regs.h (struct reg_info_def): Add freq field.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* Information we maitain about each quantity. */
82 struct qty
83 {
84 /* The number of refs to quantity Q. */
85
86 int n_refs;
87
88 /* The frequency of uses of quantity Q. */
89
90 int freq;
91
92 /* Insn number (counting from head of basic block)
93 where quantity Q was born. -1 if birth has not been recorded. */
94
95 int birth;
96
97 /* Insn number (counting from head of basic block)
98 where given quantity died. Due to the way tying is done,
99 and the fact that we consider in this pass only regs that die but once,
100 a quantity can die only once. Each quantity's life span
101 is a set of consecutive insns. -1 if death has not been recorded. */
102
103 int death;
104
105 /* Number of words needed to hold the data in given quantity.
106 This depends on its machine mode. It is used for these purposes:
107 1. It is used in computing the relative importances of qtys,
108 which determines the order in which we look for regs for them.
109 2. It is used in rules that prevent tying several registers of
110 different sizes in a way that is geometrically impossible
111 (see combine_regs). */
112
113 int size;
114
115 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
116
117 int n_calls_crossed;
118
119 /* The register number of one pseudo register whose reg_qty value is Q.
120 This register should be the head of the chain
121 maintained in reg_next_in_qty. */
122
123 int first_reg;
124
125 /* Reg class contained in (smaller than) the preferred classes of all
126 the pseudo regs that are tied in given quantity.
127 This is the preferred class for allocating that quantity. */
128
129 enum reg_class min_class;
130
131 /* Register class within which we allocate given qty if we can't get
132 its preferred class. */
133
134 enum reg_class alternate_class;
135
136 /* This holds the mode of the registers that are tied to given qty,
137 or VOIDmode if registers with differing modes are tied together. */
138
139 enum machine_mode mode;
140
141 /* the hard reg number chosen for given quantity,
142 or -1 if none was found. */
143
144 short phys_reg;
145
146 /* Nonzero if this quantity has been used in a SUBREG in some
147 way that is illegal. */
148
149 char changes_mode;
150
151 };
152
153 static struct qty *qty;
154
155 /* These fields are kept separately to speedup their clearing. */
156
157 /* We maintain two hard register sets that indicate suggested hard registers
158 for each quantity. The first, phys_copy_sugg, contains hard registers
159 that are tied to the quantity by a simple copy. The second contains all
160 hard registers that are tied to the quantity via an arithmetic operation.
161
162 The former register set is given priority for allocation. This tends to
163 eliminate copy insns. */
164
165 /* Element Q is a set of hard registers that are suggested for quantity Q by
166 copy insns. */
167
168 static HARD_REG_SET *qty_phys_copy_sugg;
169
170 /* Element Q is a set of hard registers that are suggested for quantity Q by
171 arithmetic insns. */
172
173 static HARD_REG_SET *qty_phys_sugg;
174
175 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
176
177 static short *qty_phys_num_copy_sugg;
178
179 /* Element Q is the number of suggested registers in qty_phys_sugg. */
180
181 static short *qty_phys_num_sugg;
182
183 /* If (REG N) has been assigned a quantity number, is a register number
184 of another register assigned the same quantity number, or -1 for the
185 end of the chain. qty->first_reg point to the head of this chain. */
186
187 static int *reg_next_in_qty;
188
189 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
190 if it is >= 0,
191 of -1 if this register cannot be allocated by local-alloc,
192 or -2 if not known yet.
193
194 Note that if we see a use or death of pseudo register N with
195 reg_qty[N] == -2, register N must be local to the current block. If
196 it were used in more than one block, we would have reg_qty[N] == -1.
197 This relies on the fact that if reg_basic_block[N] is >= 0, register N
198 will not appear in any other block. We save a considerable number of
199 tests by exploiting this.
200
201 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
202 be referenced. */
203
204 static int *reg_qty;
205
206 /* The offset (in words) of register N within its quantity.
207 This can be nonzero if register N is SImode, and has been tied
208 to a subreg of a DImode register. */
209
210 static char *reg_offset;
211
212 /* Vector of substitutions of register numbers,
213 used to map pseudo regs into hardware regs.
214 This is set up as a result of register allocation.
215 Element N is the hard reg assigned to pseudo reg N,
216 or is -1 if no hard reg was assigned.
217 If N is a hard reg number, element N is N. */
218
219 short *reg_renumber;
220
221 /* Set of hard registers live at the current point in the scan
222 of the instructions in a basic block. */
223
224 static HARD_REG_SET regs_live;
225
226 /* Each set of hard registers indicates registers live at a particular
227 point in the basic block. For N even, regs_live_at[N] says which
228 hard registers are needed *after* insn N/2 (i.e., they may not
229 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
230
231 If an object is to conflict with the inputs of insn J but not the
232 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
233 if it is to conflict with the outputs of insn J but not the inputs of
234 insn J + 1, it is said to die at index J*2 + 1. */
235
236 static HARD_REG_SET *regs_live_at;
237
238 /* Communicate local vars `insn_number' and `insn'
239 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
240 static int this_insn_number;
241 static rtx this_insn;
242
243 struct equivalence
244 {
245 /* Set when an attempt should be made to replace a register
246 with the associated src entry. */
247
248 char replace;
249
250 /* Set when a REG_EQUIV note is found or created. Use to
251 keep track of what memory accesses might be created later,
252 e.g. by reload. */
253
254 rtx replacement;
255
256 rtx src;
257
258 /* Loop depth is used to recognize equivalences which appear
259 to be present within the same loop (or in an inner loop). */
260
261 int loop_depth;
262
263 /* The list of each instruction which initializes this register. */
264
265 rtx init_insns;
266 };
267
268 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
269 structure for that register. */
270
271 static struct equivalence *reg_equiv;
272
273 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
274 static int recorded_label_ref;
275
276 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
277 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
278 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
279 static int equiv_init_varies_p PARAMS ((rtx));
280 static int equiv_init_movable_p PARAMS ((rtx, int));
281 static int contains_replace_regs PARAMS ((rtx));
282 static int memref_referenced_p PARAMS ((rtx, rtx));
283 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
284 static void update_equiv_regs PARAMS ((void));
285 static void no_equiv PARAMS ((rtx, rtx, void *));
286 static void block_alloc PARAMS ((int));
287 static int qty_sugg_compare PARAMS ((int, int));
288 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
289 static int qty_compare PARAMS ((int, int));
290 static int qty_compare_1 PARAMS ((const PTR, const PTR));
291 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
292 static int reg_meets_class_p PARAMS ((int, enum reg_class));
293 static void update_qty_class PARAMS ((int, int));
294 static void reg_is_set PARAMS ((rtx, rtx, void *));
295 static void reg_is_born PARAMS ((rtx, int));
296 static void wipe_dead_reg PARAMS ((rtx, int));
297 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
298 int, int, int, int, int));
299 static void mark_life PARAMS ((int, enum machine_mode, int));
300 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
301 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
302 static int requires_inout PARAMS ((const char *));
303 \f
304 /* Allocate a new quantity (new within current basic block)
305 for register number REGNO which is born at index BIRTH
306 within the block. MODE and SIZE are info on reg REGNO. */
307
308 static void
309 alloc_qty (regno, mode, size, birth)
310 int regno;
311 enum machine_mode mode;
312 int size, birth;
313 {
314 register int qtyno = next_qty++;
315
316 reg_qty[regno] = qtyno;
317 reg_offset[regno] = 0;
318 reg_next_in_qty[regno] = -1;
319
320 qty[qtyno].first_reg = regno;
321 qty[qtyno].size = size;
322 qty[qtyno].mode = mode;
323 qty[qtyno].birth = birth;
324 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
325 qty[qtyno].min_class = reg_preferred_class (regno);
326 qty[qtyno].alternate_class = reg_alternate_class (regno);
327 qty[qtyno].n_refs = REG_N_REFS (regno);
328 qty[qtyno].freq = REG_FREQ (regno);
329 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
330 }
331 \f
332 /* Main entry point of this file. */
333
334 int
335 local_alloc ()
336 {
337 register int b, i;
338 int max_qty;
339
340 /* We need to keep track of whether or not we recorded a LABEL_REF so
341 that we know if the jump optimizer needs to be rerun. */
342 recorded_label_ref = 0;
343
344 /* Leaf functions and non-leaf functions have different needs.
345 If defined, let the machine say what kind of ordering we
346 should use. */
347 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
348 ORDER_REGS_FOR_LOCAL_ALLOC;
349 #endif
350
351 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
352 registers. */
353 update_equiv_regs ();
354
355 /* This sets the maximum number of quantities we can have. Quantity
356 numbers start at zero and we can have one for each pseudo. */
357 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
358
359 /* Allocate vectors of temporary data.
360 See the declarations of these variables, above,
361 for what they mean. */
362
363 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
364 qty_phys_copy_sugg
365 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
366 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
367 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
368 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
369
370 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
371 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
372 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
373
374 /* Allocate the reg_renumber array. */
375 allocate_reg_info (max_regno, FALSE, TRUE);
376
377 /* Determine which pseudo-registers can be allocated by local-alloc.
