvdi3
284 DWtype
285 __mulvDI3 (DWtype u, DWtype v)
286 {
287 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
288 but the checked multiplication needs only two. */
289 const DWunion uu = {.ll = u};
290 const DWunion vv = {.ll = v};
291
292 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
293 {
294 /* u fits in a single Wtype. */
295 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
296 {
297 /* v fits in a single Wtype as well. */
298 /* A single multiplication. No overflow risk. */
299 return (DWtype) uu.s.low * (DWtype) vv.s.low;
300 }
301 else
302 {
303 /* Two multiplications. */
304 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
305 * (UDWtype) (UWtype) vv.s.low};
306 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
307 * (UDWtype) (UWtype) vv.s.high};
308
309 if (vv.s.high < 0)
310 w1.s.high -= uu.s.low;
311 if (uu.s.low < 0)
312 w1.ll -= vv.ll;
313 w1.ll += (UWtype) w0.s.high;
314 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
315 {
316 w0.s.high = w1.s.low;
317 return w0.ll;
318 }
319 }
320 }
321 else
322 {
323 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
324 {
325 /* v fits into a single Wtype. */
326 /* Two multiplications. */
327 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
328 * (UDWtype) (UWtype) vv.s.low};
329 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
330 * (UDWtype) (UWtype) vv.s.low};
331
332 if (uu.s.high < 0)
333 w1.s.high -= vv.s.low;
334 if (vv.s.low < 0)
335 w1.ll -= uu.ll;
336 w1.ll += (UWtype) w0.s.high;
337 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
338 {
339 w0.s.high = w1.s.low;
340 return w0.ll;
341 }
342 }
343 else
344 {
345 /* A few sign checks and a single multiplication. */
346 if (uu.s.high >= 0)
347 {
348 if (vv.s.high >= 0)
349 {
350 if (uu.s.high == 0 && vv.s.high == 0)
351 {
352 const DWtype w = (UDWtype) (UWtype) uu.s.low
353 * (UDWtype) (UWtype) vv.s.low;
354 if (__builtin_expect (w >= 0, 1))
355 return w;
356 }
357 }
358 else
359 {
360 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
361 {
362 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
363 * (UDWtype) (UWtype) vv.s.low};
364
365 ww.s.high -= uu.s.low;
366 if (__builtin_expect (ww.s.high < 0, 1))
367 return ww.ll;
368 }
369 }
370 }
371 else
372 {
373 if (vv.s.high >= 0)
374 {
375 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
376 {
377 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
378 * (UDWtype) (UWtype) vv.s.low};
379
380 ww.s.high -= vv.s.low;
381 if (__builtin_expect (ww.s.high < 0, 1))
382 return ww.ll;
383 }
384 }
385 else
386 {
387 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
388 {
389 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
390 * (UDWtype) (UWtype) vv.s.low};
391
392 ww.s.high -= uu.s.low;
393 ww.s.high -= vv.s.low;
394 if (__builtin_expect (ww.s.high >= 0, 1))
395 return ww.ll;
396 }
397 }
398 }
399 }
400 }
401
402 /* Overflow. */
403 abort ();
404 }
405 #endif
406 \f
407
408 /* Unless shift functions are defined with full ANSI prototypes,
409 parameter b will be promoted to int if word_type is smaller than an int. */
410 #ifdef L_lshrdi3
411 DWtype
412 __lshrdi3 (DWtype u, word_type b)
413 {
414 if (b == 0)
415 return u;
416
417 const DWunion uu = {.ll = u};
418 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
419 DWunion w;
420
421 if (bm <= 0)
422 {
423 w.s.high = 0;
424 w.s.low = (UWtype) uu.s.high >> -bm;
425 }
426 else
427 {
428 const UWtype carries = (UWtype) uu.s.high << bm;
429
430 w.s.high = (UWtype) uu.s.high >> b;
431 w.s.low = ((UWtype) uu.s.low >> b) | carries;
432 }
433
434 return w.ll;
435 }
436 #endif
437
438 #ifdef L_ashldi3
439 DWtype
440 __ashldi3 (DWtype u, word_type b)
441 {
442 if (b == 0)
443 return u;
444
445 const DWunion uu = {.ll = u};
446 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
447 DWunion w;
448
449 if (bm <= 0)
450 {
451 w.s.low = 0;
452 w.s.high = (UWtype) uu.s.low << -bm;
453 }
454 else
455 {
456 const UWtype carries = (UWtype) uu.s.low >> bm;
457
458 w.s.low = (UWtype) uu.s.low << b;
459 w.s.high = ((UWtype) uu.s.high << b) | carries;
460 }
461
462 return w.ll;
463 }
464 #endif
465
466 #ifdef L_ashrdi3
467 DWtype
468 __ashrdi3 (DWtype u, word_type b)
469 {
470 if (b == 0)
471 return u;
472
473 const DWunion uu = {.ll = u};
474 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
475 DWunion w;
476
477 if (bm <= 0)
478 {
479 /* w.s.high = 1..1 or 0..0 */
480 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
481 w.s.low = uu.s.high >> -bm;
482 }
483 else
484 {
485 const UWtype carries = (UWtype) uu.s.high << bm;
486
487 w.s.high = uu.s.high >> b;
488 w.s.low = ((UWtype) uu.s.low >> b) | carries;
489 }
490
491 return w.ll;
492 }
493 #endif
494 \f
495 #ifdef L_bswapsi2
496 SItype
497 __bswapsi2 (SItype u)
498 {
499 return ((((u) & 0xff000000) >> 24)
500 | (((u) & 0x00ff0000) >> 8)
501 | (((u) & 0x0000ff00) << 8)
502 | (((u) & 0x000000ff) << 24));
503 }
504 #endif
505 #ifdef L_bswapdi2
506 DItype
507 __bswapdi2 (DItype u)
508 {
509 return ((((u) & 0xff00000000000000ull) >> 56)
510 | (((u) & 0x00ff000000000000ull) >> 40)
511 | (((u) & 0x0000ff0000000000ull) >> 24)
