alias.c: (mark_constant_function): Don't check pure functions.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* Information we maitain about each quantity. */
82 struct qty
83 {
84 /* The number of refs to quantity Q. */
85
86 int n_refs;
87
88 /* Insn number (counting from head of basic block)
89 where quantity Q was born. -1 if birth has not been recorded. */
90
91 int birth;
92
93 /* Insn number (counting from head of basic block)
94 where given quantity died. Due to the way tying is done,
95 and the fact that we consider in this pass only regs that die but once,
96 a quantity can die only once. Each quantity's life span
97 is a set of consecutive insns. -1 if death has not been recorded. */
98
99 int death;
100
101 /* Number of words needed to hold the data in given quantity.
102 This depends on its machine mode. It is used for these purposes:
103 1. It is used in computing the relative importances of qtys,
104 which determines the order in which we look for regs for them.
105 2. It is used in rules that prevent tying several registers of
106 different sizes in a way that is geometrically impossible
107 (see combine_regs). */
108
109 int size;
110
111 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
112
113 int n_calls_crossed;
114
115 /* The register number of one pseudo register whose reg_qty value is Q.
116 This register should be the head of the chain
117 maintained in reg_next_in_qty. */
118
119 int first_reg;
120
121 /* Reg class contained in (smaller than) the preferred classes of all
122 the pseudo regs that are tied in given quantity.
123 This is the preferred class for allocating that quantity. */
124
125 enum reg_class min_class;
126
127 /* Register class within which we allocate given qty if we can't get
128 its preferred class. */
129
130 enum reg_class alternate_class;
131
132 /* This holds the mode of the registers that are tied to given qty,
133 or VOIDmode if registers with differing modes are tied together. */
134
135 enum machine_mode mode;
136
137 /* the hard reg number chosen for given quantity,
138 or -1 if none was found. */
139
140 short phys_reg;
141
142 /* Nonzero if this quantity has been used in a SUBREG in some
143 way that is illegal. */
144
145 char changes_mode;
146
147 };
148
149 static struct qty *qty;
150
151 /* These fields are kept separately to speedup their clearing. */
152
153 /* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
157
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
160
161 /* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
163
164 static HARD_REG_SET *qty_phys_copy_sugg;
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
168
169 static HARD_REG_SET *qty_phys_sugg;
170
171 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
172
173 static short *qty_phys_num_copy_sugg;
174
175 /* Element Q is the number of suggested registers in qty_phys_sugg. */
176
177 static short *qty_phys_num_sugg;
178
179 /* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty->first_reg point to the head of this chain. */
182
183 static int *reg_next_in_qty;
184
185 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
189
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
196
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
199
200 static int *reg_qty;
201
202 /* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
205
206 static char *reg_offset;
207
208 /* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
214
215 short *reg_renumber;
216
217 /* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
219
220 static HARD_REG_SET regs_live;
221
222 /* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
226
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
231
232 static HARD_REG_SET *regs_live_at;
233
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number;
237 static rtx this_insn;
238
239 struct equivalence
240 {
241 /* Set when an attempt should be made to replace a register
242 with the associated src entry. */
243
244 char replace;
245
246 /* Set when a REG_EQUIV note is found or created. Use to
247 keep track of what memory accesses might be created later,
248 e.g. by reload. */
249
250 rtx replacement;
251
252 rtx src;
253
254 /* Loop depth is used to recognize equivalences which appear
255 to be present within the same loop (or in an inner loop). */
256
257 int loop_depth;
258
259 /* The list of each instruction which initializes this register. */
260
261 rtx init_insns;
262 };
263
264 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
265 structure for that register. */
266
267 static struct equivalence *reg_equiv;
268
269 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