378 In general, these are the registers used only in a single block and
379 which only die once.
380
381 We need not be concerned with which block actually uses the register
382 since we will never see it outside that block. */
383
384 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
385 {
386 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
387 reg_qty[i] = -2;
388 else
389 reg_qty[i] = -1;
390 }
391
392 /* Force loop below to initialize entire quantity array. */
393 next_qty = max_qty;
394
395 /* Allocate each block's local registers, block by block. */
396
397 for (b = 0; b < n_basic_blocks; b++)
398 {
399 /* NEXT_QTY indicates which elements of the `qty_...'
400 vectors might need to be initialized because they were used
401 for the previous block; it is set to the entire array before
402 block 0. Initialize those, with explicit loop if there are few,
403 else with bzero and bcopy. Do not initialize vectors that are
404 explicit set by `alloc_qty'. */
405
406 if (next_qty < 6)
407 {
408 for (i = 0; i < next_qty; i++)
409 {
410 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
411 qty_phys_num_copy_sugg[i] = 0;
412 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
413 qty_phys_num_sugg[i] = 0;
414 }
415 }
416 else
417 {
418 #define CLEAR(vector) \
419 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
420
421 CLEAR (qty_phys_copy_sugg);
422 CLEAR (qty_phys_num_copy_sugg);
423 CLEAR (qty_phys_sugg);
424 CLEAR (qty_phys_num_sugg);
425 }
426
427 next_qty = 0;
428
429 block_alloc (b);
430 }
431
432 free (qty);
433 free (qty_phys_copy_sugg);
434 free (qty_phys_num_copy_sugg);
435 free (qty_phys_sugg);
436 free (qty_phys_num_sugg);
437
438 free (reg_qty);
439 free (reg_offset);
440 free (reg_next_in_qty);
441
442 return recorded_label_ref;
443 }
444 \f
445 /* Used for communication between the following two functions: contains
446 a MEM that we wish to ensure remains unchanged. */
447 static rtx equiv_mem;
448
449 /* Set nonzero if EQUIV_MEM is modified. */
450 static int equiv_mem_modified;
451
452 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
453 Called via note_stores. */
454
455 static void
456 validate_equiv_mem_from_store (dest, set, data)
457 rtx dest;
458 rtx set ATTRIBUTE_UNUSED;
459 void *data ATTRIBUTE_UNUSED;
460 {
461 if ((GET_CODE (dest) == REG
462 && reg_overlap_mentioned_p (dest, equiv_mem))
463 || (GET_CODE (dest) == MEM
464 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
465 equiv_mem_modified = 1;
466 }
467
468 /* Verify that no store between START and the death of REG invalidates
469 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
470 by storing into an overlapping memory location, or with a non-const
471 CALL_INSN.
472
473 Return 1 if MEMREF remains valid. */
474
475 static int
476 validate_equiv_mem (start, reg, memref)
477 rtx start;
478 rtx reg;
479 rtx memref;
480 {
481 rtx insn;
482 rtx note;
483
484 equiv_mem = memref;
485 equiv_mem_modified = 0;
486
487 /* If the memory reference has side effects or is volatile, it isn't a
488 valid equivalence. */
489 if (side_effects_p (memref))
490 return 0;
491
492 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
493 {
494 if (! INSN_P (insn))
495 continue;
496
497 if (find_reg_note (insn, REG_DEAD, reg))
498 return 1;
499
500 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
501 && ! CONST_CALL_P (insn))
502 return 0;
503
504 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
505
506 /* If a register mentioned in MEMREF is modified via an
507 auto-increment, we lose the equivalence. Do the same if one
508 dies; although we could extend the life, it doesn't seem worth
509 the trouble. */
510
511 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
512 if ((REG_NOTE_KIND (note) == REG_INC
513 || REG_NOTE_KIND (note) == REG_DEAD)
514 && GET_CODE (XEXP (note, 0)) == REG
515 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
516 return 0;
517 }
518
519 return 0;
520 }
521
522 /* Returns zero if X is known to be invariant. */
523
524 static int
525 equiv_init_varies_p (x)
526 rtx x;
527 {
528 register RTX_CODE code = GET_CODE (x);
529 register int i;
530 register const char *fmt;
531
532 switch (code)
533 {
534 case MEM:
535 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
536
537 case QUEUED:
538 return 1;
539
540 case CONST:
541 case CONST_INT:
542 case CONST_DOUBLE:
543 case SYMBOL_REF:
544 case LABEL_REF:
545 return 0;
546
547 case REG:
548 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
549
550 case ASM_OPERANDS:
551 if (MEM_VOLATILE_P (x))
552 return 1;
553
554 /* FALLTHROUGH */
555
556 default:
557 break;
558 }
559
560 fmt = GET_RTX_FORMAT (code);
561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
562 if (fmt[i] == 'e')
563 {
564 if (equiv_init_varies_p (XEXP (x, i)))
565 return 1;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570 for (j = 0; j < XVECLEN (x, i); j++)
571 if (equiv_init_varies_p (XVECEXP (x, i, j)))
572 return 1;
573 }
574
575 return 0;
576 }
577
578 /* Returns non-zero if X (used to initialize register REGNO) is movable.
579 X is only movable if the registers it uses have equivalent initializations
580 which appear to be within the same loop (or in an inner loop) and movable
581 or if they are not candidates for local_alloc and don't vary. */
582
583 static int
584 equiv_init_movable_p (x, regno)
585 rtx x;
586 int regno;
587 {
588 int i, j;
589 const char *fmt;
590 enum rtx_code code = GET_CODE (x);
591
592 switch (code)
593 {
594 case SET:
595 return equiv_init_movable_p (SET_SRC (x), regno);
596
597 case CC0:
598 case CLOBBER:
599 return 0;
600
601 case PRE_INC:
602 case PRE_DEC:
603 case POST_INC:
604 case POST_DEC:
605 case PRE_MODIFY:
606 case POST_MODIFY:
607 return 0;
608
609 case REG:
610 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
611 && reg_equiv[REGNO (x)].replace)
612 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
613
614 case UNSPEC_VOLATILE:
615 return 0;
616
617 case ASM_OPERANDS:
618 if (MEM_VOLATILE_P (x))
619 return 0;
620
621 /* FALLTHROUGH */
622
623 default:
624 break;
625 }
626
627 fmt = GET_RTX_FORMAT (code);
628 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
629 switch (fmt[i])
630 {
631 case 'e':
632 if (! equiv_init_movable_p (XEXP (x, i), regno))
633 return 0;
634 break;
635 case 'E':
636 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
637 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
638 return 0;
639 break;
640 }
641
642 return 1;
643 }
644
645 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
646
647 static int
648 contains_replace_regs (x)
649 rtx x;
650 {
651 int i, j;
652 const char *fmt;
653 enum rtx_code code = GET_CODE (x);
654
655 switch (code)
656 {
657 case CONST_INT:
658 case CONST:
659 case LABEL_REF:
660 case SYMBOL_REF:
661 case CONST_DOUBLE:
662 case PC:
663 case CC0:
664 case HIGH:
665 case LO_SUM:
666 return 0;
667
668 case REG:
669 return reg_equiv[REGNO (x)].replace;
670
671 default:
672 break;
673 }
674
675 fmt = GET_RTX_FORMAT (code);
676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
677 switch (fmt[i])
678 {
679 case 'e':
680 if (contains_replace_regs (XEXP (x, i)))
681 return 1;
682 break;
683 case 'E':
684 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
685 if (contains_replace_regs (XVECEXP (x, i, j)))
686 return 1;
687 break;
688 }
689
690 return 0;
691 }
692 \f
693 /* TRUE if X references a memory location that would be affected by a store
694 to MEMREF. */
695
696 static int
697 memref_referenced_p (memref, x)
698 rtx x;
699 rtx memref;
700 {
701 int i, j;
702 const char *fmt;
703 enum rtx_code code = GET_CODE (x);
704
705 switch (code)
706 {
707 case CONST_INT:
708 case CONST:
709 case LABEL_REF:
710 case SYMBOL_REF:
711 case CONST_DOUBLE:
712 case PC:
713 case CC0:
714 case HIGH:
715 case LO_SUM:
716 return 0;
717
718 case REG:
719 return (reg_equiv[REGNO (x)].replacement
720 && memref_referenced_p (memref,
721 reg_equiv[REGNO (x)].replacement));
722
723 case MEM:
724 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
725 return 1;
726 break;
727
728 case SET:
729 /* If we are setting a MEM, it doesn't count (its address does), but any
730 other SET_DEST that has a MEM in it is referencing the MEM. */
731 if (GET_CODE (SET_DEST (x)) == MEM)
732 {
733 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
734 return 1;
735 }
736 else if (memref_referenced_p (memref, SET_DEST (x)))
737 return 1;
738
739 return memref_referenced_p (memref, SET_SRC (x));
740
741 default:
742 break;
743 }
744
745 fmt = GET_RTX_FORMAT (code);
746 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
747 switch (fmt[i])
748 {
749 case 'e':
750 if (memref_referenced_p (memref, XEXP (x, i)))
751 return 1;
752 break;
753 case 'E':
754 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
755 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
756 return 1;
757 break;
758 }
759
760 return 0;
761 }
762
763 /* TRUE if some insn in the range (START, END] references a memory location
764 that would be affected by a store to MEMREF. */
765
766 static int
767 memref_used_between_p (memref, start, end)
768 rtx memref;
769 rtx start;
770 rtx end;
771 {
772 rtx insn;
773
774 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
775 insn = NEXT_INSN (insn))
776 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
777 return 1;
778
779 return 0;
780 }
781 \f
782 /* Return nonzero if the rtx X is invariant over the current function. */
783 int
784 function_invariant_p (x)
785 rtx x;
786 {
787 if (CONSTANT_P (x))
788 return 1;
789 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
790 return 1;
791 if (GET_CODE (x) == PLUS
792 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
793 && CONSTANT_P (XEXP (x, 1)))
794 return 1;
795 return 0;
796 }
797
798 /* Find registers that are equivalent to a single value throughout the
799 compilation (either because they can be referenced in memory or are set once
800 from a single constant). Lower their priority for a register.
