* config/alpha/x-vms (version): Change "." to "_".
[gcc.git] / gcc / libgcc2.c
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
21
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 02111-1307, USA. */
31
32 /* It is incorrect to include config.h here, because this file is being
33 compiled for the target, and hence definitions concerning only the host
34 do not apply. */
35
36 #include "tconfig.h"
37 #include "tsystem.h"
38
39 #include "machmode.h"
40
41 /* Don't use `fancy_abort' here even if config.h says to use it. */
42 #ifdef abort
43 #undef abort
44 #endif
45
46 #include "libgcc2.h"
47 \f
48 #if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3)
49 #if defined (L_divdi3) || defined (L_moddi3)
50 static inline
51 #endif
52 DWtype
53 __negdi2 (DWtype u)
54 {
55 DWunion w;
56 DWunion uu;
57
58 uu.ll = u;
59
60 w.s.low = -uu.s.low;
61 w.s.high = -uu.s.high - ((UWtype) w.s.low > 0);
62
63 return w.ll;
64 }
65 #endif
66
67 #ifdef L_addvsi3
68 Wtype
69 __addvsi3 (Wtype a, Wtype b)
70 {
71 Wtype w;
72
73 w = a + b;
74
75 if (b >= 0 ? w < a : w > a)
76 abort ();
77
78 return w;
79 }
80 #endif
81 \f
82 #ifdef L_addvdi3
83 DWtype
84 __addvdi3 (DWtype a, DWtype b)
85 {
86 DWtype w;
87
88 w = a + b;
89
90 if (b >= 0 ? w < a : w > a)
91 abort ();
92
93 return w;
94 }
95 #endif
96 \f
97 #ifdef L_subvsi3
98 Wtype
99 __subvsi3 (Wtype a, Wtype b)
100 {
101 #ifdef L_addvsi3
102 return __addvsi3 (a, (-b));
103 #else
104 DWtype w;
105
106 w = a - b;
107
108 if (b >= 0 ? w > a : w < a)
109 abort ();
110
111 return w;
112 #endif
113 }
114 #endif
115 \f
116 #ifdef L_subvdi3
117 DWtype
118 __subvdi3 (DWtype a, DWtype b)
119 {
120 #ifdef L_addvdi3
121 return (a, (-b));
122 #else
123 DWtype w;
124
125 w = a - b;
126
127 if (b >= 0 ? w > a : w < a)
128 abort ();
129
130 return w;
131 #endif
132 }
133 #endif
134 \f
135 #ifdef L_mulvsi3
136 Wtype
137 __mulvsi3 (Wtype a, Wtype b)
138 {
139 DWtype w;
140
141 w = a * b;
142
143 if (((a >= 0) == (b >= 0)) ? w < 0 : w > 0)
144 abort ();
145
146 return w;
147 }
148 #endif
149 \f
150 #ifdef L_negvsi2
151 Wtype
152 __negvsi2 (Wtype a)
153 {
154 Wtype w;
155
156 w = -a;
157
158 if (a >= 0 ? w > 0 : w < 0)
159 abort ();
160
161 return w;
162 }
163 #endif
164 \f
165 #ifdef L_negvdi2
166 DWtype
167 __negvdi2 (DWtype a)
168 {
169 DWtype w;
170
171 w = -a;
172
173 if (a >= 0 ? w > 0 : w < 0)
174 abort ();
175
176 return w;
177 }
178 #endif
179 \f
180 #ifdef L_absvsi2
181 Wtype
182 __absvsi2 (Wtype a)
183 {
184 Wtype w = a;
185
186 if (a < 0)
187 #ifdef L_negvsi2
188 w = __negvsi2 (a);
189 #else
190 w = -a;
191
192 if (w < 0)
193 abort ();
194 #endif
195
196 return w;
197 }
198 #endif
199 \f
200 #ifdef L_absvdi2
201 DWtype
202 __absvdi2 (DWtype a)
203 {
204 DWtype w = a;
205
206 if (a < 0)
207 #ifdef L_negvsi2
208 w = __negvsi2 (a);
209 #else
210 w = -a;
211
212 if (w < 0)
213 abort ();
214 #endif
215
216 return w;
217 }
218 #endif
219 \f
220 #ifdef L_mulvdi3
221 DWtype
222 __mulvdi3 (DWtype u, DWtype v)
223 {
224 DWtype w;
225
226 w = u * v;
227
228 if (((u >= 0) == (v >= 0)) ? w < 0 : w > 0)
229 abort ();
230
231 return w;
232 }
233 #endif
234 \f
235
236 /* Unless shift functions are defined whith full ANSI prototypes,
237 parameter b will be promoted to int if word_type is smaller than an int. */
238 #ifdef L_lshrdi3
239 DWtype
240 __lshrdi3 (DWtype u, word_type b)
241 {
242 DWunion w;
243 word_type bm;
244 DWunion uu;
245
246 if (b == 0)
247 return u;
248
249 uu.ll = u;
250
251 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
252 if (bm <= 0)
253 {
254 w.s.high = 0;
255 w.s.low = (UWtype) uu.s.high >> -bm;
256 }
257 else
258 {
259 UWtype carries = (UWtype) uu.s.high << bm;
260
261 w.s.high = (UWtype) uu.s.high >> b;
262 w.s.low = ((UWtype) uu.s.low >> b) | carries;
263 }
264
265 return w.ll;
266 }
267 #endif
268
269 #ifdef L_ashldi3
270 DWtype
271 __ashldi3 (DWtype u, word_type b)
272 {
273 DWunion w;
274 word_type bm;
275 DWunion uu;
276
277 if (b == 0)
278 return u;
279
280 uu.ll = u;
281
282 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
283 if (bm <= 0)
284 {
285 w.s.low = 0;
286 w.s.high = (UWtype) uu.s.low << -bm;
287 }
288 else
289 {
290 UWtype carries = (UWtype) uu.s.low >> bm;
291
292 w.s.low = (UWtype) uu.s.low << b;
293 w.s.high = ((UWtype) uu.s.high << b) | carries;
294 }
295
296 return w.ll;
297 }
298 #endif
299
300 #ifdef L_ashrdi3
301 DWtype
302 __ashrdi3 (DWtype u, word_type b)
303 {
304 DWunion w;
305 word_type bm;
306 DWunion uu;
307
308 if (b == 0)
309 return u;
310
311 uu.ll = u;
312
313 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
314 if (bm <= 0)
315 {
316 /* w.s.high = 1..1 or 0..0 */
317 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
318 w.s.low = uu.s.high >> -bm;
319 }
320 else
321 {
322 UWtype carries = (UWtype) uu.s.high << bm;
323
324 w.s.high = uu.s.high >> b;
325 w.s.low = ((UWtype) uu.s.low >> b) | carries;
326 }
327
328 return w.ll;
329 }
330 #endif
331 \f
332 #ifdef L_ffsdi2
333 DWtype
334 __ffsdi2 (DWtype u)
335 {
336 DWunion uu;
337 UWtype word, count, add;
338
339 uu.ll = u;
340 if (uu.s.low != 0)
341 word = uu.s.low, add = 0;
342 else if (uu.s.high != 0)
343 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
344 else
345 return 0;
346
347 count_trailing_zeros (count, word);
348 return count + add + 1;
349 }
350 #endif
351 \f
352 #ifdef L_muldi3
353 DWtype
354 __muldi3 (DWtype u, DWtype v)
355 {
356 DWunion w;
357 DWunion uu, vv;
358
359 uu.ll = u,
360 vv.ll = v;
361
362 w.ll = __umulsidi3 (uu.s.low, vv.s.low);
363 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
364 + (UWtype) uu.s.high * (UWtype) vv.s.low);
365
366 return w.ll;
367 }
368 #endif
369 \f
370 #ifdef L_udiv_w_sdiv
371 #if defined (sdiv_qrnnd)
