* local-alloc.c: Fix formatting.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* Information we maitain about each quantity. */
82 struct qty
83 {
84 /* The number of refs to quantity Q. */
85
86 int n_refs;
87
88 /* Insn number (counting from head of basic block)
89 where quantity Q was born. -1 if birth has not been recorded. */
90
91 int birth;
92
93 /* Insn number (counting from head of basic block)
94 where given quantity died. Due to the way tying is done,
95 and the fact that we consider in this pass only regs that die but once,
96 a quantity can die only once. Each quantity's life span
97 is a set of consecutive insns. -1 if death has not been recorded. */
98
99 int death;
100
101 /* Number of words needed to hold the data in given quantity.
102 This depends on its machine mode. It is used for these purposes:
103 1. It is used in computing the relative importances of qtys,
104 which determines the order in which we look for regs for them.
105 2. It is used in rules that prevent tying several registers of
106 different sizes in a way that is geometrically impossible
107 (see combine_regs). */
108
109 int size;
110
111 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
112
113 int n_calls_crossed;
114
115 /* The register number of one pseudo register whose reg_qty value is Q.
116 This register should be the head of the chain
117 maintained in reg_next_in_qty. */
118
119 int first_reg;
120
121 /* Reg class contained in (smaller than) the preferred classes of all
122 the pseudo regs that are tied in given quantity.
123 This is the preferred class for allocating that quantity. */
124
125 enum reg_class min_class;
126
127 /* Register class within which we allocate given qty if we can't get
128 its preferred class. */
129
130 enum reg_class alternate_class;
131
132 /* This holds the mode of the registers that are tied to given qty,
133 or VOIDmode if registers with differing modes are tied together. */
134
135 enum machine_mode mode;
136
137 /* the hard reg number chosen for given quantity,
138 or -1 if none was found. */
139
140 short phys_reg;
141
142 /* Nonzero if this quantity has been used in a SUBREG in some
143 way that is illegal. */
144
145 char changes_mode;
146
147 };
148
149 static struct qty *qty;
150
151 /* These fields are kept separately to speedup their clearing. */
152
153 /* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
157
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
160
161 /* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
163
164 static HARD_REG_SET *qty_phys_copy_sugg;
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
168
169 static HARD_REG_SET *qty_phys_sugg;
170
171 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
172
173 static short *qty_phys_num_copy_sugg;
174
175 /* Element Q is the number of suggested registers in qty_phys_sugg. */
176
177 static short *qty_phys_num_sugg;
178
179 /* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty->first_reg point to the head of this chain. */
182
183 static int *reg_next_in_qty;
184
185 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
189
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
196
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
199
200 static int *reg_qty;
201
202 /* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
205
206 static char *reg_offset;
207
208 /* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
214
215 short *reg_renumber;
216
217 /* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
219
220 static HARD_REG_SET regs_live;
221
222 /* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
226
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
231
232 static HARD_REG_SET *regs_live_at;
233
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number;
237 static rtx this_insn;
238
239 /* Used to communicate changes made by update_equiv_regs to
240 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
241 found or created, so that we can keep track of what memory accesses might
242 be created later, e.g. by reload. */
243
244 static rtx *reg_equiv_replacement;
245
246 /* Used for communication between update_equiv_regs and no_equiv. */
247 static rtx *reg_equiv_init_insns;
248
249 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
250 static int recorded_label_ref;
251
252 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
253 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
254 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
255 static int contains_replace_regs PARAMS ((rtx, char *));
256 static int memref_referenced_p PARAMS ((rtx, rtx));
257 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
258 static void update_equiv_regs PARAMS ((void));
259 static void no_equiv PARAMS ((rtx, rtx, void *));
260 static void block_alloc PARAMS ((int));
261 static int qty_sugg_compare PARAMS ((int, int));
262 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
263 static int qty_compare PARAMS ((int, int));
264 static int qty_compare_1 PARAMS ((const PTR, const PTR));
265 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
266 static int reg_meets_class_p PARAMS ((int, enum reg_class));
267 static void update_qty_class PARAMS ((int, int));
268 static void reg_is_set PARAMS ((rtx, rtx, void *));
269 static void reg_is_born PARAMS ((rtx, int));
270 static void wipe_dead_reg PARAMS ((rtx, int));
271 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
272 int, int, int, int, int));
273 static void mark_life PARAMS ((int, enum machine_mode, int));
274 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
275 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
276 static int requires_inout PARAMS ((const char *));
277 \f
278 /* Allocate a new quantity (new within current basic block)
279 for register number REGNO which is born at index BIRTH
280 within the block. MODE and SIZE are info on reg REGNO. */
281
282 static void
283 alloc_qty (regno, mode, size, birth)
284 int regno;
285 enum machine_mode mode;
286 int size, birth;
287 {
288 register int qtyno = next_qty++;
289
290 reg_qty[regno] = qtyno;
291 reg_offset[regno] = 0;
292 reg_next_in_qty[regno] = -1;
293
294 qty[qtyno].first_reg = regno;
295 qty[qtyno].size = size;
296 qty[qtyno].mode = mode;
297 qty[qtyno].birth = birth;
298 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
299 qty[qtyno].min_class = reg_preferred_class (regno);
300 qty[qtyno].alternate_class = reg_alternate_class (regno);
301 qty[qtyno].n_refs = REG_N_REFS (regno);
302 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
303 }
304 \f
305 /* Main entry point of this file. */
306
307 int
308 local_alloc ()
309 {
310 register int b, i;
311 int max_qty;
312
313 /* We need to keep track of whether or not we recorded a LABEL_REF so
314 that we know if the jump optimizer needs to be rerun. */
315 recorded_label_ref = 0;
316
317 /* Leaf functions and non-leaf functions have different needs.
318 If defined, let the machine say what kind of ordering we
319 should use. */
320 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
321 ORDER_REGS_FOR_LOCAL_ALLOC;
322 #endif
323
324 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
325 registers. */
326 update_equiv_regs ();
327
328 /* This sets the maximum number of quantities we can have. Quantity
329 numbers start at zero and we can have one for each pseudo. */
330 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
331
332 /* Allocate vectors of temporary data.
333 See the declarations of these variables, above,
334 for what they mean. */
335
336 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
337 qty_phys_copy_sugg
338 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
339 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
340 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
341 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
342
343 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
344 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
345 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
346
347 /* Allocate the reg_renumber array. */
348 allocate_reg_info (max_regno, FALSE, TRUE);
349
350 /* Determine which pseudo-registers can be allocated by local-alloc.
351 In general, these are the registers used only in a single block and
352 which only die once. However, if a register's preferred class has only
353 a few entries, don't allocate this register here unless it is preferred
354 or nothing since retry_global_alloc won't be able to move it to
355 GENERAL_REGS if a reload register of this class is needed.
356
357 We need not be concerned with which block actually uses the register
358 since we will never see it outside that block. */
359
360 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
361 {
362 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
363 && (reg_alternate_class (i) == NO_REGS
364 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
365 reg_qty[i] = -2;
366 else
367 reg_qty[i] = -1;
368 }
369
370 /* Force loop below to initialize entire quantity array. */
371 next_qty = max_qty;
372
373 /* Allocate each block's local registers, block by block. */
374
375 for (b = 0; b < n_basic_blocks; b++)
376 {
377 /* NEXT_QTY indicates which elements of the `qty_...'
378 vectors might need to be initialized because they were used
379 for the previous block; it is set to the entire array before
380 block 0. Initialize those, with explicit loop if there are few,
381 else with bzero and bcopy. Do not initialize vectors that are
382 explicit set by `alloc_qty'. */
383
384 if (next_qty < 6)
385 {
386 for (i = 0; i < next_qty; i++)
387 {
388 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
389 qty_phys_num_copy_sugg[i] = 0;
390 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
391 qty_phys_num_sugg[i] = 0;
392 }
393 }
394 else
395 {
396 #define CLEAR(vector) \
397 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
398
399 CLEAR (qty_phys_copy_sugg);
400 CLEAR (qty_phys_num_copy_sugg);
401 CLEAR (qty_phys_sugg);
402 CLEAR (qty_phys_num_sugg);
403 }
404
405 next_qty = 0;
406
407 block_alloc (b);
408 }
409
410 free (qty);
411 free (qty_phys_copy_sugg);
412 free (qty_phys_num_copy_sugg);
413 free (qty_phys_sugg);
414 free (qty_phys_num_sugg);
415
416 free (reg_qty);
417 free (reg_offset);
418 free (reg_next_in_qty);
419
420 return recorded_label_ref;
421 }
422 \f
423 /* Depth of loops we are in while in update_equiv_regs. */
424 static int loop_depth;
425
426 /* Used for communication between the following two functions: contains
427 a MEM that we wish to ensure remains unchanged. */
428 static rtx equiv_mem;
429
430 /* Set nonzero if EQUIV_MEM is modified. */
431 static int equiv_mem_modified;
432
433 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
434 Called via note_stores. */
435
436 static void
437 validate_equiv_mem_from_store (dest, set, data)
438 rtx dest;
439 rtx set ATTRIBUTE_UNUSED;
440 void *data ATTRIBUTE_UNUSED;
441 {
442 if ((GET_CODE (dest) == REG
443 && reg_overlap_mentioned_p (dest, equiv_mem))
444 || (GET_CODE (dest) == MEM
445 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
446 equiv_mem_modified = 1;
447 }
448
449 /* Verify that no store between START and the death of REG invalidates
450 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
451 by storing into an overlapping memory location, or with a non-const
452 CALL_INSN.
453
454 Return 1 if MEMREF remains valid. */
455
456 static int
457 validate_equiv_mem (start, reg, memref)
458 rtx start;
459 rtx reg;
460 rtx memref;
461 {
462 rtx insn;
463 rtx note;
464
465 equiv_mem = memref;
466 equiv_mem_modified = 0;
467
468 /* If the memory reference has side effects or is volatile, it isn't a
469 valid equivalence. */
470 if (side_effects_p (memref))
471 return 0;
472
473 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
474 {
475 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
476 continue;
477
478 if (find_reg_note (insn, REG_DEAD, reg))
479 return 1;
480
481 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
482 && ! CONST_CALL_P (insn))
483 return 0;
484
485 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
486
487 /* If a register mentioned in MEMREF is modified via an
488 auto-increment, we lose the equivalence. Do the same if one
489 dies; although we could extend the life, it doesn't seem worth
490 the trouble. */
491
492 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
493 if ((REG_NOTE_KIND (note) == REG_INC
494 || REG_NOTE_KIND (note) == REG_DEAD)
495 && GET_CODE (XEXP (note, 0)) == REG
496 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
497 return 0;
498 }
499
500 return 0;
501 }
502
503 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
504
505 static int
506 contains_replace_regs (x, reg_equiv_replace)
507 rtx x;
508 char *reg_equiv_replace;
509 {
510 int i, j;
511 const char *fmt;
512 enum rtx_code code = GET_CODE (x);
513
514 switch (code)
515 {
516 case CONST_INT:
517 case CONST:
518 case LABEL_REF:
519 case SYMBOL_REF:
520 case CONST_DOUBLE:
521 case PC:
522 case CC0:
523 case HIGH:
524 case LO_SUM:
525 return 0;
526
527 case REG:
528 return reg_equiv_replace[REGNO (x)];
529
530 default:
531 break;
532 }
533
534 fmt = GET_RTX_FORMAT (code);
535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
536 switch (fmt[i])
537 {
538 case 'e':
539 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
540 return 1;
541 break;
542 case 'E':
543 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
544 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
545 return 1;
546 break;
547 }
548
549 return 0;
550 }
551 \f
552 /* TRUE if X references a memory location that would be affected by a store
553 to MEMREF. */
554
555 static int
556 memref_referenced_p (memref, x)
557 rtx x;
558 rtx memref;
559 {
560 int i, j;
561 const char *fmt;
562 enum rtx_code code = GET_CODE (x);
563
564 switch (code)
565 {
566 case CONST_INT:
567 case CONST:
568 case LABEL_REF:
569 case SYMBOL_REF:
570 case CONST_DOUBLE:
571 case PC:
572 case CC0:
573 case HIGH:
574 case LO_SUM:
575 return 0;
576
577 case REG:
578 return (reg_equiv_replacement[REGNO (x)]
579 && memref_referenced_p (memref,
580 reg_equiv_replacement[REGNO (x)]));
581
582 case MEM:
583 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
584 return 1;
585 break;
586
587 case SET:
588 /* If we are setting a MEM, it doesn't count (its address does), but any
589 other SET_DEST that has a MEM in it is referencing the MEM. */
590 if (GET_CODE (SET_DEST (x)) == MEM)
591 {
592 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
593 return 1;
594 }
595 else if (memref_referenced_p (memref, SET_DEST (x)))
596 return 1;
597
598 return memref_referenced_p (memref, SET_SRC (x));
599
600 default:
601 break;
602 }
603
604 fmt = GET_RTX_FORMAT (code);
605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
606 switch (fmt[i])
607 {
608 case 'e':
609 if (memref_referenced_p (memref, XEXP (x, i)))
610 return 1;
611 break;
612 case 'E':
613 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
614 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
615 return 1;
616 break;
617 }
618
619 return 0;
620 }
621
622 /* TRUE if some insn in the range (START, END] references a memory location
623 that would be affected by a store to MEMREF. */
624
625 static int
626 memref_used_between_p (memref, start, end)
627 rtx memref;
628 rtx start;
629 rtx end;
630 {
631 rtx insn;
632
633 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
634 insn = NEXT_INSN (insn))
635 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
636 && memref_referenced_p (memref, PATTERN (insn)))
637 return 1;
638
639 return 0;
640 }
641 \f
642 /* Return nonzero if the rtx X is invariant over the current function. */
643 int
644 function_invariant_p (x)
645 rtx x;
646 {
647 if (CONSTANT_P (x))
648 return 1;
649 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
650 return 1;
651 if (GET_CODE (x) == PLUS
652 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
653 && CONSTANT_P (XEXP (x, 1)))
654 return 1;
655 return 0;
656 }
657
658 /* Find registers that are equivalent to a single value throughout the
659 compilation (either because they can be referenced in memory or are set once
660 from a single constant). Lower their priority for a register.
661
662 If such a register is only referenced once, try substituting its value
663 into the using insn. If it succeeds, we can eliminate the register
664 completely. */
665
666 static void
667 update_equiv_regs ()
668 {
669 /* Set when an attempt should be made to replace a register with the
670 associated reg_equiv_replacement entry at the end of this function. */
671 char *reg_equiv_replace;
672 rtx insn;
673 int block, depth;
674
675 reg_equiv_replace = (char *) xcalloc (max_regno, sizeof *reg_equiv_replace);
676 reg_equiv_init_insns = (rtx *) xcalloc (max_regno, sizeof (rtx));
677 reg_equiv_replacement = (rtx *) xcalloc (max_regno, sizeof (rtx));
678
679 init_alias_analysis ();
680
681 loop_depth = 0;
682
683 /* Scan the insns and find which registers have equivalences. Do this
684 in a separate scan of the insns because (due to -fcse-follow-jumps)
685 a register can be set below its use. */
686 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
687 {
688 rtx note;
689 rtx set;
690 rtx dest, src;
691 int regno;
692
693 if (GET_CODE (insn) == NOTE)
694 {
695 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
696 loop_depth++;
697 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
698 loop_depth--;
699 }
700
701 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
702 continue;
703
704 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
705 if (REG_NOTE_KIND (note) == REG_INC)
706 no_equiv (XEXP (note, 0), note, NULL);
707
708 set = single_set (insn);
709
710 /* If this insn contains more (or less) than a single SET,
711 only mark all destinations as having no known equivalence. */
712 if (set == 0)
713 {
714 note_stores (PATTERN (insn), no_equiv, NULL);
715 continue;
716 }
717 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
718 {
719 int i;
720
721 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
722 {
723 rtx part = XVECEXP (PATTERN (insn), 0, i);
724 if (part != set)
725 note_stores (part, no_equiv, NULL);
726 }
727 }
728
729 dest = SET_DEST (set);
730 src = SET_SRC (set);
731
732 /* If this sets a MEM to the contents of a REG that is only used
733 in a single basic block, see if the register is always equivalent
734 to that memory location and if moving the store from INSN to the
735 insn that set REG is safe. If so, put a REG_EQUIV note on the
736 initializing insn.
737
738 Don't add a REG_EQUIV note if the insn already has one. The existing
739 REG_EQUIV is likely more useful than the one we are adding.
740
741 If one of the regs in the address is marked as reg_equiv_replace,
742 then we can't add this REG_EQUIV note. The reg_equiv_replace
743 optimization may move the set of this register immediately before
744 insn, which puts it after reg_equiv_init_insns[regno], and hence
745 the mention in the REG_EQUIV note would be to an uninitialized
746 pseudo. */
747 /* ????? This test isn't good enough; we might see a MEM with a use of
748 a pseudo register before we see its setting insn that will cause
749 reg_equiv_replace for that pseudo to be set.
750 Equivalences to MEMs should be made in another pass, after the
751 reg_equiv_replace information has been gathered. */
752
753 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
754 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
755 && REG_BASIC_BLOCK (regno) >= 0
756 && REG_N_SETS (regno) == 1
757 && reg_equiv_init_insns[regno] != 0
758 && reg_equiv_init_insns[regno] != const0_rtx
759 && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
760 REG_EQUIV, NULL_RTX)
761 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
762 {
763 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
764 if (validate_equiv_mem (init_insn, src, dest)
765 && ! memref_used_between_p (dest, init_insn, insn))
766 REG_NOTES (init_insn)
767 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
768 }
769
770 /* We only handle the case of a pseudo register being set
771 once, or always to the same value. */
772 /* ??? The mn10200 port breaks if we add equivalences for
773 values that need an ADDRESS_REGS register and set them equivalent
774 to a MEM of a pseudo. The actual problem is in the over-conservative
775 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
776 calculate_needs, but we traditionally work around this problem
777 here by rejecting equivalences when the destination is in a register
778 that's likely spilled. This is fragile, of course, since the
779 preferred class of a pseudo depends on all instructions that set
780 or use it. */
781
782 if (GET_CODE (dest) != REG
783 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
784 || reg_equiv_init_insns[regno] == const0_rtx
785 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
786 && GET_CODE (src) == MEM))
787 {
788 /* This might be seting a SUBREG of a pseudo, a pseudo that is
789 also set somewhere else to a constant. */
790 note_stores (set, no_equiv, NULL);
791 continue;
792 }
793 /* Don't handle the equivalence if the source is in a register
794 class that's likely to be spilled. */
795 if (GET_CODE (src) == REG
796 && REGNO (src) >= FIRST_PSEUDO_REGISTER
797 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
798 {
799 no_equiv (dest, set, NULL);
800 continue;
801 }
802
803 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
804
805 if (REG_N_SETS (regno) != 1
806 && (! note
807 || ! function_invariant_p (XEXP (note, 0))
808 || (reg_equiv_replacement[regno]
809 && ! rtx_equal_p (XEXP (note, 0),
810 reg_equiv_replacement[regno]))))
811 {
812 no_equiv (dest, set, NULL);
813 continue;
814 }
815 /* Record this insn as initializing this register. */
816 reg_equiv_init_insns[regno]
817 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
818
819 /* If this register is known to be equal to a constant, record that
820 it is always equivalent to the constant. */
821 if (note && function_invariant_p (XEXP (note, 0)))
822 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
823
824 /* If this insn introduces a "constant" register, decrease the priority
825 of that register. Record this insn if the register is only used once
826 more and the equivalence value is the same as our source.
827
828 The latter condition is checked for two reasons: First, it is an
829 indication that it may be more efficient to actually emit the insn
830 as written (if no registers are available, reload will substitute
831 the equivalence). Secondly, it avoids problems with any registers
832 dying in this insn whose death notes would be missed.
833
834 If we don't have a REG_EQUIV note, see if this insn is loading
835 a register used only in one basic block from a MEM. If so, and the
836 MEM remains unchanged for the life of the register, add a REG_EQUIV
837 note. */
838
839 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
840
841 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
842 && GET_CODE (SET_SRC (set)) == MEM
843 && validate_equiv_mem (insn, dest, SET_SRC (set)))
844 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
845 REG_NOTES (insn));
846
847 if (note)
848 {
849 int regno = REGNO (dest);
850
851 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
852 We might end up substituting the LABEL_REF for uses of the
853 pseudo here or later. That kind of transformation may turn an
854 indirect jump into a direct jump, in which case we must rerun the
855 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
856 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
857 || (GET_CODE (XEXP (note, 0)) == CONST
858 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
859 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
860 == LABEL_REF)))
861 recorded_label_ref = 1;
862
863 reg_equiv_replacement[regno] = XEXP (note, 0);
864
865 /* Don't mess with things live during setjmp. */
866 if (REG_LIVE_LENGTH (regno) >= 0)
867 {
868 /* Note that the statement below does not affect the priority
869 in local-alloc! */
870 REG_LIVE_LENGTH (regno) *= 2;
871
872
873 /* If the register is referenced exactly twice, meaning it is
874 set once and used once, indicate that the reference may be
875 replaced by the equivalence we computed above. If the
876 register is only used in one basic block, this can't succeed
877 or combine would have done it.
878
879 It would be nice to use "loop_depth * 2" in the compare
880 below. Unfortunately, LOOP_DEPTH need not be constant within
881 a basic block so this would be too complicated.
882
883 This case normally occurs when a parameter is read from
884 memory and then used exactly once, not in a loop. */
885
886 if (REG_N_REFS (regno) == 2
887 && REG_BASIC_BLOCK (regno) < 0
888 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
889 reg_equiv_replace[regno] = 1;
890 }
891 }
892 }
893
894 /* Now scan all regs killed in an insn to see if any of them are
895 registers only used that once. If so, see if we can replace the
896 reference with the equivalent from. If we can, delete the
897 initializing reference and this register will go away. If we
898 can't replace the reference, and the instruction is not in a
899 loop, then move the register initialization just before the use,
900 so that they are in the same basic block. */
901 block = -1;
902 depth = 0;
903 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
904 {
905 rtx link;
906
907 /* Keep track of which basic block we are in. */
908 if (block + 1 < n_basic_blocks
909 && BLOCK_HEAD (block + 1) == insn)
910 ++block;
911
912 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
913 {
914 if (GET_CODE (insn) == NOTE)
915 {
916 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
917 ++depth;
918 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
919 {
920 --depth;
921 if (depth < 0)
922 abort ();
923 }
924 }
925
926 continue;
927 }
928
929 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
930 {
931 if (REG_NOTE_KIND (link) == REG_DEAD
932 /* Make sure this insn still refers to the register. */
933 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
934 {
935 int regno = REGNO (XEXP (link, 0));
936 rtx equiv_insn;
937
938 if (! reg_equiv_replace[regno])
939 continue;
940
941 /* reg_equiv_replace[REGNO] gets set only when
942 REG_N_REFS[REGNO] is 2, i.e. the register is set
943 once and used once. (If it were only set, but not used,
944 flow would have deleted the setting insns.) Hence
945 there can only be one insn in reg_equiv_init_insns. */
946 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
947
948 if (validate_replace_rtx (regno_reg_rtx[regno],
949 reg_equiv_replacement[regno], insn))
950 {
951 remove_death (regno, insn);
952 REG_N_REFS (regno) = 0;
953 PUT_CODE (equiv_insn, NOTE);
954 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
955 NOTE_SOURCE_FILE (equiv_insn) = 0;
956 }
957 /* If we aren't in a loop, and there are no calls in
958 INSN or in the initialization of the register, then
959 move the initialization of the register to just
960 before INSN. Update the flow information. */
961 else if (depth == 0
962 && GET_CODE (equiv_insn) == INSN
963 && GET_CODE (insn) == INSN
964 && REG_BASIC_BLOCK (regno) < 0)
965 {
966 int l;
967
968 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
969 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
970 REG_NOTES (equiv_insn) = 0;
971
972 PUT_CODE (equiv_insn, NOTE);
973 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
974 NOTE_SOURCE_FILE (equiv_insn) = 0;
975
976 if (block < 0)
977 REG_BASIC_BLOCK (regno) = 0;
978 else
979 REG_BASIC_BLOCK (regno) = block;
980 REG_N_CALLS_CROSSED (regno) = 0;
981 REG_LIVE_LENGTH (regno) = 2;
982
983 if (block >= 0 && insn == BLOCK_HEAD (block))
984 BLOCK_HEAD (block) = PREV_INSN (insn);
985
986 for (l = 0; l < n_basic_blocks; l++)
987 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
988 regno);
989 }
990 }
991 }
992 }
993
994 /* Clean up. */
995 end_alias_analysis ();
996 free (reg_equiv_replace);
997 free (reg_equiv_init_insns);
998 free (reg_equiv_replacement);
999 }
1000
1001 /* Mark REG as having no known equivalence.
1002 Some instructions might have been proceessed before and furnished
1003 with REG_EQUIV notes for this register; these notes will have to be
1004 removed.
1005 STORE is the piece of RTL that does the non-constant / conflicting
1006 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1007 but needs to be there because this function is called from note_stores. */
1008 static void
1009 no_equiv (reg, store, data)
1010 rtx reg, store ATTRIBUTE_UNUSED;
1011 void *data ATTRIBUTE_UNUSED;
1012 {
1013 int regno;
1014 rtx list;
1015
1016 if (GET_CODE (reg) != REG)
1017 return;
1018 regno = REGNO (reg);
1019 list = reg_equiv_init_insns[regno];
1020 if (list == const0_rtx)
1021 return;
1022 for (; list; list = XEXP (list, 1))
1023 {
1024 rtx insn = XEXP (list, 0);
1025 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1026 }
1027 reg_equiv_init_insns[regno] = const0_rtx;
1028 reg_equiv_replacement[regno] = NULL_RTX;
1029 }
1030 \f
1031 /* Allocate hard regs to the pseudo regs used only within block number B.
1032 Only the pseudos that die but once can be handled. */
1033
1034 static void
1035 block_alloc (b)
1036 int b;
1037 {
1038 register int i, q;
1039 register rtx insn;
1040 rtx note;
1041 int insn_number = 0;
1042 int insn_count = 0;
1043 int max_uid = get_max_uid ();
1044 int *qty_order;
1045 int no_conflict_combined_regno = -1;
1046
1047 /* Count the instructions in the basic block. */
1048
1049 insn = BLOCK_END (b);
1050 while (1)
1051 {
1052 if (GET_CODE (insn) != NOTE)
1053 if (++insn_count > max_uid)
1054 abort ();
1055 if (insn == BLOCK_HEAD (b))
1056 break;
1057 insn = PREV_INSN (insn);
1058 }
1059
1060 /* +2 to leave room for a post_mark_life at the last insn and for
1061 the birth of a CLOBBER in the first insn. */
1062 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1063 sizeof (HARD_REG_SET));
1064
1065 /* Initialize table of hardware registers currently live. */
1066
1067 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1068
1069 /* This loop scans the instructions of the basic block
1070 and assigns quantities to registers.
1071 It computes which registers to tie. */
1072
1073 insn = BLOCK_HEAD (b);
1074 while (1)
1075 {
1076 if (GET_CODE (insn) != NOTE)
1077 insn_number++;
1078
1079 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1080 {
1081 register rtx link, set;
1082 register int win = 0;
1083 register rtx r0, r1 = NULL_RTX;
1084 int combined_regno = -1;
1085 int i;
1086
1087 this_insn_number = insn_number;
1088 this_insn = insn;
1089
1090 extract_insn (insn);
1091 which_alternative = -1;
1092
1093 /* Is this insn suitable for tying two registers?
1094 If so, try doing that.
1095 Suitable insns are those with at least two operands and where
1096 operand 0 is an output that is a register that is not
1097 earlyclobber.
1098
1099 We can tie operand 0 with some operand that dies in this insn.
1100 First look for operands that are required to be in the same
1101 register as operand 0. If we find such, only try tying that
1102 operand or one that can be put into that operand if the
1103 operation is commutative. If we don't find an operand
1104 that is required to be in the same register as operand 0,
1105 we can tie with any operand.
1106
1107 Subregs in place of regs are also ok.
1108
1109 If tying is done, WIN is set nonzero. */
1110
1111 if (optimize
1112 && recog_data.n_operands > 1
1113 && recog_data.constraints[0][0] == '='
1114 && recog_data.constraints[0][1] != '&')
1115 {
1116 /* If non-negative, is an operand that must match operand 0. */
1117 int must_match_0 = -1;
1118 /* Counts number of alternatives that require a match with
1119 operand 0. */
1120 int n_matching_alts = 0;
1121
1122 for (i = 1; i < recog_data.n_operands; i++)
1123 {
1124 const char *p = recog_data.constraints[i];
1125 int this_match = (requires_inout (p));
1126
1127 n_matching_alts += this_match;
1128 if (this_match == recog_data.n_alternatives)
1129 must_match_0 = i;
1130 }
1131
1132 r0 = recog_data.operand[0];
1133 for (i = 1; i < recog_data.n_operands; i++)
1134 {
1135 /* Skip this operand if we found an operand that
1136 must match operand 0 and this operand isn't it
1137 and can't be made to be it by commutativity. */
1138
1139 if (must_match_0 >= 0 && i != must_match_0
1140 && ! (i == must_match_0 + 1
1141 && recog_data.constraints[i-1][0] == '%')
1142 && ! (i == must_match_0 - 1
1143 && recog_data.constraints[i][0] == '%'))
1144 continue;
1145
1146 /* Likewise if each alternative has some operand that
1147 must match operand zero. In that case, skip any
1148 operand that doesn't list operand 0 since we know that
1149 the operand always conflicts with operand 0. We
1150 ignore commutatity in this case to keep things simple. */
1151 if (n_matching_alts == recog_data.n_alternatives
1152 && 0 == requires_inout (recog_data.constraints[i]))
1153 continue;
1154
1155 r1 = recog_data.operand[i];
1156
1157 /* If the operand is an address, find a register in it.
1158 There may be more than one register, but we only try one
1159 of them. */
1160 if (recog_data.constraints[i][0] == 'p')
1161 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1162 r1 = XEXP (r1, 0);
1163
1164 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1165 {
1166 /* We have two priorities for hard register preferences.
1167 If we have a move insn or an insn whose first input
1168 can only be in the same register as the output, give
1169 priority to an equivalence found from that insn. */
1170 int may_save_copy
1171 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1172
1173 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1174 win = combine_regs (r1, r0, may_save_copy,
1175 insn_number, insn, 0);
1176 }
1177 if (win)
1178 break;
1179 }
1180 }
1181
1182 /* Recognize an insn sequence with an ultimate result
1183 which can safely overlap one of the inputs.
1184 The sequence begins with a CLOBBER of its result,
1185 and ends with an insn that copies the result to itself
1186 and has a REG_EQUAL note for an equivalent formula.
1187 That note indicates what the inputs are.
1188 The result and the input can overlap if each insn in
1189 the sequence either doesn't mention the input
1190 or has a REG_NO_CONFLICT note to inhibit the conflict.
1191
1192 We do the combining test at the CLOBBER so that the
1193 destination register won't have had a quantity number
1194 assigned, since that would prevent combining. */
1195
1196 if (optimize
1197 && GET_CODE (PATTERN (insn)) == CLOBBER
1198 && (r0 = XEXP (PATTERN (insn), 0),
1199 GET_CODE (r0) == REG)
1200 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1201 && XEXP (link, 0) != 0
1202 && GET_CODE (XEXP (link, 0)) == INSN
1203 && (set = single_set (XEXP (link, 0))) != 0
1204 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1205 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1206 NULL_RTX)) != 0)
1207 {
1208 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1209 /* Check that we have such a sequence. */
1210 && no_conflict_p (insn, r0, r1))
1211 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1212 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1213 && (r1 = XEXP (XEXP (note, 0), 0),
1214 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1215 && no_conflict_p (insn, r0, r1))
1216 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1217
1218 /* Here we care if the operation to be computed is
1219 commutative. */
1220 else if ((GET_CODE (XEXP (note, 0)) == EQ
1221 || GET_CODE (XEXP (note, 0)) == NE
1222 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1223 && (r1 = XEXP (XEXP (note, 0), 1),
1224 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1225 && no_conflict_p (insn, r0, r1))
1226 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1227
1228 /* If we did combine something, show the register number
1229 in question so that we know to ignore its death. */
1230 if (win)
1231 no_conflict_combined_regno = REGNO (r1);
1232 }
1233
1234 /* If registers were just tied, set COMBINED_REGNO
1235 to the number of the register used in this insn
1236 that was tied to the register set in this insn.
1237 This register's qty should not be "killed". */
1238
1239 if (win)
1240 {
1241 while (GET_CODE (r1) == SUBREG)
1242 r1 = SUBREG_REG (r1);
1243 combined_regno = REGNO (r1);
1244 }
1245
1246 /* Mark the death of everything that dies in this instruction,
1247 except for anything that was just combined. */
1248
1249 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1250 if (REG_NOTE_KIND (link) == REG_DEAD
1251 && GET_CODE (XEXP (link, 0)) == REG
1252 && combined_regno != (int) REGNO (XEXP (link, 0))
1253 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1254 || ! find_reg_note (insn, REG_NO_CONFLICT,
1255 XEXP (link, 0))))
1256 wipe_dead_reg (XEXP (link, 0), 0);
1257
1258 /* Allocate qty numbers for all registers local to this block
1259 that are born (set) in this instruction.
1260 A pseudo that already has a qty is not changed. */
1261
1262 note_stores (PATTERN (insn), reg_is_set, NULL);
1263
1264 /* If anything is set in this insn and then unused, mark it as dying
1265 after this insn, so it will conflict with our outputs. This
1266 can't match with something that combined, and it doesn't matter
1267 if it did. Do this after the calls to reg_is_set since these
1268 die after, not during, the current insn. */
1269
1270 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1271 if (REG_NOTE_KIND (link) == REG_UNUSED
1272 && GET_CODE (XEXP (link, 0)) == REG)
1273 wipe_dead_reg (XEXP (link, 0), 1);
1274
1275 /* If this is an insn that has a REG_RETVAL note pointing at a
1276 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1277 block, so clear any register number that combined within it. */
1278 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1279 && GET_CODE (XEXP (note, 0)) == INSN
1280 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1281 no_conflict_combined_regno = -1;
1282 }
1283
1284 /* Set the registers live after INSN_NUMBER. Note that we never
1285 record the registers live before the block's first insn, since no
1286 pseudos we care about are live before that insn. */
1287
1288 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1289 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1290
1291 if (insn == BLOCK_END (b))
1292 break;
1293
1294 insn = NEXT_INSN (insn);
1295 }
1296
1297 /* Now every register that is local to this basic block
1298 should have been given a quantity, or else -1 meaning ignore it.
1299 Every quantity should have a known birth and death.
1300
1301 Order the qtys so we assign them registers in order of the
1302 number of suggested registers they need so we allocate those with
1303 the most restrictive needs first. */
1304
1305 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1306 for (i = 0; i < next_qty; i++)
1307 qty_order[i] = i;
1308
1309 #define EXCHANGE(I1, I2) \
1310 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1311
1312 switch (next_qty)
1313 {
1314 case 3:
1315 /* Make qty_order[2] be the one to allocate last. */
1316 if (qty_sugg_compare (0, 1) > 0)
1317 EXCHANGE (0, 1);
1318 if (qty_sugg_compare (1, 2) > 0)
1319 EXCHANGE (2, 1);
1320
1321 /* ... Fall through ... */
1322 case 2:
1323 /* Put the best one to allocate in qty_order[0]. */
1324 if (qty_sugg_compare (0, 1) > 0)
1325 EXCHANGE (0, 1);
1326
1327 /* ... Fall through ... */
1328
1329 case 1:
1330 case 0:
1331 /* Nothing to do here. */
1332 break;
1333
1334 default:
1335 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1336 }
1337
1338 /* Try to put each quantity in a suggested physical register, if it has one.
1339 This may cause registers to be allocated that otherwise wouldn't be, but
1340 this seems acceptable in local allocation (unlike global allocation). */
1341 for (i = 0; i < next_qty; i++)
1342 {
1343 q = qty_order[i];
1344 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1345 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1346 0, 1, qty[q].birth, qty[q].death);
1347 else
1348 qty[q].phys_reg = -1;
1349 }
1350
1351 /* Order the qtys so we assign them registers in order of
1352 decreasing length of life. Normally call qsort, but if we
1353 have only a very small number of quantities, sort them ourselves. */
1354
1355 for (i = 0; i < next_qty; i++)
1356 qty_order[i] = i;
1357
1358 #define EXCHANGE(I1, I2) \
1359 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1360
1361 switch (next_qty)
1362 {
1363 case 3:
1364 /* Make qty_order[2] be the one to allocate last. */
1365 if (qty_compare (0, 1) > 0)
1366 EXCHANGE (0, 1);
1367 if (qty_compare (1, 2) > 0)
1368 EXCHANGE (2, 1);
1369
1370 /* ... Fall through ... */
1371 case 2:
1372 /* Put the best one to allocate in qty_order[0]. */
1373 if (qty_compare (0, 1) > 0)
1374 EXCHANGE (0, 1);
1375
1376 /* ... Fall through ... */
1377
1378 case 1:
1379 case 0:
1380 /* Nothing to do here. */
1381 break;
1382
1383 default:
1384 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1385 }
1386
1387 /* Now for each qty that is not a hardware register,
1388 look for a hardware register to put it in.
1389 First try the register class that is cheapest for this qty,
1390 if there is more than one class. */
1391
1392 for (i = 0; i < next_qty; i++)
1393 {
1394 q = qty_order[i];
1395 if (qty[q].phys_reg < 0)
1396 {
1397 #ifdef INSN_SCHEDULING
1398 /* These values represent the adjusted lifetime of a qty so
1399 that it conflicts with qtys which appear near the start/end
1400 of this qty's lifetime.
1401
1402 The purpose behind extending the lifetime of this qty is to
1403 discourage the register allocator from creating false
1404 dependencies.
1405
1406 The adjustment value is choosen to indicate that this qty
1407 conflicts with all the qtys in the instructions immediately
1408 before and after the lifetime of this qty.
1409
1410 Experiments have shown that higher values tend to hurt
1411 overall code performance.
1412
1413 If allocation using the extended lifetime fails we will try
1414 again with the qty's unadjusted lifetime. */
1415 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1416 int fake_death = MIN (insn_number * 2 + 1,
1417 qty[q].death + 2 - qty[q].death % 2);
1418 #endif
1419
1420 if (N_REG_CLASSES > 1)
1421 {
1422 #ifdef INSN_SCHEDULING
1423 /* We try to avoid using hard registers allocated to qtys which
1424 are born immediately after this qty or die immediately before
1425 this qty.
1426
1427 This optimization is only appropriate when we will run
1428 a scheduling pass after reload and we are not optimizing
1429 for code size. */
1430 if (flag_schedule_insns_after_reload
1431 && !optimize_size
1432 && !SMALL_REGISTER_CLASSES)
1433 {
1434 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1435 qty[q].mode, q, 0, 0,
1436 fake_birth, fake_death);
1437 if (qty[q].phys_reg >= 0)
1438 continue;
1439 }
1440 #endif
1441 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1442 qty[q].mode, q, 0, 0,
1443 qty[q].birth, qty[q].death);
1444 if (qty[q].phys_reg >= 0)
1445 continue;
1446 }
1447
1448 #ifdef INSN_SCHEDULING
1449 /* Similarly, avoid false dependencies. */
1450 if (flag_schedule_insns_after_reload
1451 && !optimize_size
1452 && !SMALL_REGISTER_CLASSES
1453 && qty[q].alternate_class != NO_REGS)
1454 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1455 qty[q].mode, q, 0, 0,
1456 fake_birth, fake_death);
1457 #endif
1458 if (qty[q].alternate_class != NO_REGS)
1459 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1460 qty[q].mode, q, 0, 0,
1461 qty[q].birth, qty[q].death);
1462 }
1463 }
1464
1465 /* Now propagate the register assignments
1466 to the pseudo regs belonging to the qtys. */
1467
1468 for (q = 0; q < next_qty; q++)
1469 if (qty[q].phys_reg >= 0)
1470 {
1471 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1472 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1473 }
1474
1475 /* Clean up. */
1476 free (regs_live_at);
1477 free (qty_order);
1478 }
1479 \f
1480 /* Compare two quantities' priority for getting real registers.
1481 We give shorter-lived quantities higher priority.
1482 Quantities with more references are also preferred, as are quantities that
1483 require multiple registers. This is the identical prioritization as
1484 done by global-alloc.
1485
1486 We used to give preference to registers with *longer* lives, but using
1487 the same algorithm in both local- and global-alloc can speed up execution
1488 of some programs by as much as a factor of three! */
1489
1490 /* Note that the quotient will never be bigger than
1491 the value of floor_log2 times the maximum number of
1492 times a register can occur in one insn (surely less than 100).
1493 Multiplying this by 10000 can't overflow.
1494 QTY_CMP_PRI is also used by qty_sugg_compare. */
1495
1496 #define QTY_CMP_PRI(q) \
1497 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1498 / (qty[q].death - qty[q].birth)) * 10000))
1499
1500 static int
1501 qty_compare (q1, q2)
1502 int q1, q2;
1503 {
1504 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1505 }
1506
1507 static int
1508 qty_compare_1 (q1p, q2p)
1509 const PTR q1p;
1510 const PTR q2p;
1511 {
1512 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1513 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1514
1515 if (tem != 0)
1516 return tem;
1517
1518 /* If qtys are equally good, sort by qty number,
1519 so that the results of qsort leave nothing to chance. */
1520 return q1 - q2;
1521 }
1522 \f
1523 /* Compare two quantities' priority for getting real registers. This version
1524 is called for quantities that have suggested hard registers. First priority
1525 goes to quantities that have copy preferences, then to those that have
1526 normal preferences. Within those groups, quantities with the lower
1527 number of preferences have the highest priority. Of those, we use the same
1528 algorithm as above. */
1529
1530 #define QTY_CMP_SUGG(q) \
1531 (qty_phys_num_copy_sugg[q] \
1532 ? qty_phys_num_copy_sugg[q] \
1533 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1534
1535 static int
1536 qty_sugg_compare (q1, q2)
1537 int q1, q2;
1538 {
1539 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1540
1541 if (tem != 0)
1542 return tem;
1543
1544 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1545 }
1546
1547 static int
1548 qty_sugg_compare_1 (q1p, q2p)
1549 const PTR q1p;
1550 const PTR q2p;
1551 {
1552 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1553 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1554
1555 if (tem != 0)
1556 return tem;
1557
1558 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1559 if (tem != 0)
1560 return tem;
1561
1562 /* If qtys are equally good, sort by qty number,
1563 so that the results of qsort leave nothing to chance. */
1564 return q1 - q2;
1565 }
1566
1567 #undef QTY_CMP_SUGG
1568 #undef QTY_CMP_PRI
1569 \f
1570 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1571 Returns 1 if have done so, or 0 if cannot.
1572
1573 Combining registers means marking them as having the same quantity
1574 and adjusting the offsets within the quantity if either of
1575 them is a SUBREG).
1576
1577 We don't actually combine a hard reg with a pseudo; instead
1578 we just record the hard reg as the suggestion for the pseudo's quantity.
1579 If we really combined them, we could lose if the pseudo lives
1580 across an insn that clobbers the hard reg (eg, movstr).
1581
1582 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1583 there is no REG_DEAD note on INSN. This occurs during the processing
1584 of REG_NO_CONFLICT blocks.
1585
1586 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1587 SETREG or if the input and output must share a register.
1588 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1589
1590 There are elaborate checks for the validity of combining. */
1591
1592 static int
1593 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1594 rtx usedreg, setreg;
1595 int may_save_copy;
1596 int insn_number;
1597 rtx insn;
1598 int already_dead;
1599 {
1600 register int ureg, sreg;
1601 register int offset = 0;
1602 int usize, ssize;
1603 register int sqty;
1604
1605 /* Determine the numbers and sizes of registers being used. If a subreg
1606 is present that does not change the entire register, don't consider
1607 this a copy insn. */
1608
1609 while (GET_CODE (usedreg) == SUBREG)
1610 {
1611 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1612 may_save_copy = 0;
1613 offset += SUBREG_WORD (usedreg);
1614 usedreg = SUBREG_REG (usedreg);
1615 }
1616 if (GET_CODE (usedreg) != REG)
1617 return 0;
1618 ureg = REGNO (usedreg);
1619 usize = REG_SIZE (usedreg);
1620
1621 while (GET_CODE (setreg) == SUBREG)
1622 {
1623 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1624 may_save_copy = 0;
1625 offset -= SUBREG_WORD (setreg);
1626 setreg = SUBREG_REG (setreg);
1627 }
1628 if (GET_CODE (setreg) != REG)
1629 return 0;
1630 sreg = REGNO (setreg);
1631 ssize = REG_SIZE (setreg);
1632
1633 /* If UREG is a pseudo-register that hasn't already been assigned a
1634 quantity number, it means that it is not local to this block or dies
1635 more than once. In either event, we can't do anything with it. */
1636 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1637 /* Do not combine registers unless one fits within the other. */
1638 || (offset > 0 && usize + offset > ssize)
1639 || (offset < 0 && usize + offset < ssize)
1640 /* Do not combine with a smaller already-assigned object
1641 if that smaller object is already combined with something bigger. */
1642 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1643 && usize < qty[reg_qty[ureg]].size)
1644 /* Can't combine if SREG is not a register we can allocate. */
1645 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1646 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1647 These have already been taken care of. This probably wouldn't
1648 combine anyway, but don't take any chances. */
1649 || (ureg >= FIRST_PSEUDO_REGISTER
1650 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1651 /* Don't tie something to itself. In most cases it would make no
1652 difference, but it would screw up if the reg being tied to itself
1653 also dies in this insn. */
1654 || ureg == sreg
1655 /* Don't try to connect two different hardware registers. */
1656 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1657 /* Don't use a hard reg that might be spilled. */
1658 || (ureg < FIRST_PSEUDO_REGISTER
1659 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1660 || (sreg < FIRST_PSEUDO_REGISTER
1661 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1662 /* Don't connect two different machine modes if they have different
1663 implications as to which registers may be used. */
1664 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1665 return 0;
1666
1667 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1668 qty_phys_sugg for the pseudo instead of tying them.
1669
1670 Return "failure" so that the lifespan of UREG is terminated here;
1671 that way the two lifespans will be disjoint and nothing will prevent
1672 the pseudo reg from being given this hard reg. */
1673
1674 if (ureg < FIRST_PSEUDO_REGISTER)
1675 {
1676 /* Allocate a quantity number so we have a place to put our
1677 suggestions. */
1678 if (reg_qty[sreg] == -2)
1679 reg_is_born (setreg, 2 * insn_number);
1680
1681 if (reg_qty[sreg] >= 0)
1682 {
1683 if (may_save_copy
1684 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1685 {
1686 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1687 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1688 }
1689 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1690 {
1691 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1692 qty_phys_num_sugg[reg_qty[sreg]]++;
1693 }
1694 }
1695 return 0;
1696 }
1697
1698 /* Similarly for SREG a hard register and UREG a pseudo register. */
1699
1700 if (sreg < FIRST_PSEUDO_REGISTER)
1701 {
1702 if (may_save_copy
1703 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1704 {
1705 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1706 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1707 }
1708 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1709 {
1710 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1711 qty_phys_num_sugg[reg_qty[ureg]]++;
1712 }
1713 return 0;
1714 }
1715
1716 /* At this point we know that SREG and UREG are both pseudos.
1717 Do nothing if SREG already has a quantity or is a register that we
1718 don't allocate. */
1719 if (reg_qty[sreg] >= -1
1720 /* If we are not going to let any regs live across calls,
1721 don't tie a call-crossing reg to a non-call-crossing reg. */
1722 || (current_function_has_nonlocal_label
1723 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1724 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1725 return 0;
1726
1727 /* We don't already know about SREG, so tie it to UREG
1728 if this is the last use of UREG, provided the classes they want
1729 are compatible. */
1730
1731 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1732 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1733 {
1734 /* Add SREG to UREG's quantity. */
1735 sqty = reg_qty[ureg];
1736 reg_qty[sreg] = sqty;
1737 reg_offset[sreg] = reg_offset[ureg] + offset;
1738 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1739 qty[sqty].first_reg = sreg;
1740
1741 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1742 update_qty_class (sqty, sreg);
1743
1744 /* Update info about quantity SQTY. */
1745 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1746 qty[sqty].n_refs += REG_N_REFS (sreg);
1747 if (usize < ssize)
1748 {
1749 register int i;
1750
1751 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1752 reg_offset[i] -= offset;
1753
1754 qty[sqty].size = ssize;
1755 qty[sqty].mode = GET_MODE (setreg);
1756 }
1757 }
1758 else
1759 return 0;
1760
1761 return 1;
1762 }
1763 \f
1764 /* Return 1 if the preferred class of REG allows it to be tied
1765 to a quantity or register whose class is CLASS.
1766 True if REG's reg class either contains or is contained in CLASS. */
1767
1768 static int
1769 reg_meets_class_p (reg, class)
1770 int reg;
1771 enum reg_class class;
1772 {
1773 register enum reg_class rclass = reg_preferred_class (reg);
1774 return (reg_class_subset_p (rclass, class)
1775 || reg_class_subset_p (class, rclass));
1776 }
1777
1778 /* Update the class of QTYNO assuming that REG is being tied to it. */
1779
1780 static void
1781 update_qty_class (qtyno, reg)
1782 int qtyno;
1783 int reg;
1784 {
1785 enum reg_class rclass = reg_preferred_class (reg);
1786 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1787 qty[qtyno].min_class = rclass;
1788
1789 rclass = reg_alternate_class (reg);
1790 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1791 qty[qtyno].alternate_class = rclass;
1792
1793 if (REG_CHANGES_MODE (reg))
1794 qty[qtyno].changes_mode = 1;
1795 }
1796 \f
1797 /* Handle something which alters the value of an rtx REG.
1798
1799 REG is whatever is set or clobbered. SETTER is the rtx that
1800 is modifying the register.
1801
1802 If it is not really a register, we do nothing.
1803 The file-global variables `this_insn' and `this_insn_number'
1804 carry info from `block_alloc'. */
1805
1806 static void
1807 reg_is_set (reg, setter, data)
1808 rtx reg;
1809 rtx setter;
1810 void *data ATTRIBUTE_UNUSED;
1811 {
1812 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1813 a hard register. These may actually not exist any more. */
1814
1815 if (GET_CODE (reg) != SUBREG
1816 && GET_CODE (reg) != REG)
1817 return;
1818
1819 /* Mark this register as being born. If it is used in a CLOBBER, mark
1820 it as being born halfway between the previous insn and this insn so that
1821 it conflicts with our inputs but not the outputs of the previous insn. */
1822
1823 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1824 }
1825 \f
1826 /* Handle beginning of the life of register REG.
1827 BIRTH is the index at which this is happening. */
1828
1829 static void
1830 reg_is_born (reg, birth)
1831 rtx reg;
1832 int birth;
1833 {
1834 register int regno;
1835
1836 if (GET_CODE (reg) == SUBREG)
1837 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1838 else
1839 regno = REGNO (reg);
1840
1841 if (regno < FIRST_PSEUDO_REGISTER)
1842 {
1843 mark_life (regno, GET_MODE (reg), 1);
1844
1845 /* If the register was to have been born earlier that the present
1846 insn, mark it as live where it is actually born. */
1847 if (birth < 2 * this_insn_number)
1848 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1849 }
1850 else
1851 {
1852 if (reg_qty[regno] == -2)
1853 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1854
1855 /* If this register has a quantity number, show that it isn't dead. */
1856 if (reg_qty[regno] >= 0)
1857 qty[reg_qty[regno]].death = -1;
1858 }
1859 }
1860
1861 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1862 REG is an output that is dying (i.e., it is never used), otherwise it
1863 is an input (the normal case).
1864 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1865
1866 static void
1867 wipe_dead_reg (reg, output_p)
1868 register rtx reg;
1869 int output_p;
1870 {
1871 register int regno = REGNO (reg);
1872
1873 /* If this insn has multiple results,
1874 and the dead reg is used in one of the results,
1875 extend its life to after this insn,
1876 so it won't get allocated together with any other result of this insn.
1877
1878 It is unsafe to use !single_set here since it will ignore an unused
1879 output. Just because an output is unused does not mean the compiler
1880 can assume the side effect will not occur. Consider if REG appears
1881 in the address of an output and we reload the output. If we allocate
1882 REG to the same hard register as an unused output we could set the hard
1883 register before the output reload insn. */
1884 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1885 && multiple_sets (this_insn))
1886 {
1887 int i;
1888 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1889 {
1890 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1891 if (GET_CODE (set) == SET
1892 && GET_CODE (SET_DEST (set)) != REG
1893 && !rtx_equal_p (reg, SET_DEST (set))
1894 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1895 output_p = 1;
1896 }
1897 }
1898
1899 /* If this register is used in an auto-increment address, then extend its
1900 life to after this insn, so that it won't get allocated together with
1901 the result of this insn. */
1902 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1903 output_p = 1;
1904
1905 if (regno < FIRST_PSEUDO_REGISTER)
1906 {
1907 mark_life (regno, GET_MODE (reg), 0);
1908
1909 /* If a hard register is dying as an output, mark it as in use at
1910 the beginning of this insn (the above statement would cause this
1911 not to happen). */
1912 if (output_p)
1913 post_mark_life (regno, GET_MODE (reg), 1,
1914 2 * this_insn_number, 2 * this_insn_number + 1);
1915 }
1916
1917 else if (reg_qty[regno] >= 0)
1918 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
1919 }
1920 \f
1921 /* Find a block of SIZE words of hard regs in reg_class CLASS
1922 that can hold something of machine-mode MODE
1923 (but actually we test only the first of the block for holding MODE)
1924 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1925 and return the number of the first of them.
1926 Return -1 if such a block cannot be found.
1927 If QTYNO crosses calls, insist on a register preserved by calls,
1928 unless ACCEPT_CALL_CLOBBERED is nonzero.
1929
1930 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1931 register is available. If not, return -1. */
1932
1933 static int
1934 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
1935 born_index, dead_index)
1936 enum reg_class class;
1937 enum machine_mode mode;
1938 int qtyno;
1939 int accept_call_clobbered;
1940 int just_try_suggested;
1941 int born_index, dead_index;
1942 {
1943 register int i, ins;
1944 #ifdef HARD_REG_SET
1945 /* Declare it register if it's a scalar. */
1946 register
1947 #endif
1948 HARD_REG_SET used, first_used;
1949 #ifdef ELIMINABLE_REGS
1950 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1951 #endif
1952
1953 /* Validate our parameters. */
1954 if (born_index < 0 || born_index > dead_index)
1955 abort ();
1956
1957 /* Don't let a pseudo live in a reg across a function call
1958 if we might get a nonlocal goto. */
1959 if (current_function_has_nonlocal_label
1960 && qty[qtyno].n_calls_crossed > 0)
1961 return -1;
1962
1963 if (accept_call_clobbered)
1964 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1965 else if (qty[qtyno].n_calls_crossed == 0)
1966 COPY_HARD_REG_SET (used, fixed_reg_set);
1967 else
1968 COPY_HARD_REG_SET (used, call_used_reg_set);
1969
1970 if (accept_call_clobbered)
1971 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1972
1973 for (ins = born_index; ins < dead_index; ins++)
1974 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1975
1976 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1977
1978 /* Don't use the frame pointer reg in local-alloc even if
1979 we may omit the frame pointer, because if we do that and then we
1980 need a frame pointer, reload won't know how to move the pseudo
1981 to another hard reg. It can move only regs made by global-alloc.
1982
1983 This is true of any register that can be eliminated. */
1984 #ifdef ELIMINABLE_REGS
1985 for (i = 0; i < (int) (sizeof eliminables / sizeof eliminables[0]); i++)
1986 SET_HARD_REG_BIT (used, eliminables[i].from);
1987 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1988 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1989 that it might be eliminated into. */
1990 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1991 #endif
1992 #else
1993 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1994 #endif
1995
1996 #ifdef CLASS_CANNOT_CHANGE_MODE
1997 if (qty[qtyno].changes_mode)
1998 IOR_HARD_REG_SET (used,
1999 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2000 #endif
2001
2002 /* Normally, the registers that can be used for the first register in
2003 a multi-register quantity are the same as those that can be used for
2004 subsequent registers. However, if just trying suggested registers,
2005 restrict our consideration to them. If there are copy-suggested
2006 register, try them. Otherwise, try the arithmetic-suggested
2007 registers. */
2008 COPY_HARD_REG_SET (first_used, used);
2009
2010 if (just_try_suggested)
2011 {
2012 if (qty_phys_num_copy_sugg[qtyno] != 0)
2013 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2014 else
2015 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2016 }
2017
2018 /* If all registers are excluded, we can't do anything. */
2019 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2020
2021 /* If at least one would be suitable, test each hard reg. */
2022
2023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2024 {
2025 #ifdef REG_ALLOC_ORDER
2026 int regno = reg_alloc_order[i];
2027 #else
2028 int regno = i;
2029 #endif
2030 if (! TEST_HARD_REG_BIT (first_used, regno)
2031 && HARD_REGNO_MODE_OK (regno, mode)
2032 && (qty[qtyno].n_calls_crossed == 0
2033 || accept_call_clobbered
2034 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2035 {
2036 register int j;
2037 register int size1 = HARD_REGNO_NREGS (regno, mode);
2038 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2039 if (j == size1)
2040 {
2041 /* Mark that this register is in use between its birth and death
2042 insns. */
2043 post_mark_life (regno, mode, 1, born_index, dead_index);
2044 return regno;
2045 }
2046 #ifndef REG_ALLOC_ORDER
2047 /* Skip starting points we know will lose. */
2048 i += j;
2049 #endif
2050 }
2051 }
2052
2053 fail:
2054 /* If we are just trying suggested register, we have just tried copy-
2055 suggested registers, and there are arithmetic-suggested registers,
2056 try them. */
2057
2058 /* If it would be profitable to allocate a call-clobbered register
2059 and save and restore it around calls, do that. */
2060 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2061 && qty_phys_num_sugg[qtyno] != 0)
2062 {
2063 /* Don't try the copy-suggested regs again. */
2064 qty_phys_num_copy_sugg[qtyno] = 0;
2065 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2066 born_index, dead_index);
2067 }
2068
2069 /* We need not check to see if the current function has nonlocal
2070 labels because we don't put any pseudos that are live over calls in
2071 registers in that case. */
2072
2073 if (! accept_call_clobbered
2074 && flag_caller_saves
2075 && ! just_try_suggested
2076 && qty[qtyno].n_calls_crossed != 0
2077 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2078 qty[qtyno].n_calls_crossed))
2079 {
2080 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2081 if (i >= 0)
2082 caller_save_needed = 1;
2083 return i;
2084 }
2085 return -1;
2086 }
2087 \f
2088 /* Mark that REGNO with machine-mode MODE is live starting from the current
2089 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2090 is zero). */
2091
2092 static void
2093 mark_life (regno, mode, life)
2094 register int regno;
2095 enum machine_mode mode;
2096 int life;
2097 {
2098 register int j = HARD_REGNO_NREGS (regno, mode);
2099 if (life)
2100 while (--j >= 0)
2101 SET_HARD_REG_BIT (regs_live, regno + j);
2102 else
2103 while (--j >= 0)
2104 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2105 }
2106
2107 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2108 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2109 to insn number DEATH (exclusive). */
2110
2111 static void
2112 post_mark_life (regno, mode, life, birth, death)
2113 int regno;
2114 enum machine_mode mode;
2115 int life, birth, death;
2116 {
2117 register int j = HARD_REGNO_NREGS (regno, mode);
2118 #ifdef HARD_REG_SET
2119 /* Declare it register if it's a scalar. */
2120 register
2121 #endif
2122 HARD_REG_SET this_reg;
2123
2124 CLEAR_HARD_REG_SET (this_reg);
2125 while (--j >= 0)
2126 SET_HARD_REG_BIT (this_reg, regno + j);
2127
2128 if (life)
2129 while (birth < death)
2130 {
2131 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2132 birth++;
2133 }
2134 else
2135 while (birth < death)
2136 {
2137 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2138 birth++;
2139 }
2140 }
2141 \f
2142 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2143 is the register being clobbered, and R1 is a register being used in
2144 the equivalent expression.
2145
2146 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2147 in which it is used, return 1.
2148
2149 Otherwise, return 0. */
2150
2151 static int
2152 no_conflict_p (insn, r0, r1)
2153 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2154 {
2155 int ok = 0;
2156 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2157 rtx p, last;
2158
2159 /* If R1 is a hard register, return 0 since we handle this case
2160 when we scan the insns that actually use it. */
2161
2162 if (note == 0
2163 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2164 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2165 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2166 return 0;
2167
2168 last = XEXP (note, 0);
2169
2170 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2171 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2172 {
2173 if (find_reg_note (p, REG_DEAD, r1))
2174 ok = 1;
2175
2176 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2177 some earlier optimization pass has inserted instructions into
2178 the sequence, and it is not safe to perform this optimization.
2179 Note that emit_no_conflict_block always ensures that this is
2180 true when these sequences are created. */
2181 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2182 return 0;
2183 }
2184
2185 return ok;
2186 }
2187 \f
2188 /* Return the number of alternatives for which the constraint string P
2189 indicates that the operand must be equal to operand 0 and that no register
2190 is acceptable. */
2191
2192 static int
2193 requires_inout (p)
2194 const char *p;
2195 {
2196 char c;
2197 int found_zero = 0;
2198 int reg_allowed = 0;
2199 int num_matching_alts = 0;
2200
2201 while ((c = *p++))
2202 switch (c)
2203 {
2204 case '=': case '+': case '?':
2205 case '#': case '&': case '!':
2206 case '*': case '%':
2207 case '1': case '2': case '3': case '4': case '5':
2208 case '6': case '7': case '8': case '9':
2209 case 'm': case '<': case '>': case 'V': case 'o':
2210 case 'E': case 'F': case 'G': case 'H':
2211 case 's': case 'i': case 'n':
2212 case 'I': case 'J': case 'K': case 'L':
2213 case 'M': case 'N': case 'O': case 'P':
2214 #ifdef EXTRA_CONSTRAINT
2215 case 'Q': case 'R': case 'S': case 'T': case 'U':
2216 #endif
2217 case 'X':
2218 /* These don't say anything we care about. */
2219 break;
2220
2221 case ',':
2222 if (found_zero && ! reg_allowed)
2223 num_matching_alts++;
2224
2225 found_zero = reg_allowed = 0;
2226 break;
2227
2228 case '0':
2229 found_zero = 1;
2230 break;
2231
2232 case 'p':
2233 case 'g': case 'r':
2234 default:
2235 reg_allowed = 1;
2236 break;
2237 }
2238
2239 if (found_zero && ! reg_allowed)
2240 num_matching_alts++;
2241
2242 return num_matching_alts;
2243 }
2244 \f
2245 void
2246 dump_local_alloc (file)
2247 FILE *file;
2248 {
2249 register int i;
2250 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2251 if (reg_renumber[i] != -1)
2252 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2253 }