version.c: Bump for new snapshot.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here cannot be reallocated by global.c if the hard
59 register is used as a spill register. So we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include <stdio.h>
63 #include "config.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "recog.h"
71 #include "output.h"
72 \f
73 /* Next quantity number available for allocation. */
74
75 static int next_qty;
76
77 /* In all the following vectors indexed by quantity number. */
78
79 /* Element Q is the hard reg number chosen for quantity Q,
80 or -1 if none was found. */
81
82 static short *qty_phys_reg;
83
84 /* We maintain two hard register sets that indicate suggested hard registers
85 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
86 that are tied to the quantity by a simple copy. The second contains all
87 hard registers that are tied to the quantity via an arithmetic operation.
88
89 The former register set is given priority for allocation. This tends to
90 eliminate copy insns. */
91
92 /* Element Q is a set of hard registers that are suggested for quantity Q by
93 copy insns. */
94
95 static HARD_REG_SET *qty_phys_copy_sugg;
96
97 /* Element Q is a set of hard registers that are suggested for quantity Q by
98 arithmetic insns. */
99
100 static HARD_REG_SET *qty_phys_sugg;
101
102 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
103
104 static short *qty_phys_num_copy_sugg;
105
106 /* Element Q is the number of suggested registers in qty_phys_sugg. */
107
108 static short *qty_phys_num_sugg;
109
110 /* Element Q is the number of refs to quantity Q. */
111
112 static int *qty_n_refs;
113
114 /* Element Q is a reg class contained in (smaller than) the
115 preferred classes of all the pseudo regs that are tied in quantity Q.
116 This is the preferred class for allocating that quantity. */
117
118 static enum reg_class *qty_min_class;
119
120 /* Insn number (counting from head of basic block)
121 where quantity Q was born. -1 if birth has not been recorded. */
122
123 static int *qty_birth;
124
125 /* Insn number (counting from head of basic block)
126 where quantity Q died. Due to the way tying is done,
127 and the fact that we consider in this pass only regs that die but once,
128 a quantity can die only once. Each quantity's life span
129 is a set of consecutive insns. -1 if death has not been recorded. */
130
131 static int *qty_death;
132
133 /* Number of words needed to hold the data in quantity Q.
134 This depends on its machine mode. It is used for these purposes:
135 1. It is used in computing the relative importances of qtys,
136 which determines the order in which we look for regs for them.
137 2. It is used in rules that prevent tying several registers of
138 different sizes in a way that is geometrically impossible
139 (see combine_regs). */
140
141 static int *qty_size;
142
143 /* This holds the mode of the registers that are tied to qty Q,
144 or VOIDmode if registers with differing modes are tied together. */
145
146 static enum machine_mode *qty_mode;
147
148 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
149
150 static int *qty_n_calls_crossed;
151
152 /* Register class within which we allocate qty Q if we can't get
153 its preferred class. */
154
155 static enum reg_class *qty_alternate_class;
156
157 /* Element Q is the SCRATCH expression for which this quantity is being
158 allocated or 0 if this quantity is allocating registers. */
159
160 static rtx *qty_scratch_rtx;
161
162 /* Element Q is nonzero if this quantity has been used in a SUBREG
163 that changes its size. */
164
165 static char *qty_changes_size;
166
167 /* Element Q is the register number of one pseudo register whose
168 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
169 register should be the head of the chain maintained in reg_next_in_qty. */
170
171 static int *qty_first_reg;
172
173 /* If (REG N) has been assigned a quantity number, is a register number
174 of another register assigned the same quantity number, or -1 for the
175 end of the chain. qty_first_reg point to the head of this chain. */
176
177 static int *reg_next_in_qty;
178
179 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
180 if it is >= 0,
181 of -1 if this register cannot be allocated by local-alloc,
182 or -2 if not known yet.
183
184 Note that if we see a use or death of pseudo register N with
185 reg_qty[N] == -2, register N must be local to the current block. If
186 it were used in more than one block, we would have reg_qty[N] == -1.
187 This relies on the fact that if reg_basic_block[N] is >= 0, register N
188 will not appear in any other block. We save a considerable number of
189 tests by exploiting this.
190
191 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
192 be referenced. */
193
194 static int *reg_qty;
195
196 /* The offset (in words) of register N within its quantity.
197 This can be nonzero if register N is SImode, and has been tied
198 to a subreg of a DImode register. */
199
200 static char *reg_offset;
201
202 /* Vector of substitutions of register numbers,
203 used to map pseudo regs into hardware regs.
204 This is set up as a result of register allocation.
205 Element N is the hard reg assigned to pseudo reg N,
206 or is -1 if no hard reg was assigned.
207 If N is a hard reg number, element N is N. */
208
209 short *reg_renumber;
210
211 /* Set of hard registers live at the current point in the scan
212 of the instructions in a basic block. */
213
214 static HARD_REG_SET regs_live;
215
216 /* Each set of hard registers indicates registers live at a particular
217 point in the basic block. For N even, regs_live_at[N] says which
218 hard registers are needed *after* insn N/2 (i.e., they may not
219 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
220
221 If an object is to conflict with the inputs of insn J but not the
222 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
223 if it is to conflict with the outputs of insn J but not the inputs of
224 insn J + 1, it is said to die at index J*2 + 1. */
225
226 static HARD_REG_SET *regs_live_at;
227
228 int *scratch_block;
229 rtx *scratch_list;
230 int scratch_list_length;
231 static int scratch_index;
232
233 /* Communicate local vars `insn_number' and `insn'
234 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
235 static int this_insn_number;
236 static rtx this_insn;
237
238 /* Used to communicate changes made by update_equiv_regs to
239 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
240 found or created, so that we can keep track of what memory accesses might
241 be created later, e.g. by reload. */
242
243 static rtx *reg_equiv_replacement;
244
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void alloc_qty_for_scratch PROTO((rtx, int, rtx, int, int));
247 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
248 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
249 static int memref_referenced_p PROTO((rtx, rtx));
250 static int memref_used_between_p PROTO((rtx, rtx, rtx));
251 static void optimize_reg_copy_1 PROTO((rtx, rtx, rtx));
252 static void optimize_reg_copy_2 PROTO((rtx, rtx, rtx));
253 static void update_equiv_regs PROTO((void));
254 static void block_alloc PROTO((int));
255 static int qty_sugg_compare PROTO((int, int));
256 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
257 static int qty_compare PROTO((int, int));
258 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
259 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
260 static int reg_meets_class_p PROTO((int, enum reg_class));
261 static int reg_classes_overlap_p PROTO((enum reg_class, enum reg_class,
262 int));
263 static void update_qty_class PROTO((int, int));
264 static void reg_is_set PROTO((rtx, rtx));
265 static void reg_is_born PROTO((rtx, int));
266 static void wipe_dead_reg PROTO((rtx, int));
267 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
268 int, int, int, int, int));
269 static void mark_life PROTO((int, enum machine_mode, int));
270 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
271 static int no_conflict_p PROTO((rtx, rtx, rtx));
272 static int requires_inout PROTO((char *));
273 \f
274 /* Allocate a new quantity (new within current basic block)
275 for register number REGNO which is born at index BIRTH
276 within the block. MODE and SIZE are info on reg REGNO. */
277
278 static void
279 alloc_qty (regno, mode, size, birth)
280 int regno;
281 enum machine_mode mode;
282 int size, birth;
283 {
284 register int qty = next_qty++;
285
286 reg_qty[regno] = qty;
287 reg_offset[regno] = 0;
288 reg_next_in_qty[regno] = -1;
289
290 qty_first_reg[qty] = regno;
291 qty_size[qty] = size;
292 qty_mode[qty] = mode;
293 qty_birth[qty] = birth;
294 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
295 qty_min_class[qty] = reg_preferred_class (regno);
296 qty_alternate_class[qty] = reg_alternate_class (regno);
297 qty_n_refs[qty] = REG_N_REFS (regno);
298 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
299 }
300 \f
301 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
302 used as operand N in INSN. We assume here that the SCRATCH is used in
303 a CLOBBER. */
304
305 static void
306 alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
307 rtx scratch;
308 int n;
309 rtx insn;
310 int insn_code_num, insn_number;
311 {
312 register int qty;
313 enum reg_class class;
314 char *p, c;
315 int i;
316
317 #ifdef REGISTER_CONSTRAINTS
318 /* If we haven't yet computed which alternative will be used, do so now.