270 static int recorded_label_ref;
271
272 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
273 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
274 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
275 static int equiv_init_varies_p PARAMS ((rtx));
276 static int equiv_init_movable_p PARAMS ((rtx, int));
277 static int contains_replace_regs PARAMS ((rtx));
278 static int memref_referenced_p PARAMS ((rtx, rtx));
279 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
280 static void update_equiv_regs PARAMS ((void));
281 static void no_equiv PARAMS ((rtx, rtx, void *));
282 static void block_alloc PARAMS ((int));
283 static int qty_sugg_compare PARAMS ((int, int));
284 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
285 static int qty_compare PARAMS ((int, int));
286 static int qty_compare_1 PARAMS ((const PTR, const PTR));
287 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
288 static int reg_meets_class_p PARAMS ((int, enum reg_class));
289 static void update_qty_class PARAMS ((int, int));
290 static void reg_is_set PARAMS ((rtx, rtx, void *));
291 static void reg_is_born PARAMS ((rtx, int));
292 static void wipe_dead_reg PARAMS ((rtx, int));
293 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
294 int, int, int, int, int));
295 static void mark_life PARAMS ((int, enum machine_mode, int));
296 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
297 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
298 static int requires_inout PARAMS ((const char *));
299 \f
300 /* Allocate a new quantity (new within current basic block)
301 for register number REGNO which is born at index BIRTH
302 within the block. MODE and SIZE are info on reg REGNO. */
303
304 static void
305 alloc_qty (regno, mode, size, birth)
306 int regno;
307 enum machine_mode mode;
308 int size, birth;
309 {
310 register int qtyno = next_qty++;
311
312 reg_qty[regno] = qtyno;
313 reg_offset[regno] = 0;
314 reg_next_in_qty[regno] = -1;
315
316 qty[qtyno].first_reg = regno;
317 qty[qtyno].size = size;
318 qty[qtyno].mode = mode;
319 qty[qtyno].birth = birth;
320 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
321 qty[qtyno].min_class = reg_preferred_class (regno);
322 qty[qtyno].alternate_class = reg_alternate_class (regno);
323 qty[qtyno].n_refs = REG_N_REFS (regno);
324 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
325 }
326 \f
327 /* Main entry point of this file. */
328
329 int
330 local_alloc ()
331 {
332 register int b, i;
333 int max_qty;
334
335 /* We need to keep track of whether or not we recorded a LABEL_REF so
336 that we know if the jump optimizer needs to be rerun. */
337 recorded_label_ref = 0;
338
339 /* Leaf functions and non-leaf functions have different needs.
340 If defined, let the machine say what kind of ordering we
341 should use. */
342 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
343 ORDER_REGS_FOR_LOCAL_ALLOC;
344 #endif
345
346 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
347 registers. */
348 update_equiv_regs ();
349
350 /* This sets the maximum number of quantities we can have. Quantity
351 numbers start at zero and we can have one for each pseudo. */
352 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
353
354 /* Allocate vectors of temporary data.
355 See the declarations of these variables, above,
356 for what they mean. */
357
358 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
359 qty_phys_copy_sugg
360 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
361 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
362 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
364
365 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
366 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
367 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
368
369 /* Allocate the reg_renumber array. */
370 allocate_reg_info (max_regno, FALSE, TRUE);
371
372 /* Determine which pseudo-registers can be allocated by local-alloc.
373 In general, these are the registers used only in a single block and
374 which only die once.
375
376 We need not be concerned with which block actually uses the register
377 since we will never see it outside that block. */
378
379 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
380 {
381 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
382 reg_qty[i] = -2;
383 else
384 reg_qty[i] = -1;
385 }
386
387 /* Force loop below to initialize entire quantity array. */
388 next_qty = max_qty;
389
390 /* Allocate each block's local registers, block by block. */
391
392 for (b = 0; b < n_basic_blocks; b++)
393 {
394 /* NEXT_QTY indicates which elements of the `qty_...'