512 | (((u) & 0x000000ff00000000ull) >> 8)
513 | (((u) & 0x00000000ff000000ull) << 8)
514 | (((u) & 0x0000000000ff0000ull) << 24)
515 | (((u) & 0x000000000000ff00ull) << 40)
516 | (((u) & 0x00000000000000ffull) << 56));
517 }
518 #endif
519 #ifdef L_ffssi2
520 #undef int
521 int
522 __ffsSI2 (UWtype u)
523 {
524 UWtype count;
525
526 if (u == 0)
527 return 0;
528
529 count_trailing_zeros (count, u);
530 return count + 1;
531 }
532 #endif
533 \f
534 #ifdef L_ffsdi2
535 #undef int
536 int
537 __ffsDI2 (DWtype u)
538 {
539 const DWunion uu = {.ll = u};
540 UWtype word, count, add;
541
542 if (uu.s.low != 0)
543 word = uu.s.low, add = 0;
544 else if (uu.s.high != 0)
545 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
546 else
547 return 0;
548
549 count_trailing_zeros (count, word);
550 return count + add + 1;
551 }
552 #endif
553 \f
554 #ifdef L_muldi3
555 DWtype
556 __muldi3 (DWtype u, DWtype v)
557 {
558 const DWunion uu = {.ll = u};
559 const DWunion vv = {.ll = v};
560 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
561
562 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
563 + (UWtype) uu.s.high * (UWtype) vv.s.low);
564
565 return w.ll;
566 }
567 #endif
568 \f
569 #if (defined (L_udivdi3) || defined (L_divdi3) || \
570 defined (L_umoddi3) || defined (L_moddi3))
571 #if defined (sdiv_qrnnd)
572 #define L_udiv_w_sdiv
573 #endif
574 #endif
575
576 #ifdef L_udiv_w_sdiv
577 #if defined (sdiv_qrnnd)
578 #if (defined (L_udivdi3) || defined (L_divdi3) || \
579 defined (L_umoddi3) || defined (L_moddi3))
580 static inline __attribute__ ((__always_inline__))
581 #endif
582 UWtype
583 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
584 {
585 UWtype q, r;
586 UWtype c0, c1, b1;
587
588 if ((Wtype) d >= 0)
589 {
590 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
591 {
592 /* Dividend, divisor, and quotient are nonnegative. */
593 sdiv_qrnnd (q, r, a1, a0, d);
594 }
595 else
596 {
597 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
598 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
599 /* Divide (c1*2^32 + c0) by d. */
600 sdiv_qrnnd (q, r, c1, c0, d);
601 /* Add 2^31 to quotient. */
602 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
603 }
604 }
605 else
606 {
607 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
608 c1 = a1 >> 1; /* A/2 */
609 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
610
611 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
612 {
613 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
614
615 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
616 if ((d & 1) != 0)
617 {
618 if (r >= q)
619 r = r - q;
620 else if (q - r <= d)
621 {
622 r = r - q + d;
623 q--;
624 }
625 else
626 {
627 r = r - q + 2*d;
628 q -= 2;
629 }
630 }
631 }
632 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
633 {
634 c1 = (b1 - 1) - c1;
635 c0 = ~c0; /* logical NOT */
636
637 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
638
639 q = ~q; /* (A/2)/b1 */
640 r = (b1 - 1) - r;
641
642 r = 2*r + (a0 & 1); /* A/(2*b1) */
643
644 if ((d & 1) != 0)
645 {
646 if (r >= q)
647 r = r - q;
648 else if (q - r <= d)
649 {
650 r = r - q + d;
651 q--;
652 }
653 else
654 {
655 r = r - q + 2*d;
656 q -= 2;
657 }
658 }
659 }
660 else /* Implies c1 = b1 */
661 { /* Hence a1 = d - 1 = 2*b1 - 1 */
662 if (a0 >= -d)
663 {
664 q = -1;
665 r = a0 + d;
666 }
667 else
668 {
669 q = -2;
670 r = a0 + 2*d;
671 }
672 }
673 }
674
675 *rp = r;
676 return q;
677 }
678 #else
679 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
680 UWtype
681 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
682 UWtype a1 __attribute__ ((__unused__)),
683 UWtype a0 __attribute__ ((__unused__)),
684 UWtype d __attribute__ ((__unused__)))
685 {
686 return 0;
687 }
688 #endif
689 #endif
690 \f
691 #if (defined (L_udivdi3) || defined (L_divdi3) || \
692 defined (L_umoddi3) || defined (L_moddi3))
693 #define L_udivmoddi4
694 #endif
695
696 #ifdef L_clz
697 const UQItype __clz_tab[256] =
698 {
699 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
700 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
701 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
702 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
703 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
704 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
705 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
706 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
707 };
708 #endif
709 \f
710 #ifdef L_clzsi2
711 #undef int
712 int
713 __clzSI2 (UWtype x)
714 {
715 Wtype ret;
716
717 count_leading_zeros (ret, x);
718
719 return ret;
720 }
721 #endif
722 \f
723 #ifdef L_clzdi2
724 #undef int
725 int
726 __clzDI2 (UDWtype x)
727 {
728 const DWunion uu = {.ll = x};
729 UWtype word;
730 Wtype ret, add;
731
732 if (uu.s.high)
733 word = uu.s.high, add = 0;
734 else
735 word = uu.s.low, add = W_TYPE_SIZE;
736
737 count_leading_zeros (ret, word);
738 return ret + add;
739 }
740 #endif
741 \f
742 #ifdef L_ctzsi2
743 #undef int
744 int
745 __ctzSI2 (UWtype x)
746 {
747 Wtype ret;
748
749 count_trailing_zeros (ret, x);
750
751 return ret;
