local-alloc.c (function_invariant_p): New function.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "insn-attr.h"
71 #include "recog.h"
72 #include "output.h"
73 #include "toplev.h"
74 \f
75 /* Next quantity number available for allocation. */
76
77 static int next_qty;
78
79 /* In all the following vectors indexed by quantity number. */
80
81 /* Element Q is the hard reg number chosen for quantity Q,
82 or -1 if none was found. */
83
84 static short *qty_phys_reg;
85
86 /* We maintain two hard register sets that indicate suggested hard registers
87 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
88 that are tied to the quantity by a simple copy. The second contains all
89 hard registers that are tied to the quantity via an arithmetic operation.
90
91 The former register set is given priority for allocation. This tends to
92 eliminate copy insns. */
93
94 /* Element Q is a set of hard registers that are suggested for quantity Q by
95 copy insns. */
96
97 static HARD_REG_SET *qty_phys_copy_sugg;
98
99 /* Element Q is a set of hard registers that are suggested for quantity Q by
100 arithmetic insns. */
101
102 static HARD_REG_SET *qty_phys_sugg;
103
104 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
105
106 static short *qty_phys_num_copy_sugg;
107
108 /* Element Q is the number of suggested registers in qty_phys_sugg. */
109
110 static short *qty_phys_num_sugg;
111
112 /* Element Q is the number of refs to quantity Q. */
113
114 static int *qty_n_refs;
115
116 /* Element Q is a reg class contained in (smaller than) the
117 preferred classes of all the pseudo regs that are tied in quantity Q.
118 This is the preferred class for allocating that quantity. */
119
120 static enum reg_class *qty_min_class;
121
122 /* Insn number (counting from head of basic block)
123 where quantity Q was born. -1 if birth has not been recorded. */
124
125 static int *qty_birth;
126
127 /* Insn number (counting from head of basic block)
128 where quantity Q died. Due to the way tying is done,
129 and the fact that we consider in this pass only regs that die but once,
130 a quantity can die only once. Each quantity's life span
131 is a set of consecutive insns. -1 if death has not been recorded. */
132
133 static int *qty_death;
134
135 /* Number of words needed to hold the data in quantity Q.
136 This depends on its machine mode. It is used for these purposes:
137 1. It is used in computing the relative importances of qtys,
138 which determines the order in which we look for regs for them.
139 2. It is used in rules that prevent tying several registers of
140 different sizes in a way that is geometrically impossible
141 (see combine_regs). */
142
143 static int *qty_size;
144
145 /* This holds the mode of the registers that are tied to qty Q,
146 or VOIDmode if registers with differing modes are tied together. */
147
148 static enum machine_mode *qty_mode;
149
150 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
151
152 static int *qty_n_calls_crossed;
153
154 /* Register class within which we allocate qty Q if we can't get
155 its preferred class. */
156
157 static enum reg_class *qty_alternate_class;
158
159 /* Element Q is nonzero if this quantity has been used in a SUBREG
160 that changes its size. */
161
162 static char *qty_changes_size;
163
164 /* Element Q is the register number of one pseudo register whose
165 reg_qty value is Q. This register should be the head of the chain
166 maintained in reg_next_in_qty. */
167
168 static int *qty_first_reg;
169
170 /* If (REG N) has been assigned a quantity number, is a register number
171 of another register assigned the same quantity number, or -1 for the
172 end of the chain. qty_first_reg point to the head of this chain. */
173
174 static int *reg_next_in_qty;
175
176 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
177 if it is >= 0,
178 of -1 if this register cannot be allocated by local-alloc,
179 or -2 if not known yet.
180
181 Note that if we see a use or death of pseudo register N with
182 reg_qty[N] == -2, register N must be local to the current block. If
183 it were used in more than one block, we would have reg_qty[N] == -1.
184 This relies on the fact that if reg_basic_block[N] is >= 0, register N
185 will not appear in any other block. We save a considerable number of
186 tests by exploiting this.
187
188 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
189 be referenced. */
190
191 static int *reg_qty;
192
193 /* The offset (in words) of register N within its quantity.
194 This can be nonzero if register N is SImode, and has been tied
195 to a subreg of a DImode register. */
196
197 static char *reg_offset;
198
199 /* Vector of substitutions of register numbers,
200 used to map pseudo regs into hardware regs.
201 This is set up as a result of register allocation.
202 Element N is the hard reg assigned to pseudo reg N,
203 or is -1 if no hard reg was assigned.
204 If N is a hard reg number, element N is N. */
205
206 short *reg_renumber;
207
208 /* Set of hard registers live at the current point in the scan
209 of the instructions in a basic block. */
210
211 static HARD_REG_SET regs_live;
212
213 /* Each set of hard registers indicates registers live at a particular
214 point in the basic block. For N even, regs_live_at[N] says which
215 hard registers are needed *after* insn N/2 (i.e., they may not
216 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
217
218 If an object is to conflict with the inputs of insn J but not the
219 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
220 if it is to conflict with the outputs of insn J but not the inputs of
221 insn J + 1, it is said to die at index J*2 + 1. */
222
223 static HARD_REG_SET *regs_live_at;
224
225 /* Communicate local vars `insn_number' and `insn'
226 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
227 static int this_insn_number;
228 static rtx this_insn;
229
230 /* Used to communicate changes made by update_equiv_regs to
231 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
232 found or created, so that we can keep track of what memory accesses might
233 be created later, e.g. by reload. */
234
235 static rtx *reg_equiv_replacement;
236
237 /* Used for communication between update_equiv_regs and no_equiv. */
238 static rtx *reg_equiv_init_insns;
239
240 static void alloc_qty PROTO((int, enum machine_mode, int, int));
241 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
242 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
243 static int contains_replace_regs PROTO((rtx, char *));
244 static int memref_referenced_p PROTO((rtx, rtx));
245 static int memref_used_between_p PROTO((rtx, rtx, rtx));
246 static void update_equiv_regs PROTO((void));
247 static void no_equiv PROTO((rtx, rtx));
248 static void block_alloc PROTO((int));
249 static int qty_sugg_compare PROTO((int, int));
250 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
251 static int qty_compare PROTO((int, int));
252 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
253 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
254 static int reg_meets_class_p PROTO((int, enum reg_class));
255 static void update_qty_class PROTO((int, int));
256 static void reg_is_set PROTO((rtx, rtx));
257 static void reg_is_born PROTO((rtx, int));
258 static void wipe_dead_reg PROTO((rtx, int));
259 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
260 int, int, int, int, int));
261 static void mark_life PROTO((int, enum machine_mode, int));
262 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
263 static int no_conflict_p PROTO((rtx, rtx, rtx));
264 static int requires_inout PROTO((char *));
265 \f
266 /* Allocate a new quantity (new within current basic block)
267 for register number REGNO which is born at index BIRTH
268 within the block. MODE and SIZE are info on reg REGNO. */
269
270 static void
271 alloc_qty (regno, mode, size, birth)
272 int regno;
273 enum machine_mode mode;
274 int size, birth;
275 {
276 register int qty = next_qty++;
277
278 reg_qty[regno] = qty;
279 reg_offset[regno] = 0;
280 reg_next_in_qty[regno] = -1;
281
282 qty_first_reg[qty] = regno;
283 qty_size[qty] = size;
284 qty_mode[qty] = mode;
285 qty_birth[qty] = birth;
286 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
287 qty_min_class[qty] = reg_preferred_class (regno);
288 qty_alternate_class[qty] = reg_alternate_class (regno);
289 qty_n_refs[qty] = REG_N_REFS (regno);
290 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
291 }
292 \f
293 /* Main entry point of this file. */
294
295 void
296 local_alloc ()
297 {
298 register int b, i;
299 int max_qty;
300
301 /* Leaf functions and non-leaf functions have different needs.
302 If defined, let the machine say what kind of ordering we
303 should use. */
304 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
305 ORDER_REGS_FOR_LOCAL_ALLOC;
306 #endif
307
308 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
309 registers. */
310 update_equiv_regs ();
311
312 /* This sets the maximum number of quantities we can have. Quantity
313 numbers start at zero and we can have one for each pseudo. */
314 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
315
316 /* Allocate vectors of temporary data.