372 UWtype
373 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
374 {
375 UWtype q, r;
376 UWtype c0, c1, b1;
377
378 if ((Wtype) d >= 0)
379 {
380 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
381 {
382 /* dividend, divisor, and quotient are nonnegative */
383 sdiv_qrnnd (q, r, a1, a0, d);
384 }
385 else
386 {
387 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
388 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
389 /* Divide (c1*2^32 + c0) by d */
390 sdiv_qrnnd (q, r, c1, c0, d);
391 /* Add 2^31 to quotient */
392 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
393 }
394 }
395 else
396 {
397 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
398 c1 = a1 >> 1; /* A/2 */
399 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
400
401 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
402 {
403 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
404
405 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
406 if ((d & 1) != 0)
407 {
408 if (r >= q)
409 r = r - q;
410 else if (q - r <= d)
411 {
412 r = r - q + d;
413 q--;
414 }
415 else
416 {
417 r = r - q + 2*d;
418 q -= 2;
419 }
420 }
421 }
422 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
423 {
424 c1 = (b1 - 1) - c1;
425 c0 = ~c0; /* logical NOT */
426
427 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
428
429 q = ~q; /* (A/2)/b1 */
430 r = (b1 - 1) - r;
431
432 r = 2*r + (a0 & 1); /* A/(2*b1) */
433
434 if ((d & 1) != 0)
435 {
436 if (r >= q)
437 r = r - q;
438 else if (q - r <= d)
439 {
440 r = r - q + d;
441 q--;
442 }
443 else
444 {
445 r = r - q + 2*d;
446 q -= 2;
447 }
448 }
449 }
450 else /* Implies c1 = b1 */
451 { /* Hence a1 = d - 1 = 2*b1 - 1 */
452 if (a0 >= -d)
453 {
454 q = -1;
455 r = a0 + d;
456 }
457 else
458 {
459 q = -2;
460 r = a0 + 2*d;
461 }
462 }
463 }
464
465 *rp = r;
466 return q;
467 }
468 #else
469 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
470 UWtype
471 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
472 UWtype a1 __attribute__ ((__unused__)),
473 UWtype a0 __attribute__ ((__unused__)),
474 UWtype d __attribute__ ((__unused__)))
475 {
476 return 0;
477 }
478 #endif
479 #endif
480 \f
481 #if (defined (L_udivdi3) || defined (L_divdi3) || \
482 defined (L_umoddi3) || defined (L_moddi3))
483 #define L_udivmoddi4
484 #endif
485
486 #ifdef L_clz
487 const UQItype __clz_tab[] =
488 {
489 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
490 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
491 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
492 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
493 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
494 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
495 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
496 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
497 };
498 #endif
499
500 #ifdef L_udivmoddi4
501
502 #if (defined (L_udivdi3) || defined (L_divdi3) || \
503 defined (L_umoddi3) || defined (L_moddi3))
504 static inline
505 #endif
506 UDWtype
507 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
508 {
509 DWunion ww;
510 DWunion nn, dd;
511 DWunion rr;
512 UWtype d0, d1, n0, n1, n2;
513 UWtype q0, q1;
514 UWtype b, bm;
515
516 nn.ll = n;
517 dd.ll = d;
518
519 d0 = dd.s.low;
520 d1 = dd.s.high;
521 n0 = nn.s.low;
522 n1 = nn.s.high;
523
524 #if !UDIV_NEEDS_NORMALIZATION
525 if (d1 == 0)
526 {
527 if (d0 > n1)
528 {
529 /* 0q = nn / 0D */
530
531 udiv_qrnnd (q0, n0, n1, n0, d0);
532 q1 = 0;
533
534 /* Remainder in n0. */
535 }
536 else
537 {
538 /* qq = NN / 0d */
539
540 if (d0 == 0)
541 d0 = 1 / d0; /* Divide intentionally by zero. */
542
543 udiv_qrnnd (q1, n1, 0, n1, d0);
544 udiv_qrnnd (q0, n0, n1, n0, d0);
545
546 /* Remainder in n0. */
547 }
548
549 if (rp != 0)
550 {
551 rr.s.low = n0;
552 rr.s.high = 0;
553 *rp = rr.ll;
554 }
555 }
556
557 #else /* UDIV_NEEDS_NORMALIZATION */
558
559 if (d1 == 0)
560 {
561 if (d0 > n1)
562 {
563 /* 0q = nn / 0D */
564
565 count_leading_zeros (bm, d0);
566
567 if (bm != 0)
568 {
569 /* Normalize, i.e. make the most significant bit of the
570 denominator set. */
571
572 d0 = d0 << bm;
573 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
574 n0 = n0 << bm;
575 }
576
577 udiv_qrnnd (q0, n0, n1, n0, d0);
578 q1 = 0;
579
580 /* Remainder in n0 >> bm. */
581 }
582 else
583 {
584 /* qq = NN / 0d */
585
586 if (d0 == 0)
587 d0 = 1 / d0; /* Divide intentionally by zero. */
588
589 count_leading_zeros (bm, d0);
590
591 if (bm == 0)
592 {
593 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
594 conclude (the most significant bit of n1 is set) /\ (the
595 leading quotient digit q1 = 1).
596
597 This special case is necessary, not an optimization.
598 (Shifts counts of W_TYPE_SIZE are undefined.) */
599
600 n1 -= d0;
601 q1 = 1;
602 }
603 else
604 {
605 /* Normalize. */
606
607 b = W_TYPE_SIZE - bm;
608
609 d0 = d0 << bm;
610 n2 = n1 >> b;
611 n1 = (n1 << bm) | (n0 >> b);
612 n0 = n0 << bm;
613
614 udiv_qrnnd (q1, n1, n2, n1, d0);
615 }
616
617 /* n1 != d0... */
618
619 udiv_qrnnd (q0, n0, n1, n0, d0);
620
621 /* Remainder in n0 >> bm. */
622 }
623
624 if (rp != 0)
625 {
626 rr.s.low = n0 >> bm;
627 rr.s.high = 0;
628 *rp = rr.ll;
629 }
630 }
631 #endif /* UDIV_NEEDS_NORMALIZATION */
632
633 else
634 {
635 if (d1 > n1)
636 {
637 /* 00 = nn / DD */
638
639 q0 = 0;
640 q1 = 0;
641
642 /* Remainder in n1n0. */
643 if (rp != 0)
644 {
645 rr.s.low = n0;
646 rr.s.high = n1;
647 *rp = rr.ll;
648 }
649 }
650 else
651 {
652 /* 0q = NN / dd */
653
654 count_leading_zeros (bm, d1);
655 if (bm == 0)
656 {
657 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
658 conclude (the most significant bit of n1 is set) /\ (the
659 quotient digit q0 = 0 or 1).