752 }
753 #endif
754 \f
755 #ifdef L_ctzdi2
756 #undef int
757 int
758 __ctzDI2 (UDWtype x)
759 {
760 const DWunion uu = {.ll = x};
761 UWtype word;
762 Wtype ret, add;
763
764 if (uu.s.low)
765 word = uu.s.low, add = 0;
766 else
767 word = uu.s.high, add = W_TYPE_SIZE;
768
769 count_trailing_zeros (ret, word);
770 return ret + add;
771 }
772 #endif
773
774 #ifdef L_popcount_tab
775 const UQItype __popcount_tab[256] =
776 {
777 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
778 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
779 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
780 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
781 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
782 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
783 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
784 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
785 };
786 #endif
787 \f
788 #ifdef L_popcountsi2
789 #undef int
790 int
791 __popcountSI2 (UWtype x)
792 {
793 int i, ret = 0;
794
795 for (i = 0; i < W_TYPE_SIZE; i += 8)
796 ret += __popcount_tab[(x >> i) & 0xff];
797
798 return ret;
799 }
800 #endif
801 \f
802 #ifdef L_popcountdi2
803 #undef int
804 int
805 __popcountDI2 (UDWtype x)
806 {
807 int i, ret = 0;
808
809 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
810 ret += __popcount_tab[(x >> i) & 0xff];
811
812 return ret;
813 }
814 #endif
815 \f
816 #ifdef L_paritysi2
817 #undef int
818 int
819 __paritySI2 (UWtype x)
820 {
821 #if W_TYPE_SIZE > 64
822 # error "fill out the table"
823 #endif
824 #if W_TYPE_SIZE > 32
825 x ^= x >> 32;
826 #endif
827 #if W_TYPE_SIZE > 16
828 x ^= x >> 16;
829 #endif
830 x ^= x >> 8;
831 x ^= x >> 4;
832 x &= 0xf;
833 return (0x6996 >> x) & 1;
834 }
835 #endif
836 \f
837 #ifdef L_paritydi2
838 #undef int
839 int
840 __parityDI2 (UDWtype x)
841 {
842 const DWunion uu = {.ll = x};
843 UWtype nx = uu.s.low ^ uu.s.high;
844
845 #if W_TYPE_SIZE > 64
846 # error "fill out the table"
847 #endif
848 #if W_TYPE_SIZE > 32
849 nx ^= nx >> 32;
850 #endif
851 #if W_TYPE_SIZE > 16
852 nx ^= nx >> 16;
853 #endif
854 nx ^= nx >> 8;
855 nx ^= nx >> 4;
856 nx &= 0xf;
857 return (0x6996 >> nx) & 1;
858 }
859 #endif
860
861 #ifdef L_udivmoddi4
862
863 #if (defined (L_udivdi3) || defined (L_divdi3) || \
864 defined (L_umoddi3) || defined (L_moddi3))
865 static inline __attribute__ ((__always_inline__))
866 #endif
867 UDWtype
868 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
869 {
870 const DWunion nn = {.ll = n};
871 const DWunion dd = {.ll = d};
872 DWunion rr;
873 UWtype d0, d1, n0, n1, n2;
874 UWtype q0, q1;
875 UWtype b, bm;
876
877 d0 = dd.s.low;
878 d1 = dd.s.high;
879 n0 = nn.s.low;
880 n1 = nn.s.high;
881
882 #if !UDIV_NEEDS_NORMALIZATION
883 if (d1 == 0)
884 {
885 if (d0 > n1)
886 {
887 /* 0q = nn / 0D */
888
889 udiv_qrnnd (q0, n0, n1, n0, d0);
890 q1 = 0;
891
892 /* Remainder in n0. */
893 }
894 else
895 {
896 /* qq = NN / 0d */
897
898 if (d0 == 0)
899 d0 = 1 / d0; /* Divide intentionally by zero. */
900
901 udiv_qrnnd (q1, n1, 0, n1, d0);
902 udiv_qrnnd (q0, n0, n1, n0, d0);
903
904 /* Remainder in n0. */
905 }
906
907 if (rp != 0)
908 {
909 rr.s.low = n0;
910 rr.s.high = 0;
911 *rp = rr.ll;
912 }
913 }
914
915 #else /* UDIV_NEEDS_NORMALIZATION */
916
917 if (d1 == 0)
918 {
919 if (d0 > n1)
920 {
921 /* 0q = nn / 0D */
922
923 count_leading_zeros (bm, d0);
924
925 if (bm != 0)
926 {
927 /* Normalize, i.e. make the most significant bit of the
928 denominator set. */
929
930 d0 = d0 << bm;
931 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
932 n0 = n0 << bm;
933 }
934
935 udiv_qrnnd (q0, n0, n1, n0, d0);
936 q1 = 0;
937
938 /* Remainder in n0 >> bm. */
939 }
940 else
941 {
942 /* qq = NN / 0d */
943
944 if (d0 == 0)
945 d0 = 1 / d0; /* Divide intentionally by zero. */
946
947 count_leading_zeros (bm, d0);
948
949 if (bm == 0)
950 {
951 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
952 conclude (the most significant bit of n1 is set) /\ (the
953 leading quotient digit q1 = 1).
954
955 This special case is necessary, not an optimization.
956 (Shifts counts of W_TYPE_SIZE are undefined.) */
957
958 n1 -= d0;
959 q1 = 1;
960 }
961 else
962 {
963 /* Normalize. */
964
965 b = W_TYPE_SIZE - bm;
966
967 d0 = d0 << bm;
968 n2 = n1 >> b;
969 n1 = (n1 << bm) | (n0 >> b);
970 n0 = n0 << bm;
971
972 udiv_qrnnd (q1, n1, n2, n1, d0);
973 }
974
975 /* n1 != d0... */
976
977 udiv_qrnnd (q0, n0, n1, n0, d0);
978
979 /* Remainder in n0 >> bm. */
980 }
981
982 if (rp != 0)
983 {
984 rr.s.low = n0 >> bm;
985 rr.s.high = 0;
986 *rp = rr.ll;
987 }
988 }
989 #endif /* UDIV_NEEDS_NORMALIZATION */
990
991 else
992 {
993 if (d1 > n1)
994 {
995 /* 00 = nn / DD */
996
997 q0 = 0;
998 q1 = 0;
999
1000 /* Remainder in n1n0. */
1001 if (rp != 0)
1002 {
1003 rr.s.low = n0;
1004 rr.s.high = n1;
1005 *rp = rr.ll;
1006 }
1007 }
1008 else
1009 {
1010 /* 0q = NN / dd */
1011
1012 count_leading_zeros (bm, d1);
1013 if (bm == 0)
1014 {
1015 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1016 conclude (the most significant bit of n1 is set) /\ (the
1017 quotient digit q0 = 0 or 1).