317 See the declarations of these variables, above,
318 for what they mean. */
319
320 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
321 qty_phys_copy_sugg
322 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
323 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
324 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
325 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
326 qty_birth = (int *) alloca (max_qty * sizeof (int));
327 qty_death = (int *) alloca (max_qty * sizeof (int));
328 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
329 qty_size = (int *) alloca (max_qty * sizeof (int));
330 qty_mode
331 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
332 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
333 qty_min_class
334 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
335 qty_alternate_class
336 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
337 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
338 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
339
340 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
341 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
342 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
343
344 /* Allocate the reg_renumber array */
345 allocate_reg_info (max_regno, FALSE, TRUE);
346
347 /* Determine which pseudo-registers can be allocated by local-alloc.
348 In general, these are the registers used only in a single block and
349 which only die once. However, if a register's preferred class has only
350 a few entries, don't allocate this register here unless it is preferred
351 or nothing since retry_global_alloc won't be able to move it to
352 GENERAL_REGS if a reload register of this class is needed.
353
354 We need not be concerned with which block actually uses the register
355 since we will never see it outside that block. */
356
357 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
358 {
359 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
360 && (reg_alternate_class (i) == NO_REGS
361 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
362 reg_qty[i] = -2;
363 else
364 reg_qty[i] = -1;
365 }
366
367 /* Force loop below to initialize entire quantity array. */
368 next_qty = max_qty;
369
370 /* Allocate each block's local registers, block by block. */
371
372 for (b = 0; b < n_basic_blocks; b++)
373 {
374 /* NEXT_QTY indicates which elements of the `qty_...'
375 vectors might need to be initialized because they were used
376 for the previous block; it is set to the entire array before
377 block 0. Initialize those, with explicit loop if there are few,
378 else with bzero and bcopy. Do not initialize vectors that are
379 explicit set by `alloc_qty'. */
380
381 if (next_qty < 6)
382 {
383 for (i = 0; i < next_qty; i++)
384 {
385 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
386 qty_phys_num_copy_sugg[i] = 0;
387 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
388 qty_phys_num_sugg[i] = 0;
389 }
390 }
391 else
392 {
393 #define CLEAR(vector) \
394 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
395
396 CLEAR (qty_phys_copy_sugg);
397 CLEAR (qty_phys_num_copy_sugg);
398 CLEAR (qty_phys_sugg);
399 CLEAR (qty_phys_num_sugg);
400 }
401
402 next_qty = 0;
403
404 block_alloc (b);
405 #ifdef USE_C_ALLOCA
406 alloca (0);
407 #endif
408 }
409
410 free (reg_qty);
411 free (reg_offset);
412 free (reg_next_in_qty);
413 }
414 \f
415 /* Depth of loops we are in while in update_equiv_regs. */
416 static int loop_depth;
417
418 /* Used for communication between the following two functions: contains
419 a MEM that we wish to ensure remains unchanged. */
420 static rtx equiv_mem;
421
422 /* Set nonzero if EQUIV_MEM is modified. */
423 static int equiv_mem_modified;
424
425 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
426 Called via note_stores. */
427
428 static void
429 validate_equiv_mem_from_store (dest, set)
430 rtx dest;
431 rtx set ATTRIBUTE_UNUSED;
432 {
433 if ((GET_CODE (dest) == REG
434 && reg_overlap_mentioned_p (dest, equiv_mem))
435 || (GET_CODE (dest) == MEM
436 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
437 equiv_mem_modified = 1;
438 }
439
440 /* Verify that no store between START and the death of REG invalidates
441 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
442 by storing into an overlapping memory location, or with a non-const
443 CALL_INSN.
444
445 Return 1 if MEMREF remains valid. */
446
447 static int
448 validate_equiv_mem (start, reg, memref)
449 rtx start;
450 rtx reg;
451 rtx memref;
452 {
453 rtx insn;
454 rtx note;
455
456 equiv_mem = memref;
457 equiv_mem_modified = 0;
458
459 /* If the memory reference has side effects or is volatile, it isn't a
460 valid equivalence. */
461 if (side_effects_p (memref))
462 return 0;
463
464 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
465 {
466 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
467 continue;
468
469 if (find_reg_note (insn, REG_DEAD, reg))
470 return 1;
471
472 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
473 && ! CONST_CALL_P (insn))
474 return 0;
475
476 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
477
478 /* If a register mentioned in MEMREF is modified via an
479 auto-increment, we lose the equivalence. Do the same if one
480 dies; although we could extend the life, it doesn't seem worth
481 the trouble. */
482
483 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
484 if ((REG_NOTE_KIND (note) == REG_INC
485 || REG_NOTE_KIND (note) == REG_DEAD)
486 && GET_CODE (XEXP (note, 0)) == REG
487 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
488 return 0;
489 }
490
491 return 0;
492 }
493
494 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
495
496 static int
497 contains_replace_regs (x, reg_equiv_replace)
498 rtx x;
499 char *reg_equiv_replace;
500 {
501 int i, j;
502 char *fmt;
503 enum rtx_code code = GET_CODE (x);
504
505 switch (code)
506 {
507 case CONST_INT:
508 case CONST:
509 case LABEL_REF:
510 case SYMBOL_REF:
511 case CONST_DOUBLE:
512 case PC:
513 case CC0:
514 case HIGH:
515 case LO_SUM:
516 return 0;
517
518 case REG:
519 return reg_equiv_replace[REGNO (x)];
520
521 default:
522 break;
523 }
524
525 fmt = GET_RTX_FORMAT (code);
526 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
527 switch (fmt[i])
528 {
529 case 'e':
530 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
531 return 1;
532 break;
533 case 'E':
534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
535 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
536 return 1;
537 break;
538 }
539
540 return 0;
541 }
542 \f
543 /* TRUE if X references a memory location that would be affected by a store
544 to MEMREF. */
545
546 static int
547 memref_referenced_p (memref, x)
548 rtx x;
549 rtx memref;
550 {
551 int i, j;
552 char *fmt;
553 enum rtx_code code = GET_CODE (x);
554
555 switch (code)
556 {
557 case CONST_INT:
558 case CONST:
559 case LABEL_REF:
560 case SYMBOL_REF:
561 case CONST_DOUBLE:
562 case PC:
563 case CC0:
564 case HIGH:
565 case LO_SUM:
566 return 0;
567
568 case REG:
569 return (reg_equiv_replacement[REGNO (x)]
570 && memref_referenced_p (memref,
571 reg_equiv_replacement[REGNO (x)]));
572
573 case MEM:
574 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
575 return 1;
576 break;
577
578 case SET:
579 /* If we are setting a MEM, it doesn't count (its address does), but any
580 other SET_DEST that has a MEM in it is referencing the MEM. */
581 if (GET_CODE (SET_DEST (x)) == MEM)
582 {
583 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
584 return 1;
585 }
586 else if (memref_referenced_p (memref, SET_DEST (x)))
587 return 1;
588
589 return memref_referenced_p (memref, SET_SRC (x));
590
591 default:
592 break;
593 }
594
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597 switch (fmt[i])
598 {
599 case 'e':
600 if (memref_referenced_p (memref, XEXP (x, i)))
601 return 1;
602 break;
603 case 'E':
604 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
605 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
606 return 1;
607 break;
608 }
609
610 return 0;
611 }
612
613 /* TRUE if some insn in the range (START, END] references a memory location
614 that would be affected by a store to MEMREF. */
615
616 static int
617 memref_used_between_p (memref, start, end)
618 rtx memref;
619 rtx start;
620 rtx end;
621 {
622 rtx insn;
623
624 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
625 insn = NEXT_INSN (insn))
626 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
627 && memref_referenced_p (memref, PATTERN (insn)))
628 return 1;
629
630 return 0;
631 }
632 \f
633 /* Return nonzero if the rtx X is invariant over the current function. */
634 int
635 function_invariant_p (x)
636 rtx x;
637 {
638 if (CONSTANT_P (x))
639 return 1;
640 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
641 return 1;
642 if (GET_CODE (x) == PLUS
643 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
644 && CONSTANT_P (XEXP (x, 1)))
645 return 1;
646 return 0;
647 }
648
649 /* Find registers that are equivalent to a single value throughout the
650 compilation (either because they can be referenced in memory or are set once
651 from a single constant). Lower their priority for a register.