801
802 If such a register is only referenced once, try substituting its value
803 into the using insn. If it succeeds, we can eliminate the register
804 completely. */
805
806 static void
807 update_equiv_regs ()
808 {
809 rtx insn;
810 int block;
811 int loop_depth;
812 regset_head cleared_regs;
813 int clear_regnos = 0;
814
815 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
816 INIT_REG_SET (&cleared_regs);
817
818 init_alias_analysis ();
819
820 /* Scan the insns and find which registers have equivalences. Do this
821 in a separate scan of the insns because (due to -fcse-follow-jumps)
822 a register can be set below its use. */
823 loop_depth = 0;
824 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
825 {
826 rtx note;
827 rtx set;
828 rtx dest, src;
829 int regno;
830
831 if (GET_CODE (insn) == NOTE)
832 {
833 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
834 ++loop_depth;
835 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
836 {
837 if (! loop_depth)
838 abort ();
839 --loop_depth;
840 }
841 }
842
843 if (! INSN_P (insn))
844 continue;
845
846 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
847 if (REG_NOTE_KIND (note) == REG_INC)
848 no_equiv (XEXP (note, 0), note, NULL);
849
850 set = single_set (insn);
851
852 /* If this insn contains more (or less) than a single SET,
853 only mark all destinations as having no known equivalence. */
854 if (set == 0)
855 {
856 note_stores (PATTERN (insn), no_equiv, NULL);
857 continue;
858 }
859 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
860 {
861 int i;
862
863 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
864 {
865 rtx part = XVECEXP (PATTERN (insn), 0, i);
866 if (part != set)
867 note_stores (part, no_equiv, NULL);
868 }
869 }
870
871 dest = SET_DEST (set);
872 src = SET_SRC (set);
873
874 /* If this sets a MEM to the contents of a REG that is only used
875 in a single basic block, see if the register is always equivalent
876 to that memory location and if moving the store from INSN to the
877 insn that set REG is safe. If so, put a REG_EQUIV note on the
878 initializing insn.
879
880 Don't add a REG_EQUIV note if the insn already has one. The existing
881 REG_EQUIV is likely more useful than the one we are adding.
882
883 If one of the regs in the address has reg_equiv[REGNO].replace set,
884 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
885 optimization may move the set of this register immediately before
886 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
887 the mention in the REG_EQUIV note would be to an uninitialized
888 pseudo. */
889 /* ????? This test isn't good enough; we might see a MEM with a use of
890 a pseudo register before we see its setting insn that will cause
891 reg_equiv[].replace for that pseudo to be set.
892 Equivalences to MEMs should be made in another pass, after the
893 reg_equiv[].replace information has been gathered. */
894
895 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
896 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
897 && REG_BASIC_BLOCK (regno) >= 0
898 && REG_N_SETS (regno) == 1
899 && reg_equiv[regno].init_insns != 0
900 && reg_equiv[regno].init_insns != const0_rtx
901 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
902 REG_EQUIV, NULL_RTX)
903 && ! contains_replace_regs (XEXP (dest, 0)))
904 {
905 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
906 if (validate_equiv_mem (init_insn, src, dest)
907 && ! memref_used_between_p (dest, init_insn, insn))
908 REG_NOTES (init_insn)
909 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
910 }
911
912 /* We only handle the case of a pseudo register being set
913 once, or always to the same value. */
914 /* ??? The mn10200 port breaks if we add equivalences for
915 values that need an ADDRESS_REGS register and set them equivalent
916 to a MEM of a pseudo. The actual problem is in the over-conservative
917 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
918 calculate_needs, but we traditionally work around this problem
919 here by rejecting equivalences when the destination is in a register
920 that's likely spilled. This is fragile, of course, since the
921 preferred class of a pseudo depends on all instructions that set
922 or use it. */
923
924 if (GET_CODE (dest) != REG
925 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
926 || reg_equiv[regno].init_insns == const0_rtx
927 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
928 && GET_CODE (src) == MEM))
929 {
930 /* This might be seting a SUBREG of a pseudo, a pseudo that is
931 also set somewhere else to a constant. */
932 note_stores (set, no_equiv, NULL);
933 continue;
934 }
935
936 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
937
938 /* cse sometimes generates function invariants, but doesn't put a
939 REG_EQUAL note on the insn. Since this note would be redundant,
940 there's no point creating it earlier than here. */
941 if (! note && ! rtx_varies_p (src, 0))
942 REG_NOTES (insn)
943 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
944
945 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
946 since it represents a function call */
947 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
948 note = NULL_RTX;
949
950 if (REG_N_SETS (regno) != 1
951 && (! note
952 || rtx_varies_p (XEXP (note, 0), 0)
953 || (reg_equiv[regno].replacement
954 && ! rtx_equal_p (XEXP (note, 0),
955 reg_equiv[regno].replacement))))
956 {
957 no_equiv (dest, set, NULL);
958 continue;
959 }
960 /* Record this insn as initializing this register. */
961 reg_equiv[regno].init_insns
962 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
963
964 /* If this register is known to be equal to a constant, record that
965 it is always equivalent to the constant. */
966 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
967 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
968
969 /* If this insn introduces a "constant" register, decrease the priority
970 of that register. Record this insn if the register is only used once
971 more and the equivalence value is the same as our source.
972
973 The latter condition is checked for two reasons: First, it is an
974 indication that it may be more efficient to actually emit the insn
975 as written (if no registers are available, reload will substitute
976 the equivalence). Secondly, it avoids problems with any registers
977 dying in this insn whose death notes would be missed.
978
979 If we don't have a REG_EQUIV note, see if this insn is loading
980 a register used only in one basic block from a MEM. If so, and the
981 MEM remains unchanged for the life of the register, add a REG_EQUIV
982 note. */
983
984 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
985
986 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
987 && GET_CODE (SET_SRC (set)) == MEM
988 && validate_equiv_mem (insn, dest, SET_SRC (set)))
989 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
990 REG_NOTES (insn));
991
992 if (note)
993 {
994 int regno = REGNO (dest);
995
996 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
997 We might end up substituting the LABEL_REF for uses of the
998 pseudo here or later. That kind of transformation may turn an
999 indirect jump into a direct jump, in which case we must rerun the
1000 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
1001 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
1002 || (GET_CODE (XEXP (note, 0)) == CONST
1003 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
1004 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1005 == LABEL_REF)))
1006 recorded_label_ref = 1;
1007
1008 reg_equiv[regno].replacement = XEXP (note, 0);
1009 reg_equiv[regno].src = src;
1010 reg_equiv[regno].loop_depth = loop_depth;
1011
1012 /* Don't mess with things live during setjmp. */
1013 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1014 {
1015 /* Note that the statement below does not affect the priority
1016 in local-alloc! */
1017 REG_LIVE_LENGTH (regno) *= 2;
1018
1019
1020 /* If the register is referenced exactly twice, meaning it is
1021 set once and used once, indicate that the reference may be
1022 replaced by the equivalence we computed above. Do this
1023 even if the register is only used in one block so that
1024 dependencies can be handled where the last register is
1025 used in a different block (i.e. HIGH / LO_SUM sequences)
1026 and to reduce the number of registers alive across calls.
1027
1028 It would be nice to use "loop_depth * 2" in the compare
1029 below. Unfortunately, LOOP_DEPTH need not be constant within
1030 a basic block so this would be too complicated.
1031
1032 This case normally occurs when a parameter is read from
1033 memory and then used exactly once, not in a loop. */
1034
1035 if (REG_N_REFS (regno) == 2
1036 && (rtx_equal_p (XEXP (note, 0), src)
1037 || ! equiv_init_varies_p (src))
1038 && GET_CODE (insn) == INSN
1039 && equiv_init_movable_p (PATTERN (insn), regno))
1040 reg_equiv[regno].replace = 1;
1041 }
1042 }
1043 }
1044
1045 /* Now scan all regs killed in an insn to see if any of them are
1046 registers only used that once. If so, see if we can replace the
1047 reference with the equivalent from. If we can, delete the
1048 initializing reference and this register will go away. If we
1049 can't replace the reference, and the initialzing reference is
1050 within the same loop (or in an inner loop), then move the register
1051 initialization just before the use, so that they are in the same
1052 basic block.