395 vectors might need to be initialized because they were used
396 for the previous block; it is set to the entire array before
397 block 0. Initialize those, with explicit loop if there are few,
398 else with bzero and bcopy. Do not initialize vectors that are
399 explicit set by `alloc_qty'. */
400
401 if (next_qty < 6)
402 {
403 for (i = 0; i < next_qty; i++)
404 {
405 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
406 qty_phys_num_copy_sugg[i] = 0;
407 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
408 qty_phys_num_sugg[i] = 0;
409 }
410 }
411 else
412 {
413 #define CLEAR(vector) \
414 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
415
416 CLEAR (qty_phys_copy_sugg);
417 CLEAR (qty_phys_num_copy_sugg);
418 CLEAR (qty_phys_sugg);
419 CLEAR (qty_phys_num_sugg);
420 }
421
422 next_qty = 0;
423
424 block_alloc (b);
425 }
426
427 free (qty);
428 free (qty_phys_copy_sugg);
429 free (qty_phys_num_copy_sugg);
430 free (qty_phys_sugg);
431 free (qty_phys_num_sugg);
432
433 free (reg_qty);
434 free (reg_offset);
435 free (reg_next_in_qty);
436
437 return recorded_label_ref;
438 }
439 \f
440 /* Used for communication between the following two functions: contains
441 a MEM that we wish to ensure remains unchanged. */
442 static rtx equiv_mem;
443
444 /* Set nonzero if EQUIV_MEM is modified. */
445 static int equiv_mem_modified;
446
447 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
448 Called via note_stores. */
449
450 static void
451 validate_equiv_mem_from_store (dest, set, data)
452 rtx dest;
453 rtx set ATTRIBUTE_UNUSED;
454 void *data ATTRIBUTE_UNUSED;
455 {
456 if ((GET_CODE (dest) == REG
457 && reg_overlap_mentioned_p (dest, equiv_mem))
458 || (GET_CODE (dest) == MEM
459 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
460 equiv_mem_modified = 1;
461 }
462
463 /* Verify that no store between START and the death of REG invalidates
464 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
465 by storing into an overlapping memory location, or with a non-const
466 CALL_INSN.
467
468 Return 1 if MEMREF remains valid. */
469
470 static int
471 validate_equiv_mem (start, reg, memref)
472 rtx start;
473 rtx reg;
474 rtx memref;
475 {
476 rtx insn;
477 rtx note;
478
479 equiv_mem = memref;
480 equiv_mem_modified = 0;
481
482 /* If the memory reference has side effects or is volatile, it isn't a
483 valid equivalence. */
484 if (side_effects_p (memref))
485 return 0;
486
487 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
488 {
489 if (! INSN_P (insn))
490 continue;
491
492 if (find_reg_note (insn, REG_DEAD, reg))
493 return 1;
494
495 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
496 && ! CONST_CALL_P (insn))
497 return 0;
498
499 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
500
501 /* If a register mentioned in MEMREF is modified via an
502 auto-increment, we lose the equivalence. Do the same if one
503 dies; although we could extend the life, it doesn't seem worth
504 the trouble. */
505
506 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
507 if ((REG_NOTE_KIND (note) == REG_INC
508 || REG_NOTE_KIND (note) == REG_DEAD)
509 && GET_CODE (XEXP (note, 0)) == REG
510 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
511 return 0;
512 }
513
514 return 0;
515 }
516
517 /* Returns zero if X is known to be invariant. */
518
519 static int
520 equiv_init_varies_p (x)
521 rtx x;
522 {
523 register RTX_CODE code = GET_CODE (x);
524 register int i;
525 register const char *fmt;
526
527 switch (code)
528 {
529 case MEM:
530 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
531
532 case QUEUED:
533 return 1;
534
535 case CONST:
536 case CONST_INT:
537 case CONST_DOUBLE:
538 case SYMBOL_REF:
539 case LABEL_REF:
540 return 0;
541
542 case REG:
543 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x);
544
545 case ASM_OPERANDS:
546 if (MEM_VOLATILE_P (x))
547 return 1;
548
549 /* FALLTHROUGH */
550
551 default:
552 break;
553 }
554
555 fmt = GET_RTX_FORMAT (code);
556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
557 if (fmt[i] == 'e')
558 {
559 if (equiv_init_varies_p (XEXP (x, i)))
560 return 1;
561 }
562 else if (fmt[i] == 'E')
563 {
564 int j;
565 for (j = 0; j < XVECLEN (x, i); j++)
566 if (equiv_init_varies_p (XVECEXP (x, i, j)))
567 return 1;
568 }
569
570 return 0;
571 }
572
573 /* Returns non-zero if X (used to initialize register REGNO) is movable.
