local-alloc.c (block_alloc): Don't lose if two SCRATCH expressions are shared.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here cannot be reallocated by global.c if the hard
59 register is used as a spill register. So we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include <stdio.h>
63 #include "config.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "recog.h"
71 #include "output.h"
72 \f
73 /* Next quantity number available for allocation. */
74
75 static int next_qty;
76
77 /* In all the following vectors indexed by quantity number. */
78
79 /* Element Q is the hard reg number chosen for quantity Q,
80 or -1 if none was found. */
81
82 static short *qty_phys_reg;
83
84 /* We maintain two hard register sets that indicate suggested hard registers
85 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
86 that are tied to the quantity by a simple copy. The second contains all
87 hard registers that are tied to the quantity via an arithmetic operation.
88
89 The former register set is given priority for allocation. This tends to
90 eliminate copy insns. */
91
92 /* Element Q is a set of hard registers that are suggested for quantity Q by
93 copy insns. */
94
95 static HARD_REG_SET *qty_phys_copy_sugg;
96
97 /* Element Q is a set of hard registers that are suggested for quantity Q by
98 arithmetic insns. */
99
100 static HARD_REG_SET *qty_phys_sugg;
101
102 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
103
104 static short *qty_phys_num_copy_sugg;
105
106 /* Element Q is the number of suggested registers in qty_phys_sugg. */
107
108 static short *qty_phys_num_sugg;
109
110 /* Element Q is the number of refs to quantity Q. */
111
112 static int *qty_n_refs;
113
114 /* Element Q is a reg class contained in (smaller than) the
115 preferred classes of all the pseudo regs that are tied in quantity Q.
116 This is the preferred class for allocating that quantity. */
117
118 static enum reg_class *qty_min_class;
119
120 /* Insn number (counting from head of basic block)
121 where quantity Q was born. -1 if birth has not been recorded. */
122
123 static int *qty_birth;
124
125 /* Insn number (counting from head of basic block)
126 where quantity Q died. Due to the way tying is done,
127 and the fact that we consider in this pass only regs that die but once,
128 a quantity can die only once. Each quantity's life span
129 is a set of consecutive insns. -1 if death has not been recorded. */
130
131 static int *qty_death;
132
133 /* Number of words needed to hold the data in quantity Q.
134 This depends on its machine mode. It is used for these purposes:
135 1. It is used in computing the relative importances of qtys,
136 which determines the order in which we look for regs for them.
137 2. It is used in rules that prevent tying several registers of
138 different sizes in a way that is geometrically impossible
139 (see combine_regs). */
140
141 static int *qty_size;
142
143 /* This holds the mode of the registers that are tied to qty Q,
144 or VOIDmode if registers with differing modes are tied together. */
145
146 static enum machine_mode *qty_mode;
147
148 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
149
150 static int *qty_n_calls_crossed;
151
152 /* Register class within which we allocate qty Q if we can't get
153 its preferred class. */
154
155 static enum reg_class *qty_alternate_class;
156
157 /* Element Q is the SCRATCH expression for which this quantity is being
158 allocated or 0 if this quantity is allocating registers. */
159
160 static rtx *qty_scratch_rtx;
161
162 /* Element Q is nonzero if this quantity has been used in a SUBREG
163 that changes its size. */
164
165 static char *qty_changes_size;
166
167 /* Element Q is the register number of one pseudo register whose
168 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
169 register should be the head of the chain maintained in reg_next_in_qty. */
170
171 static int *qty_first_reg;
172
173 /* If (REG N) has been assigned a quantity number, is a register number
174 of another register assigned the same quantity number, or -1 for the
175 end of the chain. qty_first_reg point to the head of this chain. */
176
177 static int *reg_next_in_qty;
178
179 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
180 if it is >= 0,
181 of -1 if this register cannot be allocated by local-alloc,
182 or -2 if not known yet.
183
184 Note that if we see a use or death of pseudo register N with
185 reg_qty[N] == -2, register N must be local to the current block. If
186 it were used in more than one block, we would have reg_qty[N] == -1.
187 This relies on the fact that if reg_basic_block[N] is >= 0, register N
188 will not appear in any other block. We save a considerable number of
189 tests by exploiting this.
190
191 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
192 be referenced. */
193
194 static int *reg_qty;
195
196 /* The offset (in words) of register N within its quantity.
197 This can be nonzero if register N is SImode, and has been tied
198 to a subreg of a DImode register. */
199
200 static char *reg_offset;
201
202 /* Vector of substitutions of register numbers,
203 used to map pseudo regs into hardware regs.
204 This is set up as a result of register allocation.
205 Element N is the hard reg assigned to pseudo reg N,
206 or is -1 if no hard reg was assigned.
207 If N is a hard reg number, element N is N. */
208
209 short *reg_renumber;
210
211 /* Set of hard registers live at the current point in the scan
212 of the instructions in a basic block. */
213
214 static HARD_REG_SET regs_live;
215
216 /* Each set of hard registers indicates registers live at a particular
217 point in the basic block. For N even, regs_live_at[N] says which
218 hard registers are needed *after* insn N/2 (i.e., they may not
219 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
220
221 If an object is to conflict with the inputs of insn J but not the
222 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
223 if it is to conflict with the outputs of insn J but not the inputs of
224 insn J + 1, it is said to die at index J*2 + 1. */
225
226 static HARD_REG_SET *regs_live_at;
227
228 int *scratch_block;
229 rtx *scratch_list;
230 int scratch_list_length;
231 static int scratch_index;
232
233 /* Communicate local vars `insn_number' and `insn'
234 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
235 static int this_insn_number;
236 static rtx this_insn;
237
238 /* Used to communicate changes made by update_equiv_regs to
239 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
240 found or created, so that we can keep track of what memory accesses might
241 be created later, e.g. by reload. */
242
243 static rtx *reg_equiv_replacement;
244
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void alloc_qty_for_scratch PROTO((rtx, int, rtx, int, int));
247 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
248 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
249 static int contains_replace_regs PROTO((rtx, char *));
250 static int memref_referenced_p PROTO((rtx, rtx));
251 static int memref_used_between_p PROTO((rtx, rtx, rtx));
252 static void optimize_reg_copy_1 PROTO((rtx, rtx, rtx));
253 static void optimize_reg_copy_2 PROTO((rtx, rtx, rtx));
254 static void update_equiv_regs PROTO((void));
255 static void block_alloc PROTO((int));
256 static int qty_sugg_compare PROTO((int, int));
257 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
258 static int qty_compare PROTO((int, int));
259 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
260 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
261 static int reg_meets_class_p PROTO((int, enum reg_class));
262 static int reg_classes_overlap_p PROTO((enum reg_class, enum reg_class,
263 int));
264 static void update_qty_class PROTO((int, int));
265 static void reg_is_set PROTO((rtx, rtx));
266 static void reg_is_born PROTO((rtx, int));
267 static void wipe_dead_reg PROTO((rtx, int));
268 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
269 int, int, int, int, int));
270 static void mark_life PROTO((int, enum machine_mode, int));
271 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
272 static int no_conflict_p PROTO((rtx, rtx, rtx));
273 static int requires_inout PROTO((char *));
274 \f
275 /* Allocate a new quantity (new within current basic block)
276 for register number REGNO which is born at index BIRTH
277 within the block. MODE and SIZE are info on reg REGNO. */
278
279 static void
280 alloc_qty (regno, mode, size, birth)
281 int regno;
282 enum machine_mode mode;
283 int size, birth;
284 {
285 register int qty = next_qty++;
286
287 reg_qty[regno] = qty;
288 reg_offset[regno] = 0;
289 reg_next_in_qty[regno] = -1;
290
291 qty_first_reg[qty] = regno;
292 qty_size[qty] = size;
293 qty_mode[qty] = mode;
294 qty_birth[qty] = birth;
295 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
296 qty_min_class[qty] = reg_preferred_class (regno);
297 qty_alternate_class[qty] = reg_alternate_class (regno);
298 qty_n_refs[qty] = REG_N_REFS (regno);
299 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
300 }
301 \f
302 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
303 used as operand N in INSN. We assume here that the SCRATCH is used in
304 a CLOBBER. */
305
306 static void
307 alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
308 rtx scratch;
309 int n;
310 rtx insn;
311 int insn_code_num, insn_number;
312 {
313 register int qty;
314 enum reg_class class;
315 char *p, c;
316 int i;
317
318 #ifdef REGISTER_CONSTRAINTS
319 /* If we haven't yet computed which alternative will be used, do so now.