1053
1054 Skip this optimization if loop_depth isn't initially zero since
1055 that indicates a mismatch between loop begin and loop end notes
1056 (i.e. gcc.dg/noncompile/920721-2.c). */
1057 block = n_basic_blocks - 1;
1058 for (insn = (loop_depth == 0) ? get_last_insn () : NULL_RTX;
1059 insn; insn = PREV_INSN (insn))
1060 {
1061 rtx link;
1062
1063 if (! INSN_P (insn))
1064 {
1065 if (GET_CODE (insn) == NOTE)
1066 {
1067 if (NOTE_INSN_BASIC_BLOCK_P (insn))
1068 block = NOTE_BASIC_BLOCK (insn)->index - 1;
1069 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1070 {
1071 if (! loop_depth)
1072 abort ();
1073 --loop_depth;
1074 }
1075 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1076 ++loop_depth;
1077 }
1078
1079 continue;
1080 }
1081
1082 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1083 {
1084 if (REG_NOTE_KIND (link) == REG_DEAD
1085 /* Make sure this insn still refers to the register. */
1086 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1087 {
1088 int regno = REGNO (XEXP (link, 0));
1089 rtx equiv_insn;
1090
1091 if (! reg_equiv[regno].replace
1092 || reg_equiv[regno].loop_depth < loop_depth)
1093 continue;
1094
1095 /* reg_equiv[REGNO].replace gets set only when
1096 REG_N_REFS[REGNO] is 2, i.e. the register is set
1097 once and used once. (If it were only set, but not used,
1098 flow would have deleted the setting insns.) Hence
1099 there can only be one insn in reg_equiv[REGNO].init_insns. */
1100 if (reg_equiv[regno].init_insns == NULL_RTX
1101 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1102 abort ();
1103 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1104
1105 if (asm_noperands (PATTERN (equiv_insn)) < 0
1106 && validate_replace_rtx (regno_reg_rtx[regno],
1107 reg_equiv[regno].src, insn))
1108 {
1109 rtx equiv_link;
1110 rtx last_link;
1111 rtx note;
1112
1113 /* Find the last note. */
1114 for (last_link = link; XEXP (last_link, 1);
1115 last_link = XEXP (last_link, 1))
1116 ;
1117
1118 /* Append the REG_DEAD notes from equiv_insn. */
1119 equiv_link = REG_NOTES (equiv_insn);
1120 while (equiv_link)
1121 {
1122 note = equiv_link;
1123 equiv_link = XEXP (equiv_link, 1);
1124 if (REG_NOTE_KIND (note) == REG_DEAD)
1125 {
1126 remove_note (equiv_insn, note);
1127 XEXP (last_link, 1) = note;
1128 XEXP (note, 1) = NULL_RTX;
1129 last_link = note;
1130 }
1131 }
1132
1133 remove_death (regno, insn);
1134 REG_N_REFS (regno) = 0;
1135 REG_FREQ (regno) = 0;
1136 PUT_CODE (equiv_insn, NOTE);
1137 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1138 NOTE_SOURCE_FILE (equiv_insn) = 0;
1139
1140 reg_equiv[regno].init_insns
1141 = XEXP (reg_equiv[regno].init_insns, 1);
1142 }
1143 /* Move the initialization of the register to just before
1144 INSN. Update the flow information. */
1145 else if (PREV_INSN (insn) != equiv_insn)
1146 {
1147 rtx new_insn;
1148
1149 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1150 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1151 REG_NOTES (equiv_insn) = 0;
1152
1153 /* Make sure this insn is recognized before reload begins,
1154 otherwise eliminate_regs_in_insn will abort. */
1155 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1156
1157 PUT_CODE (equiv_insn, NOTE);
1158 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1159 NOTE_SOURCE_FILE (equiv_insn) = 0;
1160
1161 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1162
1163 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1164 REG_N_CALLS_CROSSED (regno) = 0;
1165 REG_LIVE_LENGTH (regno) = 2;
1166
1167 if (block >= 0 && insn == BLOCK_HEAD (block))
1168 BLOCK_HEAD (block) = PREV_INSN (insn);
1169
1170 /* Remember to clear REGNO from all basic block's live
1171 info. */
1172 SET_REGNO_REG_SET (&cleared_regs, regno);
1173 clear_regnos++;
1174 }
1175 }
1176 }
1177 }
1178
1179 /* Clear all dead REGNOs from all basic block's live info. */
1180 if (clear_regnos)
1181 {
1182 int j, l;
1183 if (clear_regnos > 8)
1184 {
1185 for (l = 0; l < n_basic_blocks; l++)
1186 {
1187 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1188 &cleared_regs);
1189 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1190 &cleared_regs);
1191 }
1192 }
1193 else
1194 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1195 {
1196 for (l = 0; l < n_basic_blocks; l++)
1197 {
1198 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1199 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1200 }
1201 });
1202 }
1203
1204 /* Clean up. */
1205 end_alias_analysis ();
1206 CLEAR_REG_SET (&cleared_regs);
1207 free (reg_equiv);
1208 }
1209
1210 /* Mark REG as having no known equivalence.
1211 Some instructions might have been proceessed before and furnished
1212 with REG_EQUIV notes for this register; these notes will have to be
1213 removed.
1214 STORE is the piece of RTL that does the non-constant / conflicting
1215 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1216 but needs to be there because this function is called from note_stores. */
1217 static void
1218 no_equiv (reg, store, data)
1219 rtx reg, store ATTRIBUTE_UNUSED;
1220 void *data ATTRIBUTE_UNUSED;
1221 {
1222 int regno;
1223 rtx list;
1224
1225 if (GET_CODE (reg) != REG)
1226 return;
1227 regno = REGNO (reg);
1228 list = reg_equiv[regno].init_insns;
1229 if (list == const0_rtx)
1230 return;
1231 for (; list; list = XEXP (list, 1))
1232 {
1233 rtx insn = XEXP (list, 0);
1234 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1235 }
1236 reg_equiv[regno].init_insns = const0_rtx;
1237 reg_equiv[regno].replacement = NULL_RTX;
1238 }
1239 \f
1240 /* Allocate hard regs to the pseudo regs used only within block number B.
1241 Only the pseudos that die but once can be handled. */
1242
1243 static void
1244 block_alloc (b)
1245 int b;
1246 {
1247 register int i, q;
1248 register rtx insn;
1249 rtx note;
1250 int insn_number = 0;
1251 int insn_count = 0;
1252 int max_uid = get_max_uid ();
1253 int *qty_order;
1254 int no_conflict_combined_regno = -1;
1255
1256 /* Count the instructions in the basic block. */
1257
1258 insn = BLOCK_END (b);
1259 while (1)
1260 {
1261 if (GET_CODE (insn) != NOTE)
1262 if (++insn_count > max_uid)
1263 abort ();
1264 if (insn == BLOCK_HEAD (b))
1265 break;
1266 insn = PREV_INSN (insn);
1267 }
1268
1269 /* +2 to leave room for a post_mark_life at the last insn and for
1270 the birth of a CLOBBER in the first insn. */
1271 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1272 sizeof (HARD_REG_SET));
1273
1274 /* Initialize table of hardware registers currently live. */
1275
1276 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1277
1278 /* This loop scans the instructions of the basic block
1279 and assigns quantities to registers.
1280 It computes which registers to tie. */
1281
1282 insn = BLOCK_HEAD (b);
1283 while (1)
1284 {
1285 if (GET_CODE (insn) != NOTE)
1286 insn_number++;
1287
1288 if (INSN_P (insn))
1289 {
1290 register rtx link, set;
1291 register int win = 0;
1292 register rtx r0, r1 = NULL_RTX;
1293 int combined_regno = -1;
1294 int i;
1295
1296 this_insn_number = insn_number;
1297 this_insn = insn;
1298
1299 extract_insn (insn);
1300 which_alternative = -1;
1301
1302 /* Is this insn suitable for tying two registers?
1303 If so, try doing that.
1304 Suitable insns are those with at least two operands and where
1305 operand 0 is an output that is a register that is not
1306 earlyclobber.
1307
1308 We can tie operand 0 with some operand that dies in this insn.
1309 First look for operands that are required to be in the same
1310 register as operand 0. If we find such, only try tying that
1311 operand or one that can be put into that operand if the
1312 operation is commutative. If we don't find an operand
1313 that is required to be in the same register as operand 0,
1314 we can tie with any operand.
