(qty_compare_1, qty_sugg_compare_1): Use `const void *' arguments.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93, 94, 95, 1996 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here cannot be reallocated by global.c if the hard
59 register is used as a spill register. So we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include <stdio.h>
63 #include "config.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "recog.h"
71 #include "output.h"
72 \f
73 /* Next quantity number available for allocation. */
74
75 static int next_qty;
76
77 /* In all the following vectors indexed by quantity number. */
78
79 /* Element Q is the hard reg number chosen for quantity Q,
80 or -1 if none was found. */
81
82 static short *qty_phys_reg;
83
84 /* We maintain two hard register sets that indicate suggested hard registers
85 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
86 that are tied to the quantity by a simple copy. The second contains all
87 hard registers that are tied to the quantity via an arithmetic operation.
88
89 The former register set is given priority for allocation. This tends to
90 eliminate copy insns. */
91
92 /* Element Q is a set of hard registers that are suggested for quantity Q by
93 copy insns. */
94
95 static HARD_REG_SET *qty_phys_copy_sugg;
96
97 /* Element Q is a set of hard registers that are suggested for quantity Q by
98 arithmetic insns. */
99
100 static HARD_REG_SET *qty_phys_sugg;
101
102 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
103
104 static short *qty_phys_num_copy_sugg;
105
106 /* Element Q is the number of suggested registers in qty_phys_sugg. */
107
108 static short *qty_phys_num_sugg;
109
110 /* Element Q is the number of refs to quantity Q. */
111
112 static int *qty_n_refs;
113
114 /* Element Q is a reg class contained in (smaller than) the
115 preferred classes of all the pseudo regs that are tied in quantity Q.
116 This is the preferred class for allocating that quantity. */
117
118 static enum reg_class *qty_min_class;
119
120 /* Insn number (counting from head of basic block)
121 where quantity Q was born. -1 if birth has not been recorded. */
122
123 static int *qty_birth;
124
125 /* Insn number (counting from head of basic block)
126 where quantity Q died. Due to the way tying is done,
127 and the fact that we consider in this pass only regs that die but once,
128 a quantity can die only once. Each quantity's life span
129 is a set of consecutive insns. -1 if death has not been recorded. */
130
131 static int *qty_death;
132
133 /* Number of words needed to hold the data in quantity Q.
134 This depends on its machine mode. It is used for these purposes:
135 1. It is used in computing the relative importances of qtys,
136 which determines the order in which we look for regs for them.
137 2. It is used in rules that prevent tying several registers of
138 different sizes in a way that is geometrically impossible
139 (see combine_regs). */
140
141 static int *qty_size;
142
143 /* This holds the mode of the registers that are tied to qty Q,
144 or VOIDmode if registers with differing modes are tied together. */
145
146 static enum machine_mode *qty_mode;
147
148 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
149
150 static int *qty_n_calls_crossed;
151
152 /* Register class within which we allocate qty Q if we can't get
153 its preferred class. */
154
155 static enum reg_class *qty_alternate_class;
156
157 /* Element Q is the SCRATCH expression for which this quantity is being
158 allocated or 0 if this quantity is allocating registers. */
159
160 static rtx *qty_scratch_rtx;
161
162 /* Element Q is nonzero if this quantity has been used in a SUBREG
163 that changes its size. */
164
165 static char *qty_changes_size;
166
167 /* Element Q is the register number of one pseudo register whose
168 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
169 register should be the head of the chain maintained in reg_next_in_qty. */
170
171 static int *qty_first_reg;
172
173 /* If (REG N) has been assigned a quantity number, is a register number
174 of another register assigned the same quantity number, or -1 for the
175 end of the chain. qty_first_reg point to the head of this chain. */
176
177 static int *reg_next_in_qty;
178
179 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
180 if it is >= 0,
181 of -1 if this register cannot be allocated by local-alloc,
182 or -2 if not known yet.
183
184 Note that if we see a use or death of pseudo register N with
185 reg_qty[N] == -2, register N must be local to the current block. If
186 it were used in more than one block, we would have reg_qty[N] == -1.
187 This relies on the fact that if reg_basic_block[N] is >= 0, register N
188 will not appear in any other block. We save a considerable number of
189 tests by exploiting this.
190
191 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
192 be referenced. */
193
194 static int *reg_qty;
195
196 /* The offset (in words) of register N within its quantity.
197 This can be nonzero if register N is SImode, and has been tied
198 to a subreg of a DImode register. */
199
200 static char *reg_offset;
201
202 /* Vector of substitutions of register numbers,
203 used to map pseudo regs into hardware regs.
204 This is set up as a result of register allocation.
205 Element N is the hard reg assigned to pseudo reg N,
206 or is -1 if no hard reg was assigned.
207 If N is a hard reg number, element N is N. */
208
209 short *reg_renumber;
210
211 /* Set of hard registers live at the current point in the scan
212 of the instructions in a basic block. */
213
214 static HARD_REG_SET regs_live;
215
216 /* Each set of hard registers indicates registers live at a particular
217 point in the basic block. For N even, regs_live_at[N] says which
218 hard registers are needed *after* insn N/2 (i.e., they may not
219 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
220
221 If an object is to conflict with the inputs of insn J but not the
222 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
223 if it is to conflict with the outputs of insn J but not the inputs of
224 insn J + 1, it is said to die at index J*2 + 1. */
225
226 static HARD_REG_SET *regs_live_at;
227
228 int *scratch_block;
229 rtx *scratch_list;
230 int scratch_list_length;
231 static int scratch_index;
232
233 /* Communicate local vars `insn_number' and `insn'
234 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
235 static int this_insn_number;
236 static rtx this_insn;
237
238 /* Used to communicate changes made by update_equiv_regs to
239 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
240 found or created, so that we can keep track of what memory accesses might
241 be created later, e.g. by reload. */
242
243 static rtx *reg_equiv_replacement;
244
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void alloc_qty_for_scratch PROTO((rtx, int, rtx, int, int));
247 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
248 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
249 static int memref_referenced_p PROTO((rtx, rtx));
250 static int memref_used_between_p PROTO((rtx, rtx, rtx));
251 static void optimize_reg_copy_1 PROTO((rtx, rtx, rtx));
252 static void optimize_reg_copy_2 PROTO((rtx, rtx, rtx));
253 static void update_equiv_regs PROTO((void));
254 static void block_alloc PROTO((int));
255 static int qty_sugg_compare PROTO((int, int));
256 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
257 static int qty_compare PROTO((int, int));
258 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
259 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
260 static int reg_meets_class_p PROTO((int, enum reg_class));
261 static int reg_classes_overlap_p PROTO((enum reg_class, enum reg_class,
262 int));
263 static void update_qty_class PROTO((int, int));
264 static void reg_is_set PROTO((rtx, rtx));
265 static void reg_is_born PROTO((rtx, int));
266 static void wipe_dead_reg PROTO((rtx, int));
267 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
268 int, int, int, int, int));
269 static void mark_life PROTO((int, enum machine_mode, int));
270 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
271 static int no_conflict_p PROTO((rtx, rtx, rtx));
272 static int requires_inout PROTO((char *));
273 \f
274 /* Allocate a new quantity (new within current basic block)
275 for register number REGNO which is born at index BIRTH
276 within the block. MODE and SIZE are info on reg REGNO. */
277
278 static void
279 alloc_qty (regno, mode, size, birth)
280 int regno;
281 enum machine_mode mode;
282 int size, birth;
283 {
284 register int qty = next_qty++;
285
286 reg_qty[regno] = qty;
287 reg_offset[regno] = 0;
288 reg_next_in_qty[regno] = -1;
289
290 qty_first_reg[qty] = regno;
291 qty_size[qty] = size;
292 qty_mode[qty] = mode;
293 qty_birth[qty] = birth;
294 qty_n_calls_crossed[qty] = reg_n_calls_crossed[regno];
295 qty_min_class[qty] = reg_preferred_class (regno);
296 qty_alternate_class[qty] = reg_alternate_class (regno);
297 qty_n_refs[qty] = reg_n_refs[regno];
298 qty_changes_size[qty] = reg_changes_size[regno];
299 }
300 \f
301 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
302 used as operand N in INSN. We assume here that the SCRATCH is used in
303 a CLOBBER. */
304
305 static void
306 alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
307 rtx scratch;
308 int n;
309 rtx insn;
310 int insn_code_num, insn_number;
311 {
312 register int qty;
313 enum reg_class class;
314 char *p, c;
315 int i;
316
317 #ifdef REGISTER_CONSTRAINTS
318 /* If we haven't yet computed which alternative will be used, do so now.
