Makefile.in, [...]: replace "GNU CC" with "GCC".
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 \f
78 /* Next quantity number available for allocation. */
79
80 static int next_qty;
81
82 /* Information we maitain about each quantity. */
83 struct qty
84 {
85 /* The number of refs to quantity Q. */
86
87 int n_refs;
88
89 /* The frequency of uses of quantity Q. */
90
91 int freq;
92
93 /* Insn number (counting from head of basic block)
94 where quantity Q was born. -1 if birth has not been recorded. */
95
96 int birth;
97
98 /* Insn number (counting from head of basic block)
99 where given quantity died. Due to the way tying is done,
100 and the fact that we consider in this pass only regs that die but once,
101 a quantity can die only once. Each quantity's life span
102 is a set of consecutive insns. -1 if death has not been recorded. */
103
104 int death;
105
106 /* Number of words needed to hold the data in given quantity.
107 This depends on its machine mode. It is used for these purposes:
108 1. It is used in computing the relative importances of qtys,
109 which determines the order in which we look for regs for them.
110 2. It is used in rules that prevent tying several registers of
111 different sizes in a way that is geometrically impossible
112 (see combine_regs). */
113
114 int size;
115
116 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
117
118 int n_calls_crossed;
119
120 /* The register number of one pseudo register whose reg_qty value is Q.
121 This register should be the head of the chain
122 maintained in reg_next_in_qty. */
123
124 int first_reg;
125
126 /* Reg class contained in (smaller than) the preferred classes of all
127 the pseudo regs that are tied in given quantity.
128 This is the preferred class for allocating that quantity. */
129
130 enum reg_class min_class;
131
132 /* Register class within which we allocate given qty if we can't get
133 its preferred class. */
134
135 enum reg_class alternate_class;
136
137 /* This holds the mode of the registers that are tied to given qty,
138 or VOIDmode if registers with differing modes are tied together. */
139
140 enum machine_mode mode;
141
142 /* the hard reg number chosen for given quantity,
143 or -1 if none was found. */
144
145 short phys_reg;
146
147 /* Nonzero if this quantity has been used in a SUBREG in some
148 way that is illegal. */
149
150 char changes_mode;
151
152 };
153
154 static struct qty *qty;
155
156 /* These fields are kept separately to speedup their clearing. */
157
158 /* We maintain two hard register sets that indicate suggested hard registers
159 for each quantity. The first, phys_copy_sugg, contains hard registers
160 that are tied to the quantity by a simple copy. The second contains all
161 hard registers that are tied to the quantity via an arithmetic operation.
162
163 The former register set is given priority for allocation. This tends to
164 eliminate copy insns. */
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 copy insns. */
168
169 static HARD_REG_SET *qty_phys_copy_sugg;
170
171 /* Element Q is a set of hard registers that are suggested for quantity Q by
172 arithmetic insns. */
173
174 static HARD_REG_SET *qty_phys_sugg;
175
176 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
177
178 static short *qty_phys_num_copy_sugg;
179
180 /* Element Q is the number of suggested registers in qty_phys_sugg. */
181
182 static short *qty_phys_num_sugg;
183
184 /* If (REG N) has been assigned a quantity number, is a register number
185 of another register assigned the same quantity number, or -1 for the
186 end of the chain. qty->first_reg point to the head of this chain. */
187
188 static int *reg_next_in_qty;
189
190 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
191 if it is >= 0,
192 of -1 if this register cannot be allocated by local-alloc,
193 or -2 if not known yet.
194
195 Note that if we see a use or death of pseudo register N with
196 reg_qty[N] == -2, register N must be local to the current block. If
197 it were used in more than one block, we would have reg_qty[N] == -1.
198 This relies on the fact that if reg_basic_block[N] is >= 0, register N
199 will not appear in any other block. We save a considerable number of
200 tests by exploiting this.
201
202 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
203 be referenced. */
204
205 static int *reg_qty;
206
207 /* The offset (in words) of register N within its quantity.
208 This can be nonzero if register N is SImode, and has been tied
209 to a subreg of a DImode register. */
210
211 static char *reg_offset;
212
213 /* Vector of substitutions of register numbers,
214 used to map pseudo regs into hardware regs.
215 This is set up as a result of register allocation.
216 Element N is the hard reg assigned to pseudo reg N,
217 or is -1 if no hard reg was assigned.
218 If N is a hard reg number, element N is N. */
219
220 short *reg_renumber;
221
222 /* Set of hard registers live at the current point in the scan
223 of the instructions in a basic block. */
224
225 static HARD_REG_SET regs_live;
226
227 /* Each set of hard registers indicates registers live at a particular
228 point in the basic block. For N even, regs_live_at[N] says which
229 hard registers are needed *after* insn N/2 (i.e., they may not
230 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
231
232 If an object is to conflict with the inputs of insn J but not the
233 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
234 if it is to conflict with the outputs of insn J but not the inputs of
235 insn J + 1, it is said to die at index J*2 + 1. */
236
237 static HARD_REG_SET *regs_live_at;
238
239 /* Communicate local vars `insn_number' and `insn'
240 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
241 static int this_insn_number;
242 static rtx this_insn;
243
244 struct equivalence
245 {
246 /* Set when an attempt should be made to replace a register
247 with the associated src entry. */
248
249 char replace;
250
251 /* Set when a REG_EQUIV note is found or created. Use to
252 keep track of what memory accesses might be created later,
253 e.g. by reload. */
254
255 rtx replacement;
256
257 rtx src;
258
259 /* Loop depth is used to recognize equivalences which appear
260 to be present within the same loop (or in an inner loop). */
261
262 int loop_depth;
263
264 /* The list of each instruction which initializes this register. */
265
266 rtx init_insns;
267 };
268
269 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
270 structure for that register. */
271
272 static struct equivalence *reg_equiv;
273
274 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
275 static int recorded_label_ref;
276
277 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
278 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
279 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
280 static int equiv_init_varies_p PARAMS ((rtx));
281 static int equiv_init_movable_p PARAMS ((rtx, int));
282 static int contains_replace_regs PARAMS ((rtx));
283 static int memref_referenced_p PARAMS ((rtx, rtx));
284 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
285 static void update_equiv_regs PARAMS ((void));
286 static void no_equiv PARAMS ((rtx, rtx, void *));
287 static void block_alloc PARAMS ((int));
288 static int qty_sugg_compare PARAMS ((int, int));
289 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
290 static int qty_compare PARAMS ((int, int));
291 static int qty_compare_1 PARAMS ((const PTR, const PTR));
292 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
293 static int reg_meets_class_p PARAMS ((int, enum reg_class));
294 static void update_qty_class PARAMS ((int, int));
295 static void reg_is_set PARAMS ((rtx, rtx, void *));
296 static void reg_is_born PARAMS ((rtx, int));
297 static void wipe_dead_reg PARAMS ((rtx, int));
298 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
299 int, int, int, int, int));
300 static void mark_life PARAMS ((int, enum machine_mode, int));
301 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
302 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
303 static int requires_inout PARAMS ((const char *));
304 \f
305 /* Allocate a new quantity (new within current basic block)
306 for register number REGNO which is born at index BIRTH
307 within the block. MODE and SIZE are info on reg REGNO. */
308
309 static void
310 alloc_qty (regno, mode, size, birth)
311 int regno;
312 enum machine_mode mode;
313 int size, birth;
314 {
315 register int qtyno = next_qty++;
316
317 reg_qty[regno] = qtyno;
318 reg_offset[regno] = 0;
319 reg_next_in_qty[regno] = -1;
320
321 qty[qtyno].first_reg = regno;
322 qty[qtyno].size = size;
323 qty[qtyno].mode = mode;
324 qty[qtyno].birth = birth;
325 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
326 qty[qtyno].min_class = reg_preferred_class (regno);
327 qty[qtyno].alternate_class = reg_alternate_class (regno);
328 qty[qtyno].n_refs = REG_N_REFS (regno);
329 qty[qtyno].freq = REG_FREQ (regno);
330 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
331 }
332 \f
333 /* Main entry point of this file. */
334
335 int
336 local_alloc ()
337 {
338 register int b, i;
339 int max_qty;
340
341 /* We need to keep track of whether or not we recorded a LABEL_REF so
342 that we know if the jump optimizer needs to be rerun. */
343 recorded_label_ref = 0;
344
345 /* Leaf functions and non-leaf functions have different needs.
346 If defined, let the machine say what kind of ordering we
347 should use. */
348 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
349 ORDER_REGS_FOR_LOCAL_ALLOC;
350 #endif
351
352 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
353 registers. */
354 update_equiv_regs ();
355
356 /* This sets the maximum number of quantities we can have. Quantity
357 numbers start at zero and we can have one for each pseudo. */
358 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
359
360 /* Allocate vectors of temporary data.
361 See the declarations of these variables, above,
362 for what they mean. */
363
364 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
365 qty_phys_copy_sugg
366 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
367 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
368 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
369 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
370
371 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
372 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
373 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
374
375 /* Allocate the reg_renumber array. */
376 allocate_reg_info (max_regno, FALSE, TRUE);
377
378 /* Determine which pseudo-registers can be allocated by local-alloc.