1315
1316 Subregs in place of regs are also ok.
1317
1318 If tying is done, WIN is set nonzero. */
1319
1320 if (optimize
1321 && recog_data.n_operands > 1
1322 && recog_data.constraints[0][0] == '='
1323 && recog_data.constraints[0][1] != '&')
1324 {
1325 /* If non-negative, is an operand that must match operand 0. */
1326 int must_match_0 = -1;
1327 /* Counts number of alternatives that require a match with
1328 operand 0. */
1329 int n_matching_alts = 0;
1330
1331 for (i = 1; i < recog_data.n_operands; i++)
1332 {
1333 const char *p = recog_data.constraints[i];
1334 int this_match = (requires_inout (p));
1335
1336 n_matching_alts += this_match;
1337 if (this_match == recog_data.n_alternatives)
1338 must_match_0 = i;
1339 }
1340
1341 r0 = recog_data.operand[0];
1342 for (i = 1; i < recog_data.n_operands; i++)
1343 {
1344 /* Skip this operand if we found an operand that
1345 must match operand 0 and this operand isn't it
1346 and can't be made to be it by commutativity. */
1347
1348 if (must_match_0 >= 0 && i != must_match_0
1349 && ! (i == must_match_0 + 1
1350 && recog_data.constraints[i-1][0] == '%')
1351 && ! (i == must_match_0 - 1
1352 && recog_data.constraints[i][0] == '%'))
1353 continue;
1354
1355 /* Likewise if each alternative has some operand that
1356 must match operand zero. In that case, skip any
1357 operand that doesn't list operand 0 since we know that
1358 the operand always conflicts with operand 0. We
1359 ignore commutatity in this case to keep things simple. */
1360 if (n_matching_alts == recog_data.n_alternatives
1361 && 0 == requires_inout (recog_data.constraints[i]))
1362 continue;
1363
1364 r1 = recog_data.operand[i];
1365
1366 /* If the operand is an address, find a register in it.
1367 There may be more than one register, but we only try one
1368 of them. */
1369 if (recog_data.constraints[i][0] == 'p')
1370 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1371 r1 = XEXP (r1, 0);
1372
1373 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1374 {
1375 /* We have two priorities for hard register preferences.
1376 If we have a move insn or an insn whose first input
1377 can only be in the same register as the output, give
1378 priority to an equivalence found from that insn. */
1379 int may_save_copy
1380 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1381
1382 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1383 win = combine_regs (r1, r0, may_save_copy,
1384 insn_number, insn, 0);
1385 }
1386 if (win)
1387 break;
1388 }
1389 }
1390
1391 /* Recognize an insn sequence with an ultimate result
1392 which can safely overlap one of the inputs.
1393 The sequence begins with a CLOBBER of its result,
1394 and ends with an insn that copies the result to itself
1395 and has a REG_EQUAL note for an equivalent formula.
1396 That note indicates what the inputs are.
1397 The result and the input can overlap if each insn in
1398 the sequence either doesn't mention the input
1399 or has a REG_NO_CONFLICT note to inhibit the conflict.
1400
1401 We do the combining test at the CLOBBER so that the
1402 destination register won't have had a quantity number
1403 assigned, since that would prevent combining. */
1404
1405 if (optimize
1406 && GET_CODE (PATTERN (insn)) == CLOBBER
1407 && (r0 = XEXP (PATTERN (insn), 0),
1408 GET_CODE (r0) == REG)
1409 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1410 && XEXP (link, 0) != 0
1411 && GET_CODE (XEXP (link, 0)) == INSN
1412 && (set = single_set (XEXP (link, 0))) != 0
1413 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1414 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1415 NULL_RTX)) != 0)
1416 {
1417 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1418 /* Check that we have such a sequence. */
1419 && no_conflict_p (insn, r0, r1))
1420 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1421 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1422 && (r1 = XEXP (XEXP (note, 0), 0),
1423 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1424 && no_conflict_p (insn, r0, r1))
1425 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1426
1427 /* Here we care if the operation to be computed is
1428 commutative. */
1429 else if ((GET_CODE (XEXP (note, 0)) == EQ
1430 || GET_CODE (XEXP (note, 0)) == NE
1431 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1432 && (r1 = XEXP (XEXP (note, 0), 1),
1433 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1434 && no_conflict_p (insn, r0, r1))
1435 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1436
1437 /* If we did combine something, show the register number
1438 in question so that we know to ignore its death. */
1439 if (win)
1440 no_conflict_combined_regno = REGNO (r1);
1441 }
1442
1443 /* If registers were just tied, set COMBINED_REGNO
1444 to the number of the register used in this insn
1445 that was tied to the register set in this insn.
1446 This register's qty should not be "killed". */
1447
1448 if (win)
1449 {
1450 while (GET_CODE (r1) == SUBREG)
1451 r1 = SUBREG_REG (r1);
1452 combined_regno = REGNO (r1);
1453 }
1454
1455 /* Mark the death of everything that dies in this instruction,
1456 except for anything that was just combined. */
1457
1458 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1459 if (REG_NOTE_KIND (link) == REG_DEAD
1460 && GET_CODE (XEXP (link, 0)) == REG
1461 && combined_regno != (int) REGNO (XEXP (link, 0))
1462 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1463 || ! find_reg_note (insn, REG_NO_CONFLICT,
1464 XEXP (link, 0))))
1465 wipe_dead_reg (XEXP (link, 0), 0);
1466
1467 /* Allocate qty numbers for all registers local to this block
1468 that are born (set) in this instruction.
1469 A pseudo that already has a qty is not changed. */
1470
1471 note_stores (PATTERN (insn), reg_is_set, NULL);
1472
1473 /* If anything is set in this insn and then unused, mark it as dying
1474 after this insn, so it will conflict with our outputs. This
1475 can't match with something that combined, and it doesn't matter
1476 if it did. Do this after the calls to reg_is_set since these
1477 die after, not during, the current insn. */
1478
1479 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1480 if (REG_NOTE_KIND (link) == REG_UNUSED
1481 && GET_CODE (XEXP (link, 0)) == REG)
1482 wipe_dead_reg (XEXP (link, 0), 1);
1483
1484 /* If this is an insn that has a REG_RETVAL note pointing at a
1485 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1486 block, so clear any register number that combined within it. */
1487 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1488 && GET_CODE (XEXP (note, 0)) == INSN
1489 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1490 no_conflict_combined_regno = -1;
1491 }
1492
1493 /* Set the registers live after INSN_NUMBER. Note that we never
1494 record the registers live before the block's first insn, since no
1495 pseudos we care about are live before that insn. */
1496
1497 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1498 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1499
1500 if (insn == BLOCK_END (b))
1501 break;
1502
1503 insn = NEXT_INSN (insn);
1504 }
1505
1506 /* Now every register that is local to this basic block
1507 should have been given a quantity, or else -1 meaning ignore it.
1508 Every quantity should have a known birth and death.
1509
1510 Order the qtys so we assign them registers in order of the
1511 number of suggested registers they need so we allocate those with
1512 the most restrictive needs first. */
1513
1514 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1515 for (i = 0; i < next_qty; i++)
1516 qty_order[i] = i;
1517
1518 #define EXCHANGE(I1, I2) \
1519 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1520
1521 switch (next_qty)
1522 {
1523 case 3:
1524 /* Make qty_order[2] be the one to allocate last. */
1525 if (qty_sugg_compare (0, 1) > 0)
1526 EXCHANGE (0, 1);
1527 if (qty_sugg_compare (1, 2) > 0)
1528 EXCHANGE (2, 1);
1529
1530 /* ... Fall through ... */
1531 case 2:
1532 /* Put the best one to allocate in qty_order[0]. */
1533 if (qty_sugg_compare (0, 1) > 0)
1534 EXCHANGE (0, 1);
1535
1536 /* ... Fall through ... */
1537
1538 case 1:
1539 case 0:
1540 /* Nothing to do here. */
1541 break;
1542
1543 default:
1544 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1545 }
1546
1547 /* Try to put each quantity in a suggested physical register, if it has one.
1548 This may cause registers to be allocated that otherwise wouldn't be, but
1549 this seems acceptable in local allocation (unlike global allocation). */
1550 for (i = 0; i < next_qty; i++)
1551 {
1552 q = qty_order[i];
1553 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1554 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1555 0, 1, qty[q].birth, qty[q].death);
1556 else
1557 qty[q].phys_reg = -1;
1558 }
1559
1560 /* Order the qtys so we assign them registers in order of
1561 decreasing length of life. Normally call qsort, but if we
1562 have only a very small number of quantities, sort them ourselves. */
1563
1564 for (i = 0; i < next_qty; i++)
1565 qty_order[i] = i;
1566
1567 #define EXCHANGE(I1, I2) \
1568 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1569
1570 switch (next_qty)
1571 {
1572 case 3:
1573 /* Make qty_order[2] be the one to allocate last. */
1574 if (qty_compare (0, 1) > 0)
1575 EXCHANGE (0, 1);
1576 if (qty_compare (1, 2) > 0)
1577 EXCHANGE (2, 1);
1578
1579 /* ... Fall through ... */
1580 case 2:
1581 /* Put the best one to allocate in qty_order[0]. */
1582 if (qty_compare (0, 1) > 0)
1583 EXCHANGE (0, 1);
1584
1585 /* ... Fall through ... */
1586
1587 case 1:
1588 case 0:
1589 /* Nothing to do here. */
1590 break;
1591
1592 default:
1593 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1594 }
1595
1596 /* Now for each qty that is not a hardware register,
1597 look for a hardware register to put it in.
1598 First try the register class that is cheapest for this qty,
1599 if there is more than one class. */
1600
1601 for (i = 0; i < next_qty; i++)
1602 {
1603 q = qty_order[i];
1604 if (qty[q].phys_reg < 0)
1605 {
1606 #ifdef INSN_SCHEDULING
1607 /* These values represent the adjusted lifetime of a qty so
1608 that it conflicts with qtys which appear near the start/end
1609 of this qty's lifetime.
1610
1611 The purpose behind extending the lifetime of this qty is to
1612 discourage the register allocator from creating false
1613 dependencies.
1614
1615 The adjustment value is choosen to indicate that this qty
1616 conflicts with all the qtys in the instructions immediately
1617 before and after the lifetime of this qty.
1618
1619 Experiments have shown that higher values tend to hurt
1620 overall code performance.
1621
1622 If allocation using the extended lifetime fails we will try
1623 again with the qty's unadjusted lifetime. */
1624 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1625 int fake_death = MIN (insn_number * 2 + 1,
1626 qty[q].death + 2 - qty[q].death % 2);
1627 #endif
1628
1629 if (N_REG_CLASSES > 1)
1630 {
1631 #ifdef INSN_SCHEDULING
1632 /* We try to avoid using hard registers allocated to qtys which
1633 are born immediately after this qty or die immediately before
1634 this qty.
1635
1636 This optimization is only appropriate when we will run
1637 a scheduling pass after reload and we are not optimizing
1638 for code size. */
1639 if (flag_schedule_insns_after_reload
1640 && !optimize_size
1641 && !SMALL_REGISTER_CLASSES)
1642 {
1643 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1644 qty[q].mode, q, 0, 0,
1645 fake_birth, fake_death);
1646 if (qty[q].phys_reg >= 0)
1647 continue;
1648 }
1649 #endif
1650 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1651 qty[q].mode, q, 0, 0,
1652 qty[q].birth, qty[q].death);
1653 if (qty[q].phys_reg >= 0)
1654 continue;
1655 }
1656
1657 #ifdef INSN_SCHEDULING
1658 /* Similarly, avoid false dependencies. */
1659 if (flag_schedule_insns_after_reload
1660 && !optimize_size
1661 && !SMALL_REGISTER_CLASSES
1662 && qty[q].alternate_class != NO_REGS)
1663 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1664 qty[q].mode, q, 0, 0,
1665 fake_birth, fake_death);
1666 #endif
1667 if (qty[q].alternate_class != NO_REGS)
1668 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1669 qty[q].mode, q, 0, 0,
1670 qty[q].birth, qty[q].death);
1671 }
1672 }
1673
1674 /* Now propagate the register assignments
1675 to the pseudo regs belonging to the qtys. */
1676
1677 for (q = 0; q < next_qty; q++)
1678 if (qty[q].phys_reg >= 0)
1679 {
1680 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1681 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1682 }
1683
1684 /* Clean up. */
1685 free (regs_live_at);
1686 free (qty_order);
1687 }
1688 \f
1689 /* Compare two quantities' priority for getting real registers.
1690 We give shorter-lived quantities higher priority.
1691 Quantities with more references are also preferred, as are quantities that
1692 require multiple registers. This is the identical prioritization as
1693 done by global-alloc.
1694
1695 We used to give preference to registers with *longer* lives, but using
1696 the same algorithm in both local- and global-alloc can speed up execution
1697 of some programs by as much as a factor of three! */
1698
1699 /* Note that the quotient will never be bigger than
1700 the value of floor_log2 times the maximum number of
1701 times a register can occur in one insn (surely less than 100).
1702 Multiplying this by 10000 can't overflow.
1703 QTY_CMP_PRI is also used by qty_sugg_compare. */
1704
1705 #define QTY_CMP_PRI(q) \
1706 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1707 / (qty[q].death - qty[q].birth)) * 10000))
1708
1709 static int
1710 qty_compare (q1, q2)
1711 int q1, q2;
1712 {
1713 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1714 }
1715
1716 static int
1717 qty_compare_1 (q1p, q2p)
1718 const PTR q1p;
1719 const PTR q2p;
1720 {
1721 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1722 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1723
1724 if (tem != 0)
1725 return tem;
1726
1727 /* If qtys are equally good, sort by qty number,
1728 so that the results of qsort leave nothing to chance. */
1729 return q1 - q2;
1730 }
1731 \f
1732 /* Compare two quantities' priority for getting real registers. This version
1733 is called for quantities that have suggested hard registers. First priority
1734 goes to quantities that have copy preferences, then to those that have
1735 normal preferences. Within those groups, quantities with the lower
1736 number of preferences have the highest priority. Of those, we use the same
1737 algorithm as above. */
1738
1739 #define QTY_CMP_SUGG(q) \
1740 (qty_phys_num_copy_sugg[q] \
1741 ? qty_phys_num_copy_sugg[q] \
1742 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1743
1744 static int
1745 qty_sugg_compare (q1, q2)
1746 int q1, q2;
1747 {
1748 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1749
1750 if (tem != 0)
1751 return tem;
1752
1753 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1754 }
1755
1756 static int
1757 qty_sugg_compare_1 (q1p, q2p)
1758 const PTR q1p;
1759 const PTR q2p;
1760 {
1761 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1762 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1763
1764 if (tem != 0)
1765 return tem;
1766
1767 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1768 if (tem != 0)
1769 return tem;
1770
1771 /* If qtys are equally good, sort by qty number,
1772 so that the results of qsort leave nothing to chance. */
1773 return q1 - q2;
1774 }
1775
1776 #undef QTY_CMP_SUGG
1777 #undef QTY_CMP_PRI
1778 \f
1779 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1780 Returns 1 if have done so, or 0 if cannot.
1781
1782 Combining registers means marking them as having the same quantity
1783 and adjusting the offsets within the quantity if either of
1784 them is a SUBREG).
1785
1786 We don't actually combine a hard reg with a pseudo; instead
1787 we just record the hard reg as the suggestion for the pseudo's quantity.
1788 If we really combined them, we could lose if the pseudo lives
1789 across an insn that clobbers the hard reg (eg, movstr).
1790
1791 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1792 there is no REG_DEAD note on INSN. This occurs during the processing
1793 of REG_NO_CONFLICT blocks.
1794
1795 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1796 SETREG or if the input and output must share a register.
1797 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1798
1799 There are elaborate checks for the validity of combining. */
1800
1801 static int
1802 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1803 rtx usedreg, setreg;
1804 int may_save_copy;
1805 int insn_number;
1806 rtx insn;
1807 int already_dead;
1808 {
1809 register int ureg, sreg;
1810 register int offset = 0;
1811 int usize, ssize;
1812 register int sqty;
1813
1814 /* Determine the numbers and sizes of registers being used. If a subreg
1815 is present that does not change the entire register, don't consider
1816 this a copy insn. */
1817
1818 while (GET_CODE (usedreg) == SUBREG)
1819 {
1820 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1821 may_save_copy = 0;
1822 if (REGNO (SUBREG_REG (usedreg)) < FIRST_PSEUDO_REGISTER)
1823 offset += subreg_regno_offset (REGNO (SUBREG_REG (usedreg)),
1824 GET_MODE (SUBREG_REG (usedreg)),
1825 SUBREG_BYTE (usedreg),
1826 GET_MODE (usedreg));
1827 else
1828 offset += (SUBREG_BYTE (usedreg)
1829 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1830 usedreg = SUBREG_REG (usedreg);
1831 }
1832 if (GET_CODE (usedreg) != REG)
1833 return 0;
1834 ureg = REGNO (usedreg);
1835 if (ureg < FIRST_PSEUDO_REGISTER)
1836 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1837 else
1838 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1839 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1840 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1841
1842 while (GET_CODE (setreg) == SUBREG)
1843 {
1844 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1845 may_save_copy = 0;
1846 if (REGNO (SUBREG_REG (setreg)) < FIRST_PSEUDO_REGISTER)
1847 offset -= subreg_regno_offset (REGNO (SUBREG_REG (setreg)),
1848 GET_MODE (SUBREG_REG (setreg)),
1849 SUBREG_BYTE (setreg),
1850 GET_MODE (setreg));
1851 else
1852 offset -= (SUBREG_BYTE (setreg)
1853 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1854 setreg = SUBREG_REG (setreg);
1855 }
1856 if (GET_CODE (setreg) != REG)
1857 return 0;
1858 sreg = REGNO (setreg);
1859 if (sreg < FIRST_PSEUDO_REGISTER)
1860 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1861 else
1862 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1863 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1864 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1865
1866 /* If UREG is a pseudo-register that hasn't already been assigned a
1867 quantity number, it means that it is not local to this block or dies
1868 more than once. In either event, we can't do anything with it. */
1869 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1870 /* Do not combine registers unless one fits within the other. */
1871 || (offset > 0 && usize + offset > ssize)
1872 || (offset < 0 && usize + offset < ssize)
1873 /* Do not combine with a smaller already-assigned object
1874 if that smaller object is already combined with something bigger. */
1875 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1876 && usize < qty[reg_qty[ureg]].size)
1877 /* Can't combine if SREG is not a register we can allocate. */
1878 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1879 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1880 These have already been taken care of. This probably wouldn't
1881 combine anyway, but don't take any chances. */
1882 || (ureg >= FIRST_PSEUDO_REGISTER
1883 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1884 /* Don't tie something to itself. In most cases it would make no
1885 difference, but it would screw up if the reg being tied to itself
1886 also dies in this insn. */
1887 || ureg == sreg
1888 /* Don't try to connect two different hardware registers. */
1889 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1890 /* Don't connect two different machine modes if they have different
1891 implications as to which registers may be used. */
1892 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1893 return 0;
1894
1895 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1896 qty_phys_sugg for the pseudo instead of tying them.
