* local-alloc.c (function_invariant_p): Update commentary.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 #include "integrate.h"
78 \f
79 /* Next quantity number available for allocation. */
80
81 static int next_qty;
82
83 /* Information we maintain about each quantity. */
84 struct qty
85 {
86 /* The number of refs to quantity Q. */
87
88 int n_refs;
89
90 /* The frequency of uses of quantity Q. */
91
92 int freq;
93
94 /* Insn number (counting from head of basic block)
95 where quantity Q was born. -1 if birth has not been recorded. */
96
97 int birth;
98
99 /* Insn number (counting from head of basic block)
100 where given quantity died. Due to the way tying is done,
101 and the fact that we consider in this pass only regs that die but once,
102 a quantity can die only once. Each quantity's life span
103 is a set of consecutive insns. -1 if death has not been recorded. */
104
105 int death;
106
107 /* Number of words needed to hold the data in given quantity.
108 This depends on its machine mode. It is used for these purposes:
109 1. It is used in computing the relative importances of qtys,
110 which determines the order in which we look for regs for them.
111 2. It is used in rules that prevent tying several registers of
112 different sizes in a way that is geometrically impossible
113 (see combine_regs). */
114
115 int size;
116
117 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
118
119 int n_calls_crossed;
120
121 /* The register number of one pseudo register whose reg_qty value is Q.
122 This register should be the head of the chain
123 maintained in reg_next_in_qty. */
124
125 int first_reg;
126
127 /* Reg class contained in (smaller than) the preferred classes of all
128 the pseudo regs that are tied in given quantity.
129 This is the preferred class for allocating that quantity. */
130
131 enum reg_class min_class;
132
133 /* Register class within which we allocate given qty if we can't get
134 its preferred class. */
135
136 enum reg_class alternate_class;
137
138 /* This holds the mode of the registers that are tied to given qty,
139 or VOIDmode if registers with differing modes are tied together. */
140
141 enum machine_mode mode;
142
143 /* the hard reg number chosen for given quantity,
144 or -1 if none was found. */
145
146 short phys_reg;
147
148 /* Nonzero if this quantity has been used in a SUBREG in some
149 way that is illegal. */
150
151 char changes_mode;
152
153 };
154
155 static struct qty *qty;
156
157 /* These fields are kept separately to speedup their clearing. */
158
159 /* We maintain two hard register sets that indicate suggested hard registers
160 for each quantity. The first, phys_copy_sugg, contains hard registers
161 that are tied to the quantity by a simple copy. The second contains all
162 hard registers that are tied to the quantity via an arithmetic operation.
163
164 The former register set is given priority for allocation. This tends to
165 eliminate copy insns. */
166
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 copy insns. */
169
170 static HARD_REG_SET *qty_phys_copy_sugg;
171
172 /* Element Q is a set of hard registers that are suggested for quantity Q by
173 arithmetic insns. */
174
175 static HARD_REG_SET *qty_phys_sugg;
176
177 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
178
179 static short *qty_phys_num_copy_sugg;
180
181 /* Element Q is the number of suggested registers in qty_phys_sugg. */
182
183 static short *qty_phys_num_sugg;
184
185 /* If (REG N) has been assigned a quantity number, is a register number
186 of another register assigned the same quantity number, or -1 for the
187 end of the chain. qty->first_reg point to the head of this chain. */
188
189 static int *reg_next_in_qty;
190
191 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
192 if it is >= 0,
193 of -1 if this register cannot be allocated by local-alloc,
194 or -2 if not known yet.
195
196 Note that if we see a use or death of pseudo register N with
197 reg_qty[N] == -2, register N must be local to the current block. If
198 it were used in more than one block, we would have reg_qty[N] == -1.
199 This relies on the fact that if reg_basic_block[N] is >= 0, register N
200 will not appear in any other block. We save a considerable number of
201 tests by exploiting this.
202
203 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
204 be referenced. */
205
206 static int *reg_qty;
207
208 /* The offset (in words) of register N within its quantity.
209 This can be nonzero if register N is SImode, and has been tied
210 to a subreg of a DImode register. */
211
212 static char *reg_offset;
213
214 /* Vector of substitutions of register numbers,
215 used to map pseudo regs into hardware regs.
216 This is set up as a result of register allocation.
217 Element N is the hard reg assigned to pseudo reg N,
218 or is -1 if no hard reg was assigned.
219 If N is a hard reg number, element N is N. */
220
221 short *reg_renumber;
222
223 /* Set of hard registers live at the current point in the scan
224 of the instructions in a basic block. */
225
226 static HARD_REG_SET regs_live;
227
228 /* Each set of hard registers indicates registers live at a particular
229 point in the basic block. For N even, regs_live_at[N] says which
230 hard registers are needed *after* insn N/2 (i.e., they may not
231 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
232
233 If an object is to conflict with the inputs of insn J but not the
234 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
235 if it is to conflict with the outputs of insn J but not the inputs of
236 insn J + 1, it is said to die at index J*2 + 1. */
237
238 static HARD_REG_SET *regs_live_at;
239
240 /* Communicate local vars `insn_number' and `insn'
241 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
242 static int this_insn_number;
243 static rtx this_insn;
244
245 struct equivalence
246 {
247 /* Set when an attempt should be made to replace a register
248 with the associated src entry. */
249
250 char replace;
251
252 /* Set when a REG_EQUIV note is found or created. Use to
253 keep track of what memory accesses might be created later,
254 e.g. by reload. */
255
256 rtx replacement;
257
258 rtx src;
259
260 /* Loop depth is used to recognize equivalences which appear
261 to be present within the same loop (or in an inner loop). */
262
263 int loop_depth;
264
265 /* The list of each instruction which initializes this register. */
266
267 rtx init_insns;
268 };
269
270 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
271 structure for that register. */
272
273 static struct equivalence *reg_equiv;
274
275 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
276 static int recorded_label_ref;
277
278 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
279 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
280 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
281 static int equiv_init_varies_p PARAMS ((rtx));
282 static int equiv_init_movable_p PARAMS ((rtx, int));
283 static int contains_replace_regs PARAMS ((rtx));
284 static int memref_referenced_p PARAMS ((rtx, rtx));
285 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
286 static void update_equiv_regs PARAMS ((void));
287 static void no_equiv PARAMS ((rtx, rtx, void *));
288 static void block_alloc PARAMS ((int));
289 static int qty_sugg_compare PARAMS ((int, int));
290 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
291 static int qty_compare PARAMS ((int, int));
292 static int qty_compare_1 PARAMS ((const PTR, const PTR));
293 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
294 static int reg_meets_class_p PARAMS ((int, enum reg_class));
295 static void update_qty_class PARAMS ((int, int));
296 static void reg_is_set PARAMS ((rtx, rtx, void *));
297 static void reg_is_born PARAMS ((rtx, int));
298 static void wipe_dead_reg PARAMS ((rtx, int));
299 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
300 int, int, int, int, int));
301 static void mark_life PARAMS ((int, enum machine_mode, int));
302 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
303 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
304 static int requires_inout PARAMS ((const char *));
305 \f
306 /* Allocate a new quantity (new within current basic block)
307 for register number REGNO which is born at index BIRTH
308 within the block. MODE and SIZE are info on reg REGNO. */
309
310 static void
311 alloc_qty (regno, mode, size, birth)
312 int regno;
313 enum machine_mode mode;
314 int size, birth;
315 {
316 int qtyno = next_qty++;
317
318 reg_qty[regno] = qtyno;
319 reg_offset[regno] = 0;
320 reg_next_in_qty[regno] = -1;
321
322 qty[qtyno].first_reg = regno;
323 qty[qtyno].size = size;
324 qty[qtyno].mode = mode;
325 qty[qtyno].birth = birth;
326 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
327 qty[qtyno].min_class = reg_preferred_class (regno);
328 qty[qtyno].alternate_class = reg_alternate_class (regno);
329 qty[qtyno].n_refs = REG_N_REFS (regno);
330 qty[qtyno].freq = REG_FREQ (regno);
331 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
332 }
333 \f
334 /* Main entry point of this file. */
335
336 int
337 local_alloc ()
338 {
339 int b, i;
340 int max_qty;
341
342 /* We need to keep track of whether or not we recorded a LABEL_REF so
343 that we know if the jump optimizer needs to be rerun. */
344 recorded_label_ref = 0;
345
346 /* Leaf functions and non-leaf functions have different needs.
347 If defined, let the machine say what kind of ordering we
348 should use. */
349 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
350 ORDER_REGS_FOR_LOCAL_ALLOC;
351 #endif
352
353 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
354 registers. */
355 update_equiv_regs ();
356
357 /* This sets the maximum number of quantities we can have. Quantity
358 numbers start at zero and we can have one for each pseudo. */
359 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
360
361 /* Allocate vectors of temporary data.
362 See the declarations of these variables, above,
363 for what they mean. */
364
365 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
366 qty_phys_copy_sugg
367 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
368 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
369 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
370 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
371
372 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
373 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
374 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
375
376 /* Determine which pseudo-registers can be allocated by local-alloc.
377 In general, these are the registers used only in a single block and
378 which only die once.
379
380 We need not be concerned with which block actually uses the register
381 since we will never see it outside that block. */
382
383 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
384 {
385 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
386 reg_qty[i] = -2;
387 else
388 reg_qty[i] = -1;
389 }
390
391 /* Force loop below to initialize entire quantity array. */
392 next_qty = max_qty;
393
394 /* Allocate each block's local registers, block by block. */
395
396 for (b = 0; b < n_basic_blocks; b++)
397 {
398 /* NEXT_QTY indicates which elements of the `qty_...'
399 vectors might need to be initialized because they were used
400 for the previous block; it is set to the entire array before
401 block 0. Initialize those, with explicit loop if there are few,
402 else with bzero and bcopy. Do not initialize vectors that are
403 explicit set by `alloc_qty'. */
404
405 if (next_qty < 6)
406 {
407 for (i = 0; i < next_qty; i++)
408 {
409 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
410 qty_phys_num_copy_sugg[i] = 0;
411 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
412 qty_phys_num_sugg[i] = 0;
413 }
414 }
415 else
416 {
417 #define CLEAR(vector) \
418 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
419
420 CLEAR (qty_phys_copy_sugg);
421 CLEAR (qty_phys_num_copy_sugg);
422 CLEAR (qty_phys_sugg);
423 CLEAR (qty_phys_num_sugg);
424 }
425
426 next_qty = 0;
427
428 block_alloc (b);
429 }
430
431 free (qty);
432 free (qty_phys_copy_sugg);
433 free (qty_phys_num_copy_sugg);
434 free (qty_phys_sugg);
435 free (qty_phys_num_sugg);
436
437 free (reg_qty);
438 free (reg_offset);
439 free (reg_next_in_qty);
440
441 return recorded_label_ref;
442 }
443 \f
444 /* Used for communication between the following two functions: contains
445 a MEM that we wish to ensure remains unchanged. */
446 static rtx equiv_mem;
447
448 /* Set nonzero if EQUIV_MEM is modified. */
449 static int equiv_mem_modified;
450
451 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
452 Called via note_stores. */
453
454 static void
455 validate_equiv_mem_from_store (dest, set, data)
456 rtx dest;
457 rtx set ATTRIBUTE_UNUSED;
458 void *data ATTRIBUTE_UNUSED;
459 {
460 if ((GET_CODE (dest) == REG
461 && reg_overlap_mentioned_p (dest, equiv_mem))
462 || (GET_CODE (dest) == MEM
463 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
464 equiv_mem_modified = 1;
465 }
466
467 /* Verify that no store between START and the death of REG invalidates
468 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
469 by storing into an overlapping memory location, or with a non-const
470 CALL_INSN.
471
472 Return 1 if MEMREF remains valid. */
473
474 static int
475 validate_equiv_mem (start, reg, memref)
476 rtx start;
477 rtx reg;
478 rtx memref;
479 {
480 rtx insn;
481 rtx note;
482
483 equiv_mem = memref;
484 equiv_mem_modified = 0;
485
486 /* If the memory reference has side effects or is volatile, it isn't a
487 valid equivalence. */
488 if (side_effects_p (memref))
489 return 0;
490
491 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
492 {
493 if (! INSN_P (insn))
494 continue;
495
496 if (find_reg_note (insn, REG_DEAD, reg))
497 return 1;
498
499 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
500 && ! CONST_OR_PURE_CALL_P (insn))
501 return 0;
502
503 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
504
505 /* If a register mentioned in MEMREF is modified via an
506 auto-increment, we lose the equivalence. Do the same if one
507 dies; although we could extend the life, it doesn't seem worth
508 the trouble. */
509
510 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
511 if ((REG_NOTE_KIND (note) == REG_INC
512 || REG_NOTE_KIND (note) == REG_DEAD)
513 && GET_CODE (XEXP (note, 0)) == REG
514 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
515 return 0;
516 }
517
518 return 0;
519 }
520
521 /* Returns zero if X is known to be invariant. */
522
523 static int
524 equiv_init_varies_p (x)
525 rtx x;
526 {
527 RTX_CODE code = GET_CODE (x);
528 int i;
529 const char *fmt;
530
531 switch (code)
532 {
533 case MEM:
534 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
535
536 case QUEUED:
537 return 1;
538
539 case CONST:
540 case CONST_INT:
541 case CONST_DOUBLE:
542 case SYMBOL_REF:
543 case LABEL_REF:
544 return 0;
545
546 case REG:
547 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
548
549 case ASM_OPERANDS:
550 if (MEM_VOLATILE_P (x))
551 return 1;
552
553 /* FALLTHROUGH */
554
555 default:
556 break;
557 }
558
559 fmt = GET_RTX_FORMAT (code);
560 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
561 if (fmt[i] == 'e')
562 {
563 if (equiv_init_varies_p (XEXP (x, i)))
564 return 1;
565 }
566 else if (fmt[i] == 'E')
567 {
568 int j;
569 for (j = 0; j < XVECLEN (x, i); j++)
570 if (equiv_init_varies_p (XVECEXP (x, i, j)))
571 return 1;
572 }
573
574 return 0;
575 }
576
577 /* Returns non-zero if X (used to initialize register REGNO) is movable.
578 X is only movable if the registers it uses have equivalent initializations
579 which appear to be within the same loop (or in an inner loop) and movable
580 or if they are not candidates for local_alloc and don't vary. */
581
582 static int
583 equiv_init_movable_p (x, regno)
584 rtx x;
585 int regno;
586 {
587 int i, j;
588 const char *fmt;
589 enum rtx_code code = GET_CODE (x);
590
591 switch (code)
592 {
593 case SET:
594 return equiv_init_movable_p (SET_SRC (x), regno);
595
596 case CC0:
597 case CLOBBER:
598 return 0;
599
600 case PRE_INC:
601 case PRE_DEC:
602 case POST_INC:
603 case POST_DEC:
604 case PRE_MODIFY:
605 case POST_MODIFY:
606 return 0;
607
608 case REG:
609 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
610 && reg_equiv[REGNO (x)].replace)
611 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
612
613 case UNSPEC_VOLATILE:
614 return 0;
615
616 case ASM_OPERANDS:
617 if (MEM_VOLATILE_P (x))
618 return 0;
619
620 /* FALLTHROUGH */
621
622 default:
623 break;
624 }
625
626 fmt = GET_RTX_FORMAT (code);
627 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
628 switch (fmt[i])
629 {
630 case 'e':
631 if (! equiv_init_movable_p (XEXP (x, i), regno))
632 return 0;
633 break;
634 case 'E':
635 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
636 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
637 return 0;
638 break;
639 }
640
641 return 1;
642 }
643
644 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
645
646 static int
647 contains_replace_regs (x)
648 rtx x;
649 {
650 int i, j;
651 const char *fmt;
652 enum rtx_code code = GET_CODE (x);
653
654 switch (code)
655 {
656 case CONST_INT:
657 case CONST:
658 case LABEL_REF:
659 case SYMBOL_REF:
660 case CONST_DOUBLE:
661 case PC:
662 case CC0:
663 case HIGH:
664 case LO_SUM:
665 return 0;
666
667 case REG:
668 return reg_equiv[REGNO (x)].replace;
669
670 default:
671 break;
672 }
673
674 fmt = GET_RTX_FORMAT (code);
675 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
676 switch (fmt[i])
677 {
678 case 'e':
679 if (contains_replace_regs (XEXP (x, i)))
680 return 1;
681 break;
682 case 'E':
683 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
684 if (contains_replace_regs (XVECEXP (x, i, j)))
685 return 1;
686 break;
687 }
688
689 return 0;
690 }
691 \f
692 /* TRUE if X references a memory location that would be affected by a store
693 to MEMREF. */
694
695 static int
696 memref_referenced_p (memref, x)
697 rtx x;
698 rtx memref;
699 {
700 int i, j;
701 const char *fmt;
702 enum rtx_code code = GET_CODE (x);
703
704 switch (code)
705 {
706 case CONST_INT:
707 case CONST:
708 case LABEL_REF:
709 case SYMBOL_REF:
710 case CONST_DOUBLE:
711 case PC:
712 case CC0:
713 case HIGH:
714 case LO_SUM:
715 return 0;
716
717 case REG:
718 return (reg_equiv[REGNO (x)].replacement
719 && memref_referenced_p (memref,
720 reg_equiv[REGNO (x)].replacement));
721
722 case MEM:
723 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
724 return 1;
725 break;
726
727 case SET:
728 /* If we are setting a MEM, it doesn't count (its address does), but any
729 other SET_DEST that has a MEM in it is referencing the MEM. */
730 if (GET_CODE (SET_DEST (x)) == MEM)
731 {
732 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
733 return 1;
734 }
735 else if (memref_referenced_p (memref, SET_DEST (x)))
736 return 1;
737
738 return memref_referenced_p (memref, SET_SRC (x));
739
740 default:
741 break;
742 }
743
744 fmt = GET_RTX_FORMAT (code);
745 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
746 switch (fmt[i])
747 {
748 case 'e':
749 if (memref_referenced_p (memref, XEXP (x, i)))
750 return 1;
751 break;
752 case 'E':
753 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
754 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
755 return 1;
756 break;
757 }
758
759 return 0;
760 }
761
762 /* TRUE if some insn in the range (START, END] references a memory location
763 that would be affected by a store to MEMREF. */
764
765 static int
766 memref_used_between_p (memref, start, end)
767 rtx memref;
768 rtx start;
769 rtx end;
770 {
771 rtx insn;
772
773 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
774 insn = NEXT_INSN (insn))
775 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
776 return 1;
777
778 return 0;
779 }
780 \f
781 /* Return nonzero if the rtx X is invariant over the current function. */
782 /* ??? Actually, the places this is used in reload expect exactly what
783 is tested here, and not everything that is function invariant. In
784 particular, the frame pointer and arg pointer are special cased;
785 pic_offset_table_rtx is not, and this will cause aborts when we
786 go to spill these things to memory. */
787
788 int
789 function_invariant_p (x)
790 rtx x;
791 {
792 if (CONSTANT_P (x))
793 return 1;
794 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
795 return 1;
796 if (GET_CODE (x) == PLUS
797 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
798 && CONSTANT_P (XEXP (x, 1)))
799 return 1;
800 return 0;
801 }
802
803 /* Find registers that are equivalent to a single value throughout the
804 compilation (either because they can be referenced in memory or are set once
805 from a single constant). Lower their priority for a register.
806
807 If such a register is only referenced once, try substituting its value
808 into the using insn. If it succeeds, we can eliminate the register
809 completely. */
810
811 static void
812 update_equiv_regs ()
813 {
814 rtx insn;
815 int block;
816 int loop_depth;
817 regset_head cleared_regs;
818 int clear_regnos = 0;
819
820 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
821 INIT_REG_SET (&cleared_regs);
822
823 init_alias_analysis ();
824
825 /* Scan the insns and find which registers have equivalences. Do this
826 in a separate scan of the insns because (due to -fcse-follow-jumps)
827 a register can be set below its use. */
828 for (block = 0; block < n_basic_blocks; block++)
829 {
830 basic_block bb = BASIC_BLOCK (block);
831 loop_depth = bb->loop_depth;
832
833 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
834 {
835 rtx note;
836 rtx set;
837 rtx dest, src;
838 int regno;
839
840 if (! INSN_P (insn))
841 continue;
842
843 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
844 if (REG_NOTE_KIND (note) == REG_INC)
845 no_equiv (XEXP (note, 0), note, NULL);
846
847 set = single_set (insn);
848
849 /* If this insn contains more (or less) than a single SET,
850 only mark all destinations as having no known equivalence. */
851 if (set == 0)
852 {
853 note_stores (PATTERN (insn), no_equiv, NULL);
854 continue;
855 }
856 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
857 {
858 int i;
859
860 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
861 {
862 rtx part = XVECEXP (PATTERN (insn), 0, i);
863 if (part != set)
864 note_stores (part, no_equiv, NULL);
865 }
866 }
867
868 dest = SET_DEST (set);
869 src = SET_SRC (set);
870
871 /* If this sets a MEM to the contents of a REG that is only used
872 in a single basic block, see if the register is always equivalent
873 to that memory location and if moving the store from INSN to the
874 insn that set REG is safe. If so, put a REG_EQUIV note on the
875 initializing insn.
876
877 Don't add a REG_EQUIV note if the insn already has one. The existing
878 REG_EQUIV is likely more useful than the one we are adding.
879
880 If one of the regs in the address has reg_equiv[REGNO].replace set,
881 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
882 optimization may move the set of this register immediately before
883 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
884 the mention in the REG_EQUIV note would be to an uninitialized
885 pseudo. */
886 /* ????? This test isn't good enough; we might see a MEM with a use of
887 a pseudo register before we see its setting insn that will cause
888 reg_equiv[].replace for that pseudo to be set.
889 Equivalences to MEMs should be made in another pass, after the
890 reg_equiv[].replace information has been gathered. */
891
892 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
893 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
894 && REG_BASIC_BLOCK (regno) >= 0
895 && REG_N_SETS (regno) == 1
896 && reg_equiv[regno].init_insns != 0
897 && reg_equiv[regno].init_insns != const0_rtx
898 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
899 REG_EQUIV, NULL_RTX)
900 && ! contains_replace_regs (XEXP (dest, 0)))
901 {
902 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
903 if (validate_equiv_mem (init_insn, src, dest)
904 && ! memref_used_between_p (dest, init_insn, insn))
905 REG_NOTES (init_insn)
906 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
907 }
908
909 /* We only handle the case of a pseudo register being set
910 once, or always to the same value. */
911 /* ??? The mn10200 port breaks if we add equivalences for
912 values that need an ADDRESS_REGS register and set them equivalent
913 to a MEM of a pseudo. The actual problem is in the over-conservative
914 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
915 calculate_needs, but we traditionally work around this problem
916 here by rejecting equivalences when the destination is in a register
917 that's likely spilled. This is fragile, of course, since the
918 preferred class of a pseudo depends on all instructions that set
919 or use it. */
920
921 if (GET_CODE (dest) != REG
922 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
923 || reg_equiv[regno].init_insns == const0_rtx
924 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
925 && GET_CODE (src) == MEM))
926 {
927 /* This might be seting a SUBREG of a pseudo, a pseudo that is
928 also set somewhere else to a constant. */
929 note_stores (set, no_equiv, NULL);
930 continue;
931 }
932
933 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
934
935 /* cse sometimes generates function invariants, but doesn't put a
936 REG_EQUAL note on the insn. Since this note would be redundant,
937 there's no point creating it earlier than here. */
938 if (! note && ! rtx_varies_p (src, 0))
939 note = set_unique_reg_note (insn, REG_EQUAL, src);
940
941 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
942 since it represents a function call */
943 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
944 note = NULL_RTX;
945
946 if (REG_N_SETS (regno) != 1
947 && (! note
948 || rtx_varies_p (XEXP (note, 0), 0)
949 || (reg_equiv[regno].replacement
950 && ! rtx_equal_p (XEXP (note, 0),
951 reg_equiv[regno].replacement))))
952 {
953 no_equiv (dest, set, NULL);
954 continue;
955 }
956 /* Record this insn as initializing this register. */
957 reg_equiv[regno].init_insns
958 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
959
960 /* If this register is known to be equal to a constant, record that
961 it is always equivalent to the constant. */
962 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
963 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
964
965 /* If this insn introduces a "constant" register, decrease the priority
966 of that register. Record this insn if the register is only used once
967 more and the equivalence value is the same as our source.
968
969 The latter condition is checked for two reasons: First, it is an
970 indication that it may be more efficient to actually emit the insn
971 as written (if no registers are available, reload will substitute
972 the equivalence). Secondly, it avoids problems with any registers
973 dying in this insn whose death notes would be missed.
974
975 If we don't have a REG_EQUIV note, see if this insn is loading
976 a register used only in one basic block from a MEM. If so, and the
977 MEM remains unchanged for the life of the register, add a REG_EQUIV
978 note. */
979
980 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
981
982 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
983 && GET_CODE (SET_SRC (set)) == MEM
984 && validate_equiv_mem (insn, dest, SET_SRC (set)))
985 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
986 REG_NOTES (insn));
987
988 if (note)
989 {
990 int regno = REGNO (dest);
991
992 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
993 We might end up substituting the LABEL_REF for uses of the
994 pseudo here or later. That kind of transformation may turn an
995 indirect jump into a direct jump, in which case we must rerun the
996 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
997 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
998 || (GET_CODE (XEXP (note, 0)) == CONST
999 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
1000 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1001 == LABEL_REF)))
1002 recorded_label_ref = 1;
1003
1004 reg_equiv[regno].replacement = XEXP (note, 0);
1005 reg_equiv[regno].src = src;
1006 reg_equiv[regno].loop_depth = loop_depth;
1007
1008 /* Don't mess with things live during setjmp. */
1009 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1010 {
1011 /* Note that the statement below does not affect the priority
1012 in local-alloc! */
1013 REG_LIVE_LENGTH (regno) *= 2;
1014
1015
1016 /* If the register is referenced exactly twice, meaning it is
1017 set once and used once, indicate that the reference may be
1018 replaced by the equivalence we computed above. Do this
1019 even if the register is only used in one block so that
1020 dependencies can be handled where the last register is
1021 used in a different block (i.e. HIGH / LO_SUM sequences)
1022 and to reduce the number of registers alive across
1023 calls. */
1024
1025 if (REG_N_REFS (regno) == 2
1026 && (rtx_equal_p (XEXP (note, 0), src)
1027 || ! equiv_init_varies_p (src))
1028 && GET_CODE (insn) == INSN
1029 && equiv_init_movable_p (PATTERN (insn), regno))
1030 reg_equiv[regno].replace = 1;
1031 }
1032 }
1033 }
1034 }
1035
1036 /* Now scan all regs killed in an insn to see if any of them are
1037 registers only used that once. If so, see if we can replace the
1038 reference with the equivalent from. If we can, delete the
1039 initializing reference and this register will go away. If we
1040 can't replace the reference, and the initialzing reference is
1041 within the same loop (or in an inner loop), then move the register
1042 initialization just before the use, so that they are in the same
1043 basic block. */
1044 for (block = n_basic_blocks - 1; block >= 0; block--)
1045 {
1046 basic_block bb = BASIC_BLOCK (block);
1047
1048 loop_depth = bb->loop_depth;
1049 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1050 {
1051 rtx link;
1052
1053 if (! INSN_P (insn))
1054 continue;
1055
1056 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1057 {
1058 if (REG_NOTE_KIND (link) == REG_DEAD
1059 /* Make sure this insn still refers to the register. */
1060 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1061 {
1062 int regno = REGNO (XEXP (link, 0));
1063 rtx equiv_insn;
1064
1065 if (! reg_equiv[regno].replace
1066 || reg_equiv[regno].loop_depth < loop_depth)
1067 continue;
1068
1069 /* reg_equiv[REGNO].replace gets set only when
1070 REG_N_REFS[REGNO] is 2, i.e. the register is set
1071 once and used once. (If it were only set, but not used,
1072 flow would have deleted the setting insns.) Hence
1073 there can only be one insn in reg_equiv[REGNO].init_insns. */
1074 if (reg_equiv[regno].init_insns == NULL_RTX
1075 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1076 abort ();
1077 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1078
1079 /* We may not move instructions that can throw, since
1080 that changes basic block boundaries and we are not
1081 prepared to adjust the CFG to match. */
1082 if (can_throw_internal (equiv_insn))
1083 continue;
1084
1085 if (asm_noperands (PATTERN (equiv_insn)) < 0
1086 && validate_replace_rtx (regno_reg_rtx[regno],
1087 reg_equiv[regno].src, insn))
1088 {
1089 rtx equiv_link;
1090 rtx last_link;
1091 rtx note;
1092
1093 /* Find the last note. */
1094 for (last_link = link; XEXP (last_link, 1);
1095 last_link = XEXP (last_link, 1))
1096 ;
1097
1098 /* Append the REG_DEAD notes from equiv_insn. */
1099 equiv_link = REG_NOTES (equiv_insn);
1100 while (equiv_link)
1101 {
1102 note = equiv_link;
1103 equiv_link = XEXP (equiv_link, 1);
1104 if (REG_NOTE_KIND (note) == REG_DEAD)
1105 {
1106 remove_note (equiv_insn, note);
1107 XEXP (last_link, 1) = note;
1108 XEXP (note, 1) = NULL_RTX;
1109 last_link = note;
1110 }
1111 }
1112
1113 remove_death (regno, insn);
1114 REG_N_REFS (regno) = 0;
1115 REG_FREQ (regno) = 0;
1116 delete_insn (equiv_insn);
1117
1118 reg_equiv[regno].init_insns
1119 = XEXP (reg_equiv[regno].init_insns, 1);
1120 }
1121 /* Move the initialization of the register to just before
1122 INSN. Update the flow information. */
1123 else if (PREV_INSN (insn) != equiv_insn)
1124 {
1125 rtx new_insn;
1126
1127 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1128 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1129 REG_NOTES (equiv_insn) = 0;
1130
1131 /* Make sure this insn is recognized before reload begins,
1132 otherwise eliminate_regs_in_insn will abort. */
1133 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1134
1135 delete_insn (equiv_insn);
1136
1137 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1138
1139 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1140 REG_N_CALLS_CROSSED (regno) = 0;
1141 REG_LIVE_LENGTH (regno) = 2;
1142
1143 if (block >= 0 && insn == BLOCK_HEAD (block))
1144 BLOCK_HEAD (block) = PREV_INSN (insn);
1145
1146 /* Remember to clear REGNO from all basic block's live
1147 info. */
1148 SET_REGNO_REG_SET (&cleared_regs, regno);
1149 clear_regnos++;
1150 }
1151 }
1152 }
1153 }
1154 }
1155
1156 /* Clear all dead REGNOs from all basic block's live info. */
1157 if (clear_regnos)
1158 {
1159 int j, l;
1160 if (clear_regnos > 8)
1161 {
1162 for (l = 0; l < n_basic_blocks; l++)
1163 {
1164 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1165 &cleared_regs);
1166 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1167 &cleared_regs);
1168 }
1169 }
1170 else
1171 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1172 {
1173 for (l = 0; l < n_basic_blocks; l++)
1174 {
1175 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1176 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1177 }
1178 });
1179 }
1180
1181 /* Clean up. */
1182 end_alias_analysis ();
1183 CLEAR_REG_SET (&cleared_regs);
1184 free (reg_equiv);
1185 }
1186
1187 /* Mark REG as having no known equivalence.
1188 Some instructions might have been proceessed before and furnished
1189 with REG_EQUIV notes for this register; these notes will have to be
1190 removed.
1191 STORE is the piece of RTL that does the non-constant / conflicting
1192 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1193 but needs to be there because this function is called from note_stores. */
1194 static void
1195 no_equiv (reg, store, data)
1196 rtx reg, store ATTRIBUTE_UNUSED;
1197 void *data ATTRIBUTE_UNUSED;
1198 {
1199 int regno;
1200 rtx list;
1201
1202 if (GET_CODE (reg) != REG)
1203 return;
1204 regno = REGNO (reg);
1205 list = reg_equiv[regno].init_insns;
1206 if (list == const0_rtx)
1207 return;
1208 for (; list; list = XEXP (list, 1))
1209 {
1210 rtx insn = XEXP (list, 0);
1211 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1212 }
1213 reg_equiv[regno].init_insns = const0_rtx;
1214 reg_equiv[regno].replacement = NULL_RTX;
1215 }
1216 \f
1217 /* Allocate hard regs to the pseudo regs used only within block number B.
1218 Only the pseudos that die but once can be handled. */
1219
1220 static void
1221 block_alloc (b)
1222 int b;
1223 {
1224 int i, q;
1225 rtx insn;
1226 rtx note, hard_reg;
1227 int insn_number = 0;
1228 int insn_count = 0;
1229 int max_uid = get_max_uid ();
1230 int *qty_order;
1231 int no_conflict_combined_regno = -1;
1232
1233 /* Count the instructions in the basic block. */
1234
1235 insn = BLOCK_END (b);
1236 while (1)
1237 {
1238 if (GET_CODE (insn) != NOTE)
1239 if (++insn_count > max_uid)
1240 abort ();
1241 if (insn == BLOCK_HEAD (b))
1242 break;
1243 insn = PREV_INSN (insn);
1244 }
1245
1246 /* +2 to leave room for a post_mark_life at the last insn and for
1247 the birth of a CLOBBER in the first insn. */
1248 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1249 sizeof (HARD_REG_SET));
1250
1251 /* Initialize table of hardware registers currently live. */
1252
1253 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1254
1255 /* This loop scans the instructions of the basic block
1256 and assigns quantities to registers.
1257 It computes which registers to tie. */
1258
1259 insn = BLOCK_HEAD (b);
1260 while (1)
1261 {
1262 if (GET_CODE (insn) != NOTE)
1263 insn_number++;
1264
1265 if (INSN_P (insn))
1266 {
1267 rtx link, set;
1268 int win = 0;
1269 rtx r0, r1 = NULL_RTX;
1270 int combined_regno = -1;
1271 int i;
1272
1273 this_insn_number = insn_number;
1274 this_insn = insn;
1275
1276 extract_insn (insn);
1277 which_alternative = -1;
1278
1279 /* Is this insn suitable for tying two registers?
1280 If so, try doing that.
1281 Suitable insns are those with at least two operands and where
1282 operand 0 is an output that is a register that is not
1283 earlyclobber.
1284
1285 We can tie operand 0 with some operand that dies in this insn.
1286 First look for operands that are required to be in the same
1287 register as operand 0. If we find such, only try tying that
1288 operand or one that can be put into that operand if the
1289 operation is commutative. If we don't find an operand
1290 that is required to be in the same register as operand 0,
1291 we can tie with any operand.
1292
1293 Subregs in place of regs are also ok.
1294
1295 If tying is done, WIN is set nonzero. */
1296
1297 if (optimize
1298 && recog_data.n_operands > 1
1299 && recog_data.constraints[0][0] == '='
1300 && recog_data.constraints[0][1] != '&')
1301 {
1302 /* If non-negative, is an operand that must match operand 0. */
1303 int must_match_0 = -1;
1304 /* Counts number of alternatives that require a match with
1305 operand 0. */
1306 int n_matching_alts = 0;
1307
1308 for (i = 1; i < recog_data.n_operands; i++)
1309 {
1310 const char *p = recog_data.constraints[i];
1311 int this_match = requires_inout (p);
1312
1313 n_matching_alts += this_match;
1314 if (this_match == recog_data.n_alternatives)
1315 must_match_0 = i;
1316 }
1317
1318 r0 = recog_data.operand[0];
1319 for (i = 1; i < recog_data.n_operands; i++)
1320 {
1321 /* Skip this operand if we found an operand that
1322 must match operand 0 and this operand isn't it
1323 and can't be made to be it by commutativity. */
1324
1325 if (must_match_0 >= 0 && i != must_match_0
1326 && ! (i == must_match_0 + 1
1327 && recog_data.constraints[i-1][0] == '%')
1328 && ! (i == must_match_0 - 1
1329 && recog_data.constraints[i][0] == '%'))
1330 continue;
1331
1332 /* Likewise if each alternative has some operand that
1333 must match operand zero. In that case, skip any
1334 operand that doesn't list operand 0 since we know that
1335 the operand always conflicts with operand 0. We
1336 ignore commutatity in this case to keep things simple. */
1337 if (n_matching_alts == recog_data.n_alternatives
1338 && 0 == requires_inout (recog_data.constraints[i]))
1339 continue;
1340
1341 r1 = recog_data.operand[i];
1342
1343 /* If the operand is an address, find a register in it.
1344 There may be more than one register, but we only try one
1345 of them. */
1346 if (recog_data.constraints[i][0] == 'p')
1347 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1348 r1 = XEXP (r1, 0);
1349
1350 /* Avoid making a call-saved register unnecessarily
1351 clobbered. */
1352 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1353 if (hard_reg != NULL_RTX)
1354 {
1355 if (GET_CODE (hard_reg) == REG
1356 && IN_RANGE (REGNO (hard_reg),
1357 0, FIRST_PSEUDO_REGISTER - 1)
1358 && ! call_used_regs[REGNO (hard_reg)])
1359 continue;
1360 }
1361
1362 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1363 {
1364 /* We have two priorities for hard register preferences.
1365 If we have a move insn or an insn whose first input
1366 can only be in the same register as the output, give
1367 priority to an equivalence found from that insn. */
1368 int may_save_copy
1369 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1370
1371 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1372 win = combine_regs (r1, r0, may_save_copy,
1373 insn_number, insn, 0);
1374 }
1375 if (win)
1376 break;
1377 }
1378 }
1379
1380 /* Recognize an insn sequence with an ultimate result
1381 which can safely overlap one of the inputs.
1382 The sequence begins with a CLOBBER of its result,
1383 and ends with an insn that copies the result to itself
1384 and has a REG_EQUAL note for an equivalent formula.
1385 That note indicates what the inputs are.
1386 The result and the input can overlap if each insn in
1387 the sequence either doesn't mention the input
1388 or has a REG_NO_CONFLICT note to inhibit the conflict.
1389
1390 We do the combining test at the CLOBBER so that the
1391 destination register won't have had a quantity number
1392 assigned, since that would prevent combining. */
1393
1394 if (optimize
1395 && GET_CODE (PATTERN (insn)) == CLOBBER
1396 && (r0 = XEXP (PATTERN (insn), 0),
1397 GET_CODE (r0) == REG)
1398 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1399 && XEXP (link, 0) != 0
1400 && GET_CODE (XEXP (link, 0)) == INSN
1401 && (set = single_set (XEXP (link, 0))) != 0
1402 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1403 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1404 NULL_RTX)) != 0)
1405 {
1406 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1407 /* Check that we have such a sequence. */
1408 && no_conflict_p (insn, r0, r1))
1409 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1410 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1411 && (r1 = XEXP (XEXP (note, 0), 0),
1412 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1413 && no_conflict_p (insn, r0, r1))
1414 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1415
1416 /* Here we care if the operation to be computed is
1417 commutative. */
1418 else if ((GET_CODE (XEXP (note, 0)) == EQ
1419 || GET_CODE (XEXP (note, 0)) == NE
1420 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1421 && (r1 = XEXP (XEXP (note, 0), 1),
1422 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1423 && no_conflict_p (insn, r0, r1))
1424 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1425
1426 /* If we did combine something, show the register number
1427 in question so that we know to ignore its death. */
1428 if (win)
1429 no_conflict_combined_regno = REGNO (r1);
1430 }
1431
1432 /* If registers were just tied, set COMBINED_REGNO
1433 to the number of the register used in this insn
1434 that was tied to the register set in this insn.
1435 This register's qty should not be "killed". */
1436
1437 if (win)
1438 {
1439 while (GET_CODE (r1) == SUBREG)
1440 r1 = SUBREG_REG (r1);
1441 combined_regno = REGNO (r1);
1442 }
1443
1444 /* Mark the death of everything that dies in this instruction,
1445 except for anything that was just combined. */
1446
1447 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1448 if (REG_NOTE_KIND (link) == REG_DEAD
1449 && GET_CODE (XEXP (link, 0)) == REG
1450 && combined_regno != (int) REGNO (XEXP (link, 0))
1451 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1452 || ! find_reg_note (insn, REG_NO_CONFLICT,
1453 XEXP (link, 0))))
1454 wipe_dead_reg (XEXP (link, 0), 0);
1455
1456 /* Allocate qty numbers for all registers local to this block
1457 that are born (set) in this instruction.
1458 A pseudo that already has a qty is not changed. */
1459
1460 note_stores (PATTERN (insn), reg_is_set, NULL);
1461
1462 /* If anything is set in this insn and then unused, mark it as dying
1463 after this insn, so it will conflict with our outputs. This
1464 can't match with something that combined, and it doesn't matter
1465 if it did. Do this after the calls to reg_is_set since these
1466 die after, not during, the current insn. */
1467
1468 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1469 if (REG_NOTE_KIND (link) == REG_UNUSED
1470 && GET_CODE (XEXP (link, 0)) == REG)
1471 wipe_dead_reg (XEXP (link, 0), 1);
1472
1473 /* If this is an insn that has a REG_RETVAL note pointing at a
1474 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1475 block, so clear any register number that combined within it. */
1476 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1477 && GET_CODE (XEXP (note, 0)) == INSN
1478 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1479 no_conflict_combined_regno = -1;
1480 }
1481
1482 /* Set the registers live after INSN_NUMBER. Note that we never
1483 record the registers live before the block's first insn, since no
1484 pseudos we care about are live before that insn. */
1485
1486 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1487 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1488
1489 if (insn == BLOCK_END (b))
1490 break;
1491
1492 insn = NEXT_INSN (insn);
1493 }
1494
1495 /* Now every register that is local to this basic block
1496 should have been given a quantity, or else -1 meaning ignore it.
1497 Every quantity should have a known birth and death.
1498
1499 Order the qtys so we assign them registers in order of the
1500 number of suggested registers they need so we allocate those with
1501 the most restrictive needs first. */
1502
1503 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1504 for (i = 0; i < next_qty; i++)
1505 qty_order[i] = i;
1506
1507 #define EXCHANGE(I1, I2) \
1508 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1509
1510 switch (next_qty)
1511 {
1512 case 3:
1513 /* Make qty_order[2] be the one to allocate last. */
1514 if (qty_sugg_compare (0, 1) > 0)
1515 EXCHANGE (0, 1);
1516 if (qty_sugg_compare (1, 2) > 0)
1517 EXCHANGE (2, 1);
1518
1519 /* ... Fall through ... */
1520 case 2:
1521 /* Put the best one to allocate in qty_order[0]. */
1522 if (qty_sugg_compare (0, 1) > 0)
1523 EXCHANGE (0, 1);
1524
1525 /* ... Fall through ... */
1526
1527 case 1:
1528 case 0:
1529 /* Nothing to do here. */
1530 break;
1531
1532 default:
1533 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1534 }
1535
1536 /* Try to put each quantity in a suggested physical register, if it has one.
1537 This may cause registers to be allocated that otherwise wouldn't be, but
1538 this seems acceptable in local allocation (unlike global allocation). */
1539 for (i = 0; i < next_qty; i++)
1540 {
1541 q = qty_order[i];
1542 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1543 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1544 0, 1, qty[q].birth, qty[q].death);
1545 else
1546 qty[q].phys_reg = -1;
1547 }
1548
1549 /* Order the qtys so we assign them registers in order of
1550 decreasing length of life. Normally call qsort, but if we
1551 have only a very small number of quantities, sort them ourselves. */
1552
1553 for (i = 0; i < next_qty; i++)
1554 qty_order[i] = i;
1555
1556 #define EXCHANGE(I1, I2) \
1557 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1558
1559 switch (next_qty)
1560 {
1561 case 3:
1562 /* Make qty_order[2] be the one to allocate last. */
1563 if (qty_compare (0, 1) > 0)
1564 EXCHANGE (0, 1);
1565 if (qty_compare (1, 2) > 0)
1566 EXCHANGE (2, 1);
1567
1568 /* ... Fall through ... */
1569 case 2:
1570 /* Put the best one to allocate in qty_order[0]. */
1571 if (qty_compare (0, 1) > 0)
1572 EXCHANGE (0, 1);
1573
1574 /* ... Fall through ... */
1575
1576 case 1:
1577 case 0:
1578 /* Nothing to do here. */
1579 break;
1580
1581 default:
1582 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1583 }
1584
1585 /* Now for each qty that is not a hardware register,
1586 look for a hardware register to put it in.
1587 First try the register class that is cheapest for this qty,
1588 if there is more than one class. */
1589
1590 for (i = 0; i < next_qty; i++)
1591 {
1592 q = qty_order[i];
1593 if (qty[q].phys_reg < 0)
1594 {
1595 #ifdef INSN_SCHEDULING
1596 /* These values represent the adjusted lifetime of a qty so
1597 that it conflicts with qtys which appear near the start/end
1598 of this qty's lifetime.
1599
1600 The purpose behind extending the lifetime of this qty is to
1601 discourage the register allocator from creating false
1602 dependencies.
1603
1604 The adjustment value is chosen to indicate that this qty
1605 conflicts with all the qtys in the instructions immediately
1606 before and after the lifetime of this qty.
1607
1608 Experiments have shown that higher values tend to hurt
1609 overall code performance.
1610
1611 If allocation using the extended lifetime fails we will try
1612 again with the qty's unadjusted lifetime. */
1613 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1614 int fake_death = MIN (insn_number * 2 + 1,
1615 qty[q].death + 2 - qty[q].death % 2);
1616 #endif
1617
1618 if (N_REG_CLASSES > 1)
1619 {
1620 #ifdef INSN_SCHEDULING
1621 /* We try to avoid using hard registers allocated to qtys which
1622 are born immediately after this qty or die immediately before
1623 this qty.
1624
1625 This optimization is only appropriate when we will run
1626 a scheduling pass after reload and we are not optimizing
1627 for code size. */
1628 if (flag_schedule_insns_after_reload
1629 && !optimize_size
1630 && !SMALL_REGISTER_CLASSES)
1631 {
1632 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1633 qty[q].mode, q, 0, 0,
1634 fake_birth, fake_death);
1635 if (qty[q].phys_reg >= 0)
1636 continue;
1637 }
1638 #endif
1639 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1640 qty[q].mode, q, 0, 0,
1641 qty[q].birth, qty[q].death);
1642 if (qty[q].phys_reg >= 0)
1643 continue;
1644 }
1645
1646 #ifdef INSN_SCHEDULING
1647 /* Similarly, avoid false dependencies. */
1648 if (flag_schedule_insns_after_reload
1649 && !optimize_size
1650 && !SMALL_REGISTER_CLASSES
1651 && qty[q].alternate_class != NO_REGS)
1652 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1653 qty[q].mode, q, 0, 0,
1654 fake_birth, fake_death);
1655 #endif
1656 if (qty[q].alternate_class != NO_REGS)
1657 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1658 qty[q].mode, q, 0, 0,
1659 qty[q].birth, qty[q].death);
1660 }
1661 }
1662
1663 /* Now propagate the register assignments
1664 to the pseudo regs belonging to the qtys. */
1665
1666 for (q = 0; q < next_qty; q++)
1667 if (qty[q].phys_reg >= 0)
1668 {
1669 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1670 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1671 }
1672
1673 /* Clean up. */
1674 free (regs_live_at);
1675 free (qty_order);
1676 }
1677 \f
1678 /* Compare two quantities' priority for getting real registers.
1679 We give shorter-lived quantities higher priority.
1680 Quantities with more references are also preferred, as are quantities that
1681 require multiple registers. This is the identical prioritization as
1682 done by global-alloc.
1683
1684 We used to give preference to registers with *longer* lives, but using
1685 the same algorithm in both local- and global-alloc can speed up execution
1686 of some programs by as much as a factor of three! */
1687
1688 /* Note that the quotient will never be bigger than
1689 the value of floor_log2 times the maximum number of
1690 times a register can occur in one insn (surely less than 100)
1691 weighted by frequency (max REG_FREQ_MAX).
1692 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1693 QTY_CMP_PRI is also used by qty_sugg_compare. */
1694
1695 #define QTY_CMP_PRI(q) \
1696 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1697 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1698
1699 static int
1700 qty_compare (q1, q2)
1701 int q1, q2;
1702 {
1703 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1704 }
1705
1706 static int
1707 qty_compare_1 (q1p, q2p)
1708 const PTR q1p;
1709 const PTR q2p;
1710 {
1711 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1712 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1713
1714 if (tem != 0)
1715 return tem;
1716
1717 /* If qtys are equally good, sort by qty number,
1718 so that the results of qsort leave nothing to chance. */
1719 return q1 - q2;
1720 }
1721 \f
1722 /* Compare two quantities' priority for getting real registers. This version
1723 is called for quantities that have suggested hard registers. First priority
1724 goes to quantities that have copy preferences, then to those that have
1725 normal preferences. Within those groups, quantities with the lower
1726 number of preferences have the highest priority. Of those, we use the same
1727 algorithm as above. */
1728
1729 #define QTY_CMP_SUGG(q) \
1730 (qty_phys_num_copy_sugg[q] \
1731 ? qty_phys_num_copy_sugg[q] \
1732 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1733
1734 static int
1735 qty_sugg_compare (q1, q2)
1736 int q1, q2;
1737 {
1738 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1739
1740 if (tem != 0)
1741 return tem;
1742
1743 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1744 }
1745
1746 static int
1747 qty_sugg_compare_1 (q1p, q2p)
1748 const PTR q1p;
1749 const PTR q2p;
1750 {
1751 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1752 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1753
1754 if (tem != 0)
1755 return tem;
1756
1757 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1758 if (tem != 0)
1759 return tem;
1760
1761 /* If qtys are equally good, sort by qty number,
1762 so that the results of qsort leave nothing to chance. */
1763 return q1 - q2;
1764 }
1765
1766 #undef QTY_CMP_SUGG
1767 #undef QTY_CMP_PRI
1768 \f
1769 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1770 Returns 1 if have done so, or 0 if cannot.
1771
1772 Combining registers means marking them as having the same quantity
1773 and adjusting the offsets within the quantity if either of
1774 them is a SUBREG).
1775
1776 We don't actually combine a hard reg with a pseudo; instead
1777 we just record the hard reg as the suggestion for the pseudo's quantity.
1778 If we really combined them, we could lose if the pseudo lives
1779 across an insn that clobbers the hard reg (eg, movstr).
1780
1781 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1782 there is no REG_DEAD note on INSN. This occurs during the processing
1783 of REG_NO_CONFLICT blocks.
1784
1785 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1786 SETREG or if the input and output must share a register.
1787 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1788
1789 There are elaborate checks for the validity of combining. */
1790
1791 static int
1792 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1793 rtx usedreg, setreg;
1794 int may_save_copy;
1795 int insn_number;
1796 rtx insn;
1797 int already_dead;
1798 {
1799 int ureg, sreg;
1800 int offset = 0;
1801 int usize, ssize;
1802 int sqty;
1803
1804 /* Determine the numbers and sizes of registers being used. If a subreg
1805 is present that does not change the entire register, don't consider
1806 this a copy insn. */
1807
1808 while (GET_CODE (usedreg) == SUBREG)
1809 {
1810 rtx subreg = SUBREG_REG (usedreg);
1811
1812 if (GET_CODE (subreg) == REG)
1813 {
1814 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1815 may_save_copy = 0;
1816
1817 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1818 offset += subreg_regno_offset (REGNO (subreg),
1819 GET_MODE (subreg),
1820 SUBREG_BYTE (usedreg),
1821 GET_MODE (usedreg));
1822 else
1823 offset += (SUBREG_BYTE (usedreg)
1824 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1825 }
1826
1827 usedreg = subreg;
1828 }
1829
1830 if (GET_CODE (usedreg) != REG)
1831 return 0;
1832
1833 ureg = REGNO (usedreg);
1834 if (ureg < FIRST_PSEUDO_REGISTER)
1835 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1836 else
1837 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1838 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1839 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1840
1841 while (GET_CODE (setreg) == SUBREG)
1842 {
1843 rtx subreg = SUBREG_REG (setreg);
1844
1845 if (GET_CODE (subreg) == REG)
1846 {
1847 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1848 may_save_copy = 0;
1849
1850 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1851 offset -= subreg_regno_offset (REGNO (subreg),
1852 GET_MODE (subreg),
1853 SUBREG_BYTE (setreg),
1854 GET_MODE (setreg));
1855 else
1856 offset -= (SUBREG_BYTE (setreg)
1857 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1858 }
1859
1860 setreg = subreg;
1861 }
1862
1863 if (GET_CODE (setreg) != REG)
1864 return 0;
1865
1866 sreg = REGNO (setreg);
1867 if (sreg < FIRST_PSEUDO_REGISTER)
1868 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1869 else
1870 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1871 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1872 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1873
1874 /* If UREG is a pseudo-register that hasn't already been assigned a
1875 quantity number, it means that it is not local to this block or dies
1876 more than once. In either event, we can't do anything with it. */
1877 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1878 /* Do not combine registers unless one fits within the other. */
1879 || (offset > 0 && usize + offset > ssize)
1880 || (offset < 0 && usize + offset < ssize)
1881 /* Do not combine with a smaller already-assigned object
1882 if that smaller object is already combined with something bigger. */
1883 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1884 && usize < qty[reg_qty[ureg]].size)
1885 /* Can't combine if SREG is not a register we can allocate. */
1886 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1887 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1888 These have already been taken care of. This probably wouldn't
1889 combine anyway, but don't take any chances. */
1890 || (ureg >= FIRST_PSEUDO_REGISTER
1891 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1892 /* Don't tie something to itself. In most cases it would make no
1893 difference, but it would screw up if the reg being tied to itself
1894 also dies in this insn. */
1895 || ureg == sreg
1896 /* Don't try to connect two different hardware registers. */
1897 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1898 /* Don't connect two different machine modes if they have different
1899 implications as to which registers may be used. */
1900 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1901 return 0;
1902
1903 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1904 qty_phys_sugg for the pseudo instead of tying them.
1905
1906 Return "failure" so that the lifespan of UREG is terminated here;
1907 that way the two lifespans will be disjoint and nothing will prevent
1908 the pseudo reg from being given this hard reg. */
1909
1910 if (ureg < FIRST_PSEUDO_REGISTER)
1911 {
1912 /* Allocate a quantity number so we have a place to put our
1913 suggestions. */
1914 if (reg_qty[sreg] == -2)
1915 reg_is_born (setreg, 2 * insn_number);
1916
1917 if (reg_qty[sreg] >= 0)
1918 {
1919 if (may_save_copy
1920 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1921 {
1922 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1923 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1924 }
1925 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1926 {
1927 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1928 qty_phys_num_sugg[reg_qty[sreg]]++;
1929 }
1930 }
1931 return 0;
1932 }
1933
1934 /* Similarly for SREG a hard register and UREG a pseudo register. */
1935
1936 if (sreg < FIRST_PSEUDO_REGISTER)
1937 {
1938 if (may_save_copy
1939 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1940 {
1941 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1942 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1943 }
1944 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1945 {
1946 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1947 qty_phys_num_sugg[reg_qty[ureg]]++;
1948 }
1949 return 0;
1950 }
1951
1952 /* At this point we know that SREG and UREG are both pseudos.
1953 Do nothing if SREG already has a quantity or is a register that we
1954 don't allocate. */
1955 if (reg_qty[sreg] >= -1
1956 /* If we are not going to let any regs live across calls,
1957 don't tie a call-crossing reg to a non-call-crossing reg. */
1958 || (current_function_has_nonlocal_label
1959 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1960 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1961 return 0;
1962
1963 /* We don't already know about SREG, so tie it to UREG
1964 if this is the last use of UREG, provided the classes they want
1965 are compatible. */
1966
1967 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1968 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1969 {
1970 /* Add SREG to UREG's quantity. */
1971 sqty = reg_qty[ureg];
1972 reg_qty[sreg] = sqty;
1973 reg_offset[sreg] = reg_offset[ureg] + offset;
1974 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1975 qty[sqty].first_reg = sreg;
1976
1977 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1978 update_qty_class (sqty, sreg);
1979
1980 /* Update info about quantity SQTY. */
1981 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1982 qty[sqty].n_refs += REG_N_REFS (sreg);
1983 qty[sqty].freq += REG_FREQ (sreg);
1984 if (usize < ssize)
1985 {
1986 int i;
1987
1988 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1989 reg_offset[i] -= offset;
1990
1991 qty[sqty].size = ssize;
1992 qty[sqty].mode = GET_MODE (setreg);
1993 }
1994 }
1995 else
1996 return 0;
1997
1998 return 1;
1999 }
2000 \f
2001 /* Return 1 if the preferred class of REG allows it to be tied
2002 to a quantity or register whose class is CLASS.
2003 True if REG's reg class either contains or is contained in CLASS. */
2004
2005 static int
2006 reg_meets_class_p (reg, class)
2007 int reg;
2008 enum reg_class class;
2009 {
2010 enum reg_class rclass = reg_preferred_class (reg);
2011 return (reg_class_subset_p (rclass, class)
2012 || reg_class_subset_p (class, rclass));
2013 }
2014
2015 /* Update the class of QTYNO assuming that REG is being tied to it. */
2016
2017 static void
2018 update_qty_class (qtyno, reg)
2019 int qtyno;
2020 int reg;
2021 {
2022 enum reg_class rclass = reg_preferred_class (reg);
2023 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2024 qty[qtyno].min_class = rclass;
2025
2026 rclass = reg_alternate_class (reg);
2027 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2028 qty[qtyno].alternate_class = rclass;
2029
2030 if (REG_CHANGES_MODE (reg))
2031 qty[qtyno].changes_mode = 1;
2032 }
2033 \f
2034 /* Handle something which alters the value of an rtx REG.
2035
2036 REG is whatever is set or clobbered. SETTER is the rtx that
2037 is modifying the register.
2038
2039 If it is not really a register, we do nothing.
2040 The file-global variables `this_insn' and `this_insn_number'
2041 carry info from `block_alloc'. */
2042
2043 static void
2044 reg_is_set (reg, setter, data)
2045 rtx reg;
2046 rtx setter;
2047 void *data ATTRIBUTE_UNUSED;
2048 {
2049 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2050 a hard register. These may actually not exist any more. */
2051
2052 if (GET_CODE (reg) != SUBREG
2053 && GET_CODE (reg) != REG)
2054 return;
2055
2056 /* Mark this register as being born. If it is used in a CLOBBER, mark
2057 it as being born halfway between the previous insn and this insn so that
2058 it conflicts with our inputs but not the outputs of the previous insn. */
2059
2060 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2061 }
2062 \f
2063 /* Handle beginning of the life of register REG.
2064 BIRTH is the index at which this is happening. */
2065
2066 static void
2067 reg_is_born (reg, birth)
2068 rtx reg;
2069 int birth;
2070 {
2071 int regno;
2072
2073 if (GET_CODE (reg) == SUBREG)
2074 {
2075 regno = REGNO (SUBREG_REG (reg));
2076 if (regno < FIRST_PSEUDO_REGISTER)
2077 regno = subreg_hard_regno (reg, 1);
2078 }
2079 else
2080 regno = REGNO (reg);
2081
2082 if (regno < FIRST_PSEUDO_REGISTER)
2083 {
2084 mark_life (regno, GET_MODE (reg), 1);
2085
2086 /* If the register was to have been born earlier that the present
2087 insn, mark it as live where it is actually born. */
2088 if (birth < 2 * this_insn_number)
2089 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2090 }
2091 else
2092 {
2093 if (reg_qty[regno] == -2)
2094 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2095
2096 /* If this register has a quantity number, show that it isn't dead. */
2097 if (reg_qty[regno] >= 0)
2098 qty[reg_qty[regno]].death = -1;
2099 }
2100 }
2101
2102 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2103 REG is an output that is dying (i.e., it is never used), otherwise it
2104 is an input (the normal case).
2105 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2106
2107 static void
2108 wipe_dead_reg (reg, output_p)
2109 rtx reg;
2110 int output_p;
2111 {
2112 int regno = REGNO (reg);
2113
2114 /* If this insn has multiple results,
2115 and the dead reg is used in one of the results,
2116 extend its life to after this insn,
2117 so it won't get allocated together with any other result of this insn.
2118
2119 It is unsafe to use !single_set here since it will ignore an unused
2120 output. Just because an output is unused does not mean the compiler
2121 can assume the side effect will not occur. Consider if REG appears
2122 in the address of an output and we reload the output. If we allocate
2123 REG to the same hard register as an unused output we could set the hard
2124 register before the output reload insn. */
2125 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2126 && multiple_sets (this_insn))
2127 {
2128 int i;
2129 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2130 {
2131 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2132 if (GET_CODE (set) == SET
2133 && GET_CODE (SET_DEST (set)) != REG
2134 && !rtx_equal_p (reg, SET_DEST (set))
2135 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2136 output_p = 1;
2137 }
2138 }
2139
2140 /* If this register is used in an auto-increment address, then extend its
2141 life to after this insn, so that it won't get allocated together with
2142 the result of this insn. */
2143 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2144 output_p = 1;
2145
2146 if (regno < FIRST_PSEUDO_REGISTER)
2147 {
2148 mark_life (regno, GET_MODE (reg), 0);
2149
2150 /* If a hard register is dying as an output, mark it as in use at
2151 the beginning of this insn (the above statement would cause this
2152 not to happen). */
2153 if (output_p)
2154 post_mark_life (regno, GET_MODE (reg), 1,
2155 2 * this_insn_number, 2 * this_insn_number + 1);
2156 }
2157
2158 else if (reg_qty[regno] >= 0)
2159 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2160 }
2161 \f
2162 /* Find a block of SIZE words of hard regs in reg_class CLASS
2163 that can hold something of machine-mode MODE
2164 (but actually we test only the first of the block for holding MODE)
2165 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2166 and return the number of the first of them.
2167 Return -1 if such a block cannot be found.
2168 If QTYNO crosses calls, insist on a register preserved by calls,
2169 unless ACCEPT_CALL_CLOBBERED is nonzero.
2170
2171 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2172 register is available. If not, return -1. */
2173
2174 static int
2175 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2176 born_index, dead_index)
2177 enum reg_class class;
2178 enum machine_mode mode;
2179 int qtyno;
2180 int accept_call_clobbered;
2181 int just_try_suggested;
2182 int born_index, dead_index;
2183 {
2184 int i, ins;
2185 #ifdef HARD_REG_SET
2186 /* Declare it register if it's a scalar. */
2187 register
2188 #endif
2189 HARD_REG_SET used, first_used;
2190 #ifdef ELIMINABLE_REGS
2191 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2192 #endif
2193
2194 /* Validate our parameters. */
2195 if (born_index < 0 || born_index > dead_index)
2196 abort ();
2197
2198 /* Don't let a pseudo live in a reg across a function call
2199 if we might get a nonlocal goto. */
2200 if (current_function_has_nonlocal_label
2201 && qty[qtyno].n_calls_crossed > 0)
2202 return -1;
2203
2204 if (accept_call_clobbered)
2205 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2206 else if (qty[qtyno].n_calls_crossed == 0)
2207 COPY_HARD_REG_SET (used, fixed_reg_set);
2208 else
2209 COPY_HARD_REG_SET (used, call_used_reg_set);
2210
2211 if (accept_call_clobbered)
2212 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2213
2214 for (ins = born_index; ins < dead_index; ins++)
2215 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2216
2217 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2218
2219 /* Don't use the frame pointer reg in local-alloc even if
2220 we may omit the frame pointer, because if we do that and then we
2221 need a frame pointer, reload won't know how to move the pseudo
2222 to another hard reg. It can move only regs made by global-alloc.
2223
2224 This is true of any register that can be eliminated. */
2225 #ifdef ELIMINABLE_REGS
2226 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2227 SET_HARD_REG_BIT (used, eliminables[i].from);
2228 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2229 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2230 that it might be eliminated into. */
2231 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2232 #endif
2233 #else
2234 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2235 #endif
2236
2237 #ifdef CLASS_CANNOT_CHANGE_MODE
2238 if (qty[qtyno].changes_mode)
2239 IOR_HARD_REG_SET (used,
2240 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2241 #endif
2242
2243 /* Normally, the registers that can be used for the first register in
2244 a multi-register quantity are the same as those that can be used for
2245 subsequent registers. However, if just trying suggested registers,
2246 restrict our consideration to them. If there are copy-suggested
2247 register, try them. Otherwise, try the arithmetic-suggested
2248 registers. */
2249 COPY_HARD_REG_SET (first_used, used);
2250
2251 if (just_try_suggested)
2252 {
2253 if (qty_phys_num_copy_sugg[qtyno] != 0)
2254 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2255 else
2256 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2257 }
2258
2259 /* If all registers are excluded, we can't do anything. */
2260 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2261
2262 /* If at least one would be suitable, test each hard reg. */
2263
2264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2265 {
2266 #ifdef REG_ALLOC_ORDER
2267 int regno = reg_alloc_order[i];
2268 #else
2269 int regno = i;
2270 #endif
2271 if (! TEST_HARD_REG_BIT (first_used, regno)
2272 && HARD_REGNO_MODE_OK (regno, mode)
2273 && (qty[qtyno].n_calls_crossed == 0
2274 || accept_call_clobbered
2275 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2276 {
2277 int j;
2278 int size1 = HARD_REGNO_NREGS (regno, mode);
2279 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2280 if (j == size1)
2281 {
2282 /* Mark that this register is in use between its birth and death
2283 insns. */
2284 post_mark_life (regno, mode, 1, born_index, dead_index);
2285 return regno;
2286 }
2287 #ifndef REG_ALLOC_ORDER
2288 /* Skip starting points we know will lose. */
2289 i += j;
2290 #endif
2291 }
2292 }
2293
2294 fail:
2295 /* If we are just trying suggested register, we have just tried copy-
2296 suggested registers, and there are arithmetic-suggested registers,
2297 try them. */
2298
2299 /* If it would be profitable to allocate a call-clobbered register
2300 and save and restore it around calls, do that. */
2301 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2302 && qty_phys_num_sugg[qtyno] != 0)
2303 {
2304 /* Don't try the copy-suggested regs again. */
2305 qty_phys_num_copy_sugg[qtyno] = 0;
2306 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2307 born_index, dead_index);
2308 }
2309
2310 /* We need not check to see if the current function has nonlocal
2311 labels because we don't put any pseudos that are live over calls in
2312 registers in that case. */
2313
2314 if (! accept_call_clobbered
2315 && flag_caller_saves
2316 && ! just_try_suggested
2317 && qty[qtyno].n_calls_crossed != 0
2318 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2319 qty[qtyno].n_calls_crossed))
2320 {
2321 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2322 if (i >= 0)
2323 caller_save_needed = 1;
2324 return i;
2325 }
2326 return -1;
2327 }
2328 \f
2329 /* Mark that REGNO with machine-mode MODE is live starting from the current
2330 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2331 is zero). */
2332
2333 static void
2334 mark_life (regno, mode, life)
2335 int regno;
2336 enum machine_mode mode;
2337 int life;
2338 {
2339 int j = HARD_REGNO_NREGS (regno, mode);
2340 if (life)
2341 while (--j >= 0)
2342 SET_HARD_REG_BIT (regs_live, regno + j);
2343 else
2344 while (--j >= 0)
2345 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2346 }
2347
2348 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2349 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2350 to insn number DEATH (exclusive). */
2351
2352 static void
2353 post_mark_life (regno, mode, life, birth, death)
2354 int regno;
2355 enum machine_mode mode;
2356 int life, birth, death;
2357 {
2358 int j = HARD_REGNO_NREGS (regno, mode);
2359 #ifdef HARD_REG_SET
2360 /* Declare it register if it's a scalar. */
2361 register
2362 #endif
2363 HARD_REG_SET this_reg;
2364
2365 CLEAR_HARD_REG_SET (this_reg);
2366 while (--j >= 0)
2367 SET_HARD_REG_BIT (this_reg, regno + j);
2368
2369 if (life)
2370 while (birth < death)
2371 {
2372 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2373 birth++;
2374 }
2375 else
2376 while (birth < death)
2377 {
2378 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2379 birth++;
2380 }
2381 }
2382 \f
2383 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2384 is the register being clobbered, and R1 is a register being used in
2385 the equivalent expression.
2386
2387 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2388 in which it is used, return 1.
2389
2390 Otherwise, return 0. */
2391
2392 static int
2393 no_conflict_p (insn, r0, r1)
2394 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2395 {
2396 int ok = 0;
2397 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2398 rtx p, last;
2399
2400 /* If R1 is a hard register, return 0 since we handle this case
2401 when we scan the insns that actually use it. */
2402
2403 if (note == 0
2404 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2405 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2406 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2407 return 0;
2408
2409 last = XEXP (note, 0);
2410
2411 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2412 if (INSN_P (p))
2413 {
2414 if (find_reg_note (p, REG_DEAD, r1))
2415 ok = 1;
2416
2417 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2418 some earlier optimization pass has inserted instructions into
2419 the sequence, and it is not safe to perform this optimization.
2420 Note that emit_no_conflict_block always ensures that this is
2421 true when these sequences are created. */
2422 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2423 return 0;
2424 }
2425
2426 return ok;
2427 }
2428 \f
2429 /* Return the number of alternatives for which the constraint string P
2430 indicates that the operand must be equal to operand 0 and that no register
2431 is acceptable. */
2432
2433 static int
2434 requires_inout (p)
2435 const char *p;
2436 {
2437 char c;
2438 int found_zero = 0;
2439 int reg_allowed = 0;
2440 int num_matching_alts = 0;
2441
2442 while ((c = *p++))
2443 switch (c)
2444 {
2445 case '=': case '+': case '?':
2446 case '#': case '&': case '!':
2447 case '*': case '%':
2448 case 'm': case '<': case '>': case 'V': case 'o':
2449 case 'E': case 'F': case 'G': case 'H':
2450 case 's': case 'i': case 'n':
2451 case 'I': case 'J': case 'K': case 'L':
2452 case 'M': case 'N': case 'O': case 'P':
2453 case 'X':
2454 /* These don't say anything we care about. */
2455 break;
2456
2457 case ',':
2458 if (found_zero && ! reg_allowed)
2459 num_matching_alts++;
2460
2461 found_zero = reg_allowed = 0;
2462 break;
2463
2464 case '0':
2465 found_zero = 1;
2466 break;
2467
2468 case '1': case '2': case '3': case '4': case '5':
2469 case '6': case '7': case '8': case '9':
2470 /* Skip the balance of the matching constraint. */
2471 while (ISDIGIT (*p))
2472 p++;
2473 break;
2474
2475 default:
2476 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2477 break;
2478 /* FALLTHRU */
2479 case 'p':
2480 case 'g': case 'r':
2481 reg_allowed = 1;
2482 break;
2483 }
2484
2485 if (found_zero && ! reg_allowed)
2486 num_matching_alts++;
2487
2488 return num_matching_alts;
2489 }
2490 \f
2491 void
2492 dump_local_alloc (file)
2493 FILE *file;
2494 {
2495 int i;
2496 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2497 if (reg_renumber[i] != -1)
2498 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2499 }