319 Then set P to the constraints for that alternative. */
320 if (which_alternative == -1)
321 if (! constrain_operands (insn_code_num, 0))
322 return;
323
324 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
325 *p && i < which_alternative; p++)
326 if (*p == ',')
327 i++;
328
329 /* Compute the class required for this SCRATCH. If we don't need a
330 register, the class will remain NO_REGS. If we guessed the alternative
331 number incorrectly, reload will fix things up for us. */
332
333 class = NO_REGS;
334 while ((c = *p++) != '\0' && c != ',')
335 switch (c)
336 {
337 case '=': case '+': case '?':
338 case '#': case '&': case '!':
339 case '*': case '%':
340 case '0': case '1': case '2': case '3': case '4':
341 case 'm': case '<': case '>': case 'V': case 'o':
342 case 'E': case 'F': case 'G': case 'H':
343 case 's': case 'i': case 'n':
344 case 'I': case 'J': case 'K': case 'L':
345 case 'M': case 'N': case 'O': case 'P':
346 #ifdef EXTRA_CONSTRAINT
347 case 'Q': case 'R': case 'S': case 'T': case 'U':
348 #endif
349 case 'p':
350 /* These don't say anything we care about. */
351 break;
352
353 case 'X':
354 /* We don't need to allocate this SCRATCH. */
355 return;
356
357 case 'g': case 'r':
358 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
359 break;
360
361 default:
362 class
363 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
364 break;
365 }
366
367 if (class == NO_REGS)
368 return;
369
370 #else /* REGISTER_CONSTRAINTS */
371
372 class = GENERAL_REGS;
373 #endif
374
375
376 qty = next_qty++;
377
378 qty_first_reg[qty] = -1;
379 qty_scratch_rtx[qty] = scratch;
380 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
381 qty_mode[qty] = GET_MODE (scratch);
382 qty_birth[qty] = 2 * insn_number - 1;
383 qty_death[qty] = 2 * insn_number + 1;
384 qty_n_calls_crossed[qty] = 0;
385 qty_min_class[qty] = class;
386 qty_alternate_class[qty] = NO_REGS;
387 qty_n_refs[qty] = 1;
388 qty_changes_size[qty] = 0;
389 }
390 \f
391 /* Main entry point of this file. */
392
393 void
394 local_alloc ()
395 {
396 register int b, i;
397 int max_qty;
398
399 /* Leaf functions and non-leaf functions have different needs.
400 If defined, let the machine say what kind of ordering we
401 should use. */
402 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
403 ORDER_REGS_FOR_LOCAL_ALLOC;
404 #endif
405
406 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
407 registers. */
408 update_equiv_regs ();
409
410 /* This sets the maximum number of quantities we can have. Quantity
411 numbers start at zero and we can have one for each pseudo plus the
412 number of SCRATCHes in the largest block, in the worst case. */
413 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
414
415 /* Allocate vectors of temporary data.
416 See the declarations of these variables, above,
417 for what they mean. */
418
419 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
420 Instead of allocating this much memory from now until the end of
421 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
422 reload will allocate them. */
423
424 scratch_list_length = max_qty;
425 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
426 bzero ((char *) scratch_list, scratch_list_length * sizeof (rtx));
427 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
428 bzero ((char *) scratch_block, scratch_list_length * sizeof (int));
429 scratch_index = 0;
430
431 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
432 qty_phys_copy_sugg
433 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
434 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
435 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
436 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
437 qty_birth = (int *) alloca (max_qty * sizeof (int));
438 qty_death = (int *) alloca (max_qty * sizeof (int));
439 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
440 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
441 qty_size = (int *) alloca (max_qty * sizeof (int));
442 qty_mode
443 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
444 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
445 qty_min_class
446 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
447 qty_alternate_class
448 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
449 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
450 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
451
452 reg_qty = (int *) alloca (max_regno * sizeof (int));
453 reg_offset = (char *) alloca (max_regno * sizeof (char));
454 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
455
456 reg_renumber = (short *) oballoc (max_regno * sizeof (short));
457 for (i = 0; i < max_regno; i++)
458 reg_renumber[i] = -1;
459
460 /* Determine which pseudo-registers can be allocated by local-alloc.
461 In general, these are the registers used only in a single block and
462 which only die once. However, if a register's preferred class has only
463 a few entries, don't allocate this register here unless it is preferred
464 or nothing since retry_global_alloc won't be able to move it to
465 GENERAL_REGS if a reload register of this class is needed.
466
467 We need not be concerned with which block actually uses the register
468 since we will never see it outside that block. */
469
470 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
471 {
472 if (reg_basic_block[i] >= 0 && reg_n_deaths[i] == 1
473 && (reg_alternate_class (i) == NO_REGS
474 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
475 reg_qty[i] = -2;
476 else
477 reg_qty[i] = -1;
478 }
479
480 /* Force loop below to initialize entire quantity array. */
481 next_qty = max_qty;
482
483 /* Allocate each block's local registers, block by block. */
484
485 for (b = 0; b < n_basic_blocks; b++)
486 {
487 /* NEXT_QTY indicates which elements of the `qty_...'
488 vectors might need to be initialized because they were used
489 for the previous block; it is set to the entire array before
490 block 0. Initialize those, with explicit loop if there are few,
491 else with bzero and bcopy. Do not initialize vectors that are
492 explicit set by `alloc_qty'. */
493
494 if (next_qty < 6)
495 {
496 for (i = 0; i < next_qty; i++)
497 {
498 qty_scratch_rtx[i] = 0;
499 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
500 qty_phys_num_copy_sugg[i] = 0;
501 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
502 qty_phys_num_sugg[i] = 0;
503 }
504 }
505 else
506 {
507 #define CLEAR(vector) \
508 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
509
510 CLEAR (qty_scratch_rtx);
511 CLEAR (qty_phys_copy_sugg);
512 CLEAR (qty_phys_num_copy_sugg);
513 CLEAR (qty_phys_sugg);
514 CLEAR (qty_phys_num_sugg);
515 }
516
517 next_qty = 0;
518
519 block_alloc (b);
520 #ifdef USE_C_ALLOCA
521 alloca (0);
522 #endif
523 }
524 }
525 \f
526 /* Depth of loops we are in while in update_equiv_regs. */
527 static int loop_depth;
528
529 /* Used for communication between the following two functions: contains
530 a MEM that we wish to ensure remains unchanged. */
531 static rtx equiv_mem;
532
533 /* Set nonzero if EQUIV_MEM is modified. */
534 static int equiv_mem_modified;
535
536 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
537 Called via note_stores. */
538
539 static void
540 validate_equiv_mem_from_store (dest, set)
541 rtx dest;
542 rtx set;
543 {
544 if ((GET_CODE (dest) == REG
545 && reg_overlap_mentioned_p (dest, equiv_mem))
546 || (GET_CODE (dest) == MEM
547 && true_dependence (dest, equiv_mem)))
548 equiv_mem_modified = 1;
549 }
550
551 /* Verify that no store between START and the death of REG invalidates
552 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
553 by storing into an overlapping memory location, or with a non-const
554 CALL_INSN.
555
556 Return 1 if MEMREF remains valid. */
557
558 static int
559 validate_equiv_mem (start, reg, memref)
560 rtx start;
561 rtx reg;
562 rtx memref;
563 {
564 rtx insn;
565 rtx note;
566
567 equiv_mem = memref;
568 equiv_mem_modified = 0;
569
570 /* If the memory reference has side effects or is volatile, it isn't a
571 valid equivalence. */
572 if (side_effects_p (memref))
573 return 0;
574
575 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
576 {
577 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
578 continue;
579
580 if (find_reg_note (insn, REG_DEAD, reg))
581 return 1;
582
583 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
584 && ! CONST_CALL_P (insn))
585 return 0;
586
587 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
588
589 /* If a register mentioned in MEMREF is modified via an
590 auto-increment, we lose the equivalence. Do the same if one
591 dies; although we could extend the life, it doesn't seem worth
592 the trouble. */
593
594 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
595 if ((REG_NOTE_KIND (note) == REG_INC
596 || REG_NOTE_KIND (note) == REG_DEAD)
597 && GET_CODE (XEXP (note, 0)) == REG
598 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
599 return 0;
600 }
601
602 return 0;
603 }
604 \f
605 /* TRUE if X references a memory location that would be affected by a store
606 to MEMREF. */
607
608 static int
609 memref_referenced_p (memref, x)
610 rtx x;
611 rtx memref;
612 {
613 int i, j;
614 char *fmt;
615 enum rtx_code code = GET_CODE (x);
616
617 switch (code)
618 {
619 case CONST_INT:
620 case CONST:
621 case LABEL_REF:
622 case SYMBOL_REF:
623 case CONST_DOUBLE:
624 case PC:
625 case CC0:
626 case HIGH:
627 case LO_SUM:
628 return 0;
629
630 case REG:
631 return (reg_equiv_replacement[REGNO (x)]
632 && memref_referenced_p (memref,
633 reg_equiv_replacement[REGNO (x)]));
634
635 case MEM:
636 if (true_dependence (memref, x))
637 return 1;
638 break;
639
640 case SET:
641 /* If we are setting a MEM, it doesn't count (its address does), but any
642 other SET_DEST that has a MEM in it is referencing the MEM. */
643 if (GET_CODE (SET_DEST (x)) == MEM)
644 {
645 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
646 return 1;
647 }
648 else if (memref_referenced_p (memref, SET_DEST (x)))
649 return 1;
650
651 return memref_referenced_p (memref, SET_SRC (x));
652 }
653
654 fmt = GET_RTX_FORMAT (code);
655 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
656 switch (fmt[i])
657 {
658 case 'e':
659 if (memref_referenced_p (memref, XEXP (x, i)))
660 return 1;
661 break;
662 case 'E':
663 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
664 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
665 return 1;
666 break;
667 }
668
669 return 0;
670 }
671
672 /* TRUE if some insn in the range (START, END] references a memory location
673 that would be affected by a store to MEMREF. */
674
675 static int
676 memref_used_between_p (memref, start, end)
677 rtx memref;
678 rtx start;
679 rtx end;
680 {
681 rtx insn;
682
683 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
684 insn = NEXT_INSN (insn))
685 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
686 && memref_referenced_p (memref, PATTERN (insn)))
687 return 1;
688
689 return 0;
690 }
691 \f
692 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
693 in INSN.
694
695 Search forward to see if SRC dies before either it or DEST is modified,
696 but don't scan past the end of a basic block. If so, we can replace SRC
697 with DEST and let SRC die in INSN.
698
699 This will reduce the number of registers live in that range and may enable
700 DEST to be tied to SRC, thus often saving one register in addition to a
701 register-register copy. */
702
703 static void
704 optimize_reg_copy_1 (insn, dest, src)
705 rtx insn;
706 rtx dest;
707 rtx src;
708 {
709 rtx p, q;
710 rtx note;
711 rtx dest_death = 0;
712 int sregno = REGNO (src);
713 int dregno = REGNO (dest);
714
715 if (sregno == dregno
716 #ifdef SMALL_REGISTER_CLASSES
717 /* We don't want to mess with hard regs if register classes are small. */
718 || sregno < FIRST_PSEUDO_REGISTER || dregno < FIRST_PSEUDO_REGISTER
719 #endif
720 /* We don't see all updates to SP if they are in an auto-inc memory
721 reference, so we must disallow this optimization on them. */
722 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
723 return;
724
725 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
726 {
727 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
728 || (GET_CODE (p) == NOTE
729 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
730 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
731 break;
732
733 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
734 continue;
735
736 if (reg_set_p (src, p) || reg_set_p (dest, p)
737 /* Don't change a USE of a register. */
738 || (GET_CODE (PATTERN (p)) == USE
739 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
740 break;
741
742 /* See if all of SRC dies in P. This test is slightly more
743 conservative than it needs to be. */
744 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
745 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
746 {
747 int failed = 0;
748 int length = 0;
749 int d_length = 0;
750 int n_calls = 0;
751 int d_n_calls = 0;
752
753 /* We can do the optimization. Scan forward from INSN again,
754 replacing regs as we go. Set FAILED if a replacement can't
755 be done. In that case, we can't move the death note for SRC.
756 This should be rare. */
757
758 /* Set to stop at next insn. */
759 for (q = next_real_insn (insn);
760 q != next_real_insn (p);
761 q = next_real_insn (q))
762 {
763 if (reg_overlap_mentioned_p (src, PATTERN (q)))
764 {
765 /* If SRC is a hard register, we might miss some
766 overlapping registers with validate_replace_rtx,
767 so we would have to undo it. We can't if DEST is
768 present in the insn, so fail in that combination
769 of cases. */
770 if (sregno < FIRST_PSEUDO_REGISTER
771 && reg_mentioned_p (dest, PATTERN (q)))
772 failed = 1;
773
774 /* Replace all uses and make sure that the register
775 isn't still present. */
776 else if (validate_replace_rtx (src, dest, q)
777 && (sregno >= FIRST_PSEUDO_REGISTER
778 || ! reg_overlap_mentioned_p (src,
779 PATTERN (q))))
780 {
781 /* We assume that a register is used exactly once per
782 insn in the updates below. If this is not correct,
783 no great harm is done. */
784 if (sregno >= FIRST_PSEUDO_REGISTER)
785 reg_n_refs[sregno] -= loop_depth;
786 if (dregno >= FIRST_PSEUDO_REGISTER)
787 reg_n_refs[dregno] += loop_depth;
788 }
789 else
790 {
791 validate_replace_rtx (dest, src, q);
792 failed = 1;
793 }
794 }
795
796 /* Count the insns and CALL_INSNs passed. If we passed the
797 death note of DEST, show increased live length. */
798 length++;
799 if (dest_death)
800 d_length++;
801
802 /* If the insn in which SRC dies is a CALL_INSN, don't count it
803 as a call that has been crossed. Otherwise, count it. */
804 if (q != p && GET_CODE (q) == CALL_INSN)
805 {
806 n_calls++;
807 if (dest_death)
808 d_n_calls++;
809 }
810
811 /* If DEST dies here, remove the death note and save it for
812 later. Make sure ALL of DEST dies here; again, this is
813 overly conservative. */
814 if (dest_death == 0
815 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
816 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
817 remove_note (q, dest_death);
818 }
819
820 if (! failed)
821 {
822 if (sregno >= FIRST_PSEUDO_REGISTER)
823 {
824 if (reg_live_length[sregno] >= 0)
825 {
826 reg_live_length[sregno] -= length;
827 /* reg_live_length is only an approximation after
828 combine if sched is not run, so make sure that we
829 still have a reasonable value. */
830 if (reg_live_length[sregno] < 2)
831 reg_live_length[sregno] = 2;
832 }
833
834 reg_n_calls_crossed[sregno] -= n_calls;
835 }
836
837 if (dregno >= FIRST_PSEUDO_REGISTER)
838 {
839 if (reg_live_length[dregno] >= 0)
840 reg_live_length[dregno] += d_length;
841
842 reg_n_calls_crossed[dregno] += d_n_calls;
843 }
844
845 /* Move death note of SRC from P to INSN. */
846 remove_note (p, note);
847 XEXP (note, 1) = REG_NOTES (insn);
848 REG_NOTES (insn) = note;
849 }
850
851 /* Put death note of DEST on P if we saw it die. */
852 if (dest_death)
853 {
854 XEXP (dest_death, 1) = REG_NOTES (p);
855 REG_NOTES (p) = dest_death;
856 }
857
858 return;
859 }
860
861 /* If SRC is a hard register which is set or killed in some other
862 way, we can't do this optimization. */
863 else if (sregno < FIRST_PSEUDO_REGISTER
864 && dead_or_set_p (p, src))
865 break;
866 }
867 }
868 \f
869 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
870 a sequence of insns that modify DEST followed by an insn that sets
871 SRC to DEST in which DEST dies, with no prior modification of DEST.
872 (There is no need to check if the insns in between actually modify
873 DEST. We should not have cases where DEST is not modified, but
874 the optimization is safe if no such modification is detected.)
875 In that case, we can replace all uses of DEST, starting with INSN and
876 ending with the set of SRC to DEST, with SRC. We do not do this
877 optimization if a CALL_INSN is crossed unless SRC already crosses a
878 call or if DEST dies before the copy back to SRC.
879
880 It is assumed that DEST and SRC are pseudos; it is too complicated to do
881 this for hard registers since the substitutions we may make might fail. */
882
883 static void
884 optimize_reg_copy_2 (insn, dest, src)
885 rtx insn;
886 rtx dest;
887 rtx src;
888 {
889 rtx p, q;
890 rtx set;
891 int sregno = REGNO (src);
892 int dregno = REGNO (dest);
893
894 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
895 {
896 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
897 || (GET_CODE (p) == NOTE
898 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
899 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
900 break;
901
902 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
903 continue;
904
905 set = single_set (p);
906 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
907 && find_reg_note (p, REG_DEAD, dest))
908 {
909 /* We can do the optimization. Scan forward from INSN again,
910 replacing regs as we go. */
911
912 /* Set to stop at next insn. */
913 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
914 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
915 {
916 if (reg_mentioned_p (dest, PATTERN (q)))
917 {
918 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
919
920 /* We assume that a register is used exactly once per
921 insn in the updates below. If this is not correct,
922 no great harm is done. */
923 reg_n_refs[dregno] -= loop_depth;
924 reg_n_refs[sregno] += loop_depth;
925 }
926
927
928 if (GET_CODE (q) == CALL_INSN)
929 {
930 reg_n_calls_crossed[dregno]--;
931 reg_n_calls_crossed[sregno]++;
932 }
933 }
934
935 remove_note (p, find_reg_note (p, REG_DEAD, dest));
936 reg_n_deaths[dregno]--;
937 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
938 reg_n_deaths[sregno]--;
939 return;
940 }
941
942 if (reg_set_p (src, p)
943 || find_reg_note (p, REG_DEAD, dest)
944 || (GET_CODE (p) == CALL_INSN && reg_n_calls_crossed[sregno] == 0))
945 break;
946 }
947 }
948 \f
949 /* Find registers that are equivalent to a single value throughout the
950 compilation (either because they can be referenced in memory or are set once
951 from a single constant). Lower their priority for a register.
952
953 If such a register is only referenced once, try substituting its value
954 into the using insn. If it succeeds, we can eliminate the register
955 completely. */
956
957 static void
958 update_equiv_regs ()
959 {
960 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
961 /* Set when an attempt should be made to replace a register with the
962 associated reg_equiv_replacement entry at the end of this function. */
963 char *reg_equiv_replace
964 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
965 rtx insn;
966
967 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
968
969 bzero ((char *) reg_equiv_init_insn, max_regno * sizeof (rtx *));
970 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx *));
971 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
972
973 init_alias_analysis ();
974
975 loop_depth = 1;
976
977 /* Scan the insns and find which registers have equivalences. Do this
978 in a separate scan of the insns because (due to -fcse-follow-jumps)
979 a register can be set below its use. */
980 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
981 {
982 rtx note;
983 rtx set = single_set (insn);
984 rtx dest, src;
985 int regno;
986
987 if (GET_CODE (insn) == NOTE)
988 {
989 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
990 loop_depth++;
991 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
992 loop_depth--;
993 }
994
995 /* If this insn contains more (or less) than a single SET, ignore it. */
996 if (set == 0)
997 continue;
998
999 dest = SET_DEST (set);
1000 src = SET_SRC (set);
1001
1002 /* If this sets a MEM to the contents of a REG that is only used
1003 in a single basic block, see if the register is always equivalent
1004 to that memory location and if moving the store from INSN to the
1005 insn that set REG is safe. If so, put a REG_EQUIV note on the
1006 initializing insn. */
1007
1008 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
1009 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
1010 && reg_basic_block[regno] >= 0
1011 && reg_equiv_init_insn[regno] != 0
1012 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
1013 dest)
1014 && ! memref_used_between_p (SET_DEST (set),
1015 reg_equiv_init_insn[regno], insn))
1016 REG_NOTES (reg_equiv_init_insn[regno])
1017 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
1018 REG_NOTES (reg_equiv_init_insn[regno]));
1019
1020 /* If this is a register-register copy where SRC is not dead, see if we
1021 can optimize it. */
1022 if (flag_expensive_optimizations && GET_CODE (dest) == REG
1023 && GET_CODE (SET_SRC (set)) == REG
1024 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1025 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
1026
1027 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1028 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
1029 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
1030 && GET_CODE (SET_SRC (set)) == REG
1031 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
1032 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1033 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
1034
1035 /* Otherwise, we only handle the case of a pseudo register being set
1036 once and only if neither the source nor the destination are
1037 in a register class that's likely to be spilled. */
1038 if (GET_CODE (dest) != REG
1039 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1040 || reg_n_sets[regno] != 1
1041 || CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (dest)))
1042 || (GET_CODE (src) == REG
1043 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1044 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src)))))
1045 continue;
1046
1047 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1048
1049 /* Record this insn as initializing this register. */
1050 reg_equiv_init_insn[regno] = insn;
1051
1052 /* If this register is known to be equal to a constant, record that
1053 it is always equivalent to the constant. */
1054 if (note && CONSTANT_P (XEXP (note, 0)))
1055 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1056
1057 /* If this insn introduces a "constant" register, decrease the priority
1058 of that register. Record this insn if the register is only used once
1059 more and the equivalence value is the same as our source.
1060
1061 The latter condition is checked for two reasons: First, it is an
1062 indication that it may be more efficient to actually emit the insn
1063 as written (if no registers are available, reload will substitute
1064 the equivalence). Secondly, it avoids problems with any registers
1065 dying in this insn whose death notes would be missed.
1066
1067 If we don't have a REG_EQUIV note, see if this insn is loading
1068 a register used only in one basic block from a MEM. If so, and the
1069 MEM remains unchanged for the life of the register, add a REG_EQUIV
1070 note. */
1071
1072 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1073
1074 if (note == 0 && reg_basic_block[regno] >= 0
1075 && GET_CODE (SET_SRC (set)) == MEM
1076 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1077 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1078 REG_NOTES (insn));
1079
1080 if (note)
1081 {
1082 int regno = REGNO (dest);
1083
1084 reg_equiv_replacement[regno] = XEXP (note, 0);
1085
1086 /* Don't mess with things live during setjmp. */
1087 if (reg_live_length[regno] >= 0)
1088 {
1089 /* Note that the statement below does not affect the priority
1090 in local-alloc! */
1091 reg_live_length[regno] *= 2;
1092
1093
1094 /* If the register is referenced exactly twice, meaning it is
1095 set once and used once, indicate that the reference may be
1096 replaced by the equivalence we computed above. If the
1097 register is only used in one basic block, this can't succeed
1098 or combine would have done it.
1099
1100 It would be nice to use "loop_depth * 2" in the compare
1101 below. Unfortunately, LOOP_DEPTH need not be constant within
1102 a basic block so this would be too complicated.
1103
1104 This case normally occurs when a parameter is read from
1105 memory and then used exactly once, not in a loop. */
1106
1107 if (reg_n_refs[regno] == 2
1108 && reg_basic_block[regno] < 0
1109 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1110 reg_equiv_replace[regno] = 1;
1111 }
1112 }
1113 }
1114
1115 /* Now scan all regs killed in an insn to see if any of them are registers
1116 only used that once. If so, see if we can replace the reference with
1117 the equivalent from. If we can, delete the initializing reference
1118 and this register will go away. */
1119 for (insn = next_active_insn (get_insns ());
1120 insn;
1121 insn = next_active_insn (insn))
1122 {
1123 rtx link;
1124
1125 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1126 if (REG_NOTE_KIND (link) == REG_DEAD
1127 /* Make sure this insn still refers to the register. */
1128 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1129 {
1130 int regno = REGNO (XEXP (link, 0));
1131
1132 if (reg_equiv_replace[regno]
1133 && validate_replace_rtx (regno_reg_rtx[regno],
1134 reg_equiv_replacement[regno], insn))
1135 {
1136 rtx equiv_insn = reg_equiv_init_insn[regno];
1137
1138 remove_death (regno, insn);
1139 reg_n_refs[regno] = 0;
1140 PUT_CODE (equiv_insn, NOTE);
1141 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1142 NOTE_SOURCE_FILE (equiv_insn) = 0;
1143 }
1144 }
1145 }
1146 }
1147 \f
1148 /* Allocate hard regs to the pseudo regs used only within block number B.
1149 Only the pseudos that die but once can be handled. */
1150
1151 static void
1152 block_alloc (b)
1153 int b;
1154 {
1155 register int i, q;
1156 register rtx insn;
1157 rtx note;
1158 int insn_number = 0;
1159 int insn_count = 0;
1160 int max_uid = get_max_uid ();
1161 int *qty_order;
1162 int no_conflict_combined_regno = -1;
1163 /* Counter to prevent allocating more SCRATCHes than can be stored
1164 in SCRATCH_LIST. */
1165 int scratches_allocated = scratch_index;
1166
1167 /* Count the instructions in the basic block. */
1168
1169 insn = basic_block_end[b];
1170 while (1)
1171 {
1172 if (GET_CODE (insn) != NOTE)
1173 if (++insn_count > max_uid)
1174 abort ();
1175 if (insn == basic_block_head[b])
1176 break;
1177 insn = PREV_INSN (insn);
1178 }
1179
1180 /* +2 to leave room for a post_mark_life at the last insn and for
1181 the birth of a CLOBBER in the first insn. */
1182 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1183 * sizeof (HARD_REG_SET));
1184 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1185
1186 /* Initialize table of hardware registers currently live. */
1187
1188 #ifdef HARD_REG_SET
1189 regs_live = *basic_block_live_at_start[b];
1190 #else
1191 COPY_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1192 #endif
1193
1194 /* This loop scans the instructions of the basic block
1195 and assigns quantities to registers.
1196 It computes which registers to tie. */
1197
1198 insn = basic_block_head[b];
1199 while (1)
1200 {
1201 register rtx body = PATTERN (insn);
1202
1203 if (GET_CODE (insn) != NOTE)
1204 insn_number++;
1205
1206 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1207 {
1208 register rtx link, set;
1209 register int win = 0;
1210 register rtx r0, r1;
1211 int combined_regno = -1;
1212 int i;
1213 int insn_code_number = recog_memoized (insn);
1214
1215 this_insn_number = insn_number;
1216 this_insn = insn;
1217
1218 if (insn_code_number >= 0)
1219 insn_extract (insn);
1220 which_alternative = -1;
1221
1222 /* Is this insn suitable for tying two registers?
1223 If so, try doing that.
1224 Suitable insns are those with at least two operands and where
1225 operand 0 is an output that is a register that is not
1226 earlyclobber.
1227
1228 We can tie operand 0 with some operand that dies in this insn.
1229 First look for operands that are required to be in the same
1230 register as operand 0. If we find such, only try tying that
1231 operand or one that can be put into that operand if the
1232 operation is commutative. If we don't find an operand
1233 that is required to be in the same register as operand 0,
1234 we can tie with any operand.
1235
1236 Subregs in place of regs are also ok.
1237
1238 If tying is done, WIN is set nonzero. */
1239
1240 if (insn_code_number >= 0
1241 #ifdef REGISTER_CONSTRAINTS
1242 && insn_n_operands[insn_code_number] > 1
1243 && insn_operand_constraint[insn_code_number][0][0] == '='
1244 && insn_operand_constraint[insn_code_number][0][1] != '&'
1245 #else
1246 && GET_CODE (PATTERN (insn)) == SET
1247 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1248 #endif
1249 )
1250 {
1251 #ifdef REGISTER_CONSTRAINTS
1252 /* If non-negative, is an operand that must match operand 0. */
1253 int must_match_0 = -1;
1254 /* Counts number of alternatives that require a match with
1255 operand 0. */
1256 int n_matching_alts = 0;
1257
1258 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1259 {
1260 char *p = insn_operand_constraint[insn_code_number][i];
1261 int this_match = (requires_inout (p));
1262
1263 n_matching_alts += this_match;
1264 if (this_match == insn_n_alternatives[insn_code_number])
1265 must_match_0 = i;
1266 }
1267 #endif
1268
1269 r0 = recog_operand[0];
1270 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1271 {
1272 #ifdef REGISTER_CONSTRAINTS
1273 /* Skip this operand if we found an operand that
1274 must match operand 0 and this operand isn't it
1275 and can't be made to be it by commutativity. */
1276
1277 if (must_match_0 >= 0 && i != must_match_0
1278 && ! (i == must_match_0 + 1
1279 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1280 && ! (i == must_match_0 - 1
1281 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1282 continue;
1283
1284 /* Likewise if each alternative has some operand that
1285 must match operand zero. In that case, skip any
1286 operand that doesn't list operand 0 since we know that
1287 the operand always conflicts with operand 0. We
1288 ignore commutatity in this case to keep things simple. */
1289 if (n_matching_alts == insn_n_alternatives[insn_code_number]
1290 && (0 == requires_inout
1291 (insn_operand_constraint[insn_code_number][i])))
1292 continue;
1293 #endif
1294
1295 r1 = recog_operand[i];
1296
1297 /* If the operand is an address, find a register in it.
1298 There may be more than one register, but we only try one
1299 of them. */
1300 if (
1301 #ifdef REGISTER_CONSTRAINTS
1302 insn_operand_constraint[insn_code_number][i][0] == 'p'
1303 #else
1304 insn_operand_address_p[insn_code_number][i]
1305 #endif
1306 )
1307 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1308 r1 = XEXP (r1, 0);
1309
1310 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1311 {
1312 /* We have two priorities for hard register preferences.
1313 If we have a move insn or an insn whose first input
1314 can only be in the same register as the output, give
1315 priority to an equivalence found from that insn. */
1316 int may_save_copy
1317 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1318 #ifdef REGISTER_CONSTRAINTS
1319 || (r1 == recog_operand[i] && must_match_0 >= 0)
1320 #endif
1321 );
1322
1323 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1324 win = combine_regs (r1, r0, may_save_copy,
1325 insn_number, insn, 0);
1326 }
1327 if (win)
1328 break;
1329 }
1330 }
1331
1332 /* Recognize an insn sequence with an ultimate result
1333 which can safely overlap one of the inputs.
1334 The sequence begins with a CLOBBER of its result,
1335 and ends with an insn that copies the result to itself
1336 and has a REG_EQUAL note for an equivalent formula.
1337 That note indicates what the inputs are.
1338 The result and the input can overlap if each insn in
1339 the sequence either doesn't mention the input
1340 or has a REG_NO_CONFLICT note to inhibit the conflict.
1341
1342 We do the combining test at the CLOBBER so that the
1343 destination register won't have had a quantity number
1344 assigned, since that would prevent combining. */
1345
1346 if (GET_CODE (PATTERN (insn)) == CLOBBER
1347 && (r0 = XEXP (PATTERN (insn), 0),
1348 GET_CODE (r0) == REG)
1349 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1350 && XEXP (link, 0) != 0
1351 && GET_CODE (XEXP (link, 0)) == INSN
1352 && (set = single_set (XEXP (link, 0))) != 0
1353 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1354 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1355 NULL_RTX)) != 0)
1356 {
1357 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1358 /* Check that we have such a sequence. */
1359 && no_conflict_p (insn, r0, r1))
1360 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1361 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1362 && (r1 = XEXP (XEXP (note, 0), 0),
1363 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1364 && no_conflict_p (insn, r0, r1))
1365 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1366
1367 /* Here we care if the operation to be computed is
1368 commutative. */
1369 else if ((GET_CODE (XEXP (note, 0)) == EQ
1370 || GET_CODE (XEXP (note, 0)) == NE
1371 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1372 && (r1 = XEXP (XEXP (note, 0), 1),
1373 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1374 && no_conflict_p (insn, r0, r1))
1375 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1376
1377 /* If we did combine something, show the register number
1378 in question so that we know to ignore its death. */
1379 if (win)
1380 no_conflict_combined_regno = REGNO (r1);
1381 }
1382
1383 /* If registers were just tied, set COMBINED_REGNO
1384 to the number of the register used in this insn
1385 that was tied to the register set in this insn.
1386 This register's qty should not be "killed". */
1387
1388 if (win)
1389 {
1390 while (GET_CODE (r1) == SUBREG)
1391 r1 = SUBREG_REG (r1);
1392 combined_regno = REGNO (r1);
1393 }
1394
1395 /* Mark the death of everything that dies in this instruction,
1396 except for anything that was just combined. */
1397
1398 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1399 if (REG_NOTE_KIND (link) == REG_DEAD
1400 && GET_CODE (XEXP (link, 0)) == REG
1401 && combined_regno != REGNO (XEXP (link, 0))
1402 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1403 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1404 wipe_dead_reg (XEXP (link, 0), 0);
1405
1406 /* Allocate qty numbers for all registers local to this block
1407 that are born (set) in this instruction.
1408 A pseudo that already has a qty is not changed. */
1409
1410 note_stores (PATTERN (insn), reg_is_set);
1411
1412 /* If anything is set in this insn and then unused, mark it as dying
1413 after this insn, so it will conflict with our outputs. This
1414 can't match with something that combined, and it doesn't matter
1415 if it did. Do this after the calls to reg_is_set since these
1416 die after, not during, the current insn. */
1417
1418 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1419 if (REG_NOTE_KIND (link) == REG_UNUSED
1420 && GET_CODE (XEXP (link, 0)) == REG)
1421 wipe_dead_reg (XEXP (link, 0), 1);
1422
1423 /* Allocate quantities for any SCRATCH operands of this insn. */
1424
1425 if (insn_code_number >= 0)
1426 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1427 if (GET_CODE (recog_operand[i]) == SCRATCH
1428 && scratches_allocated++ < scratch_list_length)
1429 alloc_qty_for_scratch (recog_operand[i], i, insn,
1430 insn_code_number, insn_number);
1431
1432 /* If this is an insn that has a REG_RETVAL note pointing at a
1433 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1434 block, so clear any register number that combined within it. */
1435 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1436 && GET_CODE (XEXP (note, 0)) == INSN
1437 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1438 no_conflict_combined_regno = -1;
1439 }
1440
1441 /* Set the registers live after INSN_NUMBER. Note that we never
1442 record the registers live before the block's first insn, since no
1443 pseudos we care about are live before that insn. */
1444
1445 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1446 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1447
1448 if (insn == basic_block_end[b])
1449 break;
1450
1451 insn = NEXT_INSN (insn);
1452 }
1453
1454 /* Now every register that is local to this basic block
1455 should have been given a quantity, or else -1 meaning ignore it.
1456 Every quantity should have a known birth and death.
1457
1458 Order the qtys so we assign them registers in order of the
1459 number of suggested registers they need so we allocate those with
1460 the most restrictive needs first. */
1461
1462 qty_order = (int *) alloca (next_qty * sizeof (int));
1463 for (i = 0; i < next_qty; i++)
1464 qty_order[i] = i;
1465
1466 #define EXCHANGE(I1, I2) \
1467 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1468
1469 switch (next_qty)
1470 {
1471 case 3:
1472 /* Make qty_order[2] be the one to allocate last. */
1473 if (qty_sugg_compare (0, 1) > 0)
1474 EXCHANGE (0, 1);
1475 if (qty_sugg_compare (1, 2) > 0)
1476 EXCHANGE (2, 1);
1477
1478 /* ... Fall through ... */
1479 case 2:
1480 /* Put the best one to allocate in qty_order[0]. */
1481 if (qty_sugg_compare (0, 1) > 0)
1482 EXCHANGE (0, 1);
1483
1484 /* ... Fall through ... */
1485
1486 case 1:
1487 case 0:
1488 /* Nothing to do here. */
1489 break;
1490
1491 default:
1492 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1493 }
1494
1495 /* Try to put each quantity in a suggested physical register, if it has one.
1496 This may cause registers to be allocated that otherwise wouldn't be, but
1497 this seems acceptable in local allocation (unlike global allocation). */
1498 for (i = 0; i < next_qty; i++)
1499 {
1500 q = qty_order[i];
1501 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1502 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1503 0, 1, qty_birth[q], qty_death[q]);
1504 else
1505 qty_phys_reg[q] = -1;
1506 }
1507
1508 /* Order the qtys so we assign them registers in order of
1509 decreasing length of life. Normally call qsort, but if we
1510 have only a very small number of quantities, sort them ourselves. */
1511
1512 for (i = 0; i < next_qty; i++)
1513 qty_order[i] = i;
1514
1515 #define EXCHANGE(I1, I2) \
1516 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1517
1518 switch (next_qty)
1519 {
1520 case 3:
1521 /* Make qty_order[2] be the one to allocate last. */
1522 if (qty_compare (0, 1) > 0)
1523 EXCHANGE (0, 1);
1524 if (qty_compare (1, 2) > 0)
1525 EXCHANGE (2, 1);
1526
1527 /* ... Fall through ... */
1528 case 2:
1529 /* Put the best one to allocate in qty_order[0]. */
1530 if (qty_compare (0, 1) > 0)
1531 EXCHANGE (0, 1);
1532
1533 /* ... Fall through ... */
1534
1535 case 1:
1536 case 0:
1537 /* Nothing to do here. */
1538 break;
1539
1540 default:
1541 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1542 }
1543
1544 /* Now for each qty that is not a hardware register,
1545 look for a hardware register to put it in.
1546 First try the register class that is cheapest for this qty,
1547 if there is more than one class. */
1548
1549 for (i = 0; i < next_qty; i++)
1550 {
1551 q = qty_order[i];
1552 if (qty_phys_reg[q] < 0)
1553 {
1554 if (N_REG_CLASSES > 1)
1555 {
1556 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1557 qty_mode[q], q, 0, 0,
1558 qty_birth[q], qty_death[q]);
1559 if (qty_phys_reg[q] >= 0)
1560 continue;
1561 }
1562
1563 if (qty_alternate_class[q] != NO_REGS)
1564 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1565 qty_mode[q], q, 0, 0,
1566 qty_birth[q], qty_death[q]);
1567 }
1568 }
1569
1570 /* Now propagate the register assignments
1571 to the pseudo regs belonging to the qtys. */
1572
1573 for (q = 0; q < next_qty; q++)
1574 if (qty_phys_reg[q] >= 0)
1575 {
1576 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1577 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1578 if (qty_scratch_rtx[q])
1579 {
1580 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1581 abort ();
1582 PUT_CODE (qty_scratch_rtx[q], REG);
1583 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1584
1585 scratch_block[scratch_index] = b;
1586 scratch_list[scratch_index++] = qty_scratch_rtx[q];
1587
1588 /* Must clear the USED field, because it will have been set by
1589 copy_rtx_if_shared, but the leaf_register code expects that
1590 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1591 used bit for REGs, but does for SCRATCHes. */
1592 qty_scratch_rtx[q]->used = 0;
1593 }
1594 }
1595 }
1596 \f
1597 /* Compare two quantities' priority for getting real registers.
1598 We give shorter-lived quantities higher priority.
1599 Quantities with more references are also preferred, as are quantities that
1600 require multiple registers. This is the identical prioritization as
1601 done by global-alloc.
1602
1603 We used to give preference to registers with *longer* lives, but using
1604 the same algorithm in both local- and global-alloc can speed up execution
1605 of some programs by as much as a factor of three! */
1606
1607 /* Note that the quotient will never be bigger than
1608 the value of floor_log2 times the maximum number of
1609 times a register can occur in one insn (surely less than 100).
1610 Multiplying this by 10000 can't overflow.
1611 QTY_CMP_PRI is also used by qty_sugg_compare. */
1612
1613 #define QTY_CMP_PRI(q) \
1614 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1615 / (qty_death[q] - qty_birth[q])) * 10000))
1616
1617 static int
1618 qty_compare (q1, q2)
1619 int q1, q2;
1620 {
1621 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1622 }
1623
1624 static int
1625 qty_compare_1 (q1p, q2p)
1626 const GENERIC_PTR q1p;
1627 const GENERIC_PTR q2p;
1628 {
1629 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1630 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1631
1632 if (tem != 0)
1633 return tem;
1634
1635 /* If qtys are equally good, sort by qty number,
1636 so that the results of qsort leave nothing to chance. */
1637 return q1 - q2;
1638 }
1639 \f
1640 /* Compare two quantities' priority for getting real registers. This version
1641 is called for quantities that have suggested hard registers. First priority
1642 goes to quantities that have copy preferences, then to those that have
1643 normal preferences. Within those groups, quantities with the lower
1644 number of preferences have the highest priority. Of those, we use the same
1645 algorithm as above. */
1646
1647 #define QTY_CMP_SUGG(q) \
1648 (qty_phys_num_copy_sugg[q] \
1649 ? qty_phys_num_copy_sugg[q] \
1650 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1651
1652 static int
1653 qty_sugg_compare (q1, q2)
1654 int q1, q2;
1655 {
1656 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1657
1658 if (tem != 0)
1659 return tem;
1660
1661 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1662 }
1663
1664 static int
1665 qty_sugg_compare_1 (q1p, q2p)
1666 const GENERIC_PTR q1p;
1667 const GENERIC_PTR q2p;
1668 {
1669 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1670 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1671
1672 if (tem != 0)
1673 return tem;
1674
1675 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1676 if (tem != 0)
1677 return tem;
1678
1679 /* If qtys are equally good, sort by qty number,
1680 so that the results of qsort leave nothing to chance. */
1681 return q1 - q2;
1682 }
1683
1684 #undef QTY_CMP_SUGG
1685 #undef QTY_CMP_PRI
1686 \f
1687 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1688 Returns 1 if have done so, or 0 if cannot.
1689
1690 Combining registers means marking them as having the same quantity
1691 and adjusting the offsets within the quantity if either of
1692 them is a SUBREG).
1693
1694 We don't actually combine a hard reg with a pseudo; instead
1695 we just record the hard reg as the suggestion for the pseudo's quantity.
1696 If we really combined them, we could lose if the pseudo lives
1697 across an insn that clobbers the hard reg (eg, movstr).
1698
1699 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1700 there is no REG_DEAD note on INSN. This occurs during the processing
1701 of REG_NO_CONFLICT blocks.
1702
1703 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1704 SETREG or if the input and output must share a register.
1705 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1706
1707 There are elaborate checks for the validity of combining. */
1708
1709
1710 static int
1711 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1712 rtx usedreg, setreg;
1713 int may_save_copy;
1714 int insn_number;
1715 rtx insn;
1716 int already_dead;
1717 {
1718 register int ureg, sreg;
1719 register int offset = 0;
1720 int usize, ssize;
1721 register int sqty;
1722
1723 /* Determine the numbers and sizes of registers being used. If a subreg
1724 is present that does not change the entire register, don't consider
1725 this a copy insn. */
1726
1727 while (GET_CODE (usedreg) == SUBREG)
1728 {
1729 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1730 may_save_copy = 0;
1731 offset += SUBREG_WORD (usedreg);
1732 usedreg = SUBREG_REG (usedreg);
1733 }
1734 if (GET_CODE (usedreg) != REG)
1735 return 0;
1736 ureg = REGNO (usedreg);
1737 usize = REG_SIZE (usedreg);
1738
1739 while (GET_CODE (setreg) == SUBREG)
1740 {
1741 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1742 may_save_copy = 0;
1743 offset -= SUBREG_WORD (setreg);
1744 setreg = SUBREG_REG (setreg);
1745 }
1746 if (GET_CODE (setreg) != REG)
1747 return 0;
1748 sreg = REGNO (setreg);
1749 ssize = REG_SIZE (setreg);
1750
1751 /* If UREG is a pseudo-register that hasn't already been assigned a
1752 quantity number, it means that it is not local to this block or dies
1753 more than once. In either event, we can't do anything with it. */
1754 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1755 /* Do not combine registers unless one fits within the other. */
1756 || (offset > 0 && usize + offset > ssize)
1757 || (offset < 0 && usize + offset < ssize)
1758 /* Do not combine with a smaller already-assigned object
1759 if that smaller object is already combined with something bigger. */
1760 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1761 && usize < qty_size[reg_qty[ureg]])
1762 /* Can't combine if SREG is not a register we can allocate. */
1763 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1764 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1765 These have already been taken care of. This probably wouldn't
1766 combine anyway, but don't take any chances. */
1767 || (ureg >= FIRST_PSEUDO_REGISTER
1768 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1769 /* Don't tie something to itself. In most cases it would make no
1770 difference, but it would screw up if the reg being tied to itself
1771 also dies in this insn. */
1772 || ureg == sreg
1773 /* Don't try to connect two different hardware registers. */
1774 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1775 /* Don't connect two different machine modes if they have different
1776 implications as to which registers may be used. */
1777 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1778 return 0;
1779
1780 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1781 qty_phys_sugg for the pseudo instead of tying them.
1782
1783 Return "failure" so that the lifespan of UREG is terminated here;
1784 that way the two lifespans will be disjoint and nothing will prevent
1785 the pseudo reg from being given this hard reg. */
1786
1787 if (ureg < FIRST_PSEUDO_REGISTER)
1788 {
1789 /* Allocate a quantity number so we have a place to put our
1790 suggestions. */
1791 if (reg_qty[sreg] == -2)
1792 reg_is_born (setreg, 2 * insn_number);
1793
1794 if (reg_qty[sreg] >= 0)
1795 {
1796 if (may_save_copy
1797 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1798 {
1799 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1800 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1801 }
1802 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1803 {
1804 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1805 qty_phys_num_sugg[reg_qty[sreg]]++;
1806 }
1807 }
1808 return 0;
1809 }
1810
1811 /* Similarly for SREG a hard register and UREG a pseudo register. */
1812
1813 if (sreg < FIRST_PSEUDO_REGISTER)
1814 {
1815 if (may_save_copy
1816 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1817 {
1818 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1819 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1820 }
1821 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1822 {
1823 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1824 qty_phys_num_sugg[reg_qty[ureg]]++;
1825 }
1826 return 0;
1827 }
1828
1829 /* At this point we know that SREG and UREG are both pseudos.
1830 Do nothing if SREG already has a quantity or is a register that we
1831 don't allocate. */
1832 if (reg_qty[sreg] >= -1
1833 /* If we are not going to let any regs live across calls,
1834 don't tie a call-crossing reg to a non-call-crossing reg. */
1835 || (current_function_has_nonlocal_label
1836 && ((reg_n_calls_crossed[ureg] > 0)
1837 != (reg_n_calls_crossed[sreg] > 0))))
1838 return 0;
1839
1840 /* We don't already know about SREG, so tie it to UREG
1841 if this is the last use of UREG, provided the classes they want
1842 are compatible. */
1843
1844 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1845 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1846 {
1847 /* Add SREG to UREG's quantity. */
1848 sqty = reg_qty[ureg];
1849 reg_qty[sreg] = sqty;
1850 reg_offset[sreg] = reg_offset[ureg] + offset;
1851 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1852 qty_first_reg[sqty] = sreg;
1853
1854 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1855 update_qty_class (sqty, sreg);
1856
1857 /* Update info about quantity SQTY. */
1858 qty_n_calls_crossed[sqty] += reg_n_calls_crossed[sreg];
1859 qty_n_refs[sqty] += reg_n_refs[sreg];
1860 if (usize < ssize)
1861 {
1862 register int i;
1863
1864 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1865 reg_offset[i] -= offset;
1866
1867 qty_size[sqty] = ssize;
1868 qty_mode[sqty] = GET_MODE (setreg);
1869 }
1870 }
1871 else
1872 return 0;
1873
1874 return 1;
1875 }
1876 \f
1877 /* Return 1 if the preferred class of REG allows it to be tied
1878 to a quantity or register whose class is CLASS.
1879 True if REG's reg class either contains or is contained in CLASS. */
1880
1881 static int
1882 reg_meets_class_p (reg, class)
1883 int reg;
1884 enum reg_class class;
1885 {
1886 register enum reg_class rclass = reg_preferred_class (reg);
1887 return (reg_class_subset_p (rclass, class)
1888 || reg_class_subset_p (class, rclass));
1889 }
1890
1891 /* Return 1 if the two specified classes have registers in common.
1892 If CALL_SAVED, then consider only call-saved registers. */
1893
1894 static int
1895 reg_classes_overlap_p (c1, c2, call_saved)
1896 register enum reg_class c1;
1897 register enum reg_class c2;
1898 int call_saved;
1899 {
1900 HARD_REG_SET c;
1901 int i;
1902
1903 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1904 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1905
1906 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1907 if (TEST_HARD_REG_BIT (c, i)
1908 && (! call_saved || ! call_used_regs[i]))
1909 return 1;
1910
1911 return 0;
1912 }
1913
1914 /* Update the class of QTY assuming that REG is being tied to it. */
1915
1916 static void
1917 update_qty_class (qty, reg)
1918 int qty;
1919 int reg;
1920 {
1921 enum reg_class rclass = reg_preferred_class (reg);
1922 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1923 qty_min_class[qty] = rclass;
1924
1925 rclass = reg_alternate_class (reg);
1926 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1927 qty_alternate_class[qty] = rclass;
1928
1929 if (reg_changes_size[reg])
1930 qty_changes_size[qty] = 1;
1931 }
1932 \f
1933 /* Handle something which alters the value of an rtx REG.
1934
1935 REG is whatever is set or clobbered. SETTER is the rtx that
1936 is modifying the register.
1937
1938 If it is not really a register, we do nothing.
1939 The file-global variables `this_insn' and `this_insn_number'
1940 carry info from `block_alloc'. */
1941
1942 static void
1943 reg_is_set (reg, setter)
1944 rtx reg;
1945 rtx setter;
1946 {
1947 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1948 a hard register. These may actually not exist any more. */
1949
1950 if (GET_CODE (reg) != SUBREG
1951 && GET_CODE (reg) != REG)
1952 return;
1953
1954 /* Mark this register as being born. If it is used in a CLOBBER, mark
1955 it as being born halfway between the previous insn and this insn so that
1956 it conflicts with our inputs but not the outputs of the previous insn. */
1957
1958 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1959 }
1960 \f
1961 /* Handle beginning of the life of register REG.
1962 BIRTH is the index at which this is happening. */
1963
1964 static void
1965 reg_is_born (reg, birth)
1966 rtx reg;
1967 int birth;
1968 {
1969 register int regno;
1970
1971 if (GET_CODE (reg) == SUBREG)
1972 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1973 else
1974 regno = REGNO (reg);
1975
1976 if (regno < FIRST_PSEUDO_REGISTER)
1977 {
1978 mark_life (regno, GET_MODE (reg), 1);
1979
1980 /* If the register was to have been born earlier that the present
1981 insn, mark it as live where it is actually born. */
1982 if (birth < 2 * this_insn_number)
1983 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1984 }
1985 else
1986 {
1987 if (reg_qty[regno] == -2)
1988 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1989
1990 /* If this register has a quantity number, show that it isn't dead. */
1991 if (reg_qty[regno] >= 0)
1992 qty_death[reg_qty[regno]] = -1;
1993 }
1994 }
1995
1996 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1997 REG is an output that is dying (i.e., it is never used), otherwise it
1998 is an input (the normal case).
1999 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2000
2001 static void
2002 wipe_dead_reg (reg, output_p)
2003 register rtx reg;
2004 int output_p;
2005 {
2006 register int regno = REGNO (reg);
2007
2008 /* If this insn has multiple results,
2009 and the dead reg is used in one of the results,
2010 extend its life to after this insn,
2011 so it won't get allocated together with any other result of this insn. */
2012 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2013 && !single_set (this_insn))
2014 {
2015 int i;
2016 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2017 {
2018 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2019 if (GET_CODE (set) == SET
2020 && GET_CODE (SET_DEST (set)) != REG
2021 && !rtx_equal_p (reg, SET_DEST (set))
2022 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2023 output_p = 1;
2024 }
2025 }
2026
2027 /* If this register is used in an auto-increment address, then extend its
2028 life to after this insn, so that it won't get allocated together with
2029 the result of this insn. */
2030 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2031 output_p = 1;
2032
2033 if (regno < FIRST_PSEUDO_REGISTER)
2034 {
2035 mark_life (regno, GET_MODE (reg), 0);
2036
2037 /* If a hard register is dying as an output, mark it as in use at
2038 the beginning of this insn (the above statement would cause this
2039 not to happen). */
2040 if (output_p)
2041 post_mark_life (regno, GET_MODE (reg), 1,
2042 2 * this_insn_number, 2 * this_insn_number+ 1);
2043 }
2044
2045 else if (reg_qty[regno] >= 0)
2046 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
2047 }
2048 \f
2049 /* Find a block of SIZE words of hard regs in reg_class CLASS
2050 that can hold something of machine-mode MODE
2051 (but actually we test only the first of the block for holding MODE)
2052 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2053 and return the number of the first of them.
2054 Return -1 if such a block cannot be found.
2055 If QTY crosses calls, insist on a register preserved by calls,
2056 unless ACCEPT_CALL_CLOBBERED is nonzero.
2057
2058 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2059 register is available. If not, return -1. */
2060
2061 static int
2062 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
2063 born_index, dead_index)
2064 enum reg_class class;
2065 enum machine_mode mode;
2066 int qty;
2067 int accept_call_clobbered;
2068 int just_try_suggested;
2069 int born_index, dead_index;
2070 {
2071 register int i, ins;
2072 #ifdef HARD_REG_SET
2073 register /* Declare it register if it's a scalar. */
2074 #endif
2075 HARD_REG_SET used, first_used;
2076 #ifdef ELIMINABLE_REGS
2077 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2078 #endif
2079
2080 /* Validate our parameters. */
2081 if (born_index < 0 || born_index > dead_index)
2082 abort ();
2083
2084 /* Don't let a pseudo live in a reg across a function call
2085 if we might get a nonlocal goto. */
2086 if (current_function_has_nonlocal_label
2087 && qty_n_calls_crossed[qty] > 0)
2088 return -1;
2089
2090 if (accept_call_clobbered)
2091 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2092 else if (qty_n_calls_crossed[qty] == 0)
2093 COPY_HARD_REG_SET (used, fixed_reg_set);
2094 else
2095 COPY_HARD_REG_SET (used, call_used_reg_set);
2096
2097 if (accept_call_clobbered)
2098 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2099
2100 for (ins = born_index; ins < dead_index; ins++)
2101 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2102
2103 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2104
2105 /* Don't use the frame pointer reg in local-alloc even if
2106 we may omit the frame pointer, because if we do that and then we
2107 need a frame pointer, reload won't know how to move the pseudo
2108 to another hard reg. It can move only regs made by global-alloc.
2109
2110 This is true of any register that can be eliminated. */
2111 #ifdef ELIMINABLE_REGS
2112 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
2113 SET_HARD_REG_BIT (used, eliminables[i].from);
2114 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2115 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2116 that it might be eliminated into. */
2117 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2118 #endif
2119 #else
2120 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2121 #endif
2122
2123 #ifdef CLASS_CANNOT_CHANGE_SIZE
2124 if (qty_changes_size[qty])
2125 IOR_HARD_REG_SET (used,
2126 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2127 #endif
2128
2129 /* Normally, the registers that can be used for the first register in
2130 a multi-register quantity are the same as those that can be used for
2131 subsequent registers. However, if just trying suggested registers,
2132 restrict our consideration to them. If there are copy-suggested
2133 register, try them. Otherwise, try the arithmetic-suggested
2134 registers. */
2135 COPY_HARD_REG_SET (first_used, used);
2136
2137 if (just_try_suggested)
2138 {
2139 if (qty_phys_num_copy_sugg[qty] != 0)
2140 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2141 else
2142 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2143 }
2144
2145 /* If all registers are excluded, we can't do anything. */
2146 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2147
2148 /* If at least one would be suitable, test each hard reg. */
2149
2150 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2151 {
2152 #ifdef REG_ALLOC_ORDER
2153 int regno = reg_alloc_order[i];
2154 #else
2155 int regno = i;
2156 #endif
2157 if (! TEST_HARD_REG_BIT (first_used, regno)
2158 && HARD_REGNO_MODE_OK (regno, mode))
2159 {
2160 register int j;
2161 register int size1 = HARD_REGNO_NREGS (regno, mode);
2162 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2163 if (j == size1)
2164 {
2165 /* Mark that this register is in use between its birth and death
2166 insns. */
2167 post_mark_life (regno, mode, 1, born_index, dead_index);
2168 return regno;
2169 }
2170 #ifndef REG_ALLOC_ORDER
2171 i += j; /* Skip starting points we know will lose */
2172 #endif
2173 }
2174 }
2175
2176 fail:
2177
2178 /* If we are just trying suggested register, we have just tried copy-
2179 suggested registers, and there are arithmetic-suggested registers,
2180 try them. */
2181
2182 /* If it would be profitable to allocate a call-clobbered register
2183 and save and restore it around calls, do that. */
2184 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2185 && qty_phys_num_sugg[qty] != 0)
2186 {
2187 /* Don't try the copy-suggested regs again. */
2188 qty_phys_num_copy_sugg[qty] = 0;
2189 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2190 born_index, dead_index);
2191 }
2192
2193 /* We need not check to see if the current function has nonlocal
2194 labels because we don't put any pseudos that are live over calls in
2195 registers in that case. */
2196
2197 if (! accept_call_clobbered
2198 && flag_caller_saves
2199 && ! just_try_suggested
2200 && qty_n_calls_crossed[qty] != 0
2201 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2202 {
2203 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2204 if (i >= 0)
2205 caller_save_needed = 1;
2206 return i;
2207 }
2208 return -1;
2209 }
2210 \f
2211 /* Mark that REGNO with machine-mode MODE is live starting from the current
2212 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2213 is zero). */
2214
2215 static void
2216 mark_life (regno, mode, life)
2217 register int regno;
2218 enum machine_mode mode;
2219 int life;
2220 {
2221 register int j = HARD_REGNO_NREGS (regno, mode);
2222 if (life)
2223 while (--j >= 0)
2224 SET_HARD_REG_BIT (regs_live, regno + j);
2225 else
2226 while (--j >= 0)
2227 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2228 }
2229
2230 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2231 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2232 to insn number DEATH (exclusive). */
2233
2234 static void
2235 post_mark_life (regno, mode, life, birth, death)
2236 int regno;
2237 enum machine_mode mode;
2238 int life, birth, death;
2239 {
2240 register int j = HARD_REGNO_NREGS (regno, mode);
2241 #ifdef HARD_REG_SET
2242 register /* Declare it register if it's a scalar. */
2243 #endif
2244 HARD_REG_SET this_reg;
2245
2246 CLEAR_HARD_REG_SET (this_reg);
2247 while (--j >= 0)
2248 SET_HARD_REG_BIT (this_reg, regno + j);
2249
2250 if (life)
2251 while (birth < death)
2252 {
2253 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2254 birth++;
2255 }
2256 else
2257 while (birth < death)
2258 {
2259 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2260 birth++;
2261 }
2262 }
2263 \f
2264 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2265 is the register being clobbered, and R1 is a register being used in
2266 the equivalent expression.
2267
2268 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2269 in which it is used, return 1.
2270
2271 Otherwise, return 0. */
2272
2273 static int
2274 no_conflict_p (insn, r0, r1)
2275 rtx insn, r0, r1;
2276 {
2277 int ok = 0;
2278 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2279 rtx p, last;
2280
2281 /* If R1 is a hard register, return 0 since we handle this case
2282 when we scan the insns that actually use it. */
2283
2284 if (note == 0
2285 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2286 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2287 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2288 return 0;
2289
2290 last = XEXP (note, 0);
2291
2292 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2293 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2294 {
2295 if (find_reg_note (p, REG_DEAD, r1))
2296 ok = 1;
2297
2298 if (reg_mentioned_p (r1, PATTERN (p))
2299 && ! find_reg_note (p, REG_NO_CONFLICT, r1))
2300 return 0;
2301 }
2302
2303 return ok;
2304 }
2305 \f
2306 #ifdef REGISTER_CONSTRAINTS
2307
2308 /* Return the number of alternatives for which the constraint string P
2309 indicates that the operand must be equal to operand 0 and that no register
2310 is acceptable. */
2311
2312 static int
2313 requires_inout (p)
2314 char *p;
2315 {
2316 char c;
2317 int found_zero = 0;
2318 int reg_allowed = 0;
2319 int num_matching_alts = 0;
2320
2321 while (c = *p++)
2322 switch (c)
2323 {
2324 case '=': case '+': case '?':
2325 case '#': case '&': case '!':
2326 case '*': case '%':
2327 case '1': case '2': case '3': case '4':
2328 case 'm': case '<': case '>': case 'V': case 'o':
2329 case 'E': case 'F': case 'G': case 'H':
2330 case 's': case 'i': case 'n':
2331 case 'I': case 'J': case 'K': case 'L':
2332 case 'M': case 'N': case 'O': case 'P':
2333 #ifdef EXTRA_CONSTRAINT
2334 case 'Q': case 'R': case 'S': case 'T': case 'U':
2335 #endif
2336 case 'X':
2337 /* These don't say anything we care about. */
2338 break;
2339
2340 case ',':
2341 if (found_zero && ! reg_allowed)
2342 num_matching_alts++;
2343
2344 found_zero = reg_allowed = 0;
2345 break;
2346
2347 case '0':
2348 found_zero = 1;
2349 break;
2350
2351 case 'p':
2352 case 'g': case 'r':
2353 default:
2354 reg_allowed = 1;
2355 break;
2356 }
2357
2358 if (found_zero && ! reg_allowed)
2359 num_matching_alts++;
2360
2361 return num_matching_alts;
2362 }
2363 #endif /* REGISTER_CONSTRAINTS */
2364 \f
2365 void
2366 dump_local_alloc (file)
2367 FILE *file;
2368 {
2369 register int i;
2370 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2371 if (reg_renumber[i] != -1)
2372 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2373 }