1897
1898 Return "failure" so that the lifespan of UREG is terminated here;
1899 that way the two lifespans will be disjoint and nothing will prevent
1900 the pseudo reg from being given this hard reg. */
1901
1902 if (ureg < FIRST_PSEUDO_REGISTER)
1903 {
1904 /* Allocate a quantity number so we have a place to put our
1905 suggestions. */
1906 if (reg_qty[sreg] == -2)
1907 reg_is_born (setreg, 2 * insn_number);
1908
1909 if (reg_qty[sreg] >= 0)
1910 {
1911 if (may_save_copy
1912 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1913 {
1914 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1915 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1916 }
1917 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1918 {
1919 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1920 qty_phys_num_sugg[reg_qty[sreg]]++;
1921 }
1922 }
1923 return 0;
1924 }
1925
1926 /* Similarly for SREG a hard register and UREG a pseudo register. */
1927
1928 if (sreg < FIRST_PSEUDO_REGISTER)
1929 {
1930 if (may_save_copy
1931 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1932 {
1933 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1934 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1935 }
1936 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1937 {
1938 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1939 qty_phys_num_sugg[reg_qty[ureg]]++;
1940 }
1941 return 0;
1942 }
1943
1944 /* At this point we know that SREG and UREG are both pseudos.
1945 Do nothing if SREG already has a quantity or is a register that we
1946 don't allocate. */
1947 if (reg_qty[sreg] >= -1
1948 /* If we are not going to let any regs live across calls,
1949 don't tie a call-crossing reg to a non-call-crossing reg. */
1950 || (current_function_has_nonlocal_label
1951 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1952 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1953 return 0;
1954
1955 /* We don't already know about SREG, so tie it to UREG
1956 if this is the last use of UREG, provided the classes they want
1957 are compatible. */
1958
1959 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1960 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1961 {
1962 /* Add SREG to UREG's quantity. */
1963 sqty = reg_qty[ureg];
1964 reg_qty[sreg] = sqty;
1965 reg_offset[sreg] = reg_offset[ureg] + offset;
1966 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1967 qty[sqty].first_reg = sreg;
1968
1969 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1970 update_qty_class (sqty, sreg);
1971
1972 /* Update info about quantity SQTY. */
1973 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1974 qty[sqty].n_refs += REG_N_REFS (sreg);
1975 qty[sqty].freq += REG_FREQ (sreg);
1976 if (usize < ssize)
1977 {
1978 register int i;
1979
1980 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1981 reg_offset[i] -= offset;
1982
1983 qty[sqty].size = ssize;
1984 qty[sqty].mode = GET_MODE (setreg);
1985 }
1986 }
1987 else
1988 return 0;
1989
1990 return 1;
1991 }
1992 \f
1993 /* Return 1 if the preferred class of REG allows it to be tied
1994 to a quantity or register whose class is CLASS.
1995 True if REG's reg class either contains or is contained in CLASS. */
1996
1997 static int
1998 reg_meets_class_p (reg, class)
1999 int reg;
2000 enum reg_class class;
2001 {
2002 register enum reg_class rclass = reg_preferred_class (reg);
2003 return (reg_class_subset_p (rclass, class)
2004 || reg_class_subset_p (class, rclass));
2005 }
2006
2007 /* Update the class of QTYNO assuming that REG is being tied to it. */
2008
2009 static void
2010 update_qty_class (qtyno, reg)
2011 int qtyno;
2012 int reg;
2013 {
2014 enum reg_class rclass = reg_preferred_class (reg);
2015 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2016 qty[qtyno].min_class = rclass;
2017
2018 rclass = reg_alternate_class (reg);
2019 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2020 qty[qtyno].alternate_class = rclass;
2021
2022 if (REG_CHANGES_MODE (reg))
2023 qty[qtyno].changes_mode = 1;
2024 }
2025 \f
2026 /* Handle something which alters the value of an rtx REG.
2027
2028 REG is whatever is set or clobbered. SETTER is the rtx that
2029 is modifying the register.
2030
2031 If it is not really a register, we do nothing.
2032 The file-global variables `this_insn' and `this_insn_number'
2033 carry info from `block_alloc'. */
2034
2035 static void
2036 reg_is_set (reg, setter, data)
2037 rtx reg;
2038 rtx setter;
2039 void *data ATTRIBUTE_UNUSED;
2040 {
2041 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2042 a hard register. These may actually not exist any more. */
2043
2044 if (GET_CODE (reg) != SUBREG
2045 && GET_CODE (reg) != REG)
2046 return;
2047
2048 /* Mark this register as being born. If it is used in a CLOBBER, mark
2049 it as being born halfway between the previous insn and this insn so that
2050 it conflicts with our inputs but not the outputs of the previous insn. */
2051
2052 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2053 }
2054 \f
2055 /* Handle beginning of the life of register REG.
2056 BIRTH is the index at which this is happening. */
2057
2058 static void
2059 reg_is_born (reg, birth)
2060 rtx reg;
2061 int birth;
2062 {
2063 register int regno;
2064
2065 if (GET_CODE (reg) == SUBREG)
2066 {
2067 regno = REGNO (SUBREG_REG (reg));
2068 if (regno < FIRST_PSEUDO_REGISTER)
2069 regno = subreg_hard_regno (reg, 1);
2070 }
2071 else
2072 regno = REGNO (reg);
2073
2074 if (regno < FIRST_PSEUDO_REGISTER)
2075 {
2076 mark_life (regno, GET_MODE (reg), 1);
2077
2078 /* If the register was to have been born earlier that the present
2079 insn, mark it as live where it is actually born. */
2080 if (birth < 2 * this_insn_number)
2081 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2082 }
2083 else
2084 {
2085 if (reg_qty[regno] == -2)
2086 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2087
2088 /* If this register has a quantity number, show that it isn't dead. */
2089 if (reg_qty[regno] >= 0)
2090 qty[reg_qty[regno]].death = -1;
2091 }
2092 }
2093
2094 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2095 REG is an output that is dying (i.e., it is never used), otherwise it
2096 is an input (the normal case).
2097 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2098
2099 static void
2100 wipe_dead_reg (reg, output_p)
2101 register rtx reg;
2102 int output_p;
2103 {
2104 register int regno = REGNO (reg);
2105
2106 /* If this insn has multiple results,
2107 and the dead reg is used in one of the results,
2108 extend its life to after this insn,
2109 so it won't get allocated together with any other result of this insn.
2110
2111 It is unsafe to use !single_set here since it will ignore an unused
2112 output. Just because an output is unused does not mean the compiler
2113 can assume the side effect will not occur. Consider if REG appears
2114 in the address of an output and we reload the output. If we allocate
2115 REG to the same hard register as an unused output we could set the hard
2116 register before the output reload insn. */
2117 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2118 && multiple_sets (this_insn))
2119 {
2120 int i;
2121 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2122 {
2123 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2124 if (GET_CODE (set) == SET
2125 && GET_CODE (SET_DEST (set)) != REG
2126 && !rtx_equal_p (reg, SET_DEST (set))
2127 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2128 output_p = 1;
2129 }
2130 }
2131
2132 /* If this register is used in an auto-increment address, then extend its
2133 life to after this insn, so that it won't get allocated together with
2134 the result of this insn. */
2135 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2136 output_p = 1;
2137
2138 if (regno < FIRST_PSEUDO_REGISTER)
2139 {
2140 mark_life (regno, GET_MODE (reg), 0);
2141
2142 /* If a hard register is dying as an output, mark it as in use at
2143 the beginning of this insn (the above statement would cause this
2144 not to happen). */
2145 if (output_p)
2146 post_mark_life (regno, GET_MODE (reg), 1,
2147 2 * this_insn_number, 2 * this_insn_number + 1);
2148 }
2149
2150 else if (reg_qty[regno] >= 0)
2151 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2152 }
2153 \f
2154 /* Find a block of SIZE words of hard regs in reg_class CLASS
2155 that can hold something of machine-mode MODE
2156 (but actually we test only the first of the block for holding MODE)
2157 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2158 and return the number of the first of them.
2159 Return -1 if such a block cannot be found.
2160 If QTYNO crosses calls, insist on a register preserved by calls,
2161 unless ACCEPT_CALL_CLOBBERED is nonzero.
2162
2163 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2164 register is available. If not, return -1. */
2165
2166 static int
2167 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2168 born_index, dead_index)
2169 enum reg_class class;
2170 enum machine_mode mode;
2171 int qtyno;
2172 int accept_call_clobbered;
2173 int just_try_suggested;
2174 int born_index, dead_index;
2175 {
2176 register int i, ins;
2177 #ifdef HARD_REG_SET
2178 /* Declare it register if it's a scalar. */
2179 register
2180 #endif
2181 HARD_REG_SET used, first_used;
2182 #ifdef ELIMINABLE_REGS
2183 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2184 #endif
2185
2186 /* Validate our parameters. */
2187 if (born_index < 0 || born_index > dead_index)
2188 abort ();
2189
2190 /* Don't let a pseudo live in a reg across a function call
2191 if we might get a nonlocal goto. */
2192 if (current_function_has_nonlocal_label
2193 && qty[qtyno].n_calls_crossed > 0)
2194 return -1;
2195
2196 if (accept_call_clobbered)
2197 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2198 else if (qty[qtyno].n_calls_crossed == 0)
2199 COPY_HARD_REG_SET (used, fixed_reg_set);
2200 else
2201 COPY_HARD_REG_SET (used, call_used_reg_set);
2202
2203 if (accept_call_clobbered)
2204 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2205
2206 for (ins = born_index; ins < dead_index; ins++)
2207 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2208
2209 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2210
2211 /* Don't use the frame pointer reg in local-alloc even if
2212 we may omit the frame pointer, because if we do that and then we
2213 need a frame pointer, reload won't know how to move the pseudo
2214 to another hard reg. It can move only regs made by global-alloc.
2215
2216 This is true of any register that can be eliminated. */
2217 #ifdef ELIMINABLE_REGS
2218 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2219 SET_HARD_REG_BIT (used, eliminables[i].from);
2220 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2221 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2222 that it might be eliminated into. */
2223 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2224 #endif
2225 #else
2226 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2227 #endif
2228
2229 #ifdef CLASS_CANNOT_CHANGE_MODE
2230 if (qty[qtyno].changes_mode)
2231 IOR_HARD_REG_SET (used,
2232 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2233 #endif
2234
2235 /* Normally, the registers that can be used for the first register in
2236 a multi-register quantity are the same as those that can be used for
2237 subsequent registers. However, if just trying suggested registers,
2238 restrict our consideration to them. If there are copy-suggested
2239 register, try them. Otherwise, try the arithmetic-suggested
2240 registers. */
2241 COPY_HARD_REG_SET (first_used, used);
2242
2243 if (just_try_suggested)
2244 {
2245 if (qty_phys_num_copy_sugg[qtyno] != 0)
2246 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2247 else
2248 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2249 }
2250
2251 /* If all registers are excluded, we can't do anything. */
2252 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2253
2254 /* If at least one would be suitable, test each hard reg. */
2255
2256 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2257 {
2258 #ifdef REG_ALLOC_ORDER
2259 int regno = reg_alloc_order[i];
2260 #else
2261 int regno = i;
2262 #endif
2263 if (! TEST_HARD_REG_BIT (first_used, regno)
2264 && HARD_REGNO_MODE_OK (regno, mode)
2265 && (qty[qtyno].n_calls_crossed == 0
2266 || accept_call_clobbered
2267 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2268 {
2269 register int j;
2270 register int size1 = HARD_REGNO_NREGS (regno, mode);
2271 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2272 if (j == size1)
2273 {
2274 /* Mark that this register is in use between its birth and death
2275 insns. */
2276 post_mark_life (regno, mode, 1, born_index, dead_index);
2277 return regno;
2278 }
2279 #ifndef REG_ALLOC_ORDER
2280 /* Skip starting points we know will lose. */
2281 i += j;
2282 #endif
2283 }
2284 }
2285
2286 fail:
2287 /* If we are just trying suggested register, we have just tried copy-
2288 suggested registers, and there are arithmetic-suggested registers,
2289 try them. */
2290
2291 /* If it would be profitable to allocate a call-clobbered register
2292 and save and restore it around calls, do that. */
2293 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2294 && qty_phys_num_sugg[qtyno] != 0)
2295 {
2296 /* Don't try the copy-suggested regs again. */
2297 qty_phys_num_copy_sugg[qtyno] = 0;
2298 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2299 born_index, dead_index);
2300 }
2301
2302 /* We need not check to see if the current function has nonlocal
2303 labels because we don't put any pseudos that are live over calls in
2304 registers in that case. */
2305
2306 if (! accept_call_clobbered
2307 && flag_caller_saves
2308 && ! just_try_suggested
2309 && qty[qtyno].n_calls_crossed != 0
2310 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2311 qty[qtyno].n_calls_crossed))
2312 {
2313 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2314 if (i >= 0)
2315 caller_save_needed = 1;
2316 return i;
2317 }
2318 return -1;
2319 }
2320 \f
2321 /* Mark that REGNO with machine-mode MODE is live starting from the current
2322 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2323 is zero). */
2324
2325 static void
2326 mark_life (regno, mode, life)
2327 register int regno;
2328 enum machine_mode mode;
2329 int life;
2330 {
2331 register int j = HARD_REGNO_NREGS (regno, mode);
2332 if (life)
2333 while (--j >= 0)
2334 SET_HARD_REG_BIT (regs_live, regno + j);
2335 else
2336 while (--j >= 0)
2337 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2338 }
2339
2340 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2341 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2342 to insn number DEATH (exclusive). */
2343
2344 static void
2345 post_mark_life (regno, mode, life, birth, death)
2346 int regno;
2347 enum machine_mode mode;
2348 int life, birth, death;
2349 {
2350 register int j = HARD_REGNO_NREGS (regno, mode);
2351 #ifdef HARD_REG_SET
2352 /* Declare it register if it's a scalar. */
2353 register
2354 #endif
2355 HARD_REG_SET this_reg;
2356
2357 CLEAR_HARD_REG_SET (this_reg);
2358 while (--j >= 0)
2359 SET_HARD_REG_BIT (this_reg, regno + j);
2360
2361 if (life)
2362 while (birth < death)
2363 {
2364 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2365 birth++;
2366 }
2367 else
2368 while (birth < death)
2369 {
2370 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2371 birth++;
2372 }
2373 }
2374 \f
2375 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2376 is the register being clobbered, and R1 is a register being used in
2377 the equivalent expression.
2378
2379 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2380 in which it is used, return 1.
2381
2382 Otherwise, return 0. */
2383
2384 static int
2385 no_conflict_p (insn, r0, r1)
2386 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2387 {
2388 int ok = 0;
2389 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2390 rtx p, last;
2391
2392 /* If R1 is a hard register, return 0 since we handle this case
2393 when we scan the insns that actually use it. */
2394
2395 if (note == 0
2396 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2397 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2398 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2399 return 0;
2400
2401 last = XEXP (note, 0);
2402
2403 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2404 if (INSN_P (p))
2405 {
2406 if (find_reg_note (p, REG_DEAD, r1))
2407 ok = 1;
2408
2409 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2410 some earlier optimization pass has inserted instructions into
2411 the sequence, and it is not safe to perform this optimization.
2412 Note that emit_no_conflict_block always ensures that this is
2413 true when these sequences are created. */
2414 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2415 return 0;
2416 }
2417
2418 return ok;
2419 }
2420 \f
2421 /* Return the number of alternatives for which the constraint string P
2422 indicates that the operand must be equal to operand 0 and that no register
2423 is acceptable. */
2424
2425 static int
2426 requires_inout (p)
2427 const char *p;
2428 {
2429 char c;
2430 int found_zero = 0;
2431 int reg_allowed = 0;
2432 int num_matching_alts = 0;
2433
2434 while ((c = *p++))
2435 switch (c)
2436 {
2437 case '=': case '+': case '?':
2438 case '#': case '&': case '!':
2439 case '*': case '%':
2440 case '1': case '2': case '3': case '4': case '5':
2441 case '6': case '7': case '8': case '9':
2442 case 'm': case '<': case '>': case 'V': case 'o':
2443 case 'E': case 'F': case 'G': case 'H':
2444 case 's': case 'i': case 'n':
2445 case 'I': case 'J': case 'K': case 'L':
2446 case 'M': case 'N': case 'O': case 'P':
2447 case 'X':
2448 /* These don't say anything we care about. */
2449 break;
2450
2451 case ',':
2452 if (found_zero && ! reg_allowed)
2453 num_matching_alts++;
2454
2455 found_zero = reg_allowed = 0;
2456 break;
2457
2458 case '0':
2459 found_zero = 1;
2460 break;
2461
2462 default:
2463 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2464 break;
2465 /* FALLTHRU */
2466 case 'p':
2467 case 'g': case 'r':
2468 reg_allowed = 1;
2469 break;
2470 }
2471
2472 if (found_zero && ! reg_allowed)
2473 num_matching_alts++;
2474
2475 return num_matching_alts;
2476 }
2477 \f
2478 void
2479 dump_local_alloc (file)
2480 FILE *file;
2481 {
2482 register int i;
2483 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2484 if (reg_renumber[i] != -1)
2485 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2486 }