Handle equivalences that have been obscured by gcse:
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "insn-attr.h"
71 #include "recog.h"
72 #include "output.h"
73 #include "toplev.h"
74 \f
75 /* Next quantity number available for allocation. */
76
77 static int next_qty;
78
79 /* In all the following vectors indexed by quantity number. */
80
81 /* Element Q is the hard reg number chosen for quantity Q,
82 or -1 if none was found. */
83
84 static short *qty_phys_reg;
85
86 /* We maintain two hard register sets that indicate suggested hard registers
87 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
88 that are tied to the quantity by a simple copy. The second contains all
89 hard registers that are tied to the quantity via an arithmetic operation.
90
91 The former register set is given priority for allocation. This tends to
92 eliminate copy insns. */
93
94 /* Element Q is a set of hard registers that are suggested for quantity Q by
95 copy insns. */
96
97 static HARD_REG_SET *qty_phys_copy_sugg;
98
99 /* Element Q is a set of hard registers that are suggested for quantity Q by
100 arithmetic insns. */
101
102 static HARD_REG_SET *qty_phys_sugg;
103
104 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
105
106 static short *qty_phys_num_copy_sugg;
107
108 /* Element Q is the number of suggested registers in qty_phys_sugg. */
109
110 static short *qty_phys_num_sugg;
111
112 /* Element Q is the number of refs to quantity Q. */
113
114 static int *qty_n_refs;
115
116 /* Element Q is a reg class contained in (smaller than) the
117 preferred classes of all the pseudo regs that are tied in quantity Q.
118 This is the preferred class for allocating that quantity. */
119
120 static enum reg_class *qty_min_class;
121
122 /* Insn number (counting from head of basic block)
123 where quantity Q was born. -1 if birth has not been recorded. */
124
125 static int *qty_birth;
126
127 /* Insn number (counting from head of basic block)
128 where quantity Q died. Due to the way tying is done,
129 and the fact that we consider in this pass only regs that die but once,
130 a quantity can die only once. Each quantity's life span
131 is a set of consecutive insns. -1 if death has not been recorded. */
132
133 static int *qty_death;
134
135 /* Number of words needed to hold the data in quantity Q.
136 This depends on its machine mode. It is used for these purposes:
137 1. It is used in computing the relative importances of qtys,
138 which determines the order in which we look for regs for them.
139 2. It is used in rules that prevent tying several registers of
140 different sizes in a way that is geometrically impossible
141 (see combine_regs). */
142
143 static int *qty_size;
144
145 /* This holds the mode of the registers that are tied to qty Q,
146 or VOIDmode if registers with differing modes are tied together. */
147
148 static enum machine_mode *qty_mode;
149
150 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
151
152 static int *qty_n_calls_crossed;
153
154 /* Register class within which we allocate qty Q if we can't get
155 its preferred class. */
156
157 static enum reg_class *qty_alternate_class;
158
159 /* Element Q is nonzero if this quantity has been used in a SUBREG
160 that changes its size. */
161
162 static char *qty_changes_size;
163
164 /* Element Q is the register number of one pseudo register whose
165 reg_qty value is Q. This register should be the head of the chain
166 maintained in reg_next_in_qty. */
167
168 static int *qty_first_reg;
169
170 /* If (REG N) has been assigned a quantity number, is a register number
171 of another register assigned the same quantity number, or -1 for the
172 end of the chain. qty_first_reg point to the head of this chain. */
173
174 static int *reg_next_in_qty;
175
176 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
177 if it is >= 0,
178 of -1 if this register cannot be allocated by local-alloc,
179 or -2 if not known yet.
180
181 Note that if we see a use or death of pseudo register N with
182 reg_qty[N] == -2, register N must be local to the current block. If
183 it were used in more than one block, we would have reg_qty[N] == -1.
184 This relies on the fact that if reg_basic_block[N] is >= 0, register N
185 will not appear in any other block. We save a considerable number of
186 tests by exploiting this.
187
188 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
189 be referenced. */
190
191 static int *reg_qty;
192
193 /* The offset (in words) of register N within its quantity.
194 This can be nonzero if register N is SImode, and has been tied
195 to a subreg of a DImode register. */
196
197 static char *reg_offset;
198
199 /* Vector of substitutions of register numbers,
200 used to map pseudo regs into hardware regs.
201 This is set up as a result of register allocation.
202 Element N is the hard reg assigned to pseudo reg N,
203 or is -1 if no hard reg was assigned.
204 If N is a hard reg number, element N is N. */
205
206 short *reg_renumber;
207
208 /* Set of hard registers live at the current point in the scan
209 of the instructions in a basic block. */
210
211 static HARD_REG_SET regs_live;
212
213 /* Each set of hard registers indicates registers live at a particular
214 point in the basic block. For N even, regs_live_at[N] says which
215 hard registers are needed *after* insn N/2 (i.e., they may not
216 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
217
218 If an object is to conflict with the inputs of insn J but not the
219 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
220 if it is to conflict with the outputs of insn J but not the inputs of
221 insn J + 1, it is said to die at index J*2 + 1. */
222
223 static HARD_REG_SET *regs_live_at;
224
225 /* Communicate local vars `insn_number' and `insn'
226 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
227 static int this_insn_number;
228 static rtx this_insn;
229
230 /* Used to communicate changes made by update_equiv_regs to
231 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
232 found or created, so that we can keep track of what memory accesses might
233 be created later, e.g. by reload. */
234
235 static rtx *reg_equiv_replacement;
236
237 /* Used for communication between update_equiv_regs and no_equiv. */
238 static rtx *reg_equiv_init_insns;
239
240 static void alloc_qty PROTO((int, enum machine_mode, int, int));
241 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
242 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
243 static int contains_replace_regs PROTO((rtx, char *));
244 static int memref_referenced_p PROTO((rtx, rtx));
245 static int memref_used_between_p PROTO((rtx, rtx, rtx));
246 static void update_equiv_regs PROTO((void));
247 static void no_equiv PROTO((rtx, rtx));
248 static void block_alloc PROTO((int));
249 static int qty_sugg_compare PROTO((int, int));
250 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
251 static int qty_compare PROTO((int, int));
252 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
253 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
254 static int reg_meets_class_p PROTO((int, enum reg_class));
255 static void update_qty_class PROTO((int, int));
256 static void reg_is_set PROTO((rtx, rtx));
257 static void reg_is_born PROTO((rtx, int));
258 static void wipe_dead_reg PROTO((rtx, int));
259 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
260 int, int, int, int, int));
261 static void mark_life PROTO((int, enum machine_mode, int));
262 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
263 static int no_conflict_p PROTO((rtx, rtx, rtx));
264 static int requires_inout PROTO((char *));
265 \f
266 /* Allocate a new quantity (new within current basic block)
267 for register number REGNO which is born at index BIRTH
268 within the block. MODE and SIZE are info on reg REGNO. */
269
270 static void
271 alloc_qty (regno, mode, size, birth)
272 int regno;
273 enum machine_mode mode;
274 int size, birth;
275 {
276 register int qty = next_qty++;
277
278 reg_qty[regno] = qty;
279 reg_offset[regno] = 0;
280 reg_next_in_qty[regno] = -1;
281
282 qty_first_reg[qty] = regno;
283 qty_size[qty] = size;
284 qty_mode[qty] = mode;
285 qty_birth[qty] = birth;
286 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
287 qty_min_class[qty] = reg_preferred_class (regno);
288 qty_alternate_class[qty] = reg_alternate_class (regno);
289 qty_n_refs[qty] = REG_N_REFS (regno);
290 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
291 }
292 \f
293 /* Main entry point of this file. */
294
295 void
296 local_alloc ()
297 {
298 register int b, i;
299 int max_qty;
300
301 /* Leaf functions and non-leaf functions have different needs.
302 If defined, let the machine say what kind of ordering we
303 should use. */
304 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
305 ORDER_REGS_FOR_LOCAL_ALLOC;
306 #endif
307
308 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
309 registers. */
310 update_equiv_regs ();
311
312 /* This sets the maximum number of quantities we can have. Quantity
313 numbers start at zero and we can have one for each pseudo. */
314 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
315
316 /* Allocate vectors of temporary data.
317 See the declarations of these variables, above,
318 for what they mean. */
319
320 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
321 qty_phys_copy_sugg
322 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
323 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
324 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
325 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
326 qty_birth = (int *) alloca (max_qty * sizeof (int));
327 qty_death = (int *) alloca (max_qty * sizeof (int));
328 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
329 qty_size = (int *) alloca (max_qty * sizeof (int));
330 qty_mode
331 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
332 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
333 qty_min_class
334 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
335 qty_alternate_class
336 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
337 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
338 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
339
340 reg_qty = (int *) alloca (max_regno * sizeof (int));
341 reg_offset = (char *) alloca (max_regno * sizeof (char));
342 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
343
344 /* Allocate the reg_renumber array */
345 allocate_reg_info (max_regno, FALSE, TRUE);
346
347 /* Determine which pseudo-registers can be allocated by local-alloc.
348 In general, these are the registers used only in a single block and
349 which only die once. However, if a register's preferred class has only
350 a few entries, don't allocate this register here unless it is preferred
351 or nothing since retry_global_alloc won't be able to move it to
352 GENERAL_REGS if a reload register of this class is needed.
353
354 We need not be concerned with which block actually uses the register
355 since we will never see it outside that block. */
356
357 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
358 {
359 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
360 && (reg_alternate_class (i) == NO_REGS
361 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
362 reg_qty[i] = -2;
363 else
364 reg_qty[i] = -1;
365 }
366
367 /* Force loop below to initialize entire quantity array. */
368 next_qty = max_qty;
369
370 /* Allocate each block's local registers, block by block. */
371
372 for (b = 0; b < n_basic_blocks; b++)
373 {
374 /* NEXT_QTY indicates which elements of the `qty_...'
375 vectors might need to be initialized because they were used
376 for the previous block; it is set to the entire array before
377 block 0. Initialize those, with explicit loop if there are few,
378 else with bzero and bcopy. Do not initialize vectors that are
379 explicit set by `alloc_qty'. */
380
381 if (next_qty < 6)
382 {
383 for (i = 0; i < next_qty; i++)
384 {
385 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
386 qty_phys_num_copy_sugg[i] = 0;
387 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
388 qty_phys_num_sugg[i] = 0;
389 }
390 }
391 else
392 {
393 #define CLEAR(vector) \
394 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
395
396 CLEAR (qty_phys_copy_sugg);
397 CLEAR (qty_phys_num_copy_sugg);
398 CLEAR (qty_phys_sugg);
399 CLEAR (qty_phys_num_sugg);
400 }
401
402 next_qty = 0;
403
404 block_alloc (b);
405 #ifdef USE_C_ALLOCA
406 alloca (0);
407 #endif
408 }
409 }
410 \f
411 /* Depth of loops we are in while in update_equiv_regs. */
412 static int loop_depth;
413
414 /* Used for communication between the following two functions: contains
415 a MEM that we wish to ensure remains unchanged. */
416 static rtx equiv_mem;
417
418 /* Set nonzero if EQUIV_MEM is modified. */
419 static int equiv_mem_modified;
420
421 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
422 Called via note_stores. */
423
424 static void
425 validate_equiv_mem_from_store (dest, set)
426 rtx dest;
427 rtx set ATTRIBUTE_UNUSED;
428 {
429 if ((GET_CODE (dest) == REG
430 && reg_overlap_mentioned_p (dest, equiv_mem))
431 || (GET_CODE (dest) == MEM
432 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
433 equiv_mem_modified = 1;
434 }
435
436 /* Verify that no store between START and the death of REG invalidates
437 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
438 by storing into an overlapping memory location, or with a non-const
439 CALL_INSN.
440
441 Return 1 if MEMREF remains valid. */
442
443 static int
444 validate_equiv_mem (start, reg, memref)
445 rtx start;
446 rtx reg;
447 rtx memref;
448 {
449 rtx insn;
450 rtx note;
451
452 equiv_mem = memref;
453 equiv_mem_modified = 0;
454
455 /* If the memory reference has side effects or is volatile, it isn't a
456 valid equivalence. */
457 if (side_effects_p (memref))
458 return 0;
459
460 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
461 {
462 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
463 continue;
464
465 if (find_reg_note (insn, REG_DEAD, reg))
466 return 1;
467
468 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
469 && ! CONST_CALL_P (insn))
470 return 0;
471
472 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
473
474 /* If a register mentioned in MEMREF is modified via an
475 auto-increment, we lose the equivalence. Do the same if one
476 dies; although we could extend the life, it doesn't seem worth
477 the trouble. */
478
479 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
480 if ((REG_NOTE_KIND (note) == REG_INC
481 || REG_NOTE_KIND (note) == REG_DEAD)
482 && GET_CODE (XEXP (note, 0)) == REG
483 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
484 return 0;
485 }
486
487 return 0;
488 }
489
490 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
491
492 static int
493 contains_replace_regs (x, reg_equiv_replace)
494 rtx x;
495 char *reg_equiv_replace;
496 {
497 int i, j;
498 char *fmt;
499 enum rtx_code code = GET_CODE (x);
500
501 switch (code)
502 {
503 case CONST_INT:
504 case CONST:
505 case LABEL_REF:
506 case SYMBOL_REF:
507 case CONST_DOUBLE:
508 case PC:
509 case CC0:
510 case HIGH:
511 case LO_SUM:
512 return 0;
513
514 case REG:
515 return reg_equiv_replace[REGNO (x)];
516
517 default:
518 break;
519 }
520
521 fmt = GET_RTX_FORMAT (code);
522 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
523 switch (fmt[i])
524 {
525 case 'e':
526 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
527 return 1;
528 break;
529 case 'E':
530 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
531 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
532 return 1;
533 break;
534 }
535
536 return 0;
537 }
538 \f
539 /* TRUE if X references a memory location that would be affected by a store
540 to MEMREF. */
541
542 static int
543 memref_referenced_p (memref, x)
544 rtx x;
545 rtx memref;
546 {
547 int i, j;
548 char *fmt;
549 enum rtx_code code = GET_CODE (x);
550
551 switch (code)
552 {
553 case CONST_INT:
554 case CONST:
555 case LABEL_REF:
556 case SYMBOL_REF:
557 case CONST_DOUBLE:
558 case PC:
559 case CC0:
560 case HIGH:
561 case LO_SUM:
562 return 0;
563
564 case REG:
565 return (reg_equiv_replacement[REGNO (x)]
566 && memref_referenced_p (memref,
567 reg_equiv_replacement[REGNO (x)]));
568
569 case MEM:
570 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
571 return 1;
572 break;
573
574 case SET:
575 /* If we are setting a MEM, it doesn't count (its address does), but any
576 other SET_DEST that has a MEM in it is referencing the MEM. */
577 if (GET_CODE (SET_DEST (x)) == MEM)
578 {
579 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
580 return 1;
581 }
582 else if (memref_referenced_p (memref, SET_DEST (x)))
583 return 1;
584
585 return memref_referenced_p (memref, SET_SRC (x));
586
587 default:
588 break;
589 }
590
591 fmt = GET_RTX_FORMAT (code);
592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
593 switch (fmt[i])
594 {
595 case 'e':
596 if (memref_referenced_p (memref, XEXP (x, i)))
597 return 1;
598 break;
599 case 'E':
600 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
601 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
602 return 1;
603 break;
604 }
605
606 return 0;
607 }
608
609 /* TRUE if some insn in the range (START, END] references a memory location
610 that would be affected by a store to MEMREF. */
611
612 static int
613 memref_used_between_p (memref, start, end)
614 rtx memref;
615 rtx start;
616 rtx end;
617 {
618 rtx insn;
619
620 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
621 insn = NEXT_INSN (insn))
622 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
623 && memref_referenced_p (memref, PATTERN (insn)))
624 return 1;
625
626 return 0;
627 }
628 \f
629 /* Find registers that are equivalent to a single value throughout the
630 compilation (either because they can be referenced in memory or are set once
631 from a single constant). Lower their priority for a register.
632
633 If such a register is only referenced once, try substituting its value
634 into the using insn. If it succeeds, we can eliminate the register
635 completely. */
636
637 static void
638 update_equiv_regs ()
639 {
640 /* Set when an attempt should be made to replace a register with the
641 associated reg_equiv_replacement entry at the end of this function. */
642 char *reg_equiv_replace
643 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
644 rtx insn;
645 int block, depth;
646
647 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
648 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
649
650 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
651 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
652 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
653
654 init_alias_analysis ();
655
656 loop_depth = 1;
657
658 /* Scan the insns and find which registers have equivalences. Do this
659 in a separate scan of the insns because (due to -fcse-follow-jumps)
660 a register can be set below its use. */
661 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
662 {
663 rtx note;
664 rtx set;
665 rtx dest, src;
666 int regno;
667
668 if (GET_CODE (insn) == NOTE)
669 {
670 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
671 loop_depth++;
672 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
673 loop_depth--;
674 }
675
676 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
677 continue;
678
679 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
680 if (REG_NOTE_KIND (note) == REG_INC)
681 no_equiv (XEXP (note, 0), note);
682
683 set = single_set (insn);
684
685 /* If this insn contains more (or less) than a single SET,
686 only mark all destinations as having no known equivalence. */
687 if (set == 0)
688 {
689 note_stores (PATTERN (insn), no_equiv);
690 continue;
691 }
692 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
693 {
694 int i;
695
696 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
697 {
698 rtx part = XVECEXP (PATTERN (insn), 0, i);
699 if (part != set)
700 note_stores (part, no_equiv);
701 }
702 }
703
704 dest = SET_DEST (set);
705 src = SET_SRC (set);
706
707 /* If this sets a MEM to the contents of a REG that is only used
708 in a single basic block, see if the register is always equivalent
709 to that memory location and if moving the store from INSN to the
710 insn that set REG is safe. If so, put a REG_EQUIV note on the
711 initializing insn.
712
713 Don't add a REG_EQUIV note if the insn already has one. The existing
714 REG_EQUIV is likely more useful than the one we are adding.
715
716 If one of the regs in the address is marked as reg_equiv_replace,
717 then we can't add this REG_EQUIV note. The reg_equiv_replace
718 optimization may move the set of this register immediately before
719 insn, which puts it after reg_equiv_init_insns[regno], and hence
720 the mention in the REG_EQUIV note would be to an uninitialized
721 pseudo. */
722 /* ????? This test isn't good enough; we might see a MEM with a use of
723 a pseudo register before we see its setting insn that will cause
724 reg_equiv_replace for that pseudo to be set.
725 Equivalences to MEMs should be made in another pass, after the
726 reg_equiv_replace information has been gathered. */
727
728 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
729 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
730 && REG_BASIC_BLOCK (regno) >= 0
731 && REG_N_SETS (regno) == 1
732 && reg_equiv_init_insns[regno] != 0
733 && reg_equiv_init_insns[regno] != const0_rtx
734 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
735 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
736 {
737 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
738 if (validate_equiv_mem (init_insn, src, dest)
739 && ! memref_used_between_p (dest, init_insn, insn))
740 REG_NOTES (init_insn)
741 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
742 }
743
744 /* We only handle the case of a pseudo register being set
745 once, or always to the same value. */
746 /* ??? The mn10200 port breaks if we add equivalences for
747 values that need an ADDRESS_REGS register and set them equivalent
748 to a MEM of a pseudo. The actual problem is in the over-conservative
749 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
750 calculate_needs, but we traditionally work around this problem
751 here by rejecting equivalences when the destination is in a register
752 that's likely spilled. This is fragile, of course, since the
753 preferred class of a pseudo depends on all intructions that set
754 or use it. */
755
756 if (GET_CODE (dest) != REG
757 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
758 || reg_equiv_init_insns[regno] == const0_rtx
759 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
760 && GET_CODE (src) == MEM))
761 {
762 /* This might be seting a SUBREG of a pseudo, a pseudo that is
763 also set somewhere else to a constant. */
764 note_stores (set, no_equiv);
765 continue;
766 }
767 /* Don't handle the equivalence if the source is in a register
768 class that's likely to be spilled. */
769 if (GET_CODE (src) == REG
770 && REGNO (src) >= FIRST_PSEUDO_REGISTER
771 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
772 {
773 no_equiv (dest, set);
774 continue;
775 }
776
777 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
778
779 #ifdef DONT_RECORD_EQUIVALENCE
780 /* Allow the target to reject promotions of some REG_EQUAL notes to
781 REG_EQUIV notes.
782
783 In some cases this can improve register allocation if the existence
784 of the REG_EQUIV note is likely to increase the lifetime of a register
785 that is likely to be spilled.
786
787 It may also be necessary if the target can't handle certain constant
788 expressions appearing randomly in insns, but for whatever reason
789 those expressions must be considered legitimate constant expressions
790 to prevent them from being forced into memory. */
791 if (note && DONT_RECORD_EQUIVALENCE (note))
792 note = NULL;
793 #endif
794
795 if (REG_N_SETS (regno) != 1
796 && (! note
797 || ! CONSTANT_P (XEXP (note, 0))
798 || (reg_equiv_replacement[regno]
799 && ! rtx_equal_p (XEXP (note, 0),
800 reg_equiv_replacement[regno]))))
801 {
802 no_equiv (dest, set);
803 continue;
804 }
805 /* Record this insn as initializing this register. */
806 reg_equiv_init_insns[regno]
807 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
808
809 /* If this register is known to be equal to a constant, record that
810 it is always equivalent to the constant. */
811 if (note && CONSTANT_P (XEXP (note, 0)))
812 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
813
814 /* If this insn introduces a "constant" register, decrease the priority
815 of that register. Record this insn if the register is only used once
816 more and the equivalence value is the same as our source.
817
818 The latter condition is checked for two reasons: First, it is an
819 indication that it may be more efficient to actually emit the insn
820 as written (if no registers are available, reload will substitute
821 the equivalence). Secondly, it avoids problems with any registers
822 dying in this insn whose death notes would be missed.
823
824 If we don't have a REG_EQUIV note, see if this insn is loading
825 a register used only in one basic block from a MEM. If so, and the
826 MEM remains unchanged for the life of the register, add a REG_EQUIV
827 note. */
828
829 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
830
831 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
832 && GET_CODE (SET_SRC (set)) == MEM
833 && validate_equiv_mem (insn, dest, SET_SRC (set)))
834 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
835 REG_NOTES (insn));
836
837 if (note)
838 {
839 int regno = REGNO (dest);
840
841 reg_equiv_replacement[regno] = XEXP (note, 0);
842
843 /* Don't mess with things live during setjmp. */
844 if (REG_LIVE_LENGTH (regno) >= 0)
845 {
846 /* Note that the statement below does not affect the priority
847 in local-alloc! */
848 REG_LIVE_LENGTH (regno) *= 2;
849
850
851 /* If the register is referenced exactly twice, meaning it is
852 set once and used once, indicate that the reference may be
853 replaced by the equivalence we computed above. If the
854 register is only used in one basic block, this can't succeed
855 or combine would have done it.
856
857 It would be nice to use "loop_depth * 2" in the compare
858 below. Unfortunately, LOOP_DEPTH need not be constant within
859 a basic block so this would be too complicated.
860
861 This case normally occurs when a parameter is read from
862 memory and then used exactly once, not in a loop. */
863
864 if (REG_N_REFS (regno) == 2
865 && REG_BASIC_BLOCK (regno) < 0
866 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
867 reg_equiv_replace[regno] = 1;
868 }
869 }
870 }
871
872 /* Now scan all regs killed in an insn to see if any of them are
873 registers only used that once. If so, see if we can replace the
874 reference with the equivalent from. If we can, delete the
875 initializing reference and this register will go away. If we
876 can't replace the reference, and the instruction is not in a
877 loop, then move the register initialization just before the use,
878 so that they are in the same basic block. */
879 block = -1;
880 depth = 0;
881 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
882 {
883 rtx link;
884
885 /* Keep track of which basic block we are in. */
886 if (block + 1 < n_basic_blocks
887 && basic_block_head[block + 1] == insn)
888 ++block;
889
890 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
891 {
892 if (GET_CODE (insn) == NOTE)
893 {
894 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
895 ++depth;
896 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
897 {
898 --depth;
899 if (depth < 0)
900 abort ();
901 }
902 }
903
904 continue;
905 }
906
907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
908 {
909 if (REG_NOTE_KIND (link) == REG_DEAD
910 /* Make sure this insn still refers to the register. */
911 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
912 {
913 int regno = REGNO (XEXP (link, 0));
914 rtx equiv_insn;
915
916 if (! reg_equiv_replace[regno])
917 continue;
918
919 /* reg_equiv_replace[REGNO] gets set only when
920 REG_N_REFS[REGNO] is 2, i.e. the register is set
921 once and used once. (If it were only set, but not used,
922 flow would have deleted the setting insns.) Hence
923 there can only be one insn in reg_equiv_init_insns. */
924 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
925
926 if (validate_replace_rtx (regno_reg_rtx[regno],
927 reg_equiv_replacement[regno], insn))
928 {
929 remove_death (regno, insn);
930 REG_N_REFS (regno) = 0;
931 PUT_CODE (equiv_insn, NOTE);
932 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
933 NOTE_SOURCE_FILE (equiv_insn) = 0;
934 }
935 /* If we aren't in a loop, and there are no calls in
936 INSN or in the initialization of the register, then
937 move the initialization of the register to just
938 before INSN. Update the flow information. */
939 else if (depth == 0
940 && GET_CODE (equiv_insn) == INSN
941 && GET_CODE (insn) == INSN
942 && REG_BASIC_BLOCK (regno) < 0)
943 {
944 int l;
945
946 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
947 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
948
949 PUT_CODE (equiv_insn, NOTE);
950 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
951 NOTE_SOURCE_FILE (equiv_insn) = 0;
952 REG_NOTES (equiv_insn) = 0;
953
954 if (block < 0)
955 REG_BASIC_BLOCK (regno) = 0;
956 else
957 REG_BASIC_BLOCK (regno) = block;
958 REG_N_CALLS_CROSSED (regno) = 0;
959 REG_LIVE_LENGTH (regno) = 2;
960
961 if (block >= 0 && insn == basic_block_head[block])
962 basic_block_head[block] = PREV_INSN (insn);
963
964 for (l = 0; l < n_basic_blocks; l++)
965 CLEAR_REGNO_REG_SET (basic_block_live_at_start[l], regno);
966 }
967 }
968 }
969 }
970 }
971
972 /* Mark REG as having no known equivalence.
973 Some instructions might have been proceessed before and furnished
974 with REG_EQUIV notes for this register; these notes will have to be
975 removed.
976 STORE is the piece of RTL that does the non-constant / conflicting
977 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
978 but needs to be there because this function is called from note_stores. */
979 static void
980 no_equiv (reg, store)
981 rtx reg, store;
982 {
983 int regno;
984 rtx list;
985
986 if (GET_CODE (reg) != REG)
987 return;
988 regno = REGNO (reg);
989 list = reg_equiv_init_insns[regno];
990 if (list == const0_rtx)
991 return;
992 for (; list; list = XEXP (list, 1))
993 {
994 rtx insn = XEXP (list, 0);
995 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
996 }
997 reg_equiv_init_insns[regno] = const0_rtx;
998 reg_equiv_replacement[regno] = NULL_RTX;
999 }
1000 \f
1001 /* Allocate hard regs to the pseudo regs used only within block number B.
1002 Only the pseudos that die but once can be handled. */
1003
1004 static void
1005 block_alloc (b)
1006 int b;
1007 {
1008 register int i, q;
1009 register rtx insn;
1010 rtx note;
1011 int insn_number = 0;
1012 int insn_count = 0;
1013 int max_uid = get_max_uid ();
1014 int *qty_order;
1015 int no_conflict_combined_regno = -1;
1016
1017 /* Count the instructions in the basic block. */
1018
1019 insn = basic_block_end[b];
1020 while (1)
1021 {
1022 if (GET_CODE (insn) != NOTE)
1023 if (++insn_count > max_uid)
1024 abort ();
1025 if (insn == basic_block_head[b])
1026 break;
1027 insn = PREV_INSN (insn);
1028 }
1029
1030 /* +2 to leave room for a post_mark_life at the last insn and for
1031 the birth of a CLOBBER in the first insn. */
1032 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1033 * sizeof (HARD_REG_SET));
1034 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1035
1036 /* Initialize table of hardware registers currently live. */
1037
1038 REG_SET_TO_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1039
1040 /* This loop scans the instructions of the basic block
1041 and assigns quantities to registers.
1042 It computes which registers to tie. */
1043
1044 insn = basic_block_head[b];
1045 while (1)
1046 {
1047 register rtx body = PATTERN (insn);
1048
1049 if (GET_CODE (insn) != NOTE)
1050 insn_number++;
1051
1052 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1053 {
1054 register rtx link, set;
1055 register int win = 0;
1056 register rtx r0, r1;
1057 int combined_regno = -1;
1058 int i;
1059
1060 this_insn_number = insn_number;
1061 this_insn = insn;
1062
1063 extract_insn (insn);
1064 which_alternative = -1;
1065
1066 /* Is this insn suitable for tying two registers?
1067 If so, try doing that.
1068 Suitable insns are those with at least two operands and where
1069 operand 0 is an output that is a register that is not
1070 earlyclobber.
1071
1072 We can tie operand 0 with some operand that dies in this insn.
1073 First look for operands that are required to be in the same
1074 register as operand 0. If we find such, only try tying that
1075 operand or one that can be put into that operand if the
1076 operation is commutative. If we don't find an operand
1077 that is required to be in the same register as operand 0,
1078 we can tie with any operand.
1079
1080 Subregs in place of regs are also ok.
1081
1082 If tying is done, WIN is set nonzero. */
1083
1084 if (1
1085 #ifdef REGISTER_CONSTRAINTS
1086 && recog_n_operands > 1
1087 && recog_constraints[0][0] == '='
1088 && recog_constraints[0][1] != '&'
1089 #else
1090 && GET_CODE (PATTERN (insn)) == SET
1091 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1092 #endif
1093 )
1094 {
1095 #ifdef REGISTER_CONSTRAINTS
1096 /* If non-negative, is an operand that must match operand 0. */
1097 int must_match_0 = -1;
1098 /* Counts number of alternatives that require a match with
1099 operand 0. */
1100 int n_matching_alts = 0;
1101
1102 for (i = 1; i < recog_n_operands; i++)
1103 {
1104 char *p = recog_constraints[i];
1105 int this_match = (requires_inout (p));
1106
1107 n_matching_alts += this_match;
1108 if (this_match == recog_n_alternatives)
1109 must_match_0 = i;
1110 }
1111 #endif
1112
1113 r0 = recog_operand[0];
1114 for (i = 1; i < recog_n_operands; i++)
1115 {
1116 #ifdef REGISTER_CONSTRAINTS
1117 /* Skip this operand if we found an operand that
1118 must match operand 0 and this operand isn't it
1119 and can't be made to be it by commutativity. */
1120
1121 if (must_match_0 >= 0 && i != must_match_0
1122 && ! (i == must_match_0 + 1
1123 && recog_constraints[i-1][0] == '%')
1124 && ! (i == must_match_0 - 1
1125 && recog_constraints[i][0] == '%'))
1126 continue;
1127
1128 /* Likewise if each alternative has some operand that
1129 must match operand zero. In that case, skip any
1130 operand that doesn't list operand 0 since we know that
1131 the operand always conflicts with operand 0. We
1132 ignore commutatity in this case to keep things simple. */
1133 if (n_matching_alts == recog_n_alternatives
1134 && 0 == requires_inout (recog_constraints[i]))
1135 continue;
1136 #endif
1137
1138 r1 = recog_operand[i];
1139
1140 /* If the operand is an address, find a register in it.
1141 There may be more than one register, but we only try one
1142 of them. */
1143 if (
1144 #ifdef REGISTER_CONSTRAINTS
1145 recog_constraints[i][0] == 'p'
1146 #else
1147 recog_operand_address_p[i]
1148 #endif
1149 )
1150 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1151 r1 = XEXP (r1, 0);
1152
1153 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1154 {
1155 /* We have two priorities for hard register preferences.
1156 If we have a move insn or an insn whose first input
1157 can only be in the same register as the output, give
1158 priority to an equivalence found from that insn. */
1159 int may_save_copy
1160 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1161 #ifdef REGISTER_CONSTRAINTS
1162 || (r1 == recog_operand[i] && must_match_0 >= 0)
1163 #endif
1164 );
1165
1166 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1167 win = combine_regs (r1, r0, may_save_copy,
1168 insn_number, insn, 0);
1169 }
1170 if (win)
1171 break;
1172 }
1173 }
1174
1175 /* Recognize an insn sequence with an ultimate result
1176 which can safely overlap one of the inputs.
1177 The sequence begins with a CLOBBER of its result,
1178 and ends with an insn that copies the result to itself
1179 and has a REG_EQUAL note for an equivalent formula.
1180 That note indicates what the inputs are.
1181 The result and the input can overlap if each insn in
1182 the sequence either doesn't mention the input
1183 or has a REG_NO_CONFLICT note to inhibit the conflict.
1184
1185 We do the combining test at the CLOBBER so that the
1186 destination register won't have had a quantity number
1187 assigned, since that would prevent combining. */
1188
1189 if (GET_CODE (PATTERN (insn)) == CLOBBER
1190 && (r0 = XEXP (PATTERN (insn), 0),
1191 GET_CODE (r0) == REG)
1192 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1193 && XEXP (link, 0) != 0
1194 && GET_CODE (XEXP (link, 0)) == INSN
1195 && (set = single_set (XEXP (link, 0))) != 0
1196 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1197 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1198 NULL_RTX)) != 0)
1199 {
1200 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1201 /* Check that we have such a sequence. */
1202 && no_conflict_p (insn, r0, r1))
1203 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1204 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1205 && (r1 = XEXP (XEXP (note, 0), 0),
1206 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1207 && no_conflict_p (insn, r0, r1))
1208 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1209
1210 /* Here we care if the operation to be computed is
1211 commutative. */
1212 else if ((GET_CODE (XEXP (note, 0)) == EQ
1213 || GET_CODE (XEXP (note, 0)) == NE
1214 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1215 && (r1 = XEXP (XEXP (note, 0), 1),
1216 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1217 && no_conflict_p (insn, r0, r1))
1218 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1219
1220 /* If we did combine something, show the register number
1221 in question so that we know to ignore its death. */
1222 if (win)
1223 no_conflict_combined_regno = REGNO (r1);
1224 }
1225
1226 /* If registers were just tied, set COMBINED_REGNO
1227 to the number of the register used in this insn
1228 that was tied to the register set in this insn.
1229 This register's qty should not be "killed". */
1230
1231 if (win)
1232 {
1233 while (GET_CODE (r1) == SUBREG)
1234 r1 = SUBREG_REG (r1);
1235 combined_regno = REGNO (r1);
1236 }
1237
1238 /* Mark the death of everything that dies in this instruction,
1239 except for anything that was just combined. */
1240
1241 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1242 if (REG_NOTE_KIND (link) == REG_DEAD
1243 && GET_CODE (XEXP (link, 0)) == REG
1244 && combined_regno != REGNO (XEXP (link, 0))
1245 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1246 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1247 wipe_dead_reg (XEXP (link, 0), 0);
1248
1249 /* Allocate qty numbers for all registers local to this block
1250 that are born (set) in this instruction.
1251 A pseudo that already has a qty is not changed. */
1252
1253 note_stores (PATTERN (insn), reg_is_set);
1254
1255 /* If anything is set in this insn and then unused, mark it as dying
1256 after this insn, so it will conflict with our outputs. This
1257 can't match with something that combined, and it doesn't matter
1258 if it did. Do this after the calls to reg_is_set since these
1259 die after, not during, the current insn. */
1260
1261 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1262 if (REG_NOTE_KIND (link) == REG_UNUSED
1263 && GET_CODE (XEXP (link, 0)) == REG)
1264 wipe_dead_reg (XEXP (link, 0), 1);
1265
1266 /* If this is an insn that has a REG_RETVAL note pointing at a
1267 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1268 block, so clear any register number that combined within it. */
1269 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1270 && GET_CODE (XEXP (note, 0)) == INSN
1271 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1272 no_conflict_combined_regno = -1;
1273 }
1274
1275 /* Set the registers live after INSN_NUMBER. Note that we never
1276 record the registers live before the block's first insn, since no
1277 pseudos we care about are live before that insn. */
1278
1279 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1280 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1281
1282 if (insn == basic_block_end[b])
1283 break;
1284
1285 insn = NEXT_INSN (insn);
1286 }
1287
1288 /* Now every register that is local to this basic block
1289 should have been given a quantity, or else -1 meaning ignore it.
1290 Every quantity should have a known birth and death.
1291
1292 Order the qtys so we assign them registers in order of the
1293 number of suggested registers they need so we allocate those with
1294 the most restrictive needs first. */
1295
1296 qty_order = (int *) alloca (next_qty * sizeof (int));
1297 for (i = 0; i < next_qty; i++)
1298 qty_order[i] = i;
1299
1300 #define EXCHANGE(I1, I2) \
1301 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1302
1303 switch (next_qty)
1304 {
1305 case 3:
1306 /* Make qty_order[2] be the one to allocate last. */
1307 if (qty_sugg_compare (0, 1) > 0)
1308 EXCHANGE (0, 1);
1309 if (qty_sugg_compare (1, 2) > 0)
1310 EXCHANGE (2, 1);
1311
1312 /* ... Fall through ... */
1313 case 2:
1314 /* Put the best one to allocate in qty_order[0]. */
1315 if (qty_sugg_compare (0, 1) > 0)
1316 EXCHANGE (0, 1);
1317
1318 /* ... Fall through ... */
1319
1320 case 1:
1321 case 0:
1322 /* Nothing to do here. */
1323 break;
1324
1325 default:
1326 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1327 }
1328
1329 /* Try to put each quantity in a suggested physical register, if it has one.
1330 This may cause registers to be allocated that otherwise wouldn't be, but
1331 this seems acceptable in local allocation (unlike global allocation). */
1332 for (i = 0; i < next_qty; i++)
1333 {
1334 q = qty_order[i];
1335 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1336 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1337 0, 1, qty_birth[q], qty_death[q]);
1338 else
1339 qty_phys_reg[q] = -1;
1340 }
1341
1342 /* Order the qtys so we assign them registers in order of
1343 decreasing length of life. Normally call qsort, but if we
1344 have only a very small number of quantities, sort them ourselves. */
1345
1346 for (i = 0; i < next_qty; i++)
1347 qty_order[i] = i;
1348
1349 #define EXCHANGE(I1, I2) \
1350 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1351
1352 switch (next_qty)
1353 {
1354 case 3:
1355 /* Make qty_order[2] be the one to allocate last. */
1356 if (qty_compare (0, 1) > 0)
1357 EXCHANGE (0, 1);
1358 if (qty_compare (1, 2) > 0)
1359 EXCHANGE (2, 1);
1360
1361 /* ... Fall through ... */
1362 case 2:
1363 /* Put the best one to allocate in qty_order[0]. */
1364 if (qty_compare (0, 1) > 0)
1365 EXCHANGE (0, 1);
1366
1367 /* ... Fall through ... */
1368
1369 case 1:
1370 case 0:
1371 /* Nothing to do here. */
1372 break;
1373
1374 default:
1375 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1376 }
1377
1378 /* Now for each qty that is not a hardware register,
1379 look for a hardware register to put it in.
1380 First try the register class that is cheapest for this qty,
1381 if there is more than one class. */
1382
1383 for (i = 0; i < next_qty; i++)
1384 {
1385 q = qty_order[i];
1386 if (qty_phys_reg[q] < 0)
1387 {
1388 #ifdef INSN_SCHEDULING
1389 /* These values represent the adjusted lifetime of a qty so
1390 that it conflicts with qtys which appear near the start/end
1391 of this qty's lifetime.
1392
1393 The purpose behind extending the lifetime of this qty is to
1394 discourage the register allocator from creating false
1395 dependencies.
1396
1397 The adjustment by the value +-3 indicates precisely that
1398 this qty conflicts with qtys in the instructions immediately
1399 before and after the lifetime of this qty.
1400
1401 Experiments have shown that higher values tend to hurt
1402 overall code performance.
1403
1404 If allocation using the extended lifetime fails we will try
1405 again with the qty's unadjusted lifetime. */
1406 int fake_birth = MAX (0, qty_birth[q] - 3);
1407 int fake_death = MIN (insn_number * 2 + 1, qty_death[q] + 3);
1408 #endif
1409
1410 if (N_REG_CLASSES > 1)
1411 {
1412 #ifdef INSN_SCHEDULING
1413 /* We try to avoid using hard registers allocated to qtys which
1414 are born immediately after this qty or die immediately before
1415 this qty.
1416
1417 This optimization is only appropriate when we will run
1418 a scheduling pass after reload and we are not optimizing
1419 for code size. */
1420 if (flag_schedule_insns_after_reload
1421 && !optimize_size
1422 && !SMALL_REGISTER_CLASSES)
1423 {
1424
1425 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1426 qty_mode[q], q, 0, 0,
1427 fake_birth, fake_death);
1428 if (qty_phys_reg[q] >= 0)
1429 continue;
1430 }
1431 #endif
1432 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1433 qty_mode[q], q, 0, 0,
1434 qty_birth[q], qty_death[q]);
1435 if (qty_phys_reg[q] >= 0)
1436 continue;
1437 }
1438
1439 #ifdef INSN_SCHEDULING
1440 /* Similarly, avoid false dependencies. */
1441 if (flag_schedule_insns_after_reload
1442 && !optimize_size
1443 && !SMALL_REGISTER_CLASSES
1444 && qty_alternate_class[q] != NO_REGS)
1445 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1446 qty_mode[q], q, 0, 0,
1447 fake_birth, fake_death);
1448 #endif
1449 if (qty_alternate_class[q] != NO_REGS)
1450 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1451 qty_mode[q], q, 0, 0,
1452 qty_birth[q], qty_death[q]);
1453 }
1454 }
1455
1456 /* Now propagate the register assignments
1457 to the pseudo regs belonging to the qtys. */
1458
1459 for (q = 0; q < next_qty; q++)
1460 if (qty_phys_reg[q] >= 0)
1461 {
1462 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1463 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1464 }
1465 }
1466 \f
1467 /* Compare two quantities' priority for getting real registers.
1468 We give shorter-lived quantities higher priority.
1469 Quantities with more references are also preferred, as are quantities that
1470 require multiple registers. This is the identical prioritization as
1471 done by global-alloc.
1472
1473 We used to give preference to registers with *longer* lives, but using
1474 the same algorithm in both local- and global-alloc can speed up execution
1475 of some programs by as much as a factor of three! */
1476
1477 /* Note that the quotient will never be bigger than
1478 the value of floor_log2 times the maximum number of
1479 times a register can occur in one insn (surely less than 100).
1480 Multiplying this by 10000 can't overflow.
1481 QTY_CMP_PRI is also used by qty_sugg_compare. */
1482
1483 #define QTY_CMP_PRI(q) \
1484 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1485 / (qty_death[q] - qty_birth[q])) * 10000))
1486
1487 static int
1488 qty_compare (q1, q2)
1489 int q1, q2;
1490 {
1491 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1492 }
1493
1494 static int
1495 qty_compare_1 (q1p, q2p)
1496 const GENERIC_PTR q1p;
1497 const GENERIC_PTR q2p;
1498 {
1499 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1500 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1501
1502 if (tem != 0)
1503 return tem;
1504
1505 /* If qtys are equally good, sort by qty number,
1506 so that the results of qsort leave nothing to chance. */
1507 return q1 - q2;
1508 }
1509 \f
1510 /* Compare two quantities' priority for getting real registers. This version
1511 is called for quantities that have suggested hard registers. First priority
1512 goes to quantities that have copy preferences, then to those that have
1513 normal preferences. Within those groups, quantities with the lower
1514 number of preferences have the highest priority. Of those, we use the same
1515 algorithm as above. */
1516
1517 #define QTY_CMP_SUGG(q) \
1518 (qty_phys_num_copy_sugg[q] \
1519 ? qty_phys_num_copy_sugg[q] \
1520 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1521
1522 static int
1523 qty_sugg_compare (q1, q2)
1524 int q1, q2;
1525 {
1526 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1527
1528 if (tem != 0)
1529 return tem;
1530
1531 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1532 }
1533
1534 static int
1535 qty_sugg_compare_1 (q1p, q2p)
1536 const GENERIC_PTR q1p;
1537 const GENERIC_PTR q2p;
1538 {
1539 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1540 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1541
1542 if (tem != 0)
1543 return tem;
1544
1545 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1546 if (tem != 0)
1547 return tem;
1548
1549 /* If qtys are equally good, sort by qty number,
1550 so that the results of qsort leave nothing to chance. */
1551 return q1 - q2;
1552 }
1553
1554 #undef QTY_CMP_SUGG
1555 #undef QTY_CMP_PRI
1556 \f
1557 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1558 Returns 1 if have done so, or 0 if cannot.
1559
1560 Combining registers means marking them as having the same quantity
1561 and adjusting the offsets within the quantity if either of
1562 them is a SUBREG).
1563
1564 We don't actually combine a hard reg with a pseudo; instead
1565 we just record the hard reg as the suggestion for the pseudo's quantity.
1566 If we really combined them, we could lose if the pseudo lives
1567 across an insn that clobbers the hard reg (eg, movstr).
1568
1569 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1570 there is no REG_DEAD note on INSN. This occurs during the processing
1571 of REG_NO_CONFLICT blocks.
1572
1573 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1574 SETREG or if the input and output must share a register.
1575 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1576
1577 There are elaborate checks for the validity of combining. */
1578
1579
1580 static int
1581 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1582 rtx usedreg, setreg;
1583 int may_save_copy;
1584 int insn_number;
1585 rtx insn;
1586 int already_dead;
1587 {
1588 register int ureg, sreg;
1589 register int offset = 0;
1590 int usize, ssize;
1591 register int sqty;
1592
1593 /* Determine the numbers and sizes of registers being used. If a subreg
1594 is present that does not change the entire register, don't consider
1595 this a copy insn. */
1596
1597 while (GET_CODE (usedreg) == SUBREG)
1598 {
1599 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1600 may_save_copy = 0;
1601 offset += SUBREG_WORD (usedreg);
1602 usedreg = SUBREG_REG (usedreg);
1603 }
1604 if (GET_CODE (usedreg) != REG)
1605 return 0;
1606 ureg = REGNO (usedreg);
1607 usize = REG_SIZE (usedreg);
1608
1609 while (GET_CODE (setreg) == SUBREG)
1610 {
1611 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1612 may_save_copy = 0;
1613 offset -= SUBREG_WORD (setreg);
1614 setreg = SUBREG_REG (setreg);
1615 }
1616 if (GET_CODE (setreg) != REG)
1617 return 0;
1618 sreg = REGNO (setreg);
1619 ssize = REG_SIZE (setreg);
1620
1621 /* If UREG is a pseudo-register that hasn't already been assigned a
1622 quantity number, it means that it is not local to this block or dies
1623 more than once. In either event, we can't do anything with it. */
1624 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1625 /* Do not combine registers unless one fits within the other. */
1626 || (offset > 0 && usize + offset > ssize)
1627 || (offset < 0 && usize + offset < ssize)
1628 /* Do not combine with a smaller already-assigned object
1629 if that smaller object is already combined with something bigger. */
1630 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1631 && usize < qty_size[reg_qty[ureg]])
1632 /* Can't combine if SREG is not a register we can allocate. */
1633 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1634 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1635 These have already been taken care of. This probably wouldn't
1636 combine anyway, but don't take any chances. */
1637 || (ureg >= FIRST_PSEUDO_REGISTER
1638 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1639 /* Don't tie something to itself. In most cases it would make no
1640 difference, but it would screw up if the reg being tied to itself
1641 also dies in this insn. */
1642 || ureg == sreg
1643 /* Don't try to connect two different hardware registers. */
1644 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1645 /* Don't connect two different machine modes if they have different
1646 implications as to which registers may be used. */
1647 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1648 return 0;
1649
1650 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1651 qty_phys_sugg for the pseudo instead of tying them.
1652
1653 Return "failure" so that the lifespan of UREG is terminated here;
1654 that way the two lifespans will be disjoint and nothing will prevent
1655 the pseudo reg from being given this hard reg. */
1656
1657 if (ureg < FIRST_PSEUDO_REGISTER)
1658 {
1659 /* Allocate a quantity number so we have a place to put our
1660 suggestions. */
1661 if (reg_qty[sreg] == -2)
1662 reg_is_born (setreg, 2 * insn_number);
1663
1664 if (reg_qty[sreg] >= 0)
1665 {
1666 if (may_save_copy
1667 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1668 {
1669 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1670 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1671 }
1672 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1673 {
1674 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1675 qty_phys_num_sugg[reg_qty[sreg]]++;
1676 }
1677 }
1678 return 0;
1679 }
1680
1681 /* Similarly for SREG a hard register and UREG a pseudo register. */
1682
1683 if (sreg < FIRST_PSEUDO_REGISTER)
1684 {
1685 if (may_save_copy
1686 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1687 {
1688 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1689 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1690 }
1691 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1692 {
1693 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1694 qty_phys_num_sugg[reg_qty[ureg]]++;
1695 }
1696 return 0;
1697 }
1698
1699 /* At this point we know that SREG and UREG are both pseudos.
1700 Do nothing if SREG already has a quantity or is a register that we
1701 don't allocate. */
1702 if (reg_qty[sreg] >= -1
1703 /* If we are not going to let any regs live across calls,
1704 don't tie a call-crossing reg to a non-call-crossing reg. */
1705 || (current_function_has_nonlocal_label
1706 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1707 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1708 return 0;
1709
1710 /* We don't already know about SREG, so tie it to UREG
1711 if this is the last use of UREG, provided the classes they want
1712 are compatible. */
1713
1714 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1715 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1716 {
1717 /* Add SREG to UREG's quantity. */
1718 sqty = reg_qty[ureg];
1719 reg_qty[sreg] = sqty;
1720 reg_offset[sreg] = reg_offset[ureg] + offset;
1721 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1722 qty_first_reg[sqty] = sreg;
1723
1724 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1725 update_qty_class (sqty, sreg);
1726
1727 /* Update info about quantity SQTY. */
1728 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1729 qty_n_refs[sqty] += REG_N_REFS (sreg);
1730 if (usize < ssize)
1731 {
1732 register int i;
1733
1734 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1735 reg_offset[i] -= offset;
1736
1737 qty_size[sqty] = ssize;
1738 qty_mode[sqty] = GET_MODE (setreg);
1739 }
1740 }
1741 else
1742 return 0;
1743
1744 return 1;
1745 }
1746 \f
1747 /* Return 1 if the preferred class of REG allows it to be tied
1748 to a quantity or register whose class is CLASS.
1749 True if REG's reg class either contains or is contained in CLASS. */
1750
1751 static int
1752 reg_meets_class_p (reg, class)
1753 int reg;
1754 enum reg_class class;
1755 {
1756 register enum reg_class rclass = reg_preferred_class (reg);
1757 return (reg_class_subset_p (rclass, class)
1758 || reg_class_subset_p (class, rclass));
1759 }
1760
1761 /* Update the class of QTY assuming that REG is being tied to it. */
1762
1763 static void
1764 update_qty_class (qty, reg)
1765 int qty;
1766 int reg;
1767 {
1768 enum reg_class rclass = reg_preferred_class (reg);
1769 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1770 qty_min_class[qty] = rclass;
1771
1772 rclass = reg_alternate_class (reg);
1773 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1774 qty_alternate_class[qty] = rclass;
1775
1776 if (REG_CHANGES_SIZE (reg))
1777 qty_changes_size[qty] = 1;
1778 }
1779 \f
1780 /* Handle something which alters the value of an rtx REG.
1781
1782 REG is whatever is set or clobbered. SETTER is the rtx that
1783 is modifying the register.
1784
1785 If it is not really a register, we do nothing.
1786 The file-global variables `this_insn' and `this_insn_number'
1787 carry info from `block_alloc'. */
1788
1789 static void
1790 reg_is_set (reg, setter)
1791 rtx reg;
1792 rtx setter;
1793 {
1794 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1795 a hard register. These may actually not exist any more. */
1796
1797 if (GET_CODE (reg) != SUBREG
1798 && GET_CODE (reg) != REG)
1799 return;
1800
1801 /* Mark this register as being born. If it is used in a CLOBBER, mark
1802 it as being born halfway between the previous insn and this insn so that
1803 it conflicts with our inputs but not the outputs of the previous insn. */
1804
1805 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1806 }
1807 \f
1808 /* Handle beginning of the life of register REG.
1809 BIRTH is the index at which this is happening. */
1810
1811 static void
1812 reg_is_born (reg, birth)
1813 rtx reg;
1814 int birth;
1815 {
1816 register int regno;
1817
1818 if (GET_CODE (reg) == SUBREG)
1819 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1820 else
1821 regno = REGNO (reg);
1822
1823 if (regno < FIRST_PSEUDO_REGISTER)
1824 {
1825 mark_life (regno, GET_MODE (reg), 1);
1826
1827 /* If the register was to have been born earlier that the present
1828 insn, mark it as live where it is actually born. */
1829 if (birth < 2 * this_insn_number)
1830 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1831 }
1832 else
1833 {
1834 if (reg_qty[regno] == -2)
1835 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1836
1837 /* If this register has a quantity number, show that it isn't dead. */
1838 if (reg_qty[regno] >= 0)
1839 qty_death[reg_qty[regno]] = -1;
1840 }
1841 }
1842
1843 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1844 REG is an output that is dying (i.e., it is never used), otherwise it
1845 is an input (the normal case).
1846 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1847
1848 static void
1849 wipe_dead_reg (reg, output_p)
1850 register rtx reg;
1851 int output_p;
1852 {
1853 register int regno = REGNO (reg);
1854
1855 /* If this insn has multiple results,
1856 and the dead reg is used in one of the results,
1857 extend its life to after this insn,
1858 so it won't get allocated together with any other result of this insn. */
1859 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1860 && !single_set (this_insn))
1861 {
1862 int i;
1863 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1864 {
1865 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1866 if (GET_CODE (set) == SET
1867 && GET_CODE (SET_DEST (set)) != REG
1868 && !rtx_equal_p (reg, SET_DEST (set))
1869 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1870 output_p = 1;
1871 }
1872 }
1873
1874 /* If this register is used in an auto-increment address, then extend its
1875 life to after this insn, so that it won't get allocated together with
1876 the result of this insn. */
1877 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1878 output_p = 1;
1879
1880 if (regno < FIRST_PSEUDO_REGISTER)
1881 {
1882 mark_life (regno, GET_MODE (reg), 0);
1883
1884 /* If a hard register is dying as an output, mark it as in use at
1885 the beginning of this insn (the above statement would cause this
1886 not to happen). */
1887 if (output_p)
1888 post_mark_life (regno, GET_MODE (reg), 1,
1889 2 * this_insn_number, 2 * this_insn_number+ 1);
1890 }
1891
1892 else if (reg_qty[regno] >= 0)
1893 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1894 }
1895 \f
1896 /* Find a block of SIZE words of hard regs in reg_class CLASS
1897 that can hold something of machine-mode MODE
1898 (but actually we test only the first of the block for holding MODE)
1899 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1900 and return the number of the first of them.
1901 Return -1 if such a block cannot be found.
1902 If QTY crosses calls, insist on a register preserved by calls,
1903 unless ACCEPT_CALL_CLOBBERED is nonzero.
1904
1905 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1906 register is available. If not, return -1. */
1907
1908 static int
1909 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1910 born_index, dead_index)
1911 enum reg_class class;
1912 enum machine_mode mode;
1913 int qty;
1914 int accept_call_clobbered;
1915 int just_try_suggested;
1916 int born_index, dead_index;
1917 {
1918 register int i, ins;
1919 #ifdef HARD_REG_SET
1920 register /* Declare it register if it's a scalar. */
1921 #endif
1922 HARD_REG_SET used, first_used;
1923 #ifdef ELIMINABLE_REGS
1924 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1925 #endif
1926
1927 /* Validate our parameters. */
1928 if (born_index < 0 || born_index > dead_index)
1929 abort ();
1930
1931 /* Don't let a pseudo live in a reg across a function call
1932 if we might get a nonlocal goto. */
1933 if (current_function_has_nonlocal_label
1934 && qty_n_calls_crossed[qty] > 0)
1935 return -1;
1936
1937 if (accept_call_clobbered)
1938 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1939 else if (qty_n_calls_crossed[qty] == 0)
1940 COPY_HARD_REG_SET (used, fixed_reg_set);
1941 else
1942 COPY_HARD_REG_SET (used, call_used_reg_set);
1943
1944 if (accept_call_clobbered)
1945 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1946
1947 for (ins = born_index; ins < dead_index; ins++)
1948 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1949
1950 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1951
1952 /* Don't use the frame pointer reg in local-alloc even if
1953 we may omit the frame pointer, because if we do that and then we
1954 need a frame pointer, reload won't know how to move the pseudo
1955 to another hard reg. It can move only regs made by global-alloc.
1956
1957 This is true of any register that can be eliminated. */
1958 #ifdef ELIMINABLE_REGS
1959 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1960 SET_HARD_REG_BIT (used, eliminables[i].from);
1961 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1962 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1963 that it might be eliminated into. */
1964 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1965 #endif
1966 #else
1967 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1968 #endif
1969
1970 #ifdef CLASS_CANNOT_CHANGE_SIZE
1971 if (qty_changes_size[qty])
1972 IOR_HARD_REG_SET (used,
1973 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1974 #endif
1975
1976 /* Normally, the registers that can be used for the first register in
1977 a multi-register quantity are the same as those that can be used for
1978 subsequent registers. However, if just trying suggested registers,
1979 restrict our consideration to them. If there are copy-suggested
1980 register, try them. Otherwise, try the arithmetic-suggested
1981 registers. */
1982 COPY_HARD_REG_SET (first_used, used);
1983
1984 if (just_try_suggested)
1985 {
1986 if (qty_phys_num_copy_sugg[qty] != 0)
1987 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
1988 else
1989 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
1990 }
1991
1992 /* If all registers are excluded, we can't do anything. */
1993 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
1994
1995 /* If at least one would be suitable, test each hard reg. */
1996
1997 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1998 {
1999 #ifdef REG_ALLOC_ORDER
2000 int regno = reg_alloc_order[i];
2001 #else
2002 int regno = i;
2003 #endif
2004 if (! TEST_HARD_REG_BIT (first_used, regno)
2005 && HARD_REGNO_MODE_OK (regno, mode)
2006 && (qty_n_calls_crossed[qty] == 0
2007 || accept_call_clobbered
2008 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2009 {
2010 register int j;
2011 register int size1 = HARD_REGNO_NREGS (regno, mode);
2012 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2013 if (j == size1)
2014 {
2015 /* Mark that this register is in use between its birth and death
2016 insns. */
2017 post_mark_life (regno, mode, 1, born_index, dead_index);
2018 return regno;
2019 }
2020 #ifndef REG_ALLOC_ORDER
2021 i += j; /* Skip starting points we know will lose */
2022 #endif
2023 }
2024 }
2025
2026 fail:
2027
2028 /* If we are just trying suggested register, we have just tried copy-
2029 suggested registers, and there are arithmetic-suggested registers,
2030 try them. */
2031
2032 /* If it would be profitable to allocate a call-clobbered register
2033 and save and restore it around calls, do that. */
2034 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2035 && qty_phys_num_sugg[qty] != 0)
2036 {
2037 /* Don't try the copy-suggested regs again. */
2038 qty_phys_num_copy_sugg[qty] = 0;
2039 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2040 born_index, dead_index);
2041 }
2042
2043 /* We need not check to see if the current function has nonlocal
2044 labels because we don't put any pseudos that are live over calls in
2045 registers in that case. */
2046
2047 if (! accept_call_clobbered
2048 && flag_caller_saves
2049 && ! just_try_suggested
2050 && qty_n_calls_crossed[qty] != 0
2051 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2052 {
2053 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2054 if (i >= 0)
2055 caller_save_needed = 1;
2056 return i;
2057 }
2058 return -1;
2059 }
2060 \f
2061 /* Mark that REGNO with machine-mode MODE is live starting from the current
2062 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2063 is zero). */
2064
2065 static void
2066 mark_life (regno, mode, life)
2067 register int regno;
2068 enum machine_mode mode;
2069 int life;
2070 {
2071 register int j = HARD_REGNO_NREGS (regno, mode);
2072 if (life)
2073 while (--j >= 0)
2074 SET_HARD_REG_BIT (regs_live, regno + j);
2075 else
2076 while (--j >= 0)
2077 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2078 }
2079
2080 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2081 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2082 to insn number DEATH (exclusive). */
2083
2084 static void
2085 post_mark_life (regno, mode, life, birth, death)
2086 int regno;
2087 enum machine_mode mode;
2088 int life, birth, death;
2089 {
2090 register int j = HARD_REGNO_NREGS (regno, mode);
2091 #ifdef HARD_REG_SET
2092 register /* Declare it register if it's a scalar. */
2093 #endif
2094 HARD_REG_SET this_reg;
2095
2096 CLEAR_HARD_REG_SET (this_reg);
2097 while (--j >= 0)
2098 SET_HARD_REG_BIT (this_reg, regno + j);
2099
2100 if (life)
2101 while (birth < death)
2102 {
2103 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2104 birth++;
2105 }
2106 else
2107 while (birth < death)
2108 {
2109 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2110 birth++;
2111 }
2112 }
2113 \f
2114 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2115 is the register being clobbered, and R1 is a register being used in
2116 the equivalent expression.
2117
2118 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2119 in which it is used, return 1.
2120
2121 Otherwise, return 0. */
2122
2123 static int
2124 no_conflict_p (insn, r0, r1)
2125 rtx insn, r0, r1;
2126 {
2127 int ok = 0;
2128 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2129 rtx p, last;
2130
2131 /* If R1 is a hard register, return 0 since we handle this case
2132 when we scan the insns that actually use it. */
2133
2134 if (note == 0
2135 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2136 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2137 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2138 return 0;
2139
2140 last = XEXP (note, 0);
2141
2142 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2143 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2144 {
2145 if (find_reg_note (p, REG_DEAD, r1))
2146 ok = 1;
2147
2148 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2149 some earlier optimization pass has inserted instructions into
2150 the sequence, and it is not safe to perform this optimization.
2151 Note that emit_no_conflict_block always ensures that this is
2152 true when these sequences are created. */
2153 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2154 return 0;
2155 }
2156
2157 return ok;
2158 }
2159 \f
2160 #ifdef REGISTER_CONSTRAINTS
2161
2162 /* Return the number of alternatives for which the constraint string P
2163 indicates that the operand must be equal to operand 0 and that no register
2164 is acceptable. */
2165
2166 static int
2167 requires_inout (p)
2168 char *p;
2169 {
2170 char c;
2171 int found_zero = 0;
2172 int reg_allowed = 0;
2173 int num_matching_alts = 0;
2174
2175 while ((c = *p++))
2176 switch (c)
2177 {
2178 case '=': case '+': case '?':
2179 case '#': case '&': case '!':
2180 case '*': case '%':
2181 case '1': case '2': case '3': case '4':
2182 case 'm': case '<': case '>': case 'V': case 'o':
2183 case 'E': case 'F': case 'G': case 'H':
2184 case 's': case 'i': case 'n':
2185 case 'I': case 'J': case 'K': case 'L':
2186 case 'M': case 'N': case 'O': case 'P':
2187 #ifdef EXTRA_CONSTRAINT
2188 case 'Q': case 'R': case 'S': case 'T': case 'U':
2189 #endif
2190 case 'X':
2191 /* These don't say anything we care about. */
2192 break;
2193
2194 case ',':
2195 if (found_zero && ! reg_allowed)
2196 num_matching_alts++;
2197
2198 found_zero = reg_allowed = 0;
2199 break;
2200
2201 case '0':
2202 found_zero = 1;
2203 break;
2204
2205 case 'p':
2206 case 'g': case 'r':
2207 default:
2208 reg_allowed = 1;
2209 break;
2210 }
2211
2212 if (found_zero && ! reg_allowed)
2213 num_matching_alts++;
2214
2215 return num_matching_alts;
2216 }
2217 #endif /* REGISTER_CONSTRAINTS */
2218 \f
2219 void
2220 dump_local_alloc (file)
2221 FILE *file;
2222 {
2223 register int i;
2224 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2225 if (reg_renumber[i] != -1)
2226 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2227 }