660
661 This special case is necessary, not an optimization. */
662
663 /* The condition on the next line takes advantage of that
664 n1 >= d1 (true due to program flow). */
665 if (n1 > d1 || n0 >= d0)
666 {
667 q0 = 1;
668 sub_ddmmss (n1, n0, n1, n0, d1, d0);
669 }
670 else
671 q0 = 0;
672
673 q1 = 0;
674
675 if (rp != 0)
676 {
677 rr.s.low = n0;
678 rr.s.high = n1;
679 *rp = rr.ll;
680 }
681 }
682 else
683 {
684 UWtype m1, m0;
685 /* Normalize. */
686
687 b = W_TYPE_SIZE - bm;
688
689 d1 = (d1 << bm) | (d0 >> b);
690 d0 = d0 << bm;
691 n2 = n1 >> b;
692 n1 = (n1 << bm) | (n0 >> b);
693 n0 = n0 << bm;
694
695 udiv_qrnnd (q0, n1, n2, n1, d1);
696 umul_ppmm (m1, m0, q0, d0);
697
698 if (m1 > n1 || (m1 == n1 && m0 > n0))
699 {
700 q0--;
701 sub_ddmmss (m1, m0, m1, m0, d1, d0);
702 }
703
704 q1 = 0;
705
706 /* Remainder in (n1n0 - m1m0) >> bm. */
707 if (rp != 0)
708 {
709 sub_ddmmss (n1, n0, n1, n0, m1, m0);
710 rr.s.low = (n1 << b) | (n0 >> bm);
711 rr.s.high = n1 >> bm;
712 *rp = rr.ll;
713 }
714 }
715 }
716 }
717
718 ww.s.low = q0;
719 ww.s.high = q1;
720 return ww.ll;
721 }
722 #endif
723
724 #ifdef L_divdi3
725 DWtype
726 __divdi3 (DWtype u, DWtype v)
727 {
728 word_type c = 0;
729 DWunion uu, vv;
730 DWtype w;
731
732 uu.ll = u;
733 vv.ll = v;
734
735 if (uu.s.high < 0)
736 c = ~c,
737 uu.ll = __negdi2 (uu.ll);
738 if (vv.s.high < 0)
739 c = ~c,
740 vv.ll = __negdi2 (vv.ll);
741
742 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
743 if (c)
744 w = __negdi2 (w);
745
746 return w;
747 }
748 #endif
749
750 #ifdef L_moddi3
751 DWtype
752 __moddi3 (DWtype u, DWtype v)
753 {
754 word_type c = 0;
755 DWunion uu, vv;
756 DWtype w;
757
758 uu.ll = u;
759 vv.ll = v;
760
761 if (uu.s.high < 0)
762 c = ~c,
763 uu.ll = __negdi2 (uu.ll);
764 if (vv.s.high < 0)
765 vv.ll = __negdi2 (vv.ll);
766
767 (void) __udivmoddi4 (uu.ll, vv.ll, &w);
768 if (c)
769 w = __negdi2 (w);
770
771 return w;
772 }
773 #endif
774
775 #ifdef L_umoddi3
776 UDWtype
777 __umoddi3 (UDWtype u, UDWtype v)
778 {
779 UDWtype w;
780
781 (void) __udivmoddi4 (u, v, &w);
782
783 return w;
784 }
785 #endif
786
787 #ifdef L_udivdi3
788 UDWtype
789 __udivdi3 (UDWtype n, UDWtype d)
790 {
791 return __udivmoddi4 (n, d, (UDWtype *) 0);
792 }
793 #endif
794 \f
795 #ifdef L_cmpdi2
796 word_type
797 __cmpdi2 (DWtype a, DWtype b)
798 {
799 DWunion au, bu;
800
801 au.ll = a, bu.ll = b;
802
803 if (au.s.high < bu.s.high)
804 return 0;
805 else if (au.s.high > bu.s.high)
806 return 2;
807 if ((UWtype) au.s.low < (UWtype) bu.s.low)
808 return 0;
809 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
810 return 2;
811 return 1;
812 }
813 #endif
814
815 #ifdef L_ucmpdi2
816 word_type
817 __ucmpdi2 (DWtype a, DWtype b)
818 {
819 DWunion au, bu;
820
821 au.ll = a, bu.ll = b;
822
823 if ((UWtype) au.s.high < (UWtype) bu.s.high)
824 return 0;
825 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
826 return 2;
827 if ((UWtype) au.s.low < (UWtype) bu.s.low)
828 return 0;
829 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
830 return 2;
831 return 1;
832 }
833 #endif
834 \f
835 #if defined(L_fixunstfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
836 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
837 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
838
839 DWtype
840 __fixunstfDI (TFtype a)
841 {
842 TFtype b;
843 UDWtype v;
844
845 if (a < 0)
846 return 0;
847
848 /* Compute high word of result, as a flonum. */
849 b = (a / HIGH_WORD_COEFF);
850 /* Convert that to fixed (but not to DWtype!),
851 and shift it into the high word. */
852 v = (UWtype) b;
853 v <<= WORD_SIZE;
854 /* Remove high part from the TFtype, leaving the low part as flonum. */
855 a -= (TFtype)v;
856 /* Convert that to fixed (but not to DWtype!) and add it in.
857 Sometimes A comes out negative. This is significant, since
858 A has more bits than a long int does. */
859 if (a < 0)
860 v -= (UWtype) (- a);
861 else
862 v += (UWtype) a;
863 return v;
864 }
865 #endif
866
867 #if defined(L_fixtfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
868 DWtype
869 __fixtfdi (TFtype a)
870 {
871 if (a < 0)
872 return - __fixunstfDI (-a);
873 return __fixunstfDI (a);
874 }
875 #endif
876
877 #if defined(L_fixunsxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
878 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
879 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
880
881 DWtype
882 __fixunsxfDI (XFtype a)
883 {
884 XFtype b;
885 UDWtype v;
886
887 if (a < 0)
888 return 0;
889
890 /* Compute high word of result, as a flonum. */
891 b = (a / HIGH_WORD_COEFF);
892 /* Convert that to fixed (but not to DWtype!),
893 and shift it into the high word. */
894 v = (UWtype) b;
895 v <<= WORD_SIZE;
896 /* Remove high part from the XFtype, leaving the low part as flonum. */
897 a -= (XFtype)v;
898 /* Convert that to fixed (but not to DWtype!) and add it in.
899 Sometimes A comes out negative. This is significant, since
900 A has more bits than a long int does. */
901 if (a < 0)
902 v -= (UWtype) (- a);
903 else
904 v += (UWtype) a;
905 return v;
906 }
907 #endif
908
909 #if defined(L_fixxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
910 DWtype
911 __fixxfdi (XFtype a)
912 {
913 if (a < 0)
914 return - __fixunsxfDI (-a);
915 return __fixunsxfDI (a);
916 }
917 #endif
918
919 #ifdef L_fixunsdfdi
920 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
921 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
922
923 DWtype
924 __fixunsdfDI (DFtype a)
925 {
926 DFtype b;
927 UDWtype v;
928
929 if (a < 0)
930 return 0;
931
932 /* Compute high word of result, as a flonum. */
933 b = (a / HIGH_WORD_COEFF);
934 /* Convert that to fixed (but not to DWtype!),
935 and shift it into the high word. */
936 v = (UWtype) b;
937 v <<= WORD_SIZE;
938 /* Remove high part from the DFtype, leaving the low part as flonum. */
939 a -= (DFtype)v;
940 /* Convert that to fixed (but not to DWtype!) and add it in.
