rtl.h (rtx_format): Constify a char*.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "function.h"
69 #include "hard-reg-set.h"
70 #include "insn-config.h"
71 #include "insn-attr.h"
72 #include "recog.h"
73 #include "output.h"
74 #include "toplev.h"
75 \f
76 /* Next quantity number available for allocation. */
77
78 static int next_qty;
79
80 /* In all the following vectors indexed by quantity number. */
81
82 /* Element Q is the hard reg number chosen for quantity Q,
83 or -1 if none was found. */
84
85 static short *qty_phys_reg;
86
87 /* We maintain two hard register sets that indicate suggested hard registers
88 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
89 that are tied to the quantity by a simple copy. The second contains all
90 hard registers that are tied to the quantity via an arithmetic operation.
91
92 The former register set is given priority for allocation. This tends to
93 eliminate copy insns. */
94
95 /* Element Q is a set of hard registers that are suggested for quantity Q by
96 copy insns. */
97
98 static HARD_REG_SET *qty_phys_copy_sugg;
99
100 /* Element Q is a set of hard registers that are suggested for quantity Q by
101 arithmetic insns. */
102
103 static HARD_REG_SET *qty_phys_sugg;
104
105 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
106
107 static short *qty_phys_num_copy_sugg;
108
109 /* Element Q is the number of suggested registers in qty_phys_sugg. */
110
111 static short *qty_phys_num_sugg;
112
113 /* Element Q is the number of refs to quantity Q. */
114
115 static int *qty_n_refs;
116
117 /* Element Q is a reg class contained in (smaller than) the
118 preferred classes of all the pseudo regs that are tied in quantity Q.
119 This is the preferred class for allocating that quantity. */
120
121 static enum reg_class *qty_min_class;
122
123 /* Insn number (counting from head of basic block)
124 where quantity Q was born. -1 if birth has not been recorded. */
125
126 static int *qty_birth;
127
128 /* Insn number (counting from head of basic block)
129 where quantity Q died. Due to the way tying is done,
130 and the fact that we consider in this pass only regs that die but once,
131 a quantity can die only once. Each quantity's life span
132 is a set of consecutive insns. -1 if death has not been recorded. */
133
134 static int *qty_death;
135
136 /* Number of words needed to hold the data in quantity Q.
137 This depends on its machine mode. It is used for these purposes:
138 1. It is used in computing the relative importances of qtys,
139 which determines the order in which we look for regs for them.
140 2. It is used in rules that prevent tying several registers of
141 different sizes in a way that is geometrically impossible
142 (see combine_regs). */
143
144 static int *qty_size;
145
146 /* This holds the mode of the registers that are tied to qty Q,
147 or VOIDmode if registers with differing modes are tied together. */
148
149 static enum machine_mode *qty_mode;
150
151 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
152
153 static int *qty_n_calls_crossed;
154
155 /* Register class within which we allocate qty Q if we can't get
156 its preferred class. */
157
158 static enum reg_class *qty_alternate_class;
159
160 /* Element Q is nonzero if this quantity has been used in a SUBREG
161 that changes its size. */
162
163 static char *qty_changes_size;
164
165 /* Element Q is the register number of one pseudo register whose
166 reg_qty value is Q. This register should be the head of the chain
167 maintained in reg_next_in_qty. */
168
169 static int *qty_first_reg;
170
171 /* If (REG N) has been assigned a quantity number, is a register number
172 of another register assigned the same quantity number, or -1 for the
173 end of the chain. qty_first_reg point to the head of this chain. */
174
175 static int *reg_next_in_qty;
176
177 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
178 if it is >= 0,
179 of -1 if this register cannot be allocated by local-alloc,
180 or -2 if not known yet.
181
182 Note that if we see a use or death of pseudo register N with
183 reg_qty[N] == -2, register N must be local to the current block. If
184 it were used in more than one block, we would have reg_qty[N] == -1.
185 This relies on the fact that if reg_basic_block[N] is >= 0, register N
186 will not appear in any other block. We save a considerable number of
187 tests by exploiting this.
188
189 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
190 be referenced. */
191
192 static int *reg_qty;
193
194 /* The offset (in words) of register N within its quantity.
195 This can be nonzero if register N is SImode, and has been tied
196 to a subreg of a DImode register. */
197
198 static char *reg_offset;
199
200 /* Vector of substitutions of register numbers,
201 used to map pseudo regs into hardware regs.
202 This is set up as a result of register allocation.
203 Element N is the hard reg assigned to pseudo reg N,
204 or is -1 if no hard reg was assigned.
205 If N is a hard reg number, element N is N. */
206
207 short *reg_renumber;
208
209 /* Set of hard registers live at the current point in the scan
210 of the instructions in a basic block. */
211
212 static HARD_REG_SET regs_live;
213
214 /* Each set of hard registers indicates registers live at a particular
215 point in the basic block. For N even, regs_live_at[N] says which
216 hard registers are needed *after* insn N/2 (i.e., they may not
217 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
218
219 If an object is to conflict with the inputs of insn J but not the
220 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
221 if it is to conflict with the outputs of insn J but not the inputs of
222 insn J + 1, it is said to die at index J*2 + 1. */
223
224 static HARD_REG_SET *regs_live_at;
225
226 /* Communicate local vars `insn_number' and `insn'
227 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
228 static int this_insn_number;
229 static rtx this_insn;
230
231 /* Used to communicate changes made by update_equiv_regs to
232 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
233 found or created, so that we can keep track of what memory accesses might
234 be created later, e.g. by reload. */
235
236 static rtx *reg_equiv_replacement;
237
238 /* Used for communication between update_equiv_regs and no_equiv. */
239 static rtx *reg_equiv_init_insns;
240
241 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
242 static int recorded_label_ref;
243
244 static void alloc_qty PROTO((int, enum machine_mode, int, int));
245 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
246 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
247 static int contains_replace_regs PROTO((rtx, char *));
248 static int memref_referenced_p PROTO((rtx, rtx));
249 static int memref_used_between_p PROTO((rtx, rtx, rtx));
250 static void update_equiv_regs PROTO((void));
251 static void no_equiv PROTO((rtx, rtx));
252 static void block_alloc PROTO((int));
253 static int qty_sugg_compare PROTO((int, int));
254 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
255 static int qty_compare PROTO((int, int));
256 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
257 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
258 static int reg_meets_class_p PROTO((int, enum reg_class));
259 static void update_qty_class PROTO((int, int));
260 static void reg_is_set PROTO((rtx, rtx));
261 static void reg_is_born PROTO((rtx, int));
262 static void wipe_dead_reg PROTO((rtx, int));
263 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
264 int, int, int, int, int));
265 static void mark_life PROTO((int, enum machine_mode, int));
266 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
267 static int no_conflict_p PROTO((rtx, rtx, rtx));
268 static int requires_inout PROTO((const char *));
269 \f
270 /* Allocate a new quantity (new within current basic block)
271 for register number REGNO which is born at index BIRTH
272 within the block. MODE and SIZE are info on reg REGNO. */
273
274 static void
275 alloc_qty (regno, mode, size, birth)
276 int regno;
277 enum machine_mode mode;
278 int size, birth;
279 {
280 register int qty = next_qty++;
281
282 reg_qty[regno] = qty;
283 reg_offset[regno] = 0;
284 reg_next_in_qty[regno] = -1;
285
286 qty_first_reg[qty] = regno;
287 qty_size[qty] = size;
288 qty_mode[qty] = mode;
289 qty_birth[qty] = birth;
290 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
291 qty_min_class[qty] = reg_preferred_class (regno);
292 qty_alternate_class[qty] = reg_alternate_class (regno);
293 qty_n_refs[qty] = REG_N_REFS (regno);
294 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
295 }
296 \f
297 /* Main entry point of this file. */
298
299 int
300 local_alloc ()
301 {
302 register int b, i;
303 int max_qty;
304
305 /* We need to keep track of whether or not we recorded a LABEL_REF so
306 that we know if the jump optimizer needs to be rerun. */
307 recorded_label_ref = 0;
308
309 /* Leaf functions and non-leaf functions have different needs.
310 If defined, let the machine say what kind of ordering we
311 should use. */
312 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
313 ORDER_REGS_FOR_LOCAL_ALLOC;
314 #endif
315
316 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
317 registers. */
318 update_equiv_regs ();
319
320 /* This sets the maximum number of quantities we can have. Quantity
321 numbers start at zero and we can have one for each pseudo. */
322 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
323
324 /* Allocate vectors of temporary data.
325 See the declarations of these variables, above,
326 for what they mean. */
327
328 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
329 qty_phys_copy_sugg
330 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
331 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
332 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
333 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
334 qty_birth = (int *) alloca (max_qty * sizeof (int));
335 qty_death = (int *) alloca (max_qty * sizeof (int));
336 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
337 qty_size = (int *) alloca (max_qty * sizeof (int));
338 qty_mode
339 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
340 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
341 qty_min_class
342 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
343 qty_alternate_class
344 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
345 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
346 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
347
348 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
349 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
350 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
351
352 /* Allocate the reg_renumber array */
353 allocate_reg_info (max_regno, FALSE, TRUE);
354
355 /* Determine which pseudo-registers can be allocated by local-alloc.
356 In general, these are the registers used only in a single block and
357 which only die once. However, if a register's preferred class has only
358 a few entries, don't allocate this register here unless it is preferred
359 or nothing since retry_global_alloc won't be able to move it to
360 GENERAL_REGS if a reload register of this class is needed.
361
362 We need not be concerned with which block actually uses the register
363 since we will never see it outside that block. */
364
365 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
366 {
367 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
368 && (reg_alternate_class (i) == NO_REGS
369 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
370 reg_qty[i] = -2;
371 else
372 reg_qty[i] = -1;
373 }
374
375 /* Force loop below to initialize entire quantity array. */
376 next_qty = max_qty;
377
378 /* Allocate each block's local registers, block by block. */
379
380 for (b = 0; b < n_basic_blocks; b++)
381 {
382 /* NEXT_QTY indicates which elements of the `qty_...'
383 vectors might need to be initialized because they were used
384 for the previous block; it is set to the entire array before
385 block 0. Initialize those, with explicit loop if there are few,
386 else with bzero and bcopy. Do not initialize vectors that are
387 explicit set by `alloc_qty'. */
388
389 if (next_qty < 6)
390 {
391 for (i = 0; i < next_qty; i++)
392 {
393 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
394 qty_phys_num_copy_sugg[i] = 0;
395 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
396 qty_phys_num_sugg[i] = 0;
397 }
398 }
399 else
400 {
401 #define CLEAR(vector) \
402 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
403
404 CLEAR (qty_phys_copy_sugg);
405 CLEAR (qty_phys_num_copy_sugg);
406 CLEAR (qty_phys_sugg);
407 CLEAR (qty_phys_num_sugg);
408 }
409
410 next_qty = 0;
411
412 block_alloc (b);
413 #ifdef USE_C_ALLOCA
414 alloca (0);
415 #endif
416 }
417
418 free (reg_qty);
419 free (reg_offset);
420 free (reg_next_in_qty);
421 return recorded_label_ref;
422 }
423 \f
424 /* Depth of loops we are in while in update_equiv_regs. */
425 static int loop_depth;
426
427 /* Used for communication between the following two functions: contains
428 a MEM that we wish to ensure remains unchanged. */
429 static rtx equiv_mem;
430
431 /* Set nonzero if EQUIV_MEM is modified. */
432 static int equiv_mem_modified;
433
434 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
435 Called via note_stores. */
436
437 static void
438 validate_equiv_mem_from_store (dest, set)
439 rtx dest;
440 rtx set ATTRIBUTE_UNUSED;
441 {
442 if ((GET_CODE (dest) == REG
443 && reg_overlap_mentioned_p (dest, equiv_mem))
444 || (GET_CODE (dest) == MEM
445 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
446 equiv_mem_modified = 1;
447 }
448
449 /* Verify that no store between START and the death of REG invalidates
450 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
451 by storing into an overlapping memory location, or with a non-const
452 CALL_INSN.
453
454 Return 1 if MEMREF remains valid. */
455
456 static int
457 validate_equiv_mem (start, reg, memref)
458 rtx start;
459 rtx reg;
460 rtx memref;
461 {
462 rtx insn;
463 rtx note;
464
465 equiv_mem = memref;
466 equiv_mem_modified = 0;
467
468 /* If the memory reference has side effects or is volatile, it isn't a
469 valid equivalence. */
470 if (side_effects_p (memref))
471 return 0;
472
473 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
474 {
475 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
476 continue;
477
478 if (find_reg_note (insn, REG_DEAD, reg))
479 return 1;
480
481 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
482 && ! CONST_CALL_P (insn))
483 return 0;
484
485 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
486
487 /* If a register mentioned in MEMREF is modified via an
488 auto-increment, we lose the equivalence. Do the same if one
489 dies; although we could extend the life, it doesn't seem worth
490 the trouble. */
491
492 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
493 if ((REG_NOTE_KIND (note) == REG_INC
494 || REG_NOTE_KIND (note) == REG_DEAD)
495 && GET_CODE (XEXP (note, 0)) == REG
496 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
497 return 0;
498 }
499
500 return 0;
501 }
502
503 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
504
505 static int
506 contains_replace_regs (x, reg_equiv_replace)
507 rtx x;
508 char *reg_equiv_replace;
509 {
510 int i, j;
511 const char *fmt;
512 enum rtx_code code = GET_CODE (x);
513
514 switch (code)
515 {
516 case CONST_INT:
517 case CONST:
518 case LABEL_REF:
519 case SYMBOL_REF:
520 case CONST_DOUBLE:
521 case PC:
522 case CC0:
523 case HIGH:
524 case LO_SUM:
525 return 0;
526
527 case REG:
528 return reg_equiv_replace[REGNO (x)];
529
530 default:
531 break;
532 }
533
534 fmt = GET_RTX_FORMAT (code);
535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
536 switch (fmt[i])
537 {
538 case 'e':
539 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
540 return 1;
541 break;
542 case 'E':
543 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
544 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
545 return 1;
546 break;
547 }
548
549 return 0;
550 }
551 \f
552 /* TRUE if X references a memory location that would be affected by a store
553 to MEMREF. */
554
555 static int
556 memref_referenced_p (memref, x)
557 rtx x;
558 rtx memref;
559 {
560 int i, j;
561 const char *fmt;
562 enum rtx_code code = GET_CODE (x);
563
564 switch (code)
565 {
566 case CONST_INT:
567 case CONST:
568 case LABEL_REF:
569 case SYMBOL_REF:
570 case CONST_DOUBLE:
571 case PC:
572 case CC0:
573 case HIGH:
574 case LO_SUM:
575 return 0;
576
577 case REG:
578 return (reg_equiv_replacement[REGNO (x)]
579 && memref_referenced_p (memref,
580 reg_equiv_replacement[REGNO (x)]));
581
582 case MEM:
583 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
584 return 1;
585 break;
586
587 case SET:
588 /* If we are setting a MEM, it doesn't count (its address does), but any
589 other SET_DEST that has a MEM in it is referencing the MEM. */
590 if (GET_CODE (SET_DEST (x)) == MEM)
591 {
592 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
593 return 1;
594 }
595 else if (memref_referenced_p (memref, SET_DEST (x)))
596 return 1;
597
598 return memref_referenced_p (memref, SET_SRC (x));
599
600 default:
601 break;
602 }
603
604 fmt = GET_RTX_FORMAT (code);
605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
606 switch (fmt[i])
607 {
608 case 'e':
609 if (memref_referenced_p (memref, XEXP (x, i)))
610 return 1;
611 break;
612 case 'E':
613 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
614 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
615 return 1;
616 break;
617 }
618
619 return 0;
620 }
621
622 /* TRUE if some insn in the range (START, END] references a memory location
623 that would be affected by a store to MEMREF. */
624
625 static int
626 memref_used_between_p (memref, start, end)
627 rtx memref;
628 rtx start;
629 rtx end;
630 {
631 rtx insn;
632
633 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
634 insn = NEXT_INSN (insn))
635 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
636 && memref_referenced_p (memref, PATTERN (insn)))
637 return 1;
638
639 return 0;
640 }
641 \f
642 /* Return nonzero if the rtx X is invariant over the current function. */
643 int
644 function_invariant_p (x)
645 rtx x;
646 {
647 if (CONSTANT_P (x))
648 return 1;
649 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
650 return 1;
651 if (GET_CODE (x) == PLUS
652 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
653 && CONSTANT_P (XEXP (x, 1)))
654 return 1;
655 return 0;
656 }
657
658 /* Find registers that are equivalent to a single value throughout the
659 compilation (either because they can be referenced in memory or are set once
660 from a single constant). Lower their priority for a register.
661
662 If such a register is only referenced once, try substituting its value
663 into the using insn. If it succeeds, we can eliminate the register
664 completely. */
665
666 static void
667 update_equiv_regs ()
668 {
669 /* Set when an attempt should be made to replace a register with the
670 associated reg_equiv_replacement entry at the end of this function. */
671 char *reg_equiv_replace
672 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
673 rtx insn;
674 int block, depth;
675
676 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
677 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
678
679 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
680 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
681 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
682
683 init_alias_analysis ();
684
685 loop_depth = 1;
686
687 /* Scan the insns and find which registers have equivalences. Do this
688 in a separate scan of the insns because (due to -fcse-follow-jumps)
689 a register can be set below its use. */
690 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
691 {
692 rtx note;
693 rtx set;
694 rtx dest, src;
695 int regno;
696
697 if (GET_CODE (insn) == NOTE)
698 {
699 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
700 loop_depth++;
701 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
702 loop_depth--;
703 }
704
705 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
706 continue;
707
708 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
709 if (REG_NOTE_KIND (note) == REG_INC)
710 no_equiv (XEXP (note, 0), note);
711
712 set = single_set (insn);
713
714 /* If this insn contains more (or less) than a single SET,
715 only mark all destinations as having no known equivalence. */
716 if (set == 0)
717 {
718 note_stores (PATTERN (insn), no_equiv);
719 continue;
720 }
721 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
722 {
723 int i;
724
725 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
726 {
727 rtx part = XVECEXP (PATTERN (insn), 0, i);
728 if (part != set)
729 note_stores (part, no_equiv);
730 }
731 }
732
733 dest = SET_DEST (set);
734 src = SET_SRC (set);
735
736 /* If this sets a MEM to the contents of a REG that is only used
737 in a single basic block, see if the register is always equivalent
738 to that memory location and if moving the store from INSN to the
739 insn that set REG is safe. If so, put a REG_EQUIV note on the
740 initializing insn.
741
742 Don't add a REG_EQUIV note if the insn already has one. The existing
743 REG_EQUIV is likely more useful than the one we are adding.
744
745 If one of the regs in the address is marked as reg_equiv_replace,
746 then we can't add this REG_EQUIV note. The reg_equiv_replace
747 optimization may move the set of this register immediately before
748 insn, which puts it after reg_equiv_init_insns[regno], and hence
749 the mention in the REG_EQUIV note would be to an uninitialized
750 pseudo. */
751 /* ????? This test isn't good enough; we might see a MEM with a use of
752 a pseudo register before we see its setting insn that will cause
753 reg_equiv_replace for that pseudo to be set.
754 Equivalences to MEMs should be made in another pass, after the
755 reg_equiv_replace information has been gathered. */
756
757 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
758 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
759 && REG_BASIC_BLOCK (regno) >= 0
760 && REG_N_SETS (regno) == 1
761 && reg_equiv_init_insns[regno] != 0
762 && reg_equiv_init_insns[regno] != const0_rtx
763 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
764 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
765 {
766 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
767 if (validate_equiv_mem (init_insn, src, dest)
768 && ! memref_used_between_p (dest, init_insn, insn))
769 REG_NOTES (init_insn)
770 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
771 }
772
773 /* We only handle the case of a pseudo register being set
774 once, or always to the same value. */
775 /* ??? The mn10200 port breaks if we add equivalences for
776 values that need an ADDRESS_REGS register and set them equivalent
777 to a MEM of a pseudo. The actual problem is in the over-conservative
778 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
779 calculate_needs, but we traditionally work around this problem
780 here by rejecting equivalences when the destination is in a register
781 that's likely spilled. This is fragile, of course, since the
782 preferred class of a pseudo depends on all instructions that set
783 or use it. */
784
785 if (GET_CODE (dest) != REG
786 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
787 || reg_equiv_init_insns[regno] == const0_rtx
788 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
789 && GET_CODE (src) == MEM))
790 {
791 /* This might be seting a SUBREG of a pseudo, a pseudo that is
792 also set somewhere else to a constant. */
793 note_stores (set, no_equiv);
794 continue;
795 }
796 /* Don't handle the equivalence if the source is in a register
797 class that's likely to be spilled. */
798 if (GET_CODE (src) == REG
799 && REGNO (src) >= FIRST_PSEUDO_REGISTER
800 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
801 {
802 no_equiv (dest, set);
803 continue;
804 }
805
806 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
807
808 if (REG_N_SETS (regno) != 1
809 && (! note
810 || ! function_invariant_p (XEXP (note, 0))
811 || (reg_equiv_replacement[regno]
812 && ! rtx_equal_p (XEXP (note, 0),
813 reg_equiv_replacement[regno]))))
814 {
815 no_equiv (dest, set);
816 continue;
817 }
818 /* Record this insn as initializing this register. */
819 reg_equiv_init_insns[regno]
820 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
821
822 /* If this register is known to be equal to a constant, record that
823 it is always equivalent to the constant. */
824 if (note && function_invariant_p (XEXP (note, 0)))
825 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
826
827 /* If this insn introduces a "constant" register, decrease the priority
828 of that register. Record this insn if the register is only used once
829 more and the equivalence value is the same as our source.
830
831 The latter condition is checked for two reasons: First, it is an
832 indication that it may be more efficient to actually emit the insn
833 as written (if no registers are available, reload will substitute
834 the equivalence). Secondly, it avoids problems with any registers
835 dying in this insn whose death notes would be missed.
836
837 If we don't have a REG_EQUIV note, see if this insn is loading
838 a register used only in one basic block from a MEM. If so, and the
839 MEM remains unchanged for the life of the register, add a REG_EQUIV
840 note. */
841
842 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
843
844 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
845 && GET_CODE (SET_SRC (set)) == MEM
846 && validate_equiv_mem (insn, dest, SET_SRC (set)))
847 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
848 REG_NOTES (insn));
849
850 if (note)
851 {
852 int regno = REGNO (dest);
853
854 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
855 We might end up substituting the LABEL_REF for uses of the
856 pseudo here or later. That kind of transformation may turn an
857 indirect jump into a direct jump, in which case we must rerun the
858 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
859 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
860 || (GET_CODE (XEXP (note, 0)) == CONST
861 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
862 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
863 == LABEL_REF)))
864 recorded_label_ref = 1;
865
866
867 reg_equiv_replacement[regno] = XEXP (note, 0);
868
869 /* Don't mess with things live during setjmp. */
870 if (REG_LIVE_LENGTH (regno) >= 0)
871 {
872 /* Note that the statement below does not affect the priority
873 in local-alloc! */
874 REG_LIVE_LENGTH (regno) *= 2;
875
876
877 /* If the register is referenced exactly twice, meaning it is
878 set once and used once, indicate that the reference may be
879 replaced by the equivalence we computed above. If the
880 register is only used in one basic block, this can't succeed
881 or combine would have done it.
882
883 It would be nice to use "loop_depth * 2" in the compare
884 below. Unfortunately, LOOP_DEPTH need not be constant within
885 a basic block so this would be too complicated.
886
887 This case normally occurs when a parameter is read from
888 memory and then used exactly once, not in a loop. */
889
890 if (REG_N_REFS (regno) == 2
891 && REG_BASIC_BLOCK (regno) < 0
892 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
893 reg_equiv_replace[regno] = 1;
894 }
895 }
896 }
897
898 /* Now scan all regs killed in an insn to see if any of them are
899 registers only used that once. If so, see if we can replace the
900 reference with the equivalent from. If we can, delete the
901 initializing reference and this register will go away. If we
902 can't replace the reference, and the instruction is not in a
903 loop, then move the register initialization just before the use,
904 so that they are in the same basic block. */
905 block = -1;
906 depth = 0;
907 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
908 {
909 rtx link;
910
911 /* Keep track of which basic block we are in. */
912 if (block + 1 < n_basic_blocks
913 && BLOCK_HEAD (block + 1) == insn)
914 ++block;
915
916 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
917 {
918 if (GET_CODE (insn) == NOTE)
919 {
920 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
921 ++depth;
922 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
923 {
924 --depth;
925 if (depth < 0)
926 abort ();
927 }
928 }
929
930 continue;
931 }
932
933 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
934 {
935 if (REG_NOTE_KIND (link) == REG_DEAD
936 /* Make sure this insn still refers to the register. */
937 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
938 {
939 int regno = REGNO (XEXP (link, 0));
940 rtx equiv_insn;
941
942 if (! reg_equiv_replace[regno])
943 continue;
944
945 /* reg_equiv_replace[REGNO] gets set only when
946 REG_N_REFS[REGNO] is 2, i.e. the register is set
947 once and used once. (If it were only set, but not used,
948 flow would have deleted the setting insns.) Hence
949 there can only be one insn in reg_equiv_init_insns. */
950 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
951
952 if (validate_replace_rtx (regno_reg_rtx[regno],
953 reg_equiv_replacement[regno], insn))
954 {
955 remove_death (regno, insn);
956 REG_N_REFS (regno) = 0;
957 PUT_CODE (equiv_insn, NOTE);
958 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
959 NOTE_SOURCE_FILE (equiv_insn) = 0;
960 }
961 /* If we aren't in a loop, and there are no calls in
962 INSN or in the initialization of the register, then
963 move the initialization of the register to just
964 before INSN. Update the flow information. */
965 else if (depth == 0
966 && GET_CODE (equiv_insn) == INSN
967 && GET_CODE (insn) == INSN
968 && REG_BASIC_BLOCK (regno) < 0)
969 {
970 int l;
971
972 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
973 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
974
975 PUT_CODE (equiv_insn, NOTE);
976 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
977 NOTE_SOURCE_FILE (equiv_insn) = 0;
978 REG_NOTES (equiv_insn) = 0;
979
980 if (block < 0)
981 REG_BASIC_BLOCK (regno) = 0;
982 else
983 REG_BASIC_BLOCK (regno) = block;
984 REG_N_CALLS_CROSSED (regno) = 0;
985 REG_LIVE_LENGTH (regno) = 2;
986
987 if (block >= 0 && insn == BLOCK_HEAD (block))
988 BLOCK_HEAD (block) = PREV_INSN (insn);
989
990 for (l = 0; l < n_basic_blocks; l++)
991 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
992 regno);
993 }
994 }
995 }
996 }
997 }
998
999 /* Mark REG as having no known equivalence.
1000 Some instructions might have been proceessed before and furnished
1001 with REG_EQUIV notes for this register; these notes will have to be
1002 removed.
1003 STORE is the piece of RTL that does the non-constant / conflicting
1004 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1005 but needs to be there because this function is called from note_stores. */
1006 static void
1007 no_equiv (reg, store)
1008 rtx reg, store ATTRIBUTE_UNUSED;
1009 {
1010 int regno;
1011 rtx list;
1012
1013 if (GET_CODE (reg) != REG)
1014 return;
1015 regno = REGNO (reg);
1016 list = reg_equiv_init_insns[regno];
1017 if (list == const0_rtx)
1018 return;
1019 for (; list; list = XEXP (list, 1))
1020 {
1021 rtx insn = XEXP (list, 0);
1022 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1023 }
1024 reg_equiv_init_insns[regno] = const0_rtx;
1025 reg_equiv_replacement[regno] = NULL_RTX;
1026 }
1027 \f
1028 /* Allocate hard regs to the pseudo regs used only within block number B.
1029 Only the pseudos that die but once can be handled. */
1030
1031 static void
1032 block_alloc (b)
1033 int b;
1034 {
1035 register int i, q;
1036 register rtx insn;
1037 rtx note;
1038 int insn_number = 0;
1039 int insn_count = 0;
1040 int max_uid = get_max_uid ();
1041 int *qty_order;
1042 int no_conflict_combined_regno = -1;
1043
1044 /* Count the instructions in the basic block. */
1045
1046 insn = BLOCK_END (b);
1047 while (1)
1048 {
1049 if (GET_CODE (insn) != NOTE)
1050 if (++insn_count > max_uid)
1051 abort ();
1052 if (insn == BLOCK_HEAD (b))
1053 break;
1054 insn = PREV_INSN (insn);
1055 }
1056
1057 /* +2 to leave room for a post_mark_life at the last insn and for
1058 the birth of a CLOBBER in the first insn. */
1059 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1060 * sizeof (HARD_REG_SET));
1061 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1062
1063 /* Initialize table of hardware registers currently live. */
1064
1065 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1066
1067 /* This loop scans the instructions of the basic block
1068 and assigns quantities to registers.
1069 It computes which registers to tie. */
1070
1071 insn = BLOCK_HEAD (b);
1072 while (1)
1073 {
1074 register rtx body = PATTERN (insn);
1075
1076 if (GET_CODE (insn) != NOTE)
1077 insn_number++;
1078
1079 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1080 {
1081 register rtx link, set;
1082 register int win = 0;
1083 register rtx r0, r1;
1084 int combined_regno = -1;
1085 int i;
1086
1087 this_insn_number = insn_number;
1088 this_insn = insn;
1089
1090 extract_insn (insn);
1091 which_alternative = -1;
1092
1093 /* Is this insn suitable for tying two registers?
1094 If so, try doing that.
1095 Suitable insns are those with at least two operands and where
1096 operand 0 is an output that is a register that is not
1097 earlyclobber.
1098
1099 We can tie operand 0 with some operand that dies in this insn.
1100 First look for operands that are required to be in the same
1101 register as operand 0. If we find such, only try tying that
1102 operand or one that can be put into that operand if the
1103 operation is commutative. If we don't find an operand
1104 that is required to be in the same register as operand 0,
1105 we can tie with any operand.
1106
1107 Subregs in place of regs are also ok.
1108
1109 If tying is done, WIN is set nonzero. */
1110
1111 if (1
1112 #ifdef REGISTER_CONSTRAINTS
1113 && recog_n_operands > 1
1114 && recog_constraints[0][0] == '='
1115 && recog_constraints[0][1] != '&'
1116 #else
1117 && GET_CODE (PATTERN (insn)) == SET
1118 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1119 #endif
1120 )
1121 {
1122 #ifdef REGISTER_CONSTRAINTS
1123 /* If non-negative, is an operand that must match operand 0. */
1124 int must_match_0 = -1;
1125 /* Counts number of alternatives that require a match with
1126 operand 0. */
1127 int n_matching_alts = 0;
1128
1129 for (i = 1; i < recog_n_operands; i++)
1130 {
1131 const char *p = recog_constraints[i];
1132 int this_match = (requires_inout (p));
1133
1134 n_matching_alts += this_match;
1135 if (this_match == recog_n_alternatives)
1136 must_match_0 = i;
1137 }
1138 #endif
1139
1140 r0 = recog_operand[0];
1141 for (i = 1; i < recog_n_operands; i++)
1142 {
1143 #ifdef REGISTER_CONSTRAINTS
1144 /* Skip this operand if we found an operand that
1145 must match operand 0 and this operand isn't it
1146 and can't be made to be it by commutativity. */
1147
1148 if (must_match_0 >= 0 && i != must_match_0
1149 && ! (i == must_match_0 + 1
1150 && recog_constraints[i-1][0] == '%')
1151 && ! (i == must_match_0 - 1
1152 && recog_constraints[i][0] == '%'))
1153 continue;
1154
1155 /* Likewise if each alternative has some operand that
1156 must match operand zero. In that case, skip any
1157 operand that doesn't list operand 0 since we know that
1158 the operand always conflicts with operand 0. We
1159 ignore commutatity in this case to keep things simple. */
1160 if (n_matching_alts == recog_n_alternatives
1161 && 0 == requires_inout (recog_constraints[i]))
1162 continue;
1163 #endif
1164
1165 r1 = recog_operand[i];
1166
1167 /* If the operand is an address, find a register in it.
1168 There may be more than one register, but we only try one
1169 of them. */
1170 if (
1171 #ifdef REGISTER_CONSTRAINTS
1172 recog_constraints[i][0] == 'p'
1173 #else
1174 recog_operand_address_p[i]
1175 #endif
1176 )
1177 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1178 r1 = XEXP (r1, 0);
1179
1180 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1181 {
1182 /* We have two priorities for hard register preferences.
1183 If we have a move insn or an insn whose first input
1184 can only be in the same register as the output, give
1185 priority to an equivalence found from that insn. */
1186 int may_save_copy
1187 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1188 #ifdef REGISTER_CONSTRAINTS
1189 || (r1 == recog_operand[i] && must_match_0 >= 0)
1190 #endif
1191 );
1192
1193 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1194 win = combine_regs (r1, r0, may_save_copy,
1195 insn_number, insn, 0);
1196 }
1197 if (win)
1198 break;
1199 }
1200 }
1201
1202 /* Recognize an insn sequence with an ultimate result
1203 which can safely overlap one of the inputs.
1204 The sequence begins with a CLOBBER of its result,
1205 and ends with an insn that copies the result to itself
1206 and has a REG_EQUAL note for an equivalent formula.
1207 That note indicates what the inputs are.
1208 The result and the input can overlap if each insn in
1209 the sequence either doesn't mention the input
1210 or has a REG_NO_CONFLICT note to inhibit the conflict.
1211
1212 We do the combining test at the CLOBBER so that the
1213 destination register won't have had a quantity number
1214 assigned, since that would prevent combining. */
1215
1216 if (GET_CODE (PATTERN (insn)) == CLOBBER
1217 && (r0 = XEXP (PATTERN (insn), 0),
1218 GET_CODE (r0) == REG)
1219 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1220 && XEXP (link, 0) != 0
1221 && GET_CODE (XEXP (link, 0)) == INSN
1222 && (set = single_set (XEXP (link, 0))) != 0
1223 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1224 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1225 NULL_RTX)) != 0)
1226 {
1227 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1228 /* Check that we have such a sequence. */
1229 && no_conflict_p (insn, r0, r1))
1230 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1231 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1232 && (r1 = XEXP (XEXP (note, 0), 0),
1233 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1234 && no_conflict_p (insn, r0, r1))
1235 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1236
1237 /* Here we care if the operation to be computed is
1238 commutative. */
1239 else if ((GET_CODE (XEXP (note, 0)) == EQ
1240 || GET_CODE (XEXP (note, 0)) == NE
1241 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1242 && (r1 = XEXP (XEXP (note, 0), 1),
1243 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1244 && no_conflict_p (insn, r0, r1))
1245 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1246
1247 /* If we did combine something, show the register number
1248 in question so that we know to ignore its death. */
1249 if (win)
1250 no_conflict_combined_regno = REGNO (r1);
1251 }
1252
1253 /* If registers were just tied, set COMBINED_REGNO
1254 to the number of the register used in this insn
1255 that was tied to the register set in this insn.
1256 This register's qty should not be "killed". */
1257
1258 if (win)
1259 {
1260 while (GET_CODE (r1) == SUBREG)
1261 r1 = SUBREG_REG (r1);
1262 combined_regno = REGNO (r1);
1263 }
1264
1265 /* Mark the death of everything that dies in this instruction,
1266 except for anything that was just combined. */
1267
1268 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1269 if (REG_NOTE_KIND (link) == REG_DEAD
1270 && GET_CODE (XEXP (link, 0)) == REG
1271 && combined_regno != REGNO (XEXP (link, 0))
1272 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1273 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1274 wipe_dead_reg (XEXP (link, 0), 0);
1275
1276 /* Allocate qty numbers for all registers local to this block
1277 that are born (set) in this instruction.
1278 A pseudo that already has a qty is not changed. */
1279
1280 note_stores (PATTERN (insn), reg_is_set);
1281
1282 /* If anything is set in this insn and then unused, mark it as dying
1283 after this insn, so it will conflict with our outputs. This
1284 can't match with something that combined, and it doesn't matter
1285 if it did. Do this after the calls to reg_is_set since these
1286 die after, not during, the current insn. */
1287
1288 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1289 if (REG_NOTE_KIND (link) == REG_UNUSED
1290 && GET_CODE (XEXP (link, 0)) == REG)
1291 wipe_dead_reg (XEXP (link, 0), 1);
1292
1293 /* If this is an insn that has a REG_RETVAL note pointing at a
1294 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1295 block, so clear any register number that combined within it. */
1296 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1297 && GET_CODE (XEXP (note, 0)) == INSN
1298 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1299 no_conflict_combined_regno = -1;
1300 }
1301
1302 /* Set the registers live after INSN_NUMBER. Note that we never
1303 record the registers live before the block's first insn, since no
1304 pseudos we care about are live before that insn. */
1305
1306 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1307 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1308
1309 if (insn == BLOCK_END (b))
1310 break;
1311
1312 insn = NEXT_INSN (insn);
1313 }
1314
1315 /* Now every register that is local to this basic block
1316 should have been given a quantity, or else -1 meaning ignore it.
1317 Every quantity should have a known birth and death.
1318
1319 Order the qtys so we assign them registers in order of the
1320 number of suggested registers they need so we allocate those with
1321 the most restrictive needs first. */
1322
1323 qty_order = (int *) alloca (next_qty * sizeof (int));
1324 for (i = 0; i < next_qty; i++)
1325 qty_order[i] = i;
1326
1327 #define EXCHANGE(I1, I2) \
1328 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1329
1330 switch (next_qty)
1331 {
1332 case 3:
1333 /* Make qty_order[2] be the one to allocate last. */
1334 if (qty_sugg_compare (0, 1) > 0)
1335 EXCHANGE (0, 1);
1336 if (qty_sugg_compare (1, 2) > 0)
1337 EXCHANGE (2, 1);
1338
1339 /* ... Fall through ... */
1340 case 2:
1341 /* Put the best one to allocate in qty_order[0]. */
1342 if (qty_sugg_compare (0, 1) > 0)
1343 EXCHANGE (0, 1);
1344
1345 /* ... Fall through ... */
1346
1347 case 1:
1348 case 0:
1349 /* Nothing to do here. */
1350 break;
1351
1352 default:
1353 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1354 }
1355
1356 /* Try to put each quantity in a suggested physical register, if it has one.
1357 This may cause registers to be allocated that otherwise wouldn't be, but
1358 this seems acceptable in local allocation (unlike global allocation). */
1359 for (i = 0; i < next_qty; i++)
1360 {
1361 q = qty_order[i];
1362 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1363 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1364 0, 1, qty_birth[q], qty_death[q]);
1365 else
1366 qty_phys_reg[q] = -1;
1367 }
1368
1369 /* Order the qtys so we assign them registers in order of
1370 decreasing length of life. Normally call qsort, but if we
1371 have only a very small number of quantities, sort them ourselves. */
1372
1373 for (i = 0; i < next_qty; i++)
1374 qty_order[i] = i;
1375
1376 #define EXCHANGE(I1, I2) \
1377 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1378
1379 switch (next_qty)
1380 {
1381 case 3:
1382 /* Make qty_order[2] be the one to allocate last. */
1383 if (qty_compare (0, 1) > 0)
1384 EXCHANGE (0, 1);
1385 if (qty_compare (1, 2) > 0)
1386 EXCHANGE (2, 1);
1387
1388 /* ... Fall through ... */
1389 case 2:
1390 /* Put the best one to allocate in qty_order[0]. */
1391 if (qty_compare (0, 1) > 0)
1392 EXCHANGE (0, 1);
1393
1394 /* ... Fall through ... */
1395
1396 case 1:
1397 case 0:
1398 /* Nothing to do here. */
1399 break;
1400
1401 default:
1402 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1403 }
1404
1405 /* Now for each qty that is not a hardware register,
1406 look for a hardware register to put it in.
1407 First try the register class that is cheapest for this qty,
1408 if there is more than one class. */
1409
1410 for (i = 0; i < next_qty; i++)
1411 {
1412 q = qty_order[i];
1413 if (qty_phys_reg[q] < 0)
1414 {
1415 #ifdef INSN_SCHEDULING
1416 /* These values represent the adjusted lifetime of a qty so
1417 that it conflicts with qtys which appear near the start/end
1418 of this qty's lifetime.
1419
1420 The purpose behind extending the lifetime of this qty is to
1421 discourage the register allocator from creating false
1422 dependencies.
1423
1424 The adjustment value is choosen to indicate that this qty
1425 conflicts with all the qtys in the instructions immediately
1426 before and after the lifetime of this qty.
1427
1428 Experiments have shown that higher values tend to hurt
1429 overall code performance.
1430
1431 If allocation using the extended lifetime fails we will try
1432 again with the qty's unadjusted lifetime. */
1433 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1434 int fake_death = MIN (insn_number * 2 + 1,
1435 qty_death[q] + 2 - qty_death[q] % 2);
1436 #endif
1437
1438 if (N_REG_CLASSES > 1)
1439 {
1440 #ifdef INSN_SCHEDULING
1441 /* We try to avoid using hard registers allocated to qtys which
1442 are born immediately after this qty or die immediately before
1443 this qty.
1444
1445 This optimization is only appropriate when we will run
1446 a scheduling pass after reload and we are not optimizing
1447 for code size. */
1448 if (flag_schedule_insns_after_reload
1449 && !optimize_size
1450 && !SMALL_REGISTER_CLASSES)
1451 {
1452
1453 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1454 qty_mode[q], q, 0, 0,
1455 fake_birth, fake_death);
1456 if (qty_phys_reg[q] >= 0)
1457 continue;
1458 }
1459 #endif
1460 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1461 qty_mode[q], q, 0, 0,
1462 qty_birth[q], qty_death[q]);
1463 if (qty_phys_reg[q] >= 0)
1464 continue;
1465 }
1466
1467 #ifdef INSN_SCHEDULING
1468 /* Similarly, avoid false dependencies. */
1469 if (flag_schedule_insns_after_reload
1470 && !optimize_size
1471 && !SMALL_REGISTER_CLASSES
1472 && qty_alternate_class[q] != NO_REGS)
1473 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1474 qty_mode[q], q, 0, 0,
1475 fake_birth, fake_death);
1476 #endif
1477 if (qty_alternate_class[q] != NO_REGS)
1478 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1479 qty_mode[q], q, 0, 0,
1480 qty_birth[q], qty_death[q]);
1481 }
1482 }
1483
1484 /* Now propagate the register assignments
1485 to the pseudo regs belonging to the qtys. */
1486
1487 for (q = 0; q < next_qty; q++)
1488 if (qty_phys_reg[q] >= 0)
1489 {
1490 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1491 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1492 }
1493 }
1494 \f
1495 /* Compare two quantities' priority for getting real registers.
1496 We give shorter-lived quantities higher priority.
1497 Quantities with more references are also preferred, as are quantities that
1498 require multiple registers. This is the identical prioritization as
1499 done by global-alloc.
1500
1501 We used to give preference to registers with *longer* lives, but using
1502 the same algorithm in both local- and global-alloc can speed up execution
1503 of some programs by as much as a factor of three! */
1504
1505 /* Note that the quotient will never be bigger than
1506 the value of floor_log2 times the maximum number of
1507 times a register can occur in one insn (surely less than 100).
1508 Multiplying this by 10000 can't overflow.
1509 QTY_CMP_PRI is also used by qty_sugg_compare. */
1510
1511 #define QTY_CMP_PRI(q) \
1512 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1513 / (qty_death[q] - qty_birth[q])) * 10000))
1514
1515 static int
1516 qty_compare (q1, q2)
1517 int q1, q2;
1518 {
1519 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1520 }
1521
1522 static int
1523 qty_compare_1 (q1p, q2p)
1524 const GENERIC_PTR q1p;
1525 const GENERIC_PTR q2p;
1526 {
1527 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1528 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1529
1530 if (tem != 0)
1531 return tem;
1532
1533 /* If qtys are equally good, sort by qty number,
1534 so that the results of qsort leave nothing to chance. */
1535 return q1 - q2;
1536 }
1537 \f
1538 /* Compare two quantities' priority for getting real registers. This version
1539 is called for quantities that have suggested hard registers. First priority
1540 goes to quantities that have copy preferences, then to those that have
1541 normal preferences. Within those groups, quantities with the lower
1542 number of preferences have the highest priority. Of those, we use the same
1543 algorithm as above. */
1544
1545 #define QTY_CMP_SUGG(q) \
1546 (qty_phys_num_copy_sugg[q] \
1547 ? qty_phys_num_copy_sugg[q] \
1548 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1549
1550 static int
1551 qty_sugg_compare (q1, q2)
1552 int q1, q2;
1553 {
1554 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1555
1556 if (tem != 0)
1557 return tem;
1558
1559 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1560 }
1561
1562 static int
1563 qty_sugg_compare_1 (q1p, q2p)
1564 const GENERIC_PTR q1p;
1565 const GENERIC_PTR q2p;
1566 {
1567 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1568 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1569
1570 if (tem != 0)
1571 return tem;
1572
1573 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1574 if (tem != 0)
1575 return tem;
1576
1577 /* If qtys are equally good, sort by qty number,
1578 so that the results of qsort leave nothing to chance. */
1579 return q1 - q2;
1580 }
1581
1582 #undef QTY_CMP_SUGG
1583 #undef QTY_CMP_PRI
1584 \f
1585 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1586 Returns 1 if have done so, or 0 if cannot.
1587
1588 Combining registers means marking them as having the same quantity
1589 and adjusting the offsets within the quantity if either of
1590 them is a SUBREG).
1591
1592 We don't actually combine a hard reg with a pseudo; instead
1593 we just record the hard reg as the suggestion for the pseudo's quantity.
1594 If we really combined them, we could lose if the pseudo lives
1595 across an insn that clobbers the hard reg (eg, movstr).
1596
1597 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1598 there is no REG_DEAD note on INSN. This occurs during the processing
1599 of REG_NO_CONFLICT blocks.
1600
1601 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1602 SETREG or if the input and output must share a register.
1603 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1604
1605 There are elaborate checks for the validity of combining. */
1606
1607
1608 static int
1609 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1610 rtx usedreg, setreg;
1611 int may_save_copy;
1612 int insn_number;
1613 rtx insn;
1614 int already_dead;
1615 {
1616 register int ureg, sreg;
1617 register int offset = 0;
1618 int usize, ssize;
1619 register int sqty;
1620
1621 /* Determine the numbers and sizes of registers being used. If a subreg
1622 is present that does not change the entire register, don't consider
1623 this a copy insn. */
1624
1625 while (GET_CODE (usedreg) == SUBREG)
1626 {
1627 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1628 may_save_copy = 0;
1629 offset += SUBREG_WORD (usedreg);
1630 usedreg = SUBREG_REG (usedreg);
1631 }
1632 if (GET_CODE (usedreg) != REG)
1633 return 0;
1634 ureg = REGNO (usedreg);
1635 usize = REG_SIZE (usedreg);
1636
1637 while (GET_CODE (setreg) == SUBREG)
1638 {
1639 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1640 may_save_copy = 0;
1641 offset -= SUBREG_WORD (setreg);
1642 setreg = SUBREG_REG (setreg);
1643 }
1644 if (GET_CODE (setreg) != REG)
1645 return 0;
1646 sreg = REGNO (setreg);
1647 ssize = REG_SIZE (setreg);
1648
1649 /* If UREG is a pseudo-register that hasn't already been assigned a
1650 quantity number, it means that it is not local to this block or dies
1651 more than once. In either event, we can't do anything with it. */
1652 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1653 /* Do not combine registers unless one fits within the other. */
1654 || (offset > 0 && usize + offset > ssize)
1655 || (offset < 0 && usize + offset < ssize)
1656 /* Do not combine with a smaller already-assigned object
1657 if that smaller object is already combined with something bigger. */
1658 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1659 && usize < qty_size[reg_qty[ureg]])
1660 /* Can't combine if SREG is not a register we can allocate. */
1661 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1662 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1663 These have already been taken care of. This probably wouldn't
1664 combine anyway, but don't take any chances. */
1665 || (ureg >= FIRST_PSEUDO_REGISTER
1666 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1667 /* Don't tie something to itself. In most cases it would make no
1668 difference, but it would screw up if the reg being tied to itself
1669 also dies in this insn. */
1670 || ureg == sreg
1671 /* Don't try to connect two different hardware registers. */
1672 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1673 /* Don't use a hard reg that might be spilled. */
1674 || (ureg < FIRST_PSEUDO_REGISTER
1675 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1676 || (sreg < FIRST_PSEUDO_REGISTER
1677 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1678 /* Don't connect two different machine modes if they have different
1679 implications as to which registers may be used. */
1680 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1681 return 0;
1682
1683 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1684 qty_phys_sugg for the pseudo instead of tying them.
1685
1686 Return "failure" so that the lifespan of UREG is terminated here;
1687 that way the two lifespans will be disjoint and nothing will prevent
1688 the pseudo reg from being given this hard reg. */
1689
1690 if (ureg < FIRST_PSEUDO_REGISTER)
1691 {
1692 /* Allocate a quantity number so we have a place to put our
1693 suggestions. */
1694 if (reg_qty[sreg] == -2)
1695 reg_is_born (setreg, 2 * insn_number);
1696
1697 if (reg_qty[sreg] >= 0)
1698 {
1699 if (may_save_copy
1700 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1701 {
1702 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1703 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1704 }
1705 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1706 {
1707 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1708 qty_phys_num_sugg[reg_qty[sreg]]++;
1709 }
1710 }
1711 return 0;
1712 }
1713
1714 /* Similarly for SREG a hard register and UREG a pseudo register. */
1715
1716 if (sreg < FIRST_PSEUDO_REGISTER)
1717 {
1718 if (may_save_copy
1719 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1720 {
1721 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1722 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1723 }
1724 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1725 {
1726 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1727 qty_phys_num_sugg[reg_qty[ureg]]++;
1728 }
1729 return 0;
1730 }
1731
1732 /* At this point we know that SREG and UREG are both pseudos.
1733 Do nothing if SREG already has a quantity or is a register that we
1734 don't allocate. */
1735 if (reg_qty[sreg] >= -1
1736 /* If we are not going to let any regs live across calls,
1737 don't tie a call-crossing reg to a non-call-crossing reg. */
1738 || (current_function_has_nonlocal_label
1739 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1740 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1741 return 0;
1742
1743 /* We don't already know about SREG, so tie it to UREG
1744 if this is the last use of UREG, provided the classes they want
1745 are compatible. */
1746
1747 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1748 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1749 {
1750 /* Add SREG to UREG's quantity. */
1751 sqty = reg_qty[ureg];
1752 reg_qty[sreg] = sqty;
1753 reg_offset[sreg] = reg_offset[ureg] + offset;
1754 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1755 qty_first_reg[sqty] = sreg;
1756
1757 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1758 update_qty_class (sqty, sreg);
1759
1760 /* Update info about quantity SQTY. */
1761 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1762 qty_n_refs[sqty] += REG_N_REFS (sreg);
1763 if (usize < ssize)
1764 {
1765 register int i;
1766
1767 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1768 reg_offset[i] -= offset;
1769
1770 qty_size[sqty] = ssize;
1771 qty_mode[sqty] = GET_MODE (setreg);
1772 }
1773 }
1774 else
1775 return 0;
1776
1777 return 1;
1778 }
1779 \f
1780 /* Return 1 if the preferred class of REG allows it to be tied
1781 to a quantity or register whose class is CLASS.
1782 True if REG's reg class either contains or is contained in CLASS. */
1783
1784 static int
1785 reg_meets_class_p (reg, class)
1786 int reg;
1787 enum reg_class class;
1788 {
1789 register enum reg_class rclass = reg_preferred_class (reg);
1790 return (reg_class_subset_p (rclass, class)
1791 || reg_class_subset_p (class, rclass));
1792 }
1793
1794 /* Update the class of QTY assuming that REG is being tied to it. */
1795
1796 static void
1797 update_qty_class (qty, reg)
1798 int qty;
1799 int reg;
1800 {
1801 enum reg_class rclass = reg_preferred_class (reg);
1802 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1803 qty_min_class[qty] = rclass;
1804
1805 rclass = reg_alternate_class (reg);
1806 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1807 qty_alternate_class[qty] = rclass;
1808
1809 if (REG_CHANGES_SIZE (reg))
1810 qty_changes_size[qty] = 1;
1811 }
1812 \f
1813 /* Handle something which alters the value of an rtx REG.
1814
1815 REG is whatever is set or clobbered. SETTER is the rtx that
1816 is modifying the register.
1817
1818 If it is not really a register, we do nothing.
1819 The file-global variables `this_insn' and `this_insn_number'
1820 carry info from `block_alloc'. */
1821
1822 static void
1823 reg_is_set (reg, setter)
1824 rtx reg;
1825 rtx setter;
1826 {
1827 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1828 a hard register. These may actually not exist any more. */
1829
1830 if (GET_CODE (reg) != SUBREG
1831 && GET_CODE (reg) != REG)
1832 return;
1833
1834 /* Mark this register as being born. If it is used in a CLOBBER, mark
1835 it as being born halfway between the previous insn and this insn so that
1836 it conflicts with our inputs but not the outputs of the previous insn. */
1837
1838 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1839 }
1840 \f
1841 /* Handle beginning of the life of register REG.
1842 BIRTH is the index at which this is happening. */
1843
1844 static void
1845 reg_is_born (reg, birth)
1846 rtx reg;
1847 int birth;
1848 {
1849 register int regno;
1850
1851 if (GET_CODE (reg) == SUBREG)
1852 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1853 else
1854 regno = REGNO (reg);
1855
1856 if (regno < FIRST_PSEUDO_REGISTER)
1857 {
1858 mark_life (regno, GET_MODE (reg), 1);
1859
1860 /* If the register was to have been born earlier that the present
1861 insn, mark it as live where it is actually born. */
1862 if (birth < 2 * this_insn_number)
1863 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1864 }
1865 else
1866 {
1867 if (reg_qty[regno] == -2)
1868 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1869
1870 /* If this register has a quantity number, show that it isn't dead. */
1871 if (reg_qty[regno] >= 0)
1872 qty_death[reg_qty[regno]] = -1;
1873 }
1874 }
1875
1876 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1877 REG is an output that is dying (i.e., it is never used), otherwise it
1878 is an input (the normal case).
1879 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1880
1881 static void
1882 wipe_dead_reg (reg, output_p)
1883 register rtx reg;
1884 int output_p;
1885 {
1886 register int regno = REGNO (reg);
1887
1888 /* If this insn has multiple results,
1889 and the dead reg is used in one of the results,
1890 extend its life to after this insn,
1891 so it won't get allocated together with any other result of this insn.
1892
1893 It is unsafe to use !single_set here since it will ignore an unused
1894 output. Just because an output is unused does not mean the compiler
1895 can assume the side effect will not occur. Consider if REG appears
1896 in the address of an output and we reload the output. If we allocate
1897 REG to the same hard register as an unused output we could set the hard
1898 register before the output reload insn. */
1899 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1900 && multiple_sets (this_insn))
1901 {
1902 int i;
1903 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1904 {
1905 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1906 if (GET_CODE (set) == SET
1907 && GET_CODE (SET_DEST (set)) != REG
1908 && !rtx_equal_p (reg, SET_DEST (set))
1909 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1910 output_p = 1;
1911 }
1912 }
1913
1914 /* If this register is used in an auto-increment address, then extend its
1915 life to after this insn, so that it won't get allocated together with
1916 the result of this insn. */
1917 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1918 output_p = 1;
1919
1920 if (regno < FIRST_PSEUDO_REGISTER)
1921 {
1922 mark_life (regno, GET_MODE (reg), 0);
1923
1924 /* If a hard register is dying as an output, mark it as in use at
1925 the beginning of this insn (the above statement would cause this
1926 not to happen). */
1927 if (output_p)
1928 post_mark_life (regno, GET_MODE (reg), 1,
1929 2 * this_insn_number, 2 * this_insn_number+ 1);
1930 }
1931
1932 else if (reg_qty[regno] >= 0)
1933 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1934 }
1935 \f
1936 /* Find a block of SIZE words of hard regs in reg_class CLASS
1937 that can hold something of machine-mode MODE
1938 (but actually we test only the first of the block for holding MODE)
1939 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1940 and return the number of the first of them.
1941 Return -1 if such a block cannot be found.
1942 If QTY crosses calls, insist on a register preserved by calls,
1943 unless ACCEPT_CALL_CLOBBERED is nonzero.
1944
1945 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1946 register is available. If not, return -1. */
1947
1948 static int
1949 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1950 born_index, dead_index)
1951 enum reg_class class;
1952 enum machine_mode mode;
1953 int qty;
1954 int accept_call_clobbered;
1955 int just_try_suggested;
1956 int born_index, dead_index;
1957 {
1958 register int i, ins;
1959 #ifdef HARD_REG_SET
1960 register /* Declare it register if it's a scalar. */
1961 #endif
1962 HARD_REG_SET used, first_used;
1963 #ifdef ELIMINABLE_REGS
1964 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1965 #endif
1966
1967 /* Validate our parameters. */
1968 if (born_index < 0 || born_index > dead_index)
1969 abort ();
1970
1971 /* Don't let a pseudo live in a reg across a function call
1972 if we might get a nonlocal goto. */
1973 if (current_function_has_nonlocal_label
1974 && qty_n_calls_crossed[qty] > 0)
1975 return -1;
1976
1977 if (accept_call_clobbered)
1978 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1979 else if (qty_n_calls_crossed[qty] == 0)
1980 COPY_HARD_REG_SET (used, fixed_reg_set);
1981 else
1982 COPY_HARD_REG_SET (used, call_used_reg_set);
1983
1984 if (accept_call_clobbered)
1985 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1986
1987 for (ins = born_index; ins < dead_index; ins++)
1988 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1989
1990 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1991
1992 /* Don't use the frame pointer reg in local-alloc even if
1993 we may omit the frame pointer, because if we do that and then we
1994 need a frame pointer, reload won't know how to move the pseudo
1995 to another hard reg. It can move only regs made by global-alloc.
1996
1997 This is true of any register that can be eliminated. */
1998 #ifdef ELIMINABLE_REGS
1999 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
2000 SET_HARD_REG_BIT (used, eliminables[i].from);
2001 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2002 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2003 that it might be eliminated into. */
2004 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2005 #endif
2006 #else
2007 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2008 #endif
2009
2010 #ifdef CLASS_CANNOT_CHANGE_SIZE
2011 if (qty_changes_size[qty])
2012 IOR_HARD_REG_SET (used,
2013 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2014 #endif
2015
2016 /* Normally, the registers that can be used for the first register in
2017 a multi-register quantity are the same as those that can be used for
2018 subsequent registers. However, if just trying suggested registers,
2019 restrict our consideration to them. If there are copy-suggested
2020 register, try them. Otherwise, try the arithmetic-suggested
2021 registers. */
2022 COPY_HARD_REG_SET (first_used, used);
2023
2024 if (just_try_suggested)
2025 {
2026 if (qty_phys_num_copy_sugg[qty] != 0)
2027 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2028 else
2029 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2030 }
2031
2032 /* If all registers are excluded, we can't do anything. */
2033 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2034
2035 /* If at least one would be suitable, test each hard reg. */
2036
2037 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2038 {
2039 #ifdef REG_ALLOC_ORDER
2040 int regno = reg_alloc_order[i];
2041 #else
2042 int regno = i;
2043 #endif
2044 if (! TEST_HARD_REG_BIT (first_used, regno)
2045 && HARD_REGNO_MODE_OK (regno, mode)
2046 && (qty_n_calls_crossed[qty] == 0
2047 || accept_call_clobbered
2048 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2049 {
2050 register int j;
2051 register int size1 = HARD_REGNO_NREGS (regno, mode);
2052 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2053 if (j == size1)
2054 {
2055 /* Mark that this register is in use between its birth and death
2056 insns. */
2057 post_mark_life (regno, mode, 1, born_index, dead_index);
2058 return regno;
2059 }
2060 #ifndef REG_ALLOC_ORDER
2061 i += j; /* Skip starting points we know will lose */
2062 #endif
2063 }
2064 }
2065
2066 fail:
2067
2068 /* If we are just trying suggested register, we have just tried copy-
2069 suggested registers, and there are arithmetic-suggested registers,
2070 try them. */
2071
2072 /* If it would be profitable to allocate a call-clobbered register
2073 and save and restore it around calls, do that. */
2074 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2075 && qty_phys_num_sugg[qty] != 0)
2076 {
2077 /* Don't try the copy-suggested regs again. */
2078 qty_phys_num_copy_sugg[qty] = 0;
2079 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2080 born_index, dead_index);
2081 }
2082
2083 /* We need not check to see if the current function has nonlocal
2084 labels because we don't put any pseudos that are live over calls in
2085 registers in that case. */
2086
2087 if (! accept_call_clobbered
2088 && flag_caller_saves
2089 && ! just_try_suggested
2090 && qty_n_calls_crossed[qty] != 0
2091 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2092 {
2093 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2094 if (i >= 0)
2095 caller_save_needed = 1;
2096 return i;
2097 }
2098 return -1;
2099 }
2100 \f
2101 /* Mark that REGNO with machine-mode MODE is live starting from the current
2102 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2103 is zero). */
2104
2105 static void
2106 mark_life (regno, mode, life)
2107 register int regno;
2108 enum machine_mode mode;
2109 int life;
2110 {
2111 register int j = HARD_REGNO_NREGS (regno, mode);
2112 if (life)
2113 while (--j >= 0)
2114 SET_HARD_REG_BIT (regs_live, regno + j);
2115 else
2116 while (--j >= 0)
2117 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2118 }
2119
2120 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2121 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2122 to insn number DEATH (exclusive). */
2123
2124 static void
2125 post_mark_life (regno, mode, life, birth, death)
2126 int regno;
2127 enum machine_mode mode;
2128 int life, birth, death;
2129 {
2130 register int j = HARD_REGNO_NREGS (regno, mode);
2131 #ifdef HARD_REG_SET
2132 register /* Declare it register if it's a scalar. */
2133 #endif
2134 HARD_REG_SET this_reg;
2135
2136 CLEAR_HARD_REG_SET (this_reg);
2137 while (--j >= 0)
2138 SET_HARD_REG_BIT (this_reg, regno + j);
2139
2140 if (life)
2141 while (birth < death)
2142 {
2143 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2144 birth++;
2145 }
2146 else
2147 while (birth < death)
2148 {
2149 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2150 birth++;
2151 }
2152 }
2153 \f
2154 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2155 is the register being clobbered, and R1 is a register being used in
2156 the equivalent expression.
2157
2158 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2159 in which it is used, return 1.
2160
2161 Otherwise, return 0. */
2162
2163 static int
2164 no_conflict_p (insn, r0, r1)
2165 rtx insn, r0, r1;
2166 {
2167 int ok = 0;
2168 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2169 rtx p, last;
2170
2171 /* If R1 is a hard register, return 0 since we handle this case
2172 when we scan the insns that actually use it. */
2173
2174 if (note == 0
2175 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2176 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2177 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2178 return 0;
2179
2180 last = XEXP (note, 0);
2181
2182 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2183 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2184 {
2185 if (find_reg_note (p, REG_DEAD, r1))
2186 ok = 1;
2187
2188 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2189 some earlier optimization pass has inserted instructions into
2190 the sequence, and it is not safe to perform this optimization.
2191 Note that emit_no_conflict_block always ensures that this is
2192 true when these sequences are created. */
2193 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2194 return 0;
2195 }
2196
2197 return ok;
2198 }
2199 \f
2200 #ifdef REGISTER_CONSTRAINTS
2201
2202 /* Return the number of alternatives for which the constraint string P
2203 indicates that the operand must be equal to operand 0 and that no register
2204 is acceptable. */
2205
2206 static int
2207 requires_inout (p)
2208 const char *p;
2209 {
2210 char c;
2211 int found_zero = 0;
2212 int reg_allowed = 0;
2213 int num_matching_alts = 0;
2214
2215 while ((c = *p++))
2216 switch (c)
2217 {
2218 case '=': case '+': case '?':
2219 case '#': case '&': case '!':
2220 case '*': case '%':
2221 case '1': case '2': case '3': case '4':
2222 case 'm': case '<': case '>': case 'V': case 'o':
2223 case 'E': case 'F': case 'G': case 'H':
2224 case 's': case 'i': case 'n':
2225 case 'I': case 'J': case 'K': case 'L':
2226 case 'M': case 'N': case 'O': case 'P':
2227 #ifdef EXTRA_CONSTRAINT
2228 case 'Q': case 'R': case 'S': case 'T': case 'U':
2229 #endif
2230 case 'X':
2231 /* These don't say anything we care about. */
2232 break;
2233
2234 case ',':
2235 if (found_zero && ! reg_allowed)
2236 num_matching_alts++;
2237
2238 found_zero = reg_allowed = 0;
2239 break;
2240
2241 case '0':
2242 found_zero = 1;
2243 break;
2244
2245 case 'p':
2246 case 'g': case 'r':
2247 default:
2248 reg_allowed = 1;
2249 break;
2250 }
2251
2252 if (found_zero && ! reg_allowed)
2253 num_matching_alts++;
2254
2255 return num_matching_alts;
2256 }
2257 #endif /* REGISTER_CONSTRAINTS */
2258 \f
2259 void
2260 dump_local_alloc (file)
2261 FILE *file;
2262 {
2263 register int i;
2264 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2265 if (reg_renumber[i] != -1)
2266 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2267 }