g-expect-vms.adb:
[gcc.git] / gcc / libgcc2.c
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
21
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
30 02110-1301, USA. */
31
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "coretypes.h"
35 #include "tm.h"
36
37 #ifdef HAVE_GAS_HIDDEN
38 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
39 #else
40 #define ATTRIBUTE_HIDDEN
41 #endif
42
43 #ifndef MIN_UNITS_PER_WORD
44 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
45 #endif
46
47 /* Work out the largest "word" size that we can deal with on this target. */
48 #if MIN_UNITS_PER_WORD > 4
49 # define LIBGCC2_MAX_UNITS_PER_WORD 8
50 #elif (MIN_UNITS_PER_WORD > 2 \
51 || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
52 # define LIBGCC2_MAX_UNITS_PER_WORD 4
53 #else
54 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
55 #endif
56
57 /* Work out what word size we are using for this compilation.
58 The value can be set on the command line. */
59 #ifndef LIBGCC2_UNITS_PER_WORD
60 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
61 #endif
62
63 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
64
65 #include "libgcc2.h"
66 \f
67 #ifdef DECLARE_LIBRARY_RENAMES
68 DECLARE_LIBRARY_RENAMES
69 #endif
70
71 #if defined (L_negdi2)
72 DWtype
73 __negdi2 (DWtype u)
74 {
75 const DWunion uu = {.ll = u};
76 const DWunion w = { {.low = -uu.s.low,
77 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
78
79 return w.ll;
80 }
81 #endif
82
83 #ifdef L_addvsi3
84 Wtype
85 __addvSI3 (Wtype a, Wtype b)
86 {
87 const Wtype w = a + b;
88
89 if (b >= 0 ? w < a : w > a)
90 abort ();
91
92 return w;
93 }
94 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
95 SItype
96 __addvsi3 (SItype a, SItype b)
97 {
98 const SItype w = a + b;
99
100 if (b >= 0 ? w < a : w > a)
101 abort ();
102
103 return w;
104 }
105 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
106 #endif
107 \f
108 #ifdef L_addvdi3
109 DWtype
110 __addvDI3 (DWtype a, DWtype b)
111 {
112 const DWtype w = a + b;
113
114 if (b >= 0 ? w < a : w > a)
115 abort ();
116
117 return w;
118 }
119 #endif
120 \f
121 #ifdef L_subvsi3
122 Wtype
123 __subvSI3 (Wtype a, Wtype b)
124 {
125 const Wtype w = a - b;
126
127 if (b >= 0 ? w > a : w < a)
128 abort ();
129
130 return w;
131 }
132 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
133 SItype
134 __subvsi3 (SItype a, SItype b)
135 {
136 const SItype w = a - b;
137
138 if (b >= 0 ? w > a : w < a)
139 abort ();
140
141 return w;
142 }
143 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
144 #endif
145 \f
146 #ifdef L_subvdi3
147 DWtype
148 __subvDI3 (DWtype a, DWtype b)
149 {
150 const DWtype w = a - b;
151
152 if (b >= 0 ? w > a : w < a)
153 abort ();
154
155 return w;
156 }
157 #endif
158 \f
159 #ifdef L_mulvsi3
160 Wtype
161 __mulvSI3 (Wtype a, Wtype b)
162 {
163 const DWtype w = (DWtype) a * (DWtype) b;
164
165 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
166 abort ();
167
168 return w;
169 }
170 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
171 #undef WORD_SIZE
172 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
173 SItype
174 __mulvsi3 (SItype a, SItype b)
175 {
176 const DItype w = (DItype) a * (DItype) b;
177
178 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
179 abort ();
180
181 return w;
182 }
183 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
184 #endif
185 \f
186 #ifdef L_negvsi2
187 Wtype
188 __negvSI2 (Wtype a)
189 {
190 const Wtype w = -a;
191
192 if (a >= 0 ? w > 0 : w < 0)
193 abort ();
194
195 return w;
196 }
197 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
198 SItype
199 __negvsi2 (SItype a)
200 {
201 const SItype w = -a;
202
203 if (a >= 0 ? w > 0 : w < 0)
204 abort ();
205
206 return w;
207 }
208 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
209 #endif
210 \f
211 #ifdef L_negvdi2
212 DWtype
213 __negvDI2 (DWtype a)
214 {
215 const DWtype w = -a;
216
217 if (a >= 0 ? w > 0 : w < 0)
218 abort ();
219
220 return w;
221 }
222 #endif
223 \f
224 #ifdef L_absvsi2
225 Wtype
226 __absvSI2 (Wtype a)
227 {
228 Wtype w = a;
229
230 if (a < 0)
231 #ifdef L_negvsi2
232 w = __negvSI2 (a);
233 #else
234 w = -a;
235
236 if (w < 0)
237 abort ();
238 #endif
239
240 return w;
241 }
242 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
243 SItype
244 __absvsi2 (SItype a)
245 {
246 SItype w = a;
247
248 if (a < 0)
249 #ifdef L_negvsi2
250 w = __negvsi2 (a);
251 #else
252 w = -a;
253
254 if (w < 0)
255 abort ();
256 #endif
257
258 return w;
259 }
260 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
261 #endif
262 \f
263 #ifdef L_absvdi2
264 DWtype
265 __absvDI2 (DWtype a)
266 {
267 DWtype w = a;
268
269 if (a < 0)
270 #ifdef L_negvdi2
271 w = __negvDI2 (a);
272 #else
273 w = -a;
274
275 if (w < 0)
276 abort ();
277 #endif
278
279 return w;
280 }
281 #endif
282 \f
283 #ifdef L_mulvdi3
284 DWtype
285 __mulvDI3 (DWtype u, DWtype v)
286 {
287 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
288 but the checked multiplication needs only two. */
289 const DWunion uu = {.ll = u};
290 const DWunion vv = {.ll = v};
291
292 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
293 {
294 /* u fits in a single Wtype. */
295 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
296 {
297 /* v fits in a single Wtype as well. */
298 /* A single multiplication. No overflow risk. */
299 return (DWtype) uu.s.low * (DWtype) vv.s.low;
300 }
301 else
302 {
303 /* Two multiplications. */
304 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
305 * (UDWtype) (UWtype) vv.s.low};
306 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
307 * (UDWtype) (UWtype) vv.s.high};
308
309 if (vv.s.high < 0)
310 w1.s.high -= uu.s.low;
311 if (uu.s.low < 0)
312 w1.ll -= vv.ll;
313 w1.ll += (UWtype) w0.s.high;
314 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
315 {
316 w0.s.high = w1.s.low;
317 return w0.ll;
318 }
319 }
320 }
321 else
322 {
323 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
324 {
325 /* v fits into a single Wtype. */
326 /* Two multiplications. */
327 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
328 * (UDWtype) (UWtype) vv.s.low};
329 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
330 * (UDWtype) (UWtype) vv.s.low};
331
332 if (uu.s.high < 0)
333 w1.s.high -= vv.s.low;
334 if (vv.s.low < 0)
335 w1.ll -= uu.ll;
336 w1.ll += (UWtype) w0.s.high;