320 Then set P to the constraints for that alternative. */
321 if (which_alternative == -1)
322 if (! constrain_operands (insn_code_num, 0))
323 return;
324
325 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
326 *p && i < which_alternative; p++)
327 if (*p == ',')
328 i++;
329
330 /* Compute the class required for this SCRATCH. If we don't need a
331 register, the class will remain NO_REGS. If we guessed the alternative
332 number incorrectly, reload will fix things up for us. */
333
334 class = NO_REGS;
335 while ((c = *p++) != '\0' && c != ',')
336 switch (c)
337 {
338 case '=': case '+': case '?':
339 case '#': case '&': case '!':
340 case '*': case '%':
341 case '0': case '1': case '2': case '3': case '4':
342 case 'm': case '<': case '>': case 'V': case 'o':
343 case 'E': case 'F': case 'G': case 'H':
344 case 's': case 'i': case 'n':
345 case 'I': case 'J': case 'K': case 'L':
346 case 'M': case 'N': case 'O': case 'P':
347 #ifdef EXTRA_CONSTRAINT
348 case 'Q': case 'R': case 'S': case 'T': case 'U':
349 #endif
350 case 'p':
351 /* These don't say anything we care about. */
352 break;
353
354 case 'X':
355 /* We don't need to allocate this SCRATCH. */
356 return;
357
358 case 'g': case 'r':
359 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
360 break;
361
362 default:
363 class
364 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
365 break;
366 }
367
368 if (class == NO_REGS)
369 return;
370
371 #else /* REGISTER_CONSTRAINTS */
372
373 class = GENERAL_REGS;
374 #endif
375
376
377 qty = next_qty++;
378
379 qty_first_reg[qty] = -1;
380 qty_scratch_rtx[qty] = scratch;
381 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
382 qty_mode[qty] = GET_MODE (scratch);
383 qty_birth[qty] = 2 * insn_number - 1;
384 qty_death[qty] = 2 * insn_number + 1;
385 qty_n_calls_crossed[qty] = 0;
386 qty_min_class[qty] = class;
387 qty_alternate_class[qty] = NO_REGS;
388 qty_n_refs[qty] = 1;
389 qty_changes_size[qty] = 0;
390 }
391 \f
392 /* Main entry point of this file. */
393
394 void
395 local_alloc ()
396 {
397 register int b, i;
398 int max_qty;
399
400 /* Leaf functions and non-leaf functions have different needs.
401 If defined, let the machine say what kind of ordering we
402 should use. */
403 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
404 ORDER_REGS_FOR_LOCAL_ALLOC;
405 #endif
406
407 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
408 registers. */
409 update_equiv_regs ();
410
411 /* This sets the maximum number of quantities we can have. Quantity
412 numbers start at zero and we can have one for each pseudo plus the
413 number of SCRATCHes in the largest block, in the worst case. */
414 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
415
416 /* Allocate vectors of temporary data.
417 See the declarations of these variables, above,
418 for what they mean. */
419
420 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
421 Instead of allocating this much memory from now until the end of
422 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
423 reload will allocate them. */
424
425 scratch_list_length = max_qty;
426 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
427 bzero ((char *) scratch_list, scratch_list_length * sizeof (rtx));
428 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
429 bzero ((char *) scratch_block, scratch_list_length * sizeof (int));
430 scratch_index = 0;
431
432 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
433 qty_phys_copy_sugg
434 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
435 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
436 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
437 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
438 qty_birth = (int *) alloca (max_qty * sizeof (int));
439 qty_death = (int *) alloca (max_qty * sizeof (int));
440 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
441 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
442 qty_size = (int *) alloca (max_qty * sizeof (int));
443 qty_mode
444 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
445 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
446 qty_min_class
447 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
448 qty_alternate_class
449 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
450 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
451 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
452
453 reg_qty = (int *) alloca (max_regno * sizeof (int));
454 reg_offset = (char *) alloca (max_regno * sizeof (char));
455 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
456
457 /* Allocate the reg_renumber array */
458 allocate_reg_info (max_regno, FALSE, TRUE);
459
460 /* Determine which pseudo-registers can be allocated by local-alloc.
461 In general, these are the registers used only in a single block and
462 which only die once. However, if a register's preferred class has only
463 a few entries, don't allocate this register here unless it is preferred
464 or nothing since retry_global_alloc won't be able to move it to
465 GENERAL_REGS if a reload register of this class is needed.
466
467 We need not be concerned with which block actually uses the register
468 since we will never see it outside that block. */
469
470 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
471 {
472 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
473 && (reg_alternate_class (i) == NO_REGS
474 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
475 reg_qty[i] = -2;
476 else
477 reg_qty[i] = -1;
478 }
479
480 /* Force loop below to initialize entire quantity array. */
481 next_qty = max_qty;
482
483 /* Allocate each block's local registers, block by block. */
484
485 for (b = 0; b < n_basic_blocks; b++)
486 {
487 /* NEXT_QTY indicates which elements of the `qty_...'
488 vectors might need to be initialized because they were used
489 for the previous block; it is set to the entire array before
490 block 0. Initialize those, with explicit loop if there are few,
491 else with bzero and bcopy. Do not initialize vectors that are
492 explicit set by `alloc_qty'. */
493
494 if (next_qty < 6)
495 {
496 for (i = 0; i < next_qty; i++)
497 {
498 qty_scratch_rtx[i] = 0;
499 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
500 qty_phys_num_copy_sugg[i] = 0;
501 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
502 qty_phys_num_sugg[i] = 0;
503 }
504 }
505 else
506 {
507 #define CLEAR(vector) \
508 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
509
510 CLEAR (qty_scratch_rtx);
511 CLEAR (qty_phys_copy_sugg);
512 CLEAR (qty_phys_num_copy_sugg);
513 CLEAR (qty_phys_sugg);
514 CLEAR (qty_phys_num_sugg);
515 }
516
517 next_qty = 0;
518
519 block_alloc (b);
520 #ifdef USE_C_ALLOCA
521 alloca (0);
522 #endif
523 }
524 }
525 \f
526 /* Depth of loops we are in while in update_equiv_regs. */
527 static int loop_depth;
528
529 /* Used for communication between the following two functions: contains
530 a MEM that we wish to ensure remains unchanged. */
531 static rtx equiv_mem;
532
533 /* Set nonzero if EQUIV_MEM is modified. */
534 static int equiv_mem_modified;
535
536 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
537 Called via note_stores. */
538
539 static void
540 validate_equiv_mem_from_store (dest, set)
541 rtx dest;
542 rtx set;
543 {
544 if ((GET_CODE (dest) == REG
545 && reg_overlap_mentioned_p (dest, equiv_mem))
546 || (GET_CODE (dest) == MEM
547 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
548 equiv_mem_modified = 1;
549 }
550
551 /* Verify that no store between START and the death of REG invalidates
552 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
553 by storing into an overlapping memory location, or with a non-const
554 CALL_INSN.
555
556 Return 1 if MEMREF remains valid. */
557
558 static int
559 validate_equiv_mem (start, reg, memref)
560 rtx start;
561 rtx reg;
562 rtx memref;
563 {
564 rtx insn;
565 rtx note;
566
567 equiv_mem = memref;
568 equiv_mem_modified = 0;
569
570 /* If the memory reference has side effects or is volatile, it isn't a
571 valid equivalence. */
572 if (side_effects_p (memref))
573 return 0;
574
575 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
576 {
577 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
578 continue;
579
580 if (find_reg_note (insn, REG_DEAD, reg))
581 return 1;
582
583 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
584 && ! CONST_CALL_P (insn))
585 return 0;
586
587 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
588
589 /* If a register mentioned in MEMREF is modified via an
590 auto-increment, we lose the equivalence. Do the same if one
591 dies; although we could extend the life, it doesn't seem worth
592 the trouble. */
593
594 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
595 if ((REG_NOTE_KIND (note) == REG_INC
596 || REG_NOTE_KIND (note) == REG_DEAD)
597 && GET_CODE (XEXP (note, 0)) == REG
598 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
599 return 0;
600 }
601
602 return 0;
603 }
604
605 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
606
607 static int
608 contains_replace_regs (x, reg_equiv_replace)
609 rtx x;
610 char *reg_equiv_replace;
611 {
612 int i, j;
613 char *fmt;
614 enum rtx_code code = GET_CODE (x);
615
616 switch (code)
617 {
618 case CONST_INT:
619 case CONST:
620 case LABEL_REF:
621 case SYMBOL_REF:
622 case CONST_DOUBLE:
623 case PC:
624 case CC0:
625 case HIGH:
626 case LO_SUM:
627 return 0;
628
629 case REG:
630 return reg_equiv_replace[REGNO (x)];
631 }
632
633 fmt = GET_RTX_FORMAT (code);
634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
635 switch (fmt[i])
636 {
637 case 'e':
638 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
639 return 1;
640 break;
641 case 'E':
642 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
643 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
644 return 1;
645 break;
646 }
647
648 return 0;
649 }
650 \f
651 /* TRUE if X references a memory location that would be affected by a store
652 to MEMREF. */
653
654 static int
655 memref_referenced_p (memref, x)
656 rtx x;
657 rtx memref;
658 {
659 int i, j;
660 char *fmt;
661 enum rtx_code code = GET_CODE (x);
662
663 switch (code)
664 {
665 case CONST_INT:
666 case CONST:
667 case LABEL_REF:
668 case SYMBOL_REF:
669 case CONST_DOUBLE:
670 case PC:
671 case CC0:
672 case HIGH:
673 case LO_SUM:
674 return 0;
675
676 case REG:
677 return (reg_equiv_replacement[REGNO (x)]
678 && memref_referenced_p (memref,
679 reg_equiv_replacement[REGNO (x)]));
680
681 case MEM:
682 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
683 return 1;
684 break;
685
686 case SET:
687 /* If we are setting a MEM, it doesn't count (its address does), but any
688 other SET_DEST that has a MEM in it is referencing the MEM. */
689 if (GET_CODE (SET_DEST (x)) == MEM)
690 {
691 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
692 return 1;
693 }
694 else if (memref_referenced_p (memref, SET_DEST (x)))
695 return 1;
696
697 return memref_referenced_p (memref, SET_SRC (x));
698 }
699
700 fmt = GET_RTX_FORMAT (code);
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
702 switch (fmt[i])
703 {
704 case 'e':
705 if (memref_referenced_p (memref, XEXP (x, i)))
706 return 1;
707 break;
708 case 'E':
709 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
710 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
711 return 1;
712 break;
713 }
714
715 return 0;
716 }
717
718 /* TRUE if some insn in the range (START, END] references a memory location
719 that would be affected by a store to MEMREF. */
720
721 static int
722 memref_used_between_p (memref, start, end)
723 rtx memref;
724 rtx start;
725 rtx end;
726 {
727 rtx insn;
728
729 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
730 insn = NEXT_INSN (insn))
731 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
732 && memref_referenced_p (memref, PATTERN (insn)))
733 return 1;
734
735 return 0;
736 }
737 \f
738 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
739 in INSN.
