Comment typo fix.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "insn-attr.h"
71 #include "recog.h"
72 #include "output.h"
73 #include "toplev.h"
74 \f
75 /* Next quantity number available for allocation. */
76
77 static int next_qty;
78
79 /* In all the following vectors indexed by quantity number. */
80
81 /* Element Q is the hard reg number chosen for quantity Q,
82 or -1 if none was found. */
83
84 static short *qty_phys_reg;
85
86 /* We maintain two hard register sets that indicate suggested hard registers
87 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
88 that are tied to the quantity by a simple copy. The second contains all
89 hard registers that are tied to the quantity via an arithmetic operation.
90
91 The former register set is given priority for allocation. This tends to
92 eliminate copy insns. */
93
94 /* Element Q is a set of hard registers that are suggested for quantity Q by
95 copy insns. */
96
97 static HARD_REG_SET *qty_phys_copy_sugg;
98
99 /* Element Q is a set of hard registers that are suggested for quantity Q by
100 arithmetic insns. */
101
102 static HARD_REG_SET *qty_phys_sugg;
103
104 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
105
106 static short *qty_phys_num_copy_sugg;
107
108 /* Element Q is the number of suggested registers in qty_phys_sugg. */
109
110 static short *qty_phys_num_sugg;
111
112 /* Element Q is the number of refs to quantity Q. */
113
114 static int *qty_n_refs;
115
116 /* Element Q is a reg class contained in (smaller than) the
117 preferred classes of all the pseudo regs that are tied in quantity Q.
118 This is the preferred class for allocating that quantity. */
119
120 static enum reg_class *qty_min_class;
121
122 /* Insn number (counting from head of basic block)
123 where quantity Q was born. -1 if birth has not been recorded. */
124
125 static int *qty_birth;
126
127 /* Insn number (counting from head of basic block)
128 where quantity Q died. Due to the way tying is done,
129 and the fact that we consider in this pass only regs that die but once,
130 a quantity can die only once. Each quantity's life span
131 is a set of consecutive insns. -1 if death has not been recorded. */
132
133 static int *qty_death;
134
135 /* Number of words needed to hold the data in quantity Q.
136 This depends on its machine mode. It is used for these purposes:
137 1. It is used in computing the relative importances of qtys,
138 which determines the order in which we look for regs for them.
139 2. It is used in rules that prevent tying several registers of
140 different sizes in a way that is geometrically impossible
141 (see combine_regs). */
142
143 static int *qty_size;
144
145 /* This holds the mode of the registers that are tied to qty Q,
146 or VOIDmode if registers with differing modes are tied together. */
147
148 static enum machine_mode *qty_mode;
149
150 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
151
152 static int *qty_n_calls_crossed;
153
154 /* Register class within which we allocate qty Q if we can't get
155 its preferred class. */
156
157 static enum reg_class *qty_alternate_class;
158
159 /* Element Q is nonzero if this quantity has been used in a SUBREG
160 that changes its size. */
161
162 static char *qty_changes_size;
163
164 /* Element Q is the register number of one pseudo register whose
165 reg_qty value is Q. This register should be the head of the chain
166 maintained in reg_next_in_qty. */
167
168 static int *qty_first_reg;
169
170 /* If (REG N) has been assigned a quantity number, is a register number
171 of another register assigned the same quantity number, or -1 for the
172 end of the chain. qty_first_reg point to the head of this chain. */
173
174 static int *reg_next_in_qty;
175
176 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
177 if it is >= 0,
178 of -1 if this register cannot be allocated by local-alloc,
179 or -2 if not known yet.
180
181 Note that if we see a use or death of pseudo register N with
182 reg_qty[N] == -2, register N must be local to the current block. If
183 it were used in more than one block, we would have reg_qty[N] == -1.
184 This relies on the fact that if reg_basic_block[N] is >= 0, register N
185 will not appear in any other block. We save a considerable number of
186 tests by exploiting this.
187
188 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
189 be referenced. */
190
191 static int *reg_qty;
192
193 /* The offset (in words) of register N within its quantity.
194 This can be nonzero if register N is SImode, and has been tied
195 to a subreg of a DImode register. */
196
197 static char *reg_offset;
198
199 /* Vector of substitutions of register numbers,
200 used to map pseudo regs into hardware regs.
201 This is set up as a result of register allocation.
202 Element N is the hard reg assigned to pseudo reg N,
203 or is -1 if no hard reg was assigned.
204 If N is a hard reg number, element N is N. */
205
206 short *reg_renumber;
207
208 /* Set of hard registers live at the current point in the scan
209 of the instructions in a basic block. */
210
211 static HARD_REG_SET regs_live;
212
213 /* Each set of hard registers indicates registers live at a particular
214 point in the basic block. For N even, regs_live_at[N] says which
215 hard registers are needed *after* insn N/2 (i.e., they may not
216 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
217
218 If an object is to conflict with the inputs of insn J but not the
219 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
220 if it is to conflict with the outputs of insn J but not the inputs of
221 insn J + 1, it is said to die at index J*2 + 1. */
222
223 static HARD_REG_SET *regs_live_at;
224
225 /* Communicate local vars `insn_number' and `insn'
226 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
227 static int this_insn_number;
228 static rtx this_insn;
229
230 /* Used to communicate changes made by update_equiv_regs to
231 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
232 found or created, so that we can keep track of what memory accesses might
233 be created later, e.g. by reload. */
234
235 static rtx *reg_equiv_replacement;
236
237 /* Used for communication between update_equiv_regs and no_equiv. */
238 static rtx *reg_equiv_init_insns;
239
240 static void alloc_qty PROTO((int, enum machine_mode, int, int));
241 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
242 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
243 static int contains_replace_regs PROTO((rtx, char *));
244 static int memref_referenced_p PROTO((rtx, rtx));
245 static int memref_used_between_p PROTO((rtx, rtx, rtx));
246 static void update_equiv_regs PROTO((void));
247 static void no_equiv PROTO((rtx, rtx));
248 static void block_alloc PROTO((int));
249 static int qty_sugg_compare PROTO((int, int));
250 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
251 static int qty_compare PROTO((int, int));
252 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
253 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
254 static int reg_meets_class_p PROTO((int, enum reg_class));
255 static void update_qty_class PROTO((int, int));
256 static void reg_is_set PROTO((rtx, rtx));
257 static void reg_is_born PROTO((rtx, int));
258 static void wipe_dead_reg PROTO((rtx, int));
259 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
260 int, int, int, int, int));
261 static void mark_life PROTO((int, enum machine_mode, int));
262 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
263 static int no_conflict_p PROTO((rtx, rtx, rtx));
264 static int requires_inout PROTO((char *));
265 \f
266 /* Allocate a new quantity (new within current basic block)
267 for register number REGNO which is born at index BIRTH
268 within the block. MODE and SIZE are info on reg REGNO. */
269
270 static void
271 alloc_qty (regno, mode, size, birth)
272 int regno;
273 enum machine_mode mode;
274 int size, birth;
275 {
276 register int qty = next_qty++;
277
278 reg_qty[regno] = qty;
279 reg_offset[regno] = 0;
280 reg_next_in_qty[regno] = -1;
281
282 qty_first_reg[qty] = regno;
283 qty_size[qty] = size;
284 qty_mode[qty] = mode;
285 qty_birth[qty] = birth;
286 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
287 qty_min_class[qty] = reg_preferred_class (regno);
288 qty_alternate_class[qty] = reg_alternate_class (regno);
289 qty_n_refs[qty] = REG_N_REFS (regno);
290 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
291 }
292 \f
293 /* Main entry point of this file. */
294
295 void
296 local_alloc ()
297 {
298 register int b, i;
299 int max_qty;
300
301 /* Leaf functions and non-leaf functions have different needs.
302 If defined, let the machine say what kind of ordering we
303 should use. */
304 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
305 ORDER_REGS_FOR_LOCAL_ALLOC;
306 #endif
307
308 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
309 registers. */
310 update_equiv_regs ();
311
312 /* This sets the maximum number of quantities we can have. Quantity
313 numbers start at zero and we can have one for each pseudo. */
314 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
315
316 /* Allocate vectors of temporary data.