337 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
338 {
339 w0.s.high = w1.s.low;
340 return w0.ll;
341 }
342 }
343 else
344 {
345 /* A few sign checks and a single multiplication. */
346 if (uu.s.high >= 0)
347 {
348 if (vv.s.high >= 0)
349 {
350 if (uu.s.high == 0 && vv.s.high == 0)
351 {
352 const DWtype w = (UDWtype) (UWtype) uu.s.low
353 * (UDWtype) (UWtype) vv.s.low;
354 if (__builtin_expect (w >= 0, 1))
355 return w;
356 }
357 }
358 else
359 {
360 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
361 {
362 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
363 * (UDWtype) (UWtype) vv.s.low};
364
365 ww.s.high -= uu.s.low;
366 if (__builtin_expect (ww.s.high < 0, 1))
367 return ww.ll;
368 }
369 }
370 }
371 else
372 {
373 if (vv.s.high >= 0)
374 {
375 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
376 {
377 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
378 * (UDWtype) (UWtype) vv.s.low};
379
380 ww.s.high -= vv.s.low;
381 if (__builtin_expect (ww.s.high < 0, 1))
382 return ww.ll;
383 }
384 }
385 else
386 {
387 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
388 {
389 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
390 * (UDWtype) (UWtype) vv.s.low};
391
392 ww.s.high -= uu.s.low;
393 ww.s.high -= vv.s.low;
394 if (__builtin_expect (ww.s.high >= 0, 1))
395 return ww.ll;
396 }
397 }
398 }
399 }
400 }
401
402 /* Overflow. */
403 abort ();
404 }
405 #endif
406 \f
407
408 /* Unless shift functions are defined with full ANSI prototypes,
409 parameter b will be promoted to int if word_type is smaller than an int. */
410 #ifdef L_lshrdi3
411 DWtype
412 __lshrdi3 (DWtype u, word_type b)
413 {
414 if (b == 0)
415 return u;
416
417 const DWunion uu = {.ll = u};
418 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
419 DWunion w;
420
421 if (bm <= 0)
422 {
423 w.s.high = 0;
424 w.s.low = (UWtype) uu.s.high >> -bm;
425 }
426 else
427 {
428 const UWtype carries = (UWtype) uu.s.high << bm;
429
430 w.s.high = (UWtype) uu.s.high >> b;
431 w.s.low = ((UWtype) uu.s.low >> b) | carries;
432 }
433
434 return w.ll;
435 }
436 #endif
437
438 #ifdef L_ashldi3
439 DWtype
440 __ashldi3 (DWtype u, word_type b)
441 {
442 if (b == 0)
443 return u;
444
445 const DWunion uu = {.ll = u};
446 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
447 DWunion w;
448
449 if (bm <= 0)
450 {
451 w.s.low = 0;
452 w.s.high = (UWtype) uu.s.low << -bm;
453 }
454 else
455 {
456 const UWtype carries = (UWtype) uu.s.low >> bm;
457
458 w.s.low = (UWtype) uu.s.low << b;
459 w.s.high = ((UWtype) uu.s.high << b) | carries;
460 }
461
462 return w.ll;
463 }
464 #endif
465
466 #ifdef L_ashrdi3
467 DWtype
468 __ashrdi3 (DWtype u, word_type b)
469 {
470 if (b == 0)
471 return u;
472
473 const DWunion uu = {.ll = u};
474 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
475 DWunion w;
476
477 if (bm <= 0)
478 {
479 /* w.s.high = 1..1 or 0..0 */
480 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
481 w.s.low = uu.s.high >> -bm;
482 }
483 else
484 {
485 const UWtype carries = (UWtype) uu.s.high << bm;
486
487 w.s.high = uu.s.high >> b;
488 w.s.low = ((UWtype) uu.s.low >> b) | carries;
489 }
490
491 return w.ll;
492 }
493 #endif
494 \f
495 #ifdef L_bswapsi2
496 SItype
497 __bswapsi2 (SItype u)
498 {
499 return ((((u) & 0xff000000) >> 24)
500 | (((u) & 0x00ff0000) >> 8)
501 | (((u) & 0x0000ff00) << 8)
502 | (((u) & 0x000000ff) << 24));
503 }
504 #endif
505 #ifdef L_bswapdi2
506 DItype
507 __bswapdi2 (DItype u)
508 {
509 return ((((u) & 0xff00000000000000ull) >> 56)
510 | (((u) & 0x00ff000000000000ull) >> 40)
511 | (((u) & 0x0000ff0000000000ull) >> 24)
512 | (((u) & 0x000000ff00000000ull) >> 8)
513 | (((u) & 0x00000000ff000000ull) << 8)
514 | (((u) & 0x0000000000ff0000ull) << 24)
515 | (((u) & 0x000000000000ff00ull) << 40)
516 | (((u) & 0x00000000000000ffull) << 56));
517 }
518 #endif
519 #ifdef L_ffssi2
520 #undef int
521 int
522 __ffsSI2 (UWtype u)
523 {
524 UWtype count;
525
526 if (u == 0)
527 return 0;
528
529 count_trailing_zeros (count, u);
530 return count + 1;
531 }
532 #endif
533 \f
534 #ifdef L_ffsdi2
535 #undef int
536 int
537 __ffsDI2 (DWtype u)
538 {
539 const DWunion uu = {.ll = u};
540 UWtype word, count, add;
541
542 if (uu.s.low != 0)
543 word = uu.s.low, add = 0;
544 else if (uu.s.high != 0)
545 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
546 else
547 return 0;
548
549 count_trailing_zeros (count, word);
550 return count + add + 1;
551 }
552 #endif
553 \f
554 #ifdef L_muldi3
555 DWtype
556 __muldi3 (DWtype u, DWtype v)
557 {
558 const DWunion uu = {.ll = u};
559 const DWunion vv = {.ll = v};
560 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
561
562 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
563 + (UWtype) uu.s.high * (UWtype) vv.s.low);
564
565 return w.ll;
566 }
567 #endif
568 \f
569 #if (defined (L_udivdi3) || defined (L_divdi3) || \
570 defined (L_umoddi3) || defined (L_moddi3))
571 #if defined (sdiv_qrnnd)
572 #define L_udiv_w_sdiv
573 #endif
574 #endif
575
576 #ifdef L_udiv_w_sdiv
577 #if defined (sdiv_qrnnd)
578 #if (defined (L_udivdi3) || defined (L_divdi3) || \
579 defined (L_umoddi3) || defined (L_moddi3))
580 static inline __attribute__ ((__always_inline__))
581 #endif
582 UWtype
583 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
584 {
585 UWtype q, r;
586 UWtype c0, c1, b1;
587
588 if ((Wtype) d >= 0)
589 {
590 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
591 {
592 /* Dividend, divisor, and quotient are nonnegative. */
593 sdiv_qrnnd (q, r, a1, a0, d);
594 }
595 else
596 {
597 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
598 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
599 /* Divide (c1*2^32 + c0) by d. */
600 sdiv_qrnnd (q, r, c1, c0, d);
601 /* Add 2^31 to quotient. */
602 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
603 }
604 }
605 else
606 {
607 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
608 c1 = a1 >> 1; /* A/2 */
609 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
610
611 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
612 {
613 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
614
615 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
616 if ((d & 1) != 0)
617 {
618 if (r >= q)
619 r = r - q;
620 else if (q - r <= d)
621 {
622 r = r - q + d;
623 q--;
624 }
625 else
626 {
627 r = r - q + 2*d;
628 q -= 2;
629 }
630 }
631 }