1018
1019 This special case is necessary, not an optimization. */
1020
1021 /* The condition on the next line takes advantage of that
1022 n1 >= d1 (true due to program flow). */
1023 if (n1 > d1 || n0 >= d0)
1024 {
1025 q0 = 1;
1026 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1027 }
1028 else
1029 q0 = 0;
1030
1031 q1 = 0;
1032
1033 if (rp != 0)
1034 {
1035 rr.s.low = n0;
1036 rr.s.high = n1;
1037 *rp = rr.ll;
1038 }
1039 }
1040 else
1041 {
1042 UWtype m1, m0;
1043 /* Normalize. */
1044
1045 b = W_TYPE_SIZE - bm;
1046
1047 d1 = (d1 << bm) | (d0 >> b);
1048 d0 = d0 << bm;
1049 n2 = n1 >> b;
1050 n1 = (n1 << bm) | (n0 >> b);
1051 n0 = n0 << bm;
1052
1053 udiv_qrnnd (q0, n1, n2, n1, d1);
1054 umul_ppmm (m1, m0, q0, d0);
1055
1056 if (m1 > n1 || (m1 == n1 && m0 > n0))
1057 {
1058 q0--;
1059 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1060 }
1061
1062 q1 = 0;
1063
1064 /* Remainder in (n1n0 - m1m0) >> bm. */
1065 if (rp != 0)
1066 {
1067 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1068 rr.s.low = (n1 << b) | (n0 >> bm);
1069 rr.s.high = n1 >> bm;
1070 *rp = rr.ll;
1071 }
1072 }
1073 }
1074 }
1075
1076 const DWunion ww = {{.low = q0, .high = q1}};
1077 return ww.ll;
1078 }
1079 #endif
1080
1081 #ifdef L_divdi3
1082 DWtype
1083 __divdi3 (DWtype u, DWtype v)
1084 {
1085 word_type c = 0;
1086 DWunion uu = {.ll = u};
1087 DWunion vv = {.ll = v};
1088 DWtype w;
1089
1090 if (uu.s.high < 0)
1091 c = ~c,
1092 uu.ll = -uu.ll;
1093 if (vv.s.high < 0)
1094 c = ~c,
1095 vv.ll = -vv.ll;
1096
1097 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1098 if (c)
1099 w = -w;
1100
1101 return w;
1102 }
1103 #endif
1104
1105 #ifdef L_moddi3
1106 DWtype
1107 __moddi3 (DWtype u, DWtype v)
1108 {
1109 word_type c = 0;
1110 DWunion uu = {.ll = u};
1111 DWunion vv = {.ll = v};
1112 DWtype w;
1113
1114 if (uu.s.high < 0)
1115 c = ~c,
1116 uu.ll = -uu.ll;
1117 if (vv.s.high < 0)
1118 vv.ll = -vv.ll;
1119
1120 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1121 if (c)
1122 w = -w;
1123
1124 return w;
1125 }
1126 #endif
1127
1128 #ifdef L_umoddi3
1129 UDWtype
1130 __umoddi3 (UDWtype u, UDWtype v)
1131 {
1132 UDWtype w;
1133
1134 (void) __udivmoddi4 (u, v, &w);
1135
1136 return w;
1137 }
1138 #endif
1139
1140 #ifdef L_udivdi3
1141 UDWtype
1142 __udivdi3 (UDWtype n, UDWtype d)
1143 {
1144 return __udivmoddi4 (n, d, (UDWtype *) 0);
1145 }
1146 #endif
1147 \f
1148 #ifdef L_cmpdi2
1149 word_type
1150 __cmpdi2 (DWtype a, DWtype b)
1151 {
1152 const DWunion au = {.ll = a};
1153 const DWunion bu = {.ll = b};
1154
1155 if (au.s.high < bu.s.high)
1156 return 0;
1157 else if (au.s.high > bu.s.high)
1158 return 2;
1159 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1160 return 0;
1161 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1162 return 2;
1163 return 1;
1164 }
1165 #endif
1166
1167 #ifdef L_ucmpdi2
1168 word_type
1169 __ucmpdi2 (DWtype a, DWtype b)
1170 {
1171 const DWunion au = {.ll = a};
1172 const DWunion bu = {.ll = b};
1173
1174 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1175 return 0;
1176 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1177 return 2;
1178 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1179 return 0;
1180 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1181 return 2;
1182 return 1;
1183 }
1184 #endif
1185 \f
1186 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1187 DWtype
1188 __fixunstfDI (TFtype a)
1189 {
1190 if (a < 0)
1191 return 0;
1192
1193 /* Compute high word of result, as a flonum. */
1194 const TFtype b = (a / Wtype_MAXp1_F);
1195 /* Convert that to fixed (but not to DWtype!),
1196 and shift it into the high word. */
1197 UDWtype v = (UWtype) b;
1198 v <<= W_TYPE_SIZE;
1199 /* Remove high part from the TFtype, leaving the low part as flonum. */
1200 a -= (TFtype)v;
1201 /* Convert that to fixed (but not to DWtype!) and add it in.
1202 Sometimes A comes out negative. This is significant, since
1203 A has more bits than a long int does. */
1204 if (a < 0)
1205 v -= (UWtype) (- a);
1206 else
1207 v += (UWtype) a;
1208 return v;
1209 }
1210 #endif
1211
1212 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1213 DWtype
1214 __fixtfdi (TFtype a)
1215 {
1216 if (a < 0)
1217 return - __fixunstfDI (-a);
1218 return __fixunstfDI (a);
1219 }
1220 #endif
1221
1222 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1223 DWtype
1224 __fixunsxfDI (XFtype a)
1225 {
1226 if (a < 0)
1227 return 0;
1228
1229 /* Compute high word of result, as a flonum. */
1230 const XFtype b = (a / Wtype_MAXp1_F);
1231 /* Convert that to fixed (but not to DWtype!),
1232 and shift it into the high word. */
1233 UDWtype v = (UWtype) b;
1234 v <<= W_TYPE_SIZE;
1235 /* Remove high part from the XFtype, leaving the low part as flonum. */
1236 a -= (XFtype)v;
1237 /* Convert that to fixed (but not to DWtype!) and add it in.
1238 Sometimes A comes out negative. This is significant, since
1239 A has more bits than a long int does. */
1240 if (a < 0)
1241 v -= (UWtype) (- a);
1242 else
1243 v += (UWtype) a;
1244 return v;
1245 }
1246 #endif
1247
1248 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1249 DWtype
1250 __fixxfdi (XFtype a)
1251 {
1252 if (a < 0)
1253 return - __fixunsxfDI (-a);
1254 return __fixunsxfDI (a);
1255 }
1256 #endif
1257
1258 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1259 DWtype
1260 __fixunsdfDI (DFtype a)
1261 {
1262 /* Get high part of result. The division here will just moves the radix
1263 point and will not cause any rounding. Then the conversion to integral
1264 type chops result as desired. */
1265 const UWtype hi = a / Wtype_MAXp1_F;
1266
1267 /* Get low part of result. Convert `hi' to floating type and scale it back,
1268 then subtract this from the number being converted. This leaves the low
1269 part. Convert that to integral type. */
1270 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1271
1272 /* Assemble result from the two parts. */
1273 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1274 }
1275 #endif
1276
1277 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1278 DWtype
1279 __fixdfdi (DFtype a)
1280 {
1281 if (a < 0)
1282 return - __fixunsdfDI (-a);
1283 return __fixunsdfDI (a);
1284 }
1285 #endif
1286
1287 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1288 DWtype
1289 __fixunssfDI (SFtype a)
1290 {
1291 #if LIBGCC2_HAS_DF_MODE
1292 /* Convert the SFtype to a DFtype, because that is surely not going
1293 to lose any bits. Some day someone else can write a faster version
1294 that avoids converting to DFtype, and verify it really works right. */
1295 const DFtype dfa = a;
1296
1297 /* Get high part of result. The division here will just moves the radix
1298 point and will not cause any rounding. Then the conversion to integral
1299 type chops result as desired. */
1300 const UWtype hi = dfa / Wtype_MAXp1_F;
1301
1302 /* Get low part of result. Convert `hi' to floating type and scale it back,
1303 then subtract this from the number being converted. This leaves the low
1304 part. Convert that to integral type. */
1305 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1306
1307 /* Assemble result from the two parts. */
1308 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1309 #elif FLT_MANT_DIG < W_TYPE_SIZE
1310 if (a < 1)
1311 return 0;
1312 if (a < Wtype_MAXp1_F)
1313 return (UWtype)a;
1314 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1315 {
1316 /* Since we know that there are fewer significant bits in the SFmode
1317 quantity than in a word, we know that we can convert out all the