740
741 Search forward to see if SRC dies before either it or DEST is modified,
742 but don't scan past the end of a basic block. If so, we can replace SRC
743 with DEST and let SRC die in INSN.
744
745 This will reduce the number of registers live in that range and may enable
746 DEST to be tied to SRC, thus often saving one register in addition to a
747 register-register copy. */
748
749 static void
750 optimize_reg_copy_1 (insn, dest, src)
751 rtx insn;
752 rtx dest;
753 rtx src;
754 {
755 rtx p, q;
756 rtx note;
757 rtx dest_death = 0;
758 int sregno = REGNO (src);
759 int dregno = REGNO (dest);
760
761 if (sregno == dregno
762 #ifdef SMALL_REGISTER_CLASSES
763 /* We don't want to mess with hard regs if register classes are small. */
764 || (SMALL_REGISTER_CLASSES
765 && (sregno < FIRST_PSEUDO_REGISTER
766 || dregno < FIRST_PSEUDO_REGISTER))
767 #endif
768 /* We don't see all updates to SP if they are in an auto-inc memory
769 reference, so we must disallow this optimization on them. */
770 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
771 return;
772
773 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
774 {
775 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
776 || (GET_CODE (p) == NOTE
777 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
778 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
779 break;
780
781 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
782 continue;
783
784 if (reg_set_p (src, p) || reg_set_p (dest, p)
785 /* Don't change a USE of a register. */
786 || (GET_CODE (PATTERN (p)) == USE
787 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
788 break;
789
790 /* See if all of SRC dies in P. This test is slightly more
791 conservative than it needs to be. */
792 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
793 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
794 {
795 int failed = 0;
796 int length = 0;
797 int d_length = 0;
798 int n_calls = 0;
799 int d_n_calls = 0;
800
801 /* We can do the optimization. Scan forward from INSN again,
802 replacing regs as we go. Set FAILED if a replacement can't
803 be done. In that case, we can't move the death note for SRC.
804 This should be rare. */
805
806 /* Set to stop at next insn. */
807 for (q = next_real_insn (insn);
808 q != next_real_insn (p);
809 q = next_real_insn (q))
810 {
811 if (reg_overlap_mentioned_p (src, PATTERN (q)))
812 {
813 /* If SRC is a hard register, we might miss some
814 overlapping registers with validate_replace_rtx,
815 so we would have to undo it. We can't if DEST is
816 present in the insn, so fail in that combination
817 of cases. */
818 if (sregno < FIRST_PSEUDO_REGISTER
819 && reg_mentioned_p (dest, PATTERN (q)))
820 failed = 1;
821
822 /* Replace all uses and make sure that the register
823 isn't still present. */
824 else if (validate_replace_rtx (src, dest, q)
825 && (sregno >= FIRST_PSEUDO_REGISTER
826 || ! reg_overlap_mentioned_p (src,
827 PATTERN (q))))
828 {
829 /* We assume that a register is used exactly once per
830 insn in the updates below. If this is not correct,
831 no great harm is done. */
832 if (sregno >= FIRST_PSEUDO_REGISTER)
833 REG_N_REFS (sregno) -= loop_depth;
834 if (dregno >= FIRST_PSEUDO_REGISTER)
835 REG_N_REFS (dregno) += loop_depth;
836 }
837 else
838 {
839 validate_replace_rtx (dest, src, q);
840 failed = 1;
841 }
842 }
843
844 /* Count the insns and CALL_INSNs passed. If we passed the
845 death note of DEST, show increased live length. */
846 length++;
847 if (dest_death)
848 d_length++;
849
850 /* If the insn in which SRC dies is a CALL_INSN, don't count it
851 as a call that has been crossed. Otherwise, count it. */
852 if (q != p && GET_CODE (q) == CALL_INSN)
853 {
854 n_calls++;
855 if (dest_death)
856 d_n_calls++;
857 }
858
859 /* If DEST dies here, remove the death note and save it for
860 later. Make sure ALL of DEST dies here; again, this is
861 overly conservative. */
862 if (dest_death == 0
863 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
864 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
865 remove_note (q, dest_death);
866 }
867
868 if (! failed)
869 {
870 if (sregno >= FIRST_PSEUDO_REGISTER)
871 {
872 if (REG_LIVE_LENGTH (sregno) >= 0)
873 {
874 REG_LIVE_LENGTH (sregno) -= length;
875 /* reg_live_length is only an approximation after
876 combine if sched is not run, so make sure that we
877 still have a reasonable value. */
878 if (REG_LIVE_LENGTH (sregno) < 2)
879 REG_LIVE_LENGTH (sregno) = 2;
880 }
881
882 REG_N_CALLS_CROSSED (sregno) -= n_calls;
883 }
884
885 if (dregno >= FIRST_PSEUDO_REGISTER)
886 {
887 if (REG_LIVE_LENGTH (dregno) >= 0)
888 REG_LIVE_LENGTH (dregno) += d_length;
889
890 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
891 }
892
893 /* Move death note of SRC from P to INSN. */
894 remove_note (p, note);
895 XEXP (note, 1) = REG_NOTES (insn);
896 REG_NOTES (insn) = note;
897 }
898
899 /* Put death note of DEST on P if we saw it die. */
900 if (dest_death)
901 {
902 XEXP (dest_death, 1) = REG_NOTES (p);
903 REG_NOTES (p) = dest_death;
904 }
905
906 return;
907 }
908
909 /* If SRC is a hard register which is set or killed in some other
910 way, we can't do this optimization. */
911 else if (sregno < FIRST_PSEUDO_REGISTER
912 && dead_or_set_p (p, src))
913 break;
914 }
915 }
916 \f
917 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
918 a sequence of insns that modify DEST followed by an insn that sets
919 SRC to DEST in which DEST dies, with no prior modification of DEST.
920 (There is no need to check if the insns in between actually modify
921 DEST. We should not have cases where DEST is not modified, but
922 the optimization is safe if no such modification is detected.)
923 In that case, we can replace all uses of DEST, starting with INSN and
924 ending with the set of SRC to DEST, with SRC. We do not do this
925 optimization if a CALL_INSN is crossed unless SRC already crosses a
926 call or if DEST dies before the copy back to SRC.
927
928 It is assumed that DEST and SRC are pseudos; it is too complicated to do
929 this for hard registers since the substitutions we may make might fail. */
930
931 static void
932 optimize_reg_copy_2 (insn, dest, src)
933 rtx insn;
934 rtx dest;
935 rtx src;
936 {
937 rtx p, q;
938 rtx set;
939 int sregno = REGNO (src);
940 int dregno = REGNO (dest);
941
942 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
943 {
944 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
945 || (GET_CODE (p) == NOTE
946 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
947 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
948 break;
949
950 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
951 continue;
952
953 set = single_set (p);
954 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
955 && find_reg_note (p, REG_DEAD, dest))
956 {
957 /* We can do the optimization. Scan forward from INSN again,
958 replacing regs as we go. */
959
960 /* Set to stop at next insn. */
961 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
962 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
963 {
964 if (reg_mentioned_p (dest, PATTERN (q)))
965 {
966 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
967
968 /* We assume that a register is used exactly once per
969 insn in the updates below. If this is not correct,
970 no great harm is done. */
971 REG_N_REFS (dregno) -= loop_depth;
972 REG_N_REFS (sregno) += loop_depth;
973 }
974
975
976 if (GET_CODE (q) == CALL_INSN)
977 {
978 REG_N_CALLS_CROSSED (dregno)--;
979 REG_N_CALLS_CROSSED (sregno)++;
980 }
981 }
982
983 remove_note (p, find_reg_note (p, REG_DEAD, dest));
984 REG_N_DEATHS (dregno)--;
985 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
986 REG_N_DEATHS (sregno)--;
987 return;
988 }
989
990 if (reg_set_p (src, p)
991 || find_reg_note (p, REG_DEAD, dest)
992 || (GET_CODE (p) == CALL_INSN && REG_N_CALLS_CROSSED (sregno) == 0))
993 break;
994 }
995 }
996 \f
997 /* Find registers that are equivalent to a single value throughout the
998 compilation (either because they can be referenced in memory or are set once
999 from a single constant). Lower their priority for a register.