632 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
633 {
634 c1 = (b1 - 1) - c1;
635 c0 = ~c0; /* logical NOT */
636
637 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
638
639 q = ~q; /* (A/2)/b1 */
640 r = (b1 - 1) - r;
641
642 r = 2*r + (a0 & 1); /* A/(2*b1) */
643
644 if ((d & 1) != 0)
645 {
646 if (r >= q)
647 r = r - q;
648 else if (q - r <= d)
649 {
650 r = r - q + d;
651 q--;
652 }
653 else
654 {
655 r = r - q + 2*d;
656 q -= 2;
657 }
658 }
659 }
660 else /* Implies c1 = b1 */
661 { /* Hence a1 = d - 1 = 2*b1 - 1 */
662 if (a0 >= -d)
663 {
664 q = -1;
665 r = a0 + d;
666 }
667 else
668 {
669 q = -2;
670 r = a0 + 2*d;
671 }
672 }
673 }
674
675 *rp = r;
676 return q;
677 }
678 #else
679 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
680 UWtype
681 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
682 UWtype a1 __attribute__ ((__unused__)),
683 UWtype a0 __attribute__ ((__unused__)),
684 UWtype d __attribute__ ((__unused__)))
685 {
686 return 0;
687 }
688 #endif
689 #endif
690 \f
691 #if (defined (L_udivdi3) || defined (L_divdi3) || \
692 defined (L_umoddi3) || defined (L_moddi3))
693 #define L_udivmoddi4
694 #endif
695
696 #ifdef L_clz
697 const UQItype __clz_tab[256] =
698 {
699 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
700 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
701 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
702 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
703 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
704 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
705 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
706 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
707 };
708 #endif
709 \f
710 #ifdef L_clzsi2
711 #undef int
712 int
713 __clzSI2 (UWtype x)
714 {
715 Wtype ret;
716
717 count_leading_zeros (ret, x);
718
719 return ret;
720 }
721 #endif
722 \f
723 #ifdef L_clzdi2
724 #undef int
725 int
726 __clzDI2 (UDWtype x)
727 {
728 const DWunion uu = {.ll = x};
729 UWtype word;
730 Wtype ret, add;
731
732 if (uu.s.high)
733 word = uu.s.high, add = 0;
734 else
735 word = uu.s.low, add = W_TYPE_SIZE;
736
737 count_leading_zeros (ret, word);
738 return ret + add;
739 }
740 #endif
741 \f
742 #ifdef L_ctzsi2
743 #undef int
744 int
745 __ctzSI2 (UWtype x)
746 {
747 Wtype ret;
748
749 count_trailing_zeros (ret, x);
750
751 return ret;
752 }
753 #endif
754 \f
755 #ifdef L_ctzdi2
756 #undef int
757 int
758 __ctzDI2 (UDWtype x)
759 {
760 const DWunion uu = {.ll = x};
761 UWtype word;
762 Wtype ret, add;
763
764 if (uu.s.low)
765 word = uu.s.low, add = 0;
766 else
767 word = uu.s.high, add = W_TYPE_SIZE;
768
769 count_trailing_zeros (ret, word);
770 return ret + add;
771 }
772 #endif
773
774 #ifdef L_popcount_tab
775 const UQItype __popcount_tab[256] =
776 {
777 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
778 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
779 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
780 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
781 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
782 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
783 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
784 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
785 };
786 #endif
787 \f
788 #ifdef L_popcountsi2
789 #undef int
790 int
791 __popcountSI2 (UWtype x)
792 {
793 int i, ret = 0;
794
795 for (i = 0; i < W_TYPE_SIZE; i += 8)
796 ret += __popcount_tab[(x >> i) & 0xff];
797
798 return ret;
799 }
800 #endif
801 \f
802 #ifdef L_popcountdi2
803 #undef int
804 int
805 __popcountDI2 (UDWtype x)
806 {
807 int i, ret = 0;
808
809 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
810 ret += __popcount_tab[(x >> i) & 0xff];
811
812 return ret;
813 }
814 #endif
815 \f
816 #ifdef L_paritysi2
817 #undef int
818 int
819 __paritySI2 (UWtype x)
820 {
821 #if W_TYPE_SIZE > 64
822 # error "fill out the table"
823 #endif
824 #if W_TYPE_SIZE > 32
825 x ^= x >> 32;
826 #endif
827 #if W_TYPE_SIZE > 16
828 x ^= x >> 16;
829 #endif
830 x ^= x >> 8;
831 x ^= x >> 4;
832 x &= 0xf;
833 return (0x6996 >> x) & 1;
834 }
835 #endif
836 \f
837 #ifdef L_paritydi2
838 #undef int
839 int
840 __parityDI2 (UDWtype x)
841 {
842 const DWunion uu = {.ll = x};
843 UWtype nx = uu.s.low ^ uu.s.high;
844
845 #if W_TYPE_SIZE > 64
846 # error "fill out the table"
847 #endif
848 #if W_TYPE_SIZE > 32
849 nx ^= nx >> 32;
850 #endif
851 #if W_TYPE_SIZE > 16
852 nx ^= nx >> 16;
853 #endif
854 nx ^= nx >> 8;
855 nx ^= nx >> 4;
856 nx &= 0xf;
857 return (0x6996 >> nx) & 1;
858 }
859 #endif
860
861 #ifdef L_udivmoddi4
862
863 #if (defined (L_udivdi3) || defined (L_divdi3) || \
864 defined (L_umoddi3) || defined (L_moddi3))
865 static inline __attribute__ ((__always_inline__))
866 #endif
867 UDWtype
868 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
869 {
870 const DWunion nn = {.ll = n};
871 const DWunion dd = {.ll = d};
872 DWunion rr;
873 UWtype d0, d1, n0, n1, n2;
874 UWtype q0, q1;
875 UWtype b, bm;
876
877 d0 = dd.s.low;
878 d1 = dd.s.high;
879 n0 = nn.s.low;
880 n1 = nn.s.high;
881
882 #if !UDIV_NEEDS_NORMALIZATION
883 if (d1 == 0)
884 {
885 if (d0 > n1)
886 {
887 /* 0q = nn / 0D */
888
889 udiv_qrnnd (q0, n0, n1, n0, d0);
890 q1 = 0;
891
892 /* Remainder in n0. */
893 }
894 else
895 {
896 /* qq = NN / 0d */
897
898 if (d0 == 0)
899 d0 = 1 / d0; /* Divide intentionally by zero. */
900
901 udiv_qrnnd (q1, n1, 0, n1, d0);
902 udiv_qrnnd (q0, n0, n1, n0, d0);
903
904 /* Remainder in n0. */
905 }
906
907 if (rp != 0)
908 {
909 rr.s.low = n0;
910 rr.s.high = 0;
911 *rp = rr.ll;
912 }
913 }
914
915 #else /* UDIV_NEEDS_NORMALIZATION */
916
917 if (d1 == 0)
918 {
919 if (d0 > n1)
920 {
921 /* 0q = nn / 0D */
922
923 count_leading_zeros (bm, d0);
924
925 if (bm != 0)
926 {
927 /* Normalize, i.e. make the most significant bit of the
928 denominator set. */
929
930 d0 = d0 << bm;
931 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
932 n0 = n0 << bm;
933 }
934
935 udiv_qrnnd (q0, n0, n1, n0, d0);
936 q1 = 0;
937
938 /* Remainder in n0 >> bm. */
939 }
940 else
941 {
942 /* qq = NN / 0d */
943
944 if (d0 == 0)
945 d0 = 1 / d0; /* Divide intentionally by zero. */
946
947 count_leading_zeros (bm, d0);
948
949 if (bm == 0)
950 {
951 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
952 conclude (the most significant bit of n1 is set) /\ (the
953 leading quotient digit q1 = 1).