317 See the declarations of these variables, above,
318 for what they mean. */
319
320 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
321 qty_phys_copy_sugg
322 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
323 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
324 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
325 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
326 qty_birth = (int *) alloca (max_qty * sizeof (int));
327 qty_death = (int *) alloca (max_qty * sizeof (int));
328 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
329 qty_size = (int *) alloca (max_qty * sizeof (int));
330 qty_mode
331 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
332 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
333 qty_min_class
334 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
335 qty_alternate_class
336 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
337 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
338 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
339
340 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
341 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
342 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
343
344 /* Allocate the reg_renumber array */
345 allocate_reg_info (max_regno, FALSE, TRUE);
346
347 /* Determine which pseudo-registers can be allocated by local-alloc.
348 In general, these are the registers used only in a single block and
349 which only die once. However, if a register's preferred class has only
350 a few entries, don't allocate this register here unless it is preferred
351 or nothing since retry_global_alloc won't be able to move it to
352 GENERAL_REGS if a reload register of this class is needed.
353
354 We need not be concerned with which block actually uses the register
355 since we will never see it outside that block. */
356
357 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
358 {
359 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
360 && (reg_alternate_class (i) == NO_REGS
361 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
362 reg_qty[i] = -2;
363 else
364 reg_qty[i] = -1;
365 }
366
367 /* Force loop below to initialize entire quantity array. */
368 next_qty = max_qty;
369
370 /* Allocate each block's local registers, block by block. */
371
372 for (b = 0; b < n_basic_blocks; b++)
373 {
374 /* NEXT_QTY indicates which elements of the `qty_...'
375 vectors might need to be initialized because they were used
376 for the previous block; it is set to the entire array before
377 block 0. Initialize those, with explicit loop if there are few,
378 else with bzero and bcopy. Do not initialize vectors that are
379 explicit set by `alloc_qty'. */
380
381 if (next_qty < 6)
382 {
383 for (i = 0; i < next_qty; i++)
384 {
385 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
386 qty_phys_num_copy_sugg[i] = 0;
387 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
388 qty_phys_num_sugg[i] = 0;
389 }
390 }
391 else
392 {
393 #define CLEAR(vector) \
394 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
395
396 CLEAR (qty_phys_copy_sugg);
397 CLEAR (qty_phys_num_copy_sugg);
398 CLEAR (qty_phys_sugg);
399 CLEAR (qty_phys_num_sugg);
400 }
401
402 next_qty = 0;
403
404 block_alloc (b);
405 #ifdef USE_C_ALLOCA
406 alloca (0);
407 #endif
408 }
409
410 free (reg_qty);
411 free (reg_offset);
412 free (reg_next_in_qty);
413 }
414 \f
415 /* Depth of loops we are in while in update_equiv_regs. */
416 static int loop_depth;
417
418 /* Used for communication between the following two functions: contains
419 a MEM that we wish to ensure remains unchanged. */
420 static rtx equiv_mem;
421
422 /* Set nonzero if EQUIV_MEM is modified. */
423 static int equiv_mem_modified;
424
425 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
426 Called via note_stores. */
427
428 static void
429 validate_equiv_mem_from_store (dest, set)
430 rtx dest;
431 rtx set ATTRIBUTE_UNUSED;
432 {
433 if ((GET_CODE (dest) == REG
434 && reg_overlap_mentioned_p (dest, equiv_mem))
435 || (GET_CODE (dest) == MEM
436 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
437 equiv_mem_modified = 1;
438 }
439
440 /* Verify that no store between START and the death of REG invalidates
441 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
442 by storing into an overlapping memory location, or with a non-const
443 CALL_INSN.
444
445 Return 1 if MEMREF remains valid. */
446
447 static int
448 validate_equiv_mem (start, reg, memref)
449 rtx start;
450 rtx reg;
451 rtx memref;
452 {
453 rtx insn;
454 rtx note;
455
456 equiv_mem = memref;
457 equiv_mem_modified = 0;
458
459 /* If the memory reference has side effects or is volatile, it isn't a
460 valid equivalence. */
461 if (side_effects_p (memref))
462 return 0;
463
464 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
465 {
466 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
467 continue;
468
469 if (find_reg_note (insn, REG_DEAD, reg))
470 return 1;
471
472 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
473 && ! CONST_CALL_P (insn))
474 return 0;
475
476 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
477
478 /* If a register mentioned in MEMREF is modified via an
479 auto-increment, we lose the equivalence. Do the same if one
480 dies; although we could extend the life, it doesn't seem worth
481 the trouble. */
482
483 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
484 if ((REG_NOTE_KIND (note) == REG_INC
485 || REG_NOTE_KIND (note) == REG_DEAD)
486 && GET_CODE (XEXP (note, 0)) == REG
487 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
488 return 0;
489 }
490
491 return 0;
492 }
493
494 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
495
496 static int
497 contains_replace_regs (x, reg_equiv_replace)
498 rtx x;
499 char *reg_equiv_replace;
500 {
501 int i, j;
502 char *fmt;
503 enum rtx_code code = GET_CODE (x);
504
505 switch (code)
506 {
507 case CONST_INT:
508 case CONST:
509 case LABEL_REF:
510 case SYMBOL_REF:
511 case CONST_DOUBLE:
512 case PC:
513 case CC0:
514 case HIGH:
515 case LO_SUM:
516 return 0;
517
518 case REG:
519 return reg_equiv_replace[REGNO (x)];
520
521 default:
522 break;
523 }
524
525 fmt = GET_RTX_FORMAT (code);
526 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
527 switch (fmt[i])
528 {
529 case 'e':
530 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
531 return 1;
532 break;
533 case 'E':
534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
535 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
536 return 1;
537 break;
538 }
539
540 return 0;
541 }
542 \f
543 /* TRUE if X references a memory location that would be affected by a store
544 to MEMREF. */
545
546 static int
547 memref_referenced_p (memref, x)
548 rtx x;
549 rtx memref;
550 {
551 int i, j;
552 char *fmt;
553 enum rtx_code code = GET_CODE (x);
554
555 switch (code)
556 {
557 case CONST_INT:
558 case CONST:
559 case LABEL_REF:
560 case SYMBOL_REF:
561 case CONST_DOUBLE:
562 case PC:
563 case CC0:
564 case HIGH:
565 case LO_SUM:
566 return 0;
567
568 case REG:
569 return (reg_equiv_replacement[REGNO (x)]
570 && memref_referenced_p (memref,
571 reg_equiv_replacement[REGNO (x)]));
572
573 case MEM:
574 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
575 return 1;
576 break;
577
578 case SET:
579 /* If we are setting a MEM, it doesn't count (its address does), but any
580 other SET_DEST that has a MEM in it is referencing the MEM. */
581 if (GET_CODE (SET_DEST (x)) == MEM)
582 {
583 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
584 return 1;
585 }
586 else if (memref_referenced_p (memref, SET_DEST (x)))
587 return 1;
588
589 return memref_referenced_p (memref, SET_SRC (x));
590
591 default:
592 break;
593 }
594
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597 switch (fmt[i])
598 {
599 case 'e':
600 if (memref_referenced_p (memref, XEXP (x, i)))
601 return 1;
602 break;
603 case 'E':
604 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
605 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
606 return 1;
607 break;
608 }
609
610 return 0;
611 }
612
613 /* TRUE if some insn in the range (START, END] references a memory location
614 that would be affected by a store to MEMREF. */
615
616 static int
617 memref_used_between_p (memref, start, end)
618 rtx memref;
619 rtx start;
620 rtx end;
621 {
622 rtx insn;
623
624 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
625 insn = NEXT_INSN (insn))
626 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
627 && memref_referenced_p (memref, PATTERN (insn)))
628 return 1;
629
630 return 0;
631 }
632 \f
633 /* Find registers that are equivalent to a single value throughout the
634 compilation (either because they can be referenced in memory or are set once
635 from a single constant). Lower their priority for a register.