574 X is only movable if the registers it uses have equivalent initializations
575 which appear to be within the same loop (or in an inner loop) and movable
576 or if they are not candidates for local_alloc and don't vary. */
577
578 static int
579 equiv_init_movable_p (x, regno)
580 rtx x;
581 int regno;
582 {
583 int i, j;
584 const char *fmt;
585 enum rtx_code code = GET_CODE (x);
586
587 switch (code)
588 {
589 case SET:
590 return equiv_init_movable_p (SET_SRC (x), regno);
591
592 case CLOBBER:
593 return 0;
594
595 case PRE_INC:
596 case PRE_DEC:
597 case POST_INC:
598 case POST_DEC:
599 case PRE_MODIFY:
600 case POST_MODIFY:
601 return 0;
602
603 case REG:
604 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
605 && reg_equiv[REGNO (x)].replace)
606 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x));
607
608 case UNSPEC_VOLATILE:
609 return 0;
610
611 case ASM_OPERANDS:
612 if (MEM_VOLATILE_P (x))
613 return 0;
614
615 /* FALLTHROUGH */
616
617 default:
618 break;
619 }
620
621 fmt = GET_RTX_FORMAT (code);
622 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
623 switch (fmt[i])
624 {
625 case 'e':
626 if (! equiv_init_movable_p (XEXP (x, i), regno))
627 return 0;
628 break;
629 case 'E':
630 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
631 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
632 return 0;
633 break;
634 }
635
636 return 1;
637 }
638
639 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
640
641 static int
642 contains_replace_regs (x)
643 rtx x;
644 {
645 int i, j;
646 const char *fmt;
647 enum rtx_code code = GET_CODE (x);
648
649 switch (code)
650 {
651 case CONST_INT:
652 case CONST:
653 case LABEL_REF:
654 case SYMBOL_REF:
655 case CONST_DOUBLE:
656 case PC:
657 case CC0:
658 case HIGH:
659 case LO_SUM:
660 return 0;
661
662 case REG:
663 return reg_equiv[REGNO (x)].replace;
664
665 default:
666 break;
667 }
668
669 fmt = GET_RTX_FORMAT (code);
670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
671 switch (fmt[i])
672 {
673 case 'e':
674 if (contains_replace_regs (XEXP (x, i)))
675 return 1;
676 break;
677 case 'E':
678 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
679 if (contains_replace_regs (XVECEXP (x, i, j)))
680 return 1;
681 break;
682 }
683
684 return 0;
685 }
686 \f
687 /* TRUE if X references a memory location that would be affected by a store
688 to MEMREF. */
689
690 static int
691 memref_referenced_p (memref, x)
692 rtx x;
693 rtx memref;
694 {
695 int i, j;
696 const char *fmt;
697 enum rtx_code code = GET_CODE (x);
698
699 switch (code)
700 {
701 case CONST_INT:
702 case CONST:
703 case LABEL_REF:
704 case SYMBOL_REF:
705 case CONST_DOUBLE:
706 case PC:
707 case CC0:
708 case HIGH:
709 case LO_SUM:
710 return 0;
711
712 case REG:
713 return (reg_equiv[REGNO (x)].replacement
714 && memref_referenced_p (memref,
715 reg_equiv[REGNO (x)].replacement));
716
717 case MEM:
718 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
719 return 1;
720 break;
721
722 case SET:
723 /* If we are setting a MEM, it doesn't count (its address does), but any
724 other SET_DEST that has a MEM in it is referencing the MEM. */
725 if (GET_CODE (SET_DEST (x)) == MEM)
726 {
727 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
728 return 1;
729 }
730 else if (memref_referenced_p (memref, SET_DEST (x)))
731 return 1;
732
733 return memref_referenced_p (memref, SET_SRC (x));
734
735 default:
736 break;
737 }
738
739 fmt = GET_RTX_FORMAT (code);
740 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
741 switch (fmt[i])
742 {
743 case 'e':
744 if (memref_referenced_p (memref, XEXP (x, i)))
745 return 1;
746 break;
747 case 'E':
748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
749 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
750 return 1;
751 break;
752 }
753
754 return 0;
755 }
756
757 /* TRUE if some insn in the range (START, END] references a memory location
758 that would be affected by a store to MEMREF. */
759
760 static int
761 memref_used_between_p (memref, start, end)
762 rtx memref;
763 rtx start;
764 rtx end;
765 {
766 rtx insn;
767
768 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
769 insn = NEXT_INSN (insn))
770 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
771 return 1;
772
773 return 0;
774 }
775 \f
776 /* Return nonzero if the rtx X is invariant over the current function. */
777 int
778 function_invariant_p (x)
779 rtx x;
780 {
781 if (CONSTANT_P (x))
782 return 1;
783 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
784 return 1;
785 if (GET_CODE (x) == PLUS
786 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
787 && CONSTANT_P (XEXP (x, 1)))
788 return 1;
789 return 0;
790 }
791
792 /* Find registers that are equivalent to a single value throughout the
793 compilation (either because they can be referenced in memory or are set once
794 from a single constant). Lower their priority for a register.