379 In general, these are the registers used only in a single block and
380 which only die once.
381
382 We need not be concerned with which block actually uses the register
383 since we will never see it outside that block. */
384
385 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
386 {
387 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
388 reg_qty[i] = -2;
389 else
390 reg_qty[i] = -1;
391 }
392
393 /* Force loop below to initialize entire quantity array. */
394 next_qty = max_qty;
395
396 /* Allocate each block's local registers, block by block. */
397
398 for (b = 0; b < n_basic_blocks; b++)
399 {
400 /* NEXT_QTY indicates which elements of the `qty_...'
401 vectors might need to be initialized because they were used
402 for the previous block; it is set to the entire array before
403 block 0. Initialize those, with explicit loop if there are few,
404 else with bzero and bcopy. Do not initialize vectors that are
405 explicit set by `alloc_qty'. */
406
407 if (next_qty < 6)
408 {
409 for (i = 0; i < next_qty; i++)
410 {
411 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
412 qty_phys_num_copy_sugg[i] = 0;
413 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
414 qty_phys_num_sugg[i] = 0;
415 }
416 }
417 else
418 {
419 #define CLEAR(vector) \
420 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
421
422 CLEAR (qty_phys_copy_sugg);
423 CLEAR (qty_phys_num_copy_sugg);
424 CLEAR (qty_phys_sugg);
425 CLEAR (qty_phys_num_sugg);
426 }
427
428 next_qty = 0;
429
430 block_alloc (b);
431 }
432
433 free (qty);
434 free (qty_phys_copy_sugg);
435 free (qty_phys_num_copy_sugg);
436 free (qty_phys_sugg);
437 free (qty_phys_num_sugg);
438
439 free (reg_qty);
440 free (reg_offset);
441 free (reg_next_in_qty);
442
443 return recorded_label_ref;
444 }
445 \f
446 /* Used for communication between the following two functions: contains
447 a MEM that we wish to ensure remains unchanged. */
448 static rtx equiv_mem;
449
450 /* Set nonzero if EQUIV_MEM is modified. */
451 static int equiv_mem_modified;
452
453 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
454 Called via note_stores. */
455
456 static void
457 validate_equiv_mem_from_store (dest, set, data)
458 rtx dest;
459 rtx set ATTRIBUTE_UNUSED;
460 void *data ATTRIBUTE_UNUSED;
461 {
462 if ((GET_CODE (dest) == REG
463 && reg_overlap_mentioned_p (dest, equiv_mem))
464 || (GET_CODE (dest) == MEM
465 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
466 equiv_mem_modified = 1;
467 }
468
469 /* Verify that no store between START and the death of REG invalidates
470 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
471 by storing into an overlapping memory location, or with a non-const
472 CALL_INSN.
473
474 Return 1 if MEMREF remains valid. */
475
476 static int
477 validate_equiv_mem (start, reg, memref)
478 rtx start;
479 rtx reg;
480 rtx memref;
481 {
482 rtx insn;
483 rtx note;
484
485 equiv_mem = memref;
486 equiv_mem_modified = 0;
487
488 /* If the memory reference has side effects or is volatile, it isn't a
489 valid equivalence. */
490 if (side_effects_p (memref))
491 return 0;
492
493 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
494 {
495 if (! INSN_P (insn))
496 continue;
497
498 if (find_reg_note (insn, REG_DEAD, reg))
499 return 1;
500
501 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
502 && ! CONST_OR_PURE_CALL_P (insn))
503 return 0;
504
505 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
506
507 /* If a register mentioned in MEMREF is modified via an
508 auto-increment, we lose the equivalence. Do the same if one
509 dies; although we could extend the life, it doesn't seem worth
510 the trouble. */
511
512 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
513 if ((REG_NOTE_KIND (note) == REG_INC
514 || REG_NOTE_KIND (note) == REG_DEAD)
515 && GET_CODE (XEXP (note, 0)) == REG
516 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
517 return 0;
518 }
519
520 return 0;
521 }
522
523 /* Returns zero if X is known to be invariant. */
524
525 static int
526 equiv_init_varies_p (x)
527 rtx x;
528 {
529 register RTX_CODE code = GET_CODE (x);
530 register int i;
531 register const char *fmt;
532
533 switch (code)
534 {
535 case MEM:
536 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
537
538 case QUEUED:
539 return 1;
540
541 case CONST:
542 case CONST_INT:
543 case CONST_DOUBLE:
544 case SYMBOL_REF:
545 case LABEL_REF:
546 return 0;
547
548 case REG:
549 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
550
551 case ASM_OPERANDS:
552 if (MEM_VOLATILE_P (x))
553 return 1;
554
555 /* FALLTHROUGH */
556
557 default:
558 break;
559 }
560
561 fmt = GET_RTX_FORMAT (code);
562 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
563 if (fmt[i] == 'e')
564 {
565 if (equiv_init_varies_p (XEXP (x, i)))
566 return 1;
567 }
568 else if (fmt[i] == 'E')
569 {
570 int j;
571 for (j = 0; j < XVECLEN (x, i); j++)
572 if (equiv_init_varies_p (XVECEXP (x, i, j)))
573 return 1;
574 }
575
576 return 0;
577 }
578
579 /* Returns non-zero if X (used to initialize register REGNO) is movable.
580 X is only movable if the registers it uses have equivalent initializations
581 which appear to be within the same loop (or in an inner loop) and movable
582 or if they are not candidates for local_alloc and don't vary. */
583
584 static int
585 equiv_init_movable_p (x, regno)
586 rtx x;
587 int regno;
588 {
589 int i, j;
590 const char *fmt;
591 enum rtx_code code = GET_CODE (x);
592
593 switch (code)
594 {
595 case SET:
596 return equiv_init_movable_p (SET_SRC (x), regno);
597
598 case CC0:
599 case CLOBBER:
600 return 0;
601
602 case PRE_INC:
603 case PRE_DEC:
604 case POST_INC:
605 case POST_DEC:
606 case PRE_MODIFY:
607 case POST_MODIFY:
608 return 0;
609
610 case REG:
611 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
612 && reg_equiv[REGNO (x)].replace)
613 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
614
615 case UNSPEC_VOLATILE:
616 return 0;
617
618 case ASM_OPERANDS:
619 if (MEM_VOLATILE_P (x))
620 return 0;
621
622 /* FALLTHROUGH */
623
624 default:
625 break;
626 }
627
628 fmt = GET_RTX_FORMAT (code);
629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
630 switch (fmt[i])
631 {
632 case 'e':
633 if (! equiv_init_movable_p (XEXP (x, i), regno))
634 return 0;
635 break;
636 case 'E':
637 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
638 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
639 return 0;
640 break;
641 }
642
643 return 1;
644 }
645
646 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
647
648 static int
649 contains_replace_regs (x)
650 rtx x;
651 {
652 int i, j;
653 const char *fmt;
654 enum rtx_code code = GET_CODE (x);
655
656 switch (code)
657 {
658 case CONST_INT:
659 case CONST:
660 case LABEL_REF:
661 case SYMBOL_REF:
662 case CONST_DOUBLE:
663 case PC:
664 case CC0:
665 case HIGH:
666 case LO_SUM:
667 return 0;
668
669 case REG:
670 return reg_equiv[REGNO (x)].replace;
671
672 default:
673 break;
674 }
675
676 fmt = GET_RTX_FORMAT (code);
677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
678 switch (fmt[i])
679 {
680 case 'e':
681 if (contains_replace_regs (XEXP (x, i)))
682 return 1;
683 break;
684 case 'E':
685 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
686 if (contains_replace_regs (XVECEXP (x, i, j)))
687 return 1;
688 break;
689 }
690
691 return 0;
692 }
693 \f
694 /* TRUE if X references a memory location that would be affected by a store
695 to MEMREF. */
696
697 static int
698 memref_referenced_p (memref, x)
699 rtx x;
700 rtx memref;
701 {
702 int i, j;
703 const char *fmt;
704 enum rtx_code code = GET_CODE (x);
705
706 switch (code)
707 {
708 case CONST_INT:
709 case CONST:
710 case LABEL_REF:
711 case SYMBOL_REF:
712 case CONST_DOUBLE:
713 case PC:
714 case CC0:
715 case HIGH:
716 case LO_SUM:
717 return 0;
718
719 case REG:
720 return (reg_equiv[REGNO (x)].replacement
721 && memref_referenced_p (memref,
722 reg_equiv[REGNO (x)].replacement));
723
724 case MEM:
725 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
726 return 1;
727 break;
728
729 case SET:
730 /* If we are setting a MEM, it doesn't count (its address does), but any
731 other SET_DEST that has a MEM in it is referencing the MEM. */
732 if (GET_CODE (SET_DEST (x)) == MEM)
733 {
734 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
735 return 1;
736 }
737 else if (memref_referenced_p (memref, SET_DEST (x)))
738 return 1;
739
740 return memref_referenced_p (memref, SET_SRC (x));
741
742 default:
743 break;
744 }
745
746 fmt = GET_RTX_FORMAT (code);
747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
748 switch (fmt[i])
749 {
750 case 'e':
751 if (memref_referenced_p (memref, XEXP (x, i)))
752 return 1;
753 break;
754 case 'E':
755 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
756 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
757 return 1;
758 break;
759 }
760
761 return 0;
762 }
763
764 /* TRUE if some insn in the range (START, END] references a memory location
765 that would be affected by a store to MEMREF. */
766
767 static int
768 memref_used_between_p (memref, start, end)
769 rtx memref;
770 rtx start;
771 rtx end;
772 {
773 rtx insn;
774
775 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
776 insn = NEXT_INSN (insn))
777 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
778 return 1;
779
780 return 0;
781 }
782 \f
783 /* Return nonzero if the rtx X is invariant over the current function. */
784 int
785 function_invariant_p (x)
786 rtx x;
787 {
788 if (CONSTANT_P (x))
789 return 1;
790 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
791 return 1;
792 if (GET_CODE (x) == PLUS
793 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
794 && CONSTANT_P (XEXP (x, 1)))
795 return 1;
796 return 0;
797 }
798
799 /* Find registers that are equivalent to a single value throughout the
800 compilation (either because they can be referenced in memory or are set once
801 from a single constant). Lower their priority for a register.