1318 significant bits in one step, and thus avoid losing bits. */
1319
1320 /* ??? This following loop essentially performs frexpf. If we could
1321 use the real libm function, or poke at the actual bits of the fp
1322 format, it would be significantly faster. */
1323
1324 UWtype shift = 0, counter;
1325 SFtype msb;
1326
1327 a /= Wtype_MAXp1_F;
1328 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1329 {
1330 SFtype counterf = (UWtype)1 << counter;
1331 if (a >= counterf)
1332 {
1333 shift |= counter;
1334 a /= counterf;
1335 }
1336 }
1337
1338 /* Rescale into the range of one word, extract the bits of that
1339 one word, and shift the result into position. */
1340 a *= Wtype_MAXp1_F;
1341 counter = a;
1342 return (DWtype)counter << shift;
1343 }
1344 return -1;
1345 #else
1346 # error
1347 #endif
1348 }
1349 #endif
1350
1351 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1352 DWtype
1353 __fixsfdi (SFtype a)
1354 {
1355 if (a < 0)
1356 return - __fixunssfDI (-a);
1357 return __fixunssfDI (a);
1358 }
1359 #endif
1360
1361 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1362 XFtype
1363 __floatdixf (DWtype u)
1364 {
1365 #if W_TYPE_SIZE > XF_SIZE
1366 # error
1367 #endif
1368 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1369 d *= Wtype_MAXp1_F;
1370 d += (UWtype)u;
1371 return d;
1372 }
1373 #endif
1374
1375 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1376 XFtype
1377 __floatundixf (UDWtype u)
1378 {
1379 #if W_TYPE_SIZE > XF_SIZE
1380 # error
1381 #endif
1382 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1383 d *= Wtype_MAXp1_F;
1384 d += (UWtype)u;
1385 return d;
1386 }
1387 #endif
1388
1389 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1390 TFtype
1391 __floatditf (DWtype u)
1392 {
1393 #if W_TYPE_SIZE > TF_SIZE
1394 # error
1395 #endif
1396 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1397 d *= Wtype_MAXp1_F;
1398 d += (UWtype)u;
1399 return d;
1400 }
1401 #endif
1402
1403 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1404 TFtype
1405 __floatunditf (UDWtype u)
1406 {
1407 #if W_TYPE_SIZE > TF_SIZE
1408 # error
1409 #endif
1410 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1411 d *= Wtype_MAXp1_F;
1412 d += (UWtype)u;
1413 return d;
1414 }
1415 #endif
1416
1417 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1418 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1419 #define DI_SIZE (W_TYPE_SIZE * 2)
1420 #define F_MODE_OK(SIZE) \
1421 (SIZE < DI_SIZE \
1422 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1423 /* Don't use IBM Extended Double TFmode for TI->SF calculations. \
1424 The conversion from long double to float suffers from double \
1425 rounding, because we convert via double. In any case, the \
1426 fallback code is faster. */ \
1427 && !IS_IBM_EXTENDED (SIZE))
1428 #if defined(L_floatdisf)
1429 #define FUNC __floatdisf
1430 #define FSTYPE SFtype
1431 #define FSSIZE SF_SIZE
1432 #else
1433 #define FUNC __floatdidf
1434 #define FSTYPE DFtype
1435 #define FSSIZE DF_SIZE
1436 #endif
1437
1438 FSTYPE
1439 FUNC (DWtype u)
1440 {
1441 #if FSSIZE >= W_TYPE_SIZE
1442 /* When the word size is small, we never get any rounding error. */
1443 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1444 f *= Wtype_MAXp1_F;
1445 f += (UWtype)u;
1446 return f;
1447 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1448 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1449 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1450
1451 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1452 # define FSIZE DF_SIZE
1453 # define FTYPE DFtype
1454 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1455 # define FSIZE XF_SIZE
1456 # define FTYPE XFtype
1457 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1458 # define FSIZE TF_SIZE
1459 # define FTYPE TFtype
1460 #else
1461 # error
1462 #endif
1463
1464 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1465
1466 /* Protect against double-rounding error.
1467 Represent any low-order bits, that might be truncated by a bit that
1468 won't be lost. The bit can go in anywhere below the rounding position
1469 of the FSTYPE. A fixed mask and bit position handles all usual
1470 configurations. */
1471 if (! (- ((DWtype) 1 << FSIZE) < u
1472 && u < ((DWtype) 1 << FSIZE)))
1473 {
1474 if ((UDWtype) u & (REP_BIT - 1))
1475 {
1476 u &= ~ (REP_BIT - 1);
1477 u |= REP_BIT;
1478 }
1479 }
1480
1481 /* Do the calculation in a wider type so that we don't lose any of
1482 the precision of the high word while multiplying it. */
1483 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1484 f *= Wtype_MAXp1_F;
1485 f += (UWtype)u;
1486 return (FSTYPE) f;
1487 #else
1488 #if FSSIZE >= W_TYPE_SIZE - 2
1489 # error
1490 #endif
1491 /* Finally, the word size is larger than the number of bits in the
1492 required FSTYPE, and we've got no suitable wider type. The only
1493 way to avoid double rounding is to special case the
1494 extraction. */
1495
1496 /* If there are no high bits set, fall back to one conversion. */
1497 if ((Wtype)u == u)
1498 return (FSTYPE)(Wtype)u;
1499
1500 /* Otherwise, find the power of two. */
1501 Wtype hi = u >> W_TYPE_SIZE;
1502 if (hi < 0)
1503 hi = -hi;
1504
1505 UWtype count, shift;
1506 count_leading_zeros (count, hi);
1507
1508 /* No leading bits means u == minimum. */
1509 if (count == 0)
1510 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1511
1512 shift = 1 + W_TYPE_SIZE - count;
1513
1514 /* Shift down the most significant bits. */
1515 hi = u >> shift;
1516
1517 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1518 if (u & (((DWtype)1 << shift) - 1))
1519 hi |= 1;
1520
1521 /* Convert the one word of data, and rescale. */
1522 FSTYPE f = hi;
1523 f *= (UDWtype)1 << shift;
1524 return f;
1525 #endif
1526 }
1527 #endif
1528
1529 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1530 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1531 #define DI_SIZE (W_TYPE_SIZE * 2)
1532 #define F_MODE_OK(SIZE) \
1533 (SIZE < DI_SIZE \
1534 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1535 /* Don't use IBM Extended Double TFmode for TI->SF calculations. \
1536 The conversion from long double to float suffers from double \
1537 rounding, because we convert via double. In any case, the \
1538 fallback code is faster. */ \
1539 && !IS_IBM_EXTENDED (SIZE))
1540 #if defined(L_floatundisf)
1541 #define FUNC __floatundisf
1542 #define FSTYPE SFtype
1543 #define FSSIZE SF_SIZE
1544 #else
1545 #define FUNC __floatundidf
1546 #define FSTYPE DFtype
1547 #define FSSIZE DF_SIZE
1548 #endif
1549
1550 FSTYPE
1551 FUNC (UDWtype u)
1552 {
1553 #if FSSIZE >= W_TYPE_SIZE
1554 /* When the word size is small, we never get any rounding error. */
1555 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1556 f *= Wtype_MAXp1_F;
1557 f += (UWtype)u;
1558 return f;
1559 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1560 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1561 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1562
1563 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1564 # define FSIZE DF_SIZE
1565 # define FTYPE DFtype
1566 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1567 # define FSIZE XF_SIZE
1568 # define FTYPE XFtype
1569 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1570 # define FSIZE TF_SIZE
1571 # define FTYPE TFtype
1572 #else
1573 # error
1574 #endif
1575
1576 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1577
1578 /* Protect against double-rounding error.