795
796 If such a register is only referenced once, try substituting its value
797 into the using insn. If it succeeds, we can eliminate the register
798 completely. */
799
800 static void
801 update_equiv_regs ()
802 {
803 rtx insn;
804 int block;
805 int loop_depth;
806
807 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
808
809 init_alias_analysis ();
810
811 /* Scan the insns and find which registers have equivalences. Do this
812 in a separate scan of the insns because (due to -fcse-follow-jumps)
813 a register can be set below its use. */
814 loop_depth = 0;
815 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
816 {
817 rtx note;
818 rtx set;
819 rtx dest, src;
820 int regno;
821
822 if (GET_CODE (insn) == NOTE)
823 {
824 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
825 ++loop_depth;
826 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
827 {
828 if (! loop_depth)
829 abort ();
830 --loop_depth;
831 }
832 }
833
834 if (! INSN_P (insn))
835 continue;
836
837 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
838 if (REG_NOTE_KIND (note) == REG_INC)
839 no_equiv (XEXP (note, 0), note, NULL);
840
841 set = single_set (insn);
842
843 /* If this insn contains more (or less) than a single SET,
844 only mark all destinations as having no known equivalence. */
845 if (set == 0)
846 {
847 note_stores (PATTERN (insn), no_equiv, NULL);
848 continue;
849 }
850 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
851 {
852 int i;
853
854 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
855 {
856 rtx part = XVECEXP (PATTERN (insn), 0, i);
857 if (part != set)
858 note_stores (part, no_equiv, NULL);
859 }
860 }
861
862 dest = SET_DEST (set);
863 src = SET_SRC (set);
864
865 /* If this sets a MEM to the contents of a REG that is only used
866 in a single basic block, see if the register is always equivalent
867 to that memory location and if moving the store from INSN to the
868 insn that set REG is safe. If so, put a REG_EQUIV note on the
869 initializing insn.
870
871 Don't add a REG_EQUIV note if the insn already has one. The existing
872 REG_EQUIV is likely more useful than the one we are adding.
873
874 If one of the regs in the address has reg_equiv[REGNO].replace set,
875 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
876 optimization may move the set of this register immediately before
877 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
878 the mention in the REG_EQUIV note would be to an uninitialized
879 pseudo. */
880 /* ????? This test isn't good enough; we might see a MEM with a use of
881 a pseudo register before we see its setting insn that will cause
882 reg_equiv[].replace for that pseudo to be set.
883 Equivalences to MEMs should be made in another pass, after the
884 reg_equiv[].replace information has been gathered. */
885
886 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
887 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
888 && REG_BASIC_BLOCK (regno) >= 0
889 && REG_N_SETS (regno) == 1
890 && reg_equiv[regno].init_insns != 0
891 && reg_equiv[regno].init_insns != const0_rtx
892 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
893 REG_EQUIV, NULL_RTX)
894 && ! contains_replace_regs (XEXP (dest, 0)))
895 {
896 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
897 if (validate_equiv_mem (init_insn, src, dest)
898 && ! memref_used_between_p (dest, init_insn, insn))
899 REG_NOTES (init_insn)
900 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
901 }
902
903 /* We only handle the case of a pseudo register being set
904 once, or always to the same value. */
905 /* ??? The mn10200 port breaks if we add equivalences for
906 values that need an ADDRESS_REGS register and set them equivalent
907 to a MEM of a pseudo. The actual problem is in the over-conservative
908 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
909 calculate_needs, but we traditionally work around this problem
910 here by rejecting equivalences when the destination is in a register
911 that's likely spilled. This is fragile, of course, since the
912 preferred class of a pseudo depends on all instructions that set
913 or use it. */
914
915 if (GET_CODE (dest) != REG
916 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
917 || reg_equiv[regno].init_insns == const0_rtx
918 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
919 && GET_CODE (src) == MEM))
920 {
921 /* This might be seting a SUBREG of a pseudo, a pseudo that is
922 also set somewhere else to a constant. */
923 note_stores (set, no_equiv, NULL);
924 continue;
925 }
926
927 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
928
929 /* cse sometimes generates function invariants, but doesn't put a
930 REG_EQUAL note on the insn. Since this note would be redundant,
931 there's no point creating it earlier than here. */
932 if (! note && ! rtx_varies_p (src))
933 REG_NOTES (insn)
934 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
935
936 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
937 since it represents a function call */
938 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
939 note = NULL_RTX;
940
941 if (REG_N_SETS (regno) != 1
942 && (! note
943 || rtx_varies_p (XEXP (note, 0))
944 || (reg_equiv[regno].replacement
945 && ! rtx_equal_p (XEXP (note, 0),
946 reg_equiv[regno].replacement))))
947 {
948 no_equiv (dest, set, NULL);
949 continue;
950 }
951 /* Record this insn as initializing this register. */
952 reg_equiv[regno].init_insns
953 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
954
955 /* If this register is known to be equal to a constant, record that
956 it is always equivalent to the constant. */
957 if (note && ! rtx_varies_p (XEXP (note, 0)))
958 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
959
960 /* If this insn introduces a "constant" register, decrease the priority
961 of that register. Record this insn if the register is only used once
962 more and the equivalence value is the same as our source.
963
964 The latter condition is checked for two reasons: First, it is an
965 indication that it may be more efficient to actually emit the insn
966 as written (if no registers are available, reload will substitute
967 the equivalence). Secondly, it avoids problems with any registers
968 dying in this insn whose death notes would be missed.
969
970 If we don't have a REG_EQUIV note, see if this insn is loading
971 a register used only in one basic block from a MEM. If so, and the
972 MEM remains unchanged for the life of the register, add a REG_EQUIV
973 note. */
974
975 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
976
977 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
978 && GET_CODE (SET_SRC (set)) == MEM
979 && validate_equiv_mem (insn, dest, SET_SRC (set)))
980 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
981 REG_NOTES (insn));
982
983 if (note)
984 {
985 int regno = REGNO (dest);
986
987 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
988 We might end up substituting the LABEL_REF for uses of the
989 pseudo here or later. That kind of transformation may turn an
990 indirect jump into a direct jump, in which case we must rerun the
991 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
992 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
993 || (GET_CODE (XEXP (note, 0)) == CONST
994 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
995 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
996 == LABEL_REF)))
997 recorded_label_ref = 1;
998
999 reg_equiv[regno].replacement = XEXP (note, 0);
1000 reg_equiv[regno].src = src;
1001 reg_equiv[regno].loop_depth = loop_depth;
1002
1003 /* Don't mess with things live during setjmp. */
1004 if (REG_LIVE_LENGTH (regno) >= 0)
1005 {
1006 /* Note that the statement below does not affect the priority
1007 in local-alloc! */
1008 REG_LIVE_LENGTH (regno) *= 2;
1009
1010
1011 /* If the register is referenced exactly twice, meaning it is
1012 set once and used once, indicate that the reference may be
1013 replaced by the equivalence we computed above. Do this
1014 even if the register is only used in one block so that
1015 dependencies can be handled where the last register is
1016 used in a different block (i.e. HIGH / LO_SUM sequences)
1017 and to reduce the number of registers alive across calls.