652
653 If such a register is only referenced once, try substituting its value
654 into the using insn. If it succeeds, we can eliminate the register
655 completely. */
656
657 static void
658 update_equiv_regs ()
659 {
660 /* Set when an attempt should be made to replace a register with the
661 associated reg_equiv_replacement entry at the end of this function. */
662 char *reg_equiv_replace
663 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
664 rtx insn;
665 int block, depth;
666
667 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
668 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
669
670 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
671 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
672 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
673
674 init_alias_analysis ();
675
676 loop_depth = 1;
677
678 /* Scan the insns and find which registers have equivalences. Do this
679 in a separate scan of the insns because (due to -fcse-follow-jumps)
680 a register can be set below its use. */
681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
682 {
683 rtx note;
684 rtx set;
685 rtx dest, src;
686 int regno;
687
688 if (GET_CODE (insn) == NOTE)
689 {
690 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
691 loop_depth++;
692 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
693 loop_depth--;
694 }
695
696 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
697 continue;
698
699 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
700 if (REG_NOTE_KIND (note) == REG_INC)
701 no_equiv (XEXP (note, 0), note);
702
703 set = single_set (insn);
704
705 /* If this insn contains more (or less) than a single SET,
706 only mark all destinations as having no known equivalence. */
707 if (set == 0)
708 {
709 note_stores (PATTERN (insn), no_equiv);
710 continue;
711 }
712 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
713 {
714 int i;
715
716 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
717 {
718 rtx part = XVECEXP (PATTERN (insn), 0, i);
719 if (part != set)
720 note_stores (part, no_equiv);
721 }
722 }
723
724 dest = SET_DEST (set);
725 src = SET_SRC (set);
726
727 /* If this sets a MEM to the contents of a REG that is only used
728 in a single basic block, see if the register is always equivalent
729 to that memory location and if moving the store from INSN to the
730 insn that set REG is safe. If so, put a REG_EQUIV note on the
731 initializing insn.
732
733 Don't add a REG_EQUIV note if the insn already has one. The existing
734 REG_EQUIV is likely more useful than the one we are adding.
735
736 If one of the regs in the address is marked as reg_equiv_replace,
737 then we can't add this REG_EQUIV note. The reg_equiv_replace
738 optimization may move the set of this register immediately before
739 insn, which puts it after reg_equiv_init_insns[regno], and hence
740 the mention in the REG_EQUIV note would be to an uninitialized
741 pseudo. */
742 /* ????? This test isn't good enough; we might see a MEM with a use of
743 a pseudo register before we see its setting insn that will cause
744 reg_equiv_replace for that pseudo to be set.
745 Equivalences to MEMs should be made in another pass, after the
746 reg_equiv_replace information has been gathered. */
747
748 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
749 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
750 && REG_BASIC_BLOCK (regno) >= 0
751 && REG_N_SETS (regno) == 1
752 && reg_equiv_init_insns[regno] != 0
753 && reg_equiv_init_insns[regno] != const0_rtx
754 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
755 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
756 {
757 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
758 if (validate_equiv_mem (init_insn, src, dest)
759 && ! memref_used_between_p (dest, init_insn, insn))
760 REG_NOTES (init_insn)
761 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
762 }
763
764 /* We only handle the case of a pseudo register being set
765 once, or always to the same value. */
766 /* ??? The mn10200 port breaks if we add equivalences for
767 values that need an ADDRESS_REGS register and set them equivalent
768 to a MEM of a pseudo. The actual problem is in the over-conservative
769 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
770 calculate_needs, but we traditionally work around this problem
771 here by rejecting equivalences when the destination is in a register
772 that's likely spilled. This is fragile, of course, since the
773 preferred class of a pseudo depends on all instructions that set
774 or use it. */
775
776 if (GET_CODE (dest) != REG
777 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
778 || reg_equiv_init_insns[regno] == const0_rtx
779 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
780 && GET_CODE (src) == MEM))
781 {
782 /* This might be seting a SUBREG of a pseudo, a pseudo that is
783 also set somewhere else to a constant. */
784 note_stores (set, no_equiv);
785 continue;
786 }
787 /* Don't handle the equivalence if the source is in a register
788 class that's likely to be spilled. */
789 if (GET_CODE (src) == REG
790 && REGNO (src) >= FIRST_PSEUDO_REGISTER
791 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
792 {
793 no_equiv (dest, set);
794 continue;
795 }
796
797 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
798
799 #ifdef DONT_RECORD_EQUIVALENCE
800 /* Allow the target to reject promotions of some REG_EQUAL notes to
801 REG_EQUIV notes.
802
803 In some cases this can improve register allocation if the existence
804 of the REG_EQUIV note is likely to increase the lifetime of a register
805 that is likely to be spilled.
806
807 It may also be necessary if the target can't handle certain constant
808 expressions appearing randomly in insns, but for whatever reason
809 those expressions must be considered legitimate constant expressions
810 to prevent them from being forced into memory. */
811 if (note && DONT_RECORD_EQUIVALENCE (note))
812 note = NULL;
813 #endif
814
815 if (REG_N_SETS (regno) != 1
816 && (! note
817 || ! function_invariant_p (XEXP (note, 0))
818 || (reg_equiv_replacement[regno]
819 && ! rtx_equal_p (XEXP (note, 0),
820 reg_equiv_replacement[regno]))))
821 {
822 no_equiv (dest, set);
823 continue;
824 }
825 /* Record this insn as initializing this register. */
826 reg_equiv_init_insns[regno]
827 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
828
829 /* If this register is known to be equal to a constant, record that
830 it is always equivalent to the constant. */
831 if (note && function_invariant_p (XEXP (note, 0)))
832 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
833
834 /* If this insn introduces a "constant" register, decrease the priority
835 of that register. Record this insn if the register is only used once
836 more and the equivalence value is the same as our source.
837
838 The latter condition is checked for two reasons: First, it is an
839 indication that it may be more efficient to actually emit the insn
840 as written (if no registers are available, reload will substitute
841 the equivalence). Secondly, it avoids problems with any registers
842 dying in this insn whose death notes would be missed.
843
844 If we don't have a REG_EQUIV note, see if this insn is loading
845 a register used only in one basic block from a MEM. If so, and the
846 MEM remains unchanged for the life of the register, add a REG_EQUIV
847 note. */
848
849 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
850
851 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
852 && GET_CODE (SET_SRC (set)) == MEM
853 && validate_equiv_mem (insn, dest, SET_SRC (set)))
854 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
855 REG_NOTES (insn));
856
857 if (note)
858 {
859 int regno = REGNO (dest);
860
861 reg_equiv_replacement[regno] = XEXP (note, 0);
862
863 /* Don't mess with things live during setjmp. */
864 if (REG_LIVE_LENGTH (regno) >= 0)
865 {
866 /* Note that the statement below does not affect the priority
867 in local-alloc! */
868 REG_LIVE_LENGTH (regno) *= 2;
869
870
871 /* If the register is referenced exactly twice, meaning it is
872 set once and used once, indicate that the reference may be
873 replaced by the equivalence we computed above. If the
874 register is only used in one basic block, this can't succeed
875 or combine would have done it.
876
877 It would be nice to use "loop_depth * 2" in the compare
878 below. Unfortunately, LOOP_DEPTH need not be constant within
879 a basic block so this would be too complicated.
880
881 This case normally occurs when a parameter is read from
882 memory and then used exactly once, not in a loop. */
883
884 if (REG_N_REFS (regno) == 2
885 && REG_BASIC_BLOCK (regno) < 0
886 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
887 reg_equiv_replace[regno] = 1;
888 }
889 }
890 }
891
892 /* Now scan all regs killed in an insn to see if any of them are
893 registers only used that once. If so, see if we can replace the
894 reference with the equivalent from. If we can, delete the
895 initializing reference and this register will go away. If we
896 can't replace the reference, and the instruction is not in a
897 loop, then move the register initialization just before the use,
898 so that they are in the same basic block. */
899 block = -1;
900 depth = 0;
901 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
902 {
903 rtx link;
904
905 /* Keep track of which basic block we are in. */
906 if (block + 1 < n_basic_blocks
907 && basic_block_head[block + 1] == insn)
908 ++block;
909
910 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
911 {
912 if (GET_CODE (insn) == NOTE)
913 {
914 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
915 ++depth;
916 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
917 {
918 --depth;
919 if (depth < 0)
920 abort ();
921 }
922 }
923
924 continue;
925 }
926
927 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
928 {
929 if (REG_NOTE_KIND (link) == REG_DEAD
930 /* Make sure this insn still refers to the register. */
931 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
932 {
933 int regno = REGNO (XEXP (link, 0));
934 rtx equiv_insn;
935
936 if (! reg_equiv_replace[regno])
937 continue;
938
939 /* reg_equiv_replace[REGNO] gets set only when
940 REG_N_REFS[REGNO] is 2, i.e. the register is set
941 once and used once. (If it were only set, but not used,
942 flow would have deleted the setting insns.) Hence
943 there can only be one insn in reg_equiv_init_insns. */
944 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
945
946 if (validate_replace_rtx (regno_reg_rtx[regno],
947 reg_equiv_replacement[regno], insn))
948 {
949 remove_death (regno, insn);
950 REG_N_REFS (regno) = 0;
951 PUT_CODE (equiv_insn, NOTE);
952 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
953 NOTE_SOURCE_FILE (equiv_insn) = 0;
954 }
955 /* If we aren't in a loop, and there are no calls in
956 INSN or in the initialization of the register, then
957 move the initialization of the register to just
958 before INSN. Update the flow information. */
959 else if (depth == 0
960 && GET_CODE (equiv_insn) == INSN
961 && GET_CODE (insn) == INSN
962 && REG_BASIC_BLOCK (regno) < 0)
963 {
964 int l;
965
966 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
967 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
968
969 PUT_CODE (equiv_insn, NOTE);
970 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
971 NOTE_SOURCE_FILE (equiv_insn) = 0;
972 REG_NOTES (equiv_insn) = 0;
973
974 if (block < 0)
975 REG_BASIC_BLOCK (regno) = 0;
976 else
977 REG_BASIC_BLOCK (regno) = block;
978 REG_N_CALLS_CROSSED (regno) = 0;
979 REG_LIVE_LENGTH (regno) = 2;
980
981 if (block >= 0 && insn == basic_block_head[block])
982 basic_block_head[block] = PREV_INSN (insn);
983
984 for (l = 0; l < n_basic_blocks; l++)
985 CLEAR_REGNO_REG_SET (basic_block_live_at_start[l], regno);
986 }
987 }
988 }
989 }
990 }
991
992 /* Mark REG as having no known equivalence.
993 Some instructions might have been proceessed before and furnished
994 with REG_EQUIV notes for this register; these notes will have to be
995 removed.
996 STORE is the piece of RTL that does the non-constant / conflicting
997 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
998 but needs to be there because this function is called from note_stores. */
999 static void
1000 no_equiv (reg, store)
1001 rtx reg, store;
1002 {
1003 int regno;
1004 rtx list;
1005
1006 if (GET_CODE (reg) != REG)
1007 return;
1008 regno = REGNO (reg);
1009 list = reg_equiv_init_insns[regno];
1010 if (list == const0_rtx)
1011 return;
1012 for (; list; list = XEXP (list, 1))
1013 {
1014 rtx insn = XEXP (list, 0);
1015 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1016 }
1017 reg_equiv_init_insns[regno] = const0_rtx;
1018 reg_equiv_replacement[regno] = NULL_RTX;
1019 }
1020 \f
1021 /* Allocate hard regs to the pseudo regs used only within block number B.
1022 Only the pseudos that die but once can be handled. */
1023
1024 static void
1025 block_alloc (b)
1026 int b;
1027 {
1028 register int i, q;
1029 register rtx insn;
1030 rtx note;
1031 int insn_number = 0;
1032 int insn_count = 0;
1033 int max_uid = get_max_uid ();
1034 int *qty_order;
1035 int no_conflict_combined_regno = -1;
1036
1037 /* Count the instructions in the basic block. */
1038
1039 insn = basic_block_end[b];
1040 while (1)
1041 {
1042 if (GET_CODE (insn) != NOTE)
1043 if (++insn_count > max_uid)
1044 abort ();
1045 if (insn == basic_block_head[b])
1046 break;
1047 insn = PREV_INSN (insn);
1048 }
1049
1050 /* +2 to leave room for a post_mark_life at the last insn and for
1051 the birth of a CLOBBER in the first insn. */
1052 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1053 * sizeof (HARD_REG_SET));
1054 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1055
1056 /* Initialize table of hardware registers currently live. */
1057
1058 REG_SET_TO_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1059
1060 /* This loop scans the instructions of the basic block
1061 and assigns quantities to registers.
1062 It computes which registers to tie. */
1063
1064 insn = basic_block_head[b];
1065 while (1)
1066 {
1067 register rtx body = PATTERN (insn);
1068
1069 if (GET_CODE (insn) != NOTE)
1070 insn_number++;
1071
1072 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1073 {
1074 register rtx link, set;
1075 register int win = 0;
1076 register rtx r0, r1;
1077 int combined_regno = -1;
1078 int i;
1079
1080 this_insn_number = insn_number;
1081 this_insn = insn;
1082
1083 extract_insn (insn);
1084 which_alternative = -1;
1085
1086 /* Is this insn suitable for tying two registers?
1087 If so, try doing that.
1088 Suitable insns are those with at least two operands and where
1089 operand 0 is an output that is a register that is not
1090 earlyclobber.
1091
1092 We can tie operand 0 with some operand that dies in this insn.
1093 First look for operands that are required to be in the same
1094 register as operand 0. If we find such, only try tying that
1095 operand or one that can be put into that operand if the
1096 operation is commutative. If we don't find an operand
1097 that is required to be in the same register as operand 0,
1098 we can tie with any operand.
1099
1100 Subregs in place of regs are also ok.
1101
1102 If tying is done, WIN is set nonzero. */
1103
1104 if (1
1105 #ifdef REGISTER_CONSTRAINTS
1106 && recog_n_operands > 1
1107 && recog_constraints[0][0] == '='
1108 && recog_constraints[0][1] != '&'
1109 #else
1110 && GET_CODE (PATTERN (insn)) == SET
1111 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1112 #endif
1113 )
1114 {
1115 #ifdef REGISTER_CONSTRAINTS
1116 /* If non-negative, is an operand that must match operand 0. */
1117 int must_match_0 = -1;
1118 /* Counts number of alternatives that require a match with
1119 operand 0. */
1120 int n_matching_alts = 0;
1121
1122 for (i = 1; i < recog_n_operands; i++)
1123 {
1124 char *p = recog_constraints[i];
1125 int this_match = (requires_inout (p));
1126
1127 n_matching_alts += this_match;
1128 if (this_match == recog_n_alternatives)
1129 must_match_0 = i;
1130 }
1131 #endif
1132
1133 r0 = recog_operand[0];
1134 for (i = 1; i < recog_n_operands; i++)
1135 {
1136 #ifdef REGISTER_CONSTRAINTS
1137 /* Skip this operand if we found an operand that
1138 must match operand 0 and this operand isn't it
1139 and can't be made to be it by commutativity. */
1140
1141 if (must_match_0 >= 0 && i != must_match_0
1142 && ! (i == must_match_0 + 1
1143 && recog_constraints[i-1][0] == '%')
1144 && ! (i == must_match_0 - 1
1145 && recog_constraints[i][0] == '%'))
1146 continue;
1147
1148 /* Likewise if each alternative has some operand that
1149 must match operand zero. In that case, skip any
1150 operand that doesn't list operand 0 since we know that
1151 the operand always conflicts with operand 0. We
1152 ignore commutatity in this case to keep things simple. */
1153 if (n_matching_alts == recog_n_alternatives
1154 && 0 == requires_inout (recog_constraints[i]))
1155 continue;
1156 #endif
1157
1158 r1 = recog_operand[i];
1159
1160 /* If the operand is an address, find a register in it.
1161 There may be more than one register, but we only try one
1162 of them. */
1163 if (
1164 #ifdef REGISTER_CONSTRAINTS
1165 recog_constraints[i][0] == 'p'
1166 #else
1167 recog_operand_address_p[i]
1168 #endif
1169 )
1170 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1171 r1 = XEXP (r1, 0);
1172
1173 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1174 {
1175 /* We have two priorities for hard register preferences.
1176 If we have a move insn or an insn whose first input
1177 can only be in the same register as the output, give
1178 priority to an equivalence found from that insn. */
1179 int may_save_copy
1180 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1181 #ifdef REGISTER_CONSTRAINTS
1182 || (r1 == recog_operand[i] && must_match_0 >= 0)
1183 #endif
1184 );
1185
1186 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1187 win = combine_regs (r1, r0, may_save_copy,
1188 insn_number, insn, 0);
1189 }
1190 if (win)
1191 break;
1192 }
1193 }
1194
1195 /* Recognize an insn sequence with an ultimate result
1196 which can safely overlap one of the inputs.
1197 The sequence begins with a CLOBBER of its result,
1198 and ends with an insn that copies the result to itself
1199 and has a REG_EQUAL note for an equivalent formula.
1200 That note indicates what the inputs are.
1201 The result and the input can overlap if each insn in
1202 the sequence either doesn't mention the input
1203 or has a REG_NO_CONFLICT note to inhibit the conflict.
1204
1205 We do the combining test at the CLOBBER so that the
1206 destination register won't have had a quantity number
1207 assigned, since that would prevent combining. */
1208
1209 if (GET_CODE (PATTERN (insn)) == CLOBBER
1210 && (r0 = XEXP (PATTERN (insn), 0),
1211 GET_CODE (r0) == REG)
1212 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1213 && XEXP (link, 0) != 0
1214 && GET_CODE (XEXP (link, 0)) == INSN
1215 && (set = single_set (XEXP (link, 0))) != 0
1216 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1217 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1218 NULL_RTX)) != 0)
1219 {
1220 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1221 /* Check that we have such a sequence. */
1222 && no_conflict_p (insn, r0, r1))
1223 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1224 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1225 && (r1 = XEXP (XEXP (note, 0), 0),
1226 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1227 && no_conflict_p (insn, r0, r1))
1228 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1229
1230 /* Here we care if the operation to be computed is
1231 commutative. */
1232 else if ((GET_CODE (XEXP (note, 0)) == EQ
1233 || GET_CODE (XEXP (note, 0)) == NE
1234 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1235 && (r1 = XEXP (XEXP (note, 0), 1),
1236 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1237 && no_conflict_p (insn, r0, r1))
1238 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1239
1240 /* If we did combine something, show the register number
1241 in question so that we know to ignore its death. */
1242 if (win)
1243 no_conflict_combined_regno = REGNO (r1);
1244 }
1245
1246 /* If registers were just tied, set COMBINED_REGNO
1247 to the number of the register used in this insn
1248 that was tied to the register set in this insn.
1249 This register's qty should not be "killed". */
1250
1251 if (win)
1252 {
1253 while (GET_CODE (r1) == SUBREG)
1254 r1 = SUBREG_REG (r1);
1255 combined_regno = REGNO (r1);
1256 }
1257
1258 /* Mark the death of everything that dies in this instruction,
1259 except for anything that was just combined. */
1260
1261 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1262 if (REG_NOTE_KIND (link) == REG_DEAD
1263 && GET_CODE (XEXP (link, 0)) == REG
1264 && combined_regno != REGNO (XEXP (link, 0))
1265 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1266 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1267 wipe_dead_reg (XEXP (link, 0), 0);
1268
1269 /* Allocate qty numbers for all registers local to this block
1270 that are born (set) in this instruction.
1271 A pseudo that already has a qty is not changed. */
1272
1273 note_stores (PATTERN (insn), reg_is_set);
1274
1275 /* If anything is set in this insn and then unused, mark it as dying
1276 after this insn, so it will conflict with our outputs. This
1277 can't match with something that combined, and it doesn't matter
1278 if it did. Do this after the calls to reg_is_set since these
1279 die after, not during, the current insn. */
1280
1281 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1282 if (REG_NOTE_KIND (link) == REG_UNUSED
1283 && GET_CODE (XEXP (link, 0)) == REG)
1284 wipe_dead_reg (XEXP (link, 0), 1);
1285
1286 /* If this is an insn that has a REG_RETVAL note pointing at a
1287 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1288 block, so clear any register number that combined within it. */
1289 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1290 && GET_CODE (XEXP (note, 0)) == INSN
1291 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1292 no_conflict_combined_regno = -1;
1293 }
1294
1295 /* Set the registers live after INSN_NUMBER. Note that we never
1296 record the registers live before the block's first insn, since no
1297 pseudos we care about are live before that insn. */
1298
1299 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1300 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1301
1302 if (insn == basic_block_end[b])
1303 break;
1304
1305 insn = NEXT_INSN (insn);
1306 }
1307
1308 /* Now every register that is local to this basic block
1309 should have been given a quantity, or else -1 meaning ignore it.
1310 Every quantity should have a known birth and death.
1311
1312 Order the qtys so we assign them registers in order of the
1313 number of suggested registers they need so we allocate those with
1314 the most restrictive needs first. */
1315
1316 qty_order = (int *) alloca (next_qty * sizeof (int));
1317 for (i = 0; i < next_qty; i++)
1318 qty_order[i] = i;
1319
1320 #define EXCHANGE(I1, I2) \
1321 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1322
1323 switch (next_qty)
1324 {
1325 case 3:
1326 /* Make qty_order[2] be the one to allocate last. */
1327 if (qty_sugg_compare (0, 1) > 0)
1328 EXCHANGE (0, 1);
1329 if (qty_sugg_compare (1, 2) > 0)
1330 EXCHANGE (2, 1);
1331
1332 /* ... Fall through ... */
1333 case 2:
1334 /* Put the best one to allocate in qty_order[0]. */
1335 if (qty_sugg_compare (0, 1) > 0)
1336 EXCHANGE (0, 1);
1337
1338 /* ... Fall through ... */
1339
1340 case 1:
1341 case 0:
1342 /* Nothing to do here. */
1343 break;
1344
1345 default:
1346 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1347 }
1348
1349 /* Try to put each quantity in a suggested physical register, if it has one.
1350 This may cause registers to be allocated that otherwise wouldn't be, but
1351 this seems acceptable in local allocation (unlike global allocation). */
1352 for (i = 0; i < next_qty; i++)
1353 {
1354 q = qty_order[i];
1355 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1356 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1357 0, 1, qty_birth[q], qty_death[q]);
1358 else
1359 qty_phys_reg[q] = -1;
1360 }
1361
1362 /* Order the qtys so we assign them registers in order of
1363 decreasing length of life. Normally call qsort, but if we
1364 have only a very small number of quantities, sort them ourselves. */
1365
1366 for (i = 0; i < next_qty; i++)
1367 qty_order[i] = i;
1368
1369 #define EXCHANGE(I1, I2) \
1370 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1371
1372 switch (next_qty)
1373 {
1374 case 3:
1375 /* Make qty_order[2] be the one to allocate last. */
1376 if (qty_compare (0, 1) > 0)
1377 EXCHANGE (0, 1);
1378 if (qty_compare (1, 2) > 0)
1379 EXCHANGE (2, 1);
1380
1381 /* ... Fall through ... */
1382 case 2:
1383 /* Put the best one to allocate in qty_order[0]. */
1384 if (qty_compare (0, 1) > 0)
1385 EXCHANGE (0, 1);
1386
1387 /* ... Fall through ... */
1388
1389 case 1:
1390 case 0:
1391 /* Nothing to do here. */
1392 break;
1393
1394 default:
1395 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1396 }
1397
1398 /* Now for each qty that is not a hardware register,
1399 look for a hardware register to put it in.
1400 First try the register class that is cheapest for this qty,
1401 if there is more than one class. */
1402
1403 for (i = 0; i < next_qty; i++)
1404 {
1405 q = qty_order[i];
1406 if (qty_phys_reg[q] < 0)
1407 {
1408 #ifdef INSN_SCHEDULING
1409 /* These values represent the adjusted lifetime of a qty so
1410 that it conflicts with qtys which appear near the start/end
1411 of this qty's lifetime.
1412
1413 The purpose behind extending the lifetime of this qty is to
1414 discourage the register allocator from creating false
1415 dependencies.
1416
1417 The adjustment by the value +-3 indicates precisely that
1418 this qty conflicts with qtys in the instructions immediately
1419 before and after the lifetime of this qty.
1420
1421 Experiments have shown that higher values tend to hurt
1422 overall code performance.
1423
1424 If allocation using the extended lifetime fails we will try
1425 again with the qty's unadjusted lifetime. */
1426 int fake_birth = MAX (0, qty_birth[q] - 3);
1427 int fake_death = MIN (insn_number * 2 + 1, qty_death[q] + 3);
1428 #endif
1429
1430 if (N_REG_CLASSES > 1)
1431 {
1432 #ifdef INSN_SCHEDULING
1433 /* We try to avoid using hard registers allocated to qtys which
1434 are born immediately after this qty or die immediately before
1435 this qty.
1436
1437 This optimization is only appropriate when we will run
1438 a scheduling pass after reload and we are not optimizing
1439 for code size. */
1440 if (flag_schedule_insns_after_reload
1441 && !optimize_size
1442 && !SMALL_REGISTER_CLASSES)
1443 {
1444
1445 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1446 qty_mode[q], q, 0, 0,
1447 fake_birth, fake_death);
1448 if (qty_phys_reg[q] >= 0)
1449 continue;
1450 }
1451 #endif
1452 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1453 qty_mode[q], q, 0, 0,
1454 qty_birth[q], qty_death[q]);
1455 if (qty_phys_reg[q] >= 0)
1456 continue;
1457 }
1458
1459 #ifdef INSN_SCHEDULING
1460 /* Similarly, avoid false dependencies. */
1461 if (flag_schedule_insns_after_reload
1462 && !optimize_size
1463 && !SMALL_REGISTER_CLASSES
1464 && qty_alternate_class[q] != NO_REGS)
1465 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1466 qty_mode[q], q, 0, 0,
1467 fake_birth, fake_death);
1468 #endif
1469 if (qty_alternate_class[q] != NO_REGS)
1470 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1471 qty_mode[q], q, 0, 0,
1472 qty_birth[q], qty_death[q]);
1473 }
1474 }
1475
1476 /* Now propagate the register assignments
1477 to the pseudo regs belonging to the qtys. */
1478
1479 for (q = 0; q < next_qty; q++)
1480 if (qty_phys_reg[q] >= 0)
1481 {
1482 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1483 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1484 }
1485 }
1486 \f
1487 /* Compare two quantities' priority for getting real registers.
1488 We give shorter-lived quantities higher priority.
1489 Quantities with more references are also preferred, as are quantities that
1490 require multiple registers. This is the identical prioritization as
1491 done by global-alloc.
1492
1493 We used to give preference to registers with *longer* lives, but using
1494 the same algorithm in both local- and global-alloc can speed up execution
1495 of some programs by as much as a factor of three! */
1496
1497 /* Note that the quotient will never be bigger than
1498 the value of floor_log2 times the maximum number of
1499 times a register can occur in one insn (surely less than 100).
1500 Multiplying this by 10000 can't overflow.
1501 QTY_CMP_PRI is also used by qty_sugg_compare. */
1502
1503 #define QTY_CMP_PRI(q) \
1504 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1505 / (qty_death[q] - qty_birth[q])) * 10000))
1506
1507 static int
1508 qty_compare (q1, q2)
1509 int q1, q2;
1510 {
1511 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1512 }
1513
1514 static int
1515 qty_compare_1 (q1p, q2p)
1516 const GENERIC_PTR q1p;
1517 const GENERIC_PTR q2p;
1518 {
1519 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1520 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1521
1522 if (tem != 0)
1523 return tem;
1524
1525 /* If qtys are equally good, sort by qty number,
1526 so that the results of qsort leave nothing to chance. */
1527 return q1 - q2;
1528 }
1529 \f
1530 /* Compare two quantities' priority for getting real registers. This version
1531 is called for quantities that have suggested hard registers. First priority
1532 goes to quantities that have copy preferences, then to those that have
1533 normal preferences. Within those groups, quantities with the lower
1534 number of preferences have the highest priority. Of those, we use the same
1535 algorithm as above. */
1536
1537 #define QTY_CMP_SUGG(q) \
1538 (qty_phys_num_copy_sugg[q] \
1539 ? qty_phys_num_copy_sugg[q] \
1540 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1541
1542 static int
1543 qty_sugg_compare (q1, q2)
1544 int q1, q2;
1545 {
1546 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1547
1548 if (tem != 0)
1549 return tem;
1550
1551 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1552 }
1553
1554 static int
1555 qty_sugg_compare_1 (q1p, q2p)
1556 const GENERIC_PTR q1p;
1557 const GENERIC_PTR q2p;
1558 {
1559 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1560 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1561
1562 if (tem != 0)
1563 return tem;
1564
1565 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1566 if (tem != 0)
1567 return tem;
1568
1569 /* If qtys are equally good, sort by qty number,
1570 so that the results of qsort leave nothing to chance. */
1571 return q1 - q2;
1572 }
1573
1574 #undef QTY_CMP_SUGG
1575 #undef QTY_CMP_PRI
1576 \f
1577 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1578 Returns 1 if have done so, or 0 if cannot.
1579
1580 Combining registers means marking them as having the same quantity
1581 and adjusting the offsets within the quantity if either of
1582 them is a SUBREG).
1583
1584 We don't actually combine a hard reg with a pseudo; instead
1585 we just record the hard reg as the suggestion for the pseudo's quantity.
1586 If we really combined them, we could lose if the pseudo lives
1587 across an insn that clobbers the hard reg (eg, movstr).
1588
1589 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1590 there is no REG_DEAD note on INSN. This occurs during the processing
1591 of REG_NO_CONFLICT blocks.
1592
1593 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1594 SETREG or if the input and output must share a register.
1595 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1596
1597 There are elaborate checks for the validity of combining. */
1598
1599
1600 static int
1601 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1602 rtx usedreg, setreg;
1603 int may_save_copy;
1604 int insn_number;
1605 rtx insn;
1606 int already_dead;
1607 {
1608 register int ureg, sreg;
1609 register int offset = 0;
1610 int usize, ssize;
1611 register int sqty;
1612
1613 /* Determine the numbers and sizes of registers being used. If a subreg
1614 is present that does not change the entire register, don't consider
1615 this a copy insn. */
1616
1617 while (GET_CODE (usedreg) == SUBREG)
1618 {
1619 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1620 may_save_copy = 0;
1621 offset += SUBREG_WORD (usedreg);
1622 usedreg = SUBREG_REG (usedreg);
1623 }
1624 if (GET_CODE (usedreg) != REG)
1625 return 0;
1626 ureg = REGNO (usedreg);
1627 usize = REG_SIZE (usedreg);
1628
1629 while (GET_CODE (setreg) == SUBREG)
1630 {
1631 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1632 may_save_copy = 0;
1633 offset -= SUBREG_WORD (setreg);
1634 setreg = SUBREG_REG (setreg);
1635 }
1636 if (GET_CODE (setreg) != REG)
1637 return 0;
1638 sreg = REGNO (setreg);
1639 ssize = REG_SIZE (setreg);
1640
1641 /* If UREG is a pseudo-register that hasn't already been assigned a
1642 quantity number, it means that it is not local to this block or dies
1643 more than once. In either event, we can't do anything with it. */
1644 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1645 /* Do not combine registers unless one fits within the other. */
1646 || (offset > 0 && usize + offset > ssize)
1647 || (offset < 0 && usize + offset < ssize)
1648 /* Do not combine with a smaller already-assigned object
1649 if that smaller object is already combined with something bigger. */
1650 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1651 && usize < qty_size[reg_qty[ureg]])
1652 /* Can't combine if SREG is not a register we can allocate. */
1653 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1654 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1655 These have already been taken care of. This probably wouldn't
1656 combine anyway, but don't take any chances. */
1657 || (ureg >= FIRST_PSEUDO_REGISTER
1658 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1659 /* Don't tie something to itself. In most cases it would make no
1660 difference, but it would screw up if the reg being tied to itself
1661 also dies in this insn. */
1662 || ureg == sreg
1663 /* Don't try to connect two different hardware registers. */
1664 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1665 /* Don't connect two different machine modes if they have different
1666 implications as to which registers may be used. */
1667 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1668 return 0;
1669
1670 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1671 qty_phys_sugg for the pseudo instead of tying them.
1672
1673 Return "failure" so that the lifespan of UREG is terminated here;
1674 that way the two lifespans will be disjoint and nothing will prevent
1675 the pseudo reg from being given this hard reg. */
1676
1677 if (ureg < FIRST_PSEUDO_REGISTER)
1678 {
1679 /* Allocate a quantity number so we have a place to put our
1680 suggestions. */
1681 if (reg_qty[sreg] == -2)
1682 reg_is_born (setreg, 2 * insn_number);
1683
1684 if (reg_qty[sreg] >= 0)
1685 {
1686 if (may_save_copy
1687 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1688 {
1689 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1690 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1691 }
1692 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1693 {
1694 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1695 qty_phys_num_sugg[reg_qty[sreg]]++;
1696 }
1697 }
1698 return 0;
1699 }
1700
1701 /* Similarly for SREG a hard register and UREG a pseudo register. */
1702
1703 if (sreg < FIRST_PSEUDO_REGISTER)
1704 {
1705 if (may_save_copy
1706 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1707 {
1708 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1709 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1710 }
1711 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1712 {
1713 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1714 qty_phys_num_sugg[reg_qty[ureg]]++;
1715 }
1716 return 0;
1717 }
1718
1719 /* At this point we know that SREG and UREG are both pseudos.
1720 Do nothing if SREG already has a quantity or is a register that we
1721 don't allocate. */
1722 if (reg_qty[sreg] >= -1
1723 /* If we are not going to let any regs live across calls,
1724 don't tie a call-crossing reg to a non-call-crossing reg. */
1725 || (current_function_has_nonlocal_label
1726 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1727 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1728 return 0;
1729
1730 /* We don't already know about SREG, so tie it to UREG
1731 if this is the last use of UREG, provided the classes they want
1732 are compatible. */
1733
1734 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1735 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1736 {
1737 /* Add SREG to UREG's quantity. */
1738 sqty = reg_qty[ureg];
1739 reg_qty[sreg] = sqty;
1740 reg_offset[sreg] = reg_offset[ureg] + offset;
1741 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1742 qty_first_reg[sqty] = sreg;
1743
1744 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1745 update_qty_class (sqty, sreg);
1746
1747 /* Update info about quantity SQTY. */
1748 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1749 qty_n_refs[sqty] += REG_N_REFS (sreg);
1750 if (usize < ssize)
1751 {
1752 register int i;
1753
1754 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1755 reg_offset[i] -= offset;
1756
1757 qty_size[sqty] = ssize;
1758 qty_mode[sqty] = GET_MODE (setreg);
1759 }
1760 }
1761 else
1762 return 0;
1763
1764 return 1;
1765 }
1766 \f
1767 /* Return 1 if the preferred class of REG allows it to be tied
1768 to a quantity or register whose class is CLASS.
1769 True if REG's reg class either contains or is contained in CLASS. */
1770
1771 static int
1772 reg_meets_class_p (reg, class)
1773 int reg;
1774 enum reg_class class;
1775 {
1776 register enum reg_class rclass = reg_preferred_class (reg);
1777 return (reg_class_subset_p (rclass, class)
1778 || reg_class_subset_p (class, rclass));
1779 }
1780
1781 /* Update the class of QTY assuming that REG is being tied to it. */
1782
1783 static void
1784 update_qty_class (qty, reg)
1785 int qty;
1786 int reg;
1787 {
1788 enum reg_class rclass = reg_preferred_class (reg);
1789 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1790 qty_min_class[qty] = rclass;
1791
1792 rclass = reg_alternate_class (reg);
1793 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1794 qty_alternate_class[qty] = rclass;
1795
1796 if (REG_CHANGES_SIZE (reg))
1797 qty_changes_size[qty] = 1;
1798 }
1799 \f
1800 /* Handle something which alters the value of an rtx REG.
1801
1802 REG is whatever is set or clobbered. SETTER is the rtx that
1803 is modifying the register.
1804
1805 If it is not really a register, we do nothing.
1806 The file-global variables `this_insn' and `this_insn_number'
1807 carry info from `block_alloc'. */
1808
1809 static void
1810 reg_is_set (reg, setter)
1811 rtx reg;
1812 rtx setter;
1813 {
1814 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1815 a hard register. These may actually not exist any more. */
1816
1817 if (GET_CODE (reg) != SUBREG
1818 && GET_CODE (reg) != REG)
1819 return;
1820
1821 /* Mark this register as being born. If it is used in a CLOBBER, mark
1822 it as being born halfway between the previous insn and this insn so that
1823 it conflicts with our inputs but not the outputs of the previous insn. */
1824
1825 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1826 }
1827 \f
1828 /* Handle beginning of the life of register REG.
1829 BIRTH is the index at which this is happening. */
1830
1831 static void
1832 reg_is_born (reg, birth)
1833 rtx reg;
1834 int birth;
1835 {
1836 register int regno;
1837
1838 if (GET_CODE (reg) == SUBREG)
1839 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1840 else
1841 regno = REGNO (reg);
1842
1843 if (regno < FIRST_PSEUDO_REGISTER)
1844 {
1845 mark_life (regno, GET_MODE (reg), 1);
1846
1847 /* If the register was to have been born earlier that the present
1848 insn, mark it as live where it is actually born. */
1849 if (birth < 2 * this_insn_number)
1850 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1851 }
1852 else
1853 {
1854 if (reg_qty[regno] == -2)
1855 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1856
1857 /* If this register has a quantity number, show that it isn't dead. */
1858 if (reg_qty[regno] >= 0)
1859 qty_death[reg_qty[regno]] = -1;
1860 }
1861 }
1862
1863 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1864 REG is an output that is dying (i.e., it is never used), otherwise it
1865 is an input (the normal case).
1866 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1867
1868 static void
1869 wipe_dead_reg (reg, output_p)
1870 register rtx reg;
1871 int output_p;
1872 {
1873 register int regno = REGNO (reg);
1874
1875 /* If this insn has multiple results,
1876 and the dead reg is used in one of the results,
1877 extend its life to after this insn,
1878 so it won't get allocated together with any other result of this insn. */
1879 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1880 && !single_set (this_insn))
1881 {
1882 int i;
1883 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1884 {
1885 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1886 if (GET_CODE (set) == SET
1887 && GET_CODE (SET_DEST (set)) != REG
1888 && !rtx_equal_p (reg, SET_DEST (set))
1889 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1890 output_p = 1;
1891 }
1892 }
1893
1894 /* If this register is used in an auto-increment address, then extend its
1895 life to after this insn, so that it won't get allocated together with
1896 the result of this insn. */
1897 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1898 output_p = 1;
1899
1900 if (regno < FIRST_PSEUDO_REGISTER)
1901 {
1902 mark_life (regno, GET_MODE (reg), 0);
1903
1904 /* If a hard register is dying as an output, mark it as in use at
1905 the beginning of this insn (the above statement would cause this
1906 not to happen). */
1907 if (output_p)
1908 post_mark_life (regno, GET_MODE (reg), 1,
1909 2 * this_insn_number, 2 * this_insn_number+ 1);
1910 }
1911
1912 else if (reg_qty[regno] >= 0)
1913 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1914 }
1915 \f
1916 /* Find a block of SIZE words of hard regs in reg_class CLASS
1917 that can hold something of machine-mode MODE
1918 (but actually we test only the first of the block for holding MODE)
1919 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1920 and return the number of the first of them.
1921 Return -1 if such a block cannot be found.
1922 If QTY crosses calls, insist on a register preserved by calls,
1923 unless ACCEPT_CALL_CLOBBERED is nonzero.
1924
1925 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1926 register is available. If not, return -1. */
1927
1928 static int
1929 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1930 born_index, dead_index)
1931 enum reg_class class;
1932 enum machine_mode mode;
1933 int qty;
1934 int accept_call_clobbered;
1935 int just_try_suggested;
1936 int born_index, dead_index;
1937 {
1938 register int i, ins;
1939 #ifdef HARD_REG_SET
1940 register /* Declare it register if it's a scalar. */
1941 #endif
1942 HARD_REG_SET used, first_used;
1943 #ifdef ELIMINABLE_REGS
1944 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1945 #endif
1946
1947 /* Validate our parameters. */
1948 if (born_index < 0 || born_index > dead_index)
1949 abort ();
1950
1951 /* Don't let a pseudo live in a reg across a function call
1952 if we might get a nonlocal goto. */
1953 if (current_function_has_nonlocal_label
1954 && qty_n_calls_crossed[qty] > 0)
1955 return -1;
1956
1957 if (accept_call_clobbered)
1958 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1959 else if (qty_n_calls_crossed[qty] == 0)
1960 COPY_HARD_REG_SET (used, fixed_reg_set);
1961 else
1962 COPY_HARD_REG_SET (used, call_used_reg_set);
1963
1964 if (accept_call_clobbered)
1965 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1966
1967 for (ins = born_index; ins < dead_index; ins++)
1968 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1969
1970 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1971
1972 /* Don't use the frame pointer reg in local-alloc even if
1973 we may omit the frame pointer, because if we do that and then we
1974 need a frame pointer, reload won't know how to move the pseudo
1975 to another hard reg. It can move only regs made by global-alloc.
1976
1977 This is true of any register that can be eliminated. */
1978 #ifdef ELIMINABLE_REGS
1979 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1980 SET_HARD_REG_BIT (used, eliminables[i].from);
1981 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1982 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1983 that it might be eliminated into. */
1984 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1985 #endif
1986 #else
1987 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1988 #endif
1989
1990 #ifdef CLASS_CANNOT_CHANGE_SIZE
1991 if (qty_changes_size[qty])
1992 IOR_HARD_REG_SET (used,
1993 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1994 #endif
1995
1996 /* Normally, the registers that can be used for the first register in
1997 a multi-register quantity are the same as those that can be used for
1998 subsequent registers. However, if just trying suggested registers,
1999 restrict our consideration to them. If there are copy-suggested
2000 register, try them. Otherwise, try the arithmetic-suggested
2001 registers. */
2002 COPY_HARD_REG_SET (first_used, used);
2003
2004 if (just_try_suggested)
2005 {
2006 if (qty_phys_num_copy_sugg[qty] != 0)
2007 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2008 else
2009 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2010 }
2011
2012 /* If all registers are excluded, we can't do anything. */
2013 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2014
2015 /* If at least one would be suitable, test each hard reg. */
2016
2017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2018 {
2019 #ifdef REG_ALLOC_ORDER
2020 int regno = reg_alloc_order[i];
2021 #else
2022 int regno = i;
2023 #endif
2024 if (! TEST_HARD_REG_BIT (first_used, regno)
2025 && HARD_REGNO_MODE_OK (regno, mode)
2026 && (qty_n_calls_crossed[qty] == 0
2027 || accept_call_clobbered
2028 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2029 {
2030 register int j;
2031 register int size1 = HARD_REGNO_NREGS (regno, mode);
2032 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2033 if (j == size1)
2034 {
2035 /* Mark that this register is in use between its birth and death
2036 insns. */
2037 post_mark_life (regno, mode, 1, born_index, dead_index);
2038 return regno;
2039 }
2040 #ifndef REG_ALLOC_ORDER
2041 i += j; /* Skip starting points we know will lose */
2042 #endif
2043 }
2044 }
2045
2046 fail:
2047
2048 /* If we are just trying suggested register, we have just tried copy-
2049 suggested registers, and there are arithmetic-suggested registers,
2050 try them. */
2051
2052 /* If it would be profitable to allocate a call-clobbered register
2053 and save and restore it around calls, do that. */
2054 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2055 && qty_phys_num_sugg[qty] != 0)
2056 {
2057 /* Don't try the copy-suggested regs again. */
2058 qty_phys_num_copy_sugg[qty] = 0;
2059 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2060 born_index, dead_index);
2061 }
2062
2063 /* We need not check to see if the current function has nonlocal
2064 labels because we don't put any pseudos that are live over calls in
2065 registers in that case. */
2066
2067 if (! accept_call_clobbered
2068 && flag_caller_saves
2069 && ! just_try_suggested
2070 && qty_n_calls_crossed[qty] != 0
2071 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2072 {
2073 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2074 if (i >= 0)
2075 caller_save_needed = 1;
2076 return i;
2077 }
2078 return -1;
2079 }
2080 \f
2081 /* Mark that REGNO with machine-mode MODE is live starting from the current
2082 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2083 is zero). */
2084
2085 static void
2086 mark_life (regno, mode, life)
2087 register int regno;
2088 enum machine_mode mode;
2089 int life;
2090 {
2091 register int j = HARD_REGNO_NREGS (regno, mode);
2092 if (life)
2093 while (--j >= 0)
2094 SET_HARD_REG_BIT (regs_live, regno + j);
2095 else
2096 while (--j >= 0)
2097 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2098 }
2099
2100 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2101 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2102 to insn number DEATH (exclusive). */
2103
2104 static void
2105 post_mark_life (regno, mode, life, birth, death)
2106 int regno;
2107 enum machine_mode mode;
2108 int life, birth, death;
2109 {
2110 register int j = HARD_REGNO_NREGS (regno, mode);
2111 #ifdef HARD_REG_SET
2112 register /* Declare it register if it's a scalar. */
2113 #endif
2114 HARD_REG_SET this_reg;
2115
2116 CLEAR_HARD_REG_SET (this_reg);
2117 while (--j >= 0)
2118 SET_HARD_REG_BIT (this_reg, regno + j);
2119
2120 if (life)
2121 while (birth < death)
2122 {
2123 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2124 birth++;
2125 }
2126 else
2127 while (birth < death)
2128 {
2129 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2130 birth++;
2131 }
2132 }
2133 \f
2134 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2135 is the register being clobbered, and R1 is a register being used in
2136 the equivalent expression.
2137
2138 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2139 in which it is used, return 1.
2140
2141 Otherwise, return 0. */
2142
2143 static int
2144 no_conflict_p (insn, r0, r1)
2145 rtx insn, r0, r1;
2146 {
2147 int ok = 0;
2148 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2149 rtx p, last;
2150
2151 /* If R1 is a hard register, return 0 since we handle this case
2152 when we scan the insns that actually use it. */
2153
2154 if (note == 0
2155 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2156 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2157 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2158 return 0;
2159
2160 last = XEXP (note, 0);
2161
2162 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2163 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2164 {
2165 if (find_reg_note (p, REG_DEAD, r1))
2166 ok = 1;
2167
2168 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2169 some earlier optimization pass has inserted instructions into
2170 the sequence, and it is not safe to perform this optimization.
2171 Note that emit_no_conflict_block always ensures that this is
2172 true when these sequences are created. */
2173 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2174 return 0;
2175 }
2176
2177 return ok;
2178 }
2179 \f
2180 #ifdef REGISTER_CONSTRAINTS
2181
2182 /* Return the number of alternatives for which the constraint string P
2183 indicates that the operand must be equal to operand 0 and that no register
2184 is acceptable. */
2185
2186 static int
2187 requires_inout (p)
2188 char *p;
2189 {
2190 char c;
2191 int found_zero = 0;
2192 int reg_allowed = 0;
2193 int num_matching_alts = 0;
2194
2195 while ((c = *p++))
2196 switch (c)
2197 {
2198 case '=': case '+': case '?':
2199 case '#': case '&': case '!':
2200 case '*': case '%':
2201 case '1': case '2': case '3': case '4':
2202 case 'm': case '<': case '>': case 'V': case 'o':
2203 case 'E': case 'F': case 'G': case 'H':
2204 case 's': case 'i': case 'n':
2205 case 'I': case 'J': case 'K': case 'L':
2206 case 'M': case 'N': case 'O': case 'P':
2207 #ifdef EXTRA_CONSTRAINT
2208 case 'Q': case 'R': case 'S': case 'T': case 'U':
2209 #endif
2210 case 'X':
2211 /* These don't say anything we care about. */
2212 break;
2213
2214 case ',':
2215 if (found_zero && ! reg_allowed)
2216 num_matching_alts++;
2217
2218 found_zero = reg_allowed = 0;
2219 break;
2220
2221 case '0':
2222 found_zero = 1;
2223 break;
2224
2225 case 'p':
2226 case 'g': case 'r':
2227 default:
2228 reg_allowed = 1;
2229 break;
2230 }
2231
2232 if (found_zero && ! reg_allowed)
2233 num_matching_alts++;
2234
2235 return num_matching_alts;
2236 }
2237 #endif /* REGISTER_CONSTRAINTS */
2238 \f
2239 void
2240 dump_local_alloc (file)
2241 FILE *file;
2242 {
2243 register int i;
2244 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2245 if (reg_renumber[i] != -1)
2246 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2247 }