319 Then set P to the constraints for that alternative. */
320 if (which_alternative == -1)
321 if (! constrain_operands (insn_code_num, 0))
322 return;
323
324 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
325 *p && i < which_alternative; p++)
326 if (*p == ',')
327 i++;
328
329 /* Compute the class required for this SCRATCH. If we don't need a
330 register, the class will remain NO_REGS. If we guessed the alternative
331 number incorrectly, reload will fix things up for us. */
332
333 class = NO_REGS;
334 while ((c = *p++) != '\0' && c != ',')
335 switch (c)
336 {
337 case '=': case '+': case '?':
338 case '#': case '&': case '!':
339 case '*': case '%':
340 case '0': case '1': case '2': case '3': case '4':
341 case 'm': case '<': case '>': case 'V': case 'o':
342 case 'E': case 'F': case 'G': case 'H':
343 case 's': case 'i': case 'n':
344 case 'I': case 'J': case 'K': case 'L':
345 case 'M': case 'N': case 'O': case 'P':
346 #ifdef EXTRA_CONSTRAINT
347 case 'Q': case 'R': case 'S': case 'T': case 'U':
348 #endif
349 case 'p':
350 /* These don't say anything we care about. */
351 break;
352
353 case 'X':
354 /* We don't need to allocate this SCRATCH. */
355 return;
356
357 case 'g': case 'r':
358 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
359 break;
360
361 default:
362 class
363 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
364 break;
365 }
366
367 if (class == NO_REGS)
368 return;
369
370 #else /* REGISTER_CONSTRAINTS */
371
372 class = GENERAL_REGS;
373 #endif
374
375
376 qty = next_qty++;
377
378 qty_first_reg[qty] = -1;
379 qty_scratch_rtx[qty] = scratch;
380 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
381 qty_mode[qty] = GET_MODE (scratch);
382 qty_birth[qty] = 2 * insn_number - 1;
383 qty_death[qty] = 2 * insn_number + 1;
384 qty_n_calls_crossed[qty] = 0;
385 qty_min_class[qty] = class;
386 qty_alternate_class[qty] = NO_REGS;
387 qty_n_refs[qty] = 1;
388 qty_changes_size[qty] = 0;
389 }
390 \f
391 /* Main entry point of this file. */
392
393 void
394 local_alloc ()
395 {
396 register int b, i;
397 int max_qty;
398
399 /* Leaf functions and non-leaf functions have different needs.
400 If defined, let the machine say what kind of ordering we
401 should use. */
402 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
403 ORDER_REGS_FOR_LOCAL_ALLOC;
404 #endif
405
406 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
407 registers. */
408 update_equiv_regs ();
409
410 /* This sets the maximum number of quantities we can have. Quantity
411 numbers start at zero and we can have one for each pseudo plus the
412 number of SCRATCHes in the largest block, in the worst case. */
413 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
414
415 /* Allocate vectors of temporary data.
416 See the declarations of these variables, above,
417 for what they mean. */
418
419 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
420 Instead of allocating this much memory from now until the end of
421 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
422 reload will allocate them. */
423
424 scratch_list_length = max_qty;
425 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
426 bzero ((char *) scratch_list, scratch_list_length * sizeof (rtx));
427 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
428 bzero ((char *) scratch_block, scratch_list_length * sizeof (int));
429 scratch_index = 0;
430
431 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
432 qty_phys_copy_sugg
433 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
434 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
435 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
436 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
437 qty_birth = (int *) alloca (max_qty * sizeof (int));
438 qty_death = (int *) alloca (max_qty * sizeof (int));
439 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
440 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
441 qty_size = (int *) alloca (max_qty * sizeof (int));
442 qty_mode
443 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
444 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
445 qty_min_class
446 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
447 qty_alternate_class
448 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
449 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
450 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
451
452 reg_qty = (int *) alloca (max_regno * sizeof (int));
453 reg_offset = (char *) alloca (max_regno * sizeof (char));
454 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
455
456 /* Allocate the reg_renumber array */
457 allocate_reg_info (max_regno, FALSE, TRUE);
458
459 /* Determine which pseudo-registers can be allocated by local-alloc.
460 In general, these are the registers used only in a single block and
461 which only die once. However, if a register's preferred class has only
462 a few entries, don't allocate this register here unless it is preferred
463 or nothing since retry_global_alloc won't be able to move it to
464 GENERAL_REGS if a reload register of this class is needed.
465
466 We need not be concerned with which block actually uses the register
467 since we will never see it outside that block. */
468
469 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
470 {
471 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
472 && (reg_alternate_class (i) == NO_REGS
473 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
474 reg_qty[i] = -2;
475 else
476 reg_qty[i] = -1;
477 }
478
479 /* Force loop below to initialize entire quantity array. */
480 next_qty = max_qty;
481
482 /* Allocate each block's local registers, block by block. */
483
484 for (b = 0; b < n_basic_blocks; b++)
485 {
486 /* NEXT_QTY indicates which elements of the `qty_...'
487 vectors might need to be initialized because they were used
488 for the previous block; it is set to the entire array before
489 block 0. Initialize those, with explicit loop if there are few,
490 else with bzero and bcopy. Do not initialize vectors that are
491 explicit set by `alloc_qty'. */
492
493 if (next_qty < 6)
494 {
495 for (i = 0; i < next_qty; i++)
496 {
497 qty_scratch_rtx[i] = 0;
498 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
499 qty_phys_num_copy_sugg[i] = 0;
500 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
501 qty_phys_num_sugg[i] = 0;
502 }
503 }
504 else
505 {
506 #define CLEAR(vector) \
507 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
508
509 CLEAR (qty_scratch_rtx);
510 CLEAR (qty_phys_copy_sugg);
511 CLEAR (qty_phys_num_copy_sugg);
512 CLEAR (qty_phys_sugg);
513 CLEAR (qty_phys_num_sugg);
514 }
515
516 next_qty = 0;
517
518 block_alloc (b);
519 #ifdef USE_C_ALLOCA
520 alloca (0);
521 #endif
522 }
523 }
524 \f
525 /* Depth of loops we are in while in update_equiv_regs. */
526 static int loop_depth;
527
528 /* Used for communication between the following two functions: contains
529 a MEM that we wish to ensure remains unchanged. */
530 static rtx equiv_mem;
531
532 /* Set nonzero if EQUIV_MEM is modified. */
533 static int equiv_mem_modified;
534
535 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
536 Called via note_stores. */
537
538 static void
539 validate_equiv_mem_from_store (dest, set)
540 rtx dest;
541 rtx set;
542 {
543 if ((GET_CODE (dest) == REG
544 && reg_overlap_mentioned_p (dest, equiv_mem))
545 || (GET_CODE (dest) == MEM
546 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
547 equiv_mem_modified = 1;
548 }
549
550 /* Verify that no store between START and the death of REG invalidates
551 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
552 by storing into an overlapping memory location, or with a non-const
553 CALL_INSN.
554
555 Return 1 if MEMREF remains valid. */
556
557 static int
558 validate_equiv_mem (start, reg, memref)
559 rtx start;
560 rtx reg;
561 rtx memref;
562 {
563 rtx insn;
564 rtx note;
565
566 equiv_mem = memref;
567 equiv_mem_modified = 0;
568
569 /* If the memory reference has side effects or is volatile, it isn't a
570 valid equivalence. */
571 if (side_effects_p (memref))
572 return 0;
573
574 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
575 {
576 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
577 continue;
578
579 if (find_reg_note (insn, REG_DEAD, reg))
580 return 1;
581
582 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
583 && ! CONST_CALL_P (insn))
584 return 0;
585
586 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
587
588 /* If a register mentioned in MEMREF is modified via an
589 auto-increment, we lose the equivalence. Do the same if one
590 dies; although we could extend the life, it doesn't seem worth
591 the trouble. */
592
593 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
594 if ((REG_NOTE_KIND (note) == REG_INC
595 || REG_NOTE_KIND (note) == REG_DEAD)
596 && GET_CODE (XEXP (note, 0)) == REG
597 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
598 return 0;
599 }
600
601 return 0;
602 }
603 \f
604 /* TRUE if X references a memory location that would be affected by a store
605 to MEMREF. */
606
607 static int
608 memref_referenced_p (memref, x)
609 rtx x;
610 rtx memref;
611 {
612 int i, j;
613 char *fmt;
614 enum rtx_code code = GET_CODE (x);
615
616 switch (code)
617 {
618 case CONST_INT:
619 case CONST:
620 case LABEL_REF:
621 case SYMBOL_REF:
622 case CONST_DOUBLE:
623 case PC:
624 case CC0:
625 case HIGH:
626 case LO_SUM:
627 return 0;
628
629 case REG:
630 return (reg_equiv_replacement[REGNO (x)]
631 && memref_referenced_p (memref,
632 reg_equiv_replacement[REGNO (x)]));
633
634 case MEM:
635 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
636 return 1;
637 break;
638
639 case SET:
640 /* If we are setting a MEM, it doesn't count (its address does), but any
641 other SET_DEST that has a MEM in it is referencing the MEM. */
642 if (GET_CODE (SET_DEST (x)) == MEM)
643 {
644 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
645 return 1;
646 }
647 else if (memref_referenced_p (memref, SET_DEST (x)))
648 return 1;
649
650 return memref_referenced_p (memref, SET_SRC (x));
651 }
652
653 fmt = GET_RTX_FORMAT (code);
654 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
655 switch (fmt[i])
656 {
657 case 'e':
658 if (memref_referenced_p (memref, XEXP (x, i)))
659 return 1;
660 break;
661 case 'E':
662 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
663 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
664 return 1;
665 break;
666 }
667
668 return 0;
669 }
670
671 /* TRUE if some insn in the range (START, END] references a memory location
672 that would be affected by a store to MEMREF. */
673
674 static int
675 memref_used_between_p (memref, start, end)
676 rtx memref;
677 rtx start;
678 rtx end;
679 {
680 rtx insn;
681
682 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
683 insn = NEXT_INSN (insn))
684 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
685 && memref_referenced_p (memref, PATTERN (insn)))
686 return 1;
687
688 return 0;
689 }
690 \f
691 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
692 in INSN.
693
694 Search forward to see if SRC dies before either it or DEST is modified,
695 but don't scan past the end of a basic block. If so, we can replace SRC
696 with DEST and let SRC die in INSN.
697
698 This will reduce the number of registers live in that range and may enable
699 DEST to be tied to SRC, thus often saving one register in addition to a
700 register-register copy. */
701
702 static void
703 optimize_reg_copy_1 (insn, dest, src)
704 rtx insn;
705 rtx dest;
706 rtx src;
707 {
708 rtx p, q;
709 rtx note;
710 rtx dest_death = 0;
711 int sregno = REGNO (src);
712 int dregno = REGNO (dest);
713
714 if (sregno == dregno
715 #ifdef SMALL_REGISTER_CLASSES
716 /* We don't want to mess with hard regs if register classes are small. */
717 || (SMALL_REGISTER_CLASSES
718 && (sregno < FIRST_PSEUDO_REGISTER
719 || dregno < FIRST_PSEUDO_REGISTER))
720 #endif
721 /* We don't see all updates to SP if they are in an auto-inc memory
722 reference, so we must disallow this optimization on them. */
723 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
724 return;
725
726 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
727 {
728 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
729 || (GET_CODE (p) == NOTE
730 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
731 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
732 break;
733
734 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
735 continue;
736
737 if (reg_set_p (src, p) || reg_set_p (dest, p)
738 /* Don't change a USE of a register. */
739 || (GET_CODE (PATTERN (p)) == USE
740 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
741 break;
742
743 /* See if all of SRC dies in P. This test is slightly more
744 conservative than it needs to be. */
745 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
746 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
747 {
748 int failed = 0;
749 int length = 0;
750 int d_length = 0;
751 int n_calls = 0;
752 int d_n_calls = 0;
753
754 /* We can do the optimization. Scan forward from INSN again,
755 replacing regs as we go. Set FAILED if a replacement can't
756 be done. In that case, we can't move the death note for SRC.
757 This should be rare. */
758
759 /* Set to stop at next insn. */
760 for (q = next_real_insn (insn);
761 q != next_real_insn (p);
762 q = next_real_insn (q))
763 {
764 if (reg_overlap_mentioned_p (src, PATTERN (q)))
765 {
766 /* If SRC is a hard register, we might miss some
767 overlapping registers with validate_replace_rtx,
768 so we would have to undo it. We can't if DEST is
769 present in the insn, so fail in that combination
770 of cases. */
771 if (sregno < FIRST_PSEUDO_REGISTER
772 && reg_mentioned_p (dest, PATTERN (q)))
773 failed = 1;
774
775 /* Replace all uses and make sure that the register
776 isn't still present. */
777 else if (validate_replace_rtx (src, dest, q)
778 && (sregno >= FIRST_PSEUDO_REGISTER
779 || ! reg_overlap_mentioned_p (src,
780 PATTERN (q))))
781 {
782 /* We assume that a register is used exactly once per
783 insn in the updates below. If this is not correct,
784 no great harm is done. */
785 if (sregno >= FIRST_PSEUDO_REGISTER)
786 REG_N_REFS (sregno) -= loop_depth;
787 if (dregno >= FIRST_PSEUDO_REGISTER)
788 REG_N_REFS (dregno) += loop_depth;
789 }
790 else
791 {
792 validate_replace_rtx (dest, src, q);
793 failed = 1;
794 }
795 }
796
797 /* Count the insns and CALL_INSNs passed. If we passed the
798 death note of DEST, show increased live length. */
799 length++;
800 if (dest_death)
801 d_length++;
802
803 /* If the insn in which SRC dies is a CALL_INSN, don't count it
804 as a call that has been crossed. Otherwise, count it. */
805 if (q != p && GET_CODE (q) == CALL_INSN)
806 {
807 n_calls++;
808 if (dest_death)
809 d_n_calls++;
810 }
811
812 /* If DEST dies here, remove the death note and save it for
813 later. Make sure ALL of DEST dies here; again, this is
814 overly conservative. */
815 if (dest_death == 0
816 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
817 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
818 remove_note (q, dest_death);
819 }
820
821 if (! failed)
822 {
823 if (sregno >= FIRST_PSEUDO_REGISTER)
824 {
825 if (REG_LIVE_LENGTH (sregno) >= 0)
826 {
827 REG_LIVE_LENGTH (sregno) -= length;
828 /* reg_live_length is only an approximation after
829 combine if sched is not run, so make sure that we
830 still have a reasonable value. */
831 if (REG_LIVE_LENGTH (sregno) < 2)
832 REG_LIVE_LENGTH (sregno) = 2;
833 }
834
835 REG_N_CALLS_CROSSED (sregno) -= n_calls;
836 }
837
838 if (dregno >= FIRST_PSEUDO_REGISTER)
839 {
840 if (REG_LIVE_LENGTH (dregno) >= 0)
841 REG_LIVE_LENGTH (dregno) += d_length;
842
843 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
844 }
845
846 /* Move death note of SRC from P to INSN. */
847 remove_note (p, note);
848 XEXP (note, 1) = REG_NOTES (insn);
849 REG_NOTES (insn) = note;
850 }
851
852 /* Put death note of DEST on P if we saw it die. */
853 if (dest_death)
854 {
855 XEXP (dest_death, 1) = REG_NOTES (p);
856 REG_NOTES (p) = dest_death;
857 }
858
859 return;
860 }
861
862 /* If SRC is a hard register which is set or killed in some other
863 way, we can't do this optimization. */
864 else if (sregno < FIRST_PSEUDO_REGISTER
865 && dead_or_set_p (p, src))
866 break;
867 }
868 }
869 \f
870 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
871 a sequence of insns that modify DEST followed by an insn that sets
872 SRC to DEST in which DEST dies, with no prior modification of DEST.
873 (There is no need to check if the insns in between actually modify
874 DEST. We should not have cases where DEST is not modified, but
875 the optimization is safe if no such modification is detected.)
876 In that case, we can replace all uses of DEST, starting with INSN and
877 ending with the set of SRC to DEST, with SRC. We do not do this
878 optimization if a CALL_INSN is crossed unless SRC already crosses a
879 call or if DEST dies before the copy back to SRC.
880
881 It is assumed that DEST and SRC are pseudos; it is too complicated to do
882 this for hard registers since the substitutions we may make might fail. */
883
884 static void
885 optimize_reg_copy_2 (insn, dest, src)
886 rtx insn;
887 rtx dest;
888 rtx src;
889 {
890 rtx p, q;
891 rtx set;
892 int sregno = REGNO (src);
893 int dregno = REGNO (dest);
894
895 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
896 {
897 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
898 || (GET_CODE (p) == NOTE
899 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
900 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
901 break;
902
903 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
904 continue;
905
906 set = single_set (p);
907 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
908 && find_reg_note (p, REG_DEAD, dest))
909 {
910 /* We can do the optimization. Scan forward from INSN again,
911 replacing regs as we go. */
912
913 /* Set to stop at next insn. */
914 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
915 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
916 {
917 if (reg_mentioned_p (dest, PATTERN (q)))
918 {
919 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
920
921 /* We assume that a register is used exactly once per
922 insn in the updates below. If this is not correct,
923 no great harm is done. */
924 REG_N_REFS (dregno) -= loop_depth;
925 REG_N_REFS (sregno) += loop_depth;
926 }
927
928
929 if (GET_CODE (q) == CALL_INSN)
930 {
931 REG_N_CALLS_CROSSED (dregno)--;
932 REG_N_CALLS_CROSSED (sregno)++;
933 }
934 }
935
936 remove_note (p, find_reg_note (p, REG_DEAD, dest));
937 REG_N_DEATHS (dregno)--;
938 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
939 REG_N_DEATHS (sregno)--;
940 return;
941 }
942
943 if (reg_set_p (src, p)
944 || find_reg_note (p, REG_DEAD, dest)
945 || (GET_CODE (p) == CALL_INSN && REG_N_CALLS_CROSSED (sregno) == 0))
946 break;
947 }
948 }
949 \f
950 /* Find registers that are equivalent to a single value throughout the
951 compilation (either because they can be referenced in memory or are set once
952 from a single constant). Lower their priority for a register.
953
954 If such a register is only referenced once, try substituting its value
955 into the using insn. If it succeeds, we can eliminate the register
956 completely. */
957
958 static void
959 update_equiv_regs ()
960 {
961 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
962 /* Set when an attempt should be made to replace a register with the
963 associated reg_equiv_replacement entry at the end of this function. */
964 char *reg_equiv_replace
965 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
966 rtx insn;
967 int block, depth;
968
969 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
970
971 bzero ((char *) reg_equiv_init_insn, max_regno * sizeof (rtx *));
972 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx *));
973 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
974
975 init_alias_analysis ();
976
977 loop_depth = 1;
978
979 /* Scan the insns and find which registers have equivalences. Do this
980 in a separate scan of the insns because (due to -fcse-follow-jumps)
981 a register can be set below its use. */
982 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
983 {
984 rtx note;
985 rtx set = single_set (insn);
986 rtx dest, src;
987 int regno;
988
989 if (GET_CODE (insn) == NOTE)
990 {
991 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
992 loop_depth++;
993 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
994 loop_depth--;
995 }
996
997 /* If this insn contains more (or less) than a single SET, ignore it. */
998 if (set == 0)
999 continue;
1000
1001 dest = SET_DEST (set);
1002 src = SET_SRC (set);
1003
1004 /* If this sets a MEM to the contents of a REG that is only used
1005 in a single basic block, see if the register is always equivalent
1006 to that memory location and if moving the store from INSN to the
1007 insn that set REG is safe. If so, put a REG_EQUIV note on the
1008 initializing insn. */
1009
1010 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
1011 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
1012 && REG_BASIC_BLOCK (regno) >= 0
1013 && reg_equiv_init_insn[regno] != 0
1014 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
1015 dest)
1016 && ! memref_used_between_p (SET_DEST (set),
1017 reg_equiv_init_insn[regno], insn))
1018 REG_NOTES (reg_equiv_init_insn[regno])
1019 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
1020 REG_NOTES (reg_equiv_init_insn[regno]));
1021
1022 /* If this is a register-register copy where SRC is not dead, see if we
1023 can optimize it. */
1024 if (flag_expensive_optimizations && GET_CODE (dest) == REG
1025 && GET_CODE (SET_SRC (set)) == REG
1026 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1027 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
1028
1029 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1030 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
1031 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
1032 && GET_CODE (SET_SRC (set)) == REG
1033 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
1034 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1035 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
1036
1037 /* Otherwise, we only handle the case of a pseudo register being set
1038 once and only if neither the source nor the destination are
1039 in a register class that's likely to be spilled. */
1040 if (GET_CODE (dest) != REG
1041 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1042 || REG_N_SETS (regno) != 1
1043 || CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (dest)))
1044 || (GET_CODE (src) == REG
1045 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1046 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src)))))
1047 continue;
1048
1049 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1050
1051 #ifdef DONT_RECORD_EQUIVALENCE
1052 /* Allow the target to reject promotions of some REG_EQUAL notes to
1053 REG_EQUIV notes.
1054
1055 In some cases this can improve register allocation if the existence
1056 of the REG_EQUIV note is likely to increase the lifetime of a register
1057 that is likely to be spilled.
1058
1059 It may also be necessary if the target can't handle certain constant
1060 expressions appearing randomly in insns, but for whatever reason
1061 those expressions must be considered legitimate constant expressions
1062 to prevent them from being forced into memory. */
1063 if (note && DONT_RECORD_EQUIVALENCE (note))
1064 note = NULL;
1065 #endif
1066
1067 /* Record this insn as initializing this register. */
1068 reg_equiv_init_insn[regno] = insn;
1069
1070 /* If this register is known to be equal to a constant, record that
1071 it is always equivalent to the constant. */
1072 if (note && CONSTANT_P (XEXP (note, 0)))
1073 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1074
1075 /* If this insn introduces a "constant" register, decrease the priority
1076 of that register. Record this insn if the register is only used once
1077 more and the equivalence value is the same as our source.
1078
1079 The latter condition is checked for two reasons: First, it is an
1080 indication that it may be more efficient to actually emit the insn
1081 as written (if no registers are available, reload will substitute
1082 the equivalence). Secondly, it avoids problems with any registers
1083 dying in this insn whose death notes would be missed.
1084
1085 If we don't have a REG_EQUIV note, see if this insn is loading
1086 a register used only in one basic block from a MEM. If so, and the
1087 MEM remains unchanged for the life of the register, add a REG_EQUIV
1088 note. */
1089
1090 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1091
1092 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
1093 && GET_CODE (SET_SRC (set)) == MEM
1094 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1095 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1096 REG_NOTES (insn));
1097
1098 if (note)
1099 {
1100 int regno = REGNO (dest);
1101
1102 reg_equiv_replacement[regno] = XEXP (note, 0);
1103
1104 /* Don't mess with things live during setjmp. */
1105 if (REG_LIVE_LENGTH (regno) >= 0)
1106 {
1107 /* Note that the statement below does not affect the priority
1108 in local-alloc! */
1109 REG_LIVE_LENGTH (regno) *= 2;
1110
1111
1112 /* If the register is referenced exactly twice, meaning it is
1113 set once and used once, indicate that the reference may be
1114 replaced by the equivalence we computed above. If the
1115 register is only used in one basic block, this can't succeed
1116 or combine would have done it.
1117
1118 It would be nice to use "loop_depth * 2" in the compare
1119 below. Unfortunately, LOOP_DEPTH need not be constant within
1120 a basic block so this would be too complicated.
1121
1122 This case normally occurs when a parameter is read from
1123 memory and then used exactly once, not in a loop. */
1124
1125 if (REG_N_REFS (regno) == 2
1126 && REG_BASIC_BLOCK (regno) < 0
1127 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1128 reg_equiv_replace[regno] = 1;
1129 }
1130 }
1131 }
1132
1133 /* Now scan all regs killed in an insn to see if any of them are
1134 registers only used that once. If so, see if we can replace the
1135 reference with the equivalent from. If we can, delete the
1136 initializing reference and this register will go away. If we
1137 can't replace the reference, and the instruction is not in a
1138 loop, then move the register initialization just before the use,
1139 so that they are in the same basic block. */
1140 block = -1;
1141 depth = 0;
1142 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1143 {
1144 rtx link;
1145
1146 /* Keep track of which basic block we are in. */
1147 if (block + 1 < n_basic_blocks
1148 && basic_block_head[block + 1] == insn)
1149 ++block;
1150
1151 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
1152 {
1153 if (GET_CODE (insn) == NOTE)
1154 {
1155 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1156 ++depth;
1157 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1158 {
1159 --depth;
1160 if (depth < 0)
1161 abort ();
1162 }
1163 }
1164
1165 continue;
1166 }
1167
1168 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1169 {
1170 if (REG_NOTE_KIND (link) == REG_DEAD
1171 /* Make sure this insn still refers to the register. */
1172 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1173 {
1174 int regno = REGNO (XEXP (link, 0));
1175 rtx equiv_insn;
1176
1177 if (! reg_equiv_replace[regno])
1178 continue;
1179
1180 equiv_insn = reg_equiv_init_insn[regno];
1181
1182 if (validate_replace_rtx (regno_reg_rtx[regno],
1183 reg_equiv_replacement[regno], insn))
1184 {
1185 remove_death (regno, insn);
1186 REG_N_REFS (regno) = 0;
1187 PUT_CODE (equiv_insn, NOTE);
1188 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1189 NOTE_SOURCE_FILE (equiv_insn) = 0;
1190 }
1191 /* If we aren't in a loop, and there are no calls in
1192 INSN or in the initialization of the register, then
1193 move the initialization of the register to just
1194 before INSN. Update the flow information. */
1195 else if (depth == 0
1196 && GET_CODE (equiv_insn) == INSN
1197 && GET_CODE (insn) == INSN
1198 && REG_BASIC_BLOCK (regno) < 0)
1199 {
1200 int l;
1201
1202 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
1203 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
1204
1205 PUT_CODE (equiv_insn, NOTE);
1206 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1207 NOTE_SOURCE_FILE (equiv_insn) = 0;
1208 REG_NOTES (equiv_insn) = 0;
1209
1210 if (block < 0)
1211 REG_BASIC_BLOCK (regno) = 0;
1212 else
1213 REG_BASIC_BLOCK (regno) = block;
1214 REG_N_CALLS_CROSSED (regno) = 0;
1215 REG_LIVE_LENGTH (regno) = 2;
1216
1217 if (block >= 0 && insn == basic_block_head[block])
1218 basic_block_head[block] = PREV_INSN (insn);
1219
1220 for (l = 0; l < n_basic_blocks; l++)
1221 CLEAR_REGNO_REG_SET (basic_block_live_at_start[l], regno);
1222 }
1223 }
1224 }
1225 }
1226 }
1227 \f
1228 /* Allocate hard regs to the pseudo regs used only within block number B.
1229 Only the pseudos that die but once can be handled. */
1230
1231 static void
1232 block_alloc (b)
1233 int b;
1234 {
1235 register int i, q;
1236 register rtx insn;
1237 rtx note;
1238 int insn_number = 0;
1239 int insn_count = 0;
1240 int max_uid = get_max_uid ();
1241 int *qty_order;
1242 int no_conflict_combined_regno = -1;
1243 /* Counter to prevent allocating more SCRATCHes than can be stored
1244 in SCRATCH_LIST. */
1245 int scratches_allocated = scratch_index;
1246
1247 /* Count the instructions in the basic block. */
1248
1249 insn = basic_block_end[b];
1250 while (1)
1251 {
1252 if (GET_CODE (insn) != NOTE)
1253 if (++insn_count > max_uid)
1254 abort ();
1255 if (insn == basic_block_head[b])
1256 break;
1257 insn = PREV_INSN (insn);
1258 }
1259
1260 /* +2 to leave room for a post_mark_life at the last insn and for
1261 the birth of a CLOBBER in the first insn. */
1262 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1263 * sizeof (HARD_REG_SET));
1264 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1265
1266 /* Initialize table of hardware registers currently live. */
1267
1268 REG_SET_TO_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1269
1270 /* This loop scans the instructions of the basic block
1271 and assigns quantities to registers.
1272 It computes which registers to tie. */
1273
1274 insn = basic_block_head[b];
1275 while (1)
1276 {
1277 register rtx body = PATTERN (insn);
1278
1279 if (GET_CODE (insn) != NOTE)
1280 insn_number++;
1281
1282 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1283 {
1284 register rtx link, set;
1285 register int win = 0;
1286 register rtx r0, r1;
1287 int combined_regno = -1;
1288 int i;
1289 int insn_code_number = recog_memoized (insn);
1290
1291 this_insn_number = insn_number;
1292 this_insn = insn;
1293
1294 if (insn_code_number >= 0)
1295 insn_extract (insn);
1296 which_alternative = -1;
1297
1298 /* Is this insn suitable for tying two registers?
1299 If so, try doing that.
1300 Suitable insns are those with at least two operands and where
1301 operand 0 is an output that is a register that is not
1302 earlyclobber.
1303
1304 We can tie operand 0 with some operand that dies in this insn.
1305 First look for operands that are required to be in the same
1306 register as operand 0. If we find such, only try tying that
1307 operand or one that can be put into that operand if the
1308 operation is commutative. If we don't find an operand
1309 that is required to be in the same register as operand 0,
1310 we can tie with any operand.
1311
1312 Subregs in place of regs are also ok.
1313
1314 If tying is done, WIN is set nonzero. */
1315
1316 if (insn_code_number >= 0
1317 #ifdef REGISTER_CONSTRAINTS
1318 && insn_n_operands[insn_code_number] > 1
1319 && insn_operand_constraint[insn_code_number][0][0] == '='
1320 && insn_operand_constraint[insn_code_number][0][1] != '&'
1321 #else
1322 && GET_CODE (PATTERN (insn)) == SET
1323 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1324 #endif
1325 )
1326 {
1327 #ifdef REGISTER_CONSTRAINTS
1328 /* If non-negative, is an operand that must match operand 0. */
1329 int must_match_0 = -1;
1330 /* Counts number of alternatives that require a match with
1331 operand 0. */
1332 int n_matching_alts = 0;
1333
1334 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1335 {
1336 char *p = insn_operand_constraint[insn_code_number][i];
1337 int this_match = (requires_inout (p));
1338
1339 n_matching_alts += this_match;
1340 if (this_match == insn_n_alternatives[insn_code_number])
1341 must_match_0 = i;
1342 }
1343 #endif
1344
1345 r0 = recog_operand[0];
1346 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1347 {
1348 #ifdef REGISTER_CONSTRAINTS
1349 /* Skip this operand if we found an operand that
1350 must match operand 0 and this operand isn't it
1351 and can't be made to be it by commutativity. */
1352
1353 if (must_match_0 >= 0 && i != must_match_0
1354 && ! (i == must_match_0 + 1
1355 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1356 && ! (i == must_match_0 - 1
1357 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1358 continue;
1359
1360 /* Likewise if each alternative has some operand that
1361 must match operand zero. In that case, skip any
1362 operand that doesn't list operand 0 since we know that
1363 the operand always conflicts with operand 0. We
1364 ignore commutatity in this case to keep things simple. */
1365 if (n_matching_alts == insn_n_alternatives[insn_code_number]
1366 && (0 == requires_inout
1367 (insn_operand_constraint[insn_code_number][i])))
1368 continue;
1369 #endif
1370
1371 r1 = recog_operand[i];
1372
1373 /* If the operand is an address, find a register in it.
1374 There may be more than one register, but we only try one
1375 of them. */
1376 if (
1377 #ifdef REGISTER_CONSTRAINTS
1378 insn_operand_constraint[insn_code_number][i][0] == 'p'
1379 #else
1380 insn_operand_address_p[insn_code_number][i]
1381 #endif
1382 )
1383 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1384 r1 = XEXP (r1, 0);
1385
1386 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1387 {
1388 /* We have two priorities for hard register preferences.
1389 If we have a move insn or an insn whose first input
1390 can only be in the same register as the output, give
1391 priority to an equivalence found from that insn. */
1392 int may_save_copy
1393 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1394 #ifdef REGISTER_CONSTRAINTS
1395 || (r1 == recog_operand[i] && must_match_0 >= 0)
1396 #endif
1397 );
1398
1399 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1400 win = combine_regs (r1, r0, may_save_copy,
1401 insn_number, insn, 0);
1402 }
1403 if (win)
1404 break;
1405 }
1406 }
1407
1408 /* Recognize an insn sequence with an ultimate result
1409 which can safely overlap one of the inputs.
1410 The sequence begins with a CLOBBER of its result,
1411 and ends with an insn that copies the result to itself
1412 and has a REG_EQUAL note for an equivalent formula.
1413 That note indicates what the inputs are.
1414 The result and the input can overlap if each insn in
1415 the sequence either doesn't mention the input
1416 or has a REG_NO_CONFLICT note to inhibit the conflict.
1417
1418 We do the combining test at the CLOBBER so that the
1419 destination register won't have had a quantity number
1420 assigned, since that would prevent combining. */
1421
1422 if (GET_CODE (PATTERN (insn)) == CLOBBER
1423 && (r0 = XEXP (PATTERN (insn), 0),
1424 GET_CODE (r0) == REG)
1425 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1426 && XEXP (link, 0) != 0
1427 && GET_CODE (XEXP (link, 0)) == INSN
1428 && (set = single_set (XEXP (link, 0))) != 0
1429 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1430 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1431 NULL_RTX)) != 0)
1432 {
1433 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1434 /* Check that we have such a sequence. */
1435 && no_conflict_p (insn, r0, r1))
1436 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1437 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1438 && (r1 = XEXP (XEXP (note, 0), 0),
1439 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1440 && no_conflict_p (insn, r0, r1))
1441 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1442
1443 /* Here we care if the operation to be computed is
1444 commutative. */
1445 else if ((GET_CODE (XEXP (note, 0)) == EQ
1446 || GET_CODE (XEXP (note, 0)) == NE
1447 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1448 && (r1 = XEXP (XEXP (note, 0), 1),
1449 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1450 && no_conflict_p (insn, r0, r1))
1451 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1452
1453 /* If we did combine something, show the register number
1454 in question so that we know to ignore its death. */
1455 if (win)
1456 no_conflict_combined_regno = REGNO (r1);
1457 }
1458
1459 /* If registers were just tied, set COMBINED_REGNO
1460 to the number of the register used in this insn
1461 that was tied to the register set in this insn.
1462 This register's qty should not be "killed". */
1463
1464 if (win)
1465 {
1466 while (GET_CODE (r1) == SUBREG)
1467 r1 = SUBREG_REG (r1);
1468 combined_regno = REGNO (r1);
1469 }
1470
1471 /* Mark the death of everything that dies in this instruction,
1472 except for anything that was just combined. */
1473
1474 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1475 if (REG_NOTE_KIND (link) == REG_DEAD
1476 && GET_CODE (XEXP (link, 0)) == REG
1477 && combined_regno != REGNO (XEXP (link, 0))
1478 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1479 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1480 wipe_dead_reg (XEXP (link, 0), 0);
1481
1482 /* Allocate qty numbers for all registers local to this block
1483 that are born (set) in this instruction.
1484 A pseudo that already has a qty is not changed. */
1485
1486 note_stores (PATTERN (insn), reg_is_set);
1487
1488 /* If anything is set in this insn and then unused, mark it as dying
1489 after this insn, so it will conflict with our outputs. This
1490 can't match with something that combined, and it doesn't matter
1491 if it did. Do this after the calls to reg_is_set since these
1492 die after, not during, the current insn. */
1493
1494 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1495 if (REG_NOTE_KIND (link) == REG_UNUSED
1496 && GET_CODE (XEXP (link, 0)) == REG)
1497 wipe_dead_reg (XEXP (link, 0), 1);
1498
1499 /* Allocate quantities for any SCRATCH operands of this insn. */
1500
1501 if (insn_code_number >= 0)
1502 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1503 if (GET_CODE (recog_operand[i]) == SCRATCH
1504 && scratches_allocated++ < scratch_list_length)
1505 alloc_qty_for_scratch (recog_operand[i], i, insn,
1506 insn_code_number, insn_number);
1507
1508 /* If this is an insn that has a REG_RETVAL note pointing at a
1509 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1510 block, so clear any register number that combined within it. */
1511 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1512 && GET_CODE (XEXP (note, 0)) == INSN
1513 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1514 no_conflict_combined_regno = -1;
1515 }
1516
1517 /* Set the registers live after INSN_NUMBER. Note that we never
1518 record the registers live before the block's first insn, since no
1519 pseudos we care about are live before that insn. */
1520
1521 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1522 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1523
1524 if (insn == basic_block_end[b])
1525 break;
1526
1527 insn = NEXT_INSN (insn);
1528 }
1529
1530 /* Now every register that is local to this basic block
1531 should have been given a quantity, or else -1 meaning ignore it.
1532 Every quantity should have a known birth and death.
1533
1534 Order the qtys so we assign them registers in order of the
1535 number of suggested registers they need so we allocate those with
1536 the most restrictive needs first. */
1537
1538 qty_order = (int *) alloca (next_qty * sizeof (int));
1539 for (i = 0; i < next_qty; i++)
1540 qty_order[i] = i;
1541
1542 #define EXCHANGE(I1, I2) \
1543 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1544
1545 switch (next_qty)
1546 {
1547 case 3:
1548 /* Make qty_order[2] be the one to allocate last. */
1549 if (qty_sugg_compare (0, 1) > 0)
1550 EXCHANGE (0, 1);
1551 if (qty_sugg_compare (1, 2) > 0)
1552 EXCHANGE (2, 1);
1553
1554 /* ... Fall through ... */
1555 case 2:
1556 /* Put the best one to allocate in qty_order[0]. */
1557 if (qty_sugg_compare (0, 1) > 0)
1558 EXCHANGE (0, 1);
1559
1560 /* ... Fall through ... */
1561
1562 case 1:
1563 case 0:
1564 /* Nothing to do here. */
1565 break;
1566
1567 default:
1568 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1569 }
1570
1571 /* Try to put each quantity in a suggested physical register, if it has one.
1572 This may cause registers to be allocated that otherwise wouldn't be, but
1573 this seems acceptable in local allocation (unlike global allocation). */
1574 for (i = 0; i < next_qty; i++)
1575 {
1576 q = qty_order[i];
1577 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1578 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1579 0, 1, qty_birth[q], qty_death[q]);
1580 else
1581 qty_phys_reg[q] = -1;
1582 }
1583
1584 /* Order the qtys so we assign them registers in order of
1585 decreasing length of life. Normally call qsort, but if we
1586 have only a very small number of quantities, sort them ourselves. */
1587
1588 for (i = 0; i < next_qty; i++)
1589 qty_order[i] = i;
1590
1591 #define EXCHANGE(I1, I2) \
1592 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1593
1594 switch (next_qty)
1595 {
1596 case 3:
1597 /* Make qty_order[2] be the one to allocate last. */
1598 if (qty_compare (0, 1) > 0)
1599 EXCHANGE (0, 1);
1600 if (qty_compare (1, 2) > 0)
1601 EXCHANGE (2, 1);
1602
1603 /* ... Fall through ... */
1604 case 2:
1605 /* Put the best one to allocate in qty_order[0]. */
1606 if (qty_compare (0, 1) > 0)
1607 EXCHANGE (0, 1);
1608
1609 /* ... Fall through ... */
1610
1611 case 1:
1612 case 0:
1613 /* Nothing to do here. */
1614 break;
1615
1616 default:
1617 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1618 }
1619
1620 /* Now for each qty that is not a hardware register,
1621 look for a hardware register to put it in.
1622 First try the register class that is cheapest for this qty,
1623 if there is more than one class. */
1624
1625 for (i = 0; i < next_qty; i++)
1626 {
1627 q = qty_order[i];
1628 if (qty_phys_reg[q] < 0)
1629 {
1630 if (N_REG_CLASSES > 1)
1631 {
1632 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1633 qty_mode[q], q, 0, 0,
1634 qty_birth[q], qty_death[q]);
1635 if (qty_phys_reg[q] >= 0)
1636 continue;
1637 }
1638
1639 if (qty_alternate_class[q] != NO_REGS)
1640 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1641 qty_mode[q], q, 0, 0,
1642 qty_birth[q], qty_death[q]);
1643 }
1644 }
1645
1646 /* Now propagate the register assignments
1647 to the pseudo regs belonging to the qtys. */
1648
1649 for (q = 0; q < next_qty; q++)
1650 if (qty_phys_reg[q] >= 0)
1651 {
1652 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1653 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1654 if (qty_scratch_rtx[q])
1655 {
1656 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1657 abort ();
1658 PUT_CODE (qty_scratch_rtx[q], REG);
1659 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1660
1661 scratch_block[scratch_index] = b;
1662 scratch_list[scratch_index++] = qty_scratch_rtx[q];
1663
1664 /* Must clear the USED field, because it will have been set by
1665 copy_rtx_if_shared, but the leaf_register code expects that
1666 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1667 used bit for REGs, but does for SCRATCHes. */
1668 qty_scratch_rtx[q]->used = 0;
1669 }
1670 }
1671 }
1672 \f
1673 /* Compare two quantities' priority for getting real registers.
1674 We give shorter-lived quantities higher priority.
1675 Quantities with more references are also preferred, as are quantities that
1676 require multiple registers. This is the identical prioritization as
1677 done by global-alloc.
1678
1679 We used to give preference to registers with *longer* lives, but using
1680 the same algorithm in both local- and global-alloc can speed up execution
1681 of some programs by as much as a factor of three! */
1682
1683 /* Note that the quotient will never be bigger than
1684 the value of floor_log2 times the maximum number of
1685 times a register can occur in one insn (surely less than 100).
1686 Multiplying this by 10000 can't overflow.
1687 QTY_CMP_PRI is also used by qty_sugg_compare. */
1688
1689 #define QTY_CMP_PRI(q) \
1690 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1691 / (qty_death[q] - qty_birth[q])) * 10000))
1692
1693 static int
1694 qty_compare (q1, q2)
1695 int q1, q2;
1696 {
1697 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1698 }
1699
1700 static int
1701 qty_compare_1 (q1p, q2p)
1702 const GENERIC_PTR q1p;
1703 const GENERIC_PTR q2p;
1704 {
1705 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1706 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1707
1708 if (tem != 0)
1709 return tem;
1710
1711 /* If qtys are equally good, sort by qty number,
1712 so that the results of qsort leave nothing to chance. */
1713 return q1 - q2;
1714 }
1715 \f
1716 /* Compare two quantities' priority for getting real registers. This version
1717 is called for quantities that have suggested hard registers. First priority
1718 goes to quantities that have copy preferences, then to those that have
1719 normal preferences. Within those groups, quantities with the lower
1720 number of preferences have the highest priority. Of those, we use the same
1721 algorithm as above. */
1722
1723 #define QTY_CMP_SUGG(q) \
1724 (qty_phys_num_copy_sugg[q] \
1725 ? qty_phys_num_copy_sugg[q] \
1726 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1727
1728 static int
1729 qty_sugg_compare (q1, q2)
1730 int q1, q2;
1731 {
1732 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1733
1734 if (tem != 0)
1735 return tem;
1736
1737 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1738 }
1739
1740 static int
1741 qty_sugg_compare_1 (q1p, q2p)
1742 const GENERIC_PTR q1p;
1743 const GENERIC_PTR q2p;
1744 {
1745 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1746 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1747
1748 if (tem != 0)
1749 return tem;
1750
1751 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1752 if (tem != 0)
1753 return tem;
1754
1755 /* If qtys are equally good, sort by qty number,
1756 so that the results of qsort leave nothing to chance. */
1757 return q1 - q2;
1758 }
1759
1760 #undef QTY_CMP_SUGG
1761 #undef QTY_CMP_PRI
1762 \f
1763 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1764 Returns 1 if have done so, or 0 if cannot.
1765
1766 Combining registers means marking them as having the same quantity
1767 and adjusting the offsets within the quantity if either of
1768 them is a SUBREG).
1769
1770 We don't actually combine a hard reg with a pseudo; instead
1771 we just record the hard reg as the suggestion for the pseudo's quantity.
1772 If we really combined them, we could lose if the pseudo lives
1773 across an insn that clobbers the hard reg (eg, movstr).
1774
1775 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1776 there is no REG_DEAD note on INSN. This occurs during the processing
1777 of REG_NO_CONFLICT blocks.
1778
1779 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1780 SETREG or if the input and output must share a register.
1781 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1782
1783 There are elaborate checks for the validity of combining. */
1784
1785
1786 static int
1787 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1788 rtx usedreg, setreg;
1789 int may_save_copy;
1790 int insn_number;
1791 rtx insn;
1792 int already_dead;
1793 {
1794 register int ureg, sreg;
1795 register int offset = 0;
1796 int usize, ssize;
1797 register int sqty;
1798
1799 /* Determine the numbers and sizes of registers being used. If a subreg
1800 is present that does not change the entire register, don't consider
1801 this a copy insn. */
1802
1803 while (GET_CODE (usedreg) == SUBREG)
1804 {
1805 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1806 may_save_copy = 0;
1807 offset += SUBREG_WORD (usedreg);
1808 usedreg = SUBREG_REG (usedreg);
1809 }
1810 if (GET_CODE (usedreg) != REG)
1811 return 0;
1812 ureg = REGNO (usedreg);
1813 usize = REG_SIZE (usedreg);
1814
1815 while (GET_CODE (setreg) == SUBREG)
1816 {
1817 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1818 may_save_copy = 0;
1819 offset -= SUBREG_WORD (setreg);
1820 setreg = SUBREG_REG (setreg);
1821 }
1822 if (GET_CODE (setreg) != REG)
1823 return 0;
1824 sreg = REGNO (setreg);
1825 ssize = REG_SIZE (setreg);
1826
1827 /* If UREG is a pseudo-register that hasn't already been assigned a
1828 quantity number, it means that it is not local to this block or dies
1829 more than once. In either event, we can't do anything with it. */
1830 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1831 /* Do not combine registers unless one fits within the other. */
1832 || (offset > 0 && usize + offset > ssize)
1833 || (offset < 0 && usize + offset < ssize)
1834 /* Do not combine with a smaller already-assigned object
1835 if that smaller object is already combined with something bigger. */
1836 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1837 && usize < qty_size[reg_qty[ureg]])
1838 /* Can't combine if SREG is not a register we can allocate. */
1839 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1840 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1841 These have already been taken care of. This probably wouldn't
1842 combine anyway, but don't take any chances. */
1843 || (ureg >= FIRST_PSEUDO_REGISTER
1844 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1845 /* Don't tie something to itself. In most cases it would make no
1846 difference, but it would screw up if the reg being tied to itself
1847 also dies in this insn. */
1848 || ureg == sreg
1849 /* Don't try to connect two different hardware registers. */
1850 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1851 /* Don't connect two different machine modes if they have different
1852 implications as to which registers may be used. */
1853 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1854 return 0;
1855
1856 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1857 qty_phys_sugg for the pseudo instead of tying them.
1858
1859 Return "failure" so that the lifespan of UREG is terminated here;
1860 that way the two lifespans will be disjoint and nothing will prevent
1861 the pseudo reg from being given this hard reg. */
1862
1863 if (ureg < FIRST_PSEUDO_REGISTER)
1864 {
1865 /* Allocate a quantity number so we have a place to put our
1866 suggestions. */
1867 if (reg_qty[sreg] == -2)
1868 reg_is_born (setreg, 2 * insn_number);
1869
1870 if (reg_qty[sreg] >= 0)
1871 {
1872 if (may_save_copy
1873 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1874 {
1875 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1876 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1877 }
1878 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1879 {
1880 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1881 qty_phys_num_sugg[reg_qty[sreg]]++;
1882 }
1883 }
1884 return 0;
1885 }
1886
1887 /* Similarly for SREG a hard register and UREG a pseudo register. */
1888
1889 if (sreg < FIRST_PSEUDO_REGISTER)
1890 {
1891 if (may_save_copy
1892 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1893 {
1894 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1895 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1896 }
1897 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1898 {
1899 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1900 qty_phys_num_sugg[reg_qty[ureg]]++;
1901 }
1902 return 0;
1903 }
1904
1905 /* At this point we know that SREG and UREG are both pseudos.
1906 Do nothing if SREG already has a quantity or is a register that we
1907 don't allocate. */
1908 if (reg_qty[sreg] >= -1
1909 /* If we are not going to let any regs live across calls,
1910 don't tie a call-crossing reg to a non-call-crossing reg. */
1911 || (current_function_has_nonlocal_label
1912 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1913 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1914 return 0;
1915
1916 /* We don't already know about SREG, so tie it to UREG
1917 if this is the last use of UREG, provided the classes they want
1918 are compatible. */
1919
1920 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1921 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1922 {
1923 /* Add SREG to UREG's quantity. */
1924 sqty = reg_qty[ureg];
1925 reg_qty[sreg] = sqty;
1926 reg_offset[sreg] = reg_offset[ureg] + offset;
1927 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1928 qty_first_reg[sqty] = sreg;
1929
1930 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1931 update_qty_class (sqty, sreg);
1932
1933 /* Update info about quantity SQTY. */
1934 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1935 qty_n_refs[sqty] += REG_N_REFS (sreg);
1936 if (usize < ssize)
1937 {
1938 register int i;
1939
1940 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1941 reg_offset[i] -= offset;
1942
1943 qty_size[sqty] = ssize;
1944 qty_mode[sqty] = GET_MODE (setreg);
1945 }
1946 }
1947 else
1948 return 0;
1949
1950 return 1;
1951 }
1952 \f
1953 /* Return 1 if the preferred class of REG allows it to be tied
1954 to a quantity or register whose class is CLASS.
1955 True if REG's reg class either contains or is contained in CLASS. */
1956
1957 static int
1958 reg_meets_class_p (reg, class)
1959 int reg;
1960 enum reg_class class;
1961 {
1962 register enum reg_class rclass = reg_preferred_class (reg);
1963 return (reg_class_subset_p (rclass, class)
1964 || reg_class_subset_p (class, rclass));
1965 }
1966
1967 /* Return 1 if the two specified classes have registers in common.
1968 If CALL_SAVED, then consider only call-saved registers. */
1969
1970 static int
1971 reg_classes_overlap_p (c1, c2, call_saved)
1972 register enum reg_class c1;
1973 register enum reg_class c2;
1974 int call_saved;
1975 {
1976 HARD_REG_SET c;
1977 int i;
1978
1979 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1980 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1981
1982 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1983 if (TEST_HARD_REG_BIT (c, i)
1984 && (! call_saved || ! call_used_regs[i]))
1985 return 1;
1986
1987 return 0;
1988 }
1989
1990 /* Update the class of QTY assuming that REG is being tied to it. */
1991
1992 static void
1993 update_qty_class (qty, reg)
1994 int qty;
1995 int reg;
1996 {
1997 enum reg_class rclass = reg_preferred_class (reg);
1998 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1999 qty_min_class[qty] = rclass;
2000
2001 rclass = reg_alternate_class (reg);
2002 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
2003 qty_alternate_class[qty] = rclass;
2004
2005 if (REG_CHANGES_SIZE (reg))
2006 qty_changes_size[qty] = 1;
2007 }
2008 \f
2009 /* Handle something which alters the value of an rtx REG.
2010
2011 REG is whatever is set or clobbered. SETTER is the rtx that
2012 is modifying the register.
2013
2014 If it is not really a register, we do nothing.
2015 The file-global variables `this_insn' and `this_insn_number'
2016 carry info from `block_alloc'. */
2017
2018 static void
2019 reg_is_set (reg, setter)
2020 rtx reg;
2021 rtx setter;
2022 {
2023 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2024 a hard register. These may actually not exist any more. */
2025
2026 if (GET_CODE (reg) != SUBREG
2027 && GET_CODE (reg) != REG)
2028 return;
2029
2030 /* Mark this register as being born. If it is used in a CLOBBER, mark
2031 it as being born halfway between the previous insn and this insn so that
2032 it conflicts with our inputs but not the outputs of the previous insn. */
2033
2034 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2035 }
2036 \f
2037 /* Handle beginning of the life of register REG.
2038 BIRTH is the index at which this is happening. */
2039
2040 static void
2041 reg_is_born (reg, birth)
2042 rtx reg;
2043 int birth;
2044 {
2045 register int regno;
2046
2047 if (GET_CODE (reg) == SUBREG)
2048 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
2049 else
2050 regno = REGNO (reg);
2051
2052 if (regno < FIRST_PSEUDO_REGISTER)
2053 {
2054 mark_life (regno, GET_MODE (reg), 1);
2055
2056 /* If the register was to have been born earlier that the present
2057 insn, mark it as live where it is actually born. */
2058 if (birth < 2 * this_insn_number)
2059 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2060 }
2061 else
2062 {
2063 if (reg_qty[regno] == -2)
2064 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2065
2066 /* If this register has a quantity number, show that it isn't dead. */
2067 if (reg_qty[regno] >= 0)
2068 qty_death[reg_qty[regno]] = -1;
2069 }
2070 }
2071
2072 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2073 REG is an output that is dying (i.e., it is never used), otherwise it
2074 is an input (the normal case).
2075 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2076
2077 static void
2078 wipe_dead_reg (reg, output_p)
2079 register rtx reg;
2080 int output_p;
2081 {
2082 register int regno = REGNO (reg);
2083
2084 /* If this insn has multiple results,
2085 and the dead reg is used in one of the results,
2086 extend its life to after this insn,
2087 so it won't get allocated together with any other result of this insn. */
2088 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2089 && !single_set (this_insn))
2090 {
2091 int i;
2092 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2093 {
2094 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2095 if (GET_CODE (set) == SET
2096 && GET_CODE (SET_DEST (set)) != REG
2097 && !rtx_equal_p (reg, SET_DEST (set))
2098 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2099 output_p = 1;
2100 }
2101 }
2102
2103 /* If this register is used in an auto-increment address, then extend its
2104 life to after this insn, so that it won't get allocated together with
2105 the result of this insn. */
2106 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2107 output_p = 1;
2108
2109 if (regno < FIRST_PSEUDO_REGISTER)
2110 {
2111 mark_life (regno, GET_MODE (reg), 0);
2112
2113 /* If a hard register is dying as an output, mark it as in use at
2114 the beginning of this insn (the above statement would cause this
2115 not to happen). */
2116 if (output_p)
2117 post_mark_life (regno, GET_MODE (reg), 1,
2118 2 * this_insn_number, 2 * this_insn_number+ 1);
2119 }
2120
2121 else if (reg_qty[regno] >= 0)
2122 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
2123 }
2124 \f
2125 /* Find a block of SIZE words of hard regs in reg_class CLASS
2126 that can hold something of machine-mode MODE
2127 (but actually we test only the first of the block for holding MODE)
2128 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2129 and return the number of the first of them.
2130 Return -1 if such a block cannot be found.
2131 If QTY crosses calls, insist on a register preserved by calls,
2132 unless ACCEPT_CALL_CLOBBERED is nonzero.
2133
2134 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2135 register is available. If not, return -1. */
2136
2137 static int
2138 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
2139 born_index, dead_index)
2140 enum reg_class class;
2141 enum machine_mode mode;
2142 int qty;
2143 int accept_call_clobbered;
2144 int just_try_suggested;
2145 int born_index, dead_index;
2146 {
2147 register int i, ins;
2148 #ifdef HARD_REG_SET
2149 register /* Declare it register if it's a scalar. */
2150 #endif
2151 HARD_REG_SET used, first_used;
2152 #ifdef ELIMINABLE_REGS
2153 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2154 #endif
2155
2156 /* Validate our parameters. */
2157 if (born_index < 0 || born_index > dead_index)
2158 abort ();
2159
2160 /* Don't let a pseudo live in a reg across a function call
2161 if we might get a nonlocal goto. */
2162 if (current_function_has_nonlocal_label
2163 && qty_n_calls_crossed[qty] > 0)
2164 return -1;
2165
2166 if (accept_call_clobbered)
2167 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2168 else if (qty_n_calls_crossed[qty] == 0)
2169 COPY_HARD_REG_SET (used, fixed_reg_set);
2170 else
2171 COPY_HARD_REG_SET (used, call_used_reg_set);
2172
2173 if (accept_call_clobbered)
2174 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2175
2176 for (ins = born_index; ins < dead_index; ins++)
2177 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2178
2179 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2180
2181 /* Don't use the frame pointer reg in local-alloc even if
2182 we may omit the frame pointer, because if we do that and then we
2183 need a frame pointer, reload won't know how to move the pseudo
2184 to another hard reg. It can move only regs made by global-alloc.
2185
2186 This is true of any register that can be eliminated. */
2187 #ifdef ELIMINABLE_REGS
2188 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
2189 SET_HARD_REG_BIT (used, eliminables[i].from);
2190 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2191 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2192 that it might be eliminated into. */
2193 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2194 #endif
2195 #else
2196 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2197 #endif
2198
2199 #ifdef CLASS_CANNOT_CHANGE_SIZE
2200 if (qty_changes_size[qty])
2201 IOR_HARD_REG_SET (used,
2202 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2203 #endif
2204
2205 /* Normally, the registers that can be used for the first register in
2206 a multi-register quantity are the same as those that can be used for
2207 subsequent registers. However, if just trying suggested registers,
2208 restrict our consideration to them. If there are copy-suggested
2209 register, try them. Otherwise, try the arithmetic-suggested
2210 registers. */
2211 COPY_HARD_REG_SET (first_used, used);
2212
2213 if (just_try_suggested)
2214 {
2215 if (qty_phys_num_copy_sugg[qty] != 0)
2216 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2217 else
2218 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2219 }
2220
2221 /* If all registers are excluded, we can't do anything. */
2222 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2223
2224 /* If at least one would be suitable, test each hard reg. */
2225
2226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2227 {
2228 #ifdef REG_ALLOC_ORDER
2229 int regno = reg_alloc_order[i];
2230 #else
2231 int regno = i;
2232 #endif
2233 if (! TEST_HARD_REG_BIT (first_used, regno)
2234 && HARD_REGNO_MODE_OK (regno, mode))
2235 {
2236 register int j;
2237 register int size1 = HARD_REGNO_NREGS (regno, mode);
2238 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2239 if (j == size1)
2240 {
2241 /* Mark that this register is in use between its birth and death
2242 insns. */
2243 post_mark_life (regno, mode, 1, born_index, dead_index);
2244 return regno;
2245 }
2246 #ifndef REG_ALLOC_ORDER
2247 i += j; /* Skip starting points we know will lose */
2248 #endif
2249 }
2250 }
2251
2252 fail:
2253
2254 /* If we are just trying suggested register, we have just tried copy-
2255 suggested registers, and there are arithmetic-suggested registers,
2256 try them. */
2257
2258 /* If it would be profitable to allocate a call-clobbered register
2259 and save and restore it around calls, do that. */
2260 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2261 && qty_phys_num_sugg[qty] != 0)
2262 {
2263 /* Don't try the copy-suggested regs again. */
2264 qty_phys_num_copy_sugg[qty] = 0;
2265 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2266 born_index, dead_index);
2267 }
2268
2269 /* We need not check to see if the current function has nonlocal
2270 labels because we don't put any pseudos that are live over calls in
2271 registers in that case. */
2272
2273 if (! accept_call_clobbered
2274 && flag_caller_saves
2275 && ! just_try_suggested
2276 && qty_n_calls_crossed[qty] != 0
2277 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2278 {
2279 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2280 if (i >= 0)
2281 caller_save_needed = 1;
2282 return i;
2283 }
2284 return -1;
2285 }
2286 \f
2287 /* Mark that REGNO with machine-mode MODE is live starting from the current
2288 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2289 is zero). */
2290
2291 static void
2292 mark_life (regno, mode, life)
2293 register int regno;
2294 enum machine_mode mode;
2295 int life;
2296 {
2297 register int j = HARD_REGNO_NREGS (regno, mode);
2298 if (life)
2299 while (--j >= 0)
2300 SET_HARD_REG_BIT (regs_live, regno + j);
2301 else
2302 while (--j >= 0)
2303 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2304 }
2305
2306 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2307 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2308 to insn number DEATH (exclusive). */
2309
2310 static void
2311 post_mark_life (regno, mode, life, birth, death)
2312 int regno;
2313 enum machine_mode mode;
2314 int life, birth, death;
2315 {
2316 register int j = HARD_REGNO_NREGS (regno, mode);
2317 #ifdef HARD_REG_SET
2318 register /* Declare it register if it's a scalar. */
2319 #endif
2320 HARD_REG_SET this_reg;
2321
2322 CLEAR_HARD_REG_SET (this_reg);
2323 while (--j >= 0)
2324 SET_HARD_REG_BIT (this_reg, regno + j);
2325
2326 if (life)
2327 while (birth < death)
2328 {
2329 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2330 birth++;
2331 }
2332 else
2333 while (birth < death)
2334 {
2335 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2336 birth++;
2337 }
2338 }
2339 \f
2340 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2341 is the register being clobbered, and R1 is a register being used in
2342 the equivalent expression.
2343
2344 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2345 in which it is used, return 1.
2346
2347 Otherwise, return 0. */
2348
2349 static int
2350 no_conflict_p (insn, r0, r1)
2351 rtx insn, r0, r1;
2352 {
2353 int ok = 0;
2354 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2355 rtx p, last;
2356
2357 /* If R1 is a hard register, return 0 since we handle this case
2358 when we scan the insns that actually use it. */
2359
2360 if (note == 0
2361 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2362 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2363 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2364 return 0;
2365
2366 last = XEXP (note, 0);
2367
2368 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2369 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2370 {
2371 if (find_reg_note (p, REG_DEAD, r1))
2372 ok = 1;
2373
2374 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2375 some earlier optimization pass has inserted instructions into
2376 the sequence, and it is not safe to perform this optimization.
2377 Note that emit_no_conflict_block always ensures that this is
2378 true when these sequences are created. */
2379 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2380 return 0;
2381 }
2382
2383 return ok;
2384 }
2385 \f
2386 #ifdef REGISTER_CONSTRAINTS
2387
2388 /* Return the number of alternatives for which the constraint string P
2389 indicates that the operand must be equal to operand 0 and that no register
2390 is acceptable. */
2391
2392 static int
2393 requires_inout (p)
2394 char *p;
2395 {
2396 char c;
2397 int found_zero = 0;
2398 int reg_allowed = 0;
2399 int num_matching_alts = 0;
2400
2401 while (c = *p++)
2402 switch (c)
2403 {
2404 case '=': case '+': case '?':
2405 case '#': case '&': case '!':
2406 case '*': case '%':
2407 case '1': case '2': case '3': case '4':
2408 case 'm': case '<': case '>': case 'V': case 'o':
2409 case 'E': case 'F': case 'G': case 'H':
2410 case 's': case 'i': case 'n':
2411 case 'I': case 'J': case 'K': case 'L':
2412 case 'M': case 'N': case 'O': case 'P':
2413 #ifdef EXTRA_CONSTRAINT
2414 case 'Q': case 'R': case 'S': case 'T': case 'U':
2415 #endif
2416 case 'X':
2417 /* These don't say anything we care about. */
2418 break;
2419
2420 case ',':
2421 if (found_zero && ! reg_allowed)
2422 num_matching_alts++;
2423
2424 found_zero = reg_allowed = 0;
2425 break;
2426
2427 case '0':
2428 found_zero = 1;
2429 break;
2430
2431 case 'p':
2432 case 'g': case 'r':
2433 default:
2434 reg_allowed = 1;
2435 break;
2436 }
2437
2438 if (found_zero && ! reg_allowed)
2439 num_matching_alts++;
2440
2441 return num_matching_alts;
2442 }
2443 #endif /* REGISTER_CONSTRAINTS */
2444 \f
2445 void
2446 dump_local_alloc (file)
2447 FILE *file;
2448 {
2449 register int i;
2450 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2451 if (reg_renumber[i] != -1)
2452 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2453 }