1018
1019 It would be nice to use "loop_depth * 2" in the compare
1020 below. Unfortunately, LOOP_DEPTH need not be constant within
1021 a basic block so this would be too complicated.
1022
1023 This case normally occurs when a parameter is read from
1024 memory and then used exactly once, not in a loop. */
1025
1026 if (REG_N_REFS (regno) == 2
1027 && (rtx_equal_p (XEXP (note, 0), src)
1028 || ! equiv_init_varies_p (src))
1029 && GET_CODE (insn) == INSN
1030 && equiv_init_movable_p (PATTERN (insn), regno))
1031 reg_equiv[regno].replace = 1;
1032 }
1033 }
1034 }
1035
1036 /* Now scan all regs killed in an insn to see if any of them are
1037 registers only used that once. If so, see if we can replace the
1038 reference with the equivalent from. If we can, delete the
1039 initializing reference and this register will go away. If we
1040 can't replace the reference, and the initialzing reference is
1041 within the same loop (or in an inner loop), then move the register
1042 initialization just before the use, so that they are in the same
1043 basic block.
1044
1045 Skip this optimization if loop_depth isn't initially zero since
1046 that indicates a mismatch between loop begin and loop end notes
1047 (i.e. gcc.dg/noncompile/920721-2.c). */
1048 block = n_basic_blocks - 1;
1049 for (insn = (loop_depth == 0) ? get_last_insn () : NULL_RTX;
1050 insn; insn = PREV_INSN (insn))
1051 {
1052 rtx link;
1053
1054 if (! INSN_P (insn))
1055 {
1056 if (GET_CODE (insn) == NOTE)
1057 {
1058 if (NOTE_INSN_BASIC_BLOCK_P (insn))
1059 block = NOTE_BASIC_BLOCK (insn)->index - 1;
1060 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1061 {
1062 if (! loop_depth)
1063 abort ();
1064 --loop_depth;
1065 }
1066 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1067 ++loop_depth;
1068 }
1069
1070 continue;
1071 }
1072
1073 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1074 {
1075 if (REG_NOTE_KIND (link) == REG_DEAD
1076 /* Make sure this insn still refers to the register. */
1077 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1078 {
1079 int regno = REGNO (XEXP (link, 0));
1080 rtx equiv_insn;
1081
1082 if (! reg_equiv[regno].replace
1083 || reg_equiv[regno].loop_depth < loop_depth)
1084 continue;
1085
1086 /* reg_equiv[REGNO].replace gets set only when
1087 REG_N_REFS[REGNO] is 2, i.e. the register is set
1088 once and used once. (If it were only set, but not used,
1089 flow would have deleted the setting insns.) Hence
1090 there can only be one insn in reg_equiv[REGNO].init_insns. */
1091 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1092
1093 if (asm_noperands (PATTERN (equiv_insn)) < 0
1094 && validate_replace_rtx (regno_reg_rtx[regno],
1095 reg_equiv[regno].src, insn))
1096 {
1097 rtx equiv_link;
1098 rtx last_link;
1099 rtx note;
1100
1101 /* Find the last note. */
1102 for (last_link = link; XEXP (last_link, 1);
1103 last_link = XEXP (last_link, 1))
1104 ;
1105
1106 /* Append the REG_DEAD notes from equiv_insn. */
1107 equiv_link = REG_NOTES (equiv_insn);
1108 while (equiv_link)
1109 {
1110 note = equiv_link;
1111 equiv_link = XEXP (equiv_link, 1);
1112 if (REG_NOTE_KIND (note) == REG_DEAD)
1113 {
1114 remove_note (equiv_insn, note);
1115 XEXP (last_link, 1) = note;
1116 XEXP (note, 1) = NULL_RTX;
1117 last_link = note;
1118 }
1119 }
1120
1121 remove_death (regno, insn);
1122 REG_N_REFS (regno) = 0;
1123 PUT_CODE (equiv_insn, NOTE);
1124 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1125 NOTE_SOURCE_FILE (equiv_insn) = 0;
1126 }
1127 /* Move the initialization of the register to just before
1128 INSN. Update the flow information. */
1129 else if (PREV_INSN (insn) != equiv_insn)
1130 {
1131 int l;
1132
1133 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
1134 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
1135 REG_NOTES (equiv_insn) = 0;
1136
1137 PUT_CODE (equiv_insn, NOTE);
1138 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1139 NOTE_SOURCE_FILE (equiv_insn) = 0;
1140
1141 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1142 REG_N_CALLS_CROSSED (regno) = 0;
1143 REG_LIVE_LENGTH (regno) = 2;
1144
1145 if (block >= 0 && insn == BLOCK_HEAD (block))
1146 BLOCK_HEAD (block) = PREV_INSN (insn);
1147
1148 for (l = 0; l < n_basic_blocks; l++)
1149 {
1150 CLEAR_REGNO_REG_SET (
1151 BASIC_BLOCK (l)->global_live_at_start,
1152 regno);
1153 CLEAR_REGNO_REG_SET (
1154 BASIC_BLOCK (l)->global_live_at_end,
1155 regno);
1156 }
1157 }
1158 }
1159 }
1160 }
1161
1162 /* Clean up. */
1163 end_alias_analysis ();
1164 free (reg_equiv);
1165 }
1166
1167 /* Mark REG as having no known equivalence.
