Don't use CLASS_LIKELY_SPILLED in local-alloc
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* Information we maitain about each quantity. */
82 struct qty
83 {
84 /* The number of refs to quantity Q. */
85
86 int n_refs;
87
88 /* Insn number (counting from head of basic block)
89 where quantity Q was born. -1 if birth has not been recorded. */
90
91 int birth;
92
93 /* Insn number (counting from head of basic block)
94 where given quantity died. Due to the way tying is done,
95 and the fact that we consider in this pass only regs that die but once,
96 a quantity can die only once. Each quantity's life span
97 is a set of consecutive insns. -1 if death has not been recorded. */
98
99 int death;
100
101 /* Number of words needed to hold the data in given quantity.
102 This depends on its machine mode. It is used for these purposes:
103 1. It is used in computing the relative importances of qtys,
104 which determines the order in which we look for regs for them.
105 2. It is used in rules that prevent tying several registers of
106 different sizes in a way that is geometrically impossible
107 (see combine_regs). */
108
109 int size;
110
111 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
112
113 int n_calls_crossed;
114
115 /* The register number of one pseudo register whose reg_qty value is Q.
116 This register should be the head of the chain
117 maintained in reg_next_in_qty. */
118
119 int first_reg;
120
121 /* Reg class contained in (smaller than) the preferred classes of all
122 the pseudo regs that are tied in given quantity.
123 This is the preferred class for allocating that quantity. */
124
125 enum reg_class min_class;
126
127 /* Register class within which we allocate given qty if we can't get
128 its preferred class. */
129
130 enum reg_class alternate_class;
131
132 /* This holds the mode of the registers that are tied to given qty,
133 or VOIDmode if registers with differing modes are tied together. */
134
135 enum machine_mode mode;
136
137 /* the hard reg number chosen for given quantity,
138 or -1 if none was found. */
139
140 short phys_reg;
141
142 /* Nonzero if this quantity has been used in a SUBREG in some
143 way that is illegal. */
144
145 char changes_mode;
146
147 };
148
149 static struct qty *qty;
150
151 /* These fields are kept separately to speedup their clearing. */
152
153 /* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
157
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
160
161 /* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
163
164 static HARD_REG_SET *qty_phys_copy_sugg;
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
168
169 static HARD_REG_SET *qty_phys_sugg;
170
171 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
172
173 static short *qty_phys_num_copy_sugg;
174
175 /* Element Q is the number of suggested registers in qty_phys_sugg. */
176
177 static short *qty_phys_num_sugg;
178
179 /* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty->first_reg point to the head of this chain. */
182
183 static int *reg_next_in_qty;
184
185 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
189
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
196
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
199
200 static int *reg_qty;
201
202 /* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
205
206 static char *reg_offset;
207
208 /* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
214
215 short *reg_renumber;
216
217 /* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
219
220 static HARD_REG_SET regs_live;
221
222 /* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
226
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
231
232 static HARD_REG_SET *regs_live_at;
233
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number;
237 static rtx this_insn;
238
239 /* Used to communicate changes made by update_equiv_regs to
240 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
241 found or created, so that we can keep track of what memory accesses might
242 be created later, e.g. by reload. */
243
244 static rtx *reg_equiv_replacement;
245
246 /* Used for communication between update_equiv_regs and no_equiv. */
247 static rtx *reg_equiv_init_insns;
248
249 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
250 static int recorded_label_ref;
251
252 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
253 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
254 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
255 static int contains_replace_regs PARAMS ((rtx, char *));
256 static int memref_referenced_p PARAMS ((rtx, rtx));
257 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
258 static void update_equiv_regs PARAMS ((void));
259 static void no_equiv PARAMS ((rtx, rtx, void *));
260 static void block_alloc PARAMS ((int));
261 static int qty_sugg_compare PARAMS ((int, int));
262 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
263 static int qty_compare PARAMS ((int, int));
264 static int qty_compare_1 PARAMS ((const PTR, const PTR));
265 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
266 static int reg_meets_class_p PARAMS ((int, enum reg_class));
267 static void update_qty_class PARAMS ((int, int));
268 static void reg_is_set PARAMS ((rtx, rtx, void *));
269 static void reg_is_born PARAMS ((rtx, int));
270 static void wipe_dead_reg PARAMS ((rtx, int));
271 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
272 int, int, int, int, int));
273 static void mark_life PARAMS ((int, enum machine_mode, int));
274 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
275 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
276 static int requires_inout PARAMS ((const char *));
277 \f
278 /* Allocate a new quantity (new within current basic block)
279 for register number REGNO which is born at index BIRTH
280 within the block. MODE and SIZE are info on reg REGNO. */
281
282 static void
283 alloc_qty (regno, mode, size, birth)
284 int regno;
285 enum machine_mode mode;
286 int size, birth;
287 {
288 register int qtyno = next_qty++;
289
290 reg_qty[regno] = qtyno;
291 reg_offset[regno] = 0;
292 reg_next_in_qty[regno] = -1;
293
294 qty[qtyno].first_reg = regno;
295 qty[qtyno].size = size;
296 qty[qtyno].mode = mode;
297 qty[qtyno].birth = birth;
298 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
299 qty[qtyno].min_class = reg_preferred_class (regno);
300 qty[qtyno].alternate_class = reg_alternate_class (regno);
301 qty[qtyno].n_refs = REG_N_REFS (regno);
302 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
303 }
304 \f
305 /* Main entry point of this file. */
306
307 int
308 local_alloc ()
309 {
310 register int b, i;
311 int max_qty;
312
313 /* We need to keep track of whether or not we recorded a LABEL_REF so
314 that we know if the jump optimizer needs to be rerun. */
315 recorded_label_ref = 0;
316
317 /* Leaf functions and non-leaf functions have different needs.
318 If defined, let the machine say what kind of ordering we
319 should use. */
320 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
321 ORDER_REGS_FOR_LOCAL_ALLOC;
322 #endif
323
324 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
325 registers. */
326 update_equiv_regs ();
327
328 /* This sets the maximum number of quantities we can have. Quantity
329 numbers start at zero and we can have one for each pseudo. */
330 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
331
332 /* Allocate vectors of temporary data.
333 See the declarations of these variables, above,
334 for what they mean. */
335
336 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
337 qty_phys_copy_sugg
338 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
339 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
340 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
341 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
342
343 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
344 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
345 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
346
347 /* Allocate the reg_renumber array. */
348 allocate_reg_info (max_regno, FALSE, TRUE);
349
350 /* Determine which pseudo-registers can be allocated by local-alloc.
351 In general, these are the registers used only in a single block and
352 which only die once.
353
354 We need not be concerned with which block actually uses the register
355 since we will never see it outside that block. */
356
357 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
358 {
359 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
360 reg_qty[i] = -2;
361 else
362 reg_qty[i] = -1;
363 }
364
365 /* Force loop below to initialize entire quantity array. */
366 next_qty = max_qty;
367
368 /* Allocate each block's local registers, block by block. */
369
370 for (b = 0; b < n_basic_blocks; b++)
371 {
372 /* NEXT_QTY indicates which elements of the `qty_...'