954
955 This special case is necessary, not an optimization.
956 (Shifts counts of W_TYPE_SIZE are undefined.) */
957
958 n1 -= d0;
959 q1 = 1;
960 }
961 else
962 {
963 /* Normalize. */
964
965 b = W_TYPE_SIZE - bm;
966
967 d0 = d0 << bm;
968 n2 = n1 >> b;
969 n1 = (n1 << bm) | (n0 >> b);
970 n0 = n0 << bm;
971
972 udiv_qrnnd (q1, n1, n2, n1, d0);
973 }
974
975 /* n1 != d0... */
976
977 udiv_qrnnd (q0, n0, n1, n0, d0);
978
979 /* Remainder in n0 >> bm. */
980 }
981
982 if (rp != 0)
983 {
984 rr.s.low = n0 >> bm;
985 rr.s.high = 0;
986 *rp = rr.ll;
987 }
988 }
989 #endif /* UDIV_NEEDS_NORMALIZATION */
990
991 else
992 {
993 if (d1 > n1)
994 {
995 /* 00 = nn / DD */
996
997 q0 = 0;
998 q1 = 0;
999
1000 /* Remainder in n1n0. */
1001 if (rp != 0)
1002 {
1003 rr.s.low = n0;
1004 rr.s.high = n1;
1005 *rp = rr.ll;
1006 }
1007 }
1008 else
1009 {
1010 /* 0q = NN / dd */
1011
1012 count_leading_zeros (bm, d1);
1013 if (bm == 0)
1014 {
1015 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1016 conclude (the most significant bit of n1 is set) /\ (the
1017 quotient digit q0 = 0 or 1).
1018
1019 This special case is necessary, not an optimization. */
1020
1021 /* The condition on the next line takes advantage of that
1022 n1 >= d1 (true due to program flow). */
1023 if (n1 > d1 || n0 >= d0)
1024 {
1025 q0 = 1;
1026 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1027 }
1028 else
1029 q0 = 0;
1030
1031 q1 = 0;
1032
1033 if (rp != 0)
1034 {
1035 rr.s.low = n0;
1036 rr.s.high = n1;
1037 *rp = rr.ll;
1038 }
1039 }
1040 else
1041 {
1042 UWtype m1, m0;
1043 /* Normalize. */
1044
1045 b = W_TYPE_SIZE - bm;
1046
1047 d1 = (d1 << bm) | (d0 >> b);
1048 d0 = d0 << bm;
1049 n2 = n1 >> b;
1050 n1 = (n1 << bm) | (n0 >> b);
1051 n0 = n0 << bm;
1052
1053 udiv_qrnnd (q0, n1, n2, n1, d1);
1054 umul_ppmm (m1, m0, q0, d0);
1055
1056 if (m1 > n1 || (m1 == n1 && m0 > n0))
1057 {
1058 q0--;
1059 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1060 }
1061
1062 q1 = 0;
1063
1064 /* Remainder in (n1n0 - m1m0) >> bm. */
1065 if (rp != 0)
1066 {
1067 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1068 rr.s.low = (n1 << b) | (n0 >> bm);
1069 rr.s.high = n1 >> bm;
1070 *rp = rr.ll;
1071 }
1072 }
1073 }
1074 }
1075
1076 const DWunion ww = {{.low = q0, .high = q1}};
1077 return ww.ll;
1078 }
1079 #endif
1080
1081 #ifdef L_divdi3
1082 DWtype
1083 __divdi3 (DWtype u, DWtype v)
1084 {
1085 word_type c = 0;
1086 DWunion uu = {.ll = u};
1087 DWunion vv = {.ll = v};
1088 DWtype w;
1089
1090 if (uu.s.high < 0)
1091 c = ~c,
1092 uu.ll = -uu.ll;
1093 if (vv.s.high < 0)
1094 c = ~c,
1095 vv.ll = -vv.ll;
1096
1097 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1098 if (c)
1099 w = -w;
1100
1101 return w;
1102 }
1103 #endif
1104
1105 #ifdef L_moddi3
1106 DWtype
1107 __moddi3 (DWtype u, DWtype v)
1108 {
1109 word_type c = 0;
1110 DWunion uu = {.ll = u};
1111 DWunion vv = {.ll = v};
1112 DWtype w;
1113
1114 if (uu.s.high < 0)
1115 c = ~c,
1116 uu.ll = -uu.ll;
1117 if (vv.s.high < 0)
1118 vv.ll = -vv.ll;
1119
1120 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1121 if (c)
1122 w = -w;
1123
1124 return w;
1125 }
1126 #endif
1127
1128 #ifdef L_umoddi3
1129 UDWtype
1130 __umoddi3 (UDWtype u, UDWtype v)
1131 {
1132 UDWtype w;
1133
1134 (void) __udivmoddi4 (u, v, &w);
1135
1136 return w;
1137 }
1138 #endif
1139
1140 #ifdef L_udivdi3
1141 UDWtype
1142 __udivdi3 (UDWtype n, UDWtype d)
1143 {
1144 return __udivmoddi4 (n, d, (UDWtype *) 0);
1145 }
1146 #endif
1147 \f
1148 #ifdef L_cmpdi2
1149 word_type
1150 __cmpdi2 (DWtype a, DWtype b)
1151 {
1152 const DWunion au = {.ll = a};
1153 const DWunion bu = {.ll = b};
1154
1155 if (au.s.high < bu.s.high)
1156 return 0;
1157 else if (au.s.high > bu.s.high)
1158 return 2;
1159 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1160 return 0;
1161 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1162 return 2;
1163 return 1;
1164 }
1165 #endif
1166
1167 #ifdef L_ucmpdi2
1168 word_type
1169 __ucmpdi2 (DWtype a, DWtype b)
1170 {
1171 const DWunion au = {.ll = a};
1172 const DWunion bu = {.ll = b};
1173
1174 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1175 return 0;
1176 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1177 return 2;
1178 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1179 return 0;
1180 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1181 return 2;
1182 return 1;
1183 }
1184 #endif
1185 \f
1186 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1187 DWtype
1188 __fixunstfDI (TFtype a)
1189 {
1190 if (a < 0)
1191 return 0;
1192
1193 /* Compute high word of result, as a flonum. */
1194 const TFtype b = (a / Wtype_MAXp1_F);
1195 /* Convert that to fixed (but not to DWtype!),
1196 and shift it into the high word. */
1197 UDWtype v = (UWtype) b;
1198 v <<= W_TYPE_SIZE;
1199 /* Remove high part from the TFtype, leaving the low part as flonum. */
1200 a -= (TFtype)v;
1201 /* Convert that to fixed (but not to DWtype!) and add it in.
1202 Sometimes A comes out negative. This is significant, since
1203 A has more bits than a long int does. */
1204 if (a < 0)
1205 v -= (UWtype) (- a);
1206 else
1207 v += (UWtype) a;
1208 return v;
1209 }
1210 #endif
1211
1212 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1213 DWtype
1214 __fixtfdi (TFtype a)
1215 {
1216 if (a < 0)
1217 return - __fixunstfDI (-a);
1218 return __fixunstfDI (a);
1219 }
1220 #endif
1221
1222 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1223 DWtype
1224 __fixunsxfDI (XFtype a)
1225 {
1226 if (a < 0)
1227 return 0;
1228
1229 /* Compute high word of result, as a flonum. */
1230 const XFtype b = (a / Wtype_MAXp1_F);
1231 /* Convert that to fixed (but not to DWtype!),
1232 and shift it into the high word. */
1233 UDWtype v = (UWtype) b;
1234 v <<= W_TYPE_SIZE;
1235 /* Remove high part from the XFtype, leaving the low part as flonum. */
1236 a -= (XFtype)v;
1237 /* Convert that to fixed (but not to DWtype!) and add it in.