1579 Represent any low-order bits, that might be truncated by a bit that
1580 won't be lost. The bit can go in anywhere below the rounding position
1581 of the FSTYPE. A fixed mask and bit position handles all usual
1582 configurations. */
1583 if (u >= ((UDWtype) 1 << FSIZE))
1584 {
1585 if ((UDWtype) u & (REP_BIT - 1))
1586 {
1587 u &= ~ (REP_BIT - 1);
1588 u |= REP_BIT;
1589 }
1590 }
1591
1592 /* Do the calculation in a wider type so that we don't lose any of
1593 the precision of the high word while multiplying it. */
1594 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1595 f *= Wtype_MAXp1_F;
1596 f += (UWtype)u;
1597 return (FSTYPE) f;
1598 #else
1599 #if FSSIZE == W_TYPE_SIZE - 1
1600 # error
1601 #endif
1602 /* Finally, the word size is larger than the number of bits in the
1603 required FSTYPE, and we've got no suitable wider type. The only
1604 way to avoid double rounding is to special case the
1605 extraction. */
1606
1607 /* If there are no high bits set, fall back to one conversion. */
1608 if ((UWtype)u == u)
1609 return (FSTYPE)(UWtype)u;
1610
1611 /* Otherwise, find the power of two. */
1612 UWtype hi = u >> W_TYPE_SIZE;
1613
1614 UWtype count, shift;
1615 count_leading_zeros (count, hi);
1616
1617 shift = W_TYPE_SIZE - count;
1618
1619 /* Shift down the most significant bits. */
1620 hi = u >> shift;
1621
1622 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1623 if (u & (((UDWtype)1 << shift) - 1))
1624 hi |= 1;
1625
1626 /* Convert the one word of data, and rescale. */
1627 FSTYPE f = hi;
1628 f *= (UDWtype)1 << shift;
1629 return f;
1630 #endif
1631 }
1632 #endif
1633
1634 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1635 /* Reenable the normal types, in case limits.h needs them. */
1636 #undef char
1637 #undef short
1638 #undef int
1639 #undef long
1640 #undef unsigned
1641 #undef float
1642 #undef double
1643 #undef MIN
1644 #undef MAX
1645 #include <limits.h>
1646
1647 UWtype
1648 __fixunsxfSI (XFtype a)
1649 {
1650 if (a >= - (DFtype) Wtype_MIN)
1651 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1652 return (Wtype) a;
1653 }
1654 #endif
1655
1656 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1657 /* Reenable the normal types, in case limits.h needs them. */
1658 #undef char
1659 #undef short
1660 #undef int
1661 #undef long
1662 #undef unsigned
1663 #undef float
1664 #undef double
1665 #undef MIN
1666 #undef MAX
1667 #include <limits.h>
1668
1669 UWtype
1670 __fixunsdfSI (DFtype a)
1671 {
1672 if (a >= - (DFtype) Wtype_MIN)
1673 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1674 return (Wtype) a;
1675 }
1676 #endif
1677
1678 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1679 /* Reenable the normal types, in case limits.h needs them. */
1680 #undef char
1681 #undef short
1682 #undef int
1683 #undef long
1684 #undef unsigned
1685 #undef float
1686 #undef double
1687 #undef MIN
1688 #undef MAX
1689 #include <limits.h>
1690
1691 UWtype
1692 __fixunssfSI (SFtype a)
1693 {
1694 if (a >= - (SFtype) Wtype_MIN)
1695 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1696 return (Wtype) a;
1697 }
1698 #endif
1699 \f
1700 /* Integer power helper used from __builtin_powi for non-constant
1701 exponents. */
1702
1703 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1704 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1705 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1706 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1707 # if defined(L_powisf2)
1708 # define TYPE SFtype
1709 # define NAME __powisf2
1710 # elif defined(L_powidf2)
1711 # define TYPE DFtype
1712 # define NAME __powidf2
1713 # elif defined(L_powixf2)
1714 # define TYPE XFtype
1715 # define NAME __powixf2
1716 # elif defined(L_powitf2)
1717 # define TYPE TFtype
1718 # define NAME __powitf2
1719 # endif
1720
1721 #undef int
1722 #undef unsigned
1723 TYPE
1724 NAME (TYPE x, int m)
1725 {
1726 unsigned int n = m < 0 ? -m : m;
1727 TYPE y = n % 2 ? x : 1;
1728 while (n >>= 1)
1729 {
1730 x = x * x;
1731 if (n % 2)
1732 y = y * x;
1733 }
1734 return m < 0 ? 1/y : y;
1735 }
1736
1737 #endif
1738 \f
1739 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1740 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1741 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1742 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1743
1744 #undef float
1745 #undef double
1746 #undef long
1747
1748 #if defined(L_mulsc3) || defined(L_divsc3)
1749 # define MTYPE SFtype
1750 # define CTYPE SCtype
1751 # define MODE sc
1752 # define CEXT f
1753 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1754 #elif defined(L_muldc3) || defined(L_divdc3)
1755 # define MTYPE DFtype
1756 # define CTYPE DCtype
1757 # define MODE dc
1758 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1759 # define CEXT l
1760 # define NOTRUNC 1
1761 # else
1762 # define CEXT
1763 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1764 # endif
1765 #elif defined(L_mulxc3) || defined(L_divxc3)
1766 # define MTYPE XFtype
1767 # define CTYPE XCtype
1768 # define MODE xc
1769 # define CEXT l
1770 # define NOTRUNC 1
1771 #elif defined(L_multc3) || defined(L_divtc3)
1772 # define MTYPE TFtype
1773 # define CTYPE TCtype
1774 # define MODE tc
1775 # define CEXT l
1776 # define NOTRUNC 1
1777 #else
1778 # error
1779 #endif
1780
1781 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1782 #define _CONCAT3(A,B,C) A##B##C
1783
1784 #define CONCAT2(A,B) _CONCAT2(A,B)
1785 #define _CONCAT2(A,B) A##B
1786
1787 /* All of these would be present in a full C99 implementation of <math.h>