1000
1001 If such a register is only referenced once, try substituting its value
1002 into the using insn. If it succeeds, we can eliminate the register
1003 completely. */
1004
1005 static void
1006 update_equiv_regs ()
1007 {
1008 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
1009 /* Set when an attempt should be made to replace a register with the
1010 associated reg_equiv_replacement entry at the end of this function. */
1011 char *reg_equiv_replace
1012 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
1013 rtx insn;
1014 int block, depth;
1015
1016 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
1017
1018 bzero ((char *) reg_equiv_init_insn, max_regno * sizeof (rtx *));
1019 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx *));
1020 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
1021
1022 init_alias_analysis ();
1023
1024 loop_depth = 1;
1025
1026 /* Scan the insns and find which registers have equivalences. Do this
1027 in a separate scan of the insns because (due to -fcse-follow-jumps)
1028 a register can be set below its use. */
1029 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1030 {
1031 rtx note;
1032 rtx set = single_set (insn);
1033 rtx dest, src;
1034 int regno;
1035
1036 if (GET_CODE (insn) == NOTE)
1037 {
1038 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1039 loop_depth++;
1040 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1041 loop_depth--;
1042 }
1043
1044 /* If this insn contains more (or less) than a single SET, ignore it. */
1045 if (set == 0)
1046 continue;
1047
1048 dest = SET_DEST (set);
1049 src = SET_SRC (set);
1050
1051 /* If this sets a MEM to the contents of a REG that is only used
1052 in a single basic block, see if the register is always equivalent
1053 to that memory location and if moving the store from INSN to the
1054 insn that set REG is safe. If so, put a REG_EQUIV note on the
1055 initializing insn.
1056
1057 Don't add a REG_EQUIV note if the insn already has one. The existing
1058 REG_EQUIV is likely more useful than the one we are adding.
1059
1060 If one of the regs in the address is marked as reg_equiv_replace,
1061 then we can't add this REG_EQUIV note. The reg_equiv_replace
1062 optimization may move the set of this register immediately before
1063 insn, which puts it after reg_equiv_init_insn[regno], and hence
1064 the mention in the REG_EQUIV note would be to an uninitialized
1065 pseudo. */
1066
1067 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
1068 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
1069 && REG_BASIC_BLOCK (regno) >= 0
1070 && reg_equiv_init_insn[regno] != 0
1071 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
1072 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace)
1073 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
1074 dest)
1075 && ! memref_used_between_p (SET_DEST (set),
1076 reg_equiv_init_insn[regno], insn))
1077 REG_NOTES (reg_equiv_init_insn[regno])
1078 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
1079 REG_NOTES (reg_equiv_init_insn[regno]));
1080
1081 /* If this is a register-register copy where SRC is not dead, see if we
1082 can optimize it. */
1083 if (flag_expensive_optimizations && GET_CODE (dest) == REG
1084 && GET_CODE (SET_SRC (set)) == REG
1085 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1086 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
1087
1088 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1089 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
1090 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
1091 && GET_CODE (SET_SRC (set)) == REG
1092 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
1093 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1094 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
1095
1096 /* Otherwise, we only handle the case of a pseudo register being set
1097 once and only if neither the source nor the destination are
1098 in a register class that's likely to be spilled. */
1099 if (GET_CODE (dest) != REG
1100 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1101 || REG_N_SETS (regno) != 1
1102 || CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (dest)))
1103 || (GET_CODE (src) == REG
1104 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1105 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src)))))
1106 continue;
1107
1108 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1109
1110 #ifdef DONT_RECORD_EQUIVALENCE
1111 /* Allow the target to reject promotions of some REG_EQUAL notes to
1112 REG_EQUIV notes.
1113
1114 In some cases this can improve register allocation if the existence
1115 of the REG_EQUIV note is likely to increase the lifetime of a register
1116 that is likely to be spilled.
1117
1118 It may also be necessary if the target can't handle certain constant
1119 expressions appearing randomly in insns, but for whatever reason
1120 those expressions must be considered legitimate constant expressions
1121 to prevent them from being forced into memory. */
1122 if (note && DONT_RECORD_EQUIVALENCE (note))
1123 note = NULL;
1124 #endif
1125
1126 /* Record this insn as initializing this register. */
1127 reg_equiv_init_insn[regno] = insn;
1128
1129 /* If this register is known to be equal to a constant, record that
1130 it is always equivalent to the constant. */
1131 if (note && CONSTANT_P (XEXP (note, 0)))
1132 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1133
1134 /* If this insn introduces a "constant" register, decrease the priority
1135 of that register. Record this insn if the register is only used once
1136 more and the equivalence value is the same as our source.
1137
1138 The latter condition is checked for two reasons: First, it is an
1139 indication that it may be more efficient to actually emit the insn
1140 as written (if no registers are available, reload will substitute
1141 the equivalence). Secondly, it avoids problems with any registers
1142 dying in this insn whose death notes would be missed.
1143
1144 If we don't have a REG_EQUIV note, see if this insn is loading
1145 a register used only in one basic block from a MEM. If so, and the
1146 MEM remains unchanged for the life of the register, add a REG_EQUIV
1147 note. */
1148
1149 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1150
1151 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
1152 && GET_CODE (SET_SRC (set)) == MEM
1153 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1154 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1155 REG_NOTES (insn));
1156
1157 if (note)
1158 {
1159 int regno = REGNO (dest);
1160
1161 reg_equiv_replacement[regno] = XEXP (note, 0);
1162
1163 /* Don't mess with things live during setjmp. */
1164 if (REG_LIVE_LENGTH (regno) >= 0)
1165 {
1166 /* Note that the statement below does not affect the priority
1167 in local-alloc! */
1168 REG_LIVE_LENGTH (regno) *= 2;
1169
1170
1171 /* If the register is referenced exactly twice, meaning it is
1172 set once and used once, indicate that the reference may be
1173 replaced by the equivalence we computed above. If the
1174 register is only used in one basic block, this can't succeed
1175 or combine would have done it.
1176
1177 It would be nice to use "loop_depth * 2" in the compare
1178 below. Unfortunately, LOOP_DEPTH need not be constant within
1179 a basic block so this would be too complicated.
1180
1181 This case normally occurs when a parameter is read from
1182 memory and then used exactly once, not in a loop. */
1183
1184 if (REG_N_REFS (regno) == 2
1185 && REG_BASIC_BLOCK (regno) < 0
1186 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1187 reg_equiv_replace[regno] = 1;
1188 }
1189 }
1190 }
1191
1192 /* Now scan all regs killed in an insn to see if any of them are
1193 registers only used that once. If so, see if we can replace the
1194 reference with the equivalent from. If we can, delete the
1195 initializing reference and this register will go away. If we
1196 can't replace the reference, and the instruction is not in a
1197 loop, then move the register initialization just before the use,
1198 so that they are in the same basic block. */
1199 block = -1;
1200 depth = 0;
1201 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1202 {
1203 rtx link;
1204
1205 /* Keep track of which basic block we are in. */
1206 if (block + 1 < n_basic_blocks
1207 && basic_block_head[block + 1] == insn)
1208 ++block;
1209
1210 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
1211 {
1212 if (GET_CODE (insn) == NOTE)
1213 {
1214 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1215 ++depth;
1216 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1217 {
1218 --depth;
1219 if (depth < 0)
1220 abort ();
1221 }
1222 }
1223
1224 continue;
1225 }
1226
1227 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1228 {
1229 if (REG_NOTE_KIND (link) == REG_DEAD
1230 /* Make sure this insn still refers to the register. */
1231 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1232 {
1233 int regno = REGNO (XEXP (link, 0));
1234 rtx equiv_insn;
1235
1236 if (! reg_equiv_replace[regno])
1237 continue;
1238
1239 equiv_insn = reg_equiv_init_insn[regno];
1240
1241 if (validate_replace_rtx (regno_reg_rtx[regno],
1242 reg_equiv_replacement[regno], insn))
1243 {
1244 remove_death (regno, insn);
1245 REG_N_REFS (regno) = 0;
1246 PUT_CODE (equiv_insn, NOTE);
1247 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1248 NOTE_SOURCE_FILE (equiv_insn) = 0;
1249 }
1250 /* If we aren't in a loop, and there are no calls in
1251 INSN or in the initialization of the register, then
1252 move the initialization of the register to just
1253 before INSN. Update the flow information. */
1254 else if (depth == 0
1255 && GET_CODE (equiv_insn) == INSN
1256 && GET_CODE (insn) == INSN
1257 && REG_BASIC_BLOCK (regno) < 0)
1258 {
1259 int l;
1260
1261 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
1262 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
1263
1264 PUT_CODE (equiv_insn, NOTE);
1265 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1266 NOTE_SOURCE_FILE (equiv_insn) = 0;
1267 REG_NOTES (equiv_insn) = 0;
1268
1269 if (block < 0)
1270 REG_BASIC_BLOCK (regno) = 0;
1271 else
1272 REG_BASIC_BLOCK (regno) = block;
1273 REG_N_CALLS_CROSSED (regno) = 0;
1274 REG_LIVE_LENGTH (regno) = 2;
1275
1276 if (block >= 0 && insn == basic_block_head[block])
1277 basic_block_head[block] = PREV_INSN (insn);
1278
1279 for (l = 0; l < n_basic_blocks; l++)
1280 CLEAR_REGNO_REG_SET (basic_block_live_at_start[l], regno);
1281 }
1282 }
1283 }
1284 }
1285 }
1286 \f
1287 /* Allocate hard regs to the pseudo regs used only within block number B.
1288 Only the pseudos that die but once can be handled. */
1289
1290 static void
1291 block_alloc (b)
1292 int b;
1293 {
1294 register int i, q;
1295 register rtx insn;
1296 rtx note;
1297 int insn_number = 0;
1298 int insn_count = 0;
1299 int max_uid = get_max_uid ();
1300 int *qty_order;
1301 int no_conflict_combined_regno = -1;
1302 /* Counter to prevent allocating more SCRATCHes than can be stored
1303 in SCRATCH_LIST. */
1304 int scratches_allocated = scratch_index;
1305
1306 /* Count the instructions in the basic block. */
1307
1308 insn = basic_block_end[b];
1309 while (1)
1310 {
1311 if (GET_CODE (insn) != NOTE)
1312 if (++insn_count > max_uid)
1313 abort ();
1314 if (insn == basic_block_head[b])
1315 break;
1316 insn = PREV_INSN (insn);
1317 }
1318
1319 /* +2 to leave room for a post_mark_life at the last insn and for
1320 the birth of a CLOBBER in the first insn. */
1321 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1322 * sizeof (HARD_REG_SET));
1323 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1324
1325 /* Initialize table of hardware registers currently live. */
1326
1327 REG_SET_TO_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1328
1329 /* This loop scans the instructions of the basic block
1330 and assigns quantities to registers.
1331 It computes which registers to tie. */
1332
1333 insn = basic_block_head[b];
1334 while (1)
1335 {
1336 register rtx body = PATTERN (insn);
1337
1338 if (GET_CODE (insn) != NOTE)
1339 insn_number++;
1340
1341 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1342 {
1343 register rtx link, set;
1344 register int win = 0;
1345 register rtx r0, r1;
1346 int combined_regno = -1;
1347 int i;
1348 int insn_code_number = recog_memoized (insn);
1349
1350 this_insn_number = insn_number;
1351 this_insn = insn;
1352
1353 if (insn_code_number >= 0)
1354 insn_extract (insn);
1355 which_alternative = -1;
1356
1357 /* Is this insn suitable for tying two registers?
1358 If so, try doing that.
1359 Suitable insns are those with at least two operands and where
1360 operand 0 is an output that is a register that is not
1361 earlyclobber.
1362
1363 We can tie operand 0 with some operand that dies in this insn.
1364 First look for operands that are required to be in the same
1365 register as operand 0. If we find such, only try tying that
1366 operand or one that can be put into that operand if the
1367 operation is commutative. If we don't find an operand
1368 that is required to be in the same register as operand 0,
1369 we can tie with any operand.
1370
1371 Subregs in place of regs are also ok.
1372
1373 If tying is done, WIN is set nonzero. */
1374
1375 if (insn_code_number >= 0
1376 #ifdef REGISTER_CONSTRAINTS
1377 && insn_n_operands[insn_code_number] > 1
1378 && insn_operand_constraint[insn_code_number][0][0] == '='
1379 && insn_operand_constraint[insn_code_number][0][1] != '&'
1380 #else
1381 && GET_CODE (PATTERN (insn)) == SET
1382 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1383 #endif
1384 )
1385 {
1386 #ifdef REGISTER_CONSTRAINTS
1387 /* If non-negative, is an operand that must match operand 0. */
1388 int must_match_0 = -1;
1389 /* Counts number of alternatives that require a match with
1390 operand 0. */
1391 int n_matching_alts = 0;
1392
1393 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1394 {
1395 char *p = insn_operand_constraint[insn_code_number][i];
1396 int this_match = (requires_inout (p));
1397
1398 n_matching_alts += this_match;
1399 if (this_match == insn_n_alternatives[insn_code_number])
1400 must_match_0 = i;
1401 }
1402 #endif
1403
1404 r0 = recog_operand[0];
1405 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1406 {
1407 #ifdef REGISTER_CONSTRAINTS
1408 /* Skip this operand if we found an operand that
1409 must match operand 0 and this operand isn't it
1410 and can't be made to be it by commutativity. */
1411
1412 if (must_match_0 >= 0 && i != must_match_0
1413 && ! (i == must_match_0 + 1
1414 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1415 && ! (i == must_match_0 - 1
1416 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1417 continue;
1418
1419 /* Likewise if each alternative has some operand that
1420 must match operand zero. In that case, skip any
1421 operand that doesn't list operand 0 since we know that
1422 the operand always conflicts with operand 0. We
1423 ignore commutatity in this case to keep things simple. */
1424 if (n_matching_alts == insn_n_alternatives[insn_code_number]
1425 && (0 == requires_inout
1426 (insn_operand_constraint[insn_code_number][i])))
1427 continue;
1428 #endif
1429
1430 r1 = recog_operand[i];
1431
1432 /* If the operand is an address, find a register in it.
1433 There may be more than one register, but we only try one
1434 of them. */
1435 if (
1436 #ifdef REGISTER_CONSTRAINTS
1437 insn_operand_constraint[insn_code_number][i][0] == 'p'
1438 #else
1439 insn_operand_address_p[insn_code_number][i]
1440 #endif
1441 )
1442 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1443 r1 = XEXP (r1, 0);
1444
1445 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1446 {
1447 /* We have two priorities for hard register preferences.
1448 If we have a move insn or an insn whose first input
1449 can only be in the same register as the output, give
1450 priority to an equivalence found from that insn. */
1451 int may_save_copy
1452 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1453 #ifdef REGISTER_CONSTRAINTS
1454 || (r1 == recog_operand[i] && must_match_0 >= 0)
1455 #endif
1456 );
1457
1458 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1459 win = combine_regs (r1, r0, may_save_copy,
1460 insn_number, insn, 0);
1461 }
1462 if (win)
1463 break;
1464 }
1465 }
1466
1467 /* Recognize an insn sequence with an ultimate result
1468 which can safely overlap one of the inputs.
1469 The sequence begins with a CLOBBER of its result,
1470 and ends with an insn that copies the result to itself
1471 and has a REG_EQUAL note for an equivalent formula.
1472 That note indicates what the inputs are.
1473 The result and the input can overlap if each insn in
1474 the sequence either doesn't mention the input
1475 or has a REG_NO_CONFLICT note to inhibit the conflict.
1476
1477 We do the combining test at the CLOBBER so that the
1478 destination register won't have had a quantity number
1479 assigned, since that would prevent combining. */
1480
1481 if (GET_CODE (PATTERN (insn)) == CLOBBER
1482 && (r0 = XEXP (PATTERN (insn), 0),
1483 GET_CODE (r0) == REG)
1484 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1485 && XEXP (link, 0) != 0
1486 && GET_CODE (XEXP (link, 0)) == INSN
1487 && (set = single_set (XEXP (link, 0))) != 0
1488 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1489 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1490 NULL_RTX)) != 0)
1491 {
1492 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1493 /* Check that we have such a sequence. */
1494 && no_conflict_p (insn, r0, r1))
1495 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1496 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1497 && (r1 = XEXP (XEXP (note, 0), 0),
1498 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1499 && no_conflict_p (insn, r0, r1))
1500 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1501
1502 /* Here we care if the operation to be computed is
1503 commutative. */
1504 else if ((GET_CODE (XEXP (note, 0)) == EQ
1505 || GET_CODE (XEXP (note, 0)) == NE
1506 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1507 && (r1 = XEXP (XEXP (note, 0), 1),
1508 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1509 && no_conflict_p (insn, r0, r1))
1510 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1511
1512 /* If we did combine something, show the register number
1513 in question so that we know to ignore its death. */
1514 if (win)
1515 no_conflict_combined_regno = REGNO (r1);
1516 }
1517
1518 /* If registers were just tied, set COMBINED_REGNO
1519 to the number of the register used in this insn
1520 that was tied to the register set in this insn.
1521 This register's qty should not be "killed". */
1522
1523 if (win)
1524 {
1525 while (GET_CODE (r1) == SUBREG)
1526 r1 = SUBREG_REG (r1);
1527 combined_regno = REGNO (r1);
1528 }
1529
1530 /* Mark the death of everything that dies in this instruction,
1531 except for anything that was just combined. */
1532
1533 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1534 if (REG_NOTE_KIND (link) == REG_DEAD
1535 && GET_CODE (XEXP (link, 0)) == REG
1536 && combined_regno != REGNO (XEXP (link, 0))
1537 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1538 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1539 wipe_dead_reg (XEXP (link, 0), 0);
1540
1541 /* Allocate qty numbers for all registers local to this block
1542 that are born (set) in this instruction.
1543 A pseudo that already has a qty is not changed. */
1544
1545 note_stores (PATTERN (insn), reg_is_set);
1546
1547 /* If anything is set in this insn and then unused, mark it as dying
1548 after this insn, so it will conflict with our outputs. This
1549 can't match with something that combined, and it doesn't matter
1550 if it did. Do this after the calls to reg_is_set since these
1551 die after, not during, the current insn. */
1552
1553 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1554 if (REG_NOTE_KIND (link) == REG_UNUSED
1555 && GET_CODE (XEXP (link, 0)) == REG)
1556 wipe_dead_reg (XEXP (link, 0), 1);
1557
1558 /* Allocate quantities for any SCRATCH operands of this insn. */
1559
1560 if (insn_code_number >= 0)
1561 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1562 if (GET_CODE (recog_operand[i]) == SCRATCH
1563 && scratches_allocated++ < scratch_list_length)
1564 alloc_qty_for_scratch (recog_operand[i], i, insn,
1565 insn_code_number, insn_number);
1566
1567 /* If this is an insn that has a REG_RETVAL note pointing at a
1568 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1569 block, so clear any register number that combined within it. */
1570 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1571 && GET_CODE (XEXP (note, 0)) == INSN
1572 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1573 no_conflict_combined_regno = -1;
1574 }
1575
1576 /* Set the registers live after INSN_NUMBER. Note that we never
1577 record the registers live before the block's first insn, since no
1578 pseudos we care about are live before that insn. */
1579
1580 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1581 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1582
1583 if (insn == basic_block_end[b])
1584 break;
1585
1586 insn = NEXT_INSN (insn);
1587 }
1588
1589 /* Now every register that is local to this basic block
1590 should have been given a quantity, or else -1 meaning ignore it.
1591 Every quantity should have a known birth and death.
1592
1593 Order the qtys so we assign them registers in order of the
1594 number of suggested registers they need so we allocate those with
1595 the most restrictive needs first. */
1596
1597 qty_order = (int *) alloca (next_qty * sizeof (int));
1598 for (i = 0; i < next_qty; i++)
1599 qty_order[i] = i;
1600
1601 #define EXCHANGE(I1, I2) \
1602 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1603
1604 switch (next_qty)
1605 {
1606 case 3:
1607 /* Make qty_order[2] be the one to allocate last. */
1608 if (qty_sugg_compare (0, 1) > 0)
1609 EXCHANGE (0, 1);
1610 if (qty_sugg_compare (1, 2) > 0)
1611 EXCHANGE (2, 1);
1612
1613 /* ... Fall through ... */
1614 case 2:
1615 /* Put the best one to allocate in qty_order[0]. */
1616 if (qty_sugg_compare (0, 1) > 0)
1617 EXCHANGE (0, 1);
1618
1619 /* ... Fall through ... */
1620
1621 case 1:
1622 case 0:
1623 /* Nothing to do here. */
1624 break;
1625
1626 default:
1627 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1628 }
1629
1630 /* Try to put each quantity in a suggested physical register, if it has one.
1631 This may cause registers to be allocated that otherwise wouldn't be, but
1632 this seems acceptable in local allocation (unlike global allocation). */
1633 for (i = 0; i < next_qty; i++)
1634 {
1635 q = qty_order[i];
1636 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1637 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1638 0, 1, qty_birth[q], qty_death[q]);
1639 else
1640 qty_phys_reg[q] = -1;
1641 }
1642
1643 /* Order the qtys so we assign them registers in order of
1644 decreasing length of life. Normally call qsort, but if we
1645 have only a very small number of quantities, sort them ourselves. */
1646
1647 for (i = 0; i < next_qty; i++)
1648 qty_order[i] = i;
1649
1650 #define EXCHANGE(I1, I2) \
1651 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1652
1653 switch (next_qty)
1654 {
1655 case 3:
1656 /* Make qty_order[2] be the one to allocate last. */
1657 if (qty_compare (0, 1) > 0)
1658 EXCHANGE (0, 1);
1659 if (qty_compare (1, 2) > 0)
1660 EXCHANGE (2, 1);
1661
1662 /* ... Fall through ... */
1663 case 2:
1664 /* Put the best one to allocate in qty_order[0]. */
1665 if (qty_compare (0, 1) > 0)
1666 EXCHANGE (0, 1);
1667
1668 /* ... Fall through ... */
1669
1670 case 1:
1671 case 0:
1672 /* Nothing to do here. */
1673 break;
1674
1675 default:
1676 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1677 }
1678
1679 /* Now for each qty that is not a hardware register,
1680 look for a hardware register to put it in.
1681 First try the register class that is cheapest for this qty,
1682 if there is more than one class. */
1683
1684 for (i = 0; i < next_qty; i++)
1685 {
1686 q = qty_order[i];
1687 if (qty_phys_reg[q] < 0)
1688 {
1689 if (N_REG_CLASSES > 1)
1690 {
1691 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1692 qty_mode[q], q, 0, 0,
1693 qty_birth[q], qty_death[q]);
1694 if (qty_phys_reg[q] >= 0)
1695 continue;
1696 }
1697
1698 if (qty_alternate_class[q] != NO_REGS)
1699 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1700 qty_mode[q], q, 0, 0,
1701 qty_birth[q], qty_death[q]);
1702 }
1703 }
1704
1705 /* Now propagate the register assignments
1706 to the pseudo regs belonging to the qtys. */
1707
1708 for (q = 0; q < next_qty; q++)
1709 if (qty_phys_reg[q] >= 0)
1710 {
1711 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1712 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1713 if (qty_scratch_rtx[q])
1714 {
1715 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1716 abort ();
1717
1718 qty_scratch_rtx[q] = gen_rtx (REG, GET_MODE (qty_scratch_rtx[q]),
1719 qty_phys_reg[q]);
1720
1721 scratch_block[scratch_index] = b;
1722 scratch_list[scratch_index++] = qty_scratch_rtx[q];
1723 }
1724 }
1725 }
1726 \f
1727 /* Compare two quantities' priority for getting real registers.
1728 We give shorter-lived quantities higher priority.
1729 Quantities with more references are also preferred, as are quantities that
1730 require multiple registers. This is the identical prioritization as
1731 done by global-alloc.
1732
1733 We used to give preference to registers with *longer* lives, but using
1734 the same algorithm in both local- and global-alloc can speed up execution
1735 of some programs by as much as a factor of three! */
1736
1737 /* Note that the quotient will never be bigger than
1738 the value of floor_log2 times the maximum number of
1739 times a register can occur in one insn (surely less than 100).
1740 Multiplying this by 10000 can't overflow.
1741 QTY_CMP_PRI is also used by qty_sugg_compare. */
1742
1743 #define QTY_CMP_PRI(q) \
1744 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1745 / (qty_death[q] - qty_birth[q])) * 10000))
1746
1747 static int
1748 qty_compare (q1, q2)
1749 int q1, q2;
1750 {
1751 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1752 }
1753
1754 static int
1755 qty_compare_1 (q1p, q2p)
1756 const GENERIC_PTR q1p;
1757 const GENERIC_PTR q2p;
1758 {
1759 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1760 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1761
1762 if (tem != 0)
1763 return tem;
1764
1765 /* If qtys are equally good, sort by qty number,
1766 so that the results of qsort leave nothing to chance. */
1767 return q1 - q2;
1768 }
1769 \f
1770 /* Compare two quantities' priority for getting real registers. This version
1771 is called for quantities that have suggested hard registers. First priority
1772 goes to quantities that have copy preferences, then to those that have
1773 normal preferences. Within those groups, quantities with the lower
1774 number of preferences have the highest priority. Of those, we use the same
1775 algorithm as above. */
1776
1777 #define QTY_CMP_SUGG(q) \
1778 (qty_phys_num_copy_sugg[q] \
1779 ? qty_phys_num_copy_sugg[q] \
1780 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1781
1782 static int
1783 qty_sugg_compare (q1, q2)
1784 int q1, q2;
1785 {
1786 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1787
1788 if (tem != 0)
1789 return tem;
1790
1791 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1792 }
1793
1794 static int
1795 qty_sugg_compare_1 (q1p, q2p)
1796 const GENERIC_PTR q1p;
1797 const GENERIC_PTR q2p;
1798 {
1799 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1800 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1801
1802 if (tem != 0)
1803 return tem;
1804
1805 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1806 if (tem != 0)
1807 return tem;
1808
1809 /* If qtys are equally good, sort by qty number,
1810 so that the results of qsort leave nothing to chance. */
1811 return q1 - q2;
1812 }
1813
1814 #undef QTY_CMP_SUGG
1815 #undef QTY_CMP_PRI
1816 \f
1817 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1818 Returns 1 if have done so, or 0 if cannot.
1819
1820 Combining registers means marking them as having the same quantity
1821 and adjusting the offsets within the quantity if either of
1822 them is a SUBREG).
1823
1824 We don't actually combine a hard reg with a pseudo; instead
1825 we just record the hard reg as the suggestion for the pseudo's quantity.
1826 If we really combined them, we could lose if the pseudo lives
1827 across an insn that clobbers the hard reg (eg, movstr).
1828
1829 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1830 there is no REG_DEAD note on INSN. This occurs during the processing
1831 of REG_NO_CONFLICT blocks.
1832
1833 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1834 SETREG or if the input and output must share a register.
1835 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1836
1837 There are elaborate checks for the validity of combining. */
1838
1839
1840 static int
1841 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1842 rtx usedreg, setreg;
1843 int may_save_copy;
1844 int insn_number;
1845 rtx insn;
1846 int already_dead;
1847 {
1848 register int ureg, sreg;
1849 register int offset = 0;
1850 int usize, ssize;
1851 register int sqty;
1852
1853 /* Determine the numbers and sizes of registers being used. If a subreg
1854 is present that does not change the entire register, don't consider
1855 this a copy insn. */
1856
1857 while (GET_CODE (usedreg) == SUBREG)
1858 {
1859 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1860 may_save_copy = 0;
1861 offset += SUBREG_WORD (usedreg);
1862 usedreg = SUBREG_REG (usedreg);
1863 }
1864 if (GET_CODE (usedreg) != REG)
1865 return 0;
1866 ureg = REGNO (usedreg);
1867 usize = REG_SIZE (usedreg);
1868
1869 while (GET_CODE (setreg) == SUBREG)
1870 {
1871 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1872 may_save_copy = 0;
1873 offset -= SUBREG_WORD (setreg);
1874 setreg = SUBREG_REG (setreg);
1875 }
1876 if (GET_CODE (setreg) != REG)
1877 return 0;
1878 sreg = REGNO (setreg);
1879 ssize = REG_SIZE (setreg);
1880
1881 /* If UREG is a pseudo-register that hasn't already been assigned a
1882 quantity number, it means that it is not local to this block or dies
1883 more than once. In either event, we can't do anything with it. */
1884 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1885 /* Do not combine registers unless one fits within the other. */
1886 || (offset > 0 && usize + offset > ssize)
1887 || (offset < 0 && usize + offset < ssize)
1888 /* Do not combine with a smaller already-assigned object
1889 if that smaller object is already combined with something bigger. */
1890 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1891 && usize < qty_size[reg_qty[ureg]])
1892 /* Can't combine if SREG is not a register we can allocate. */
1893 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1894 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1895 These have already been taken care of. This probably wouldn't
1896 combine anyway, but don't take any chances. */
1897 || (ureg >= FIRST_PSEUDO_REGISTER
1898 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1899 /* Don't tie something to itself. In most cases it would make no
1900 difference, but it would screw up if the reg being tied to itself
1901 also dies in this insn. */
1902 || ureg == sreg
1903 /* Don't try to connect two different hardware registers. */
1904 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1905 /* Don't connect two different machine modes if they have different
1906 implications as to which registers may be used. */
1907 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1908 return 0;
1909
1910 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1911 qty_phys_sugg for the pseudo instead of tying them.
1912
1913 Return "failure" so that the lifespan of UREG is terminated here;
1914 that way the two lifespans will be disjoint and nothing will prevent
1915 the pseudo reg from being given this hard reg. */
1916
1917 if (ureg < FIRST_PSEUDO_REGISTER)
1918 {
1919 /* Allocate a quantity number so we have a place to put our
1920 suggestions. */
1921 if (reg_qty[sreg] == -2)
1922 reg_is_born (setreg, 2 * insn_number);
1923
1924 if (reg_qty[sreg] >= 0)
1925 {
1926 if (may_save_copy
1927 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1928 {
1929 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1930 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1931 }
1932 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1933 {
1934 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1935 qty_phys_num_sugg[reg_qty[sreg]]++;
1936 }
1937 }
1938 return 0;
1939 }
1940
1941 /* Similarly for SREG a hard register and UREG a pseudo register. */
1942
1943 if (sreg < FIRST_PSEUDO_REGISTER)
1944 {
1945 if (may_save_copy
1946 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1947 {
1948 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1949 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1950 }
1951 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1952 {
1953 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1954 qty_phys_num_sugg[reg_qty[ureg]]++;
1955 }
1956 return 0;
1957 }
1958
1959 /* At this point we know that SREG and UREG are both pseudos.
1960 Do nothing if SREG already has a quantity or is a register that we
1961 don't allocate. */
1962 if (reg_qty[sreg] >= -1
1963 /* If we are not going to let any regs live across calls,
1964 don't tie a call-crossing reg to a non-call-crossing reg. */
1965 || (current_function_has_nonlocal_label
1966 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1967 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1968 return 0;
1969
1970 /* We don't already know about SREG, so tie it to UREG
1971 if this is the last use of UREG, provided the classes they want
1972 are compatible. */
1973
1974 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1975 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1976 {
1977 /* Add SREG to UREG's quantity. */
1978 sqty = reg_qty[ureg];
1979 reg_qty[sreg] = sqty;
1980 reg_offset[sreg] = reg_offset[ureg] + offset;
1981 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1982 qty_first_reg[sqty] = sreg;
1983
1984 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1985 update_qty_class (sqty, sreg);
1986
1987 /* Update info about quantity SQTY. */
1988 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1989 qty_n_refs[sqty] += REG_N_REFS (sreg);
1990 if (usize < ssize)
1991 {
1992 register int i;
1993
1994 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1995 reg_offset[i] -= offset;
1996
1997 qty_size[sqty] = ssize;
1998 qty_mode[sqty] = GET_MODE (setreg);
1999 }
2000 }
2001 else
2002 return 0;
2003
2004 return 1;
2005 }
2006 \f
2007 /* Return 1 if the preferred class of REG allows it to be tied
2008 to a quantity or register whose class is CLASS.
2009 True if REG's reg class either contains or is contained in CLASS. */
2010
2011 static int
2012 reg_meets_class_p (reg, class)
2013 int reg;
2014 enum reg_class class;
2015 {
2016 register enum reg_class rclass = reg_preferred_class (reg);
2017 return (reg_class_subset_p (rclass, class)
2018 || reg_class_subset_p (class, rclass));
2019 }
2020
2021 /* Return 1 if the two specified classes have registers in common.
2022 If CALL_SAVED, then consider only call-saved registers. */
2023
2024 static int
2025 reg_classes_overlap_p (c1, c2, call_saved)
2026 register enum reg_class c1;
2027 register enum reg_class c2;
2028 int call_saved;
2029 {
2030 HARD_REG_SET c;
2031 int i;
2032
2033 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2034 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2035
2036 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2037 if (TEST_HARD_REG_BIT (c, i)
2038 && (! call_saved || ! call_used_regs[i]))
2039 return 1;
2040
2041 return 0;
2042 }
2043
2044 /* Update the class of QTY assuming that REG is being tied to it. */
2045
2046 static void
2047 update_qty_class (qty, reg)
2048 int qty;
2049 int reg;
2050 {
2051 enum reg_class rclass = reg_preferred_class (reg);
2052 if (reg_class_subset_p (rclass, qty_min_class[qty]))
2053 qty_min_class[qty] = rclass;
2054
2055 rclass = reg_alternate_class (reg);
2056 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
2057 qty_alternate_class[qty] = rclass;
2058
2059 if (REG_CHANGES_SIZE (reg))
2060 qty_changes_size[qty] = 1;
2061 }
2062 \f
2063 /* Handle something which alters the value of an rtx REG.
2064
2065 REG is whatever is set or clobbered. SETTER is the rtx that
2066 is modifying the register.
2067
2068 If it is not really a register, we do nothing.
2069 The file-global variables `this_insn' and `this_insn_number'
2070 carry info from `block_alloc'. */
2071
2072 static void
2073 reg_is_set (reg, setter)
2074 rtx reg;
2075 rtx setter;
2076 {
2077 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2078 a hard register. These may actually not exist any more. */
2079
2080 if (GET_CODE (reg) != SUBREG
2081 && GET_CODE (reg) != REG)
2082 return;
2083
2084 /* Mark this register as being born. If it is used in a CLOBBER, mark
2085 it as being born halfway between the previous insn and this insn so that
2086 it conflicts with our inputs but not the outputs of the previous insn. */
2087
2088 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2089 }
2090 \f
2091 /* Handle beginning of the life of register REG.
2092 BIRTH is the index at which this is happening. */
2093
2094 static void
2095 reg_is_born (reg, birth)
2096 rtx reg;
2097 int birth;
2098 {
2099 register int regno;
2100
2101 if (GET_CODE (reg) == SUBREG)
2102 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
2103 else
2104 regno = REGNO (reg);
2105
2106 if (regno < FIRST_PSEUDO_REGISTER)
2107 {
2108 mark_life (regno, GET_MODE (reg), 1);
2109
2110 /* If the register was to have been born earlier that the present
2111 insn, mark it as live where it is actually born. */
2112 if (birth < 2 * this_insn_number)
2113 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2114 }
2115 else
2116 {
2117 if (reg_qty[regno] == -2)
2118 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2119
2120 /* If this register has a quantity number, show that it isn't dead. */
2121 if (reg_qty[regno] >= 0)
2122 qty_death[reg_qty[regno]] = -1;
2123 }
2124 }
2125
2126 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2127 REG is an output that is dying (i.e., it is never used), otherwise it
2128 is an input (the normal case).
2129 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2130
2131 static void
2132 wipe_dead_reg (reg, output_p)
2133 register rtx reg;
2134 int output_p;
2135 {
2136 register int regno = REGNO (reg);
2137
2138 /* If this insn has multiple results,
2139 and the dead reg is used in one of the results,
2140 extend its life to after this insn,
2141 so it won't get allocated together with any other result of this insn. */
2142 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2143 && !single_set (this_insn))
2144 {
2145 int i;
2146 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2147 {
2148 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2149 if (GET_CODE (set) == SET
2150 && GET_CODE (SET_DEST (set)) != REG
2151 && !rtx_equal_p (reg, SET_DEST (set))
2152 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2153 output_p = 1;
2154 }
2155 }
2156
2157 /* If this register is used in an auto-increment address, then extend its
2158 life to after this insn, so that it won't get allocated together with
2159 the result of this insn. */
2160 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2161 output_p = 1;
2162
2163 if (regno < FIRST_PSEUDO_REGISTER)
2164 {
2165 mark_life (regno, GET_MODE (reg), 0);
2166
2167 /* If a hard register is dying as an output, mark it as in use at
2168 the beginning of this insn (the above statement would cause this
2169 not to happen). */
2170 if (output_p)
2171 post_mark_life (regno, GET_MODE (reg), 1,
2172 2 * this_insn_number, 2 * this_insn_number+ 1);
2173 }
2174
2175 else if (reg_qty[regno] >= 0)
2176 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
2177 }
2178 \f
2179 /* Find a block of SIZE words of hard regs in reg_class CLASS
2180 that can hold something of machine-mode MODE
2181 (but actually we test only the first of the block for holding MODE)
2182 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2183 and return the number of the first of them.