1238 Sometimes A comes out negative. This is significant, since
1239 A has more bits than a long int does. */
1240 if (a < 0)
1241 v -= (UWtype) (- a);
1242 else
1243 v += (UWtype) a;
1244 return v;
1245 }
1246 #endif
1247
1248 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1249 DWtype
1250 __fixxfdi (XFtype a)
1251 {
1252 if (a < 0)
1253 return - __fixunsxfDI (-a);
1254 return __fixunsxfDI (a);
1255 }
1256 #endif
1257
1258 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1259 DWtype
1260 __fixunsdfDI (DFtype a)
1261 {
1262 /* Get high part of result. The division here will just moves the radix
1263 point and will not cause any rounding. Then the conversion to integral
1264 type chops result as desired. */
1265 const UWtype hi = a / Wtype_MAXp1_F;
1266
1267 /* Get low part of result. Convert `hi' to floating type and scale it back,
1268 then subtract this from the number being converted. This leaves the low
1269 part. Convert that to integral type. */
1270 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1271
1272 /* Assemble result from the two parts. */
1273 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1274 }
1275 #endif
1276
1277 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1278 DWtype
1279 __fixdfdi (DFtype a)
1280 {
1281 if (a < 0)
1282 return - __fixunsdfDI (-a);
1283 return __fixunsdfDI (a);
1284 }
1285 #endif
1286
1287 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1288 DWtype
1289 __fixunssfDI (SFtype a)
1290 {
1291 #if LIBGCC2_HAS_DF_MODE
1292 /* Convert the SFtype to a DFtype, because that is surely not going
1293 to lose any bits. Some day someone else can write a faster version
1294 that avoids converting to DFtype, and verify it really works right. */
1295 const DFtype dfa = a;
1296
1297 /* Get high part of result. The division here will just moves the radix
1298 point and will not cause any rounding. Then the conversion to integral
1299 type chops result as desired. */
1300 const UWtype hi = dfa / Wtype_MAXp1_F;
1301
1302 /* Get low part of result. Convert `hi' to floating type and scale it back,
1303 then subtract this from the number being converted. This leaves the low
1304 part. Convert that to integral type. */
1305 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1306
1307 /* Assemble result from the two parts. */
1308 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1309 #elif FLT_MANT_DIG < W_TYPE_SIZE
1310 if (a < 1)
1311 return 0;
1312 if (a < Wtype_MAXp1_F)
1313 return (UWtype)a;
1314 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1315 {
1316 /* Since we know that there are fewer significant bits in the SFmode
1317 quantity than in a word, we know that we can convert out all the
1318 significant bits in one step, and thus avoid losing bits. */
1319
1320 /* ??? This following loop essentially performs frexpf. If we could
1321 use the real libm function, or poke at the actual bits of the fp
1322 format, it would be significantly faster. */
1323
1324 UWtype shift = 0, counter;
1325 SFtype msb;
1326
1327 a /= Wtype_MAXp1_F;
1328 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1329 {
1330 SFtype counterf = (UWtype)1 << counter;
1331 if (a >= counterf)
1332 {
1333 shift |= counter;
1334 a /= counterf;
1335 }
1336 }
1337
1338 /* Rescale into the range of one word, extract the bits of that
1339 one word, and shift the result into position. */
1340 a *= Wtype_MAXp1_F;
1341 counter = a;
1342 return (DWtype)counter << shift;
1343 }
1344 return -1;
1345 #else
1346 # error
1347 #endif
1348 }
1349 #endif
1350
1351 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1352 DWtype
1353 __fixsfdi (SFtype a)
1354 {
1355 if (a < 0)
1356 return - __fixunssfDI (-a);
1357 return __fixunssfDI (a);
1358 }
1359 #endif
1360
1361 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1362 XFtype
1363 __floatdixf (DWtype u)
1364 {
1365 #if W_TYPE_SIZE > XF_SIZE
1366 # error
1367 #endif
1368 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1369 d *= Wtype_MAXp1_F;
1370 d += (UWtype)u;
1371 return d;
1372 }
1373 #endif
1374
1375 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1376 XFtype
1377 __floatundixf (UDWtype u)
1378 {
1379 #if W_TYPE_SIZE > XF_SIZE
1380 # error
1381 #endif
1382 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1383 d *= Wtype_MAXp1_F;
1384 d += (UWtype)u;
1385 return d;
1386 }
1387 #endif
1388
1389 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1390 TFtype
1391 __floatditf (DWtype u)
1392 {
1393 #if W_TYPE_SIZE > TF_SIZE
1394 # error
1395 #endif
1396 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1397 d *= Wtype_MAXp1_F;
1398 d += (UWtype)u;
1399 return d;
1400 }
1401 #endif
1402
1403 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1404 TFtype
1405 __floatunditf (UDWtype u)
1406 {
1407 #if W_TYPE_SIZE > TF_SIZE
1408 # error
1409 #endif
1410 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1411 d *= Wtype_MAXp1_F;
1412 d += (UWtype)u;
1413 return d;
1414 }
1415 #endif
1416
1417 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1418 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1419 #define DI_SIZE (W_TYPE_SIZE * 2)
1420 #define F_MODE_OK(SIZE) \
1421 (SIZE < DI_SIZE \
1422 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1423 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1424 #if defined(L_floatdisf)
1425 #define FUNC __floatdisf
1426 #define FSTYPE SFtype
1427 #define FSSIZE SF_SIZE
1428 #else
1429 #define FUNC __floatdidf
1430 #define FSTYPE DFtype
1431 #define FSSIZE DF_SIZE
1432 #endif
1433
1434 FSTYPE
1435 FUNC (DWtype u)
1436 {
1437 #if FSSIZE >= W_TYPE_SIZE
1438 /* When the word size is small, we never get any rounding error. */
1439 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1440 f *= Wtype_MAXp1_F;
1441 f += (UWtype)u;
1442 return f;
1443 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1444 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1445 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1446
1447 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1448 # define FSIZE DF_SIZE
1449 # define FTYPE DFtype
1450 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1451 # define FSIZE XF_SIZE
1452 # define FTYPE XFtype
1453 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1454 # define FSIZE TF_SIZE
1455 # define FTYPE TFtype
1456 #else
1457 # error
1458 #endif
1459
1460 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1461
1462 /* Protect against double-rounding error.
1463 Represent any low-order bits, that might be truncated by a bit that
1464 won't be lost. The bit can go in anywhere below the rounding position
1465 of the FSTYPE. A fixed mask and bit position handles all usual
1466 configurations. */
1467 if (! (- ((DWtype) 1 << FSIZE) < u
1468 && u < ((DWtype) 1 << FSIZE)))
1469 {
1470 if ((UDWtype) u & (REP_BIT - 1))
1471 {
1472 u &= ~ (REP_BIT - 1);
1473 u |= REP_BIT;
1474 }
1475 }
1476
1477 /* Do the calculation in a wider type so that we don't lose any of
1478 the precision of the high word while multiplying it. */
1479 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1480 f *= Wtype_MAXp1_F;
1481 f += (UWtype)u;
1482 return (FSTYPE) f;
1483 #else
1484 #if FSSIZE >= W_TYPE_SIZE - 2
1485 # error
1486 #endif
1487 /* Finally, the word size is larger than the number of bits in the
1488 required FSTYPE, and we've got no suitable wider type. The only
1489 way to avoid double rounding is to special case the
1490 extraction. */
1491
1492 /* If there are no high bits set, fall back to one conversion. */
1493 if ((Wtype)u == u)
1494 return (FSTYPE)(Wtype)u;
1495
1496 /* Otherwise, find the power of two. */
1497 Wtype hi = u >> W_TYPE_SIZE;
1498 if (hi < 0)
1499 hi = -hi;
1500
1501 UWtype count, shift;
1502 count_leading_zeros (count, hi);
1503
1504 /* No leading bits means u == minimum. */
1505 if (count == 0)
1506 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1507
1508 shift = 1 + W_TYPE_SIZE - count;
1509
1510 /* Shift down the most significant bits. */
1511 hi = u >> shift;
1512
1513 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1514 if ((UWtype)u << (W_TYPE_SIZE - shift))
1515 hi |= 1;
1516
1517 /* Convert the one word of data, and rescale. */
1518 FSTYPE f = hi, e;
1519 if (shift == W_TYPE_SIZE)
1520 e = Wtype_MAXp1_F;
1521 /* The following two cases could be merged if we knew that the target
1522 supported a native unsigned->float conversion. More often, we only
1523 have a signed conversion, and have to add extra fixup code. */
1524 else if (shift == W_TYPE_SIZE - 1)
1525 e = Wtype_MAXp1_F / 2;
1526 else
1527 e = (Wtype)1 << shift;
1528 return f * e;
1529 #endif
1530 }
1531 #endif
1532
1533 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1534 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1535 #define DI_SIZE (W_TYPE_SIZE * 2)
1536 #define F_MODE_OK(SIZE) \
1537 (SIZE < DI_SIZE \
1538 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1539 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1540 #if defined(L_floatundisf)
1541 #define FUNC __floatundisf
1542 #define FSTYPE SFtype
1543 #define FSSIZE SF_SIZE
1544 #else
1545 #define FUNC __floatundidf
1546 #define FSTYPE DFtype
1547 #define FSSIZE DF_SIZE
1548 #endif
1549
1550 FSTYPE
1551 FUNC (UDWtype u)
1552 {
1553 #if FSSIZE >= W_TYPE_SIZE
1554 /* When the word size is small, we never get any rounding error. */
1555 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1556 f *= Wtype_MAXp1_F;
1557 f += (UWtype)u;
1558 return f;
1559 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1560 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1561 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1562
1563 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1564 # define FSIZE DF_SIZE
1565 # define FTYPE DFtype
1566 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1567 # define FSIZE XF_SIZE
1568 # define FTYPE XFtype
1569 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1570 # define FSIZE TF_SIZE
1571 # define FTYPE TFtype
1572 #else
1573 # error
1574 #endif
1575
1576 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1577
1578 /* Protect against double-rounding error.
1579 Represent any low-order bits, that might be truncated by a bit that
1580 won't be lost. The bit can go in anywhere below the rounding position
1581 of the FSTYPE. A fixed mask and bit position handles all usual
1582 configurations. */
1583 if (u >= ((UDWtype) 1 << FSIZE))
1584 {
1585 if ((UDWtype) u & (REP_BIT - 1))
1586 {
1587 u &= ~ (REP_BIT - 1);
1588 u |= REP_BIT;
1589 }
1590 }
1591
1592 /* Do the calculation in a wider type so that we don't lose any of
1593 the precision of the high word while multiplying it. */
1594 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1595 f *= Wtype_MAXp1_F;
1596 f += (UWtype)u;
1597 return (FSTYPE) f;
1598 #else
1599 #if FSSIZE == W_TYPE_SIZE - 1
1600 # error
1601 #endif
1602 /* Finally, the word size is larger than the number of bits in the
1603 required FSTYPE, and we've got no suitable wider type. The only
1604 way to avoid double rounding is to special case the
1605 extraction. */
1606
1607 /* If there are no high bits set, fall back to one conversion. */
1608 if ((UWtype)u == u)
1609 return (FSTYPE)(UWtype)u;
1610
1611 /* Otherwise, find the power of two. */
1612 UWtype hi = u >> W_TYPE_SIZE;
1613
1614 UWtype count, shift;
1615 count_leading_zeros (count, hi);
1616
1617 shift = W_TYPE_SIZE - count;
1618
1619 /* Shift down the most significant bits. */
1620 hi = u >> shift;
1621
1622 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1623 if ((UWtype)u << (W_TYPE_SIZE - shift))
1624 hi |= 1;
1625
1626 /* Convert the one word of data, and rescale. */
1627 FSTYPE f = hi, e;
1628 if (shift == W_TYPE_SIZE)
1629 e = Wtype_MAXp1_F;
1630 /* The following two cases could be merged if we knew that the target
1631 supported a native unsigned->float conversion. More often, we only
1632 have a signed conversion, and have to add extra fixup code. */
1633 else if (shift == W_TYPE_SIZE - 1)
1634 e = Wtype_MAXp1_F / 2;
1635 else
1636 e = (Wtype)1 << shift;
1637 return f * e;
1638 #endif
1639 }
1640 #endif
1641
1642 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1643 /* Reenable the normal types, in case limits.h needs them. */
1644 #undef char
1645 #undef short
1646 #undef int
1647 #undef long
1648 #undef unsigned
1649 #undef float
1650 #undef double
1651 #undef MIN
1652 #undef MAX
1653 #include <limits.h>
1654
1655 UWtype
1656 __fixunsxfSI (XFtype a)
1657 {
1658 if (a >= - (DFtype) Wtype_MIN)
1659 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1660 return (Wtype) a;
1661 }
1662 #endif
1663
1664 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1665 /* Reenable the normal types, in case limits.h needs them. */
1666 #undef char
1667 #undef short
1668 #undef int
1669 #undef long
1670 #undef unsigned
1671 #undef float
1672 #undef double
1673 #undef MIN
1674 #undef MAX
1675 #include <limits.h>
1676
1677 UWtype
1678 __fixunsdfSI (DFtype a)
1679 {
1680 if (a >= - (DFtype) Wtype_MIN)
1681 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1682 return (Wtype) a;
1683 }
1684 #endif
1685
1686 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1687 /* Reenable the normal types, in case limits.h needs them. */
1688 #undef char
1689 #undef short
1690 #undef int
1691 #undef long
1692 #undef unsigned
1693 #undef float
1694 #undef double
1695 #undef MIN
1696 #undef MAX
1697 #include <limits.h>
1698
1699 UWtype
1700 __fixunssfSI (SFtype a)
1701 {
1702 if (a >= - (SFtype) Wtype_MIN)
1703 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1704 return (Wtype) a;
1705 }
1706 #endif
1707 \f
1708 /* Integer power helper used from __builtin_powi for non-constant
1709 exponents. */
1710
1711 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1712 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1713 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1714 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1715 # if defined(L_powisf2)
1716 # define TYPE SFtype
1717 # define NAME __powisf2
1718 # elif defined(L_powidf2)
1719 # define TYPE DFtype
1720 # define NAME __powidf2
1721 # elif defined(L_powixf2)
1722 # define TYPE XFtype
1723 # define NAME __powixf2
1724 # elif defined(L_powitf2)
1725 # define TYPE TFtype
1726 # define NAME __powitf2
1727 # endif
1728
1729 #undef int
1730 #undef unsigned
1731 TYPE
1732 NAME (TYPE x, int m)
1733 {
1734 unsigned int n = m < 0 ? -m : m;
1735 TYPE y = n % 2 ? x : 1;
1736 while (n >>= 1)
1737 {
1738 x = x * x;
1739 if (n % 2)
1740 y = y * x;
1741 }
1742 return m < 0 ? 1/y : y;
1743 }
1744
1745 #endif
1746 \f
1747 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1748 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1749 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1750 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1751
1752 #undef float
1753 #undef double
1754 #undef long
1755
1756 #if defined(L_mulsc3) || defined(L_divsc3)
1757 # define MTYPE SFtype
1758 # define CTYPE SCtype
1759 # define MODE sc
1760 # define CEXT f
1761 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1762 #elif defined(L_muldc3) || defined(L_divdc3)
1763 # define MTYPE DFtype
1764 # define CTYPE DCtype
1765 # define MODE dc
1766 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1767 # define CEXT l
1768 # define NOTRUNC 1
1769 # else
1770 # define CEXT
1771 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1772 # endif
1773 #elif defined(L_mulxc3) || defined(L_divxc3)
1774 # define MTYPE XFtype
1775 # define CTYPE XCtype
1776 # define MODE xc
1777 # define CEXT l
1778 # define NOTRUNC 1
1779 #elif defined(L_multc3) || defined(L_divtc3)
1780 # define MTYPE TFtype
1781 # define CTYPE TCtype
1782 # define MODE tc
1783 # define CEXT l
1784 # define NOTRUNC 1
1785 #else
1786 # error
1787 #endif
1788
1789 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1790 #define _CONCAT3(A,B,C) A##B##C
1791
1792 #define CONCAT2(A,B) _CONCAT2(A,B)
1793 #define _CONCAT2(A,B) A##B
1794
1795 /* All of these would be present in a full C99 implementation of <math.h>
1796 and <complex.h>. Our problem is that only a few systems have such full
1797 implementations. Further, libgcc_s.so isn't currently linked against
1798 libm.so, and even for systems that do provide full C99, the extra overhead
1799 of all programs using libgcc having to link against libm. So avoid it. */
1800
1801 #define isnan(x) __builtin_expect ((x) != (x), 0)
1802 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1803 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1804
1805 #define INFINITY CONCAT2(__builtin_inf, CEXT) ()
1806 #define I 1i
1807
1808 /* Helpers to make the following code slightly less gross. */
1809 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1810 #define FABS CONCAT2(__builtin_fabs, CEXT)
1811
1812 /* Verify that MTYPE matches up with CEXT. */
1813 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1814
1815 /* Ensure that we've lost any extra precision. */
1816 #if NOTRUNC
1817 # define TRUNC(x)
1818 #else
1819 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1820 #endif
1821
1822 #if defined(L_mulsc3) || defined(L_muldc3) \
1823 || defined(L_mulxc3) || defined(L_multc3)
1824
1825 CTYPE
1826 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1827 {
1828 MTYPE ac, bd, ad, bc, x, y;
1829
1830 ac = a * c;
1831 bd = b * d;
1832 ad = a * d;
1833 bc = b * c;
1834
1835 TRUNC (ac);
1836 TRUNC (bd);
1837 TRUNC (ad);
1838 TRUNC (bc);
1839
1840 x = ac - bd;
1841 y = ad + bc;
1842
1843 if (isnan (x) && isnan (y))
1844 {
1845 /* Recover infinities that computed as NaN + iNaN. */
1846 _Bool recalc = 0;
1847 if (isinf (a) || isinf (b))
1848 {
1849 /* z is infinite. "Box" the infinity and change NaNs in
1850 the other factor to 0. */
1851 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1852 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1853 if (isnan (c)) c = COPYSIGN (0, c);
1854 if (isnan (d)) d = COPYSIGN (0, d);
1855 recalc = 1;
1856 }
1857 if (isinf (c) || isinf (d))
1858 {
1859 /* w is infinite. "Box" the infinity and change NaNs in
1860 the other factor to 0. */
1861 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1862 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1863 if (isnan (a)) a = COPYSIGN (0, a);
1864 if (isnan (b)) b = COPYSIGN (0, b);
1865 recalc = 1;
1866 }
1867 if (!recalc
1868 && (isinf (ac) || isinf (bd)
1869 || isinf (ad) || isinf (bc)))
1870 {
1871 /* Recover infinities from overflow by changing NaNs to 0. */
1872 if (isnan (a)) a = COPYSIGN (0, a);
1873 if (isnan (b)) b = COPYSIGN (0, b);
1874 if (isnan (c)) c = COPYSIGN (0, c);
1875 if (isnan (d)) d = COPYSIGN (0, d);
1876 recalc = 1;
1877 }
1878 if (recalc)
1879 {
1880 x = INFINITY * (a * c - b * d);
1881 y = INFINITY * (a * d + b * c);
1882 }
1883 }
1884
1885 return x + I * y;
1886 }
1887 #endif /* complex multiply */
1888
1889 #if defined(L_divsc3) || defined(L_divdc3) \
1890 || defined(L_divxc3) || defined(L_divtc3)
1891
1892 CTYPE
1893 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1894 {
1895 MTYPE denom, ratio, x, y;
1896
1897 /* ??? We can get better behavior from logarithmic scaling instead of
1898 the division. But that would mean starting to link libgcc against
1899 libm. We could implement something akin to ldexp/frexp as gcc builtins
1900 fairly easily... */
1901 if (FABS (c) < FABS (d))
1902 {
1903 ratio = c / d;
1904 denom = (c * ratio) + d;
1905 x = ((a * ratio) + b) / denom;
1906 y = ((b * ratio) - a) / denom;
1907 }
1908 else
1909 {
1910 ratio = d / c;
1911 denom = (d * ratio) + c;
1912 x = ((b * ratio) + a) / denom;
1913 y = (b - (a * ratio)) / denom;
1914 }
1915
1916 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1917 are nonzero/zero, infinite/finite, and finite/infinite. */
1918 if (isnan (x) && isnan (y))
1919 {
1920 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1921 {
1922 x = COPYSIGN (INFINITY, c) * a;
1923 y = COPYSIGN (INFINITY, c) * b;
1924 }
1925 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1926 {
1927 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1928 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1929 x = INFINITY * (a * c + b * d);
1930 y = INFINITY * (b * c - a * d);
1931 }
1932 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1933 {
1934 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1935 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1936 x = 0.0 * (a * c + b * d);
1937 y = 0.0 * (b * c - a * d);
1938 }
1939 }
1940
1941 return x + I * y;
1942 }
1943 #endif /* complex divide */
1944
1945 #endif /* all complex float routines */
1946 \f
1947 /* From here on down, the routines use normal data types. */
1948
1949 #define SItype bogus_type
1950 #define USItype bogus_type
1951 #define DItype bogus_type
1952 #define UDItype bogus_type
1953 #define SFtype bogus_type
1954 #define DFtype bogus_type
1955 #undef Wtype
1956 #undef UWtype
1957 #undef HWtype
1958 #undef UHWtype
1959 #undef DWtype
1960 #undef UDWtype
1961
1962 #undef char
1963 #undef short
1964 #undef int
1965 #undef long
1966 #undef unsigned
1967 #undef float
1968 #undef double
1969 \f
1970 #ifdef L__gcc_bcmp
1971
1972 /* Like bcmp except the sign is meaningful.