802
803 If such a register is only referenced once, try substituting its value
804 into the using insn. If it succeeds, we can eliminate the register
805 completely. */
806
807 static void
808 update_equiv_regs ()
809 {
810 rtx insn;
811 int block;
812 int loop_depth;
813 regset_head cleared_regs;
814 int clear_regnos = 0;
815
816 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
817 INIT_REG_SET (&cleared_regs);
818
819 init_alias_analysis ();
820
821 /* Scan the insns and find which registers have equivalences. Do this
822 in a separate scan of the insns because (due to -fcse-follow-jumps)
823 a register can be set below its use. */
824 loop_depth = 0;
825 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
826 {
827 rtx note;
828 rtx set;
829 rtx dest, src;
830 int regno;
831
832 if (GET_CODE (insn) == NOTE)
833 {
834 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
835 ++loop_depth;
836 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
837 {
838 if (! loop_depth)
839 abort ();
840 --loop_depth;
841 }
842 }
843
844 if (! INSN_P (insn))
845 continue;
846
847 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
848 if (REG_NOTE_KIND (note) == REG_INC)
849 no_equiv (XEXP (note, 0), note, NULL);
850
851 set = single_set (insn);
852
853 /* If this insn contains more (or less) than a single SET,
854 only mark all destinations as having no known equivalence. */
855 if (set == 0)
856 {
857 note_stores (PATTERN (insn), no_equiv, NULL);
858 continue;
859 }
860 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
861 {
862 int i;
863
864 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
865 {
866 rtx part = XVECEXP (PATTERN (insn), 0, i);
867 if (part != set)
868 note_stores (part, no_equiv, NULL);
869 }
870 }
871
872 dest = SET_DEST (set);
873 src = SET_SRC (set);
874
875 /* If this sets a MEM to the contents of a REG that is only used
876 in a single basic block, see if the register is always equivalent
877 to that memory location and if moving the store from INSN to the
878 insn that set REG is safe. If so, put a REG_EQUIV note on the
879 initializing insn.
880
881 Don't add a REG_EQUIV note if the insn already has one. The existing
882 REG_EQUIV is likely more useful than the one we are adding.
883
884 If one of the regs in the address has reg_equiv[REGNO].replace set,
885 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
886 optimization may move the set of this register immediately before
887 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
888 the mention in the REG_EQUIV note would be to an uninitialized
889 pseudo. */
890 /* ????? This test isn't good enough; we might see a MEM with a use of
891 a pseudo register before we see its setting insn that will cause
892 reg_equiv[].replace for that pseudo to be set.
893 Equivalences to MEMs should be made in another pass, after the
894 reg_equiv[].replace information has been gathered. */
895
896 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
897 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
898 && REG_BASIC_BLOCK (regno) >= 0
899 && REG_N_SETS (regno) == 1
900 && reg_equiv[regno].init_insns != 0
901 && reg_equiv[regno].init_insns != const0_rtx
902 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
903 REG_EQUIV, NULL_RTX)
904 && ! contains_replace_regs (XEXP (dest, 0)))
905 {
906 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
907 if (validate_equiv_mem (init_insn, src, dest)
908 && ! memref_used_between_p (dest, init_insn, insn))
909 REG_NOTES (init_insn)
910 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
911 }
912
913 /* We only handle the case of a pseudo register being set
914 once, or always to the same value. */
915 /* ??? The mn10200 port breaks if we add equivalences for
916 values that need an ADDRESS_REGS register and set them equivalent
917 to a MEM of a pseudo. The actual problem is in the over-conservative
918 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
919 calculate_needs, but we traditionally work around this problem
920 here by rejecting equivalences when the destination is in a register
921 that's likely spilled. This is fragile, of course, since the
922 preferred class of a pseudo depends on all instructions that set
923 or use it. */
924
925 if (GET_CODE (dest) != REG
926 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
927 || reg_equiv[regno].init_insns == const0_rtx
928 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
929 && GET_CODE (src) == MEM))
930 {
931 /* This might be seting a SUBREG of a pseudo, a pseudo that is
932 also set somewhere else to a constant. */
933 note_stores (set, no_equiv, NULL);
934 continue;
935 }
936
937 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
938
939 /* cse sometimes generates function invariants, but doesn't put a
940 REG_EQUAL note on the insn. Since this note would be redundant,
941 there's no point creating it earlier than here. */
942 if (! note && ! rtx_varies_p (src, 0))
943 REG_NOTES (insn)
944 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
945
946 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
947 since it represents a function call */
948 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
949 note = NULL_RTX;
950
951 if (REG_N_SETS (regno) != 1
952 && (! note
953 || rtx_varies_p (XEXP (note, 0), 0)
954 || (reg_equiv[regno].replacement
955 && ! rtx_equal_p (XEXP (note, 0),
956 reg_equiv[regno].replacement))))
957 {
958 no_equiv (dest, set, NULL);
959 continue;
960 }
961 /* Record this insn as initializing this register. */
962 reg_equiv[regno].init_insns
963 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
964
965 /* If this register is known to be equal to a constant, record that
966 it is always equivalent to the constant. */
967 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
968 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
969
970 /* If this insn introduces a "constant" register, decrease the priority
971 of that register. Record this insn if the register is only used once
972 more and the equivalence value is the same as our source.
973
974 The latter condition is checked for two reasons: First, it is an
975 indication that it may be more efficient to actually emit the insn
976 as written (if no registers are available, reload will substitute
977 the equivalence). Secondly, it avoids problems with any registers
978 dying in this insn whose death notes would be missed.
979
980 If we don't have a REG_EQUIV note, see if this insn is loading
981 a register used only in one basic block from a MEM. If so, and the
982 MEM remains unchanged for the life of the register, add a REG_EQUIV
983 note. */
984
985 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
986
987 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
988 && GET_CODE (SET_SRC (set)) == MEM
989 && validate_equiv_mem (insn, dest, SET_SRC (set)))
990 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
991 REG_NOTES (insn));
992
993 if (note)
994 {
995 int regno = REGNO (dest);
996
997 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
998 We might end up substituting the LABEL_REF for uses of the
999 pseudo here or later. That kind of transformation may turn an
1000 indirect jump into a direct jump, in which case we must rerun the
1001 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
1002 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
1003 || (GET_CODE (XEXP (note, 0)) == CONST
1004 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
1005 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1006 == LABEL_REF)))
1007 recorded_label_ref = 1;
1008
1009 reg_equiv[regno].replacement = XEXP (note, 0);
1010 reg_equiv[regno].src = src;
1011 reg_equiv[regno].loop_depth = loop_depth;
1012
1013 /* Don't mess with things live during setjmp. */
1014 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1015 {
1016 /* Note that the statement below does not affect the priority
1017 in local-alloc! */
1018 REG_LIVE_LENGTH (regno) *= 2;
1019
1020
1021 /* If the register is referenced exactly twice, meaning it is
1022 set once and used once, indicate that the reference may be
1023 replaced by the equivalence we computed above. Do this
1024 even if the register is only used in one block so that
1025 dependencies can be handled where the last register is
1026 used in a different block (i.e. HIGH / LO_SUM sequences)
1027 and to reduce the number of registers alive across calls.
1028
1029 It would be nice to use "loop_depth * 2" in the compare
1030 below. Unfortunately, LOOP_DEPTH need not be constant within
1031 a basic block so this would be too complicated.
1032
1033 This case normally occurs when a parameter is read from
1034 memory and then used exactly once, not in a loop. */
1035
1036 if (REG_N_REFS (regno) == 2
1037 && (rtx_equal_p (XEXP (note, 0), src)
1038 || ! equiv_init_varies_p (src))
1039 && GET_CODE (insn) == INSN
1040 && equiv_init_movable_p (PATTERN (insn), regno))
1041 reg_equiv[regno].replace = 1;
1042 }
1043 }
1044 }
1045
1046 /* Now scan all regs killed in an insn to see if any of them are
1047 registers only used that once. If so, see if we can replace the
1048 reference with the equivalent from. If we can, delete the
1049 initializing reference and this register will go away. If we
1050 can't replace the reference, and the initialzing reference is
1051 within the same loop (or in an inner loop), then move the register
1052 initialization just before the use, so that they are in the same
1053 basic block.