2184 Return -1 if such a block cannot be found.
2185 If QTY crosses calls, insist on a register preserved by calls,
2186 unless ACCEPT_CALL_CLOBBERED is nonzero.
2187
2188 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2189 register is available. If not, return -1. */
2190
2191 static int
2192 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
2193 born_index, dead_index)
2194 enum reg_class class;
2195 enum machine_mode mode;
2196 int qty;
2197 int accept_call_clobbered;
2198 int just_try_suggested;
2199 int born_index, dead_index;
2200 {
2201 register int i, ins;
2202 #ifdef HARD_REG_SET
2203 register /* Declare it register if it's a scalar. */
2204 #endif
2205 HARD_REG_SET used, first_used;
2206 #ifdef ELIMINABLE_REGS
2207 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2208 #endif
2209
2210 /* Validate our parameters. */
2211 if (born_index < 0 || born_index > dead_index)
2212 abort ();
2213
2214 /* Don't let a pseudo live in a reg across a function call
2215 if we might get a nonlocal goto. */
2216 if (current_function_has_nonlocal_label
2217 && qty_n_calls_crossed[qty] > 0)
2218 return -1;
2219
2220 if (accept_call_clobbered)
2221 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2222 else if (qty_n_calls_crossed[qty] == 0)
2223 COPY_HARD_REG_SET (used, fixed_reg_set);
2224 else
2225 COPY_HARD_REG_SET (used, call_used_reg_set);
2226
2227 if (accept_call_clobbered)
2228 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2229
2230 for (ins = born_index; ins < dead_index; ins++)
2231 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2232
2233 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2234
2235 /* Don't use the frame pointer reg in local-alloc even if
2236 we may omit the frame pointer, because if we do that and then we
2237 need a frame pointer, reload won't know how to move the pseudo
2238 to another hard reg. It can move only regs made by global-alloc.
2239
2240 This is true of any register that can be eliminated. */
2241 #ifdef ELIMINABLE_REGS
2242 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
2243 SET_HARD_REG_BIT (used, eliminables[i].from);
2244 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2245 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2246 that it might be eliminated into. */
2247 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2248 #endif
2249 #else
2250 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2251 #endif
2252
2253 #ifdef CLASS_CANNOT_CHANGE_SIZE
2254 if (qty_changes_size[qty])
2255 IOR_HARD_REG_SET (used,
2256 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2257 #endif
2258
2259 /* Normally, the registers that can be used for the first register in
2260 a multi-register quantity are the same as those that can be used for
2261 subsequent registers. However, if just trying suggested registers,
2262 restrict our consideration to them. If there are copy-suggested
2263 register, try them. Otherwise, try the arithmetic-suggested
2264 registers. */
2265 COPY_HARD_REG_SET (first_used, used);
2266
2267 if (just_try_suggested)
2268 {
2269 if (qty_phys_num_copy_sugg[qty] != 0)
2270 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2271 else
2272 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2273 }
2274
2275 /* If all registers are excluded, we can't do anything. */
2276 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2277
2278 /* If at least one would be suitable, test each hard reg. */
2279
2280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2281 {
2282 #ifdef REG_ALLOC_ORDER
2283 int regno = reg_alloc_order[i];
2284 #else
2285 int regno = i;
2286 #endif
2287 if (! TEST_HARD_REG_BIT (first_used, regno)
2288 && HARD_REGNO_MODE_OK (regno, mode))
2289 {
2290 register int j;
2291 register int size1 = HARD_REGNO_NREGS (regno, mode);
2292 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2293 if (j == size1)
2294 {
2295 /* Mark that this register is in use between its birth and death
2296 insns. */
2297 post_mark_life (regno, mode, 1, born_index, dead_index);
2298 return regno;
2299 }
2300 #ifndef REG_ALLOC_ORDER
2301 i += j; /* Skip starting points we know will lose */
2302 #endif
2303 }
2304 }
2305
2306 fail:
2307
2308 /* If we are just trying suggested register, we have just tried copy-
2309 suggested registers, and there are arithmetic-suggested registers,
2310 try them. */
2311
2312 /* If it would be profitable to allocate a call-clobbered register
2313 and save and restore it around calls, do that. */
2314 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2315 && qty_phys_num_sugg[qty] != 0)
2316 {
2317 /* Don't try the copy-suggested regs again. */
2318 qty_phys_num_copy_sugg[qty] = 0;
2319 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2320 born_index, dead_index);
2321 }
2322
2323 /* We need not check to see if the current function has nonlocal
2324 labels because we don't put any pseudos that are live over calls in
2325 registers in that case. */
2326
2327 if (! accept_call_clobbered
2328 && flag_caller_saves
2329 && ! just_try_suggested
2330 && qty_n_calls_crossed[qty] != 0
2331 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2332 {
2333 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2334 if (i >= 0)
2335 caller_save_needed = 1;
2336 return i;
2337 }
2338 return -1;
2339 }
2340 \f
2341 /* Mark that REGNO with machine-mode MODE is live starting from the current
2342 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2343 is zero). */
2344
2345 static void
2346 mark_life (regno, mode, life)
2347 register int regno;
2348 enum machine_mode mode;
2349 int life;
2350 {
2351 register int j = HARD_REGNO_NREGS (regno, mode);
2352 if (life)
2353 while (--j >= 0)
2354 SET_HARD_REG_BIT (regs_live, regno + j);
2355 else
2356 while (--j >= 0)
2357 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2358 }
2359
2360 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2361 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2362 to insn number DEATH (exclusive). */
2363
2364 static void
2365 post_mark_life (regno, mode, life, birth, death)
2366 int regno;
2367 enum machine_mode mode;
2368 int life, birth, death;
2369 {
2370 register int j = HARD_REGNO_NREGS (regno, mode);
2371 #ifdef HARD_REG_SET
2372 register /* Declare it register if it's a scalar. */
2373 #endif
2374 HARD_REG_SET this_reg;
2375
2376 CLEAR_HARD_REG_SET (this_reg);
2377 while (--j >= 0)
2378 SET_HARD_REG_BIT (this_reg, regno + j);
2379
2380 if (life)
2381 while (birth < death)
2382 {
2383 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2384 birth++;
2385 }
2386 else
2387 while (birth < death)
2388 {
2389 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2390 birth++;
2391 }
2392 }
2393 \f
2394 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2395 is the register being clobbered, and R1 is a register being used in
2396 the equivalent expression.
2397
2398 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2399 in which it is used, return 1.
2400
2401 Otherwise, return 0. */
2402
2403 static int
2404 no_conflict_p (insn, r0, r1)
2405 rtx insn, r0, r1;
2406 {
2407 int ok = 0;
2408 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2409 rtx p, last;
2410
2411 /* If R1 is a hard register, return 0 since we handle this case
2412 when we scan the insns that actually use it. */
2413
2414 if (note == 0
2415 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2416 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2417 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2418 return 0;
2419
2420 last = XEXP (note, 0);
2421
2422 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2423 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2424 {
2425 if (find_reg_note (p, REG_DEAD, r1))
2426 ok = 1;
2427
2428 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2429 some earlier optimization pass has inserted instructions into
2430 the sequence, and it is not safe to perform this optimization.
2431 Note that emit_no_conflict_block always ensures that this is
2432 true when these sequences are created. */
2433 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2434 return 0;
2435 }
2436
2437 return ok;
2438 }
2439 \f
2440 #ifdef REGISTER_CONSTRAINTS
2441
2442 /* Return the number of alternatives for which the constraint string P
2443 indicates that the operand must be equal to operand 0 and that no register
2444 is acceptable. */
2445
2446 static int
2447 requires_inout (p)
2448 char *p;
2449 {
2450 char c;
2451 int found_zero = 0;
2452 int reg_allowed = 0;
2453 int num_matching_alts = 0;
2454
2455 while (c = *p++)
2456 switch (c)
2457 {
2458 case '=': case '+': case '?':
2459 case '#': case '&': case '!':
2460 case '*': case '%':
2461 case '1': case '2': case '3': case '4':
2462 case 'm': case '<': case '>': case 'V': case 'o':
2463 case 'E': case 'F': case 'G': case 'H':
2464 case 's': case 'i': case 'n':
2465 case 'I': case 'J': case 'K': case 'L':
2466 case 'M': case 'N': case 'O': case 'P':
2467 #ifdef EXTRA_CONSTRAINT
2468 case 'Q': case 'R': case 'S': case 'T': case 'U':
2469 #endif
2470 case 'X':
2471 /* These don't say anything we care about. */
2472 break;
2473
2474 case ',':
2475 if (found_zero && ! reg_allowed)
2476 num_matching_alts++;
2477
2478 found_zero = reg_allowed = 0;
2479 break;
2480
2481 case '0':
2482 found_zero = 1;
2483 break;
2484
2485 case 'p':
2486 case 'g': case 'r':
2487 default:
2488 reg_allowed = 1;
2489 break;
2490 }
2491
2492 if (found_zero && ! reg_allowed)
2493 num_matching_alts++;
2494
2495 return num_matching_alts;
2496 }
2497 #endif /* REGISTER_CONSTRAINTS */
2498 \f
2499 void
2500 dump_local_alloc (file)
2501 FILE *file;
2502 {
2503 register int i;
2504 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2505 if (reg_renumber[i] != -1)
2506 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2507 }