1788 and <complex.h>. Our problem is that only a few systems have such full
1789 implementations. Further, libgcc_s.so isn't currently linked against
1790 libm.so, and even for systems that do provide full C99, the extra overhead
1791 of all programs using libgcc having to link against libm. So avoid it. */
1792
1793 #define isnan(x) __builtin_expect ((x) != (x), 0)
1794 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1795 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1796
1797 #define INFINITY CONCAT2(__builtin_inf, CEXT) ()
1798 #define I 1i
1799
1800 /* Helpers to make the following code slightly less gross. */
1801 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1802 #define FABS CONCAT2(__builtin_fabs, CEXT)
1803
1804 /* Verify that MTYPE matches up with CEXT. */
1805 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1806
1807 /* Ensure that we've lost any extra precision. */
1808 #if NOTRUNC
1809 # define TRUNC(x)
1810 #else
1811 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1812 #endif
1813
1814 #if defined(L_mulsc3) || defined(L_muldc3) \
1815 || defined(L_mulxc3) || defined(L_multc3)
1816
1817 CTYPE
1818 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1819 {
1820 MTYPE ac, bd, ad, bc, x, y;
1821
1822 ac = a * c;
1823 bd = b * d;
1824 ad = a * d;
1825 bc = b * c;
1826
1827 TRUNC (ac);
1828 TRUNC (bd);
1829 TRUNC (ad);
1830 TRUNC (bc);
1831
1832 x = ac - bd;
1833 y = ad + bc;
1834
1835 if (isnan (x) && isnan (y))
1836 {
1837 /* Recover infinities that computed as NaN + iNaN. */
1838 _Bool recalc = 0;
1839 if (isinf (a) || isinf (b))
1840 {
1841 /* z is infinite. "Box" the infinity and change NaNs in
1842 the other factor to 0. */
1843 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1844 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1845 if (isnan (c)) c = COPYSIGN (0, c);
1846 if (isnan (d)) d = COPYSIGN (0, d);
1847 recalc = 1;
1848 }
1849 if (isinf (c) || isinf (d))
1850 {
1851 /* w is infinite. "Box" the infinity and change NaNs in
1852 the other factor to 0. */
1853 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1854 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1855 if (isnan (a)) a = COPYSIGN (0, a);
1856 if (isnan (b)) b = COPYSIGN (0, b);
1857 recalc = 1;
1858 }
1859 if (!recalc
1860 && (isinf (ac) || isinf (bd)
1861 || isinf (ad) || isinf (bc)))
1862 {
1863 /* Recover infinities from overflow by changing NaNs to 0. */
1864 if (isnan (a)) a = COPYSIGN (0, a);
1865 if (isnan (b)) b = COPYSIGN (0, b);
1866 if (isnan (c)) c = COPYSIGN (0, c);
1867 if (isnan (d)) d = COPYSIGN (0, d);
1868 recalc = 1;
1869 }
1870 if (recalc)
1871 {
1872 x = INFINITY * (a * c - b * d);
1873 y = INFINITY * (a * d + b * c);
1874 }
1875 }
1876
1877 return x + I * y;
1878 }
1879 #endif /* complex multiply */
1880
1881 #if defined(L_divsc3) || defined(L_divdc3) \
1882 || defined(L_divxc3) || defined(L_divtc3)
1883
1884 CTYPE
1885 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1886 {
1887 MTYPE denom, ratio, x, y;
1888
1889 /* ??? We can get better behavior from logarithmic scaling instead of
1890 the division. But that would mean starting to link libgcc against
1891 libm. We could implement something akin to ldexp/frexp as gcc builtins
1892 fairly easily... */
1893 if (FABS (c) < FABS (d))
1894 {
1895 ratio = c / d;
1896 denom = (c * ratio) + d;
1897 x = ((a * ratio) + b) / denom;
1898 y = ((b * ratio) - a) / denom;
1899 }
1900 else
1901 {
1902 ratio = d / c;
1903 denom = (d * ratio) + c;
1904 x = ((b * ratio) + a) / denom;
1905 y = (b - (a * ratio)) / denom;
1906 }
1907
1908 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1909 are nonzero/zero, infinite/finite, and finite/infinite. */
1910 if (isnan (x) && isnan (y))
1911 {
1912 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1913 {
1914 x = COPYSIGN (INFINITY, c) * a;
1915 y = COPYSIGN (INFINITY, c) * b;
1916 }
1917 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1918 {
1919 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1920 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1921 x = INFINITY * (a * c + b * d);
1922 y = INFINITY * (b * c - a * d);
1923 }
1924 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1925 {
1926 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1927 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1928 x = 0.0 * (a * c + b * d);
1929 y = 0.0 * (b * c - a * d);
1930 }
1931 }
1932
1933 return x + I * y;
1934 }
1935 #endif /* complex divide */
1936
1937 #endif /* all complex float routines */
1938 \f
1939 /* From here on down, the routines use normal data types. */
1940
1941 #define SItype bogus_type
1942 #define USItype bogus_type
1943 #define DItype bogus_type
1944 #define UDItype bogus_type
1945 #define SFtype bogus_type
1946 #define DFtype bogus_type
1947 #undef Wtype
1948 #undef UWtype
1949 #undef HWtype
1950 #undef UHWtype
1951 #undef DWtype
1952 #undef UDWtype
1953
1954 #undef char
1955 #undef short
1956 #undef int
1957 #undef long
1958 #undef unsigned
1959 #undef float
1960 #undef double
1961 \f
1962 #ifdef L__gcc_bcmp
1963
1964 /* Like bcmp except the sign is meaningful.
1965 Result is negative if S1 is less than S2,
1966 positive if S1 is greater, 0 if S1 and S2 are equal. */
1967
1968 int
1969 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1970 {
1971 while (size > 0)
1972 {
1973 const unsigned char c1 = *s1++, c2 = *s2++;
1974 if (c1 != c2)
1975 return c1 - c2;
1976 size--;
1977 }
1978 return 0;
1979 }
1980
1981 #endif
1982 \f
1983 /* __eprintf used to be used by GCC's private version of <assert.h>.
1984 We no longer provide that header, but this routine remains in libgcc.a
1985 for binary backward compatibility. Note that it is not included in
1986 the shared version of libgcc. */
1987 #ifdef L_eprintf
1988 #ifndef inhibit_libc
1989
1990 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1991 #include <stdio.h>
1992
1993 void
1994 __eprintf (const char *string, const char *expression,
1995 unsigned int line, const char *filename)
1996 {
1997 fprintf (stderr, string, expression, line, filename);
1998 fflush (stderr);
1999 abort ();
2000 }
2001
2002 #endif
2003 #endif
2004
2005 \f
2006 #ifdef L_clear_cache
2007 /* Clear part of an instruction cache. */
2008
2009 void
2010 __clear_cache (char *beg __attribute__((__unused__)),
2011 char *end __attribute__((__unused__)))
2012 {
2013 #ifdef CLEAR_INSN_CACHE
2014 CLEAR_INSN_CACHE (beg, end);
2015 #endif /* CLEAR_INSN_CACHE */
2016 }
2017
2018 #endif /* L_clear_cache */
2019 \f
2020 #ifdef L_enable_execute_stack
2021 /* Attempt to turn on execute permission for the stack. */
2022
2023 #ifdef ENABLE_EXECUTE_STACK
2024 ENABLE_EXECUTE_STACK
2025 #else
2026 void
2027 __enable_execute_stack (void *addr __attribute__((__unused__)))
2028 {}
2029 #endif /* ENABLE_EXECUTE_STACK */
2030
2031 #endif /* L_enable_execute_stack */
2032 \f
2033 #ifdef L_trampoline
2034
2035 /* Jump to a trampoline, loading the static chain address. */
2036
2037 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
2038
2039 int
2040 getpagesize (void)
2041 {
2042 #ifdef _ALPHA_
2043 return 8192;
2044 #else
2045 return 4096;
2046 #endif
2047 }
2048
2049 #ifdef __i386__
2050 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
2051 #endif
2052
2053 int
2054 mprotect (char *addr, int len, int prot)
2055 {
2056 int np, op;
2057
2058 if (prot == 7)
2059 np = 0x40;
2060 else if (prot == 5)
2061 np = 0x20;
2062 else if (prot == 4)
2063 np = 0x10;
2064 else if (prot == 3)
2065 np = 0x04;
2066 else if (prot == 1)
2067 np = 0x02;
2068 else if (prot == 0)
2069 np = 0x01;
2070
2071 if (VirtualProtect (addr, len, np, &op))
2072 return 0;
2073 else
2074 return -1;
2075 }
2076
2077 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
2078
2079 #ifdef TRANSFER_FROM_TRAMPOLINE
2080 TRANSFER_FROM_TRAMPOLINE
2081 #endif
2082 #endif /* L_trampoline */
2083 \f
2084 #ifndef __CYGWIN__
2085 #ifdef L__main
2086
2087 #include "gbl-ctors.h"
2088
2089 /* Some systems use __main in a way incompatible with its use in gcc, in these
2090 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2091 give the same symbol without quotes for an alternative entry point. You
2092 must define both, or neither. */
2093 #ifndef NAME__MAIN
2094 #define NAME__MAIN "__main"
2095 #define SYMBOL__MAIN __main
2096 #endif
2097
2098 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2099 #undef HAS_INIT_SECTION
2100 #define HAS_INIT_SECTION
2101 #endif
2102
2103 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2104
2105 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2106 code to run constructors. In that case, we need to handle EH here, too. */
2107
2108 #ifdef EH_FRAME_SECTION_NAME
2109 #include "unwind-dw2-fde.h"
2110 extern unsigned char __EH_FRAME_BEGIN__[];
2111 #endif
2112
2113 /* Run all the global destructors on exit from the program. */
2114
2115 void
2116 __do_global_dtors (void)
2117 {
2118 #ifdef DO_GLOBAL_DTORS_BODY
2119 DO_GLOBAL_DTORS_BODY;
2120 #else
2121 static func_ptr *p = __DTOR_LIST__ + 1;
2122 while (*p)
2123 {
2124 p++;
2125 (*(p-1)) ();
2126 }
2127 #endif
2128 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2129 {
2130 static int completed = 0;
2131 if (! completed)
2132 {
2133 completed = 1;
2134 __deregister_frame_info (__EH_FRAME_BEGIN__);
2135 }
2136 }
2137 #endif
2138 }
2139 #endif
2140
2141 #ifndef HAS_INIT_SECTION
2142 /* Run all the global constructors on entry to the program. */
2143
2144 void
2145 __do_global_ctors (void)
2146 {
2147 #ifdef EH_FRAME_SECTION_NAME
2148 {
2149 static struct object object;
2150 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2151 }
2152 #endif
2153 DO_GLOBAL_CTORS_BODY;
2154 atexit (__do_global_dtors);
2155 }
2156 #endif /* no HAS_INIT_SECTION */
2157
2158 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2159 /* Subroutine called automatically by `main'.
2160 Compiling a global function named `main'
2161 produces an automatic call to this function at the beginning.
2162
2163 For many systems, this routine calls __do_global_ctors.
2164 For systems which support a .init section we use the .init section
2165 to run __do_global_ctors, so we need not do anything here. */
2166
2167 extern void SYMBOL__MAIN (void);
2168 void
2169 SYMBOL__MAIN (void)
2170 {
2171 /* Support recursive calls to `main': run initializers just once. */
2172 static int initialized;
2173 if (! initialized)
2174 {
2175 initialized = 1;
2176 __do_global_ctors ();
2177 }
2178 }
2179 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2180
2181 #endif /* L__main */
2182 #endif /* __CYGWIN__ */
2183 \f
2184 #ifdef L_ctors
2185
2186 #include "gbl-ctors.h"
2187
2188 /* Provide default definitions for the lists of constructors and
2189 destructors, so that we don't get linker errors. These symbols are
2190 intentionally bss symbols, so that gld and/or collect will provide
2191 the right values. */
2192
2193 /* We declare the lists here with two elements each,
2194 so that they are valid empty lists if no other definition is loaded.
2195
2196 If we are using the old "set" extensions to have the gnu linker
2197 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2198 must be in the bss/common section.
2199
2200 Long term no port should use those extensions. But many still do. */
2201 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2202 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2203 func_ptr __CTOR_LIST__[2] = {0, 0};
2204 func_ptr __DTOR_LIST__[2] = {0, 0};
2205 #else
2206 func_ptr __CTOR_LIST__[2];
2207 func_ptr __DTOR_LIST__[2];
2208 #endif
2209 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2210 #endif /* L_ctors */
2211 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */