Delete !REGISTER_CONSTRAINTS code
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "basic-block.h"
68 #include "regs.h"
69 #include "function.h"
70 #include "hard-reg-set.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* In all the following vectors indexed by quantity number. */
82
83 /* Element Q is the hard reg number chosen for quantity Q,
84 or -1 if none was found. */
85
86 static short *qty_phys_reg;
87
88 /* We maintain two hard register sets that indicate suggested hard registers
89 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
90 that are tied to the quantity by a simple copy. The second contains all
91 hard registers that are tied to the quantity via an arithmetic operation.
92
93 The former register set is given priority for allocation. This tends to
94 eliminate copy insns. */
95
96 /* Element Q is a set of hard registers that are suggested for quantity Q by
97 copy insns. */
98
99 static HARD_REG_SET *qty_phys_copy_sugg;
100
101 /* Element Q is a set of hard registers that are suggested for quantity Q by
102 arithmetic insns. */
103
104 static HARD_REG_SET *qty_phys_sugg;
105
106 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
107
108 static short *qty_phys_num_copy_sugg;
109
110 /* Element Q is the number of suggested registers in qty_phys_sugg. */
111
112 static short *qty_phys_num_sugg;
113
114 /* Element Q is the number of refs to quantity Q. */
115
116 static int *qty_n_refs;
117
118 /* Element Q is a reg class contained in (smaller than) the
119 preferred classes of all the pseudo regs that are tied in quantity Q.
120 This is the preferred class for allocating that quantity. */
121
122 static enum reg_class *qty_min_class;
123
124 /* Insn number (counting from head of basic block)
125 where quantity Q was born. -1 if birth has not been recorded. */
126
127 static int *qty_birth;
128
129 /* Insn number (counting from head of basic block)
130 where quantity Q died. Due to the way tying is done,
131 and the fact that we consider in this pass only regs that die but once,
132 a quantity can die only once. Each quantity's life span
133 is a set of consecutive insns. -1 if death has not been recorded. */
134
135 static int *qty_death;
136
137 /* Number of words needed to hold the data in quantity Q.
138 This depends on its machine mode. It is used for these purposes:
139 1. It is used in computing the relative importances of qtys,
140 which determines the order in which we look for regs for them.
141 2. It is used in rules that prevent tying several registers of
142 different sizes in a way that is geometrically impossible
143 (see combine_regs). */
144
145 static int *qty_size;
146
147 /* This holds the mode of the registers that are tied to qty Q,
148 or VOIDmode if registers with differing modes are tied together. */
149
150 static enum machine_mode *qty_mode;
151
152 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
153
154 static int *qty_n_calls_crossed;
155
156 /* Register class within which we allocate qty Q if we can't get
157 its preferred class. */
158
159 static enum reg_class *qty_alternate_class;
160
161 /* Element Q is nonzero if this quantity has been used in a SUBREG
162 that changes its size. */
163
164 static char *qty_changes_size;
165
166 /* Element Q is the register number of one pseudo register whose
167 reg_qty value is Q. This register should be the head of the chain
168 maintained in reg_next_in_qty. */
169
170 static int *qty_first_reg;
171
172 /* If (REG N) has been assigned a quantity number, is a register number
173 of another register assigned the same quantity number, or -1 for the
174 end of the chain. qty_first_reg point to the head of this chain. */
175
176 static int *reg_next_in_qty;
177
178 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
179 if it is >= 0,
180 of -1 if this register cannot be allocated by local-alloc,
181 or -2 if not known yet.
182
183 Note that if we see a use or death of pseudo register N with
184 reg_qty[N] == -2, register N must be local to the current block. If
185 it were used in more than one block, we would have reg_qty[N] == -1.
186 This relies on the fact that if reg_basic_block[N] is >= 0, register N
187 will not appear in any other block. We save a considerable number of
188 tests by exploiting this.
189
190 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
191 be referenced. */
192
193 static int *reg_qty;
194
195 /* The offset (in words) of register N within its quantity.
196 This can be nonzero if register N is SImode, and has been tied
197 to a subreg of a DImode register. */
198
199 static char *reg_offset;
200
201 /* Vector of substitutions of register numbers,
202 used to map pseudo regs into hardware regs.
203 This is set up as a result of register allocation.
204 Element N is the hard reg assigned to pseudo reg N,
205 or is -1 if no hard reg was assigned.
206 If N is a hard reg number, element N is N. */
207
208 short *reg_renumber;
209
210 /* Set of hard registers live at the current point in the scan
211 of the instructions in a basic block. */
212
213 static HARD_REG_SET regs_live;
214
215 /* Each set of hard registers indicates registers live at a particular
216 point in the basic block. For N even, regs_live_at[N] says which
217 hard registers are needed *after* insn N/2 (i.e., they may not
218 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
219
220 If an object is to conflict with the inputs of insn J but not the
221 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
222 if it is to conflict with the outputs of insn J but not the inputs of
223 insn J + 1, it is said to die at index J*2 + 1. */
224
225 static HARD_REG_SET *regs_live_at;
226
227 /* Communicate local vars `insn_number' and `insn'
228 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
229 static int this_insn_number;
230 static rtx this_insn;
231
232 /* Used to communicate changes made by update_equiv_regs to
233 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
234 found or created, so that we can keep track of what memory accesses might
235 be created later, e.g. by reload. */
236
237 static rtx *reg_equiv_replacement;
238
239 /* Used for communication between update_equiv_regs and no_equiv. */
240 static rtx *reg_equiv_init_insns;
241
242 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
243 static int recorded_label_ref;
244
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
247 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
248 static int contains_replace_regs PROTO((rtx, char *));
249 static int memref_referenced_p PROTO((rtx, rtx));
250 static int memref_used_between_p PROTO((rtx, rtx, rtx));
251 static void update_equiv_regs PROTO((void));
252 static void no_equiv PROTO((rtx, rtx));
253 static void block_alloc PROTO((int));
254 static int qty_sugg_compare PROTO((int, int));
255 static int qty_sugg_compare_1 PROTO((const PTR, const PTR));
256 static int qty_compare PROTO((int, int));
257 static int qty_compare_1 PROTO((const PTR, const PTR));
258 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
259 static int reg_meets_class_p PROTO((int, enum reg_class));
260 static void update_qty_class PROTO((int, int));
261 static void reg_is_set PROTO((rtx, rtx));
262 static void reg_is_born PROTO((rtx, int));
263 static void wipe_dead_reg PROTO((rtx, int));
264 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
265 int, int, int, int, int));
266 static void mark_life PROTO((int, enum machine_mode, int));
267 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
268 static int no_conflict_p PROTO((rtx, rtx, rtx));
269 static int requires_inout PROTO((const char *));
270 \f
271 /* Allocate a new quantity (new within current basic block)
272 for register number REGNO which is born at index BIRTH
273 within the block. MODE and SIZE are info on reg REGNO. */
274
275 static void
276 alloc_qty (regno, mode, size, birth)
277 int regno;
278 enum machine_mode mode;
279 int size, birth;
280 {
281 register int qty = next_qty++;
282
283 reg_qty[regno] = qty;
284 reg_offset[regno] = 0;
285 reg_next_in_qty[regno] = -1;
286
287 qty_first_reg[qty] = regno;
288 qty_size[qty] = size;
289 qty_mode[qty] = mode;
290 qty_birth[qty] = birth;
291 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
292 qty_min_class[qty] = reg_preferred_class (regno);
293 qty_alternate_class[qty] = reg_alternate_class (regno);
294 qty_n_refs[qty] = REG_N_REFS (regno);
295 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
296 }
297 \f
298 /* Main entry point of this file. */
299
300 int
301 local_alloc ()
302 {
303 register int b, i;
304 int max_qty;
305
306 /* We need to keep track of whether or not we recorded a LABEL_REF so
307 that we know if the jump optimizer needs to be rerun. */
308 recorded_label_ref = 0;
309
310 /* Leaf functions and non-leaf functions have different needs.
311 If defined, let the machine say what kind of ordering we
312 should use. */
313 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
314 ORDER_REGS_FOR_LOCAL_ALLOC;
315 #endif
316
317 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
318 registers. */
319 update_equiv_regs ();
320
321 /* This sets the maximum number of quantities we can have. Quantity
322 numbers start at zero and we can have one for each pseudo. */
323 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
324
325 /* Allocate vectors of temporary data.
326 See the declarations of these variables, above,
327 for what they mean. */
328
329 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
330 qty_phys_copy_sugg
331 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
332 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
333 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
334 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
335 qty_birth = (int *) alloca (max_qty * sizeof (int));
336 qty_death = (int *) alloca (max_qty * sizeof (int));
337 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
338 qty_size = (int *) alloca (max_qty * sizeof (int));
339 qty_mode
340 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
341 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
342 qty_min_class
343 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
344 qty_alternate_class
345 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
346 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
347 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
348
349 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
350 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
351 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
352
353 /* Allocate the reg_renumber array */
354 allocate_reg_info (max_regno, FALSE, TRUE);
355
356 /* Determine which pseudo-registers can be allocated by local-alloc.
357 In general, these are the registers used only in a single block and
358 which only die once. However, if a register's preferred class has only
359 a few entries, don't allocate this register here unless it is preferred
360 or nothing since retry_global_alloc won't be able to move it to
361 GENERAL_REGS if a reload register of this class is needed.
362
363 We need not be concerned with which block actually uses the register
364 since we will never see it outside that block. */
365
366 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
367 {
368 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
369 && (reg_alternate_class (i) == NO_REGS
370 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
371 reg_qty[i] = -2;
372 else
373 reg_qty[i] = -1;
374 }
375
376 /* Force loop below to initialize entire quantity array. */
377 next_qty = max_qty;
378
379 /* Allocate each block's local registers, block by block. */
380
381 for (b = 0; b < n_basic_blocks; b++)
382 {
383 /* NEXT_QTY indicates which elements of the `qty_...'
384 vectors might need to be initialized because they were used
385 for the previous block; it is set to the entire array before
386 block 0. Initialize those, with explicit loop if there are few,
387 else with bzero and bcopy. Do not initialize vectors that are
388 explicit set by `alloc_qty'. */
389
390 if (next_qty < 6)
391 {
392 for (i = 0; i < next_qty; i++)
393 {
394 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
395 qty_phys_num_copy_sugg[i] = 0;
396 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
397 qty_phys_num_sugg[i] = 0;
398 }
399 }
400 else
401 {
402 #define CLEAR(vector) \
403 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
404
405 CLEAR (qty_phys_copy_sugg);
406 CLEAR (qty_phys_num_copy_sugg);
407 CLEAR (qty_phys_sugg);
408 CLEAR (qty_phys_num_sugg);
409 }
410
411 next_qty = 0;
412
413 block_alloc (b);
414 #ifdef USE_C_ALLOCA
415 alloca (0);
416 #endif
417 }
418
419 free (reg_qty);
420 free (reg_offset);
421 free (reg_next_in_qty);
422 return recorded_label_ref;
423 }
424 \f
425 /* Depth of loops we are in while in update_equiv_regs. */
426 static int loop_depth;
427
428 /* Used for communication between the following two functions: contains
429 a MEM that we wish to ensure remains unchanged. */
430 static rtx equiv_mem;
431
432 /* Set nonzero if EQUIV_MEM is modified. */
433 static int equiv_mem_modified;
434
435 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
436 Called via note_stores. */
437
438 static void
439 validate_equiv_mem_from_store (dest, set)
440 rtx dest;
441 rtx set ATTRIBUTE_UNUSED;
442 {
443 if ((GET_CODE (dest) == REG
444 && reg_overlap_mentioned_p (dest, equiv_mem))
445 || (GET_CODE (dest) == MEM
446 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
447 equiv_mem_modified = 1;
448 }
449
450 /* Verify that no store between START and the death of REG invalidates
451 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
452 by storing into an overlapping memory location, or with a non-const
453 CALL_INSN.
454
455 Return 1 if MEMREF remains valid. */
456
457 static int
458 validate_equiv_mem (start, reg, memref)
459 rtx start;
460 rtx reg;
461 rtx memref;
462 {
463 rtx insn;
464 rtx note;
465
466 equiv_mem = memref;
467 equiv_mem_modified = 0;
468
469 /* If the memory reference has side effects or is volatile, it isn't a
470 valid equivalence. */
471 if (side_effects_p (memref))
472 return 0;
473
474 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
475 {
476 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
477 continue;
478
479 if (find_reg_note (insn, REG_DEAD, reg))
480 return 1;
481
482 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
483 && ! CONST_CALL_P (insn))
484 return 0;
485
486 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
487
488 /* If a register mentioned in MEMREF is modified via an
489 auto-increment, we lose the equivalence. Do the same if one
490 dies; although we could extend the life, it doesn't seem worth
491 the trouble. */
492
493 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
494 if ((REG_NOTE_KIND (note) == REG_INC
495 || REG_NOTE_KIND (note) == REG_DEAD)
496 && GET_CODE (XEXP (note, 0)) == REG
497 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
498 return 0;
499 }
500
501 return 0;
502 }
503
504 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
505
506 static int
507 contains_replace_regs (x, reg_equiv_replace)
508 rtx x;
509 char *reg_equiv_replace;
510 {
511 int i, j;
512 const char *fmt;
513 enum rtx_code code = GET_CODE (x);
514
515 switch (code)
516 {
517 case CONST_INT:
518 case CONST:
519 case LABEL_REF:
520 case SYMBOL_REF:
521 case CONST_DOUBLE:
522 case PC:
523 case CC0:
524 case HIGH:
525 case LO_SUM:
526 return 0;
527
528 case REG:
529 return reg_equiv_replace[REGNO (x)];
530
531 default:
532 break;
533 }
534
535 fmt = GET_RTX_FORMAT (code);
536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
537 switch (fmt[i])
538 {
539 case 'e':
540 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
541 return 1;
542 break;
543 case 'E':
544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
545 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
546 return 1;
547 break;
548 }
549
550 return 0;
551 }
552 \f
553 /* TRUE if X references a memory location that would be affected by a store
554 to MEMREF. */
555
556 static int
557 memref_referenced_p (memref, x)
558 rtx x;
559 rtx memref;
560 {
561 int i, j;
562 const char *fmt;
563 enum rtx_code code = GET_CODE (x);
564
565 switch (code)
566 {
567 case CONST_INT:
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 case CONST_DOUBLE:
572 case PC:
573 case CC0:
574 case HIGH:
575 case LO_SUM:
576 return 0;
577
578 case REG:
579 return (reg_equiv_replacement[REGNO (x)]
580 && memref_referenced_p (memref,
581 reg_equiv_replacement[REGNO (x)]));
582
583 case MEM:
584 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
585 return 1;
586 break;
587
588 case SET:
589 /* If we are setting a MEM, it doesn't count (its address does), but any
590 other SET_DEST that has a MEM in it is referencing the MEM. */
591 if (GET_CODE (SET_DEST (x)) == MEM)
592 {
593 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
594 return 1;
595 }
596 else if (memref_referenced_p (memref, SET_DEST (x)))
597 return 1;
598
599 return memref_referenced_p (memref, SET_SRC (x));
600
601 default:
602 break;
603 }
604
605 fmt = GET_RTX_FORMAT (code);
606 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
607 switch (fmt[i])
608 {
609 case 'e':
610 if (memref_referenced_p (memref, XEXP (x, i)))
611 return 1;
612 break;
613 case 'E':
614 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
615 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
616 return 1;
617 break;
618 }
619
620 return 0;
621 }
622
623 /* TRUE if some insn in the range (START, END] references a memory location
624 that would be affected by a store to MEMREF. */
625
626 static int
627 memref_used_between_p (memref, start, end)
628 rtx memref;
629 rtx start;
630 rtx end;
631 {
632 rtx insn;
633
634 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
635 insn = NEXT_INSN (insn))
636 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
637 && memref_referenced_p (memref, PATTERN (insn)))
638 return 1;
639
640 return 0;
641 }
642 \f
643 /* Return nonzero if the rtx X is invariant over the current function. */
644 int
645 function_invariant_p (x)
646 rtx x;
647 {
648 if (CONSTANT_P (x))
649 return 1;
650 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
651 return 1;
652 if (GET_CODE (x) == PLUS
653 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
654 && CONSTANT_P (XEXP (x, 1)))
655 return 1;
656 return 0;
657 }
658
659 /* Find registers that are equivalent to a single value throughout the
660 compilation (either because they can be referenced in memory or are set once
661 from a single constant). Lower their priority for a register.
662
663 If such a register is only referenced once, try substituting its value
664 into the using insn. If it succeeds, we can eliminate the register
665 completely. */
666
667 static void
668 update_equiv_regs ()
669 {
670 /* Set when an attempt should be made to replace a register with the
671 associated reg_equiv_replacement entry at the end of this function. */
672 char *reg_equiv_replace
673 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
674 rtx insn;
675 int block, depth;
676
677 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
678 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
679
680 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
681 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
682 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
683
684 init_alias_analysis ();
685
686 loop_depth = 1;
687
688 /* Scan the insns and find which registers have equivalences. Do this
689 in a separate scan of the insns because (due to -fcse-follow-jumps)
690 a register can be set below its use. */
691 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
692 {
693 rtx note;
694 rtx set;
695 rtx dest, src;
696 int regno;
697
698 if (GET_CODE (insn) == NOTE)
699 {
700 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
701 loop_depth++;
702 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
703 loop_depth--;
704 }
705
706 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
707 continue;
708
709 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
710 if (REG_NOTE_KIND (note) == REG_INC)
711 no_equiv (XEXP (note, 0), note);
712
713 set = single_set (insn);
714
715 /* If this insn contains more (or less) than a single SET,
716 only mark all destinations as having no known equivalence. */
717 if (set == 0)
718 {
719 note_stores (PATTERN (insn), no_equiv);
720 continue;
721 }
722 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
723 {
724 int i;
725
726 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
727 {
728 rtx part = XVECEXP (PATTERN (insn), 0, i);
729 if (part != set)
730 note_stores (part, no_equiv);
731 }
732 }
733
734 dest = SET_DEST (set);
735 src = SET_SRC (set);
736
737 /* If this sets a MEM to the contents of a REG that is only used
738 in a single basic block, see if the register is always equivalent
739 to that memory location and if moving the store from INSN to the
740 insn that set REG is safe. If so, put a REG_EQUIV note on the
741 initializing insn.
742
743 Don't add a REG_EQUIV note if the insn already has one. The existing
744 REG_EQUIV is likely more useful than the one we are adding.
745
746 If one of the regs in the address is marked as reg_equiv_replace,
747 then we can't add this REG_EQUIV note. The reg_equiv_replace
748 optimization may move the set of this register immediately before
749 insn, which puts it after reg_equiv_init_insns[regno], and hence
750 the mention in the REG_EQUIV note would be to an uninitialized
751 pseudo. */
752 /* ????? This test isn't good enough; we might see a MEM with a use of
753 a pseudo register before we see its setting insn that will cause
754 reg_equiv_replace for that pseudo to be set.
755 Equivalences to MEMs should be made in another pass, after the
756 reg_equiv_replace information has been gathered. */
757
758 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
759 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
760 && REG_BASIC_BLOCK (regno) >= 0
761 && REG_N_SETS (regno) == 1
762 && reg_equiv_init_insns[regno] != 0
763 && reg_equiv_init_insns[regno] != const0_rtx
764 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
765 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
766 {
767 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
768 if (validate_equiv_mem (init_insn, src, dest)
769 && ! memref_used_between_p (dest, init_insn, insn))
770 REG_NOTES (init_insn)
771 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
772 }
773
774 /* We only handle the case of a pseudo register being set
775 once, or always to the same value. */
776 /* ??? The mn10200 port breaks if we add equivalences for
777 values that need an ADDRESS_REGS register and set them equivalent
778 to a MEM of a pseudo. The actual problem is in the over-conservative
779 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
780 calculate_needs, but we traditionally work around this problem
781 here by rejecting equivalences when the destination is in a register
782 that's likely spilled. This is fragile, of course, since the
783 preferred class of a pseudo depends on all instructions that set
784 or use it. */
785
786 if (GET_CODE (dest) != REG
787 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
788 || reg_equiv_init_insns[regno] == const0_rtx
789 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
790 && GET_CODE (src) == MEM))
791 {
792 /* This might be seting a SUBREG of a pseudo, a pseudo that is
793 also set somewhere else to a constant. */
794 note_stores (set, no_equiv);
795 continue;
796 }
797 /* Don't handle the equivalence if the source is in a register
798 class that's likely to be spilled. */
799 if (GET_CODE (src) == REG
800 && REGNO (src) >= FIRST_PSEUDO_REGISTER
801 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
802 {
803 no_equiv (dest, set);
804 continue;
805 }
806
807 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
808
809 if (REG_N_SETS (regno) != 1
810 && (! note
811 || ! function_invariant_p (XEXP (note, 0))
812 || (reg_equiv_replacement[regno]
813 && ! rtx_equal_p (XEXP (note, 0),
814 reg_equiv_replacement[regno]))))
815 {
816 no_equiv (dest, set);
817 continue;
818 }
819 /* Record this insn as initializing this register. */
820 reg_equiv_init_insns[regno]
821 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
822
823 /* If this register is known to be equal to a constant, record that
824 it is always equivalent to the constant. */
825 if (note && function_invariant_p (XEXP (note, 0)))
826 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
827
828 /* If this insn introduces a "constant" register, decrease the priority
829 of that register. Record this insn if the register is only used once
830 more and the equivalence value is the same as our source.
831
832 The latter condition is checked for two reasons: First, it is an
833 indication that it may be more efficient to actually emit the insn
834 as written (if no registers are available, reload will substitute
835 the equivalence). Secondly, it avoids problems with any registers
836 dying in this insn whose death notes would be missed.
837
838 If we don't have a REG_EQUIV note, see if this insn is loading
839 a register used only in one basic block from a MEM. If so, and the
840 MEM remains unchanged for the life of the register, add a REG_EQUIV
841 note. */
842
843 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
844
845 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
846 && GET_CODE (SET_SRC (set)) == MEM
847 && validate_equiv_mem (insn, dest, SET_SRC (set)))
848 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
849 REG_NOTES (insn));
850
851 if (note)
852 {
853 int regno = REGNO (dest);
854
855 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
856 We might end up substituting the LABEL_REF for uses of the
857 pseudo here or later. That kind of transformation may turn an
858 indirect jump into a direct jump, in which case we must rerun the
859 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
860 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
861 || (GET_CODE (XEXP (note, 0)) == CONST
862 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
863 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
864 == LABEL_REF)))
865 recorded_label_ref = 1;
866
867
868 reg_equiv_replacement[regno] = XEXP (note, 0);
869
870 /* Don't mess with things live during setjmp. */
871 if (REG_LIVE_LENGTH (regno) >= 0)
872 {
873 /* Note that the statement below does not affect the priority
874 in local-alloc! */
875 REG_LIVE_LENGTH (regno) *= 2;
876
877
878 /* If the register is referenced exactly twice, meaning it is
879 set once and used once, indicate that the reference may be
880 replaced by the equivalence we computed above. If the
881 register is only used in one basic block, this can't succeed
882 or combine would have done it.
883
884 It would be nice to use "loop_depth * 2" in the compare
885 below. Unfortunately, LOOP_DEPTH need not be constant within
886 a basic block so this would be too complicated.
887
888 This case normally occurs when a parameter is read from
889 memory and then used exactly once, not in a loop. */
890
891 if (REG_N_REFS (regno) == 2
892 && REG_BASIC_BLOCK (regno) < 0
893 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
894 reg_equiv_replace[regno] = 1;
895 }
896 }
897 }
898
899 /* Now scan all regs killed in an insn to see if any of them are
900 registers only used that once. If so, see if we can replace the
901 reference with the equivalent from. If we can, delete the
902 initializing reference and this register will go away. If we
903 can't replace the reference, and the instruction is not in a
904 loop, then move the register initialization just before the use,
905 so that they are in the same basic block. */
906 block = -1;
907 depth = 0;
908 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
909 {
910 rtx link;
911
912 /* Keep track of which basic block we are in. */
913 if (block + 1 < n_basic_blocks
914 && BLOCK_HEAD (block + 1) == insn)
915 ++block;
916
917 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
918 {
919 if (GET_CODE (insn) == NOTE)
920 {
921 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
922 ++depth;
923 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
924 {
925 --depth;
926 if (depth < 0)
927 abort ();
928 }
929 }
930
931 continue;
932 }
933
934 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
935 {
936 if (REG_NOTE_KIND (link) == REG_DEAD
937 /* Make sure this insn still refers to the register. */
938 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
939 {
940 int regno = REGNO (XEXP (link, 0));
941 rtx equiv_insn;
942
943 if (! reg_equiv_replace[regno])
944 continue;
945
946 /* reg_equiv_replace[REGNO] gets set only when
947 REG_N_REFS[REGNO] is 2, i.e. the register is set
948 once and used once. (If it were only set, but not used,
949 flow would have deleted the setting insns.) Hence
950 there can only be one insn in reg_equiv_init_insns. */
951 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
952
953 if (validate_replace_rtx (regno_reg_rtx[regno],
954 reg_equiv_replacement[regno], insn))
955 {
956 remove_death (regno, insn);
957 REG_N_REFS (regno) = 0;
958 PUT_CODE (equiv_insn, NOTE);
959 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
960 NOTE_SOURCE_FILE (equiv_insn) = 0;
961 }
962 /* If we aren't in a loop, and there are no calls in
963 INSN or in the initialization of the register, then
964 move the initialization of the register to just
965 before INSN. Update the flow information. */
966 else if (depth == 0
967 && GET_CODE (equiv_insn) == INSN
968 && GET_CODE (insn) == INSN
969 && REG_BASIC_BLOCK (regno) < 0)
970 {
971 int l;
972
973 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
974 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
975 REG_NOTES (equiv_insn) = 0;
976
977 PUT_CODE (equiv_insn, NOTE);
978 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
979 NOTE_SOURCE_FILE (equiv_insn) = 0;
980
981 if (block < 0)
982 REG_BASIC_BLOCK (regno) = 0;
983 else
984 REG_BASIC_BLOCK (regno) = block;
985 REG_N_CALLS_CROSSED (regno) = 0;
986 REG_LIVE_LENGTH (regno) = 2;
987
988 if (block >= 0 && insn == BLOCK_HEAD (block))
989 BLOCK_HEAD (block) = PREV_INSN (insn);
990
991 for (l = 0; l < n_basic_blocks; l++)
992 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
993 regno);
994 }
995 }
996 }
997 }
998 }
999
1000 /* Mark REG as having no known equivalence.
1001 Some instructions might have been proceessed before and furnished
1002 with REG_EQUIV notes for this register; these notes will have to be
1003 removed.
1004 STORE is the piece of RTL that does the non-constant / conflicting
1005 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1006 but needs to be there because this function is called from note_stores. */
1007 static void
1008 no_equiv (reg, store)
1009 rtx reg, store ATTRIBUTE_UNUSED;
1010 {
1011 int regno;
1012 rtx list;
1013
1014 if (GET_CODE (reg) != REG)
1015 return;
1016 regno = REGNO (reg);
1017 list = reg_equiv_init_insns[regno];
1018 if (list == const0_rtx)
1019 return;
1020 for (; list; list = XEXP (list, 1))
1021 {
1022 rtx insn = XEXP (list, 0);
1023 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1024 }
1025 reg_equiv_init_insns[regno] = const0_rtx;
1026 reg_equiv_replacement[regno] = NULL_RTX;
1027 }
1028 \f
1029 /* Allocate hard regs to the pseudo regs used only within block number B.
1030 Only the pseudos that die but once can be handled. */
1031
1032 static void
1033 block_alloc (b)
1034 int b;
1035 {
1036 register int i, q;
1037 register rtx insn;
1038 rtx note;
1039 int insn_number = 0;
1040 int insn_count = 0;
1041 int max_uid = get_max_uid ();
1042 int *qty_order;
1043 int no_conflict_combined_regno = -1;
1044
1045 /* Count the instructions in the basic block. */
1046
1047 insn = BLOCK_END (b);
1048 while (1)
1049 {
1050 if (GET_CODE (insn) != NOTE)
1051 if (++insn_count > max_uid)
1052 abort ();
1053 if (insn == BLOCK_HEAD (b))
1054 break;
1055 insn = PREV_INSN (insn);
1056 }
1057
1058 /* +2 to leave room for a post_mark_life at the last insn and for
1059 the birth of a CLOBBER in the first insn. */
1060 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1061 * sizeof (HARD_REG_SET));
1062 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1063
1064 /* Initialize table of hardware registers currently live. */
1065
1066 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1067
1068 /* This loop scans the instructions of the basic block
1069 and assigns quantities to registers.
1070 It computes which registers to tie. */
1071
1072 insn = BLOCK_HEAD (b);
1073 while (1)
1074 {
1075 if (GET_CODE (insn) != NOTE)
1076 insn_number++;
1077
1078 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1079 {
1080 register rtx link, set;
1081 register int win = 0;
1082 register rtx r0, r1;
1083 int combined_regno = -1;
1084 int i;
1085
1086 this_insn_number = insn_number;
1087 this_insn = insn;
1088
1089 extract_insn (insn);
1090 which_alternative = -1;
1091
1092 /* Is this insn suitable for tying two registers?
1093 If so, try doing that.
1094 Suitable insns are those with at least two operands and where
1095 operand 0 is an output that is a register that is not
1096 earlyclobber.
1097
1098 We can tie operand 0 with some operand that dies in this insn.
1099 First look for operands that are required to be in the same
1100 register as operand 0. If we find such, only try tying that
1101 operand or one that can be put into that operand if the
1102 operation is commutative. If we don't find an operand
1103 that is required to be in the same register as operand 0,
1104 we can tie with any operand.
1105
1106 Subregs in place of regs are also ok.
1107
1108 If tying is done, WIN is set nonzero. */
1109
1110 if (recog_data.n_operands > 1
1111 && recog_data.constraints[0][0] == '='
1112 && recog_data.constraints[0][1] != '&')
1113 {
1114 /* If non-negative, is an operand that must match operand 0. */
1115 int must_match_0 = -1;
1116 /* Counts number of alternatives that require a match with
1117 operand 0. */
1118 int n_matching_alts = 0;
1119
1120 for (i = 1; i < recog_data.n_operands; i++)
1121 {
1122 const char *p = recog_data.constraints[i];
1123 int this_match = (requires_inout (p));
1124
1125 n_matching_alts += this_match;
1126 if (this_match == recog_data.n_alternatives)
1127 must_match_0 = i;
1128 }
1129
1130 r0 = recog_data.operand[0];
1131 for (i = 1; i < recog_data.n_operands; i++)
1132 {
1133 /* Skip this operand if we found an operand that
1134 must match operand 0 and this operand isn't it
1135 and can't be made to be it by commutativity. */
1136
1137 if (must_match_0 >= 0 && i != must_match_0
1138 && ! (i == must_match_0 + 1
1139 && recog_data.constraints[i-1][0] == '%')
1140 && ! (i == must_match_0 - 1
1141 && recog_data.constraints[i][0] == '%'))
1142 continue;
1143
1144 /* Likewise if each alternative has some operand that
1145 must match operand zero. In that case, skip any
1146 operand that doesn't list operand 0 since we know that
1147 the operand always conflicts with operand 0. We
1148 ignore commutatity in this case to keep things simple. */
1149 if (n_matching_alts == recog_data.n_alternatives
1150 && 0 == requires_inout (recog_data.constraints[i]))
1151 continue;
1152
1153 r1 = recog_data.operand[i];
1154
1155 /* If the operand is an address, find a register in it.
1156 There may be more than one register, but we only try one
1157 of them. */
1158 if (recog_data.constraints[i][0] == 'p')
1159 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1160 r1 = XEXP (r1, 0);
1161
1162 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1163 {
1164 /* We have two priorities for hard register preferences.
1165 If we have a move insn or an insn whose first input
1166 can only be in the same register as the output, give
1167 priority to an equivalence found from that insn. */
1168 int may_save_copy
1169 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1170
1171 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1172 win = combine_regs (r1, r0, may_save_copy,
1173 insn_number, insn, 0);
1174 }
1175 if (win)
1176 break;
1177 }
1178 }
1179
1180 /* Recognize an insn sequence with an ultimate result
1181 which can safely overlap one of the inputs.
1182 The sequence begins with a CLOBBER of its result,
1183 and ends with an insn that copies the result to itself
1184 and has a REG_EQUAL note for an equivalent formula.
1185 That note indicates what the inputs are.
1186 The result and the input can overlap if each insn in
1187 the sequence either doesn't mention the input
1188 or has a REG_NO_CONFLICT note to inhibit the conflict.
1189
1190 We do the combining test at the CLOBBER so that the
1191 destination register won't have had a quantity number
1192 assigned, since that would prevent combining. */
1193
1194 if (GET_CODE (PATTERN (insn)) == CLOBBER
1195 && (r0 = XEXP (PATTERN (insn), 0),
1196 GET_CODE (r0) == REG)
1197 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1198 && XEXP (link, 0) != 0
1199 && GET_CODE (XEXP (link, 0)) == INSN
1200 && (set = single_set (XEXP (link, 0))) != 0
1201 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1202 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1203 NULL_RTX)) != 0)
1204 {
1205 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1206 /* Check that we have such a sequence. */
1207 && no_conflict_p (insn, r0, r1))
1208 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1209 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1210 && (r1 = XEXP (XEXP (note, 0), 0),
1211 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1212 && no_conflict_p (insn, r0, r1))
1213 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1214
1215 /* Here we care if the operation to be computed is
1216 commutative. */
1217 else if ((GET_CODE (XEXP (note, 0)) == EQ
1218 || GET_CODE (XEXP (note, 0)) == NE
1219 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1220 && (r1 = XEXP (XEXP (note, 0), 1),
1221 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1222 && no_conflict_p (insn, r0, r1))
1223 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1224
1225 /* If we did combine something, show the register number
1226 in question so that we know to ignore its death. */
1227 if (win)
1228 no_conflict_combined_regno = REGNO (r1);
1229 }
1230
1231 /* If registers were just tied, set COMBINED_REGNO
1232 to the number of the register used in this insn
1233 that was tied to the register set in this insn.
1234 This register's qty should not be "killed". */
1235
1236 if (win)
1237 {
1238 while (GET_CODE (r1) == SUBREG)
1239 r1 = SUBREG_REG (r1);
1240 combined_regno = REGNO (r1);
1241 }
1242
1243 /* Mark the death of everything that dies in this instruction,
1244 except for anything that was just combined. */
1245
1246 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1247 if (REG_NOTE_KIND (link) == REG_DEAD
1248 && GET_CODE (XEXP (link, 0)) == REG
1249 && combined_regno != REGNO (XEXP (link, 0))
1250 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1251 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1252 wipe_dead_reg (XEXP (link, 0), 0);
1253
1254 /* Allocate qty numbers for all registers local to this block
1255 that are born (set) in this instruction.
1256 A pseudo that already has a qty is not changed. */
1257
1258 note_stores (PATTERN (insn), reg_is_set);
1259
1260 /* If anything is set in this insn and then unused, mark it as dying
1261 after this insn, so it will conflict with our outputs. This
1262 can't match with something that combined, and it doesn't matter
1263 if it did. Do this after the calls to reg_is_set since these
1264 die after, not during, the current insn. */
1265
1266 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1267 if (REG_NOTE_KIND (link) == REG_UNUSED
1268 && GET_CODE (XEXP (link, 0)) == REG)
1269 wipe_dead_reg (XEXP (link, 0), 1);
1270
1271 /* If this is an insn that has a REG_RETVAL note pointing at a
1272 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1273 block, so clear any register number that combined within it. */
1274 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1275 && GET_CODE (XEXP (note, 0)) == INSN
1276 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1277 no_conflict_combined_regno = -1;
1278 }
1279
1280 /* Set the registers live after INSN_NUMBER. Note that we never
1281 record the registers live before the block's first insn, since no
1282 pseudos we care about are live before that insn. */
1283
1284 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1285 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1286
1287 if (insn == BLOCK_END (b))
1288 break;
1289
1290 insn = NEXT_INSN (insn);
1291 }
1292
1293 /* Now every register that is local to this basic block
1294 should have been given a quantity, or else -1 meaning ignore it.
1295 Every quantity should have a known birth and death.
1296
1297 Order the qtys so we assign them registers in order of the
1298 number of suggested registers they need so we allocate those with
1299 the most restrictive needs first. */
1300
1301 qty_order = (int *) alloca (next_qty * sizeof (int));
1302 for (i = 0; i < next_qty; i++)
1303 qty_order[i] = i;
1304
1305 #define EXCHANGE(I1, I2) \
1306 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1307
1308 switch (next_qty)
1309 {
1310 case 3:
1311 /* Make qty_order[2] be the one to allocate last. */
1312 if (qty_sugg_compare (0, 1) > 0)
1313 EXCHANGE (0, 1);
1314 if (qty_sugg_compare (1, 2) > 0)
1315 EXCHANGE (2, 1);
1316
1317 /* ... Fall through ... */
1318 case 2:
1319 /* Put the best one to allocate in qty_order[0]. */
1320 if (qty_sugg_compare (0, 1) > 0)
1321 EXCHANGE (0, 1);
1322
1323 /* ... Fall through ... */
1324
1325 case 1:
1326 case 0:
1327 /* Nothing to do here. */
1328 break;
1329
1330 default:
1331 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1332 }
1333
1334 /* Try to put each quantity in a suggested physical register, if it has one.
1335 This may cause registers to be allocated that otherwise wouldn't be, but
1336 this seems acceptable in local allocation (unlike global allocation). */
1337 for (i = 0; i < next_qty; i++)
1338 {
1339 q = qty_order[i];
1340 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1341 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1342 0, 1, qty_birth[q], qty_death[q]);
1343 else
1344 qty_phys_reg[q] = -1;
1345 }
1346
1347 /* Order the qtys so we assign them registers in order of
1348 decreasing length of life. Normally call qsort, but if we
1349 have only a very small number of quantities, sort them ourselves. */
1350
1351 for (i = 0; i < next_qty; i++)
1352 qty_order[i] = i;
1353
1354 #define EXCHANGE(I1, I2) \
1355 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1356
1357 switch (next_qty)
1358 {
1359 case 3:
1360 /* Make qty_order[2] be the one to allocate last. */
1361 if (qty_compare (0, 1) > 0)
1362 EXCHANGE (0, 1);
1363 if (qty_compare (1, 2) > 0)
1364 EXCHANGE (2, 1);
1365
1366 /* ... Fall through ... */
1367 case 2:
1368 /* Put the best one to allocate in qty_order[0]. */
1369 if (qty_compare (0, 1) > 0)
1370 EXCHANGE (0, 1);
1371
1372 /* ... Fall through ... */
1373
1374 case 1:
1375 case 0:
1376 /* Nothing to do here. */
1377 break;
1378
1379 default:
1380 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1381 }
1382
1383 /* Now for each qty that is not a hardware register,
1384 look for a hardware register to put it in.
1385 First try the register class that is cheapest for this qty,
1386 if there is more than one class. */
1387
1388 for (i = 0; i < next_qty; i++)
1389 {
1390 q = qty_order[i];
1391 if (qty_phys_reg[q] < 0)
1392 {
1393 #ifdef INSN_SCHEDULING
1394 /* These values represent the adjusted lifetime of a qty so
1395 that it conflicts with qtys which appear near the start/end
1396 of this qty's lifetime.
1397
1398 The purpose behind extending the lifetime of this qty is to
1399 discourage the register allocator from creating false
1400 dependencies.
1401
1402 The adjustment value is choosen to indicate that this qty
1403 conflicts with all the qtys in the instructions immediately
1404 before and after the lifetime of this qty.
1405
1406 Experiments have shown that higher values tend to hurt
1407 overall code performance.
1408
1409 If allocation using the extended lifetime fails we will try
1410 again with the qty's unadjusted lifetime. */
1411 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1412 int fake_death = MIN (insn_number * 2 + 1,
1413 qty_death[q] + 2 - qty_death[q] % 2);
1414 #endif
1415
1416 if (N_REG_CLASSES > 1)
1417 {
1418 #ifdef INSN_SCHEDULING
1419 /* We try to avoid using hard registers allocated to qtys which
1420 are born immediately after this qty or die immediately before
1421 this qty.
1422
1423 This optimization is only appropriate when we will run
1424 a scheduling pass after reload and we are not optimizing
1425 for code size. */
1426 if (flag_schedule_insns_after_reload
1427 && !optimize_size
1428 && !SMALL_REGISTER_CLASSES)
1429 {
1430
1431 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1432 qty_mode[q], q, 0, 0,
1433 fake_birth, fake_death);
1434 if (qty_phys_reg[q] >= 0)
1435 continue;
1436 }
1437 #endif
1438 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1439 qty_mode[q], q, 0, 0,
1440 qty_birth[q], qty_death[q]);
1441 if (qty_phys_reg[q] >= 0)
1442 continue;
1443 }
1444
1445 #ifdef INSN_SCHEDULING
1446 /* Similarly, avoid false dependencies. */
1447 if (flag_schedule_insns_after_reload
1448 && !optimize_size
1449 && !SMALL_REGISTER_CLASSES
1450 && qty_alternate_class[q] != NO_REGS)
1451 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1452 qty_mode[q], q, 0, 0,
1453 fake_birth, fake_death);
1454 #endif
1455 if (qty_alternate_class[q] != NO_REGS)
1456 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1457 qty_mode[q], q, 0, 0,
1458 qty_birth[q], qty_death[q]);
1459 }
1460 }
1461
1462 /* Now propagate the register assignments
1463 to the pseudo regs belonging to the qtys. */
1464
1465 for (q = 0; q < next_qty; q++)
1466 if (qty_phys_reg[q] >= 0)
1467 {
1468 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1469 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1470 }
1471 }
1472 \f
1473 /* Compare two quantities' priority for getting real registers.
1474 We give shorter-lived quantities higher priority.
1475 Quantities with more references are also preferred, as are quantities that
1476 require multiple registers. This is the identical prioritization as
1477 done by global-alloc.
1478
1479 We used to give preference to registers with *longer* lives, but using
1480 the same algorithm in both local- and global-alloc can speed up execution
1481 of some programs by as much as a factor of three! */
1482
1483 /* Note that the quotient will never be bigger than
1484 the value of floor_log2 times the maximum number of
1485 times a register can occur in one insn (surely less than 100).
1486 Multiplying this by 10000 can't overflow.
1487 QTY_CMP_PRI is also used by qty_sugg_compare. */
1488
1489 #define QTY_CMP_PRI(q) \
1490 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1491 / (qty_death[q] - qty_birth[q])) * 10000))
1492
1493 static int
1494 qty_compare (q1, q2)
1495 int q1, q2;
1496 {
1497 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1498 }
1499
1500 static int
1501 qty_compare_1 (q1p, q2p)
1502 const PTR q1p;
1503 const PTR q2p;
1504 {
1505 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1506 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1507
1508 if (tem != 0)
1509 return tem;
1510
1511 /* If qtys are equally good, sort by qty number,
1512 so that the results of qsort leave nothing to chance. */
1513 return q1 - q2;
1514 }
1515 \f
1516 /* Compare two quantities' priority for getting real registers. This version
1517 is called for quantities that have suggested hard registers. First priority
1518 goes to quantities that have copy preferences, then to those that have
1519 normal preferences. Within those groups, quantities with the lower
1520 number of preferences have the highest priority. Of those, we use the same
1521 algorithm as above. */
1522
1523 #define QTY_CMP_SUGG(q) \
1524 (qty_phys_num_copy_sugg[q] \
1525 ? qty_phys_num_copy_sugg[q] \
1526 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1527
1528 static int
1529 qty_sugg_compare (q1, q2)
1530 int q1, q2;
1531 {
1532 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1533
1534 if (tem != 0)
1535 return tem;
1536
1537 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1538 }
1539
1540 static int
1541 qty_sugg_compare_1 (q1p, q2p)
1542 const PTR q1p;
1543 const PTR q2p;
1544 {
1545 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1546 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1547
1548 if (tem != 0)
1549 return tem;
1550
1551 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1552 if (tem != 0)
1553 return tem;
1554
1555 /* If qtys are equally good, sort by qty number,
1556 so that the results of qsort leave nothing to chance. */
1557 return q1 - q2;
1558 }
1559
1560 #undef QTY_CMP_SUGG
1561 #undef QTY_CMP_PRI
1562 \f
1563 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1564 Returns 1 if have done so, or 0 if cannot.
1565
1566 Combining registers means marking them as having the same quantity
1567 and adjusting the offsets within the quantity if either of
1568 them is a SUBREG).
1569
1570 We don't actually combine a hard reg with a pseudo; instead
1571 we just record the hard reg as the suggestion for the pseudo's quantity.
1572 If we really combined them, we could lose if the pseudo lives
1573 across an insn that clobbers the hard reg (eg, movstr).
1574
1575 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1576 there is no REG_DEAD note on INSN. This occurs during the processing
1577 of REG_NO_CONFLICT blocks.
1578
1579 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1580 SETREG or if the input and output must share a register.
1581 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1582
1583 There are elaborate checks for the validity of combining. */
1584
1585
1586 static int
1587 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1588 rtx usedreg, setreg;
1589 int may_save_copy;
1590 int insn_number;
1591 rtx insn;
1592 int already_dead;
1593 {
1594 register int ureg, sreg;
1595 register int offset = 0;
1596 int usize, ssize;
1597 register int sqty;
1598
1599 /* Determine the numbers and sizes of registers being used. If a subreg
1600 is present that does not change the entire register, don't consider
1601 this a copy insn. */
1602
1603 while (GET_CODE (usedreg) == SUBREG)
1604 {
1605 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1606 may_save_copy = 0;
1607 offset += SUBREG_WORD (usedreg);
1608 usedreg = SUBREG_REG (usedreg);
1609 }
1610 if (GET_CODE (usedreg) != REG)
1611 return 0;
1612 ureg = REGNO (usedreg);
1613 usize = REG_SIZE (usedreg);
1614
1615 while (GET_CODE (setreg) == SUBREG)
1616 {
1617 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1618 may_save_copy = 0;
1619 offset -= SUBREG_WORD (setreg);
1620 setreg = SUBREG_REG (setreg);
1621 }
1622 if (GET_CODE (setreg) != REG)
1623 return 0;
1624 sreg = REGNO (setreg);
1625 ssize = REG_SIZE (setreg);
1626
1627 /* If UREG is a pseudo-register that hasn't already been assigned a
1628 quantity number, it means that it is not local to this block or dies
1629 more than once. In either event, we can't do anything with it. */
1630 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1631 /* Do not combine registers unless one fits within the other. */
1632 || (offset > 0 && usize + offset > ssize)
1633 || (offset < 0 && usize + offset < ssize)
1634 /* Do not combine with a smaller already-assigned object
1635 if that smaller object is already combined with something bigger. */
1636 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1637 && usize < qty_size[reg_qty[ureg]])
1638 /* Can't combine if SREG is not a register we can allocate. */
1639 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1640 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1641 These have already been taken care of. This probably wouldn't
1642 combine anyway, but don't take any chances. */
1643 || (ureg >= FIRST_PSEUDO_REGISTER
1644 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1645 /* Don't tie something to itself. In most cases it would make no
1646 difference, but it would screw up if the reg being tied to itself
1647 also dies in this insn. */
1648 || ureg == sreg
1649 /* Don't try to connect two different hardware registers. */
1650 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1651 /* Don't use a hard reg that might be spilled. */
1652 || (ureg < FIRST_PSEUDO_REGISTER
1653 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1654 || (sreg < FIRST_PSEUDO_REGISTER
1655 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1656 /* Don't connect two different machine modes if they have different
1657 implications as to which registers may be used. */
1658 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1659 return 0;
1660
1661 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1662 qty_phys_sugg for the pseudo instead of tying them.
1663
1664 Return "failure" so that the lifespan of UREG is terminated here;
1665 that way the two lifespans will be disjoint and nothing will prevent
1666 the pseudo reg from being given this hard reg. */
1667
1668 if (ureg < FIRST_PSEUDO_REGISTER)
1669 {
1670 /* Allocate a quantity number so we have a place to put our
1671 suggestions. */
1672 if (reg_qty[sreg] == -2)
1673 reg_is_born (setreg, 2 * insn_number);
1674
1675 if (reg_qty[sreg] >= 0)
1676 {
1677 if (may_save_copy
1678 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1679 {
1680 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1681 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1682 }
1683 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1684 {
1685 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1686 qty_phys_num_sugg[reg_qty[sreg]]++;
1687 }
1688 }
1689 return 0;
1690 }
1691
1692 /* Similarly for SREG a hard register and UREG a pseudo register. */
1693
1694 if (sreg < FIRST_PSEUDO_REGISTER)
1695 {
1696 if (may_save_copy
1697 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1698 {
1699 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1700 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1701 }
1702 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1703 {
1704 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1705 qty_phys_num_sugg[reg_qty[ureg]]++;
1706 }
1707 return 0;
1708 }
1709
1710 /* At this point we know that SREG and UREG are both pseudos.
1711 Do nothing if SREG already has a quantity or is a register that we
1712 don't allocate. */
1713 if (reg_qty[sreg] >= -1
1714 /* If we are not going to let any regs live across calls,
1715 don't tie a call-crossing reg to a non-call-crossing reg. */
1716 || (current_function_has_nonlocal_label
1717 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1718 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1719 return 0;
1720
1721 /* We don't already know about SREG, so tie it to UREG
1722 if this is the last use of UREG, provided the classes they want
1723 are compatible. */
1724
1725 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1726 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1727 {
1728 /* Add SREG to UREG's quantity. */
1729 sqty = reg_qty[ureg];
1730 reg_qty[sreg] = sqty;
1731 reg_offset[sreg] = reg_offset[ureg] + offset;
1732 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1733 qty_first_reg[sqty] = sreg;
1734
1735 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1736 update_qty_class (sqty, sreg);
1737
1738 /* Update info about quantity SQTY. */
1739 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1740 qty_n_refs[sqty] += REG_N_REFS (sreg);
1741 if (usize < ssize)
1742 {
1743 register int i;
1744
1745 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1746 reg_offset[i] -= offset;
1747
1748 qty_size[sqty] = ssize;
1749 qty_mode[sqty] = GET_MODE (setreg);
1750 }
1751 }
1752 else
1753 return 0;
1754
1755 return 1;
1756 }
1757 \f
1758 /* Return 1 if the preferred class of REG allows it to be tied
1759 to a quantity or register whose class is CLASS.
1760 True if REG's reg class either contains or is contained in CLASS. */
1761
1762 static int
1763 reg_meets_class_p (reg, class)
1764 int reg;
1765 enum reg_class class;
1766 {
1767 register enum reg_class rclass = reg_preferred_class (reg);
1768 return (reg_class_subset_p (rclass, class)
1769 || reg_class_subset_p (class, rclass));
1770 }
1771
1772 /* Update the class of QTY assuming that REG is being tied to it. */
1773
1774 static void
1775 update_qty_class (qty, reg)
1776 int qty;
1777 int reg;
1778 {
1779 enum reg_class rclass = reg_preferred_class (reg);
1780 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1781 qty_min_class[qty] = rclass;
1782
1783 rclass = reg_alternate_class (reg);
1784 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1785 qty_alternate_class[qty] = rclass;
1786
1787 if (REG_CHANGES_SIZE (reg))
1788 qty_changes_size[qty] = 1;
1789 }
1790 \f
1791 /* Handle something which alters the value of an rtx REG.
1792
1793 REG is whatever is set or clobbered. SETTER is the rtx that
1794 is modifying the register.
1795
1796 If it is not really a register, we do nothing.
1797 The file-global variables `this_insn' and `this_insn_number'
1798 carry info from `block_alloc'. */
1799
1800 static void
1801 reg_is_set (reg, setter)
1802 rtx reg;
1803 rtx setter;
1804 {
1805 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1806 a hard register. These may actually not exist any more. */
1807
1808 if (GET_CODE (reg) != SUBREG
1809 && GET_CODE (reg) != REG)
1810 return;
1811
1812 /* Mark this register as being born. If it is used in a CLOBBER, mark
1813 it as being born halfway between the previous insn and this insn so that
1814 it conflicts with our inputs but not the outputs of the previous insn. */
1815
1816 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1817 }
1818 \f
1819 /* Handle beginning of the life of register REG.
1820 BIRTH is the index at which this is happening. */
1821
1822 static void
1823 reg_is_born (reg, birth)
1824 rtx reg;
1825 int birth;
1826 {
1827 register int regno;
1828
1829 if (GET_CODE (reg) == SUBREG)
1830 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1831 else
1832 regno = REGNO (reg);
1833
1834 if (regno < FIRST_PSEUDO_REGISTER)
1835 {
1836 mark_life (regno, GET_MODE (reg), 1);
1837
1838 /* If the register was to have been born earlier that the present
1839 insn, mark it as live where it is actually born. */
1840 if (birth < 2 * this_insn_number)
1841 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1842 }
1843 else
1844 {
1845 if (reg_qty[regno] == -2)
1846 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1847
1848 /* If this register has a quantity number, show that it isn't dead. */
1849 if (reg_qty[regno] >= 0)
1850 qty_death[reg_qty[regno]] = -1;
1851 }
1852 }
1853
1854 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1855 REG is an output that is dying (i.e., it is never used), otherwise it
1856 is an input (the normal case).
1857 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1858
1859 static void
1860 wipe_dead_reg (reg, output_p)
1861 register rtx reg;
1862 int output_p;
1863 {
1864 register int regno = REGNO (reg);
1865
1866 /* If this insn has multiple results,
1867 and the dead reg is used in one of the results,
1868 extend its life to after this insn,
1869 so it won't get allocated together with any other result of this insn.
1870
1871 It is unsafe to use !single_set here since it will ignore an unused
1872 output. Just because an output is unused does not mean the compiler
1873 can assume the side effect will not occur. Consider if REG appears
1874 in the address of an output and we reload the output. If we allocate
1875 REG to the same hard register as an unused output we could set the hard
1876 register before the output reload insn. */
1877 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1878 && multiple_sets (this_insn))
1879 {
1880 int i;
1881 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1882 {
1883 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1884 if (GET_CODE (set) == SET
1885 && GET_CODE (SET_DEST (set)) != REG
1886 && !rtx_equal_p (reg, SET_DEST (set))
1887 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1888 output_p = 1;
1889 }
1890 }
1891
1892 /* If this register is used in an auto-increment address, then extend its
1893 life to after this insn, so that it won't get allocated together with
1894 the result of this insn. */
1895 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1896 output_p = 1;
1897
1898 if (regno < FIRST_PSEUDO_REGISTER)
1899 {
1900 mark_life (regno, GET_MODE (reg), 0);
1901
1902 /* If a hard register is dying as an output, mark it as in use at
1903 the beginning of this insn (the above statement would cause this
1904 not to happen). */
1905 if (output_p)
1906 post_mark_life (regno, GET_MODE (reg), 1,
1907 2 * this_insn_number, 2 * this_insn_number+ 1);
1908 }
1909
1910 else if (reg_qty[regno] >= 0)
1911 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1912 }
1913 \f
1914 /* Find a block of SIZE words of hard regs in reg_class CLASS
1915 that can hold something of machine-mode MODE
1916 (but actually we test only the first of the block for holding MODE)
1917 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1918 and return the number of the first of them.
1919 Return -1 if such a block cannot be found.
1920 If QTY crosses calls, insist on a register preserved by calls,
1921 unless ACCEPT_CALL_CLOBBERED is nonzero.
1922
1923 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1924 register is available. If not, return -1. */
1925
1926 static int
1927 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1928 born_index, dead_index)
1929 enum reg_class class;
1930 enum machine_mode mode;
1931 int qty;
1932 int accept_call_clobbered;
1933 int just_try_suggested;
1934 int born_index, dead_index;
1935 {
1936 register int i, ins;
1937 #ifdef HARD_REG_SET
1938 register /* Declare it register if it's a scalar. */
1939 #endif
1940 HARD_REG_SET used, first_used;
1941 #ifdef ELIMINABLE_REGS
1942 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1943 #endif
1944
1945 /* Validate our parameters. */
1946 if (born_index < 0 || born_index > dead_index)
1947 abort ();
1948
1949 /* Don't let a pseudo live in a reg across a function call
1950 if we might get a nonlocal goto. */
1951 if (current_function_has_nonlocal_label
1952 && qty_n_calls_crossed[qty] > 0)
1953 return -1;
1954
1955 if (accept_call_clobbered)
1956 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1957 else if (qty_n_calls_crossed[qty] == 0)
1958 COPY_HARD_REG_SET (used, fixed_reg_set);
1959 else
1960 COPY_HARD_REG_SET (used, call_used_reg_set);
1961
1962 if (accept_call_clobbered)
1963 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1964
1965 for (ins = born_index; ins < dead_index; ins++)
1966 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1967
1968 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1969
1970 /* Don't use the frame pointer reg in local-alloc even if
1971 we may omit the frame pointer, because if we do that and then we
1972 need a frame pointer, reload won't know how to move the pseudo
1973 to another hard reg. It can move only regs made by global-alloc.
1974
1975 This is true of any register that can be eliminated. */
1976 #ifdef ELIMINABLE_REGS
1977 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1978 SET_HARD_REG_BIT (used, eliminables[i].from);
1979 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1980 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1981 that it might be eliminated into. */
1982 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1983 #endif
1984 #else
1985 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1986 #endif
1987
1988 #ifdef CLASS_CANNOT_CHANGE_SIZE
1989 if (qty_changes_size[qty])
1990 IOR_HARD_REG_SET (used,
1991 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1992 #endif
1993
1994 /* Normally, the registers that can be used for the first register in
1995 a multi-register quantity are the same as those that can be used for
1996 subsequent registers. However, if just trying suggested registers,
1997 restrict our consideration to them. If there are copy-suggested
1998 register, try them. Otherwise, try the arithmetic-suggested
1999 registers. */
2000 COPY_HARD_REG_SET (first_used, used);
2001
2002 if (just_try_suggested)
2003 {
2004 if (qty_phys_num_copy_sugg[qty] != 0)
2005 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2006 else
2007 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2008 }
2009
2010 /* If all registers are excluded, we can't do anything. */
2011 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2012
2013 /* If at least one would be suitable, test each hard reg. */
2014
2015 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2016 {
2017 #ifdef REG_ALLOC_ORDER
2018 int regno = reg_alloc_order[i];
2019 #else
2020 int regno = i;
2021 #endif
2022 if (! TEST_HARD_REG_BIT (first_used, regno)
2023 && HARD_REGNO_MODE_OK (regno, mode)
2024 && (qty_n_calls_crossed[qty] == 0
2025 || accept_call_clobbered
2026 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2027 {
2028 register int j;
2029 register int size1 = HARD_REGNO_NREGS (regno, mode);
2030 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2031 if (j == size1)
2032 {
2033 /* Mark that this register is in use between its birth and death
2034 insns. */
2035 post_mark_life (regno, mode, 1, born_index, dead_index);
2036 return regno;
2037 }
2038 #ifndef REG_ALLOC_ORDER
2039 i += j; /* Skip starting points we know will lose */
2040 #endif
2041 }
2042 }
2043
2044 fail:
2045
2046 /* If we are just trying suggested register, we have just tried copy-
2047 suggested registers, and there are arithmetic-suggested registers,
2048 try them. */
2049
2050 /* If it would be profitable to allocate a call-clobbered register
2051 and save and restore it around calls, do that. */
2052 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2053 && qty_phys_num_sugg[qty] != 0)
2054 {
2055 /* Don't try the copy-suggested regs again. */
2056 qty_phys_num_copy_sugg[qty] = 0;
2057 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2058 born_index, dead_index);
2059 }
2060
2061 /* We need not check to see if the current function has nonlocal
2062 labels because we don't put any pseudos that are live over calls in
2063 registers in that case. */
2064
2065 if (! accept_call_clobbered
2066 && flag_caller_saves
2067 && ! just_try_suggested
2068 && qty_n_calls_crossed[qty] != 0
2069 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2070 {
2071 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2072 if (i >= 0)
2073 caller_save_needed = 1;
2074 return i;
2075 }
2076 return -1;
2077 }
2078 \f
2079 /* Mark that REGNO with machine-mode MODE is live starting from the current
2080 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2081 is zero). */
2082
2083 static void
2084 mark_life (regno, mode, life)
2085 register int regno;
2086 enum machine_mode mode;
2087 int life;
2088 {
2089 register int j = HARD_REGNO_NREGS (regno, mode);
2090 if (life)
2091 while (--j >= 0)
2092 SET_HARD_REG_BIT (regs_live, regno + j);
2093 else
2094 while (--j >= 0)
2095 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2096 }
2097
2098 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2099 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2100 to insn number DEATH (exclusive). */
2101
2102 static void
2103 post_mark_life (regno, mode, life, birth, death)
2104 int regno;
2105 enum machine_mode mode;
2106 int life, birth, death;
2107 {
2108 register int j = HARD_REGNO_NREGS (regno, mode);
2109 #ifdef HARD_REG_SET
2110 register /* Declare it register if it's a scalar. */
2111 #endif
2112 HARD_REG_SET this_reg;
2113
2114 CLEAR_HARD_REG_SET (this_reg);
2115 while (--j >= 0)
2116 SET_HARD_REG_BIT (this_reg, regno + j);
2117
2118 if (life)
2119 while (birth < death)
2120 {
2121 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2122 birth++;
2123 }
2124 else
2125 while (birth < death)
2126 {
2127 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2128 birth++;
2129 }
2130 }
2131 \f
2132 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2133 is the register being clobbered, and R1 is a register being used in
2134 the equivalent expression.
2135
2136 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2137 in which it is used, return 1.
2138
2139 Otherwise, return 0. */
2140
2141 static int
2142 no_conflict_p (insn, r0, r1)
2143 rtx insn, r0, r1;
2144 {
2145 int ok = 0;
2146 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2147 rtx p, last;
2148
2149 /* If R1 is a hard register, return 0 since we handle this case
2150 when we scan the insns that actually use it. */
2151
2152 if (note == 0
2153 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2154 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2155 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2156 return 0;
2157
2158 last = XEXP (note, 0);
2159
2160 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2161 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2162 {
2163 if (find_reg_note (p, REG_DEAD, r1))
2164 ok = 1;
2165
2166 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2167 some earlier optimization pass has inserted instructions into
2168 the sequence, and it is not safe to perform this optimization.
2169 Note that emit_no_conflict_block always ensures that this is
2170 true when these sequences are created. */
2171 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2172 return 0;
2173 }
2174
2175 return ok;
2176 }
2177 \f
2178 /* Return the number of alternatives for which the constraint string P
2179 indicates that the operand must be equal to operand 0 and that no register
2180 is acceptable. */
2181
2182 static int
2183 requires_inout (p)
2184 const char *p;
2185 {
2186 char c;
2187 int found_zero = 0;
2188 int reg_allowed = 0;
2189 int num_matching_alts = 0;
2190
2191 while ((c = *p++))
2192 switch (c)
2193 {
2194 case '=': case '+': case '?':
2195 case '#': case '&': case '!':
2196 case '*': case '%':
2197 case '1': case '2': case '3': case '4': case '5':
2198 case '6': case '7': case '8': case '9':
2199 case 'm': case '<': case '>': case 'V': case 'o':
2200 case 'E': case 'F': case 'G': case 'H':
2201 case 's': case 'i': case 'n':
2202 case 'I': case 'J': case 'K': case 'L':
2203 case 'M': case 'N': case 'O': case 'P':
2204 #ifdef EXTRA_CONSTRAINT
2205 case 'Q': case 'R': case 'S': case 'T': case 'U':
2206 #endif
2207 case 'X':
2208 /* These don't say anything we care about. */
2209 break;
2210
2211 case ',':
2212 if (found_zero && ! reg_allowed)
2213 num_matching_alts++;
2214
2215 found_zero = reg_allowed = 0;
2216 break;
2217
2218 case '0':
2219 found_zero = 1;
2220 break;
2221
2222 case 'p':
2223 case 'g': case 'r':
2224 default:
2225 reg_allowed = 1;
2226 break;
2227 }
2228
2229 if (found_zero && ! reg_allowed)
2230 num_matching_alts++;
2231
2232 return num_matching_alts;
2233 }
2234 \f
2235 void
2236 dump_local_alloc (file)
2237 FILE *file;
2238 {
2239 register int i;
2240 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2241 if (reg_renumber[i] != -1)
2242 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2243 }