1054
1055 Skip this optimization if loop_depth isn't initially zero since
1056 that indicates a mismatch between loop begin and loop end notes
1057 (i.e. gcc.dg/noncompile/920721-2.c). */
1058 block = n_basic_blocks - 1;
1059 for (insn = (loop_depth == 0) ? get_last_insn () : NULL_RTX;
1060 insn; insn = PREV_INSN (insn))
1061 {
1062 rtx link;
1063
1064 if (! INSN_P (insn))
1065 {
1066 if (GET_CODE (insn) == NOTE)
1067 {
1068 if (NOTE_INSN_BASIC_BLOCK_P (insn))
1069 block = NOTE_BASIC_BLOCK (insn)->index - 1;
1070 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1071 {
1072 if (! loop_depth)
1073 abort ();
1074 --loop_depth;
1075 }
1076 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1077 ++loop_depth;
1078 }
1079
1080 continue;
1081 }
1082
1083 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1084 {
1085 if (REG_NOTE_KIND (link) == REG_DEAD
1086 /* Make sure this insn still refers to the register. */
1087 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1088 {
1089 int regno = REGNO (XEXP (link, 0));
1090 rtx equiv_insn;
1091
1092 if (! reg_equiv[regno].replace
1093 || reg_equiv[regno].loop_depth < loop_depth)
1094 continue;
1095
1096 /* reg_equiv[REGNO].replace gets set only when
1097 REG_N_REFS[REGNO] is 2, i.e. the register is set
1098 once and used once. (If it were only set, but not used,
1099 flow would have deleted the setting insns.) Hence
1100 there can only be one insn in reg_equiv[REGNO].init_insns. */
1101 if (reg_equiv[regno].init_insns == NULL_RTX
1102 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1103 abort ();
1104 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1105
1106 /* We may not move instructions that can throw, since
1107 that changes basic block boundaries and we are not
1108 prepared to adjust the CFG to match. */
1109 if (can_throw_internal (equiv_insn))
1110 continue;
1111
1112 if (asm_noperands (PATTERN (equiv_insn)) < 0
1113 && validate_replace_rtx (regno_reg_rtx[regno],
1114 reg_equiv[regno].src, insn))
1115 {
1116 rtx equiv_link;
1117 rtx last_link;
1118 rtx note;
1119
1120 /* Find the last note. */
1121 for (last_link = link; XEXP (last_link, 1);
1122 last_link = XEXP (last_link, 1))
1123 ;
1124
1125 /* Append the REG_DEAD notes from equiv_insn. */
1126 equiv_link = REG_NOTES (equiv_insn);
1127 while (equiv_link)
1128 {
1129 note = equiv_link;
1130 equiv_link = XEXP (equiv_link, 1);
1131 if (REG_NOTE_KIND (note) == REG_DEAD)
1132 {
1133 remove_note (equiv_insn, note);
1134 XEXP (last_link, 1) = note;
1135 XEXP (note, 1) = NULL_RTX;
1136 last_link = note;
1137 }
1138 }
1139
1140 remove_death (regno, insn);
1141 REG_N_REFS (regno) = 0;
1142 REG_FREQ (regno) = 0;
1143 PUT_CODE (equiv_insn, NOTE);
1144 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1145 NOTE_SOURCE_FILE (equiv_insn) = 0;
1146
1147 reg_equiv[regno].init_insns
1148 = XEXP (reg_equiv[regno].init_insns, 1);
1149 }
1150 /* Move the initialization of the register to just before
1151 INSN. Update the flow information. */
1152 else if (PREV_INSN (insn) != equiv_insn)
1153 {
1154 rtx new_insn;
1155
1156 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1157 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1158 REG_NOTES (equiv_insn) = 0;
1159
1160 /* Make sure this insn is recognized before reload begins,
1161 otherwise eliminate_regs_in_insn will abort. */
1162 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1163
1164 PUT_CODE (equiv_insn, NOTE);
1165 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1166 NOTE_SOURCE_FILE (equiv_insn) = 0;
1167
1168 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1169
1170 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1171 REG_N_CALLS_CROSSED (regno) = 0;
1172 REG_LIVE_LENGTH (regno) = 2;
1173
1174 if (block >= 0 && insn == BLOCK_HEAD (block))
1175 BLOCK_HEAD (block) = PREV_INSN (insn);
1176
1177 /* Remember to clear REGNO from all basic block's live
1178 info. */
1179 SET_REGNO_REG_SET (&cleared_regs, regno);
1180 clear_regnos++;
1181 }
1182 }
1183 }
1184 }
1185
1186 /* Clear all dead REGNOs from all basic block's live info. */
1187 if (clear_regnos)
1188 {
1189 int j, l;
1190 if (clear_regnos > 8)
1191 {
1192 for (l = 0; l < n_basic_blocks; l++)
1193 {
1194 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1195 &cleared_regs);
1196 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1197 &cleared_regs);
1198 }
1199 }
1200 else
1201 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1202 {
1203 for (l = 0; l < n_basic_blocks; l++)
1204 {
1205 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1206 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1207 }
1208 });
1209 }
1210
1211 /* Clean up. */
1212 end_alias_analysis ();
1213 CLEAR_REG_SET (&cleared_regs);
1214 free (reg_equiv);
1215 }
1216
1217 /* Mark REG as having no known equivalence.
1218 Some instructions might have been proceessed before and furnished
1219 with REG_EQUIV notes for this register; these notes will have to be
1220 removed.
1221 STORE is the piece of RTL that does the non-constant / conflicting
1222 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1223 but needs to be there because this function is called from note_stores. */
1224 static void
1225 no_equiv (reg, store, data)
1226 rtx reg, store ATTRIBUTE_UNUSED;
1227 void *data ATTRIBUTE_UNUSED;
1228 {
1229 int regno;
1230 rtx list;
1231
1232 if (GET_CODE (reg) != REG)
1233 return;
1234 regno = REGNO (reg);
1235 list = reg_equiv[regno].init_insns;
1236 if (list == const0_rtx)
1237 return;
1238 for (; list; list = XEXP (list, 1))
1239 {
1240 rtx insn = XEXP (list, 0);
1241 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1242 }
1243 reg_equiv[regno].init_insns = const0_rtx;
1244 reg_equiv[regno].replacement = NULL_RTX;
1245 }
1246 \f
1247 /* Allocate hard regs to the pseudo regs used only within block number B.
1248 Only the pseudos that die but once can be handled. */
1249
1250 static void
1251 block_alloc (b)
1252 int b;
1253 {
1254 register int i, q;
1255 register rtx insn;
1256 rtx note;
1257 int insn_number = 0;
1258 int insn_count = 0;
1259 int max_uid = get_max_uid ();
1260 int *qty_order;
1261 int no_conflict_combined_regno = -1;
1262
1263 /* Count the instructions in the basic block. */
1264
1265 insn = BLOCK_END (b);
1266 while (1)
1267 {
1268 if (GET_CODE (insn) != NOTE)
1269 if (++insn_count > max_uid)
1270 abort ();
1271 if (insn == BLOCK_HEAD (b))
1272 break;
1273 insn = PREV_INSN (insn);
1274 }
1275
1276 /* +2 to leave room for a post_mark_life at the last insn and for
1277 the birth of a CLOBBER in the first insn. */
1278 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1279 sizeof (HARD_REG_SET));
1280
1281 /* Initialize table of hardware registers currently live. */
1282
1283 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1284
1285 /* This loop scans the instructions of the basic block
1286 and assigns quantities to registers.
1287 It computes which registers to tie. */
1288
1289 insn = BLOCK_HEAD (b);
1290 while (1)
1291 {
1292 if (GET_CODE (insn) != NOTE)
1293 insn_number++;
1294
1295 if (INSN_P (insn))
1296 {
1297 register rtx link, set;
1298 register int win = 0;
1299 register rtx r0, r1 = NULL_RTX;
1300 int combined_regno = -1;
1301 int i;
1302
1303 this_insn_number = insn_number;
1304 this_insn = insn;
1305
1306 extract_insn (insn);
1307 which_alternative = -1;
1308
1309 /* Is this insn suitable for tying two registers?
1310 If so, try doing that.
1311 Suitable insns are those with at least two operands and where
1312 operand 0 is an output that is a register that is not
1313 earlyclobber.
1314
1315 We can tie operand 0 with some operand that dies in this insn.
1316 First look for operands that are required to be in the same
1317 register as operand 0. If we find such, only try tying that
1318 operand or one that can be put into that operand if the
1319 operation is commutative. If we don't find an operand
1320 that is required to be in the same register as operand 0,
1321 we can tie with any operand.
1322
1323 Subregs in place of regs are also ok.
1324
1325 If tying is done, WIN is set nonzero. */
1326
1327 if (optimize
1328 && recog_data.n_operands > 1
1329 && recog_data.constraints[0][0] == '='
1330 && recog_data.constraints[0][1] != '&')
1331 {
1332 /* If non-negative, is an operand that must match operand 0. */
1333 int must_match_0 = -1;
1334 /* Counts number of alternatives that require a match with
1335 operand 0. */
1336 int n_matching_alts = 0;
1337
1338 for (i = 1; i < recog_data.n_operands; i++)
1339 {
1340 const char *p = recog_data.constraints[i];
1341 int this_match = (requires_inout (p));
1342
1343 n_matching_alts += this_match;
1344 if (this_match == recog_data.n_alternatives)
1345 must_match_0 = i;
1346 }
1347
1348 r0 = recog_data.operand[0];
1349 for (i = 1; i < recog_data.n_operands; i++)
1350 {
1351 /* Skip this operand if we found an operand that
1352 must match operand 0 and this operand isn't it
1353 and can't be made to be it by commutativity. */
1354
1355 if (must_match_0 >= 0 && i != must_match_0
1356 && ! (i == must_match_0 + 1
1357 && recog_data.constraints[i-1][0] == '%')
1358 && ! (i == must_match_0 - 1
1359 && recog_data.constraints[i][0] == '%'))
1360 continue;
1361
1362 /* Likewise if each alternative has some operand that
1363 must match operand zero. In that case, skip any
1364 operand that doesn't list operand 0 since we know that
1365 the operand always conflicts with operand 0. We
1366 ignore commutatity in this case to keep things simple. */
1367 if (n_matching_alts == recog_data.n_alternatives
1368 && 0 == requires_inout (recog_data.constraints[i]))
1369 continue;
1370
1371 r1 = recog_data.operand[i];
1372
1373 /* If the operand is an address, find a register in it.
1374 There may be more than one register, but we only try one
1375 of them. */
1376 if (recog_data.constraints[i][0] == 'p')
1377 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1378 r1 = XEXP (r1, 0);
1379
1380 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1381 {
1382 /* We have two priorities for hard register preferences.
1383 If we have a move insn or an insn whose first input
1384 can only be in the same register as the output, give
1385 priority to an equivalence found from that insn. */
1386 int may_save_copy
1387 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1388
1389 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1390 win = combine_regs (r1, r0, may_save_copy,
1391 insn_number, insn, 0);
1392 }
1393 if (win)
1394 break;
1395 }
1396 }
1397
1398 /* Recognize an insn sequence with an ultimate result
1399 which can safely overlap one of the inputs.
1400 The sequence begins with a CLOBBER of its result,
1401 and ends with an insn that copies the result to itself
1402 and has a REG_EQUAL note for an equivalent formula.
1403 That note indicates what the inputs are.
1404 The result and the input can overlap if each insn in
1405 the sequence either doesn't mention the input
1406 or has a REG_NO_CONFLICT note to inhibit the conflict.
1407
1408 We do the combining test at the CLOBBER so that the
1409 destination register won't have had a quantity number
1410 assigned, since that would prevent combining. */
1411
1412 if (optimize
1413 && GET_CODE (PATTERN (insn)) == CLOBBER
1414 && (r0 = XEXP (PATTERN (insn), 0),
1415 GET_CODE (r0) == REG)
1416 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1417 && XEXP (link, 0) != 0
1418 && GET_CODE (XEXP (link, 0)) == INSN
1419 && (set = single_set (XEXP (link, 0))) != 0
1420 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1421 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1422 NULL_RTX)) != 0)
1423 {
1424 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1425 /* Check that we have such a sequence. */
1426 && no_conflict_p (insn, r0, r1))
1427 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1428 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1429 && (r1 = XEXP (XEXP (note, 0), 0),
1430 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1431 && no_conflict_p (insn, r0, r1))
1432 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1433
1434 /* Here we care if the operation to be computed is
1435 commutative. */
1436 else if ((GET_CODE (XEXP (note, 0)) == EQ
1437 || GET_CODE (XEXP (note, 0)) == NE
1438 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1439 && (r1 = XEXP (XEXP (note, 0), 1),
1440 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1441 && no_conflict_p (insn, r0, r1))
1442 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1443
1444 /* If we did combine something, show the register number
1445 in question so that we know to ignore its death. */
1446 if (win)
1447 no_conflict_combined_regno = REGNO (r1);
1448 }
1449
1450 /* If registers were just tied, set COMBINED_REGNO
1451 to the number of the register used in this insn
1452 that was tied to the register set in this insn.
1453 This register's qty should not be "killed". */
1454
1455 if (win)
1456 {
1457 while (GET_CODE (r1) == SUBREG)
1458 r1 = SUBREG_REG (r1);
1459 combined_regno = REGNO (r1);
1460 }
1461
1462 /* Mark the death of everything that dies in this instruction,
1463 except for anything that was just combined. */
1464
1465 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1466 if (REG_NOTE_KIND (link) == REG_DEAD
1467 && GET_CODE (XEXP (link, 0)) == REG
1468 && combined_regno != (int) REGNO (XEXP (link, 0))
1469 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1470 || ! find_reg_note (insn, REG_NO_CONFLICT,
1471 XEXP (link, 0))))
1472 wipe_dead_reg (XEXP (link, 0), 0);
1473
1474 /* Allocate qty numbers for all registers local to this block
1475 that are born (set) in this instruction.
1476 A pseudo that already has a qty is not changed. */
1477
1478 note_stores (PATTERN (insn), reg_is_set, NULL);
1479
1480 /* If anything is set in this insn and then unused, mark it as dying
1481 after this insn, so it will conflict with our outputs. This
1482 can't match with something that combined, and it doesn't matter
1483 if it did. Do this after the calls to reg_is_set since these
1484 die after, not during, the current insn. */
1485
1486 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1487 if (REG_NOTE_KIND (link) == REG_UNUSED
1488 && GET_CODE (XEXP (link, 0)) == REG)
1489 wipe_dead_reg (XEXP (link, 0), 1);
1490
1491 /* If this is an insn that has a REG_RETVAL note pointing at a
1492 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1493 block, so clear any register number that combined within it. */
1494 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1495 && GET_CODE (XEXP (note, 0)) == INSN
1496 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1497 no_conflict_combined_regno = -1;
1498 }
1499
1500 /* Set the registers live after INSN_NUMBER. Note that we never
1501 record the registers live before the block's first insn, since no
1502 pseudos we care about are live before that insn. */
1503
1504 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1505 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1506
1507 if (insn == BLOCK_END (b))
1508 break;
1509
1510 insn = NEXT_INSN (insn);
1511 }
1512
1513 /* Now every register that is local to this basic block
1514 should have been given a quantity, or else -1 meaning ignore it.
1515 Every quantity should have a known birth and death.
1516
1517 Order the qtys so we assign them registers in order of the
1518 number of suggested registers they need so we allocate those with
1519 the most restrictive needs first. */
1520
1521 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1522 for (i = 0; i < next_qty; i++)
1523 qty_order[i] = i;
1524
1525 #define EXCHANGE(I1, I2) \
1526 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1527
1528 switch (next_qty)
1529 {
1530 case 3:
1531 /* Make qty_order[2] be the one to allocate last. */
1532 if (qty_sugg_compare (0, 1) > 0)
1533 EXCHANGE (0, 1);
1534 if (qty_sugg_compare (1, 2) > 0)
1535 EXCHANGE (2, 1);
1536
1537 /* ... Fall through ... */
1538 case 2:
1539 /* Put the best one to allocate in qty_order[0]. */
1540 if (qty_sugg_compare (0, 1) > 0)
1541 EXCHANGE (0, 1);
1542
1543 /* ... Fall through ... */
1544
1545 case 1:
1546 case 0:
1547 /* Nothing to do here. */
1548 break;
1549
1550 default:
1551 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1552 }
1553
1554 /* Try to put each quantity in a suggested physical register, if it has one.
1555 This may cause registers to be allocated that otherwise wouldn't be, but
1556 this seems acceptable in local allocation (unlike global allocation). */
1557 for (i = 0; i < next_qty; i++)
1558 {
1559 q = qty_order[i];
1560 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1561 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1562 0, 1, qty[q].birth, qty[q].death);
1563 else
1564 qty[q].phys_reg = -1;
1565 }
1566
1567 /* Order the qtys so we assign them registers in order of
1568 decreasing length of life. Normally call qsort, but if we
1569 have only a very small number of quantities, sort them ourselves. */
1570
1571 for (i = 0; i < next_qty; i++)
1572 qty_order[i] = i;
1573
1574 #define EXCHANGE(I1, I2) \
1575 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1576
1577 switch (next_qty)
1578 {
1579 case 3:
1580 /* Make qty_order[2] be the one to allocate last. */
1581 if (qty_compare (0, 1) > 0)
1582 EXCHANGE (0, 1);
1583 if (qty_compare (1, 2) > 0)
1584 EXCHANGE (2, 1);
1585
1586 /* ... Fall through ... */
1587 case 2:
1588 /* Put the best one to allocate in qty_order[0]. */
1589 if (qty_compare (0, 1) > 0)
1590 EXCHANGE (0, 1);
1591
1592 /* ... Fall through ... */
1593
1594 case 1:
1595 case 0:
1596 /* Nothing to do here. */
1597 break;
1598
1599 default:
1600 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1601 }
1602
1603 /* Now for each qty that is not a hardware register,
1604 look for a hardware register to put it in.
1605 First try the register class that is cheapest for this qty,
1606 if there is more than one class. */
1607
1608 for (i = 0; i < next_qty; i++)
1609 {
1610 q = qty_order[i];
1611 if (qty[q].phys_reg < 0)
1612 {
1613 #ifdef INSN_SCHEDULING
1614 /* These values represent the adjusted lifetime of a qty so
1615 that it conflicts with qtys which appear near the start/end
1616 of this qty's lifetime.
1617
1618 The purpose behind extending the lifetime of this qty is to
1619 discourage the register allocator from creating false
1620 dependencies.
1621
1622 The adjustment value is choosen to indicate that this qty
1623 conflicts with all the qtys in the instructions immediately
1624 before and after the lifetime of this qty.
1625
1626 Experiments have shown that higher values tend to hurt
1627 overall code performance.
1628
1629 If allocation using the extended lifetime fails we will try
1630 again with the qty's unadjusted lifetime. */
1631 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1632 int fake_death = MIN (insn_number * 2 + 1,
1633 qty[q].death + 2 - qty[q].death % 2);
1634 #endif
1635
1636 if (N_REG_CLASSES > 1)
1637 {
1638 #ifdef INSN_SCHEDULING
1639 /* We try to avoid using hard registers allocated to qtys which
1640 are born immediately after this qty or die immediately before
1641 this qty.
1642
1643 This optimization is only appropriate when we will run
1644 a scheduling pass after reload and we are not optimizing
1645 for code size. */
1646 if (flag_schedule_insns_after_reload
1647 && !optimize_size
1648 && !SMALL_REGISTER_CLASSES)
1649 {
1650 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1651 qty[q].mode, q, 0, 0,
1652 fake_birth, fake_death);
1653 if (qty[q].phys_reg >= 0)
1654 continue;
1655 }
1656 #endif
1657 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1658 qty[q].mode, q, 0, 0,
1659 qty[q].birth, qty[q].death);
1660 if (qty[q].phys_reg >= 0)
1661 continue;
1662 }
1663
1664 #ifdef INSN_SCHEDULING
1665 /* Similarly, avoid false dependencies. */
1666 if (flag_schedule_insns_after_reload
1667 && !optimize_size
1668 && !SMALL_REGISTER_CLASSES
1669 && qty[q].alternate_class != NO_REGS)
1670 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1671 qty[q].mode, q, 0, 0,
1672 fake_birth, fake_death);
1673 #endif
1674 if (qty[q].alternate_class != NO_REGS)
1675 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1676 qty[q].mode, q, 0, 0,
1677 qty[q].birth, qty[q].death);
1678 }
1679 }
1680
1681 /* Now propagate the register assignments
1682 to the pseudo regs belonging to the qtys. */
1683
1684 for (q = 0; q < next_qty; q++)
1685 if (qty[q].phys_reg >= 0)
1686 {
1687 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1688 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1689 }
1690
1691 /* Clean up. */
1692 free (regs_live_at);
1693 free (qty_order);
1694 }
1695 \f
1696 /* Compare two quantities' priority for getting real registers.
1697 We give shorter-lived quantities higher priority.
1698 Quantities with more references are also preferred, as are quantities that
1699 require multiple registers. This is the identical prioritization as
1700 done by global-alloc.
1701
1702 We used to give preference to registers with *longer* lives, but using
1703 the same algorithm in both local- and global-alloc can speed up execution
1704 of some programs by as much as a factor of three! */
1705
1706 /* Note that the quotient will never be bigger than
1707 the value of floor_log2 times the maximum number of
1708 times a register can occur in one insn (surely less than 100)
1709 weighted by frequency (max REG_FREQ_MAX).
1710 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1711 QTY_CMP_PRI is also used by qty_sugg_compare. */
1712
1713 #define QTY_CMP_PRI(q) \
1714 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1715 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1716
1717 static int
1718 qty_compare (q1, q2)
1719 int q1, q2;
1720 {
1721 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1722 }
1723
1724 static int
1725 qty_compare_1 (q1p, q2p)
1726 const PTR q1p;
1727 const PTR q2p;
1728 {
1729 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1730 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1731
1732 if (tem != 0)
1733 return tem;
1734
1735 /* If qtys are equally good, sort by qty number,
1736 so that the results of qsort leave nothing to chance. */
1737 return q1 - q2;
1738 }
1739 \f
1740 /* Compare two quantities' priority for getting real registers. This version
1741 is called for quantities that have suggested hard registers. First priority
1742 goes to quantities that have copy preferences, then to those that have
1743 normal preferences. Within those groups, quantities with the lower
1744 number of preferences have the highest priority. Of those, we use the same
1745 algorithm as above. */
1746
1747 #define QTY_CMP_SUGG(q) \
1748 (qty_phys_num_copy_sugg[q] \
1749 ? qty_phys_num_copy_sugg[q] \
1750 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1751
1752 static int
1753 qty_sugg_compare (q1, q2)
1754 int q1, q2;
1755 {
1756 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1757
1758 if (tem != 0)
1759 return tem;
1760
1761 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1762 }
1763
1764 static int
1765 qty_sugg_compare_1 (q1p, q2p)
1766 const PTR q1p;
1767 const PTR q2p;
1768 {
1769 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1770 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1771
1772 if (tem != 0)
1773 return tem;
1774
1775 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1776 if (tem != 0)
1777 return tem;
1778
1779 /* If qtys are equally good, sort by qty number,
1780 so that the results of qsort leave nothing to chance. */
1781 return q1 - q2;
1782 }
1783
1784 #undef QTY_CMP_SUGG
1785 #undef QTY_CMP_PRI
1786 \f
1787 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1788 Returns 1 if have done so, or 0 if cannot.
1789
1790 Combining registers means marking them as having the same quantity
1791 and adjusting the offsets within the quantity if either of
1792 them is a SUBREG).
1793
1794 We don't actually combine a hard reg with a pseudo; instead
1795 we just record the hard reg as the suggestion for the pseudo's quantity.
1796 If we really combined them, we could lose if the pseudo lives
1797 across an insn that clobbers the hard reg (eg, movstr).
1798
1799 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1800 there is no REG_DEAD note on INSN. This occurs during the processing
1801 of REG_NO_CONFLICT blocks.
1802
1803 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1804 SETREG or if the input and output must share a register.
1805 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1806
1807 There are elaborate checks for the validity of combining. */
1808
1809 static int
1810 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1811 rtx usedreg, setreg;
1812 int may_save_copy;
1813 int insn_number;
1814 rtx insn;
1815 int already_dead;
1816 {
1817 register int ureg, sreg;
1818 register int offset = 0;
1819 int usize, ssize;
1820 register int sqty;
1821
1822 /* Determine the numbers and sizes of registers being used. If a subreg
1823 is present that does not change the entire register, don't consider
1824 this a copy insn. */
1825
1826 while (GET_CODE (usedreg) == SUBREG)
1827 {
1828 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1829 may_save_copy = 0;
1830 if (REGNO (SUBREG_REG (usedreg)) < FIRST_PSEUDO_REGISTER)
1831 offset += subreg_regno_offset (REGNO (SUBREG_REG (usedreg)),
1832 GET_MODE (SUBREG_REG (usedreg)),
1833 SUBREG_BYTE (usedreg),
1834 GET_MODE (usedreg));
1835 else
1836 offset += (SUBREG_BYTE (usedreg)
1837 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1838 usedreg = SUBREG_REG (usedreg);
1839 }
1840 if (GET_CODE (usedreg) != REG)
1841 return 0;
1842 ureg = REGNO (usedreg);
1843 if (ureg < FIRST_PSEUDO_REGISTER)
1844 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1845 else
1846 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1847 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1848 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1849
1850 while (GET_CODE (setreg) == SUBREG)
1851 {
1852 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1853 may_save_copy = 0;
1854 if (REGNO (SUBREG_REG (setreg)) < FIRST_PSEUDO_REGISTER)
1855 offset -= subreg_regno_offset (REGNO (SUBREG_REG (setreg)),
1856 GET_MODE (SUBREG_REG (setreg)),
1857 SUBREG_BYTE (setreg),
1858 GET_MODE (setreg));
1859 else
1860 offset -= (SUBREG_BYTE (setreg)
1861 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1862 setreg = SUBREG_REG (setreg);
1863 }
1864 if (GET_CODE (setreg) != REG)
1865 return 0;
1866 sreg = REGNO (setreg);
1867 if (sreg < FIRST_PSEUDO_REGISTER)
1868 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1869 else
1870 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1871 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1872 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1873
1874 /* If UREG is a pseudo-register that hasn't already been assigned a
1875 quantity number, it means that it is not local to this block or dies
1876 more than once. In either event, we can't do anything with it. */
1877 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1878 /* Do not combine registers unless one fits within the other. */
1879 || (offset > 0 && usize + offset > ssize)
1880 || (offset < 0 && usize + offset < ssize)
1881 /* Do not combine with a smaller already-assigned object
1882 if that smaller object is already combined with something bigger. */
1883 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1884 && usize < qty[reg_qty[ureg]].size)
1885 /* Can't combine if SREG is not a register we can allocate. */
1886 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1887 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1888 These have already been taken care of. This probably wouldn't
1889 combine anyway, but don't take any chances. */
1890 || (ureg >= FIRST_PSEUDO_REGISTER
1891 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1892 /* Don't tie something to itself. In most cases it would make no
1893 difference, but it would screw up if the reg being tied to itself
1894 also dies in this insn. */
1895 || ureg == sreg
1896 /* Don't try to connect two different hardware registers. */
1897 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1898 /* Don't connect two different machine modes if they have different
1899 implications as to which registers may be used. */
1900 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1901 return 0;
1902
1903 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1904 qty_phys_sugg for the pseudo instead of tying them.
1905
1906 Return "failure" so that the lifespan of UREG is terminated here;
1907 that way the two lifespans will be disjoint and nothing will prevent
1908 the pseudo reg from being given this hard reg. */
1909
1910 if (ureg < FIRST_PSEUDO_REGISTER)
1911 {
1912 /* Allocate a quantity number so we have a place to put our
1913 suggestions. */
1914 if (reg_qty[sreg] == -2)
1915 reg_is_born (setreg, 2 * insn_number);
1916
1917 if (reg_qty[sreg] >= 0)
1918 {
1919 if (may_save_copy
1920 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1921 {
1922 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1923 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1924 }
1925 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1926 {
1927 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1928 qty_phys_num_sugg[reg_qty[sreg]]++;
1929 }
1930 }
1931 return 0;
1932 }
1933
1934 /* Similarly for SREG a hard register and UREG a pseudo register. */
1935
1936 if (sreg < FIRST_PSEUDO_REGISTER)
1937 {
1938 if (may_save_copy
1939 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1940 {
1941 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1942 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1943 }
1944 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1945 {
1946 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1947 qty_phys_num_sugg[reg_qty[ureg]]++;
1948 }
1949 return 0;
1950 }
1951
1952 /* At this point we know that SREG and UREG are both pseudos.
1953 Do nothing if SREG already has a quantity or is a register that we
1954 don't allocate. */
1955 if (reg_qty[sreg] >= -1
1956 /* If we are not going to let any regs live across calls,
1957 don't tie a call-crossing reg to a non-call-crossing reg. */
1958 || (current_function_has_nonlocal_label
1959 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1960 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1961 return 0;
1962
1963 /* We don't already know about SREG, so tie it to UREG
1964 if this is the last use of UREG, provided the classes they want
1965 are compatible. */
1966
1967 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1968 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1969 {
1970 /* Add SREG to UREG's quantity. */
1971 sqty = reg_qty[ureg];
1972 reg_qty[sreg] = sqty;
1973 reg_offset[sreg] = reg_offset[ureg] + offset;
1974 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1975 qty[sqty].first_reg = sreg;
1976
1977 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1978 update_qty_class (sqty, sreg);
1979
1980 /* Update info about quantity SQTY. */
1981 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1982 qty[sqty].n_refs += REG_N_REFS (sreg);
1983 qty[sqty].freq += REG_FREQ (sreg);
1984 if (usize < ssize)
1985 {
1986 register int i;
1987
1988 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1989 reg_offset[i] -= offset;
1990
1991 qty[sqty].size = ssize;
1992 qty[sqty].mode = GET_MODE (setreg);
1993 }
1994 }
1995 else
1996 return 0;
1997
1998 return 1;
1999 }
2000 \f
2001 /* Return 1 if the preferred class of REG allows it to be tied
2002 to a quantity or register whose class is CLASS.
2003 True if REG's reg class either contains or is contained in CLASS. */
2004
2005 static int
2006 reg_meets_class_p (reg, class)
2007 int reg;
2008 enum reg_class class;
2009 {
2010 register enum reg_class rclass = reg_preferred_class (reg);
2011 return (reg_class_subset_p (rclass, class)
2012 || reg_class_subset_p (class, rclass));
2013 }
2014
2015 /* Update the class of QTYNO assuming that REG is being tied to it. */
2016
2017 static void
2018 update_qty_class (qtyno, reg)
2019 int qtyno;
2020 int reg;
2021 {
2022 enum reg_class rclass = reg_preferred_class (reg);
2023 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2024 qty[qtyno].min_class = rclass;
2025
2026 rclass = reg_alternate_class (reg);
2027 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2028 qty[qtyno].alternate_class = rclass;
2029
2030 if (REG_CHANGES_MODE (reg))
2031 qty[qtyno].changes_mode = 1;
2032 }
2033 \f
2034 /* Handle something which alters the value of an rtx REG.
2035
2036 REG is whatever is set or clobbered. SETTER is the rtx that
2037 is modifying the register.
2038
2039 If it is not really a register, we do nothing.
2040 The file-global variables `this_insn' and `this_insn_number'
2041 carry info from `block_alloc'. */
2042
2043 static void
2044 reg_is_set (reg, setter, data)
2045 rtx reg;
2046 rtx setter;
2047 void *data ATTRIBUTE_UNUSED;
2048 {
2049 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2050 a hard register. These may actually not exist any more. */
2051
2052 if (GET_CODE (reg) != SUBREG
2053 && GET_CODE (reg) != REG)
2054 return;
2055
2056 /* Mark this register as being born. If it is used in a CLOBBER, mark
2057 it as being born halfway between the previous insn and this insn so that
2058 it conflicts with our inputs but not the outputs of the previous insn. */
2059
2060 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2061 }
2062 \f
2063 /* Handle beginning of the life of register REG.
2064 BIRTH is the index at which this is happening. */
2065
2066 static void
2067 reg_is_born (reg, birth)
2068 rtx reg;
2069 int birth;
2070 {
2071 register int regno;
2072
2073 if (GET_CODE (reg) == SUBREG)
2074 {
2075 regno = REGNO (SUBREG_REG (reg));
2076 if (regno < FIRST_PSEUDO_REGISTER)
2077 regno = subreg_hard_regno (reg, 1);
2078 }
2079 else
2080 regno = REGNO (reg);
2081
2082 if (regno < FIRST_PSEUDO_REGISTER)
2083 {
2084 mark_life (regno, GET_MODE (reg), 1);
2085
2086 /* If the register was to have been born earlier that the present
2087 insn, mark it as live where it is actually born. */
2088 if (birth < 2 * this_insn_number)
2089 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2090 }
2091 else
2092 {
2093 if (reg_qty[regno] == -2)
2094 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2095
2096 /* If this register has a quantity number, show that it isn't dead. */
2097 if (reg_qty[regno] >= 0)
2098 qty[reg_qty[regno]].death = -1;
2099 }
2100 }
2101
2102 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2103 REG is an output that is dying (i.e., it is never used), otherwise it
2104 is an input (the normal case).
2105 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2106
2107 static void
2108 wipe_dead_reg (reg, output_p)
2109 register rtx reg;
2110 int output_p;
2111 {
2112 register int regno = REGNO (reg);
2113
2114 /* If this insn has multiple results,
2115 and the dead reg is used in one of the results,
2116 extend its life to after this insn,
2117 so it won't get allocated together with any other result of this insn.
2118
2119 It is unsafe to use !single_set here since it will ignore an unused
2120 output. Just because an output is unused does not mean the compiler
2121 can assume the side effect will not occur. Consider if REG appears
2122 in the address of an output and we reload the output. If we allocate
2123 REG to the same hard register as an unused output we could set the hard
2124 register before the output reload insn. */
2125 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2126 && multiple_sets (this_insn))
2127 {
2128 int i;
2129 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2130 {
2131 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2132 if (GET_CODE (set) == SET
2133 && GET_CODE (SET_DEST (set)) != REG
2134 && !rtx_equal_p (reg, SET_DEST (set))
2135 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2136 output_p = 1;
2137 }
2138 }
2139
2140 /* If this register is used in an auto-increment address, then extend its
2141 life to after this insn, so that it won't get allocated together with
2142 the result of this insn. */
2143 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2144 output_p = 1;
2145
2146 if (regno < FIRST_PSEUDO_REGISTER)
2147 {
2148 mark_life (regno, GET_MODE (reg), 0);
2149
2150 /* If a hard register is dying as an output, mark it as in use at
2151 the beginning of this insn (the above statement would cause this
2152 not to happen). */
2153 if (output_p)
2154 post_mark_life (regno, GET_MODE (reg), 1,
2155 2 * this_insn_number, 2 * this_insn_number + 1);
2156 }
2157
2158 else if (reg_qty[regno] >= 0)
2159 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2160 }
2161 \f
2162 /* Find a block of SIZE words of hard regs in reg_class CLASS
2163 that can hold something of machine-mode MODE
2164 (but actually we test only the first of the block for holding MODE)
2165 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2166 and return the number of the first of them.
2167 Return -1 if such a block cannot be found.
2168 If QTYNO crosses calls, insist on a register preserved by calls,
2169 unless ACCEPT_CALL_CLOBBERED is nonzero.
2170
2171 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2172 register is available. If not, return -1. */
2173
2174 static int
2175 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2176 born_index, dead_index)
2177 enum reg_class class;
2178 enum machine_mode mode;
2179 int qtyno;
2180 int accept_call_clobbered;
2181 int just_try_suggested;
2182 int born_index, dead_index;
2183 {
2184 register int i, ins;
2185 #ifdef HARD_REG_SET
2186 /* Declare it register if it's a scalar. */
2187 register
2188 #endif
2189 HARD_REG_SET used, first_used;
2190 #ifdef ELIMINABLE_REGS
2191 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2192 #endif
2193
2194 /* Validate our parameters. */
2195 if (born_index < 0 || born_index > dead_index)
2196 abort ();
2197
2198 /* Don't let a pseudo live in a reg across a function call
2199 if we might get a nonlocal goto. */
2200 if (current_function_has_nonlocal_label
2201 && qty[qtyno].n_calls_crossed > 0)
2202 return -1;
2203
2204 if (accept_call_clobbered)
2205 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2206 else if (qty[qtyno].n_calls_crossed == 0)
2207 COPY_HARD_REG_SET (used, fixed_reg_set);
2208 else
2209 COPY_HARD_REG_SET (used, call_used_reg_set);
2210
2211 if (accept_call_clobbered)
2212 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2213
2214 for (ins = born_index; ins < dead_index; ins++)
2215 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2216
2217 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2218
2219 /* Don't use the frame pointer reg in local-alloc even if
2220 we may omit the frame pointer, because if we do that and then we
2221 need a frame pointer, reload won't know how to move the pseudo
2222 to another hard reg. It can move only regs made by global-alloc.
2223
2224 This is true of any register that can be eliminated. */
2225 #ifdef ELIMINABLE_REGS
2226 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2227 SET_HARD_REG_BIT (used, eliminables[i].from);
2228 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2229 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2230 that it might be eliminated into. */
2231 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2232 #endif
2233 #else
2234 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2235 #endif
2236
2237 #ifdef CLASS_CANNOT_CHANGE_MODE
2238 if (qty[qtyno].changes_mode)
2239 IOR_HARD_REG_SET (used,
2240 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2241 #endif
2242
2243 /* Normally, the registers that can be used for the first register in
2244 a multi-register quantity are the same as those that can be used for
2245 subsequent registers. However, if just trying suggested registers,
2246 restrict our consideration to them. If there are copy-suggested
2247 register, try them. Otherwise, try the arithmetic-suggested
2248 registers. */
2249 COPY_HARD_REG_SET (first_used, used);
2250
2251 if (just_try_suggested)
2252 {
2253 if (qty_phys_num_copy_sugg[qtyno] != 0)
2254 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2255 else
2256 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2257 }
2258
2259 /* If all registers are excluded, we can't do anything. */
2260 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2261
2262 /* If at least one would be suitable, test each hard reg. */
2263
2264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2265 {
2266 #ifdef REG_ALLOC_ORDER
2267 int regno = reg_alloc_order[i];
2268 #else
2269 int regno = i;
2270 #endif
2271 if (! TEST_HARD_REG_BIT (first_used, regno)
2272 && HARD_REGNO_MODE_OK (regno, mode)
2273 && (qty[qtyno].n_calls_crossed == 0
2274 || accept_call_clobbered
2275 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2276 {
2277 register int j;
2278 register int size1 = HARD_REGNO_NREGS (regno, mode);
2279 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2280 if (j == size1)
2281 {
2282 /* Mark that this register is in use between its birth and death
2283 insns. */
2284 post_mark_life (regno, mode, 1, born_index, dead_index);
2285 return regno;
2286 }
2287 #ifndef REG_ALLOC_ORDER
2288 /* Skip starting points we know will lose. */
2289 i += j;
2290 #endif
2291 }
2292 }
2293
2294 fail:
2295 /* If we are just trying suggested register, we have just tried copy-
2296 suggested registers, and there are arithmetic-suggested registers,
2297 try them. */
2298
2299 /* If it would be profitable to allocate a call-clobbered register
2300 and save and restore it around calls, do that. */
2301 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2302 && qty_phys_num_sugg[qtyno] != 0)
2303 {
2304 /* Don't try the copy-suggested regs again. */
2305 qty_phys_num_copy_sugg[qtyno] = 0;
2306 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2307 born_index, dead_index);
2308 }
2309
2310 /* We need not check to see if the current function has nonlocal
2311 labels because we don't put any pseudos that are live over calls in
2312 registers in that case. */
2313
2314 if (! accept_call_clobbered
2315 && flag_caller_saves
2316 && ! just_try_suggested
2317 && qty[qtyno].n_calls_crossed != 0
2318 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2319 qty[qtyno].n_calls_crossed))
2320 {
2321 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2322 if (i >= 0)
2323 caller_save_needed = 1;
2324 return i;
2325 }
2326 return -1;
2327 }
2328 \f
2329 /* Mark that REGNO with machine-mode MODE is live starting from the current
2330 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2331 is zero). */
2332
2333 static void
2334 mark_life (regno, mode, life)
2335 register int regno;
2336 enum machine_mode mode;
2337 int life;
2338 {
2339 register int j = HARD_REGNO_NREGS (regno, mode);
2340 if (life)
2341 while (--j >= 0)
2342 SET_HARD_REG_BIT (regs_live, regno + j);
2343 else
2344 while (--j >= 0)
2345 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2346 }
2347
2348 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2349 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2350 to insn number DEATH (exclusive). */
2351
2352 static void
2353 post_mark_life (regno, mode, life, birth, death)
2354 int regno;
2355 enum machine_mode mode;
2356 int life, birth, death;
2357 {
2358 register int j = HARD_REGNO_NREGS (regno, mode);
2359 #ifdef HARD_REG_SET
2360 /* Declare it register if it's a scalar. */
2361 register
2362 #endif
2363 HARD_REG_SET this_reg;
2364
2365 CLEAR_HARD_REG_SET (this_reg);
2366 while (--j >= 0)
2367 SET_HARD_REG_BIT (this_reg, regno + j);
2368
2369 if (life)
2370 while (birth < death)
2371 {
2372 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2373 birth++;
2374 }
2375 else
2376 while (birth < death)
2377 {
2378 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2379 birth++;
2380 }
2381 }
2382 \f
2383 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2384 is the register being clobbered, and R1 is a register being used in
2385 the equivalent expression.
2386
2387 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2388 in which it is used, return 1.
2389
2390 Otherwise, return 0. */
2391
2392 static int
2393 no_conflict_p (insn, r0, r1)
2394 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2395 {
2396 int ok = 0;
2397 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2398 rtx p, last;
2399
2400 /* If R1 is a hard register, return 0 since we handle this case
2401 when we scan the insns that actually use it. */
2402
2403 if (note == 0
2404 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2405 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2406 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2407 return 0;
2408
2409 last = XEXP (note, 0);
2410
2411 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2412 if (INSN_P (p))
2413 {
2414 if (find_reg_note (p, REG_DEAD, r1))
2415 ok = 1;
2416
2417 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2418 some earlier optimization pass has inserted instructions into
2419 the sequence, and it is not safe to perform this optimization.
2420 Note that emit_no_conflict_block always ensures that this is
2421 true when these sequences are created. */
2422 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2423 return 0;
2424 }
2425
2426 return ok;
2427 }
2428 \f
2429 /* Return the number of alternatives for which the constraint string P
2430 indicates that the operand must be equal to operand 0 and that no register
2431 is acceptable. */
2432
2433 static int
2434 requires_inout (p)
2435 const char *p;
2436 {
2437 char c;
2438 int found_zero = 0;
2439 int reg_allowed = 0;
2440 int num_matching_alts = 0;
2441
2442 while ((c = *p++))
2443 switch (c)
2444 {
2445 case '=': case '+': case '?':
2446 case '#': case '&': case '!':
2447 case '*': case '%':
2448 case '1': case '2': case '3': case '4': case '5':
2449 case '6': case '7': case '8': case '9':
2450 case 'm': case '<': case '>': case 'V': case 'o':
2451 case 'E': case 'F': case 'G': case 'H':
2452 case 's': case 'i': case 'n':
2453 case 'I': case 'J': case 'K': case 'L':
2454 case 'M': case 'N': case 'O': case 'P':
2455 case 'X':
2456 /* These don't say anything we care about. */
2457 break;
2458
2459 case ',':
2460 if (found_zero && ! reg_allowed)
2461 num_matching_alts++;
2462
2463 found_zero = reg_allowed = 0;
2464 break;
2465
2466 case '0':
2467 found_zero = 1;
2468 break;
2469
2470 default:
2471 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2472 break;
2473 /* FALLTHRU */
2474 case 'p':
2475 case 'g': case 'r':
2476 reg_allowed = 1;
2477 break;
2478 }
2479
2480 if (found_zero && ! reg_allowed)
2481 num_matching_alts++;
2482
2483 return num_matching_alts;
2484 }
2485 \f
2486 void
2487 dump_local_alloc (file)
2488 FILE *file;
2489 {
2490 register int i;
2491 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2492 if (reg_renumber[i] != -1)
2493 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2494 }