636
637 If such a register is only referenced once, try substituting its value
638 into the using insn. If it succeeds, we can eliminate the register
639 completely. */
640
641 static void
642 update_equiv_regs ()
643 {
644 /* Set when an attempt should be made to replace a register with the
645 associated reg_equiv_replacement entry at the end of this function. */
646 char *reg_equiv_replace
647 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
648 rtx insn;
649 int block, depth;
650
651 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
652 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
653
654 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
655 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
656 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
657
658 init_alias_analysis ();
659
660 loop_depth = 1;
661
662 /* Scan the insns and find which registers have equivalences. Do this
663 in a separate scan of the insns because (due to -fcse-follow-jumps)
664 a register can be set below its use. */
665 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
666 {
667 rtx note;
668 rtx set;
669 rtx dest, src;
670 int regno;
671
672 if (GET_CODE (insn) == NOTE)
673 {
674 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
675 loop_depth++;
676 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
677 loop_depth--;
678 }
679
680 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
681 continue;
682
683 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
684 if (REG_NOTE_KIND (note) == REG_INC)
685 no_equiv (XEXP (note, 0), note);
686
687 set = single_set (insn);
688
689 /* If this insn contains more (or less) than a single SET,
690 only mark all destinations as having no known equivalence. */
691 if (set == 0)
692 {
693 note_stores (PATTERN (insn), no_equiv);
694 continue;
695 }
696 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
697 {
698 int i;
699
700 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
701 {
702 rtx part = XVECEXP (PATTERN (insn), 0, i);
703 if (part != set)
704 note_stores (part, no_equiv);
705 }
706 }
707
708 dest = SET_DEST (set);
709 src = SET_SRC (set);
710
711 /* If this sets a MEM to the contents of a REG that is only used
712 in a single basic block, see if the register is always equivalent
713 to that memory location and if moving the store from INSN to the
714 insn that set REG is safe. If so, put a REG_EQUIV note on the
715 initializing insn.
716
717 Don't add a REG_EQUIV note if the insn already has one. The existing
718 REG_EQUIV is likely more useful than the one we are adding.
719
720 If one of the regs in the address is marked as reg_equiv_replace,
721 then we can't add this REG_EQUIV note. The reg_equiv_replace
722 optimization may move the set of this register immediately before
723 insn, which puts it after reg_equiv_init_insns[regno], and hence
724 the mention in the REG_EQUIV note would be to an uninitialized
725 pseudo. */
726 /* ????? This test isn't good enough; we might see a MEM with a use of
727 a pseudo register before we see its setting insn that will cause
728 reg_equiv_replace for that pseudo to be set.
729 Equivalences to MEMs should be made in another pass, after the
730 reg_equiv_replace information has been gathered. */
731
732 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
733 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
734 && REG_BASIC_BLOCK (regno) >= 0
735 && REG_N_SETS (regno) == 1
736 && reg_equiv_init_insns[regno] != 0
737 && reg_equiv_init_insns[regno] != const0_rtx
738 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
739 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
740 {
741 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
742 if (validate_equiv_mem (init_insn, src, dest)
743 && ! memref_used_between_p (dest, init_insn, insn))
744 REG_NOTES (init_insn)
745 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
746 }
747
748 /* We only handle the case of a pseudo register being set
749 once, or always to the same value. */
750 /* ??? The mn10200 port breaks if we add equivalences for
751 values that need an ADDRESS_REGS register and set them equivalent
752 to a MEM of a pseudo. The actual problem is in the over-conservative
753 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
754 calculate_needs, but we traditionally work around this problem
755 here by rejecting equivalences when the destination is in a register
756 that's likely spilled. This is fragile, of course, since the
757 preferred class of a pseudo depends on all instructions that set
758 or use it. */
759
760 if (GET_CODE (dest) != REG
761 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
762 || reg_equiv_init_insns[regno] == const0_rtx
763 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
764 && GET_CODE (src) == MEM))
765 {
766 /* This might be seting a SUBREG of a pseudo, a pseudo that is
767 also set somewhere else to a constant. */
768 note_stores (set, no_equiv);
769 continue;
770 }
771 /* Don't handle the equivalence if the source is in a register
772 class that's likely to be spilled. */
773 if (GET_CODE (src) == REG
774 && REGNO (src) >= FIRST_PSEUDO_REGISTER
775 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
776 {
777 no_equiv (dest, set);
778 continue;
779 }
780
781 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
782
783 #ifdef DONT_RECORD_EQUIVALENCE
784 /* Allow the target to reject promotions of some REG_EQUAL notes to
785 REG_EQUIV notes.
786
787 In some cases this can improve register allocation if the existence
788 of the REG_EQUIV note is likely to increase the lifetime of a register
789 that is likely to be spilled.
790
791 It may also be necessary if the target can't handle certain constant
792 expressions appearing randomly in insns, but for whatever reason
793 those expressions must be considered legitimate constant expressions
794 to prevent them from being forced into memory. */
795 if (note && DONT_RECORD_EQUIVALENCE (note))
796 note = NULL;
797 #endif
798
799 if (REG_N_SETS (regno) != 1
800 && (! note
801 || ! CONSTANT_P (XEXP (note, 0))
802 || (reg_equiv_replacement[regno]
803 && ! rtx_equal_p (XEXP (note, 0),
804 reg_equiv_replacement[regno]))))
805 {
806 no_equiv (dest, set);
807 continue;
808 }
809 /* Record this insn as initializing this register. */
810 reg_equiv_init_insns[regno]
811 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
812
813 /* If this register is known to be equal to a constant, record that
814 it is always equivalent to the constant. */
815 if (note && CONSTANT_P (XEXP (note, 0)))
816 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
817
818 /* If this insn introduces a "constant" register, decrease the priority
819 of that register. Record this insn if the register is only used once
820 more and the equivalence value is the same as our source.
821
822 The latter condition is checked for two reasons: First, it is an
823 indication that it may be more efficient to actually emit the insn
824 as written (if no registers are available, reload will substitute
825 the equivalence). Secondly, it avoids problems with any registers
826 dying in this insn whose death notes would be missed.
827
828 If we don't have a REG_EQUIV note, see if this insn is loading
829 a register used only in one basic block from a MEM. If so, and the
830 MEM remains unchanged for the life of the register, add a REG_EQUIV
831 note. */
832
833 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
834
835 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
836 && GET_CODE (SET_SRC (set)) == MEM
837 && validate_equiv_mem (insn, dest, SET_SRC (set)))
838 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
839 REG_NOTES (insn));
840
841 if (note)
842 {
843 int regno = REGNO (dest);
844
845 reg_equiv_replacement[regno] = XEXP (note, 0);
846
847 /* Don't mess with things live during setjmp. */
848 if (REG_LIVE_LENGTH (regno) >= 0)
849 {
850 /* Note that the statement below does not affect the priority
851 in local-alloc! */
852 REG_LIVE_LENGTH (regno) *= 2;
853
854
855 /* If the register is referenced exactly twice, meaning it is
856 set once and used once, indicate that the reference may be
857 replaced by the equivalence we computed above. If the
858 register is only used in one basic block, this can't succeed
859 or combine would have done it.
860
861 It would be nice to use "loop_depth * 2" in the compare
862 below. Unfortunately, LOOP_DEPTH need not be constant within
863 a basic block so this would be too complicated.
864
865 This case normally occurs when a parameter is read from
866 memory and then used exactly once, not in a loop. */
867
868 if (REG_N_REFS (regno) == 2
869 && REG_BASIC_BLOCK (regno) < 0
870 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
871 reg_equiv_replace[regno] = 1;
872 }
873 }
874 }
875
876 /* Now scan all regs killed in an insn to see if any of them are
877 registers only used that once. If so, see if we can replace the
878 reference with the equivalent from. If we can, delete the
879 initializing reference and this register will go away. If we
880 can't replace the reference, and the instruction is not in a
881 loop, then move the register initialization just before the use,
882 so that they are in the same basic block. */
883 block = -1;
884 depth = 0;
885 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
886 {
887 rtx link;
888
889 /* Keep track of which basic block we are in. */
890 if (block + 1 < n_basic_blocks
891 && basic_block_head[block + 1] == insn)
892 ++block;
893
894 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
895 {
896 if (GET_CODE (insn) == NOTE)
897 {
898 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
899 ++depth;
900 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
901 {
902 --depth;
903 if (depth < 0)
904 abort ();
905 }
906 }
907
908 continue;
909 }
910
911 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
912 {
913 if (REG_NOTE_KIND (link) == REG_DEAD
914 /* Make sure this insn still refers to the register. */
915 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
916 {
917 int regno = REGNO (XEXP (link, 0));
918 rtx equiv_insn;
919
920 if (! reg_equiv_replace[regno])
921 continue;
922
923 /* reg_equiv_replace[REGNO] gets set only when
924 REG_N_REFS[REGNO] is 2, i.e. the register is set
925 once and used once. (If it were only set, but not used,
926 flow would have deleted the setting insns.) Hence
927 there can only be one insn in reg_equiv_init_insns. */
928 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
929
930 if (validate_replace_rtx (regno_reg_rtx[regno],
931 reg_equiv_replacement[regno], insn))
932 {
933 remove_death (regno, insn);
934 REG_N_REFS (regno) = 0;
935 PUT_CODE (equiv_insn, NOTE);
936 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
937 NOTE_SOURCE_FILE (equiv_insn) = 0;
938 }
939 /* If we aren't in a loop, and there are no calls in
940 INSN or in the initialization of the register, then
941 move the initialization of the register to just
942 before INSN. Update the flow information. */
943 else if (depth == 0
944 && GET_CODE (equiv_insn) == INSN
945 && GET_CODE (insn) == INSN
946 && REG_BASIC_BLOCK (regno) < 0)
947 {
948 int l;
949
950 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
951 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
952
953 PUT_CODE (equiv_insn, NOTE);
954 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
955 NOTE_SOURCE_FILE (equiv_insn) = 0;
956 REG_NOTES (equiv_insn) = 0;
957
958 if (block < 0)
959 REG_BASIC_BLOCK (regno) = 0;
960 else
961 REG_BASIC_BLOCK (regno) = block;
962 REG_N_CALLS_CROSSED (regno) = 0;
963 REG_LIVE_LENGTH (regno) = 2;
964
965 if (block >= 0 && insn == basic_block_head[block])
966 basic_block_head[block] = PREV_INSN (insn);
967
968 for (l = 0; l < n_basic_blocks; l++)
969 CLEAR_REGNO_REG_SET (basic_block_live_at_start[l], regno);
970 }
971 }
972 }
973 }
974 }
975
976 /* Mark REG as having no known equivalence.
977 Some instructions might have been proceessed before and furnished
978 with REG_EQUIV notes for this register; these notes will have to be
979 removed.
980 STORE is the piece of RTL that does the non-constant / conflicting
981 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
982 but needs to be there because this function is called from note_stores. */
983 static void
984 no_equiv (reg, store)
985 rtx reg, store;
986 {
987 int regno;
988 rtx list;
989
990 if (GET_CODE (reg) != REG)
991 return;
992 regno = REGNO (reg);
993 list = reg_equiv_init_insns[regno];
994 if (list == const0_rtx)
995 return;
996 for (; list; list = XEXP (list, 1))
997 {
998 rtx insn = XEXP (list, 0);
999 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1000 }
1001 reg_equiv_init_insns[regno] = const0_rtx;
1002 reg_equiv_replacement[regno] = NULL_RTX;
1003 }
1004 \f
1005 /* Allocate hard regs to the pseudo regs used only within block number B.
1006 Only the pseudos that die but once can be handled. */
1007
1008 static void
1009 block_alloc (b)
1010 int b;
1011 {
1012 register int i, q;
1013 register rtx insn;
1014 rtx note;
1015 int insn_number = 0;
1016 int insn_count = 0;
1017 int max_uid = get_max_uid ();
1018 int *qty_order;
1019 int no_conflict_combined_regno = -1;
1020
1021 /* Count the instructions in the basic block. */
1022
1023 insn = basic_block_end[b];
1024 while (1)
1025 {
1026 if (GET_CODE (insn) != NOTE)
1027 if (++insn_count > max_uid)
1028 abort ();
1029 if (insn == basic_block_head[b])
1030 break;
1031 insn = PREV_INSN (insn);
1032 }
1033
1034 /* +2 to leave room for a post_mark_life at the last insn and for
1035 the birth of a CLOBBER in the first insn. */
1036 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1037 * sizeof (HARD_REG_SET));
1038 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1039
1040 /* Initialize table of hardware registers currently live. */
1041
1042 REG_SET_TO_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1043
1044 /* This loop scans the instructions of the basic block
1045 and assigns quantities to registers.
1046 It computes which registers to tie. */
1047
1048 insn = basic_block_head[b];
1049 while (1)
1050 {
1051 register rtx body = PATTERN (insn);
1052
1053 if (GET_CODE (insn) != NOTE)
1054 insn_number++;
1055
1056 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1057 {
1058 register rtx link, set;
1059 register int win = 0;
1060 register rtx r0, r1;
1061 int combined_regno = -1;
1062 int i;
1063
1064 this_insn_number = insn_number;
1065 this_insn = insn;
1066
1067 extract_insn (insn);
1068 which_alternative = -1;
1069
1070 /* Is this insn suitable for tying two registers?
1071 If so, try doing that.
1072 Suitable insns are those with at least two operands and where
1073 operand 0 is an output that is a register that is not
1074 earlyclobber.
1075
1076 We can tie operand 0 with some operand that dies in this insn.
1077 First look for operands that are required to be in the same
1078 register as operand 0. If we find such, only try tying that
1079 operand or one that can be put into that operand if the
1080 operation is commutative. If we don't find an operand
1081 that is required to be in the same register as operand 0,
1082 we can tie with any operand.
1083
1084 Subregs in place of regs are also ok.
1085
1086 If tying is done, WIN is set nonzero. */
1087
1088 if (1
1089 #ifdef REGISTER_CONSTRAINTS
1090 && recog_n_operands > 1
1091 && recog_constraints[0][0] == '='
1092 && recog_constraints[0][1] != '&'
1093 #else
1094 && GET_CODE (PATTERN (insn)) == SET
1095 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1096 #endif
1097 )
1098 {
1099 #ifdef REGISTER_CONSTRAINTS
1100 /* If non-negative, is an operand that must match operand 0. */
1101 int must_match_0 = -1;
1102 /* Counts number of alternatives that require a match with
1103 operand 0. */
1104 int n_matching_alts = 0;
1105
1106 for (i = 1; i < recog_n_operands; i++)
1107 {
1108 char *p = recog_constraints[i];
1109 int this_match = (requires_inout (p));
1110
1111 n_matching_alts += this_match;
1112 if (this_match == recog_n_alternatives)
1113 must_match_0 = i;
1114 }
1115 #endif
1116
1117 r0 = recog_operand[0];
1118 for (i = 1; i < recog_n_operands; i++)
1119 {
1120 #ifdef REGISTER_CONSTRAINTS
1121 /* Skip this operand if we found an operand that
1122 must match operand 0 and this operand isn't it
1123 and can't be made to be it by commutativity. */
1124
1125 if (must_match_0 >= 0 && i != must_match_0
1126 && ! (i == must_match_0 + 1
1127 && recog_constraints[i-1][0] == '%')
1128 && ! (i == must_match_0 - 1
1129 && recog_constraints[i][0] == '%'))
1130 continue;
1131
1132 /* Likewise if each alternative has some operand that
1133 must match operand zero. In that case, skip any
1134 operand that doesn't list operand 0 since we know that
1135 the operand always conflicts with operand 0. We
1136 ignore commutatity in this case to keep things simple. */
1137 if (n_matching_alts == recog_n_alternatives
1138 && 0 == requires_inout (recog_constraints[i]))
1139 continue;
1140 #endif
1141
1142 r1 = recog_operand[i];
1143
1144 /* If the operand is an address, find a register in it.
1145 There may be more than one register, but we only try one
1146 of them. */
1147 if (
1148 #ifdef REGISTER_CONSTRAINTS
1149 recog_constraints[i][0] == 'p'
1150 #else
1151 recog_operand_address_p[i]
1152 #endif
1153 )
1154 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1155 r1 = XEXP (r1, 0);
1156
1157 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1158 {
1159 /* We have two priorities for hard register preferences.
1160 If we have a move insn or an insn whose first input
1161 can only be in the same register as the output, give
1162 priority to an equivalence found from that insn. */
1163 int may_save_copy
1164 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1165 #ifdef REGISTER_CONSTRAINTS
1166 || (r1 == recog_operand[i] && must_match_0 >= 0)
1167 #endif
1168 );
1169
1170 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1171 win = combine_regs (r1, r0, may_save_copy,
1172 insn_number, insn, 0);
1173 }
1174 if (win)
1175 break;
1176 }
1177 }
1178
1179 /* Recognize an insn sequence with an ultimate result
1180 which can safely overlap one of the inputs.
1181 The sequence begins with a CLOBBER of its result,
1182 and ends with an insn that copies the result to itself
1183 and has a REG_EQUAL note for an equivalent formula.
1184 That note indicates what the inputs are.
1185 The result and the input can overlap if each insn in
1186 the sequence either doesn't mention the input
1187 or has a REG_NO_CONFLICT note to inhibit the conflict.
1188
1189 We do the combining test at the CLOBBER so that the
1190 destination register won't have had a quantity number
1191 assigned, since that would prevent combining. */
1192
1193 if (GET_CODE (PATTERN (insn)) == CLOBBER
1194 && (r0 = XEXP (PATTERN (insn), 0),
1195 GET_CODE (r0) == REG)
1196 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1197 && XEXP (link, 0) != 0
1198 && GET_CODE (XEXP (link, 0)) == INSN
1199 && (set = single_set (XEXP (link, 0))) != 0
1200 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1201 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1202 NULL_RTX)) != 0)
1203 {
1204 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1205 /* Check that we have such a sequence. */
1206 && no_conflict_p (insn, r0, r1))
1207 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1208 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1209 && (r1 = XEXP (XEXP (note, 0), 0),
1210 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1211 && no_conflict_p (insn, r0, r1))
1212 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1213
1214 /* Here we care if the operation to be computed is
1215 commutative. */
1216 else if ((GET_CODE (XEXP (note, 0)) == EQ
1217 || GET_CODE (XEXP (note, 0)) == NE
1218 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1219 && (r1 = XEXP (XEXP (note, 0), 1),
1220 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1221 && no_conflict_p (insn, r0, r1))
1222 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1223
1224 /* If we did combine something, show the register number
1225 in question so that we know to ignore its death. */
1226 if (win)
1227 no_conflict_combined_regno = REGNO (r1);
1228 }
1229
1230 /* If registers were just tied, set COMBINED_REGNO
1231 to the number of the register used in this insn
1232 that was tied to the register set in this insn.
1233 This register's qty should not be "killed". */
1234
1235 if (win)
1236 {
1237 while (GET_CODE (r1) == SUBREG)
1238 r1 = SUBREG_REG (r1);
1239 combined_regno = REGNO (r1);
1240 }
1241
1242 /* Mark the death of everything that dies in this instruction,
1243 except for anything that was just combined. */
1244
1245 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1246 if (REG_NOTE_KIND (link) == REG_DEAD
1247 && GET_CODE (XEXP (link, 0)) == REG
1248 && combined_regno != REGNO (XEXP (link, 0))
1249 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1250 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1251 wipe_dead_reg (XEXP (link, 0), 0);
1252
1253 /* Allocate qty numbers for all registers local to this block
1254 that are born (set) in this instruction.
1255 A pseudo that already has a qty is not changed. */
1256
1257 note_stores (PATTERN (insn), reg_is_set);
1258
1259 /* If anything is set in this insn and then unused, mark it as dying
1260 after this insn, so it will conflict with our outputs. This
1261 can't match with something that combined, and it doesn't matter
1262 if it did. Do this after the calls to reg_is_set since these
1263 die after, not during, the current insn. */
1264
1265 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1266 if (REG_NOTE_KIND (link) == REG_UNUSED
1267 && GET_CODE (XEXP (link, 0)) == REG)
1268 wipe_dead_reg (XEXP (link, 0), 1);
1269
1270 /* If this is an insn that has a REG_RETVAL note pointing at a
1271 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1272 block, so clear any register number that combined within it. */
1273 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1274 && GET_CODE (XEXP (note, 0)) == INSN
1275 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1276 no_conflict_combined_regno = -1;
1277 }
1278
1279 /* Set the registers live after INSN_NUMBER. Note that we never
1280 record the registers live before the block's first insn, since no
1281 pseudos we care about are live before that insn. */
1282
1283 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1284 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1285
1286 if (insn == basic_block_end[b])
1287 break;
1288
1289 insn = NEXT_INSN (insn);
1290 }
1291
1292 /* Now every register that is local to this basic block
1293 should have been given a quantity, or else -1 meaning ignore it.
1294 Every quantity should have a known birth and death.
1295
1296 Order the qtys so we assign them registers in order of the
1297 number of suggested registers they need so we allocate those with
1298 the most restrictive needs first. */
1299
1300 qty_order = (int *) alloca (next_qty * sizeof (int));
1301 for (i = 0; i < next_qty; i++)
1302 qty_order[i] = i;
1303
1304 #define EXCHANGE(I1, I2) \
1305 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1306
1307 switch (next_qty)
1308 {
1309 case 3:
1310 /* Make qty_order[2] be the one to allocate last. */
1311 if (qty_sugg_compare (0, 1) > 0)
1312 EXCHANGE (0, 1);
1313 if (qty_sugg_compare (1, 2) > 0)
1314 EXCHANGE (2, 1);
1315
1316 /* ... Fall through ... */
1317 case 2:
1318 /* Put the best one to allocate in qty_order[0]. */
1319 if (qty_sugg_compare (0, 1) > 0)
1320 EXCHANGE (0, 1);
1321
1322 /* ... Fall through ... */
1323
1324 case 1:
1325 case 0:
1326 /* Nothing to do here. */
1327 break;
1328
1329 default:
1330 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1331 }
1332
1333 /* Try to put each quantity in a suggested physical register, if it has one.
1334 This may cause registers to be allocated that otherwise wouldn't be, but
1335 this seems acceptable in local allocation (unlike global allocation). */
1336 for (i = 0; i < next_qty; i++)
1337 {
1338 q = qty_order[i];
1339 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1340 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1341 0, 1, qty_birth[q], qty_death[q]);
1342 else
1343 qty_phys_reg[q] = -1;
1344 }
1345
1346 /* Order the qtys so we assign them registers in order of
1347 decreasing length of life. Normally call qsort, but if we
1348 have only a very small number of quantities, sort them ourselves. */
1349
1350 for (i = 0; i < next_qty; i++)
1351 qty_order[i] = i;
1352
1353 #define EXCHANGE(I1, I2) \
1354 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1355
1356 switch (next_qty)
1357 {
1358 case 3:
1359 /* Make qty_order[2] be the one to allocate last. */
1360 if (qty_compare (0, 1) > 0)
1361 EXCHANGE (0, 1);
1362 if (qty_compare (1, 2) > 0)
1363 EXCHANGE (2, 1);
1364
1365 /* ... Fall through ... */
1366 case 2:
1367 /* Put the best one to allocate in qty_order[0]. */
1368 if (qty_compare (0, 1) > 0)
1369 EXCHANGE (0, 1);
1370
1371 /* ... Fall through ... */
1372
1373 case 1:
1374 case 0:
1375 /* Nothing to do here. */
1376 break;
1377
1378 default:
1379 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1380 }
1381
1382 /* Now for each qty that is not a hardware register,
1383 look for a hardware register to put it in.
1384 First try the register class that is cheapest for this qty,
1385 if there is more than one class. */
1386
1387 for (i = 0; i < next_qty; i++)
1388 {
1389 q = qty_order[i];
1390 if (qty_phys_reg[q] < 0)
1391 {
1392 #ifdef INSN_SCHEDULING
1393 /* These values represent the adjusted lifetime of a qty so
1394 that it conflicts with qtys which appear near the start/end
1395 of this qty's lifetime.
1396
1397 The purpose behind extending the lifetime of this qty is to
1398 discourage the register allocator from creating false
1399 dependencies.
1400
1401 The adjustment by the value +-3 indicates precisely that
1402 this qty conflicts with qtys in the instructions immediately
1403 before and after the lifetime of this qty.
1404
1405 Experiments have shown that higher values tend to hurt
1406 overall code performance.
1407
1408 If allocation using the extended lifetime fails we will try
1409 again with the qty's unadjusted lifetime. */
1410 int fake_birth = MAX (0, qty_birth[q] - 3);
1411 int fake_death = MIN (insn_number * 2 + 1, qty_death[q] + 3);
1412 #endif
1413
1414 if (N_REG_CLASSES > 1)
1415 {
1416 #ifdef INSN_SCHEDULING
1417 /* We try to avoid using hard registers allocated to qtys which
1418 are born immediately after this qty or die immediately before
1419 this qty.
1420
1421 This optimization is only appropriate when we will run
1422 a scheduling pass after reload and we are not optimizing
1423 for code size. */
1424 if (flag_schedule_insns_after_reload
1425 && !optimize_size
1426 && !SMALL_REGISTER_CLASSES)
1427 {
1428
1429 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1430 qty_mode[q], q, 0, 0,
1431 fake_birth, fake_death);
1432 if (qty_phys_reg[q] >= 0)
1433 continue;
1434 }
1435 #endif
1436 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1437 qty_mode[q], q, 0, 0,
1438 qty_birth[q], qty_death[q]);
1439 if (qty_phys_reg[q] >= 0)
1440 continue;
1441 }
1442
1443 #ifdef INSN_SCHEDULING
1444 /* Similarly, avoid false dependencies. */
1445 if (flag_schedule_insns_after_reload
1446 && !optimize_size
1447 && !SMALL_REGISTER_CLASSES
1448 && qty_alternate_class[q] != NO_REGS)
1449 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1450 qty_mode[q], q, 0, 0,
1451 fake_birth, fake_death);
1452 #endif
1453 if (qty_alternate_class[q] != NO_REGS)
1454 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1455 qty_mode[q], q, 0, 0,
1456 qty_birth[q], qty_death[q]);
1457 }
1458 }
1459
1460 /* Now propagate the register assignments
1461 to the pseudo regs belonging to the qtys. */
1462
1463 for (q = 0; q < next_qty; q++)
1464 if (qty_phys_reg[q] >= 0)
1465 {
1466 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1467 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1468 }
1469 }
1470 \f
1471 /* Compare two quantities' priority for getting real registers.
1472 We give shorter-lived quantities higher priority.
1473 Quantities with more references are also preferred, as are quantities that
1474 require multiple registers. This is the identical prioritization as
1475 done by global-alloc.
1476
1477 We used to give preference to registers with *longer* lives, but using
1478 the same algorithm in both local- and global-alloc can speed up execution
1479 of some programs by as much as a factor of three! */
1480
1481 /* Note that the quotient will never be bigger than
1482 the value of floor_log2 times the maximum number of
1483 times a register can occur in one insn (surely less than 100).
1484 Multiplying this by 10000 can't overflow.
1485 QTY_CMP_PRI is also used by qty_sugg_compare. */
1486
1487 #define QTY_CMP_PRI(q) \
1488 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1489 / (qty_death[q] - qty_birth[q])) * 10000))
1490
1491 static int
1492 qty_compare (q1, q2)
1493 int q1, q2;
1494 {
1495 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1496 }
1497
1498 static int
1499 qty_compare_1 (q1p, q2p)
1500 const GENERIC_PTR q1p;
1501 const GENERIC_PTR q2p;
1502 {
1503 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1504 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1505
1506 if (tem != 0)
1507 return tem;
1508
1509 /* If qtys are equally good, sort by qty number,
1510 so that the results of qsort leave nothing to chance. */
1511 return q1 - q2;
1512 }
1513 \f
1514 /* Compare two quantities' priority for getting real registers. This version
1515 is called for quantities that have suggested hard registers. First priority
1516 goes to quantities that have copy preferences, then to those that have
1517 normal preferences. Within those groups, quantities with the lower
1518 number of preferences have the highest priority. Of those, we use the same
1519 algorithm as above. */
1520
1521 #define QTY_CMP_SUGG(q) \
1522 (qty_phys_num_copy_sugg[q] \
1523 ? qty_phys_num_copy_sugg[q] \
1524 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1525
1526 static int
1527 qty_sugg_compare (q1, q2)
1528 int q1, q2;
1529 {
1530 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1531
1532 if (tem != 0)
1533 return tem;
1534
1535 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1536 }
1537
1538 static int
1539 qty_sugg_compare_1 (q1p, q2p)
1540 const GENERIC_PTR q1p;
1541 const GENERIC_PTR q2p;
1542 {
1543 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1544 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1545
1546 if (tem != 0)
1547 return tem;
1548
1549 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1550 if (tem != 0)
1551 return tem;
1552
1553 /* If qtys are equally good, sort by qty number,
1554 so that the results of qsort leave nothing to chance. */
1555 return q1 - q2;
1556 }
1557
1558 #undef QTY_CMP_SUGG
1559 #undef QTY_CMP_PRI
1560 \f
1561 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1562 Returns 1 if have done so, or 0 if cannot.
1563
1564 Combining registers means marking them as having the same quantity
1565 and adjusting the offsets within the quantity if either of
1566 them is a SUBREG).
1567
1568 We don't actually combine a hard reg with a pseudo; instead
1569 we just record the hard reg as the suggestion for the pseudo's quantity.
1570 If we really combined them, we could lose if the pseudo lives
1571 across an insn that clobbers the hard reg (eg, movstr).
1572
1573 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1574 there is no REG_DEAD note on INSN. This occurs during the processing
1575 of REG_NO_CONFLICT blocks.
1576
1577 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1578 SETREG or if the input and output must share a register.
1579 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1580
1581 There are elaborate checks for the validity of combining. */
1582
1583
1584 static int
1585 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1586 rtx usedreg, setreg;
1587 int may_save_copy;
1588 int insn_number;
1589 rtx insn;
1590 int already_dead;
1591 {
1592 register int ureg, sreg;
1593 register int offset = 0;
1594 int usize, ssize;
1595 register int sqty;
1596
1597 /* Determine the numbers and sizes of registers being used. If a subreg
1598 is present that does not change the entire register, don't consider
1599 this a copy insn. */
1600
1601 while (GET_CODE (usedreg) == SUBREG)
1602 {
1603 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1604 may_save_copy = 0;
1605 offset += SUBREG_WORD (usedreg);
1606 usedreg = SUBREG_REG (usedreg);
1607 }
1608 if (GET_CODE (usedreg) != REG)
1609 return 0;
1610 ureg = REGNO (usedreg);
1611 usize = REG_SIZE (usedreg);
1612
1613 while (GET_CODE (setreg) == SUBREG)
1614 {
1615 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1616 may_save_copy = 0;
1617 offset -= SUBREG_WORD (setreg);
1618 setreg = SUBREG_REG (setreg);
1619 }
1620 if (GET_CODE (setreg) != REG)
1621 return 0;
1622 sreg = REGNO (setreg);
1623 ssize = REG_SIZE (setreg);
1624
1625 /* If UREG is a pseudo-register that hasn't already been assigned a
1626 quantity number, it means that it is not local to this block or dies
1627 more than once. In either event, we can't do anything with it. */
1628 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1629 /* Do not combine registers unless one fits within the other. */
1630 || (offset > 0 && usize + offset > ssize)
1631 || (offset < 0 && usize + offset < ssize)
1632 /* Do not combine with a smaller already-assigned object
1633 if that smaller object is already combined with something bigger. */
1634 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1635 && usize < qty_size[reg_qty[ureg]])
1636 /* Can't combine if SREG is not a register we can allocate. */
1637 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1638 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1639 These have already been taken care of. This probably wouldn't
1640 combine anyway, but don't take any chances. */
1641 || (ureg >= FIRST_PSEUDO_REGISTER
1642 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1643 /* Don't tie something to itself. In most cases it would make no
1644 difference, but it would screw up if the reg being tied to itself
1645 also dies in this insn. */
1646 || ureg == sreg
1647 /* Don't try to connect two different hardware registers. */
1648 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1649 /* Don't connect two different machine modes if they have different
1650 implications as to which registers may be used. */
1651 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1652 return 0;
1653
1654 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1655 qty_phys_sugg for the pseudo instead of tying them.
1656
1657 Return "failure" so that the lifespan of UREG is terminated here;
1658 that way the two lifespans will be disjoint and nothing will prevent
1659 the pseudo reg from being given this hard reg. */
1660
1661 if (ureg < FIRST_PSEUDO_REGISTER)
1662 {
1663 /* Allocate a quantity number so we have a place to put our
1664 suggestions. */
1665 if (reg_qty[sreg] == -2)
1666 reg_is_born (setreg, 2 * insn_number);
1667
1668 if (reg_qty[sreg] >= 0)
1669 {
1670 if (may_save_copy
1671 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1672 {
1673 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1674 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1675 }
1676 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1677 {
1678 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1679 qty_phys_num_sugg[reg_qty[sreg]]++;
1680 }
1681 }
1682 return 0;
1683 }
1684
1685 /* Similarly for SREG a hard register and UREG a pseudo register. */
1686
1687 if (sreg < FIRST_PSEUDO_REGISTER)
1688 {
1689 if (may_save_copy
1690 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1691 {
1692 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1693 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1694 }
1695 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1696 {
1697 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1698 qty_phys_num_sugg[reg_qty[ureg]]++;
1699 }
1700 return 0;
1701 }
1702
1703 /* At this point we know that SREG and UREG are both pseudos.
1704 Do nothing if SREG already has a quantity or is a register that we
1705 don't allocate. */
1706 if (reg_qty[sreg] >= -1
1707 /* If we are not going to let any regs live across calls,
1708 don't tie a call-crossing reg to a non-call-crossing reg. */
1709 || (current_function_has_nonlocal_label
1710 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1711 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1712 return 0;
1713
1714 /* We don't already know about SREG, so tie it to UREG
1715 if this is the last use of UREG, provided the classes they want
1716 are compatible. */
1717
1718 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1719 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1720 {
1721 /* Add SREG to UREG's quantity. */
1722 sqty = reg_qty[ureg];
1723 reg_qty[sreg] = sqty;
1724 reg_offset[sreg] = reg_offset[ureg] + offset;
1725 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1726 qty_first_reg[sqty] = sreg;
1727
1728 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1729 update_qty_class (sqty, sreg);
1730
1731 /* Update info about quantity SQTY. */
1732 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1733 qty_n_refs[sqty] += REG_N_REFS (sreg);
1734 if (usize < ssize)
1735 {
1736 register int i;
1737
1738 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1739 reg_offset[i] -= offset;
1740
1741 qty_size[sqty] = ssize;
1742 qty_mode[sqty] = GET_MODE (setreg);
1743 }
1744 }
1745 else
1746 return 0;
1747
1748 return 1;
1749 }
1750 \f
1751 /* Return 1 if the preferred class of REG allows it to be tied
1752 to a quantity or register whose class is CLASS.
1753 True if REG's reg class either contains or is contained in CLASS. */
1754
1755 static int
1756 reg_meets_class_p (reg, class)
1757 int reg;
1758 enum reg_class class;
1759 {
1760 register enum reg_class rclass = reg_preferred_class (reg);
1761 return (reg_class_subset_p (rclass, class)
1762 || reg_class_subset_p (class, rclass));
1763 }
1764
1765 /* Update the class of QTY assuming that REG is being tied to it. */
1766
1767 static void
1768 update_qty_class (qty, reg)
1769 int qty;
1770 int reg;
1771 {
1772 enum reg_class rclass = reg_preferred_class (reg);
1773 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1774 qty_min_class[qty] = rclass;
1775
1776 rclass = reg_alternate_class (reg);
1777 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1778 qty_alternate_class[qty] = rclass;
1779
1780 if (REG_CHANGES_SIZE (reg))
1781 qty_changes_size[qty] = 1;
1782 }
1783 \f
1784 /* Handle something which alters the value of an rtx REG.
1785
1786 REG is whatever is set or clobbered. SETTER is the rtx that
1787 is modifying the register.
1788
1789 If it is not really a register, we do nothing.
1790 The file-global variables `this_insn' and `this_insn_number'
1791 carry info from `block_alloc'. */
1792
1793 static void
1794 reg_is_set (reg, setter)
1795 rtx reg;
1796 rtx setter;
1797 {
1798 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1799 a hard register. These may actually not exist any more. */
1800
1801 if (GET_CODE (reg) != SUBREG
1802 && GET_CODE (reg) != REG)
1803 return;
1804
1805 /* Mark this register as being born. If it is used in a CLOBBER, mark
1806 it as being born halfway between the previous insn and this insn so that
1807 it conflicts with our inputs but not the outputs of the previous insn. */
1808
1809 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1810 }
1811 \f
1812 /* Handle beginning of the life of register REG.
1813 BIRTH is the index at which this is happening. */
1814
1815 static void
1816 reg_is_born (reg, birth)
1817 rtx reg;
1818 int birth;
1819 {
1820 register int regno;
1821
1822 if (GET_CODE (reg) == SUBREG)
1823 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1824 else
1825 regno = REGNO (reg);
1826
1827 if (regno < FIRST_PSEUDO_REGISTER)
1828 {
1829 mark_life (regno, GET_MODE (reg), 1);
1830
1831 /* If the register was to have been born earlier that the present
1832 insn, mark it as live where it is actually born. */
1833 if (birth < 2 * this_insn_number)
1834 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1835 }
1836 else
1837 {
1838 if (reg_qty[regno] == -2)
1839 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1840
1841 /* If this register has a quantity number, show that it isn't dead. */
1842 if (reg_qty[regno] >= 0)
1843 qty_death[reg_qty[regno]] = -1;
1844 }
1845 }
1846
1847 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1848 REG is an output that is dying (i.e., it is never used), otherwise it
1849 is an input (the normal case).
1850 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1851
1852 static void
1853 wipe_dead_reg (reg, output_p)
1854 register rtx reg;
1855 int output_p;
1856 {
1857 register int regno = REGNO (reg);
1858
1859 /* If this insn has multiple results,
1860 and the dead reg is used in one of the results,
1861 extend its life to after this insn,
1862 so it won't get allocated together with any other result of this insn. */
1863 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1864 && !single_set (this_insn))
1865 {
1866 int i;
1867 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1868 {
1869 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1870 if (GET_CODE (set) == SET
1871 && GET_CODE (SET_DEST (set)) != REG
1872 && !rtx_equal_p (reg, SET_DEST (set))
1873 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1874 output_p = 1;
1875 }
1876 }
1877
1878 /* If this register is used in an auto-increment address, then extend its
1879 life to after this insn, so that it won't get allocated together with
1880 the result of this insn. */
1881 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1882 output_p = 1;
1883
1884 if (regno < FIRST_PSEUDO_REGISTER)
1885 {
1886 mark_life (regno, GET_MODE (reg), 0);
1887
1888 /* If a hard register is dying as an output, mark it as in use at
1889 the beginning of this insn (the above statement would cause this
1890 not to happen). */
1891 if (output_p)
1892 post_mark_life (regno, GET_MODE (reg), 1,
1893 2 * this_insn_number, 2 * this_insn_number+ 1);
1894 }
1895
1896 else if (reg_qty[regno] >= 0)
1897 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1898 }
1899 \f
1900 /* Find a block of SIZE words of hard regs in reg_class CLASS
1901 that can hold something of machine-mode MODE
1902 (but actually we test only the first of the block for holding MODE)
1903 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1904 and return the number of the first of them.
1905 Return -1 if such a block cannot be found.
1906 If QTY crosses calls, insist on a register preserved by calls,
1907 unless ACCEPT_CALL_CLOBBERED is nonzero.
1908
1909 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1910 register is available. If not, return -1. */
1911
1912 static int
1913 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1914 born_index, dead_index)
1915 enum reg_class class;
1916 enum machine_mode mode;
1917 int qty;
1918 int accept_call_clobbered;
1919 int just_try_suggested;
1920 int born_index, dead_index;
1921 {
1922 register int i, ins;
1923 #ifdef HARD_REG_SET
1924 register /* Declare it register if it's a scalar. */
1925 #endif
1926 HARD_REG_SET used, first_used;
1927 #ifdef ELIMINABLE_REGS
1928 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1929 #endif
1930
1931 /* Validate our parameters. */
1932 if (born_index < 0 || born_index > dead_index)
1933 abort ();
1934
1935 /* Don't let a pseudo live in a reg across a function call
1936 if we might get a nonlocal goto. */
1937 if (current_function_has_nonlocal_label
1938 && qty_n_calls_crossed[qty] > 0)
1939 return -1;
1940
1941 if (accept_call_clobbered)
1942 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1943 else if (qty_n_calls_crossed[qty] == 0)
1944 COPY_HARD_REG_SET (used, fixed_reg_set);
1945 else
1946 COPY_HARD_REG_SET (used, call_used_reg_set);
1947
1948 if (accept_call_clobbered)
1949 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1950
1951 for (ins = born_index; ins < dead_index; ins++)
1952 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1953
1954 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1955
1956 /* Don't use the frame pointer reg in local-alloc even if
1957 we may omit the frame pointer, because if we do that and then we
1958 need a frame pointer, reload won't know how to move the pseudo
1959 to another hard reg. It can move only regs made by global-alloc.
1960
1961 This is true of any register that can be eliminated. */
1962 #ifdef ELIMINABLE_REGS
1963 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1964 SET_HARD_REG_BIT (used, eliminables[i].from);
1965 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1966 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1967 that it might be eliminated into. */
1968 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1969 #endif
1970 #else
1971 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1972 #endif
1973
1974 #ifdef CLASS_CANNOT_CHANGE_SIZE
1975 if (qty_changes_size[qty])
1976 IOR_HARD_REG_SET (used,
1977 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1978 #endif
1979
1980 /* Normally, the registers that can be used for the first register in
1981 a multi-register quantity are the same as those that can be used for
1982 subsequent registers. However, if just trying suggested registers,
1983 restrict our consideration to them. If there are copy-suggested
1984 register, try them. Otherwise, try the arithmetic-suggested
1985 registers. */
1986 COPY_HARD_REG_SET (first_used, used);
1987
1988 if (just_try_suggested)
1989 {
1990 if (qty_phys_num_copy_sugg[qty] != 0)
1991 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
1992 else
1993 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
1994 }
1995
1996 /* If all registers are excluded, we can't do anything. */
1997 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
1998
1999 /* If at least one would be suitable, test each hard reg. */
2000
2001 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2002 {
2003 #ifdef REG_ALLOC_ORDER
2004 int regno = reg_alloc_order[i];
2005 #else
2006 int regno = i;
2007 #endif
2008 if (! TEST_HARD_REG_BIT (first_used, regno)
2009 && HARD_REGNO_MODE_OK (regno, mode)
2010 && (qty_n_calls_crossed[qty] == 0
2011 || accept_call_clobbered
2012 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2013 {
2014 register int j;
2015 register int size1 = HARD_REGNO_NREGS (regno, mode);
2016 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2017 if (j == size1)
2018 {
2019 /* Mark that this register is in use between its birth and death
2020 insns. */
2021 post_mark_life (regno, mode, 1, born_index, dead_index);
2022 return regno;
2023 }
2024 #ifndef REG_ALLOC_ORDER
2025 i += j; /* Skip starting points we know will lose */
2026 #endif
2027 }
2028 }
2029
2030 fail:
2031
2032 /* If we are just trying suggested register, we have just tried copy-
2033 suggested registers, and there are arithmetic-suggested registers,
2034 try them. */
2035
2036 /* If it would be profitable to allocate a call-clobbered register
2037 and save and restore it around calls, do that. */
2038 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2039 && qty_phys_num_sugg[qty] != 0)
2040 {
2041 /* Don't try the copy-suggested regs again. */
2042 qty_phys_num_copy_sugg[qty] = 0;
2043 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2044 born_index, dead_index);
2045 }
2046
2047 /* We need not check to see if the current function has nonlocal
2048 labels because we don't put any pseudos that are live over calls in
2049 registers in that case. */
2050
2051 if (! accept_call_clobbered
2052 && flag_caller_saves
2053 && ! just_try_suggested
2054 && qty_n_calls_crossed[qty] != 0
2055 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2056 {
2057 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2058 if (i >= 0)
2059 caller_save_needed = 1;
2060 return i;
2061 }
2062 return -1;
2063 }
2064 \f
2065 /* Mark that REGNO with machine-mode MODE is live starting from the current
2066 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2067 is zero). */
2068
2069 static void
2070 mark_life (regno, mode, life)
2071 register int regno;
2072 enum machine_mode mode;
2073 int life;
2074 {
2075 register int j = HARD_REGNO_NREGS (regno, mode);
2076 if (life)
2077 while (--j >= 0)
2078 SET_HARD_REG_BIT (regs_live, regno + j);
2079 else
2080 while (--j >= 0)
2081 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2082 }
2083
2084 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2085 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2086 to insn number DEATH (exclusive). */
2087
2088 static void
2089 post_mark_life (regno, mode, life, birth, death)
2090 int regno;
2091 enum machine_mode mode;
2092 int life, birth, death;
2093 {
2094 register int j = HARD_REGNO_NREGS (regno, mode);
2095 #ifdef HARD_REG_SET
2096 register /* Declare it register if it's a scalar. */
2097 #endif
2098 HARD_REG_SET this_reg;
2099
2100 CLEAR_HARD_REG_SET (this_reg);
2101 while (--j >= 0)
2102 SET_HARD_REG_BIT (this_reg, regno + j);
2103
2104 if (life)
2105 while (birth < death)
2106 {
2107 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2108 birth++;
2109 }
2110 else
2111 while (birth < death)
2112 {
2113 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2114 birth++;
2115 }
2116 }
2117 \f
2118 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2119 is the register being clobbered, and R1 is a register being used in
2120 the equivalent expression.
2121
2122 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2123 in which it is used, return 1.
2124
2125 Otherwise, return 0. */
2126
2127 static int
2128 no_conflict_p (insn, r0, r1)
2129 rtx insn, r0, r1;
2130 {
2131 int ok = 0;
2132 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2133 rtx p, last;
2134
2135 /* If R1 is a hard register, return 0 since we handle this case
2136 when we scan the insns that actually use it. */
2137
2138 if (note == 0
2139 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2140 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2141 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2142 return 0;
2143
2144 last = XEXP (note, 0);
2145
2146 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2147 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2148 {
2149 if (find_reg_note (p, REG_DEAD, r1))
2150 ok = 1;
2151
2152 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2153 some earlier optimization pass has inserted instructions into
2154 the sequence, and it is not safe to perform this optimization.
2155 Note that emit_no_conflict_block always ensures that this is
2156 true when these sequences are created. */
2157 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2158 return 0;
2159 }
2160
2161 return ok;
2162 }
2163 \f
2164 #ifdef REGISTER_CONSTRAINTS
2165
2166 /* Return the number of alternatives for which the constraint string P
2167 indicates that the operand must be equal to operand 0 and that no register
2168 is acceptable. */
2169
2170 static int
2171 requires_inout (p)
2172 char *p;
2173 {
2174 char c;
2175 int found_zero = 0;
2176 int reg_allowed = 0;
2177 int num_matching_alts = 0;
2178
2179 while ((c = *p++))
2180 switch (c)
2181 {
2182 case '=': case '+': case '?':
2183 case '#': case '&': case '!':
2184 case '*': case '%':
2185 case '1': case '2': case '3': case '4':
2186 case 'm': case '<': case '>': case 'V': case 'o':
2187 case 'E': case 'F': case 'G': case 'H':
2188 case 's': case 'i': case 'n':
2189 case 'I': case 'J': case 'K': case 'L':
2190 case 'M': case 'N': case 'O': case 'P':
2191 #ifdef EXTRA_CONSTRAINT
2192 case 'Q': case 'R': case 'S': case 'T': case 'U':
2193 #endif
2194 case 'X':
2195 /* These don't say anything we care about. */
2196 break;
2197
2198 case ',':
2199 if (found_zero && ! reg_allowed)
2200 num_matching_alts++;
2201
2202 found_zero = reg_allowed = 0;
2203 break;
2204
2205 case '0':
2206 found_zero = 1;
2207 break;
2208
2209 case 'p':
2210 case 'g': case 'r':
2211 default:
2212 reg_allowed = 1;
2213 break;
2214 }
2215
2216 if (found_zero && ! reg_allowed)
2217 num_matching_alts++;
2218
2219 return num_matching_alts;
2220 }
2221 #endif /* REGISTER_CONSTRAINTS */
2222 \f
2223 void
2224 dump_local_alloc (file)
2225 FILE *file;
2226 {
2227 register int i;
2228 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2229 if (reg_renumber[i] != -1)
2230 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2231 }