941 Sometimes A comes out negative. This is significant, since
942 A has more bits than a long int does. */
943 if (a < 0)
944 v -= (UWtype) (- a);
945 else
946 v += (UWtype) a;
947 return v;
948 }
949 #endif
950
951 #ifdef L_fixdfdi
952 DWtype
953 __fixdfdi (DFtype a)
954 {
955 if (a < 0)
956 return - __fixunsdfDI (-a);
957 return __fixunsdfDI (a);
958 }
959 #endif
960
961 #ifdef L_fixunssfdi
962 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
963 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
964
965 DWtype
966 __fixunssfDI (SFtype original_a)
967 {
968 /* Convert the SFtype to a DFtype, because that is surely not going
969 to lose any bits. Some day someone else can write a faster version
970 that avoids converting to DFtype, and verify it really works right. */
971 DFtype a = original_a;
972 DFtype b;
973 UDWtype v;
974
975 if (a < 0)
976 return 0;
977
978 /* Compute high word of result, as a flonum. */
979 b = (a / HIGH_WORD_COEFF);
980 /* Convert that to fixed (but not to DWtype!),
981 and shift it into the high word. */
982 v = (UWtype) b;
983 v <<= WORD_SIZE;
984 /* Remove high part from the DFtype, leaving the low part as flonum. */
985 a -= (DFtype) v;
986 /* Convert that to fixed (but not to DWtype!) and add it in.
987 Sometimes A comes out negative. This is significant, since
988 A has more bits than a long int does. */
989 if (a < 0)
990 v -= (UWtype) (- a);
991 else
992 v += (UWtype) a;
993 return v;
994 }
995 #endif
996
997 #ifdef L_fixsfdi
998 DWtype
999 __fixsfdi (SFtype a)
1000 {
1001 if (a < 0)
1002 return - __fixunssfDI (-a);
1003 return __fixunssfDI (a);
1004 }
1005 #endif
1006
1007 #if defined(L_floatdixf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
1008 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1009 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1010 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1011
1012 XFtype
1013 __floatdixf (DWtype u)
1014 {
1015 XFtype d;
1016
1017 d = (Wtype) (u >> WORD_SIZE);
1018 d *= HIGH_HALFWORD_COEFF;
1019 d *= HIGH_HALFWORD_COEFF;
1020 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1021
1022 return d;
1023 }
1024 #endif
1025
1026 #if defined(L_floatditf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
1027 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1028 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1029 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1030
1031 TFtype
1032 __floatditf (DWtype u)
1033 {
1034 TFtype d;
1035
1036 d = (Wtype) (u >> WORD_SIZE);
1037 d *= HIGH_HALFWORD_COEFF;
1038 d *= HIGH_HALFWORD_COEFF;
1039 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1040
1041 return d;
1042 }
1043 #endif
1044
1045 #ifdef L_floatdidf
1046 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1047 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1048 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1049
1050 DFtype
1051 __floatdidf (DWtype u)
1052 {
1053 DFtype d;
1054
1055 d = (Wtype) (u >> WORD_SIZE);
1056 d *= HIGH_HALFWORD_COEFF;
1057 d *= HIGH_HALFWORD_COEFF;
1058 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1059
1060 return d;
1061 }
1062 #endif
1063
1064 #ifdef L_floatdisf
1065 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1066 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1067 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1068 #define DI_SIZE (sizeof (DWtype) * BITS_PER_UNIT)
1069
1070 /* Define codes for all the float formats that we know of. Note
1071 that this is copied from real.h. */
1072
1073 #define UNKNOWN_FLOAT_FORMAT 0
1074 #define IEEE_FLOAT_FORMAT 1
1075 #define VAX_FLOAT_FORMAT 2
1076 #define IBM_FLOAT_FORMAT 3
1077
1078 /* Default to IEEE float if not specified. Nearly all machines use it. */
1079 #ifndef HOST_FLOAT_FORMAT
1080 #define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT
1081 #endif
1082
1083 #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
1084 #define DF_SIZE 53
1085 #define SF_SIZE 24
1086 #endif
1087
1088 #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
1089 #define DF_SIZE 56
1090 #define SF_SIZE 24
1091 #endif
1092
1093 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
1094 #define DF_SIZE 56
1095 #define SF_SIZE 24
1096 #endif
1097
1098 SFtype
1099 __floatdisf (DWtype u)
1100 {
1101 /* Do the calculation in DFmode
1102 so that we don't lose any of the precision of the high word
1103 while multiplying it. */
1104 DFtype f;
1105
1106 /* Protect against double-rounding error.
1107 Represent any low-order bits, that might be truncated in DFmode,
1108 by a bit that won't be lost. The bit can go in anywhere below the
1109 rounding position of the SFmode. A fixed mask and bit position
1110 handles all usual configurations. It doesn't handle the case
1111 of 128-bit DImode, however. */
1112 if (DF_SIZE < DI_SIZE
1113 && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE))
1114 {
1115 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE))
1116 if (! (- ((DWtype) 1 << DF_SIZE) < u
1117 && u < ((DWtype) 1 << DF_SIZE)))
1118 {
1119 if ((UDWtype) u & (REP_BIT - 1))
1120 u |= REP_BIT;
1121 }
1122 }
1123 f = (Wtype) (u >> WORD_SIZE);
1124 f *= HIGH_HALFWORD_COEFF;
1125 f *= HIGH_HALFWORD_COEFF;
1126 f += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1127
1128 return (SFtype) f;
1129 }
1130 #endif
1131
1132 #if defined(L_fixunsxfsi) && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96
1133 /* Reenable the normal types, in case limits.h needs them. */
1134 #undef char
1135 #undef short
1136 #undef int
1137 #undef long
1138 #undef unsigned
1139 #undef float
1140 #undef double
1141 #undef MIN
1142 #undef MAX
1143 #include <limits.h>
1144
1145 UWtype
1146 __fixunsxfSI (XFtype a)
1147 {
1148 if (a >= - (DFtype) Wtype_MIN)
1149 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1150 return (Wtype) a;
1151 }
1152 #endif
1153
1154 #ifdef L_fixunsdfsi
1155 /* Reenable the normal types, in case limits.h needs them. */
1156 #undef char
1157 #undef short
1158 #undef int
1159 #undef long
1160 #undef unsigned
1161 #undef float
1162 #undef double
1163 #undef MIN
1164 #undef MAX
1165 #include <limits.h>
1166
1167 UWtype
1168 __fixunsdfSI (DFtype a)
1169 {
1170 if (a >= - (DFtype) Wtype_MIN)
1171 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1172 return (Wtype) a;
1173 }
1174 #endif
1175
1176 #ifdef L_fixunssfsi
1177 /* Reenable the normal types, in case limits.h needs them. */
1178 #undef char
1179 #undef short
1180 #undef int
1181 #undef long
1182 #undef unsigned
1183 #undef float
1184 #undef double
1185 #undef MIN
1186 #undef MAX
1187 #include <limits.h>
1188
1189 UWtype
1190 __fixunssfSI (SFtype a)
1191 {
1192 if (a >= - (SFtype) Wtype_MIN)
1193 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1194 return (Wtype) a;
1195 }
1196 #endif
1197 \f
1198 /* From here on down, the routines use normal data types. */
1199
1200 #define SItype bogus_type
1201 #define USItype bogus_type
1202 #define DItype bogus_type
1203 #define UDItype bogus_type
1204 #define SFtype bogus_type
1205 #define DFtype bogus_type
1206 #undef Wtype
1207 #undef UWtype
1208 #undef HWtype
1209 #undef UHWtype
1210 #undef DWtype
1211 #undef UDWtype
1212
1213 #undef char
1214 #undef short
1215 #undef int
1216 #undef long
1217 #undef unsigned
1218 #undef float
1219 #undef double
1220 \f
1221 #ifdef L__gcc_bcmp
1222
1223 /* Like bcmp except the sign is meaningful.
1224 Result is negative if S1 is less than S2,
1225 positive if S1 is greater, 0 if S1 and S2 are equal. */
1226
1227 int
1228 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1229 {
1230 while (size > 0)
1231 {
1232 unsigned char c1 = *s1++, c2 = *s2++;
1233 if (c1 != c2)
1234 return c1 - c2;
1235 size--;
1236 }
1237 return 0;
1238 }
1239
1240 #endif
1241 \f
1242 /* __eprintf used to be used by GCC's private version of <assert.h>.
1243 We no longer provide that header, but this routine remains in libgcc.a
1244 for binary backward compatibility. Note that it is not included in
1245 the shared version of libgcc. */
1246 #ifdef L_eprintf
1247 #ifndef inhibit_libc
1248
1249 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1250 #include <stdio.h>
1251
1252 void
1253 __eprintf (const char *string, const char *expression,
1254 unsigned int line, const char *filename)
1255 {
1256 fprintf (stderr, string, expression, line, filename);
1257 fflush (stderr);
1258 abort ();
1259 }
1260
1261 #endif
1262 #endif
1263
1264 #ifdef L_bb
1265
1266 #if LONG_TYPE_SIZE == GCOV_TYPE_SIZE
1267 typedef long gcov_type;
1268 #else
1269 typedef long long gcov_type;
1270 #endif
1271
1272
1273 /* Structure emitted by -a */
1274 struct bb
1275 {
1276 long zero_word;
1277 const char *filename;
1278 gcov_type *counts;
1279 long ncounts;
1280 struct bb *next;
1281 const unsigned long *addresses;
1282
1283 /* Older GCC's did not emit these fields. */
1284 long nwords;
1285 const char **functions;
1286 const long *line_nums;
1287 const char **filenames;
1288 char *flags;
1289 };
1290
1291 #ifdef BLOCK_PROFILER_CODE
1292 BLOCK_PROFILER_CODE
1293 #else
1294 #ifndef inhibit_libc
1295
1296 /* Simple minded basic block profiling output dumper for
1297 systems that don't provide tcov support. At present,
1298 it requires atexit and stdio. */
1299
1300 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1301 #include <stdio.h>
1302 char *ctime PARAMS ((const time_t *));
1303
1304 #include "gbl-ctors.h"
1305 #include "gcov-io.h"
1306 #include <string.h>
1307 #ifdef TARGET_HAS_F_SETLKW
1308 #include <fcntl.h>
1309 #include <errno.h>
1310 #endif
1311
1312 static struct bb *bb_head;
1313
1314 static int num_digits (long long value, int base) __attribute__ ((const));
1315
1316 /* Return the number of digits needed to print a value */
1317 /* __inline__ */ static int num_digits (long long value, int base)
1318 {
1319 int minus = (value < 0 && base != 16);
1320 unsigned long long v = (minus) ? -value : value;
1321 int ret = minus;
1322
1323 do
1324 {
1325 v /= base;
1326 ret++;
1327 }
1328 while (v);
1329
1330 return ret;
1331 }
1332
1333 void
1334 __bb_exit_func (void)
1335 {
1336 FILE *da_file, *file;
1337 long time_value;
1338 int i;
1339
1340 if (bb_head == 0)
1341 return;
1342
1343 i = strlen (bb_head->filename) - 3;
1344
1345 if (!strcmp (bb_head->filename+i, ".da"))
1346 {
1347 /* Must be -fprofile-arcs not -a.
1348 Dump data in a form that gcov expects. */
1349
1350 struct bb *ptr;
1351
1352 for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
1353 {
1354 int firstchar;
1355
1356 /* Make sure the output file exists -
1357 but don't clobber exiting data. */
1358 if ((da_file = fopen (ptr->filename, "a")) != 0)
1359 fclose (da_file);
1360
1361 /* Need to re-open in order to be able to write from the start. */
1362 da_file = fopen (ptr->filename, "r+b");
1363 /* Some old systems might not allow the 'b' mode modifier.
1364 Therefore, try to open without it. This can lead to a race
1365 condition so that when you delete and re-create the file, the
1366 file might be opened in text mode, but then, you shouldn't
1367 delete the file in the first place. */
1368 if (da_file == 0)
1369 da_file = fopen (ptr->filename, "r+");
1370 if (da_file == 0)
1371 {
1372 fprintf (stderr, "arc profiling: Can't open output file %s.\n",
1373 ptr->filename);
1374 continue;
1375 }
1376
1377 /* After a fork, another process might try to read and/or write
1378 the same file simultanously. So if we can, lock the file to
1379 avoid race conditions. */
1380 #if defined (TARGET_HAS_F_SETLKW)
1381 {
1382 struct flock s_flock;
1383
1384 s_flock.l_type = F_WRLCK;
1385 s_flock.l_whence = SEEK_SET;
1386 s_flock.l_start = 0;
1387 s_flock.l_len = 1;
1388 s_flock.l_pid = getpid ();
1389
1390 while (fcntl (fileno (da_file), F_SETLKW, &s_flock)
1391 && errno == EINTR);
1392 }
1393 #endif
1394
1395 /* If the file is not empty, and the number of counts in it is the
1396 same, then merge them in. */
1397 firstchar = fgetc (da_file);
1398 if (firstchar == EOF)
1399 {
1400 if (ferror (da_file))
1401 {
1402 fprintf (stderr, "arc profiling: Can't read output file ");
1403 perror (ptr->filename);
1404 }
1405 }
1406 else
1407 {
1408 long n_counts = 0;
1409
1410 if (ungetc (firstchar, da_file) == EOF)
1411 rewind (da_file);
1412 if (__read_long (&n_counts, da_file, 8) != 0)
1413 {
1414 fprintf (stderr, "arc profiling: Can't read output file %s.\n",
1415 ptr->filename);
1416 continue;
1417 }
1418
1419 if (n_counts == ptr->ncounts)
1420 {
1421 int i;
1422
1423 for (i = 0; i < n_counts; i++)
1424 {
1425 gcov_type v = 0;
1426
1427 if (__read_gcov_type (&v, da_file, 8) != 0)
1428 {
1429 fprintf (stderr, "arc profiling: Can't read output file %s.\n",
1430 ptr->filename);
1431 break;
1432 }
1433 ptr->counts[i] += v;
1434 }
1435 }
1436
1437 }
1438
1439 rewind (da_file);
1440
1441 /* ??? Should first write a header to the file. Preferably, a 4 byte
1442 magic number, 4 bytes containing the time the program was
1443 compiled, 4 bytes containing the last modification time of the
1444 source file, and 4 bytes indicating the compiler options used.
1445
1446 That way we can easily verify that the proper source/executable/
1447 data file combination is being used from gcov. */
1448
1449 if (__write_gcov_type (ptr->ncounts, da_file, 8) != 0)
1450 {
1451
1452 fprintf (stderr, "arc profiling: Error writing output file %s.\n",
1453 ptr->filename);
1454 }
1455 else
1456 {
1457 int j;
1458 gcov_type *count_ptr = ptr->counts;
1459 int ret = 0;
1460 for (j = ptr->ncounts; j > 0; j--)
1461 {
1462 if (__write_gcov_type (*count_ptr, da_file, 8) != 0)
1463 {
1464 ret=1;
1465 break;
1466 }
1467 count_ptr++;
1468 }
1469 if (ret)
1470 fprintf (stderr, "arc profiling: Error writing output file %s.\n",
1471 ptr->filename);
1472 }
1473
1474 if (fclose (da_file) == EOF)
1475 fprintf (stderr, "arc profiling: Error closing output file %s.\n",
1476 ptr->filename);
1477 }
1478
1479 return;
1480 }
1481
1482 /* Must be basic block profiling. Emit a human readable output file. */
1483
1484 file = fopen ("bb.out", "a");
1485
1486 if (!file)
1487 perror ("bb.out");
1488
1489 else
1490 {
1491 struct bb *ptr;
1492
1493 /* This is somewhat type incorrect, but it avoids worrying about
1494 exactly where time.h is included from. It should be ok unless
1495 a void * differs from other pointer formats, or if sizeof (long)
1496 is < sizeof (time_t). It would be nice if we could assume the
1497 use of rationale standards here. */
1498
1499 time ((void *) &time_value);
1500 fprintf (file, "Basic block profiling finished on %s\n",
1501 ctime ((void *) &time_value));
1502
1503 /* We check the length field explicitly in order to allow compatibility
1504 with older GCC's which did not provide it. */
1505
1506 for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
1507 {
1508 int i;
1509 int func_p = (ptr->nwords >= (long) sizeof (struct bb)
1510 && ptr->nwords <= 1000
1511 && ptr->functions);
1512 int line_p = (func_p && ptr->line_nums);
1513 int file_p = (func_p && ptr->filenames);
1514 int addr_p = (ptr->addresses != 0);
1515 long ncounts = ptr->ncounts;
1516 gcov_type cnt_max = 0;
1517 long line_max = 0;
1518 long addr_max = 0;
1519 int file_len = 0;
1520 int func_len = 0;
1521 int blk_len = num_digits (ncounts, 10);
1522 int cnt_len;
1523 int line_len;
1524 int addr_len;
1525
1526 fprintf (file, "File %s, %ld basic blocks \n\n",
1527 ptr->filename, ncounts);
1528
1529 /* Get max values for each field. */
1530 for (i = 0; i < ncounts; i++)
1531 {
1532 const char *p;
1533 int len;
1534
1535 if (cnt_max < ptr->counts[i])
1536 cnt_max = ptr->counts[i];
1537
1538 if (addr_p && (unsigned long) addr_max < ptr->addresses[i])
1539 addr_max = ptr->addresses[i];
1540
1541 if (line_p && line_max < ptr->line_nums[i])
1542 line_max = ptr->line_nums[i];
1543
1544 if (func_p)
1545 {
1546 p = (ptr->functions[i]) ? (ptr->functions[i]) : "<none>";
1547 len = strlen (p);
1548 if (func_len < len)
1549 func_len = len;
1550 }
1551
1552 if (file_p)
1553 {
1554 p = (ptr->filenames[i]) ? (ptr->filenames[i]) : "<none>";
1555 len = strlen (p);
1556 if (file_len < len)
1557 file_len = len;
1558 }
1559 }
1560
1561 addr_len = num_digits (addr_max, 16);
1562 cnt_len = num_digits (cnt_max, 10);
1563 line_len = num_digits (line_max, 10);
1564
1565 /* Now print out the basic block information. */
1566 for (i = 0; i < ncounts; i++)
1567 {
1568 #if LONG_TYPE_SIZE == GCOV_TYPE_SIZE
1569 fprintf (file,
1570 " Block #%*d: executed %*ld time(s)",
1571 blk_len, i+1,
1572 cnt_len, ptr->counts[i]);
1573 #else
1574 fprintf (file,
1575 " Block #%*d: executed %*lld time(s)",
1576 blk_len, i+1,
1577 cnt_len, ptr->counts[i]);
1578 #endif
1579
1580 if (addr_p)
1581 fprintf (file, " address= 0x%.*lx", addr_len,
1582 ptr->addresses[i]);
1583
1584 if (func_p)
1585 fprintf (file, " function= %-*s", func_len,
1586 (ptr->functions[i]) ? ptr->functions[i] : "<none>");
1587
1588 if (line_p)
1589 fprintf (file, " line= %*ld", line_len, ptr->line_nums[i]);
1590
1591 if (file_p)
1592 fprintf (file, " file= %s",
1593 (ptr->filenames[i]) ? ptr->filenames[i] : "<none>");
1594
1595 fprintf (file, "\n");
1596 }
1597
1598 fprintf (file, "\n");
1599 fflush (file);
1600 }
1601
1602 fprintf (file, "\n\n");
1603 fclose (file);
1604 }
1605 }
1606
1607 void
1608 __bb_init_func (struct bb *blocks)
1609 {
1610 /* User is supposed to check whether the first word is non-0,
1611 but just in case.... */
1612
1613 if (blocks->zero_word)
1614 return;
1615
1616 /* Initialize destructor. */
1617 if (!bb_head)
1618 atexit (__bb_exit_func);
1619
1620 /* Set up linked list. */
1621 blocks->zero_word = 1;
1622 blocks->next = bb_head;
1623 bb_head = blocks;
1624 }
1625
1626 /* Called before fork or exec - write out profile information gathered so
1627 far and reset it to zero. This avoids duplication or loss of the
1628 profile information gathered so far. */
1629 void
1630 __bb_fork_func (void)
1631 {
1632 struct bb *ptr;
1633
1634 __bb_exit_func ();
1635 for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
1636 {
1637 long i;
1638 for (i = ptr->ncounts - 1; i >= 0; i--)
1639 ptr->counts[i] = 0;
1640 }
1641 }
1642
1643 #endif /* not inhibit_libc */
1644 #endif /* not BLOCK_PROFILER_CODE */
1645 #endif /* L_bb */
1646 \f
1647 #ifdef L_clear_cache
1648 /* Clear part of an instruction cache. */
1649
1650 #define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH)
1651
1652 void
1653 __clear_cache (char *beg __attribute__((__unused__)),
1654 char *end __attribute__((__unused__)))
1655 {
1656 #ifdef CLEAR_INSN_CACHE
1657 CLEAR_INSN_CACHE (beg, end);
1658 #else
1659 #ifdef INSN_CACHE_SIZE
1660 static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH];
1661 static int initialized;
1662 int offset;
1663 void *start_addr
1664 void *end_addr;
1665 typedef (*function_ptr) (void);
1666
1667 #if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16
1668 /* It's cheaper to clear the whole cache.
1669 Put in a series of jump instructions so that calling the beginning
1670 of the cache will clear the whole thing. */
1671
1672 if (! initialized)
1673 {
1674 int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1675 & -INSN_CACHE_LINE_WIDTH);
1676 int end_ptr = ptr + INSN_CACHE_SIZE;
1677
1678 while (ptr < end_ptr)
1679 {
1680 *(INSTRUCTION_TYPE *)ptr
1681 = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH;
1682 ptr += INSN_CACHE_LINE_WIDTH;
1683 }
1684 *(INSTRUCTION_TYPE *) (ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION;
1685
1686 initialized = 1;
1687 }
1688
1689 /* Call the beginning of the sequence. */
1690 (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1691 & -INSN_CACHE_LINE_WIDTH))
1692 ());
1693
1694 #else /* Cache is large. */
1695
1696 if (! initialized)
1697 {
1698 int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1699 & -INSN_CACHE_LINE_WIDTH);
1700
1701 while (ptr < (int) array + sizeof array)
1702 {
1703 *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION;
1704 ptr += INSN_CACHE_LINE_WIDTH;
1705 }
1706
1707 initialized = 1;
1708 }
1709
1710 /* Find the location in array that occupies the same cache line as BEG. */
1711
1712 offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1);
1713 start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1)
1714 & -INSN_CACHE_PLANE_SIZE)
1715 + offset);
1716
1717 /* Compute the cache alignment of the place to stop clearing. */
1718 #if 0 /* This is not needed for gcc's purposes. */
1719 /* If the block to clear is bigger than a cache plane,
1720 we clear the entire cache, and OFFSET is already correct. */
1721 if (end < beg + INSN_CACHE_PLANE_SIZE)
1722 #endif
1723 offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1)
1724 & -INSN_CACHE_LINE_WIDTH)
1725 & (INSN_CACHE_PLANE_SIZE - 1));
1726
1727 #if INSN_CACHE_DEPTH > 1
1728 end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset;
1729 if (end_addr <= start_addr)
1730 end_addr += INSN_CACHE_PLANE_SIZE;
1731
1732 for (plane = 0; plane < INSN_CACHE_DEPTH; plane++)
1733 {
1734 int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE;
1735 int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE;
1736
1737 while (addr != stop)
1738 {
1739 /* Call the return instruction at ADDR. */
1740 ((function_ptr) addr) ();
1741
1742 addr += INSN_CACHE_LINE_WIDTH;
1743 }
1744 }
1745 #else /* just one plane */
1746 do
1747 {
1748 /* Call the return instruction at START_ADDR. */
1749 ((function_ptr) start_addr) ();
1750
1751 start_addr += INSN_CACHE_LINE_WIDTH;
1752 }
1753 while ((start_addr % INSN_CACHE_SIZE) != offset);
1754 #endif /* just one plane */
1755 #endif /* Cache is large */
1756 #endif /* Cache exists */
1757 #endif /* CLEAR_INSN_CACHE */
1758 }
1759
1760 #endif /* L_clear_cache */
1761 \f
1762 #ifdef L_trampoline
1763
1764 /* Jump to a trampoline, loading the static chain address. */
1765
1766 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
1767
1768 long
1769 getpagesize (void)
1770 {
1771 #ifdef _ALPHA_
1772 return 8192;
1773 #else
1774 return 4096;
1775 #endif
1776 }
1777
1778 #ifdef __i386__
1779 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
1780 #endif
1781
1782 int
1783 mprotect (char *addr, int len, int prot)
1784 {
1785 int np, op;
1786
1787 if (prot == 7)
1788 np = 0x40;
1789 else if (prot == 5)
1790 np = 0x20;
1791 else if (prot == 4)
1792 np = 0x10;
1793 else if (prot == 3)
1794 np = 0x04;
1795 else if (prot == 1)
1796 np = 0x02;
1797 else if (prot == 0)
1798 np = 0x01;
1799
1800 if (VirtualProtect (addr, len, np, &op))
1801 return 0;
1802 else
1803 return -1;
1804 }
1805
1806 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
1807
1808 #ifdef TRANSFER_FROM_TRAMPOLINE
1809 TRANSFER_FROM_TRAMPOLINE
1810 #endif
1811
1812 #if defined (NeXT) && defined (__MACH__)
1813
1814 /* Make stack executable so we can call trampolines on stack.
1815 This is called from INITIALIZE_TRAMPOLINE in next.h. */
1816 #ifdef NeXTStep21
1817 #include <mach.h>
1818 #else
1819 #include <mach/mach.h>
1820 #endif
1821
1822 void
1823 __enable_execute_stack (char *addr)
1824 {
1825 kern_return_t r;
1826 char *eaddr = addr + TRAMPOLINE_SIZE;
1827 vm_address_t a = (vm_address_t) addr;
1828
1829 /* turn on execute access on stack */
1830 r = vm_protect (task_self (), a, TRAMPOLINE_SIZE, FALSE, VM_PROT_ALL);
1831 if (r != KERN_SUCCESS)
1832 {
1833 mach_error("vm_protect VM_PROT_ALL", r);
1834 exit(1);
1835 }
1836
1837 /* We inline the i-cache invalidation for speed */
1838
1839 #ifdef CLEAR_INSN_CACHE
1840 CLEAR_INSN_CACHE (addr, eaddr);
1841 #else
1842 __clear_cache ((int) addr, (int) eaddr);
1843 #endif
1844 }
1845
1846 #endif /* defined (NeXT) && defined (__MACH__) */
1847
1848 #ifdef __convex__
1849
1850 /* Make stack executable so we can call trampolines on stack.
1851 This is called from INITIALIZE_TRAMPOLINE in convex.h. */
1852
1853 #include <sys/mman.h>
1854 #include <sys/vmparam.h>
1855 #include <machine/machparam.h>
1856
1857 void
1858 __enable_execute_stack (void)
1859 {
1860 int fp;
1861 static unsigned lowest = USRSTACK;
1862 unsigned current = (unsigned) &fp & -NBPG;
1863
1864 if (lowest > current)
1865 {
1866 unsigned len = lowest - current;
1867 mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE);
1868 lowest = current;
1869 }
1870
1871 /* Clear instruction cache in case an old trampoline is in it. */
1872 asm ("pich");
1873 }
1874 #endif /* __convex__ */
1875
1876 #ifdef __sysV88__
1877
1878 /* Modified from the convex -code above. */
1879
1880 #include <sys/param.h>
1881 #include <errno.h>
1882 #include <sys/m88kbcs.h>
1883
1884 void
1885 __enable_execute_stack (void)
1886 {
1887 int save_errno;
1888 static unsigned long lowest = USRSTACK;
1889 unsigned long current = (unsigned long) &save_errno & -NBPC;
1890
1891 /* Ignore errno being set. memctl sets errno to EINVAL whenever the
1892 address is seen as 'negative'. That is the case with the stack. */
1893
1894 save_errno=errno;
1895 if (lowest > current)
1896 {
1897 unsigned len=lowest-current;
1898 memctl(current,len,MCT_TEXT);
1899 lowest = current;
1900 }
1901 else
1902 memctl(current,NBPC,MCT_TEXT);
1903 errno=save_errno;
1904 }
1905
1906 #endif /* __sysV88__ */
1907
1908 #ifdef __sysV68__
1909
1910 #include <sys/signal.h>
1911 #include <errno.h>
1912
1913 /* Motorola forgot to put memctl.o in the libp version of libc881.a,
1914 so define it here, because we need it in __clear_insn_cache below */
1915 /* On older versions of this OS, no memctl or MCT_TEXT are defined;
1916 hence we enable this stuff only if MCT_TEXT is #define'd. */
1917
1918 #ifdef MCT_TEXT
1919 asm("\n\
1920 global memctl\n\
1921 memctl:\n\
1922 movq &75,%d0\n\
1923 trap &0\n\
1924 bcc.b noerror\n\
1925 jmp cerror%\n\
1926 noerror:\n\
1927 movq &0,%d0\n\
1928 rts");
1929 #endif
1930
1931 /* Clear instruction cache so we can call trampolines on stack.
1932 This is called from FINALIZE_TRAMPOLINE in mot3300.h. */
1933
1934 void
1935 __clear_insn_cache (void)
1936 {
1937 #ifdef MCT_TEXT
1938 int save_errno;
1939
1940 /* Preserve errno, because users would be surprised to have
1941 errno changing without explicitly calling any system-call. */
1942 save_errno = errno;
1943
1944 /* Keep it simple : memctl (MCT_TEXT) always fully clears the insn cache.
1945 No need to use an address derived from _start or %sp, as 0 works also. */
1946 memctl(0, 4096, MCT_TEXT);
1947 errno = save_errno;
1948 #endif
1949 }
1950
1951 #endif /* __sysV68__ */
1952
1953 #ifdef __pyr__
1954
1955 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1956 #include <stdio.h>
1957 #include <sys/mman.h>
1958 #include <sys/types.h>
1959 #include <sys/param.h>
1960 #include <sys/vmmac.h>
1961
1962 /* Modified from the convex -code above.
1963 mremap promises to clear the i-cache. */
1964
1965 void
1966 __enable_execute_stack (void)
1967 {
1968 int fp;
1969 if (mprotect (((unsigned int)&fp/PAGSIZ)*PAGSIZ, PAGSIZ,
1970 PROT_READ|PROT_WRITE|PROT_EXEC))
1971 {
1972 perror ("mprotect in __enable_execute_stack");
1973 fflush (stderr);
1974 abort ();
1975 }
1976 }
1977 #endif /* __pyr__ */
1978
1979 #if defined (sony_news) && defined (SYSTYPE_BSD)
1980
1981 #include <stdio.h>
1982 #include <sys/types.h>
1983 #include <sys/param.h>
1984 #include <syscall.h>
1985 #include <machine/sysnews.h>
1986
1987 /* cacheflush function for NEWS-OS 4.2.
1988 This function is called from trampoline-initialize code
1989 defined in config/mips/mips.h. */
1990
1991 void
1992 cacheflush (char *beg, int size, int flag)
1993 {
1994 if (syscall (SYS_sysnews, NEWS_CACHEFLUSH, beg, size, FLUSH_BCACHE))
1995 {
1996 perror ("cache_flush");
1997 fflush (stderr);
1998 abort ();
1999 }
2000 }
2001
2002 #endif /* sony_news */
2003 #endif /* L_trampoline */
2004 \f
2005 #ifndef __CYGWIN__
2006 #ifdef L__main
2007
2008 #include "gbl-ctors.h"
2009 /* Some systems use __main in a way incompatible with its use in gcc, in these
2010 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2011 give the same symbol without quotes for an alternative entry point. You
2012 must define both, or neither. */
2013 #ifndef NAME__MAIN
2014 #define NAME__MAIN "__main"
2015 #define SYMBOL__MAIN __main
2016 #endif
2017
2018 #ifdef INIT_SECTION_ASM_OP
2019 #undef HAS_INIT_SECTION
2020 #define HAS_INIT_SECTION
2021 #endif
2022
2023 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2024
2025 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2026 code to run constructors. In that case, we need to handle EH here, too. */
2027
2028 #ifdef EH_FRAME_SECTION_NAME
2029 #include "unwind-dw2-fde.h"
2030 extern unsigned char __EH_FRAME_BEGIN__[];
2031 #endif
2032
2033 /* Run all the global destructors on exit from the program. */
2034
2035 void
2036 __do_global_dtors (void)
2037 {
2038 #ifdef DO_GLOBAL_DTORS_BODY
2039 DO_GLOBAL_DTORS_BODY;
2040 #else
2041 static func_ptr *p = __DTOR_LIST__ + 1;
2042 while (*p)
2043 {
2044 p++;
2045 (*(p-1)) ();
2046 }
2047 #endif
2048 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2049 {
2050 static int completed = 0;
2051 if (! completed)
2052 {
2053 completed = 1;
2054 __deregister_frame_info (__EH_FRAME_BEGIN__);
2055 }
2056 }
2057 #endif
2058 }
2059 #endif
2060
2061 #ifndef HAS_INIT_SECTION
2062 /* Run all the global constructors on entry to the program. */
2063
2064 void
2065 __do_global_ctors (void)
2066 {
2067 #ifdef EH_FRAME_SECTION_NAME
2068 {
2069 static struct object object;
2070 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2071 }
2072 #endif
2073 DO_GLOBAL_CTORS_BODY;
2074 atexit (__do_global_dtors);
2075 }
2076 #endif /* no HAS_INIT_SECTION */
2077
2078 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2079 /* Subroutine called automatically by `main'.
2080 Compiling a global function named `main'
2081 produces an automatic call to this function at the beginning.
2082
2083 For many systems, this routine calls __do_global_ctors.
2084 For systems which support a .init section we use the .init section
2085 to run __do_global_ctors, so we need not do anything here. */
2086
2087 void
2088 SYMBOL__MAIN ()
2089 {
2090 /* Support recursive calls to `main': run initializers just once. */
2091 static int initialized;
2092 if (! initialized)
2093 {
2094 initialized = 1;
2095 __do_global_ctors ();
2096 }
2097 }
2098 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2099
2100 #endif /* L__main */
2101 #endif /* __CYGWIN__ */
2102 \f
2103 #ifdef L_ctors
2104
2105 #include "gbl-ctors.h"
2106
2107 /* Provide default definitions for the lists of constructors and
2108 destructors, so that we don't get linker errors. These symbols are
2109 intentionally bss symbols, so that gld and/or collect will provide
2110 the right values. */
2111
2112 /* We declare the lists here with two elements each,
2113 so that they are valid empty lists if no other definition is loaded.
2114
2115 If we are using the old "set" extensions to have the gnu linker
2116 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2117 must be in the bss/common section.
2118
2119 Long term no port should use those extensions. But many still do. */
2120 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2121 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2122 func_ptr __CTOR_LIST__[2] = {0, 0};
2123 func_ptr __DTOR_LIST__[2] = {0, 0};
2124 #else
2125 func_ptr __CTOR_LIST__[2];
2126 func_ptr __DTOR_LIST__[2];
2127 #endif
2128 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2129 #endif /* L_ctors */
2130 \f
2131 #ifdef L_exit
2132
2133 #include "gbl-ctors.h"
2134
2135 #ifdef NEED_ATEXIT
2136
2137 #ifndef ON_EXIT
2138
2139 # include <errno.h>
2140
2141 static func_ptr *atexit_chain = 0;
2142 static long atexit_chain_length = 0;
2143 static volatile long last_atexit_chain_slot = -1;
2144
2145 int
2146 atexit (func_ptr func)
2147 {
2148 if (++last_atexit_chain_slot == atexit_chain_length)
2149 {
2150 atexit_chain_length += 32;
2151 if (atexit_chain)
2152 atexit_chain = (func_ptr *) realloc (atexit_chain, atexit_chain_length
2153 * sizeof (func_ptr));
2154 else
2155 atexit_chain = (func_ptr *) malloc (atexit_chain_length
2156 * sizeof (func_ptr));
2157 if (! atexit_chain)
2158 {
2159 atexit_chain_length = 0;
2160 last_atexit_chain_slot = -1;
2161 errno = ENOMEM;
2162 return (-1);
2163 }
2164 }
2165 atexit_chain[last_atexit_chain_slot] = func;
2166 return (0);
2167 }
2168
2169 extern void _cleanup (void);
2170 extern void _exit (int) __attribute__ ((__noreturn__));
2171
2172 void
2173 exit (int status)
2174 {
2175 if (atexit_chain)
2176 {
2177 for ( ; last_atexit_chain_slot-- >= 0; )
2178 {
2179 (*atexit_chain[last_atexit_chain_slot + 1]) ();
2180 atexit_chain[last_atexit_chain_slot + 1] = 0;
2181 }
2182 free (atexit_chain);
2183 atexit_chain = 0;
2184 }
2185 #ifdef EXIT_BODY
2186 EXIT_BODY;
2187 #else
2188 _cleanup ();
2189 #endif
2190 _exit (status);
2191 }
2192
2193 #else /* ON_EXIT */
2194
2195 /* Simple; we just need a wrapper for ON_EXIT. */
2196 int
2197 atexit (func_ptr func)
2198 {
2199 return ON_EXIT (func);
2200 }
2201
2202 #endif /* ON_EXIT */
2203 #endif /* NEED_ATEXIT */
2204
2205 #endif /* L_exit */