1973 Result is negative if S1 is less than S2,
1974 positive if S1 is greater, 0 if S1 and S2 are equal. */
1975
1976 int
1977 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1978 {
1979 while (size > 0)
1980 {
1981 const unsigned char c1 = *s1++, c2 = *s2++;
1982 if (c1 != c2)
1983 return c1 - c2;
1984 size--;
1985 }
1986 return 0;
1987 }
1988
1989 #endif
1990 \f
1991 /* __eprintf used to be used by GCC's private version of <assert.h>.
1992 We no longer provide that header, but this routine remains in libgcc.a
1993 for binary backward compatibility. Note that it is not included in
1994 the shared version of libgcc. */
1995 #ifdef L_eprintf
1996 #ifndef inhibit_libc
1997
1998 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1999 #include <stdio.h>
2000
2001 void
2002 __eprintf (const char *string, const char *expression,
2003 unsigned int line, const char *filename)
2004 {
2005 fprintf (stderr, string, expression, line, filename);
2006 fflush (stderr);
2007 abort ();
2008 }
2009
2010 #endif
2011 #endif
2012
2013 \f
2014 #ifdef L_clear_cache
2015 /* Clear part of an instruction cache. */
2016
2017 void
2018 __clear_cache (char *beg __attribute__((__unused__)),
2019 char *end __attribute__((__unused__)))
2020 {
2021 #ifdef CLEAR_INSN_CACHE
2022 CLEAR_INSN_CACHE (beg, end);
2023 #endif /* CLEAR_INSN_CACHE */
2024 }
2025
2026 #endif /* L_clear_cache */
2027 \f
2028 #ifdef L_enable_execute_stack
2029 /* Attempt to turn on execute permission for the stack. */
2030
2031 #ifdef ENABLE_EXECUTE_STACK
2032 ENABLE_EXECUTE_STACK
2033 #else
2034 void
2035 __enable_execute_stack (void *addr __attribute__((__unused__)))
2036 {}
2037 #endif /* ENABLE_EXECUTE_STACK */
2038
2039 #endif /* L_enable_execute_stack */
2040 \f
2041 #ifdef L_trampoline
2042
2043 /* Jump to a trampoline, loading the static chain address. */
2044
2045 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
2046
2047 int
2048 getpagesize (void)
2049 {
2050 #ifdef _ALPHA_
2051 return 8192;
2052 #else
2053 return 4096;
2054 #endif
2055 }
2056
2057 #ifdef __i386__
2058 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
2059 #endif
2060
2061 int
2062 mprotect (char *addr, int len, int prot)
2063 {
2064 int np, op;
2065
2066 if (prot == 7)
2067 np = 0x40;
2068 else if (prot == 5)
2069 np = 0x20;
2070 else if (prot == 4)
2071 np = 0x10;
2072 else if (prot == 3)
2073 np = 0x04;
2074 else if (prot == 1)
2075 np = 0x02;
2076 else if (prot == 0)
2077 np = 0x01;
2078
2079 if (VirtualProtect (addr, len, np, &op))
2080 return 0;
2081 else
2082 return -1;
2083 }
2084
2085 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
2086
2087 #ifdef TRANSFER_FROM_TRAMPOLINE
2088 TRANSFER_FROM_TRAMPOLINE
2089 #endif
2090 #endif /* L_trampoline */
2091 \f
2092 #ifndef __CYGWIN__
2093 #ifdef L__main
2094
2095 #include "gbl-ctors.h"
2096
2097 /* Some systems use __main in a way incompatible with its use in gcc, in these
2098 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2099 give the same symbol without quotes for an alternative entry point. You
2100 must define both, or neither. */
2101 #ifndef NAME__MAIN
2102 #define NAME__MAIN "__main"
2103 #define SYMBOL__MAIN __main
2104 #endif
2105
2106 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2107 #undef HAS_INIT_SECTION
2108 #define HAS_INIT_SECTION
2109 #endif
2110
2111 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2112
2113 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2114 code to run constructors. In that case, we need to handle EH here, too. */
2115
2116 #ifdef EH_FRAME_SECTION_NAME
2117 #include "unwind-dw2-fde.h"
2118 extern unsigned char __EH_FRAME_BEGIN__[];
2119 #endif
2120
2121 /* Run all the global destructors on exit from the program. */
2122
2123 void
2124 __do_global_dtors (void)
2125 {
2126 #ifdef DO_GLOBAL_DTORS_BODY
2127 DO_GLOBAL_DTORS_BODY;
2128 #else
2129 static func_ptr *p = __DTOR_LIST__ + 1;
2130 while (*p)
2131 {
2132 p++;
2133 (*(p-1)) ();
2134 }
2135 #endif
2136 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2137 {
2138 static int completed = 0;
2139 if (! completed)
2140 {
2141 completed = 1;
2142 __deregister_frame_info (__EH_FRAME_BEGIN__);
2143 }
2144 }
2145 #endif
2146 }
2147 #endif
2148
2149 #ifndef HAS_INIT_SECTION
2150 /* Run all the global constructors on entry to the program. */
2151
2152 void
2153 __do_global_ctors (void)
2154 {
2155 #ifdef EH_FRAME_SECTION_NAME
2156 {
2157 static struct object object;
2158 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2159 }
2160 #endif
2161 DO_GLOBAL_CTORS_BODY;
2162 atexit (__do_global_dtors);
2163 }
2164 #endif /* no HAS_INIT_SECTION */
2165
2166 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2167 /* Subroutine called automatically by `main'.
2168 Compiling a global function named `main'
2169 produces an automatic call to this function at the beginning.
2170
2171 For many systems, this routine calls __do_global_ctors.
2172 For systems which support a .init section we use the .init section
2173 to run __do_global_ctors, so we need not do anything here. */
2174
2175 extern void SYMBOL__MAIN (void);
2176 void
2177 SYMBOL__MAIN (void)
2178 {
2179 /* Support recursive calls to `main': run initializers just once. */
2180 static int initialized;
2181 if (! initialized)
2182 {
2183 initialized = 1;
2184 __do_global_ctors ();
2185 }
2186 }
2187 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2188
2189 #endif /* L__main */
2190 #endif /* __CYGWIN__ */
2191 \f
2192 #ifdef L_ctors
2193
2194 #include "gbl-ctors.h"
2195
2196 /* Provide default definitions for the lists of constructors and
2197 destructors, so that we don't get linker errors. These symbols are
2198 intentionally bss symbols, so that gld and/or collect will provide
2199 the right values. */
2200
2201 /* We declare the lists here with two elements each,
2202 so that they are valid empty lists if no other definition is loaded.
2203
2204 If we are using the old "set" extensions to have the gnu linker
2205 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2206 must be in the bss/common section.
2207
2208 Long term no port should use those extensions. But many still do. */
2209 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2210 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2211 func_ptr __CTOR_LIST__[2] = {0, 0};
2212 func_ptr __DTOR_LIST__[2] = {0, 0};
2213 #else
2214 func_ptr __CTOR_LIST__[2];
2215 func_ptr __DTOR_LIST__[2];
2216 #endif
2217 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2218 #endif /* L_ctors */
2219 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */