alias.c [...]: Remove unnecessary casts.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "basic-block.h"
71 #include "regs.h"
72 #include "function.h"
73 #include "insn-config.h"
74 #include "insn-attr.h"
75 #include "recog.h"
76 #include "output.h"
77 #include "toplev.h"
78 #include "except.h"
79 #include "integrate.h"
80 \f
81 /* Next quantity number available for allocation. */
82
83 static int next_qty;
84
85 /* Information we maintain about each quantity. */
86 struct qty
87 {
88 /* The number of refs to quantity Q. */
89
90 int n_refs;
91
92 /* The frequency of uses of quantity Q. */
93
94 int freq;
95
96 /* Insn number (counting from head of basic block)
97 where quantity Q was born. -1 if birth has not been recorded. */
98
99 int birth;
100
101 /* Insn number (counting from head of basic block)
102 where given quantity died. Due to the way tying is done,
103 and the fact that we consider in this pass only regs that die but once,
104 a quantity can die only once. Each quantity's life span
105 is a set of consecutive insns. -1 if death has not been recorded. */
106
107 int death;
108
109 /* Number of words needed to hold the data in given quantity.
110 This depends on its machine mode. It is used for these purposes:
111 1. It is used in computing the relative importances of qtys,
112 which determines the order in which we look for regs for them.
113 2. It is used in rules that prevent tying several registers of
114 different sizes in a way that is geometrically impossible
115 (see combine_regs). */
116
117 int size;
118
119 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
120
121 int n_calls_crossed;
122
123 /* The register number of one pseudo register whose reg_qty value is Q.
124 This register should be the head of the chain
125 maintained in reg_next_in_qty. */
126
127 int first_reg;
128
129 /* Reg class contained in (smaller than) the preferred classes of all
130 the pseudo regs that are tied in given quantity.
131 This is the preferred class for allocating that quantity. */
132
133 enum reg_class min_class;
134
135 /* Register class within which we allocate given qty if we can't get
136 its preferred class. */
137
138 enum reg_class alternate_class;
139
140 /* This holds the mode of the registers that are tied to given qty,
141 or VOIDmode if registers with differing modes are tied together. */
142
143 enum machine_mode mode;
144
145 /* the hard reg number chosen for given quantity,
146 or -1 if none was found. */
147
148 short phys_reg;
149 };
150
151 static struct qty *qty;
152
153 /* These fields are kept separately to speedup their clearing. */
154
155 /* We maintain two hard register sets that indicate suggested hard registers
156 for each quantity. The first, phys_copy_sugg, contains hard registers
157 that are tied to the quantity by a simple copy. The second contains all
158 hard registers that are tied to the quantity via an arithmetic operation.
159
160 The former register set is given priority for allocation. This tends to
161 eliminate copy insns. */
162
163 /* Element Q is a set of hard registers that are suggested for quantity Q by
164 copy insns. */
165
166 static HARD_REG_SET *qty_phys_copy_sugg;
167
168 /* Element Q is a set of hard registers that are suggested for quantity Q by
169 arithmetic insns. */
170
171 static HARD_REG_SET *qty_phys_sugg;
172
173 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
174
175 static short *qty_phys_num_copy_sugg;
176
177 /* Element Q is the number of suggested registers in qty_phys_sugg. */
178
179 static short *qty_phys_num_sugg;
180
181 /* If (REG N) has been assigned a quantity number, is a register number
182 of another register assigned the same quantity number, or -1 for the
183 end of the chain. qty->first_reg point to the head of this chain. */
184
185 static int *reg_next_in_qty;
186
187 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
188 if it is >= 0,
189 of -1 if this register cannot be allocated by local-alloc,
190 or -2 if not known yet.
191
192 Note that if we see a use or death of pseudo register N with
193 reg_qty[N] == -2, register N must be local to the current block. If
194 it were used in more than one block, we would have reg_qty[N] == -1.
195 This relies on the fact that if reg_basic_block[N] is >= 0, register N
196 will not appear in any other block. We save a considerable number of
197 tests by exploiting this.
198
199 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
200 be referenced. */
201
202 static int *reg_qty;
203
204 /* The offset (in words) of register N within its quantity.
205 This can be nonzero if register N is SImode, and has been tied
206 to a subreg of a DImode register. */
207
208 static char *reg_offset;
209
210 /* Vector of substitutions of register numbers,
211 used to map pseudo regs into hardware regs.
212 This is set up as a result of register allocation.
213 Element N is the hard reg assigned to pseudo reg N,
214 or is -1 if no hard reg was assigned.
215 If N is a hard reg number, element N is N. */
216
217 short *reg_renumber;
218
219 /* Set of hard registers live at the current point in the scan
220 of the instructions in a basic block. */
221
222 static HARD_REG_SET regs_live;
223
224 /* Each set of hard registers indicates registers live at a particular
225 point in the basic block. For N even, regs_live_at[N] says which
226 hard registers are needed *after* insn N/2 (i.e., they may not
227 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
228
229 If an object is to conflict with the inputs of insn J but not the
230 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
231 if it is to conflict with the outputs of insn J but not the inputs of
232 insn J + 1, it is said to die at index J*2 + 1. */
233
234 static HARD_REG_SET *regs_live_at;
235
236 /* Communicate local vars `insn_number' and `insn'
237 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
238 static int this_insn_number;
239 static rtx this_insn;
240
241 struct equivalence
242 {
243 /* Set when an attempt should be made to replace a register
244 with the associated src_p entry. */
245
246 char replace;
247
248 /* Set when a REG_EQUIV note is found or created. Use to
249 keep track of what memory accesses might be created later,
250 e.g. by reload. */
251
252 rtx replacement;
253
254 rtx *src_p;
255
256 /* Loop depth is used to recognize equivalences which appear
257 to be present within the same loop (or in an inner loop). */
258
259 int loop_depth;
260
261 /* The list of each instruction which initializes this register. */
262
263 rtx init_insns;
264 };
265
266 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
267 structure for that register. */
268
269 static struct equivalence *reg_equiv;
270
271 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
272 static int recorded_label_ref;
273
274 static void alloc_qty (int, enum machine_mode, int, int);
275 static void validate_equiv_mem_from_store (rtx, rtx, void *);
276 static int validate_equiv_mem (rtx, rtx, rtx);
277 static int equiv_init_varies_p (rtx);
278 static int equiv_init_movable_p (rtx, int);
279 static int contains_replace_regs (rtx);
280 static int memref_referenced_p (rtx, rtx);
281 static int memref_used_between_p (rtx, rtx, rtx);
282 static void update_equiv_regs (void);
283 static void no_equiv (rtx, rtx, void *);
284 static void block_alloc (int);
285 static int qty_sugg_compare (int, int);
286 static int qty_sugg_compare_1 (const void *, const void *);
287 static int qty_compare (int, int);
288 static int qty_compare_1 (const void *, const void *);
289 static int combine_regs (rtx, rtx, int, int, rtx, int);
290 static int reg_meets_class_p (int, enum reg_class);
291 static void update_qty_class (int, int);
292 static void reg_is_set (rtx, rtx, void *);
293 static void reg_is_born (rtx, int);
294 static void wipe_dead_reg (rtx, int);
295 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
296 int, int);
297 static void mark_life (int, enum machine_mode, int);
298 static void post_mark_life (int, enum machine_mode, int, int, int);
299 static int no_conflict_p (rtx, rtx, rtx);
300 static int requires_inout (const char *);
301 \f
302 /* Allocate a new quantity (new within current basic block)
303 for register number REGNO which is born at index BIRTH
304 within the block. MODE and SIZE are info on reg REGNO. */
305
306 static void
307 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
308 {
309 int qtyno = next_qty++;
310
311 reg_qty[regno] = qtyno;
312 reg_offset[regno] = 0;
313 reg_next_in_qty[regno] = -1;
314
315 qty[qtyno].first_reg = regno;
316 qty[qtyno].size = size;
317 qty[qtyno].mode = mode;
318 qty[qtyno].birth = birth;
319 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
320 qty[qtyno].min_class = reg_preferred_class (regno);
321 qty[qtyno].alternate_class = reg_alternate_class (regno);
322 qty[qtyno].n_refs = REG_N_REFS (regno);
323 qty[qtyno].freq = REG_FREQ (regno);
324 }
325 \f
326 /* Main entry point of this file. */
327
328 int
329 local_alloc (void)
330 {
331 int i;
332 int max_qty;
333 basic_block b;
334
335 /* We need to keep track of whether or not we recorded a LABEL_REF so
336 that we know if the jump optimizer needs to be rerun. */
337 recorded_label_ref = 0;
338
339 /* Leaf functions and non-leaf functions have different needs.
340 If defined, let the machine say what kind of ordering we
341 should use. */
342 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
343 ORDER_REGS_FOR_LOCAL_ALLOC;
344 #endif
345
346 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
347 registers. */
348 if (optimize)
349 update_equiv_regs ();
350
351 /* This sets the maximum number of quantities we can have. Quantity
352 numbers start at zero and we can have one for each pseudo. */
353 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
354
355 /* Allocate vectors of temporary data.
356 See the declarations of these variables, above,
357 for what they mean. */
358
359 qty = xmalloc (max_qty * sizeof (struct qty));
360 qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
361 qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
362 qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
364
365 reg_qty = xmalloc (max_regno * sizeof (int));
366 reg_offset = xmalloc (max_regno * sizeof (char));
367 reg_next_in_qty = xmalloc (max_regno * sizeof (int));
368
369 /* Determine which pseudo-registers can be allocated by local-alloc.
370 In general, these are the registers used only in a single block and
371 which only die once.
372
373 We need not be concerned with which block actually uses the register
374 since we will never see it outside that block. */
375
376 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
377 {
378 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
379 reg_qty[i] = -2;
380 else
381 reg_qty[i] = -1;
382 }
383
384 /* Force loop below to initialize entire quantity array. */
385 next_qty = max_qty;
386
387 /* Allocate each block's local registers, block by block. */
388
389 FOR_EACH_BB (b)
390 {
391 /* NEXT_QTY indicates which elements of the `qty_...'
392 vectors might need to be initialized because they were used
393 for the previous block; it is set to the entire array before
394 block 0. Initialize those, with explicit loop if there are few,
395 else with bzero and bcopy. Do not initialize vectors that are
396 explicit set by `alloc_qty'. */
397
398 if (next_qty < 6)
399 {
400 for (i = 0; i < next_qty; i++)
401 {
402 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
403 qty_phys_num_copy_sugg[i] = 0;
404 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
405 qty_phys_num_sugg[i] = 0;
406 }
407 }
408 else
409 {
410 #define CLEAR(vector) \
411 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
412
413 CLEAR (qty_phys_copy_sugg);
414 CLEAR (qty_phys_num_copy_sugg);
415 CLEAR (qty_phys_sugg);
416 CLEAR (qty_phys_num_sugg);
417 }
418
419 next_qty = 0;
420
421 block_alloc (b->index);
422 }
423
424 free (qty);
425 free (qty_phys_copy_sugg);
426 free (qty_phys_num_copy_sugg);
427 free (qty_phys_sugg);
428 free (qty_phys_num_sugg);
429
430 free (reg_qty);
431 free (reg_offset);
432 free (reg_next_in_qty);
433
434 return recorded_label_ref;
435 }
436 \f
437 /* Used for communication between the following two functions: contains
438 a MEM that we wish to ensure remains unchanged. */
439 static rtx equiv_mem;
440
441 /* Set nonzero if EQUIV_MEM is modified. */
442 static int equiv_mem_modified;
443
444 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
445 Called via note_stores. */
446
447 static void
448 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
449 void *data ATTRIBUTE_UNUSED)
450 {
451 if ((GET_CODE (dest) == REG
452 && reg_overlap_mentioned_p (dest, equiv_mem))
453 || (GET_CODE (dest) == MEM
454 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
455 equiv_mem_modified = 1;
456 }
457
458 /* Verify that no store between START and the death of REG invalidates
459 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
460 by storing into an overlapping memory location, or with a non-const
461 CALL_INSN.
462
463 Return 1 if MEMREF remains valid. */
464
465 static int
466 validate_equiv_mem (rtx start, rtx reg, rtx memref)
467 {
468 rtx insn;
469 rtx note;
470
471 equiv_mem = memref;
472 equiv_mem_modified = 0;
473
474 /* If the memory reference has side effects or is volatile, it isn't a
475 valid equivalence. */
476 if (side_effects_p (memref))
477 return 0;
478
479 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
480 {
481 if (! INSN_P (insn))
482 continue;
483
484 if (find_reg_note (insn, REG_DEAD, reg))
485 return 1;
486
487 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
488 && ! CONST_OR_PURE_CALL_P (insn))
489 return 0;
490
491 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
492
493 /* If a register mentioned in MEMREF is modified via an
494 auto-increment, we lose the equivalence. Do the same if one
495 dies; although we could extend the life, it doesn't seem worth
496 the trouble. */
497
498 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
499 if ((REG_NOTE_KIND (note) == REG_INC
500 || REG_NOTE_KIND (note) == REG_DEAD)
501 && GET_CODE (XEXP (note, 0)) == REG
502 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
503 return 0;
504 }
505
506 return 0;
507 }
508
509 /* Returns zero if X is known to be invariant. */
510
511 static int
512 equiv_init_varies_p (rtx x)
513 {
514 RTX_CODE code = GET_CODE (x);
515 int i;
516 const char *fmt;
517
518 switch (code)
519 {
520 case MEM:
521 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
522
523 case QUEUED:
524 return 1;
525
526 case CONST:
527 case CONST_INT:
528 case CONST_DOUBLE:
529 case CONST_VECTOR:
530 case SYMBOL_REF:
531 case LABEL_REF:
532 return 0;
533
534 case REG:
535 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
536
537 case ASM_OPERANDS:
538 if (MEM_VOLATILE_P (x))
539 return 1;
540
541 /* FALLTHROUGH */
542
543 default:
544 break;
545 }
546
547 fmt = GET_RTX_FORMAT (code);
548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
549 if (fmt[i] == 'e')
550 {
551 if (equiv_init_varies_p (XEXP (x, i)))
552 return 1;
553 }
554 else if (fmt[i] == 'E')
555 {
556 int j;
557 for (j = 0; j < XVECLEN (x, i); j++)
558 if (equiv_init_varies_p (XVECEXP (x, i, j)))
559 return 1;
560 }
561
562 return 0;
563 }
564
565 /* Returns nonzero if X (used to initialize register REGNO) is movable.
566 X is only movable if the registers it uses have equivalent initializations
567 which appear to be within the same loop (or in an inner loop) and movable
568 or if they are not candidates for local_alloc and don't vary. */
569
570 static int
571 equiv_init_movable_p (rtx x, int regno)
572 {
573 int i, j;
574 const char *fmt;
575 enum rtx_code code = GET_CODE (x);
576
577 switch (code)
578 {
579 case SET:
580 return equiv_init_movable_p (SET_SRC (x), regno);
581
582 case CC0:
583 case CLOBBER:
584 return 0;
585
586 case PRE_INC:
587 case PRE_DEC:
588 case POST_INC:
589 case POST_DEC:
590 case PRE_MODIFY:
591 case POST_MODIFY:
592 return 0;
593
594 case REG:
595 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
596 && reg_equiv[REGNO (x)].replace)
597 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
598
599 case UNSPEC_VOLATILE:
600 return 0;
601
602 case ASM_OPERANDS:
603 if (MEM_VOLATILE_P (x))
604 return 0;
605
606 /* FALLTHROUGH */
607
608 default:
609 break;
610 }
611
612 fmt = GET_RTX_FORMAT (code);
613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
614 switch (fmt[i])
615 {
616 case 'e':
617 if (! equiv_init_movable_p (XEXP (x, i), regno))
618 return 0;
619 break;
620 case 'E':
621 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
622 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
623 return 0;
624 break;
625 }
626
627 return 1;
628 }
629
630 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
631
632 static int
633 contains_replace_regs (rtx x)
634 {
635 int i, j;
636 const char *fmt;
637 enum rtx_code code = GET_CODE (x);
638
639 switch (code)
640 {
641 case CONST_INT:
642 case CONST:
643 case LABEL_REF:
644 case SYMBOL_REF:
645 case CONST_DOUBLE:
646 case CONST_VECTOR:
647 case PC:
648 case CC0:
649 case HIGH:
650 return 0;
651
652 case REG:
653 return reg_equiv[REGNO (x)].replace;
654
655 default:
656 break;
657 }
658
659 fmt = GET_RTX_FORMAT (code);
660 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
661 switch (fmt[i])
662 {
663 case 'e':
664 if (contains_replace_regs (XEXP (x, i)))
665 return 1;
666 break;
667 case 'E':
668 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
669 if (contains_replace_regs (XVECEXP (x, i, j)))
670 return 1;
671 break;
672 }
673
674 return 0;
675 }
676 \f
677 /* TRUE if X references a memory location that would be affected by a store
678 to MEMREF. */
679
680 static int
681 memref_referenced_p (rtx memref, rtx x)
682 {
683 int i, j;
684 const char *fmt;
685 enum rtx_code code = GET_CODE (x);
686
687 switch (code)
688 {
689 case CONST_INT:
690 case CONST:
691 case LABEL_REF:
692 case SYMBOL_REF:
693 case CONST_DOUBLE:
694 case CONST_VECTOR:
695 case PC:
696 case CC0:
697 case HIGH:
698 case LO_SUM:
699 return 0;
700
701 case REG:
702 return (reg_equiv[REGNO (x)].replacement
703 && memref_referenced_p (memref,
704 reg_equiv[REGNO (x)].replacement));
705
706 case MEM:
707 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
708 return 1;
709 break;
710
711 case SET:
712 /* If we are setting a MEM, it doesn't count (its address does), but any
713 other SET_DEST that has a MEM in it is referencing the MEM. */
714 if (GET_CODE (SET_DEST (x)) == MEM)
715 {
716 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
717 return 1;
718 }
719 else if (memref_referenced_p (memref, SET_DEST (x)))
720 return 1;
721
722 return memref_referenced_p (memref, SET_SRC (x));
723
724 default:
725 break;
726 }
727
728 fmt = GET_RTX_FORMAT (code);
729 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
730 switch (fmt[i])
731 {
732 case 'e':
733 if (memref_referenced_p (memref, XEXP (x, i)))
734 return 1;
735 break;
736 case 'E':
737 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
738 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
739 return 1;
740 break;
741 }
742
743 return 0;
744 }
745
746 /* TRUE if some insn in the range (START, END] references a memory location
747 that would be affected by a store to MEMREF. */
748
749 static int
750 memref_used_between_p (rtx memref, rtx start, rtx end)
751 {
752 rtx insn;
753
754 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
755 insn = NEXT_INSN (insn))
756 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
757 return 1;
758
759 return 0;
760 }
761 \f
762 /* Return nonzero if the rtx X is invariant over the current function. */
763 /* ??? Actually, the places this is used in reload expect exactly what
764 is tested here, and not everything that is function invariant. In
765 particular, the frame pointer and arg pointer are special cased;
766 pic_offset_table_rtx is not, and this will cause aborts when we
767 go to spill these things to memory. */
768
769 int
770 function_invariant_p (rtx x)
771 {
772 if (CONSTANT_P (x))
773 return 1;
774 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
775 return 1;
776 if (GET_CODE (x) == PLUS
777 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
778 && CONSTANT_P (XEXP (x, 1)))
779 return 1;
780 return 0;
781 }
782
783 /* Find registers that are equivalent to a single value throughout the
784 compilation (either because they can be referenced in memory or are set once
785 from a single constant). Lower their priority for a register.
786
787 If such a register is only referenced once, try substituting its value
788 into the using insn. If it succeeds, we can eliminate the register
789 completely. */
790
791 static void
792 update_equiv_regs (void)
793 {
794 rtx insn;
795 basic_block bb;
796 int loop_depth;
797 regset_head cleared_regs;
798 int clear_regnos = 0;
799
800 reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
801 INIT_REG_SET (&cleared_regs);
802
803 init_alias_analysis ();
804
805 /* Scan the insns and find which registers have equivalences. Do this
806 in a separate scan of the insns because (due to -fcse-follow-jumps)
807 a register can be set below its use. */
808 FOR_EACH_BB (bb)
809 {
810 loop_depth = bb->loop_depth;
811
812 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
813 {
814 rtx note;
815 rtx set;
816 rtx dest, src;
817 int regno;
818
819 if (! INSN_P (insn))
820 continue;
821
822 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
823 if (REG_NOTE_KIND (note) == REG_INC)
824 no_equiv (XEXP (note, 0), note, NULL);
825
826 set = single_set (insn);
827
828 /* If this insn contains more (or less) than a single SET,
829 only mark all destinations as having no known equivalence. */
830 if (set == 0)
831 {
832 note_stores (PATTERN (insn), no_equiv, NULL);
833 continue;
834 }
835 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
836 {
837 int i;
838
839 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
840 {
841 rtx part = XVECEXP (PATTERN (insn), 0, i);
842 if (part != set)
843 note_stores (part, no_equiv, NULL);
844 }
845 }
846
847 dest = SET_DEST (set);
848 src = SET_SRC (set);
849
850 /* If this sets a MEM to the contents of a REG that is only used
851 in a single basic block, see if the register is always equivalent
852 to that memory location and if moving the store from INSN to the
853 insn that set REG is safe. If so, put a REG_EQUIV note on the
854 initializing insn.
855
856 Don't add a REG_EQUIV note if the insn already has one. The existing
857 REG_EQUIV is likely more useful than the one we are adding.
858
859 If one of the regs in the address has reg_equiv[REGNO].replace set,
860 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
861 optimization may move the set of this register immediately before
862 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
863 the mention in the REG_EQUIV note would be to an uninitialized
864 pseudo. */
865 /* ????? This test isn't good enough; we might see a MEM with a use of
866 a pseudo register before we see its setting insn that will cause
867 reg_equiv[].replace for that pseudo to be set.
868 Equivalences to MEMs should be made in another pass, after the
869 reg_equiv[].replace information has been gathered. */
870
871 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
872 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
873 && REG_BASIC_BLOCK (regno) >= 0
874 && REG_N_SETS (regno) == 1
875 && reg_equiv[regno].init_insns != 0
876 && reg_equiv[regno].init_insns != const0_rtx
877 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
878 REG_EQUIV, NULL_RTX)
879 && ! contains_replace_regs (XEXP (dest, 0)))
880 {
881 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
882 if (validate_equiv_mem (init_insn, src, dest)
883 && ! memref_used_between_p (dest, init_insn, insn))
884 REG_NOTES (init_insn)
885 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
886 }
887
888 /* We only handle the case of a pseudo register being set
889 once, or always to the same value. */
890 /* ??? The mn10200 port breaks if we add equivalences for
891 values that need an ADDRESS_REGS register and set them equivalent
892 to a MEM of a pseudo. The actual problem is in the over-conservative
893 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
894 calculate_needs, but we traditionally work around this problem
895 here by rejecting equivalences when the destination is in a register
896 that's likely spilled. This is fragile, of course, since the
897 preferred class of a pseudo depends on all instructions that set
898 or use it. */
899
900 if (GET_CODE (dest) != REG
901 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
902 || reg_equiv[regno].init_insns == const0_rtx
903 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
904 && GET_CODE (src) == MEM))
905 {
906 /* This might be setting a SUBREG of a pseudo, a pseudo that is
907 also set somewhere else to a constant. */
908 note_stores (set, no_equiv, NULL);
909 continue;
910 }
911
912 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
913
914 /* cse sometimes generates function invariants, but doesn't put a
915 REG_EQUAL note on the insn. Since this note would be redundant,
916 there's no point creating it earlier than here. */
917 if (! note && ! rtx_varies_p (src, 0))
918 note = set_unique_reg_note (insn, REG_EQUAL, src);
919
920 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
921 since it represents a function call */
922 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
923 note = NULL_RTX;
924
925 if (REG_N_SETS (regno) != 1
926 && (! note
927 || rtx_varies_p (XEXP (note, 0), 0)
928 || (reg_equiv[regno].replacement
929 && ! rtx_equal_p (XEXP (note, 0),
930 reg_equiv[regno].replacement))))
931 {
932 no_equiv (dest, set, NULL);
933 continue;
934 }
935 /* Record this insn as initializing this register. */
936 reg_equiv[regno].init_insns
937 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
938
939 /* If this register is known to be equal to a constant, record that
940 it is always equivalent to the constant. */
941 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
942 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
943
944 /* If this insn introduces a "constant" register, decrease the priority
945 of that register. Record this insn if the register is only used once
946 more and the equivalence value is the same as our source.
947
948 The latter condition is checked for two reasons: First, it is an
949 indication that it may be more efficient to actually emit the insn
950 as written (if no registers are available, reload will substitute
951 the equivalence). Secondly, it avoids problems with any registers
952 dying in this insn whose death notes would be missed.
953
954 If we don't have a REG_EQUIV note, see if this insn is loading
955 a register used only in one basic block from a MEM. If so, and the
956 MEM remains unchanged for the life of the register, add a REG_EQUIV
957 note. */
958
959 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
960
961 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
962 && GET_CODE (SET_SRC (set)) == MEM
963 && validate_equiv_mem (insn, dest, SET_SRC (set)))
964 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
965 REG_NOTES (insn));
966
967 if (note)
968 {
969 int regno = REGNO (dest);
970
971 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
972 We might end up substituting the LABEL_REF for uses of the
973 pseudo here or later. That kind of transformation may turn an
974 indirect jump into a direct jump, in which case we must rerun the
975 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
976 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
977 || (GET_CODE (XEXP (note, 0)) == CONST
978 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
979 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
980 == LABEL_REF)))
981 recorded_label_ref = 1;
982
983 reg_equiv[regno].replacement = XEXP (note, 0);
984 reg_equiv[regno].src_p = &SET_SRC (set);
985 reg_equiv[regno].loop_depth = loop_depth;
986
987 /* Don't mess with things live during setjmp. */
988 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
989 {
990 /* Note that the statement below does not affect the priority
991 in local-alloc! */
992 REG_LIVE_LENGTH (regno) *= 2;
993
994
995 /* If the register is referenced exactly twice, meaning it is
996 set once and used once, indicate that the reference may be
997 replaced by the equivalence we computed above. Do this
998 even if the register is only used in one block so that
999 dependencies can be handled where the last register is
1000 used in a different block (i.e. HIGH / LO_SUM sequences)
1001 and to reduce the number of registers alive across
1002 calls. */
1003
1004 if (REG_N_REFS (regno) == 2
1005 && (rtx_equal_p (XEXP (note, 0), src)
1006 || ! equiv_init_varies_p (src))
1007 && GET_CODE (insn) == INSN
1008 && equiv_init_movable_p (PATTERN (insn), regno))
1009 reg_equiv[regno].replace = 1;
1010 }
1011 }
1012 }
1013 }
1014
1015 /* Now scan all regs killed in an insn to see if any of them are
1016 registers only used that once. If so, see if we can replace the
1017 reference with the equivalent from. If we can, delete the
1018 initializing reference and this register will go away. If we
1019 can't replace the reference, and the initializing reference is
1020 within the same loop (or in an inner loop), then move the register
1021 initialization just before the use, so that they are in the same
1022 basic block. */
1023 FOR_EACH_BB_REVERSE (bb)
1024 {
1025 loop_depth = bb->loop_depth;
1026 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1027 {
1028 rtx link;
1029
1030 if (! INSN_P (insn))
1031 continue;
1032
1033 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1034 {
1035 if (REG_NOTE_KIND (link) == REG_DEAD
1036 /* Make sure this insn still refers to the register. */
1037 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1038 {
1039 int regno = REGNO (XEXP (link, 0));
1040 rtx equiv_insn;
1041
1042 if (! reg_equiv[regno].replace
1043 || reg_equiv[regno].loop_depth < loop_depth)
1044 continue;
1045
1046 /* reg_equiv[REGNO].replace gets set only when
1047 REG_N_REFS[REGNO] is 2, i.e. the register is set
1048 once and used once. (If it were only set, but not used,
1049 flow would have deleted the setting insns.) Hence
1050 there can only be one insn in reg_equiv[REGNO].init_insns. */
1051 if (reg_equiv[regno].init_insns == NULL_RTX
1052 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1053 abort ();
1054 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1055
1056 /* We may not move instructions that can throw, since
1057 that changes basic block boundaries and we are not
1058 prepared to adjust the CFG to match. */
1059 if (can_throw_internal (equiv_insn))
1060 continue;
1061
1062 if (asm_noperands (PATTERN (equiv_insn)) < 0
1063 && validate_replace_rtx (regno_reg_rtx[regno],
1064 *(reg_equiv[regno].src_p), insn))
1065 {
1066 rtx equiv_link;
1067 rtx last_link;
1068 rtx note;
1069
1070 /* Find the last note. */
1071 for (last_link = link; XEXP (last_link, 1);
1072 last_link = XEXP (last_link, 1))
1073 ;
1074
1075 /* Append the REG_DEAD notes from equiv_insn. */
1076 equiv_link = REG_NOTES (equiv_insn);
1077 while (equiv_link)
1078 {
1079 note = equiv_link;
1080 equiv_link = XEXP (equiv_link, 1);
1081 if (REG_NOTE_KIND (note) == REG_DEAD)
1082 {
1083 remove_note (equiv_insn, note);
1084 XEXP (last_link, 1) = note;
1085 XEXP (note, 1) = NULL_RTX;
1086 last_link = note;
1087 }
1088 }
1089
1090 remove_death (regno, insn);
1091 REG_N_REFS (regno) = 0;
1092 REG_FREQ (regno) = 0;
1093 delete_insn (equiv_insn);
1094
1095 reg_equiv[regno].init_insns
1096 = XEXP (reg_equiv[regno].init_insns, 1);
1097 }
1098 /* Move the initialization of the register to just before
1099 INSN. Update the flow information. */
1100 else if (PREV_INSN (insn) != equiv_insn)
1101 {
1102 rtx new_insn;
1103
1104 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1105 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1106 REG_NOTES (equiv_insn) = 0;
1107
1108 /* Make sure this insn is recognized before reload begins,
1109 otherwise eliminate_regs_in_insn will abort. */
1110 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1111
1112 delete_insn (equiv_insn);
1113
1114 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1115
1116 REG_BASIC_BLOCK (regno) = bb->index;
1117 REG_N_CALLS_CROSSED (regno) = 0;
1118 REG_LIVE_LENGTH (regno) = 2;
1119
1120 if (insn == bb->head)
1121 bb->head = PREV_INSN (insn);
1122
1123 /* Remember to clear REGNO from all basic block's live
1124 info. */
1125 SET_REGNO_REG_SET (&cleared_regs, regno);
1126 clear_regnos++;
1127 }
1128 }
1129 }
1130 }
1131 }
1132
1133 /* Clear all dead REGNOs from all basic block's live info. */
1134 if (clear_regnos)
1135 {
1136 int j;
1137 if (clear_regnos > 8)
1138 {
1139 FOR_EACH_BB (bb)
1140 {
1141 AND_COMPL_REG_SET (bb->global_live_at_start, &cleared_regs);
1142 AND_COMPL_REG_SET (bb->global_live_at_end, &cleared_regs);
1143 }
1144 }
1145 else
1146 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1147 {
1148 FOR_EACH_BB (bb)
1149 {
1150 CLEAR_REGNO_REG_SET (bb->global_live_at_start, j);
1151 CLEAR_REGNO_REG_SET (bb->global_live_at_end, j);
1152 }
1153 });
1154 }
1155
1156 /* Clean up. */
1157 end_alias_analysis ();
1158 CLEAR_REG_SET (&cleared_regs);
1159 free (reg_equiv);
1160 }
1161
1162 /* Mark REG as having no known equivalence.
1163 Some instructions might have been processed before and furnished
1164 with REG_EQUIV notes for this register; these notes will have to be
1165 removed.
1166 STORE is the piece of RTL that does the non-constant / conflicting
1167 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1168 but needs to be there because this function is called from note_stores. */
1169 static void
1170 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1171 {
1172 int regno;
1173 rtx list;
1174
1175 if (GET_CODE (reg) != REG)
1176 return;
1177 regno = REGNO (reg);
1178 list = reg_equiv[regno].init_insns;
1179 if (list == const0_rtx)
1180 return;
1181 for (; list; list = XEXP (list, 1))
1182 {
1183 rtx insn = XEXP (list, 0);
1184 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1185 }
1186 reg_equiv[regno].init_insns = const0_rtx;
1187 reg_equiv[regno].replacement = NULL_RTX;
1188 }
1189 \f
1190 /* Allocate hard regs to the pseudo regs used only within block number B.
1191 Only the pseudos that die but once can be handled. */
1192
1193 static void
1194 block_alloc (int b)
1195 {
1196 int i, q;
1197 rtx insn;
1198 rtx note, hard_reg;
1199 int insn_number = 0;
1200 int insn_count = 0;
1201 int max_uid = get_max_uid ();
1202 int *qty_order;
1203 int no_conflict_combined_regno = -1;
1204
1205 /* Count the instructions in the basic block. */
1206
1207 insn = BLOCK_END (b);
1208 while (1)
1209 {
1210 if (GET_CODE (insn) != NOTE)
1211 if (++insn_count > max_uid)
1212 abort ();
1213 if (insn == BLOCK_HEAD (b))
1214 break;
1215 insn = PREV_INSN (insn);
1216 }
1217
1218 /* +2 to leave room for a post_mark_life at the last insn and for
1219 the birth of a CLOBBER in the first insn. */
1220 regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1221
1222 /* Initialize table of hardware registers currently live. */
1223
1224 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1225
1226 /* This loop scans the instructions of the basic block
1227 and assigns quantities to registers.
1228 It computes which registers to tie. */
1229
1230 insn = BLOCK_HEAD (b);
1231 while (1)
1232 {
1233 if (GET_CODE (insn) != NOTE)
1234 insn_number++;
1235
1236 if (INSN_P (insn))
1237 {
1238 rtx link, set;
1239 int win = 0;
1240 rtx r0, r1 = NULL_RTX;
1241 int combined_regno = -1;
1242 int i;
1243
1244 this_insn_number = insn_number;
1245 this_insn = insn;
1246
1247 extract_insn (insn);
1248 which_alternative = -1;
1249
1250 /* Is this insn suitable for tying two registers?
1251 If so, try doing that.
1252 Suitable insns are those with at least two operands and where
1253 operand 0 is an output that is a register that is not
1254 earlyclobber.
1255
1256 We can tie operand 0 with some operand that dies in this insn.
1257 First look for operands that are required to be in the same
1258 register as operand 0. If we find such, only try tying that
1259 operand or one that can be put into that operand if the
1260 operation is commutative. If we don't find an operand
1261 that is required to be in the same register as operand 0,
1262 we can tie with any operand.
1263
1264 Subregs in place of regs are also ok.
1265
1266 If tying is done, WIN is set nonzero. */
1267
1268 if (optimize
1269 && recog_data.n_operands > 1
1270 && recog_data.constraints[0][0] == '='
1271 && recog_data.constraints[0][1] != '&')
1272 {
1273 /* If non-negative, is an operand that must match operand 0. */
1274 int must_match_0 = -1;
1275 /* Counts number of alternatives that require a match with
1276 operand 0. */
1277 int n_matching_alts = 0;
1278
1279 for (i = 1; i < recog_data.n_operands; i++)
1280 {
1281 const char *p = recog_data.constraints[i];
1282 int this_match = requires_inout (p);
1283
1284 n_matching_alts += this_match;
1285 if (this_match == recog_data.n_alternatives)
1286 must_match_0 = i;
1287 }
1288
1289 r0 = recog_data.operand[0];
1290 for (i = 1; i < recog_data.n_operands; i++)
1291 {
1292 /* Skip this operand if we found an operand that
1293 must match operand 0 and this operand isn't it
1294 and can't be made to be it by commutativity. */
1295
1296 if (must_match_0 >= 0 && i != must_match_0
1297 && ! (i == must_match_0 + 1
1298 && recog_data.constraints[i-1][0] == '%')
1299 && ! (i == must_match_0 - 1
1300 && recog_data.constraints[i][0] == '%'))
1301 continue;
1302
1303 /* Likewise if each alternative has some operand that
1304 must match operand zero. In that case, skip any
1305 operand that doesn't list operand 0 since we know that
1306 the operand always conflicts with operand 0. We
1307 ignore commutativity in this case to keep things simple. */
1308 if (n_matching_alts == recog_data.n_alternatives
1309 && 0 == requires_inout (recog_data.constraints[i]))
1310 continue;
1311
1312 r1 = recog_data.operand[i];
1313
1314 /* If the operand is an address, find a register in it.
1315 There may be more than one register, but we only try one
1316 of them. */
1317 if (recog_data.constraints[i][0] == 'p'
1318 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1319 recog_data.constraints[i]))
1320 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1321 r1 = XEXP (r1, 0);
1322
1323 /* Avoid making a call-saved register unnecessarily
1324 clobbered. */
1325 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1326 if (hard_reg != NULL_RTX)
1327 {
1328 if (GET_CODE (hard_reg) == REG
1329 && IN_RANGE (REGNO (hard_reg),
1330 0, FIRST_PSEUDO_REGISTER - 1)
1331 && ! call_used_regs[REGNO (hard_reg)])
1332 continue;
1333 }
1334
1335 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1336 {
1337 /* We have two priorities for hard register preferences.
1338 If we have a move insn or an insn whose first input
1339 can only be in the same register as the output, give
1340 priority to an equivalence found from that insn. */
1341 int may_save_copy
1342 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1343
1344 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1345 win = combine_regs (r1, r0, may_save_copy,
1346 insn_number, insn, 0);
1347 }
1348 if (win)
1349 break;
1350 }
1351 }
1352
1353 /* Recognize an insn sequence with an ultimate result
1354 which can safely overlap one of the inputs.
1355 The sequence begins with a CLOBBER of its result,
1356 and ends with an insn that copies the result to itself
1357 and has a REG_EQUAL note for an equivalent formula.
1358 That note indicates what the inputs are.
1359 The result and the input can overlap if each insn in
1360 the sequence either doesn't mention the input
1361 or has a REG_NO_CONFLICT note to inhibit the conflict.
1362
1363 We do the combining test at the CLOBBER so that the
1364 destination register won't have had a quantity number
1365 assigned, since that would prevent combining. */
1366
1367 if (optimize
1368 && GET_CODE (PATTERN (insn)) == CLOBBER
1369 && (r0 = XEXP (PATTERN (insn), 0),
1370 GET_CODE (r0) == REG)
1371 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1372 && XEXP (link, 0) != 0
1373 && GET_CODE (XEXP (link, 0)) == INSN
1374 && (set = single_set (XEXP (link, 0))) != 0
1375 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1376 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1377 NULL_RTX)) != 0)
1378 {
1379 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1380 /* Check that we have such a sequence. */
1381 && no_conflict_p (insn, r0, r1))
1382 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1383 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1384 && (r1 = XEXP (XEXP (note, 0), 0),
1385 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1386 && no_conflict_p (insn, r0, r1))
1387 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1388
1389 /* Here we care if the operation to be computed is
1390 commutative. */
1391 else if ((GET_CODE (XEXP (note, 0)) == EQ
1392 || GET_CODE (XEXP (note, 0)) == NE
1393 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1394 && (r1 = XEXP (XEXP (note, 0), 1),
1395 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1396 && no_conflict_p (insn, r0, r1))
1397 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1398
1399 /* If we did combine something, show the register number
1400 in question so that we know to ignore its death. */
1401 if (win)
1402 no_conflict_combined_regno = REGNO (r1);
1403 }
1404
1405 /* If registers were just tied, set COMBINED_REGNO
1406 to the number of the register used in this insn
1407 that was tied to the register set in this insn.
1408 This register's qty should not be "killed". */
1409
1410 if (win)
1411 {
1412 while (GET_CODE (r1) == SUBREG)
1413 r1 = SUBREG_REG (r1);
1414 combined_regno = REGNO (r1);
1415 }
1416
1417 /* Mark the death of everything that dies in this instruction,
1418 except for anything that was just combined. */
1419
1420 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1421 if (REG_NOTE_KIND (link) == REG_DEAD
1422 && GET_CODE (XEXP (link, 0)) == REG
1423 && combined_regno != (int) REGNO (XEXP (link, 0))
1424 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1425 || ! find_reg_note (insn, REG_NO_CONFLICT,
1426 XEXP (link, 0))))
1427 wipe_dead_reg (XEXP (link, 0), 0);
1428
1429 /* Allocate qty numbers for all registers local to this block
1430 that are born (set) in this instruction.
1431 A pseudo that already has a qty is not changed. */
1432
1433 note_stores (PATTERN (insn), reg_is_set, NULL);
1434
1435 /* If anything is set in this insn and then unused, mark it as dying
1436 after this insn, so it will conflict with our outputs. This
1437 can't match with something that combined, and it doesn't matter
1438 if it did. Do this after the calls to reg_is_set since these
1439 die after, not during, the current insn. */
1440
1441 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1442 if (REG_NOTE_KIND (link) == REG_UNUSED
1443 && GET_CODE (XEXP (link, 0)) == REG)
1444 wipe_dead_reg (XEXP (link, 0), 1);
1445
1446 /* If this is an insn that has a REG_RETVAL note pointing at a
1447 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1448 block, so clear any register number that combined within it. */
1449 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1450 && GET_CODE (XEXP (note, 0)) == INSN
1451 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1452 no_conflict_combined_regno = -1;
1453 }
1454
1455 /* Set the registers live after INSN_NUMBER. Note that we never
1456 record the registers live before the block's first insn, since no
1457 pseudos we care about are live before that insn. */
1458
1459 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1460 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1461
1462 if (insn == BLOCK_END (b))
1463 break;
1464
1465 insn = NEXT_INSN (insn);
1466 }
1467
1468 /* Now every register that is local to this basic block
1469 should have been given a quantity, or else -1 meaning ignore it.
1470 Every quantity should have a known birth and death.
1471
1472 Order the qtys so we assign them registers in order of the
1473 number of suggested registers they need so we allocate those with
1474 the most restrictive needs first. */
1475
1476 qty_order = xmalloc (next_qty * sizeof (int));
1477 for (i = 0; i < next_qty; i++)
1478 qty_order[i] = i;
1479
1480 #define EXCHANGE(I1, I2) \
1481 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1482
1483 switch (next_qty)
1484 {
1485 case 3:
1486 /* Make qty_order[2] be the one to allocate last. */
1487 if (qty_sugg_compare (0, 1) > 0)
1488 EXCHANGE (0, 1);
1489 if (qty_sugg_compare (1, 2) > 0)
1490 EXCHANGE (2, 1);
1491
1492 /* ... Fall through ... */
1493 case 2:
1494 /* Put the best one to allocate in qty_order[0]. */
1495 if (qty_sugg_compare (0, 1) > 0)
1496 EXCHANGE (0, 1);
1497
1498 /* ... Fall through ... */
1499
1500 case 1:
1501 case 0:
1502 /* Nothing to do here. */
1503 break;
1504
1505 default:
1506 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1507 }
1508
1509 /* Try to put each quantity in a suggested physical register, if it has one.
1510 This may cause registers to be allocated that otherwise wouldn't be, but
1511 this seems acceptable in local allocation (unlike global allocation). */
1512 for (i = 0; i < next_qty; i++)
1513 {
1514 q = qty_order[i];
1515 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1516 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1517 0, 1, qty[q].birth, qty[q].death);
1518 else
1519 qty[q].phys_reg = -1;
1520 }
1521
1522 /* Order the qtys so we assign them registers in order of
1523 decreasing length of life. Normally call qsort, but if we
1524 have only a very small number of quantities, sort them ourselves. */
1525
1526 for (i = 0; i < next_qty; i++)
1527 qty_order[i] = i;
1528
1529 #define EXCHANGE(I1, I2) \
1530 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1531
1532 switch (next_qty)
1533 {
1534 case 3:
1535 /* Make qty_order[2] be the one to allocate last. */
1536 if (qty_compare (0, 1) > 0)
1537 EXCHANGE (0, 1);
1538 if (qty_compare (1, 2) > 0)
1539 EXCHANGE (2, 1);
1540
1541 /* ... Fall through ... */
1542 case 2:
1543 /* Put the best one to allocate in qty_order[0]. */
1544 if (qty_compare (0, 1) > 0)
1545 EXCHANGE (0, 1);
1546
1547 /* ... Fall through ... */
1548
1549 case 1:
1550 case 0:
1551 /* Nothing to do here. */
1552 break;
1553
1554 default:
1555 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1556 }
1557
1558 /* Now for each qty that is not a hardware register,
1559 look for a hardware register to put it in.
1560 First try the register class that is cheapest for this qty,
1561 if there is more than one class. */
1562
1563 for (i = 0; i < next_qty; i++)
1564 {
1565 q = qty_order[i];
1566 if (qty[q].phys_reg < 0)
1567 {
1568 #ifdef INSN_SCHEDULING
1569 /* These values represent the adjusted lifetime of a qty so
1570 that it conflicts with qtys which appear near the start/end
1571 of this qty's lifetime.
1572
1573 The purpose behind extending the lifetime of this qty is to
1574 discourage the register allocator from creating false
1575 dependencies.
1576
1577 The adjustment value is chosen to indicate that this qty
1578 conflicts with all the qtys in the instructions immediately
1579 before and after the lifetime of this qty.
1580
1581 Experiments have shown that higher values tend to hurt
1582 overall code performance.
1583
1584 If allocation using the extended lifetime fails we will try
1585 again with the qty's unadjusted lifetime. */
1586 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1587 int fake_death = MIN (insn_number * 2 + 1,
1588 qty[q].death + 2 - qty[q].death % 2);
1589 #endif
1590
1591 if (N_REG_CLASSES > 1)
1592 {
1593 #ifdef INSN_SCHEDULING
1594 /* We try to avoid using hard registers allocated to qtys which
1595 are born immediately after this qty or die immediately before
1596 this qty.
1597
1598 This optimization is only appropriate when we will run
1599 a scheduling pass after reload and we are not optimizing
1600 for code size. */
1601 if (flag_schedule_insns_after_reload
1602 && !optimize_size
1603 && !SMALL_REGISTER_CLASSES)
1604 {
1605 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1606 qty[q].mode, q, 0, 0,
1607 fake_birth, fake_death);
1608 if (qty[q].phys_reg >= 0)
1609 continue;
1610 }
1611 #endif
1612 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1613 qty[q].mode, q, 0, 0,
1614 qty[q].birth, qty[q].death);
1615 if (qty[q].phys_reg >= 0)
1616 continue;
1617 }
1618
1619 #ifdef INSN_SCHEDULING
1620 /* Similarly, avoid false dependencies. */
1621 if (flag_schedule_insns_after_reload
1622 && !optimize_size
1623 && !SMALL_REGISTER_CLASSES
1624 && qty[q].alternate_class != NO_REGS)
1625 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1626 qty[q].mode, q, 0, 0,
1627 fake_birth, fake_death);
1628 #endif
1629 if (qty[q].alternate_class != NO_REGS)
1630 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1631 qty[q].mode, q, 0, 0,
1632 qty[q].birth, qty[q].death);
1633 }
1634 }
1635
1636 /* Now propagate the register assignments
1637 to the pseudo regs belonging to the qtys. */
1638
1639 for (q = 0; q < next_qty; q++)
1640 if (qty[q].phys_reg >= 0)
1641 {
1642 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1643 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1644 }
1645
1646 /* Clean up. */
1647 free (regs_live_at);
1648 free (qty_order);
1649 }
1650 \f
1651 /* Compare two quantities' priority for getting real registers.
1652 We give shorter-lived quantities higher priority.
1653 Quantities with more references are also preferred, as are quantities that
1654 require multiple registers. This is the identical prioritization as
1655 done by global-alloc.
1656
1657 We used to give preference to registers with *longer* lives, but using
1658 the same algorithm in both local- and global-alloc can speed up execution
1659 of some programs by as much as a factor of three! */
1660
1661 /* Note that the quotient will never be bigger than
1662 the value of floor_log2 times the maximum number of
1663 times a register can occur in one insn (surely less than 100)
1664 weighted by frequency (max REG_FREQ_MAX).
1665 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1666 QTY_CMP_PRI is also used by qty_sugg_compare. */
1667
1668 #define QTY_CMP_PRI(q) \
1669 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1670 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1671
1672 static int
1673 qty_compare (int q1, int q2)
1674 {
1675 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1676 }
1677
1678 static int
1679 qty_compare_1 (const void *q1p, const void *q2p)
1680 {
1681 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1682 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1683
1684 if (tem != 0)
1685 return tem;
1686
1687 /* If qtys are equally good, sort by qty number,
1688 so that the results of qsort leave nothing to chance. */
1689 return q1 - q2;
1690 }
1691 \f
1692 /* Compare two quantities' priority for getting real registers. This version
1693 is called for quantities that have suggested hard registers. First priority
1694 goes to quantities that have copy preferences, then to those that have
1695 normal preferences. Within those groups, quantities with the lower
1696 number of preferences have the highest priority. Of those, we use the same
1697 algorithm as above. */
1698
1699 #define QTY_CMP_SUGG(q) \
1700 (qty_phys_num_copy_sugg[q] \
1701 ? qty_phys_num_copy_sugg[q] \
1702 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1703
1704 static int
1705 qty_sugg_compare (int q1, int q2)
1706 {
1707 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1708
1709 if (tem != 0)
1710 return tem;
1711
1712 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1713 }
1714
1715 static int
1716 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1717 {
1718 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1719 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1720
1721 if (tem != 0)
1722 return tem;
1723
1724 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1725 if (tem != 0)
1726 return tem;
1727
1728 /* If qtys are equally good, sort by qty number,
1729 so that the results of qsort leave nothing to chance. */
1730 return q1 - q2;
1731 }
1732
1733 #undef QTY_CMP_SUGG
1734 #undef QTY_CMP_PRI
1735 \f
1736 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1737 Returns 1 if have done so, or 0 if cannot.
1738
1739 Combining registers means marking them as having the same quantity
1740 and adjusting the offsets within the quantity if either of
1741 them is a SUBREG).
1742
1743 We don't actually combine a hard reg with a pseudo; instead
1744 we just record the hard reg as the suggestion for the pseudo's quantity.
1745 If we really combined them, we could lose if the pseudo lives
1746 across an insn that clobbers the hard reg (eg, movstr).
1747
1748 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1749 there is no REG_DEAD note on INSN. This occurs during the processing
1750 of REG_NO_CONFLICT blocks.
1751
1752 MAY_SAVE_COPYCOPY is nonzero if this insn is simply copying USEDREG to
1753 SETREG or if the input and output must share a register.
1754 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1755
1756 There are elaborate checks for the validity of combining. */
1757
1758 static int
1759 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1760 rtx insn, int already_dead)
1761 {
1762 int ureg, sreg;
1763 int offset = 0;
1764 int usize, ssize;
1765 int sqty;
1766
1767 /* Determine the numbers and sizes of registers being used. If a subreg
1768 is present that does not change the entire register, don't consider
1769 this a copy insn. */
1770
1771 while (GET_CODE (usedreg) == SUBREG)
1772 {
1773 rtx subreg = SUBREG_REG (usedreg);
1774
1775 if (GET_CODE (subreg) == REG)
1776 {
1777 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1778 may_save_copy = 0;
1779
1780 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1781 offset += subreg_regno_offset (REGNO (subreg),
1782 GET_MODE (subreg),
1783 SUBREG_BYTE (usedreg),
1784 GET_MODE (usedreg));
1785 else
1786 offset += (SUBREG_BYTE (usedreg)
1787 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1788 }
1789
1790 usedreg = subreg;
1791 }
1792
1793 if (GET_CODE (usedreg) != REG)
1794 return 0;
1795
1796 ureg = REGNO (usedreg);
1797 if (ureg < FIRST_PSEUDO_REGISTER)
1798 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1799 else
1800 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1801 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1802 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1803
1804 while (GET_CODE (setreg) == SUBREG)
1805 {
1806 rtx subreg = SUBREG_REG (setreg);
1807
1808 if (GET_CODE (subreg) == REG)
1809 {
1810 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1811 may_save_copy = 0;
1812
1813 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1814 offset -= subreg_regno_offset (REGNO (subreg),
1815 GET_MODE (subreg),
1816 SUBREG_BYTE (setreg),
1817 GET_MODE (setreg));
1818 else
1819 offset -= (SUBREG_BYTE (setreg)
1820 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1821 }
1822
1823 setreg = subreg;
1824 }
1825
1826 if (GET_CODE (setreg) != REG)
1827 return 0;
1828
1829 sreg = REGNO (setreg);
1830 if (sreg < FIRST_PSEUDO_REGISTER)
1831 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1832 else
1833 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1834 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1835 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1836
1837 /* If UREG is a pseudo-register that hasn't already been assigned a
1838 quantity number, it means that it is not local to this block or dies
1839 more than once. In either event, we can't do anything with it. */
1840 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1841 /* Do not combine registers unless one fits within the other. */
1842 || (offset > 0 && usize + offset > ssize)
1843 || (offset < 0 && usize + offset < ssize)
1844 /* Do not combine with a smaller already-assigned object
1845 if that smaller object is already combined with something bigger. */
1846 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1847 && usize < qty[reg_qty[ureg]].size)
1848 /* Can't combine if SREG is not a register we can allocate. */
1849 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1850 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1851 These have already been taken care of. This probably wouldn't
1852 combine anyway, but don't take any chances. */
1853 || (ureg >= FIRST_PSEUDO_REGISTER
1854 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1855 /* Don't tie something to itself. In most cases it would make no
1856 difference, but it would screw up if the reg being tied to itself
1857 also dies in this insn. */
1858 || ureg == sreg
1859 /* Don't try to connect two different hardware registers. */
1860 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1861 /* Don't connect two different machine modes if they have different
1862 implications as to which registers may be used. */
1863 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1864 return 0;
1865
1866 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1867 qty_phys_sugg for the pseudo instead of tying them.
1868
1869 Return "failure" so that the lifespan of UREG is terminated here;
1870 that way the two lifespans will be disjoint and nothing will prevent
1871 the pseudo reg from being given this hard reg. */
1872
1873 if (ureg < FIRST_PSEUDO_REGISTER)
1874 {
1875 /* Allocate a quantity number so we have a place to put our
1876 suggestions. */
1877 if (reg_qty[sreg] == -2)
1878 reg_is_born (setreg, 2 * insn_number);
1879
1880 if (reg_qty[sreg] >= 0)
1881 {
1882 if (may_save_copy
1883 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1884 {
1885 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1886 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1887 }
1888 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1889 {
1890 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1891 qty_phys_num_sugg[reg_qty[sreg]]++;
1892 }
1893 }
1894 return 0;
1895 }
1896
1897 /* Similarly for SREG a hard register and UREG a pseudo register. */
1898
1899 if (sreg < FIRST_PSEUDO_REGISTER)
1900 {
1901 if (may_save_copy
1902 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1903 {
1904 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1905 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1906 }
1907 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1908 {
1909 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1910 qty_phys_num_sugg[reg_qty[ureg]]++;
1911 }
1912 return 0;
1913 }
1914
1915 /* At this point we know that SREG and UREG are both pseudos.
1916 Do nothing if SREG already has a quantity or is a register that we
1917 don't allocate. */
1918 if (reg_qty[sreg] >= -1
1919 /* If we are not going to let any regs live across calls,
1920 don't tie a call-crossing reg to a non-call-crossing reg. */
1921 || (current_function_has_nonlocal_label
1922 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1923 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1924 return 0;
1925
1926 /* We don't already know about SREG, so tie it to UREG
1927 if this is the last use of UREG, provided the classes they want
1928 are compatible. */
1929
1930 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1931 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1932 {
1933 /* Add SREG to UREG's quantity. */
1934 sqty = reg_qty[ureg];
1935 reg_qty[sreg] = sqty;
1936 reg_offset[sreg] = reg_offset[ureg] + offset;
1937 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1938 qty[sqty].first_reg = sreg;
1939
1940 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1941 update_qty_class (sqty, sreg);
1942
1943 /* Update info about quantity SQTY. */
1944 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1945 qty[sqty].n_refs += REG_N_REFS (sreg);
1946 qty[sqty].freq += REG_FREQ (sreg);
1947 if (usize < ssize)
1948 {
1949 int i;
1950
1951 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1952 reg_offset[i] -= offset;
1953
1954 qty[sqty].size = ssize;
1955 qty[sqty].mode = GET_MODE (setreg);
1956 }
1957 }
1958 else
1959 return 0;
1960
1961 return 1;
1962 }
1963 \f
1964 /* Return 1 if the preferred class of REG allows it to be tied
1965 to a quantity or register whose class is CLASS.
1966 True if REG's reg class either contains or is contained in CLASS. */
1967
1968 static int
1969 reg_meets_class_p (int reg, enum reg_class class)
1970 {
1971 enum reg_class rclass = reg_preferred_class (reg);
1972 return (reg_class_subset_p (rclass, class)
1973 || reg_class_subset_p (class, rclass));
1974 }
1975
1976 /* Update the class of QTYNO assuming that REG is being tied to it. */
1977
1978 static void
1979 update_qty_class (int qtyno, int reg)
1980 {
1981 enum reg_class rclass = reg_preferred_class (reg);
1982 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1983 qty[qtyno].min_class = rclass;
1984
1985 rclass = reg_alternate_class (reg);
1986 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1987 qty[qtyno].alternate_class = rclass;
1988 }
1989 \f
1990 /* Handle something which alters the value of an rtx REG.
1991
1992 REG is whatever is set or clobbered. SETTER is the rtx that
1993 is modifying the register.
1994
1995 If it is not really a register, we do nothing.
1996 The file-global variables `this_insn' and `this_insn_number'
1997 carry info from `block_alloc'. */
1998
1999 static void
2000 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2001 {
2002 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2003 a hard register. These may actually not exist any more. */
2004
2005 if (GET_CODE (reg) != SUBREG
2006 && GET_CODE (reg) != REG)
2007 return;
2008
2009 /* Mark this register as being born. If it is used in a CLOBBER, mark
2010 it as being born halfway between the previous insn and this insn so that
2011 it conflicts with our inputs but not the outputs of the previous insn. */
2012
2013 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2014 }
2015 \f
2016 /* Handle beginning of the life of register REG.
2017 BIRTH is the index at which this is happening. */
2018
2019 static void
2020 reg_is_born (rtx reg, int birth)
2021 {
2022 int regno;
2023
2024 if (GET_CODE (reg) == SUBREG)
2025 {
2026 regno = REGNO (SUBREG_REG (reg));
2027 if (regno < FIRST_PSEUDO_REGISTER)
2028 regno = subreg_hard_regno (reg, 1);
2029 }
2030 else
2031 regno = REGNO (reg);
2032
2033 if (regno < FIRST_PSEUDO_REGISTER)
2034 {
2035 mark_life (regno, GET_MODE (reg), 1);
2036
2037 /* If the register was to have been born earlier that the present
2038 insn, mark it as live where it is actually born. */
2039 if (birth < 2 * this_insn_number)
2040 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2041 }
2042 else
2043 {
2044 if (reg_qty[regno] == -2)
2045 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2046
2047 /* If this register has a quantity number, show that it isn't dead. */
2048 if (reg_qty[regno] >= 0)
2049 qty[reg_qty[regno]].death = -1;
2050 }
2051 }
2052
2053 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2054 REG is an output that is dying (i.e., it is never used), otherwise it
2055 is an input (the normal case).
2056 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2057
2058 static void
2059 wipe_dead_reg (rtx reg, int output_p)
2060 {
2061 int regno = REGNO (reg);
2062
2063 /* If this insn has multiple results,
2064 and the dead reg is used in one of the results,
2065 extend its life to after this insn,
2066 so it won't get allocated together with any other result of this insn.
2067
2068 It is unsafe to use !single_set here since it will ignore an unused
2069 output. Just because an output is unused does not mean the compiler
2070 can assume the side effect will not occur. Consider if REG appears
2071 in the address of an output and we reload the output. If we allocate
2072 REG to the same hard register as an unused output we could set the hard
2073 register before the output reload insn. */
2074 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2075 && multiple_sets (this_insn))
2076 {
2077 int i;
2078 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2079 {
2080 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2081 if (GET_CODE (set) == SET
2082 && GET_CODE (SET_DEST (set)) != REG
2083 && !rtx_equal_p (reg, SET_DEST (set))
2084 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2085 output_p = 1;
2086 }
2087 }
2088
2089 /* If this register is used in an auto-increment address, then extend its
2090 life to after this insn, so that it won't get allocated together with
2091 the result of this insn. */
2092 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2093 output_p = 1;
2094
2095 if (regno < FIRST_PSEUDO_REGISTER)
2096 {
2097 mark_life (regno, GET_MODE (reg), 0);
2098
2099 /* If a hard register is dying as an output, mark it as in use at
2100 the beginning of this insn (the above statement would cause this
2101 not to happen). */
2102 if (output_p)
2103 post_mark_life (regno, GET_MODE (reg), 1,
2104 2 * this_insn_number, 2 * this_insn_number + 1);
2105 }
2106
2107 else if (reg_qty[regno] >= 0)
2108 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2109 }
2110 \f
2111 /* Find a block of SIZE words of hard regs in reg_class CLASS
2112 that can hold something of machine-mode MODE
2113 (but actually we test only the first of the block for holding MODE)
2114 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2115 and return the number of the first of them.
2116 Return -1 if such a block cannot be found.
2117 If QTYNO crosses calls, insist on a register preserved by calls,
2118 unless ACCEPT_CALL_CLOBBERED is nonzero.
2119
2120 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2121 register is available. If not, return -1. */
2122
2123 static int
2124 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2125 int accept_call_clobbered, int just_try_suggested,
2126 int born_index, int dead_index)
2127 {
2128 int i, ins;
2129 HARD_REG_SET first_used, used;
2130 #ifdef ELIMINABLE_REGS
2131 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2132 #endif
2133
2134 /* Validate our parameters. */
2135 if (born_index < 0 || born_index > dead_index)
2136 abort ();
2137
2138 /* Don't let a pseudo live in a reg across a function call
2139 if we might get a nonlocal goto. */
2140 if (current_function_has_nonlocal_label
2141 && qty[qtyno].n_calls_crossed > 0)
2142 return -1;
2143
2144 if (accept_call_clobbered)
2145 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2146 else if (qty[qtyno].n_calls_crossed == 0)
2147 COPY_HARD_REG_SET (used, fixed_reg_set);
2148 else
2149 COPY_HARD_REG_SET (used, call_used_reg_set);
2150
2151 if (accept_call_clobbered)
2152 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2153
2154 for (ins = born_index; ins < dead_index; ins++)
2155 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2156
2157 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2158
2159 /* Don't use the frame pointer reg in local-alloc even if
2160 we may omit the frame pointer, because if we do that and then we
2161 need a frame pointer, reload won't know how to move the pseudo
2162 to another hard reg. It can move only regs made by global-alloc.
2163
2164 This is true of any register that can be eliminated. */
2165 #ifdef ELIMINABLE_REGS
2166 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2167 SET_HARD_REG_BIT (used, eliminables[i].from);
2168 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2169 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2170 that it might be eliminated into. */
2171 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2172 #endif
2173 #else
2174 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2175 #endif
2176
2177 #ifdef CANNOT_CHANGE_MODE_CLASS
2178 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2179 #endif
2180
2181 /* Normally, the registers that can be used for the first register in
2182 a multi-register quantity are the same as those that can be used for
2183 subsequent registers. However, if just trying suggested registers,
2184 restrict our consideration to them. If there are copy-suggested
2185 register, try them. Otherwise, try the arithmetic-suggested
2186 registers. */
2187 COPY_HARD_REG_SET (first_used, used);
2188
2189 if (just_try_suggested)
2190 {
2191 if (qty_phys_num_copy_sugg[qtyno] != 0)
2192 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2193 else
2194 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2195 }
2196
2197 /* If all registers are excluded, we can't do anything. */
2198 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2199
2200 /* If at least one would be suitable, test each hard reg. */
2201
2202 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2203 {
2204 #ifdef REG_ALLOC_ORDER
2205 int regno = reg_alloc_order[i];
2206 #else
2207 int regno = i;
2208 #endif
2209 if (! TEST_HARD_REG_BIT (first_used, regno)
2210 && HARD_REGNO_MODE_OK (regno, mode)
2211 && (qty[qtyno].n_calls_crossed == 0
2212 || accept_call_clobbered
2213 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2214 {
2215 int j;
2216 int size1 = HARD_REGNO_NREGS (regno, mode);
2217 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2218 if (j == size1)
2219 {
2220 /* Mark that this register is in use between its birth and death
2221 insns. */
2222 post_mark_life (regno, mode, 1, born_index, dead_index);
2223 return regno;
2224 }
2225 #ifndef REG_ALLOC_ORDER
2226 /* Skip starting points we know will lose. */
2227 i += j;
2228 #endif
2229 }
2230 }
2231
2232 fail:
2233 /* If we are just trying suggested register, we have just tried copy-
2234 suggested registers, and there are arithmetic-suggested registers,
2235 try them. */
2236
2237 /* If it would be profitable to allocate a call-clobbered register
2238 and save and restore it around calls, do that. */
2239 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2240 && qty_phys_num_sugg[qtyno] != 0)
2241 {
2242 /* Don't try the copy-suggested regs again. */
2243 qty_phys_num_copy_sugg[qtyno] = 0;
2244 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2245 born_index, dead_index);
2246 }
2247
2248 /* We need not check to see if the current function has nonlocal
2249 labels because we don't put any pseudos that are live over calls in
2250 registers in that case. */
2251
2252 if (! accept_call_clobbered
2253 && flag_caller_saves
2254 && ! just_try_suggested
2255 && qty[qtyno].n_calls_crossed != 0
2256 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2257 qty[qtyno].n_calls_crossed))
2258 {
2259 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2260 if (i >= 0)
2261 caller_save_needed = 1;
2262 return i;
2263 }
2264 return -1;
2265 }
2266 \f
2267 /* Mark that REGNO with machine-mode MODE is live starting from the current
2268 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2269 is zero). */
2270
2271 static void
2272 mark_life (int regno, enum machine_mode mode, int life)
2273 {
2274 int j = HARD_REGNO_NREGS (regno, mode);
2275 if (life)
2276 while (--j >= 0)
2277 SET_HARD_REG_BIT (regs_live, regno + j);
2278 else
2279 while (--j >= 0)
2280 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2281 }
2282
2283 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2284 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2285 to insn number DEATH (exclusive). */
2286
2287 static void
2288 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2289 int death)
2290 {
2291 int j = HARD_REGNO_NREGS (regno, mode);
2292 #ifdef HARD_REG_SET
2293 /* Declare it register if it's a scalar. */
2294 register
2295 #endif
2296 HARD_REG_SET this_reg;
2297
2298 CLEAR_HARD_REG_SET (this_reg);
2299 while (--j >= 0)
2300 SET_HARD_REG_BIT (this_reg, regno + j);
2301
2302 if (life)
2303 while (birth < death)
2304 {
2305 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2306 birth++;
2307 }
2308 else
2309 while (birth < death)
2310 {
2311 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2312 birth++;
2313 }
2314 }
2315 \f
2316 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2317 is the register being clobbered, and R1 is a register being used in
2318 the equivalent expression.
2319
2320 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2321 in which it is used, return 1.
2322
2323 Otherwise, return 0. */
2324
2325 static int
2326 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2327 {
2328 int ok = 0;
2329 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2330 rtx p, last;
2331
2332 /* If R1 is a hard register, return 0 since we handle this case
2333 when we scan the insns that actually use it. */
2334
2335 if (note == 0
2336 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2337 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2338 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2339 return 0;
2340
2341 last = XEXP (note, 0);
2342
2343 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2344 if (INSN_P (p))
2345 {
2346 if (find_reg_note (p, REG_DEAD, r1))
2347 ok = 1;
2348
2349 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2350 some earlier optimization pass has inserted instructions into
2351 the sequence, and it is not safe to perform this optimization.
2352 Note that emit_no_conflict_block always ensures that this is
2353 true when these sequences are created. */
2354 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2355 return 0;
2356 }
2357
2358 return ok;
2359 }
2360 \f
2361 /* Return the number of alternatives for which the constraint string P
2362 indicates that the operand must be equal to operand 0 and that no register
2363 is acceptable. */
2364
2365 static int
2366 requires_inout (const char *p)
2367 {
2368 char c;
2369 int found_zero = 0;
2370 int reg_allowed = 0;
2371 int num_matching_alts = 0;
2372 int len;
2373
2374 for ( ; (c = *p); p += len)
2375 {
2376 len = CONSTRAINT_LEN (c, p);
2377 switch (c)
2378 {
2379 case '=': case '+': case '?':
2380 case '#': case '&': case '!':
2381 case '*': case '%':
2382 case 'm': case '<': case '>': case 'V': case 'o':
2383 case 'E': case 'F': case 'G': case 'H':
2384 case 's': case 'i': case 'n':
2385 case 'I': case 'J': case 'K': case 'L':
2386 case 'M': case 'N': case 'O': case 'P':
2387 case 'X':
2388 /* These don't say anything we care about. */
2389 break;
2390
2391 case ',':
2392 if (found_zero && ! reg_allowed)
2393 num_matching_alts++;
2394
2395 found_zero = reg_allowed = 0;
2396 break;
2397
2398 case '0':
2399 found_zero = 1;
2400 break;
2401
2402 case '1': case '2': case '3': case '4': case '5':
2403 case '6': case '7': case '8': case '9':
2404 /* Skip the balance of the matching constraint. */
2405 do
2406 p++;
2407 while (ISDIGIT (*p));
2408 len = 0;
2409 break;
2410
2411 default:
2412 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2413 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2414 break;
2415 /* FALLTHRU */
2416 case 'p':
2417 case 'g': case 'r':
2418 reg_allowed = 1;
2419 break;
2420 }
2421 }
2422
2423 if (found_zero && ! reg_allowed)
2424 num_matching_alts++;
2425
2426 return num_matching_alts;
2427 }
2428 \f
2429 void
2430 dump_local_alloc (FILE *file)
2431 {
2432 int i;
2433 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2434 if (reg_renumber[i] != -1)
2435 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2436 }