373 vectors might need to be initialized because they were used
374 for the previous block; it is set to the entire array before
375 block 0. Initialize those, with explicit loop if there are few,
376 else with bzero and bcopy. Do not initialize vectors that are
377 explicit set by `alloc_qty'. */
378
379 if (next_qty < 6)
380 {
381 for (i = 0; i < next_qty; i++)
382 {
383 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
384 qty_phys_num_copy_sugg[i] = 0;
385 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
386 qty_phys_num_sugg[i] = 0;
387 }
388 }
389 else
390 {
391 #define CLEAR(vector) \
392 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
393
394 CLEAR (qty_phys_copy_sugg);
395 CLEAR (qty_phys_num_copy_sugg);
396 CLEAR (qty_phys_sugg);
397 CLEAR (qty_phys_num_sugg);
398 }
399
400 next_qty = 0;
401
402 block_alloc (b);
403 }
404
405 free (qty);
406 free (qty_phys_copy_sugg);
407 free (qty_phys_num_copy_sugg);
408 free (qty_phys_sugg);
409 free (qty_phys_num_sugg);
410
411 free (reg_qty);
412 free (reg_offset);
413 free (reg_next_in_qty);
414
415 return recorded_label_ref;
416 }
417 \f
418 /* Depth of loops we are in while in update_equiv_regs. */
419 static int loop_depth;
420
421 /* Used for communication between the following two functions: contains
422 a MEM that we wish to ensure remains unchanged. */
423 static rtx equiv_mem;
424
425 /* Set nonzero if EQUIV_MEM is modified. */
426 static int equiv_mem_modified;
427
428 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
429 Called via note_stores. */
430
431 static void
432 validate_equiv_mem_from_store (dest, set, data)
433 rtx dest;
434 rtx set ATTRIBUTE_UNUSED;
435 void *data ATTRIBUTE_UNUSED;
436 {
437 if ((GET_CODE (dest) == REG
438 && reg_overlap_mentioned_p (dest, equiv_mem))
439 || (GET_CODE (dest) == MEM
440 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
441 equiv_mem_modified = 1;
442 }
443
444 /* Verify that no store between START and the death of REG invalidates
445 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
446 by storing into an overlapping memory location, or with a non-const
447 CALL_INSN.
448
449 Return 1 if MEMREF remains valid. */
450
451 static int
452 validate_equiv_mem (start, reg, memref)
453 rtx start;
454 rtx reg;
455 rtx memref;
456 {
457 rtx insn;
458 rtx note;
459
460 equiv_mem = memref;
461 equiv_mem_modified = 0;
462
463 /* If the memory reference has side effects or is volatile, it isn't a
464 valid equivalence. */
465 if (side_effects_p (memref))
466 return 0;
467
468 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
469 {
470 if (! INSN_P (insn))
471 continue;
472
473 if (find_reg_note (insn, REG_DEAD, reg))
474 return 1;
475
476 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
477 && ! CONST_CALL_P (insn))
478 return 0;
479
480 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
481
482 /* If a register mentioned in MEMREF is modified via an
483 auto-increment, we lose the equivalence. Do the same if one
484 dies; although we could extend the life, it doesn't seem worth
485 the trouble. */
486
487 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
488 if ((REG_NOTE_KIND (note) == REG_INC
489 || REG_NOTE_KIND (note) == REG_DEAD)
490 && GET_CODE (XEXP (note, 0)) == REG
491 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
492 return 0;
493 }
494
495 return 0;
496 }
497
498 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
499
500 static int
501 contains_replace_regs (x, reg_equiv_replace)
502 rtx x;
503 char *reg_equiv_replace;
504 {
505 int i, j;
506 const char *fmt;
507 enum rtx_code code = GET_CODE (x);
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case PC:
517 case CC0:
518 case HIGH:
519 case LO_SUM:
520 return 0;
521
522 case REG:
523 return reg_equiv_replace[REGNO (x)];
524
525 default:
526 break;
527 }
528
529 fmt = GET_RTX_FORMAT (code);
530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
531 switch (fmt[i])
532 {
533 case 'e':
534 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
535 return 1;
536 break;
537 case 'E':
538 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
539 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
540 return 1;
541 break;
542 }
543
544 return 0;
545 }
546 \f
547 /* TRUE if X references a memory location that would be affected by a store
548 to MEMREF. */
549
550 static int
551 memref_referenced_p (memref, x)
552 rtx x;
553 rtx memref;
554 {
555 int i, j;
556 const char *fmt;
557 enum rtx_code code = GET_CODE (x);
558
559 switch (code)
560 {
561 case CONST_INT:
562 case CONST:
563 case LABEL_REF:
564 case SYMBOL_REF:
565 case CONST_DOUBLE:
566 case PC:
567 case CC0:
568 case HIGH:
569 case LO_SUM:
570 return 0;
571
572 case REG:
573 return (reg_equiv_replacement[REGNO (x)]
574 && memref_referenced_p (memref,
575 reg_equiv_replacement[REGNO (x)]));
576
577 case MEM:
578 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
579 return 1;
580 break;
581
582 case SET:
583 /* If we are setting a MEM, it doesn't count (its address does), but any
584 other SET_DEST that has a MEM in it is referencing the MEM. */
585 if (GET_CODE (SET_DEST (x)) == MEM)
586 {
587 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
588 return 1;
589 }
590 else if (memref_referenced_p (memref, SET_DEST (x)))
591 return 1;
592
593 return memref_referenced_p (memref, SET_SRC (x));
594
595 default:
596 break;
597 }
598
599 fmt = GET_RTX_FORMAT (code);
600 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
601 switch (fmt[i])
602 {
603 case 'e':
604 if (memref_referenced_p (memref, XEXP (x, i)))
605 return 1;
606 break;
607 case 'E':
608 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
609 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
610 return 1;
611 break;
612 }
613
614 return 0;
615 }
616
617 /* TRUE if some insn in the range (START, END] references a memory location
618 that would be affected by a store to MEMREF. */
619
620 static int
621 memref_used_between_p (memref, start, end)
622 rtx memref;
623 rtx start;
624 rtx end;
625 {
626 rtx insn;
627
628 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
629 insn = NEXT_INSN (insn))
630 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
631 return 1;
632
633 return 0;
634 }
635 \f
636 /* Return nonzero if the rtx X is invariant over the current function. */
637 int
638 function_invariant_p (x)
639 rtx x;
640 {
641 if (CONSTANT_P (x))
642 return 1;
643 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
644 return 1;
645 if (GET_CODE (x) == PLUS
646 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
647 && CONSTANT_P (XEXP (x, 1)))
648 return 1;
649 return 0;
650 }
651
652 /* Find registers that are equivalent to a single value throughout the
653 compilation (either because they can be referenced in memory or are set once
654 from a single constant). Lower their priority for a register.
655
656 If such a register is only referenced once, try substituting its value
657 into the using insn. If it succeeds, we can eliminate the register
658 completely. */
659
660 static void
661 update_equiv_regs ()
662 {
663 /* Set when an attempt should be made to replace a register with the
664 associated reg_equiv_replacement entry at the end of this function. */
665 char *reg_equiv_replace;
666 rtx insn;
667 int block, depth;
668
669 reg_equiv_replace = (char *) xcalloc (max_regno, sizeof *reg_equiv_replace);
670 reg_equiv_init_insns = (rtx *) xcalloc (max_regno, sizeof (rtx));
671 reg_equiv_replacement = (rtx *) xcalloc (max_regno, sizeof (rtx));
672
673 init_alias_analysis ();
674
675 loop_depth = 0;
676
677 /* Scan the insns and find which registers have equivalences. Do this
678 in a separate scan of the insns because (due to -fcse-follow-jumps)
679 a register can be set below its use. */
680 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
681 {
682 rtx note;
683 rtx set;
684 rtx dest, src;
685 int regno;
686
687 if (GET_CODE (insn) == NOTE)
688 {
689 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
690 loop_depth++;
691 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
692 loop_depth--;
693 }
694
695 if (! INSN_P (insn))
696 continue;
697
698 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
699 if (REG_NOTE_KIND (note) == REG_INC)
700 no_equiv (XEXP (note, 0), note, NULL);
701
702 set = single_set (insn);
703
704 /* If this insn contains more (or less) than a single SET,
705 only mark all destinations as having no known equivalence. */
706 if (set == 0)
707 {
708 note_stores (PATTERN (insn), no_equiv, NULL);
709 continue;
710 }
711 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
712 {
713 int i;
714
715 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
716 {
717 rtx part = XVECEXP (PATTERN (insn), 0, i);
718 if (part != set)
719 note_stores (part, no_equiv, NULL);
720 }
721 }
722
723 dest = SET_DEST (set);
724 src = SET_SRC (set);
725
726 /* If this sets a MEM to the contents of a REG that is only used
727 in a single basic block, see if the register is always equivalent
728 to that memory location and if moving the store from INSN to the
729 insn that set REG is safe. If so, put a REG_EQUIV note on the
730 initializing insn.
731
732 Don't add a REG_EQUIV note if the insn already has one. The existing
733 REG_EQUIV is likely more useful than the one we are adding.
734
735 If one of the regs in the address is marked as reg_equiv_replace,
736 then we can't add this REG_EQUIV note. The reg_equiv_replace
737 optimization may move the set of this register immediately before
738 insn, which puts it after reg_equiv_init_insns[regno], and hence
739 the mention in the REG_EQUIV note would be to an uninitialized
740 pseudo. */
741 /* ????? This test isn't good enough; we might see a MEM with a use of
742 a pseudo register before we see its setting insn that will cause
743 reg_equiv_replace for that pseudo to be set.
744 Equivalences to MEMs should be made in another pass, after the
745 reg_equiv_replace information has been gathered. */
746
747 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
748 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
749 && REG_BASIC_BLOCK (regno) >= 0
750 && REG_N_SETS (regno) == 1
751 && reg_equiv_init_insns[regno] != 0
752 && reg_equiv_init_insns[regno] != const0_rtx
753 && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
754 REG_EQUIV, NULL_RTX)
755 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
756 {
757 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
758 if (validate_equiv_mem (init_insn, src, dest)
759 && ! memref_used_between_p (dest, init_insn, insn))
760 REG_NOTES (init_insn)
761 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
762 }
763
764 /* We only handle the case of a pseudo register being set
765 once, or always to the same value. */
766 /* ??? The mn10200 port breaks if we add equivalences for
767 values that need an ADDRESS_REGS register and set them equivalent
768 to a MEM of a pseudo. The actual problem is in the over-conservative
769 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
770 calculate_needs, but we traditionally work around this problem
771 here by rejecting equivalences when the destination is in a register
772 that's likely spilled. This is fragile, of course, since the
773 preferred class of a pseudo depends on all instructions that set
774 or use it. */
775
776 if (GET_CODE (dest) != REG
777 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
778 || reg_equiv_init_insns[regno] == const0_rtx
779 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
780 && GET_CODE (src) == MEM))
781 {
782 /* This might be seting a SUBREG of a pseudo, a pseudo that is
783 also set somewhere else to a constant. */
784 note_stores (set, no_equiv, NULL);
785 continue;
786 }
787
788 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
789
790 if (REG_N_SETS (regno) != 1
791 && (! note
792 || ! function_invariant_p (XEXP (note, 0))
793 || (reg_equiv_replacement[regno]
794 && ! rtx_equal_p (XEXP (note, 0),
795 reg_equiv_replacement[regno]))))
796 {
797 no_equiv (dest, set, NULL);
798 continue;
799 }
800 /* Record this insn as initializing this register. */
801 reg_equiv_init_insns[regno]
802 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
803
804 /* If this register is known to be equal to a constant, record that
805 it is always equivalent to the constant. */
806 if (note && function_invariant_p (XEXP (note, 0)))
807 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
808
809 /* If this insn introduces a "constant" register, decrease the priority
810 of that register. Record this insn if the register is only used once
811 more and the equivalence value is the same as our source.
812
813 The latter condition is checked for two reasons: First, it is an
814 indication that it may be more efficient to actually emit the insn
815 as written (if no registers are available, reload will substitute
816 the equivalence). Secondly, it avoids problems with any registers
817 dying in this insn whose death notes would be missed.
818
819 If we don't have a REG_EQUIV note, see if this insn is loading
820 a register used only in one basic block from a MEM. If so, and the
821 MEM remains unchanged for the life of the register, add a REG_EQUIV
822 note. */
823
824 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
825
826 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
827 && GET_CODE (SET_SRC (set)) == MEM
828 && validate_equiv_mem (insn, dest, SET_SRC (set)))
829 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
830 REG_NOTES (insn));
831
832 if (note)
833 {
834 int regno = REGNO (dest);
835
836 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
837 We might end up substituting the LABEL_REF for uses of the
838 pseudo here or later. That kind of transformation may turn an
839 indirect jump into a direct jump, in which case we must rerun the
840 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
841 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
842 || (GET_CODE (XEXP (note, 0)) == CONST
843 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
844 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
845 == LABEL_REF)))
846 recorded_label_ref = 1;
847
848 reg_equiv_replacement[regno] = XEXP (note, 0);
849
850 /* Don't mess with things live during setjmp. */
851 if (REG_LIVE_LENGTH (regno) >= 0)
852 {
853 /* Note that the statement below does not affect the priority
854 in local-alloc! */
855 REG_LIVE_LENGTH (regno) *= 2;
856
857
858 /* If the register is referenced exactly twice, meaning it is
859 set once and used once, indicate that the reference may be
860 replaced by the equivalence we computed above. If the
861 register is only used in one basic block, this can't succeed
862 or combine would have done it.
863
864 It would be nice to use "loop_depth * 2" in the compare
865 below. Unfortunately, LOOP_DEPTH need not be constant within
866 a basic block so this would be too complicated.
867
868 This case normally occurs when a parameter is read from
869 memory and then used exactly once, not in a loop. */
870
871 if (REG_N_REFS (regno) == 2
872 && REG_BASIC_BLOCK (regno) < 0
873 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
874 reg_equiv_replace[regno] = 1;
875 }
876 }
877 }
878
879 /* Now scan all regs killed in an insn to see if any of them are
880 registers only used that once. If so, see if we can replace the
881 reference with the equivalent from. If we can, delete the
882 initializing reference and this register will go away. If we
883 can't replace the reference, and the instruction is not in a
884 loop, then move the register initialization just before the use,
885 so that they are in the same basic block. */
886 block = -1;
887 depth = 0;
888 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
889 {
890 rtx link;
891
892 /* Keep track of which basic block we are in. */
893 if (block + 1 < n_basic_blocks
894 && BLOCK_HEAD (block + 1) == insn)
895 ++block;
896
897 if (! INSN_P (insn))
898 {
899 if (GET_CODE (insn) == NOTE)
900 {
901 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
902 ++depth;
903 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
904 {
905 --depth;
906 if (depth < 0)
907 abort ();
908 }
909 }
910
911 continue;
912 }
913
914 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
915 {
916 if (REG_NOTE_KIND (link) == REG_DEAD
917 /* Make sure this insn still refers to the register. */
918 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
919 {
920 int regno = REGNO (XEXP (link, 0));
921 rtx equiv_insn;
922
923 if (! reg_equiv_replace[regno])
924 continue;
925
926 /* reg_equiv_replace[REGNO] gets set only when
927 REG_N_REFS[REGNO] is 2, i.e. the register is set
928 once and used once. (If it were only set, but not used,
929 flow would have deleted the setting insns.) Hence
930 there can only be one insn in reg_equiv_init_insns. */
931 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
932
933 if (validate_replace_rtx (regno_reg_rtx[regno],
934 reg_equiv_replacement[regno], insn))
935 {
936 remove_death (regno, insn);
937 REG_N_REFS (regno) = 0;
938 PUT_CODE (equiv_insn, NOTE);
939 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
940 NOTE_SOURCE_FILE (equiv_insn) = 0;
941 }
942 /* If we aren't in a loop, and there are no calls in
943 INSN or in the initialization of the register, then
944 move the initialization of the register to just
945 before INSN. Update the flow information. */
946 else if (depth == 0
947 && GET_CODE (equiv_insn) == INSN
948 && GET_CODE (insn) == INSN
949 && REG_BASIC_BLOCK (regno) < 0)
950 {
951 int l;
952
953 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
954 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
955 REG_NOTES (equiv_insn) = 0;
956
957 PUT_CODE (equiv_insn, NOTE);
958 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
959 NOTE_SOURCE_FILE (equiv_insn) = 0;
960
961 if (block < 0)
962 REG_BASIC_BLOCK (regno) = 0;
963 else
964 REG_BASIC_BLOCK (regno) = block;
965 REG_N_CALLS_CROSSED (regno) = 0;
966 REG_LIVE_LENGTH (regno) = 2;
967
968 if (block >= 0 && insn == BLOCK_HEAD (block))
969 BLOCK_HEAD (block) = PREV_INSN (insn);
970
971 for (l = 0; l < n_basic_blocks; l++)
972 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
973 regno);
974 }
975 }
976 }
977 }
978
979 /* Clean up. */
980 end_alias_analysis ();
981 free (reg_equiv_replace);
982 free (reg_equiv_init_insns);
983 free (reg_equiv_replacement);
984 }
985
986 /* Mark REG as having no known equivalence.
987 Some instructions might have been proceessed before and furnished
988 with REG_EQUIV notes for this register; these notes will have to be
989 removed.
990 STORE is the piece of RTL that does the non-constant / conflicting
991 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
992 but needs to be there because this function is called from note_stores. */
993 static void
994 no_equiv (reg, store, data)
995 rtx reg, store ATTRIBUTE_UNUSED;
996 void *data ATTRIBUTE_UNUSED;
997 {
998 int regno;
999 rtx list;
1000
1001 if (GET_CODE (reg) != REG)
1002 return;
1003 regno = REGNO (reg);
1004 list = reg_equiv_init_insns[regno];
1005 if (list == const0_rtx)
1006 return;
1007 for (; list; list = XEXP (list, 1))
1008 {
1009 rtx insn = XEXP (list, 0);
1010 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1011 }
1012 reg_equiv_init_insns[regno] = const0_rtx;
1013 reg_equiv_replacement[regno] = NULL_RTX;
1014 }
1015 \f
1016 /* Allocate hard regs to the pseudo regs used only within block number B.
1017 Only the pseudos that die but once can be handled. */
1018
1019 static void
1020 block_alloc (b)
1021 int b;
1022 {
1023 register int i, q;
1024 register rtx insn;
1025 rtx note;
1026 int insn_number = 0;
1027 int insn_count = 0;
1028 int max_uid = get_max_uid ();
1029 int *qty_order;
1030 int no_conflict_combined_regno = -1;
1031
1032 /* Count the instructions in the basic block. */
1033
1034 insn = BLOCK_END (b);
1035 while (1)
1036 {
1037 if (GET_CODE (insn) != NOTE)
1038 if (++insn_count > max_uid)
1039 abort ();
1040 if (insn == BLOCK_HEAD (b))
1041 break;
1042 insn = PREV_INSN (insn);
1043 }
1044
1045 /* +2 to leave room for a post_mark_life at the last insn and for
1046 the birth of a CLOBBER in the first insn. */
1047 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1048 sizeof (HARD_REG_SET));
1049
1050 /* Initialize table of hardware registers currently live. */
1051
1052 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1053
1054 /* This loop scans the instructions of the basic block
1055 and assigns quantities to registers.
1056 It computes which registers to tie. */
1057
1058 insn = BLOCK_HEAD (b);
1059 while (1)
1060 {
1061 if (GET_CODE (insn) != NOTE)
1062 insn_number++;
1063
1064 if (INSN_P (insn))
1065 {
1066 register rtx link, set;
1067 register int win = 0;
1068 register rtx r0, r1 = NULL_RTX;
1069 int combined_regno = -1;
1070 int i;
1071
1072 this_insn_number = insn_number;
1073 this_insn = insn;
1074
1075 extract_insn (insn);
1076 which_alternative = -1;
1077
1078 /* Is this insn suitable for tying two registers?
1079 If so, try doing that.
1080 Suitable insns are those with at least two operands and where
1081 operand 0 is an output that is a register that is not
1082 earlyclobber.
1083
1084 We can tie operand 0 with some operand that dies in this insn.
1085 First look for operands that are required to be in the same
1086 register as operand 0. If we find such, only try tying that
1087 operand or one that can be put into that operand if the
1088 operation is commutative. If we don't find an operand
1089 that is required to be in the same register as operand 0,
1090 we can tie with any operand.
1091
1092 Subregs in place of regs are also ok.
1093
1094 If tying is done, WIN is set nonzero. */
1095
1096 if (optimize
1097 && recog_data.n_operands > 1
1098 && recog_data.constraints[0][0] == '='
1099 && recog_data.constraints[0][1] != '&')
1100 {
1101 /* If non-negative, is an operand that must match operand 0. */
1102 int must_match_0 = -1;
1103 /* Counts number of alternatives that require a match with
1104 operand 0. */
1105 int n_matching_alts = 0;
1106
1107 for (i = 1; i < recog_data.n_operands; i++)
1108 {
1109 const char *p = recog_data.constraints[i];
1110 int this_match = (requires_inout (p));
1111
1112 n_matching_alts += this_match;
1113 if (this_match == recog_data.n_alternatives)
1114 must_match_0 = i;
1115 }
1116
1117 r0 = recog_data.operand[0];
1118 for (i = 1; i < recog_data.n_operands; i++)
1119 {
1120 /* Skip this operand if we found an operand that
1121 must match operand 0 and this operand isn't it
1122 and can't be made to be it by commutativity. */
1123
1124 if (must_match_0 >= 0 && i != must_match_0
1125 && ! (i == must_match_0 + 1
1126 && recog_data.constraints[i-1][0] == '%')
1127 && ! (i == must_match_0 - 1
1128 && recog_data.constraints[i][0] == '%'))
1129 continue;
1130
1131 /* Likewise if each alternative has some operand that
1132 must match operand zero. In that case, skip any
1133 operand that doesn't list operand 0 since we know that
1134 the operand always conflicts with operand 0. We
1135 ignore commutatity in this case to keep things simple. */
1136 if (n_matching_alts == recog_data.n_alternatives
1137 && 0 == requires_inout (recog_data.constraints[i]))
1138 continue;
1139
1140 r1 = recog_data.operand[i];
1141
1142 /* If the operand is an address, find a register in it.
1143 There may be more than one register, but we only try one
1144 of them. */
1145 if (recog_data.constraints[i][0] == 'p')
1146 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1147 r1 = XEXP (r1, 0);
1148
1149 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1150 {
1151 /* We have two priorities for hard register preferences.
1152 If we have a move insn or an insn whose first input
1153 can only be in the same register as the output, give
1154 priority to an equivalence found from that insn. */
1155 int may_save_copy
1156 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1157
1158 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1159 win = combine_regs (r1, r0, may_save_copy,
1160 insn_number, insn, 0);
1161 }
1162 if (win)
1163 break;
1164 }
1165 }
1166
1167 /* Recognize an insn sequence with an ultimate result
1168 which can safely overlap one of the inputs.
1169 The sequence begins with a CLOBBER of its result,
1170 and ends with an insn that copies the result to itself
1171 and has a REG_EQUAL note for an equivalent formula.
1172 That note indicates what the inputs are.
1173 The result and the input can overlap if each insn in
1174 the sequence either doesn't mention the input
1175 or has a REG_NO_CONFLICT note to inhibit the conflict.
1176
1177 We do the combining test at the CLOBBER so that the
1178 destination register won't have had a quantity number
1179 assigned, since that would prevent combining. */
1180
1181 if (optimize
1182 && GET_CODE (PATTERN (insn)) == CLOBBER
1183 && (r0 = XEXP (PATTERN (insn), 0),
1184 GET_CODE (r0) == REG)
1185 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1186 && XEXP (link, 0) != 0
1187 && GET_CODE (XEXP (link, 0)) == INSN
1188 && (set = single_set (XEXP (link, 0))) != 0
1189 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1190 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1191 NULL_RTX)) != 0)
1192 {
1193 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1194 /* Check that we have such a sequence. */
1195 && no_conflict_p (insn, r0, r1))
1196 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1197 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1198 && (r1 = XEXP (XEXP (note, 0), 0),
1199 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1200 && no_conflict_p (insn, r0, r1))
1201 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1202
1203 /* Here we care if the operation to be computed is
1204 commutative. */
1205 else if ((GET_CODE (XEXP (note, 0)) == EQ
1206 || GET_CODE (XEXP (note, 0)) == NE
1207 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1208 && (r1 = XEXP (XEXP (note, 0), 1),
1209 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1210 && no_conflict_p (insn, r0, r1))
1211 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1212
1213 /* If we did combine something, show the register number
1214 in question so that we know to ignore its death. */
1215 if (win)
1216 no_conflict_combined_regno = REGNO (r1);
1217 }
1218
1219 /* If registers were just tied, set COMBINED_REGNO
1220 to the number of the register used in this insn
1221 that was tied to the register set in this insn.
1222 This register's qty should not be "killed". */
1223
1224 if (win)
1225 {
1226 while (GET_CODE (r1) == SUBREG)
1227 r1 = SUBREG_REG (r1);
1228 combined_regno = REGNO (r1);
1229 }
1230
1231 /* Mark the death of everything that dies in this instruction,
1232 except for anything that was just combined. */
1233
1234 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1235 if (REG_NOTE_KIND (link) == REG_DEAD
1236 && GET_CODE (XEXP (link, 0)) == REG
1237 && combined_regno != (int) REGNO (XEXP (link, 0))
1238 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1239 || ! find_reg_note (insn, REG_NO_CONFLICT,
1240 XEXP (link, 0))))
1241 wipe_dead_reg (XEXP (link, 0), 0);
1242
1243 /* Allocate qty numbers for all registers local to this block
1244 that are born (set) in this instruction.
1245 A pseudo that already has a qty is not changed. */
1246
1247 note_stores (PATTERN (insn), reg_is_set, NULL);
1248
1249 /* If anything is set in this insn and then unused, mark it as dying
1250 after this insn, so it will conflict with our outputs. This
1251 can't match with something that combined, and it doesn't matter
1252 if it did. Do this after the calls to reg_is_set since these
1253 die after, not during, the current insn. */
1254
1255 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1256 if (REG_NOTE_KIND (link) == REG_UNUSED
1257 && GET_CODE (XEXP (link, 0)) == REG)
1258 wipe_dead_reg (XEXP (link, 0), 1);
1259
1260 /* If this is an insn that has a REG_RETVAL note pointing at a
1261 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1262 block, so clear any register number that combined within it. */
1263 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1264 && GET_CODE (XEXP (note, 0)) == INSN
1265 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1266 no_conflict_combined_regno = -1;
1267 }
1268
1269 /* Set the registers live after INSN_NUMBER. Note that we never
1270 record the registers live before the block's first insn, since no
1271 pseudos we care about are live before that insn. */
1272
1273 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1274 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1275
1276 if (insn == BLOCK_END (b))
1277 break;
1278
1279 insn = NEXT_INSN (insn);
1280 }
1281
1282 /* Now every register that is local to this basic block
1283 should have been given a quantity, or else -1 meaning ignore it.
1284 Every quantity should have a known birth and death.
1285
1286 Order the qtys so we assign them registers in order of the
1287 number of suggested registers they need so we allocate those with
1288 the most restrictive needs first. */
1289
1290 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1291 for (i = 0; i < next_qty; i++)
1292 qty_order[i] = i;
1293
1294 #define EXCHANGE(I1, I2) \
1295 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1296
1297 switch (next_qty)
1298 {
1299 case 3:
1300 /* Make qty_order[2] be the one to allocate last. */
1301 if (qty_sugg_compare (0, 1) > 0)
1302 EXCHANGE (0, 1);
1303 if (qty_sugg_compare (1, 2) > 0)
1304 EXCHANGE (2, 1);
1305
1306 /* ... Fall through ... */
1307 case 2:
1308 /* Put the best one to allocate in qty_order[0]. */
1309 if (qty_sugg_compare (0, 1) > 0)
1310 EXCHANGE (0, 1);
1311
1312 /* ... Fall through ... */
1313
1314 case 1:
1315 case 0:
1316 /* Nothing to do here. */
1317 break;
1318
1319 default:
1320 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1321 }
1322
1323 /* Try to put each quantity in a suggested physical register, if it has one.
1324 This may cause registers to be allocated that otherwise wouldn't be, but
1325 this seems acceptable in local allocation (unlike global allocation). */
1326 for (i = 0; i < next_qty; i++)
1327 {
1328 q = qty_order[i];
1329 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1330 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1331 0, 1, qty[q].birth, qty[q].death);
1332 else
1333 qty[q].phys_reg = -1;
1334 }
1335
1336 /* Order the qtys so we assign them registers in order of
1337 decreasing length of life. Normally call qsort, but if we
1338 have only a very small number of quantities, sort them ourselves. */
1339
1340 for (i = 0; i < next_qty; i++)
1341 qty_order[i] = i;
1342
1343 #define EXCHANGE(I1, I2) \
1344 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1345
1346 switch (next_qty)
1347 {
1348 case 3:
1349 /* Make qty_order[2] be the one to allocate last. */
1350 if (qty_compare (0, 1) > 0)
1351 EXCHANGE (0, 1);
1352 if (qty_compare (1, 2) > 0)
1353 EXCHANGE (2, 1);
1354
1355 /* ... Fall through ... */
1356 case 2:
1357 /* Put the best one to allocate in qty_order[0]. */
1358 if (qty_compare (0, 1) > 0)
1359 EXCHANGE (0, 1);
1360
1361 /* ... Fall through ... */
1362
1363 case 1:
1364 case 0:
1365 /* Nothing to do here. */
1366 break;
1367
1368 default:
1369 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1370 }
1371
1372 /* Now for each qty that is not a hardware register,
1373 look for a hardware register to put it in.
1374 First try the register class that is cheapest for this qty,
1375 if there is more than one class. */
1376
1377 for (i = 0; i < next_qty; i++)
1378 {
1379 q = qty_order[i];
1380 if (qty[q].phys_reg < 0)
1381 {
1382 #ifdef INSN_SCHEDULING
1383 /* These values represent the adjusted lifetime of a qty so
1384 that it conflicts with qtys which appear near the start/end
1385 of this qty's lifetime.
1386
1387 The purpose behind extending the lifetime of this qty is to
1388 discourage the register allocator from creating false
1389 dependencies.
1390
1391 The adjustment value is choosen to indicate that this qty
1392 conflicts with all the qtys in the instructions immediately
1393 before and after the lifetime of this qty.
1394
1395 Experiments have shown that higher values tend to hurt
1396 overall code performance.
1397
1398 If allocation using the extended lifetime fails we will try
1399 again with the qty's unadjusted lifetime. */
1400 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1401 int fake_death = MIN (insn_number * 2 + 1,
1402 qty[q].death + 2 - qty[q].death % 2);
1403 #endif
1404
1405 if (N_REG_CLASSES > 1)
1406 {
1407 #ifdef INSN_SCHEDULING
1408 /* We try to avoid using hard registers allocated to qtys which
1409 are born immediately after this qty or die immediately before
1410 this qty.
1411
1412 This optimization is only appropriate when we will run
1413 a scheduling pass after reload and we are not optimizing
1414 for code size. */
1415 if (flag_schedule_insns_after_reload
1416 && !optimize_size
1417 && !SMALL_REGISTER_CLASSES)
1418 {
1419 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1420 qty[q].mode, q, 0, 0,
1421 fake_birth, fake_death);
1422 if (qty[q].phys_reg >= 0)
1423 continue;
1424 }
1425 #endif
1426 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1427 qty[q].mode, q, 0, 0,
1428 qty[q].birth, qty[q].death);
1429 if (qty[q].phys_reg >= 0)
1430 continue;
1431 }
1432
1433 #ifdef INSN_SCHEDULING
1434 /* Similarly, avoid false dependencies. */
1435 if (flag_schedule_insns_after_reload
1436 && !optimize_size
1437 && !SMALL_REGISTER_CLASSES
1438 && qty[q].alternate_class != NO_REGS)
1439 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1440 qty[q].mode, q, 0, 0,
1441 fake_birth, fake_death);
1442 #endif
1443 if (qty[q].alternate_class != NO_REGS)
1444 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1445 qty[q].mode, q, 0, 0,
1446 qty[q].birth, qty[q].death);
1447 }
1448 }
1449
1450 /* Now propagate the register assignments
1451 to the pseudo regs belonging to the qtys. */
1452
1453 for (q = 0; q < next_qty; q++)
1454 if (qty[q].phys_reg >= 0)
1455 {
1456 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1457 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1458 }
1459
1460 /* Clean up. */
1461 free (regs_live_at);
1462 free (qty_order);
1463 }
1464 \f
1465 /* Compare two quantities' priority for getting real registers.
1466 We give shorter-lived quantities higher priority.
1467 Quantities with more references are also preferred, as are quantities that
1468 require multiple registers. This is the identical prioritization as
1469 done by global-alloc.
1470
1471 We used to give preference to registers with *longer* lives, but using
1472 the same algorithm in both local- and global-alloc can speed up execution
1473 of some programs by as much as a factor of three! */
1474
1475 /* Note that the quotient will never be bigger than
1476 the value of floor_log2 times the maximum number of
1477 times a register can occur in one insn (surely less than 100).
1478 Multiplying this by 10000 can't overflow.
1479 QTY_CMP_PRI is also used by qty_sugg_compare. */
1480
1481 #define QTY_CMP_PRI(q) \
1482 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1483 / (qty[q].death - qty[q].birth)) * 10000))
1484
1485 static int
1486 qty_compare (q1, q2)
1487 int q1, q2;
1488 {
1489 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1490 }
1491
1492 static int
1493 qty_compare_1 (q1p, q2p)
1494 const PTR q1p;
1495 const PTR q2p;
1496 {
1497 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1498 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1499
1500 if (tem != 0)
1501 return tem;
1502
1503 /* If qtys are equally good, sort by qty number,
1504 so that the results of qsort leave nothing to chance. */
1505 return q1 - q2;
1506 }
1507 \f
1508 /* Compare two quantities' priority for getting real registers. This version
1509 is called for quantities that have suggested hard registers. First priority
1510 goes to quantities that have copy preferences, then to those that have
1511 normal preferences. Within those groups, quantities with the lower
1512 number of preferences have the highest priority. Of those, we use the same
1513 algorithm as above. */
1514
1515 #define QTY_CMP_SUGG(q) \
1516 (qty_phys_num_copy_sugg[q] \
1517 ? qty_phys_num_copy_sugg[q] \
1518 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1519
1520 static int
1521 qty_sugg_compare (q1, q2)
1522 int q1, q2;
1523 {
1524 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1525
1526 if (tem != 0)
1527 return tem;
1528
1529 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1530 }
1531
1532 static int
1533 qty_sugg_compare_1 (q1p, q2p)
1534 const PTR q1p;
1535 const PTR q2p;
1536 {
1537 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1538 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1539
1540 if (tem != 0)
1541 return tem;
1542
1543 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1544 if (tem != 0)
1545 return tem;
1546
1547 /* If qtys are equally good, sort by qty number,
1548 so that the results of qsort leave nothing to chance. */
1549 return q1 - q2;
1550 }
1551
1552 #undef QTY_CMP_SUGG
1553 #undef QTY_CMP_PRI
1554 \f
1555 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1556 Returns 1 if have done so, or 0 if cannot.
1557
1558 Combining registers means marking them as having the same quantity
1559 and adjusting the offsets within the quantity if either of
1560 them is a SUBREG).
1561
1562 We don't actually combine a hard reg with a pseudo; instead
1563 we just record the hard reg as the suggestion for the pseudo's quantity.
1564 If we really combined them, we could lose if the pseudo lives
1565 across an insn that clobbers the hard reg (eg, movstr).
1566
1567 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1568 there is no REG_DEAD note on INSN. This occurs during the processing
1569 of REG_NO_CONFLICT blocks.
1570
1571 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1572 SETREG or if the input and output must share a register.
1573 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1574
1575 There are elaborate checks for the validity of combining. */
1576
1577 static int
1578 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1579 rtx usedreg, setreg;
1580 int may_save_copy;
1581 int insn_number;
1582 rtx insn;
1583 int already_dead;
1584 {
1585 register int ureg, sreg;
1586 register int offset = 0;
1587 int usize, ssize;
1588 register int sqty;
1589
1590 /* Determine the numbers and sizes of registers being used. If a subreg
1591 is present that does not change the entire register, don't consider
1592 this a copy insn. */
1593
1594 while (GET_CODE (usedreg) == SUBREG)
1595 {
1596 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1597 may_save_copy = 0;
1598 offset += SUBREG_WORD (usedreg);
1599 usedreg = SUBREG_REG (usedreg);
1600 }
1601 if (GET_CODE (usedreg) != REG)
1602 return 0;
1603 ureg = REGNO (usedreg);
1604 usize = REG_SIZE (usedreg);
1605
1606 while (GET_CODE (setreg) == SUBREG)
1607 {
1608 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1609 may_save_copy = 0;
1610 offset -= SUBREG_WORD (setreg);
1611 setreg = SUBREG_REG (setreg);
1612 }
1613 if (GET_CODE (setreg) != REG)
1614 return 0;
1615 sreg = REGNO (setreg);
1616 ssize = REG_SIZE (setreg);
1617
1618 /* If UREG is a pseudo-register that hasn't already been assigned a
1619 quantity number, it means that it is not local to this block or dies
1620 more than once. In either event, we can't do anything with it. */
1621 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1622 /* Do not combine registers unless one fits within the other. */
1623 || (offset > 0 && usize + offset > ssize)
1624 || (offset < 0 && usize + offset < ssize)
1625 /* Do not combine with a smaller already-assigned object
1626 if that smaller object is already combined with something bigger. */
1627 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1628 && usize < qty[reg_qty[ureg]].size)
1629 /* Can't combine if SREG is not a register we can allocate. */
1630 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1631 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1632 These have already been taken care of. This probably wouldn't
1633 combine anyway, but don't take any chances. */
1634 || (ureg >= FIRST_PSEUDO_REGISTER
1635 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1636 /* Don't tie something to itself. In most cases it would make no
1637 difference, but it would screw up if the reg being tied to itself
1638 also dies in this insn. */
1639 || ureg == sreg
1640 /* Don't try to connect two different hardware registers. */
1641 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1642 /* Don't connect two different machine modes if they have different
1643 implications as to which registers may be used. */
1644 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1645 return 0;
1646
1647 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1648 qty_phys_sugg for the pseudo instead of tying them.
1649
1650 Return "failure" so that the lifespan of UREG is terminated here;
1651 that way the two lifespans will be disjoint and nothing will prevent
1652 the pseudo reg from being given this hard reg. */
1653
1654 if (ureg < FIRST_PSEUDO_REGISTER)
1655 {
1656 /* Allocate a quantity number so we have a place to put our
1657 suggestions. */
1658 if (reg_qty[sreg] == -2)
1659 reg_is_born (setreg, 2 * insn_number);
1660
1661 if (reg_qty[sreg] >= 0)
1662 {
1663 if (may_save_copy
1664 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1665 {
1666 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1667 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1668 }
1669 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1670 {
1671 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1672 qty_phys_num_sugg[reg_qty[sreg]]++;
1673 }
1674 }
1675 return 0;
1676 }
1677
1678 /* Similarly for SREG a hard register and UREG a pseudo register. */
1679
1680 if (sreg < FIRST_PSEUDO_REGISTER)
1681 {
1682 if (may_save_copy
1683 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1684 {
1685 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1686 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1687 }
1688 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1689 {
1690 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1691 qty_phys_num_sugg[reg_qty[ureg]]++;
1692 }
1693 return 0;
1694 }
1695
1696 /* At this point we know that SREG and UREG are both pseudos.
1697 Do nothing if SREG already has a quantity or is a register that we
1698 don't allocate. */
1699 if (reg_qty[sreg] >= -1
1700 /* If we are not going to let any regs live across calls,
1701 don't tie a call-crossing reg to a non-call-crossing reg. */
1702 || (current_function_has_nonlocal_label
1703 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1704 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1705 return 0;
1706
1707 /* We don't already know about SREG, so tie it to UREG
1708 if this is the last use of UREG, provided the classes they want
1709 are compatible. */
1710
1711 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1712 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1713 {
1714 /* Add SREG to UREG's quantity. */
1715 sqty = reg_qty[ureg];
1716 reg_qty[sreg] = sqty;
1717 reg_offset[sreg] = reg_offset[ureg] + offset;
1718 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1719 qty[sqty].first_reg = sreg;
1720
1721 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1722 update_qty_class (sqty, sreg);
1723
1724 /* Update info about quantity SQTY. */
1725 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1726 qty[sqty].n_refs += REG_N_REFS (sreg);
1727 if (usize < ssize)
1728 {
1729 register int i;
1730
1731 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1732 reg_offset[i] -= offset;
1733
1734 qty[sqty].size = ssize;
1735 qty[sqty].mode = GET_MODE (setreg);
1736 }
1737 }
1738 else
1739 return 0;
1740
1741 return 1;
1742 }
1743 \f
1744 /* Return 1 if the preferred class of REG allows it to be tied
1745 to a quantity or register whose class is CLASS.
1746 True if REG's reg class either contains or is contained in CLASS. */
1747
1748 static int
1749 reg_meets_class_p (reg, class)
1750 int reg;
1751 enum reg_class class;
1752 {
1753 register enum reg_class rclass = reg_preferred_class (reg);
1754 return (reg_class_subset_p (rclass, class)
1755 || reg_class_subset_p (class, rclass));
1756 }
1757
1758 /* Update the class of QTYNO assuming that REG is being tied to it. */
1759
1760 static void
1761 update_qty_class (qtyno, reg)
1762 int qtyno;
1763 int reg;
1764 {
1765 enum reg_class rclass = reg_preferred_class (reg);
1766 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1767 qty[qtyno].min_class = rclass;
1768
1769 rclass = reg_alternate_class (reg);
1770 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1771 qty[qtyno].alternate_class = rclass;
1772
1773 if (REG_CHANGES_MODE (reg))
1774 qty[qtyno].changes_mode = 1;
1775 }
1776 \f
1777 /* Handle something which alters the value of an rtx REG.
1778
1779 REG is whatever is set or clobbered. SETTER is the rtx that
1780 is modifying the register.
1781
1782 If it is not really a register, we do nothing.
1783 The file-global variables `this_insn' and `this_insn_number'
1784 carry info from `block_alloc'. */
1785
1786 static void
1787 reg_is_set (reg, setter, data)
1788 rtx reg;
1789 rtx setter;
1790 void *data ATTRIBUTE_UNUSED;
1791 {
1792 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1793 a hard register. These may actually not exist any more. */
1794
1795 if (GET_CODE (reg) != SUBREG
1796 && GET_CODE (reg) != REG)
1797 return;
1798
1799 /* Mark this register as being born. If it is used in a CLOBBER, mark
1800 it as being born halfway between the previous insn and this insn so that
1801 it conflicts with our inputs but not the outputs of the previous insn. */
1802
1803 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1804 }
1805 \f
1806 /* Handle beginning of the life of register REG.
1807 BIRTH is the index at which this is happening. */
1808
1809 static void
1810 reg_is_born (reg, birth)
1811 rtx reg;
1812 int birth;
1813 {
1814 register int regno;
1815
1816 if (GET_CODE (reg) == SUBREG)
1817 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1818 else
1819 regno = REGNO (reg);
1820
1821 if (regno < FIRST_PSEUDO_REGISTER)
1822 {
1823 mark_life (regno, GET_MODE (reg), 1);
1824
1825 /* If the register was to have been born earlier that the present
1826 insn, mark it as live where it is actually born. */
1827 if (birth < 2 * this_insn_number)
1828 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1829 }
1830 else
1831 {
1832 if (reg_qty[regno] == -2)
1833 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1834
1835 /* If this register has a quantity number, show that it isn't dead. */
1836 if (reg_qty[regno] >= 0)
1837 qty[reg_qty[regno]].death = -1;
1838 }
1839 }
1840
1841 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1842 REG is an output that is dying (i.e., it is never used), otherwise it
1843 is an input (the normal case).
1844 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1845
1846 static void
1847 wipe_dead_reg (reg, output_p)
1848 register rtx reg;
1849 int output_p;
1850 {
1851 register int regno = REGNO (reg);
1852
1853 /* If this insn has multiple results,
1854 and the dead reg is used in one of the results,
1855 extend its life to after this insn,
1856 so it won't get allocated together with any other result of this insn.
1857
1858 It is unsafe to use !single_set here since it will ignore an unused
1859 output. Just because an output is unused does not mean the compiler
1860 can assume the side effect will not occur. Consider if REG appears
1861 in the address of an output and we reload the output. If we allocate
1862 REG to the same hard register as an unused output we could set the hard
1863 register before the output reload insn. */
1864 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1865 && multiple_sets (this_insn))
1866 {
1867 int i;
1868 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1869 {
1870 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1871 if (GET_CODE (set) == SET
1872 && GET_CODE (SET_DEST (set)) != REG
1873 && !rtx_equal_p (reg, SET_DEST (set))
1874 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1875 output_p = 1;
1876 }
1877 }
1878
1879 /* If this register is used in an auto-increment address, then extend its
1880 life to after this insn, so that it won't get allocated together with
1881 the result of this insn. */
1882 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1883 output_p = 1;
1884
1885 if (regno < FIRST_PSEUDO_REGISTER)
1886 {
1887 mark_life (regno, GET_MODE (reg), 0);
1888
1889 /* If a hard register is dying as an output, mark it as in use at
1890 the beginning of this insn (the above statement would cause this
1891 not to happen). */
1892 if (output_p)
1893 post_mark_life (regno, GET_MODE (reg), 1,
1894 2 * this_insn_number, 2 * this_insn_number + 1);
1895 }
1896
1897 else if (reg_qty[regno] >= 0)
1898 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
1899 }
1900 \f
1901 /* Find a block of SIZE words of hard regs in reg_class CLASS
1902 that can hold something of machine-mode MODE
1903 (but actually we test only the first of the block for holding MODE)
1904 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1905 and return the number of the first of them.
1906 Return -1 if such a block cannot be found.
1907 If QTYNO crosses calls, insist on a register preserved by calls,
1908 unless ACCEPT_CALL_CLOBBERED is nonzero.
1909
1910 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1911 register is available. If not, return -1. */
1912
1913 static int
1914 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
1915 born_index, dead_index)
1916 enum reg_class class;
1917 enum machine_mode mode;
1918 int qtyno;
1919 int accept_call_clobbered;
1920 int just_try_suggested;
1921 int born_index, dead_index;
1922 {
1923 register int i, ins;
1924 #ifdef HARD_REG_SET
1925 /* Declare it register if it's a scalar. */
1926 register
1927 #endif
1928 HARD_REG_SET used, first_used;
1929 #ifdef ELIMINABLE_REGS
1930 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1931 #endif
1932
1933 /* Validate our parameters. */
1934 if (born_index < 0 || born_index > dead_index)
1935 abort ();
1936
1937 /* Don't let a pseudo live in a reg across a function call
1938 if we might get a nonlocal goto. */
1939 if (current_function_has_nonlocal_label
1940 && qty[qtyno].n_calls_crossed > 0)
1941 return -1;
1942
1943 if (accept_call_clobbered)
1944 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1945 else if (qty[qtyno].n_calls_crossed == 0)
1946 COPY_HARD_REG_SET (used, fixed_reg_set);
1947 else
1948 COPY_HARD_REG_SET (used, call_used_reg_set);
1949
1950 if (accept_call_clobbered)
1951 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1952
1953 for (ins = born_index; ins < dead_index; ins++)
1954 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1955
1956 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1957
1958 /* Don't use the frame pointer reg in local-alloc even if
1959 we may omit the frame pointer, because if we do that and then we
1960 need a frame pointer, reload won't know how to move the pseudo
1961 to another hard reg. It can move only regs made by global-alloc.
1962
1963 This is true of any register that can be eliminated. */
1964 #ifdef ELIMINABLE_REGS
1965 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1966 SET_HARD_REG_BIT (used, eliminables[i].from);
1967 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1968 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1969 that it might be eliminated into. */
1970 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1971 #endif
1972 #else
1973 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1974 #endif
1975
1976 #ifdef CLASS_CANNOT_CHANGE_MODE
1977 if (qty[qtyno].changes_mode)
1978 IOR_HARD_REG_SET (used,
1979 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
1980 #endif
1981
1982 /* Normally, the registers that can be used for the first register in
1983 a multi-register quantity are the same as those that can be used for
1984 subsequent registers. However, if just trying suggested registers,
1985 restrict our consideration to them. If there are copy-suggested
1986 register, try them. Otherwise, try the arithmetic-suggested
1987 registers. */
1988 COPY_HARD_REG_SET (first_used, used);
1989
1990 if (just_try_suggested)
1991 {
1992 if (qty_phys_num_copy_sugg[qtyno] != 0)
1993 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
1994 else
1995 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
1996 }
1997
1998 /* If all registers are excluded, we can't do anything. */
1999 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2000
2001 /* If at least one would be suitable, test each hard reg. */
2002
2003 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2004 {
2005 #ifdef REG_ALLOC_ORDER
2006 int regno = reg_alloc_order[i];
2007 #else
2008 int regno = i;
2009 #endif
2010 if (! TEST_HARD_REG_BIT (first_used, regno)
2011 && HARD_REGNO_MODE_OK (regno, mode)
2012 && (qty[qtyno].n_calls_crossed == 0
2013 || accept_call_clobbered
2014 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2015 {
2016 register int j;
2017 register int size1 = HARD_REGNO_NREGS (regno, mode);
2018 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2019 if (j == size1)
2020 {
2021 /* Mark that this register is in use between its birth and death
2022 insns. */
2023 post_mark_life (regno, mode, 1, born_index, dead_index);
2024 return regno;
2025 }
2026 #ifndef REG_ALLOC_ORDER
2027 /* Skip starting points we know will lose. */
2028 i += j;
2029 #endif
2030 }
2031 }
2032
2033 fail:
2034 /* If we are just trying suggested register, we have just tried copy-
2035 suggested registers, and there are arithmetic-suggested registers,
2036 try them. */
2037
2038 /* If it would be profitable to allocate a call-clobbered register
2039 and save and restore it around calls, do that. */
2040 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2041 && qty_phys_num_sugg[qtyno] != 0)
2042 {
2043 /* Don't try the copy-suggested regs again. */
2044 qty_phys_num_copy_sugg[qtyno] = 0;
2045 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2046 born_index, dead_index);
2047 }
2048
2049 /* We need not check to see if the current function has nonlocal
2050 labels because we don't put any pseudos that are live over calls in
2051 registers in that case. */
2052
2053 if (! accept_call_clobbered
2054 && flag_caller_saves
2055 && ! just_try_suggested
2056 && qty[qtyno].n_calls_crossed != 0
2057 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2058 qty[qtyno].n_calls_crossed))
2059 {
2060 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2061 if (i >= 0)
2062 caller_save_needed = 1;
2063 return i;
2064 }
2065 return -1;
2066 }
2067 \f
2068 /* Mark that REGNO with machine-mode MODE is live starting from the current
2069 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2070 is zero). */
2071
2072 static void
2073 mark_life (regno, mode, life)
2074 register int regno;
2075 enum machine_mode mode;
2076 int life;
2077 {
2078 register int j = HARD_REGNO_NREGS (regno, mode);
2079 if (life)
2080 while (--j >= 0)
2081 SET_HARD_REG_BIT (regs_live, regno + j);
2082 else
2083 while (--j >= 0)
2084 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2085 }
2086
2087 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2088 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2089 to insn number DEATH (exclusive). */
2090
2091 static void
2092 post_mark_life (regno, mode, life, birth, death)
2093 int regno;
2094 enum machine_mode mode;
2095 int life, birth, death;
2096 {
2097 register int j = HARD_REGNO_NREGS (regno, mode);
2098 #ifdef HARD_REG_SET
2099 /* Declare it register if it's a scalar. */
2100 register
2101 #endif
2102 HARD_REG_SET this_reg;
2103
2104 CLEAR_HARD_REG_SET (this_reg);
2105 while (--j >= 0)
2106 SET_HARD_REG_BIT (this_reg, regno + j);
2107
2108 if (life)
2109 while (birth < death)
2110 {
2111 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2112 birth++;
2113 }
2114 else
2115 while (birth < death)
2116 {
2117 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2118 birth++;
2119 }
2120 }
2121 \f
2122 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2123 is the register being clobbered, and R1 is a register being used in
2124 the equivalent expression.
2125
2126 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2127 in which it is used, return 1.
2128
2129 Otherwise, return 0. */
2130
2131 static int
2132 no_conflict_p (insn, r0, r1)
2133 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2134 {
2135 int ok = 0;
2136 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2137 rtx p, last;
2138
2139 /* If R1 is a hard register, return 0 since we handle this case
2140 when we scan the insns that actually use it. */
2141
2142 if (note == 0
2143 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2144 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2145 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2146 return 0;
2147
2148 last = XEXP (note, 0);
2149
2150 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2151 if (INSN_P (p))
2152 {
2153 if (find_reg_note (p, REG_DEAD, r1))
2154 ok = 1;
2155
2156 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2157 some earlier optimization pass has inserted instructions into
2158 the sequence, and it is not safe to perform this optimization.
2159 Note that emit_no_conflict_block always ensures that this is
2160 true when these sequences are created. */
2161 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2162 return 0;
2163 }
2164
2165 return ok;
2166 }
2167 \f
2168 /* Return the number of alternatives for which the constraint string P
2169 indicates that the operand must be equal to operand 0 and that no register
2170 is acceptable. */
2171
2172 static int
2173 requires_inout (p)
2174 const char *p;
2175 {
2176 char c;
2177 int found_zero = 0;
2178 int reg_allowed = 0;
2179 int num_matching_alts = 0;
2180
2181 while ((c = *p++))
2182 switch (c)
2183 {
2184 case '=': case '+': case '?':
2185 case '#': case '&': case '!':
2186 case '*': case '%':
2187 case '1': case '2': case '3': case '4': case '5':
2188 case '6': case '7': case '8': case '9':
2189 case 'm': case '<': case '>': case 'V': case 'o':
2190 case 'E': case 'F': case 'G': case 'H':
2191 case 's': case 'i': case 'n':
2192 case 'I': case 'J': case 'K': case 'L':
2193 case 'M': case 'N': case 'O': case 'P':
2194 case 'X':
2195 /* These don't say anything we care about. */
2196 break;
2197
2198 case ',':
2199 if (found_zero && ! reg_allowed)
2200 num_matching_alts++;
2201
2202 found_zero = reg_allowed = 0;
2203 break;
2204
2205 case '0':
2206 found_zero = 1;
2207 break;
2208
2209 default:
2210 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2211 break;
2212 /* FALLTHRU */
2213 case 'p':
2214 case 'g': case 'r':
2215 reg_allowed = 1;
2216 break;
2217 }
2218
2219 if (found_zero && ! reg_allowed)
2220 num_matching_alts++;
2221
2222 return num_matching_alts;
2223 }
2224 \f
2225 void
2226 dump_local_alloc (file)
2227 FILE *file;
2228 {
2229 register int i;
2230 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2231 if (reg_renumber[i] != -1)
2232 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2233 }