1168 Some instructions might have been proceessed before and furnished
1169 with REG_EQUIV notes for this register; these notes will have to be
1170 removed.
1171 STORE is the piece of RTL that does the non-constant / conflicting
1172 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1173 but needs to be there because this function is called from note_stores. */
1174 static void
1175 no_equiv (reg, store, data)
1176 rtx reg, store ATTRIBUTE_UNUSED;
1177 void *data ATTRIBUTE_UNUSED;
1178 {
1179 int regno;
1180 rtx list;
1181
1182 if (GET_CODE (reg) != REG)
1183 return;
1184 regno = REGNO (reg);
1185 list = reg_equiv[regno].init_insns;
1186 if (list == const0_rtx)
1187 return;
1188 for (; list; list = XEXP (list, 1))
1189 {
1190 rtx insn = XEXP (list, 0);
1191 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1192 }
1193 reg_equiv[regno].init_insns = const0_rtx;
1194 reg_equiv[regno].replacement = NULL_RTX;
1195 }
1196 \f
1197 /* Allocate hard regs to the pseudo regs used only within block number B.
1198 Only the pseudos that die but once can be handled. */
1199
1200 static void
1201 block_alloc (b)
1202 int b;
1203 {
1204 register int i, q;
1205 register rtx insn;
1206 rtx note;
1207 int insn_number = 0;
1208 int insn_count = 0;
1209 int max_uid = get_max_uid ();
1210 int *qty_order;
1211 int no_conflict_combined_regno = -1;
1212
1213 /* Count the instructions in the basic block. */
1214
1215 insn = BLOCK_END (b);
1216 while (1)
1217 {
1218 if (GET_CODE (insn) != NOTE)
1219 if (++insn_count > max_uid)
1220 abort ();
1221 if (insn == BLOCK_HEAD (b))
1222 break;
1223 insn = PREV_INSN (insn);
1224 }
1225
1226 /* +2 to leave room for a post_mark_life at the last insn and for
1227 the birth of a CLOBBER in the first insn. */
1228 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1229 sizeof (HARD_REG_SET));
1230
1231 /* Initialize table of hardware registers currently live. */
1232
1233 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1234
1235 /* This loop scans the instructions of the basic block
1236 and assigns quantities to registers.
1237 It computes which registers to tie. */
1238
1239 insn = BLOCK_HEAD (b);
1240 while (1)
1241 {
1242 if (GET_CODE (insn) != NOTE)
1243 insn_number++;
1244
1245 if (INSN_P (insn))
1246 {
1247 register rtx link, set;
1248 register int win = 0;
1249 register rtx r0, r1 = NULL_RTX;
1250 int combined_regno = -1;
1251 int i;
1252
1253 this_insn_number = insn_number;
1254 this_insn = insn;
1255
1256 extract_insn (insn);
1257 which_alternative = -1;
1258
1259 /* Is this insn suitable for tying two registers?
1260 If so, try doing that.
1261 Suitable insns are those with at least two operands and where
1262 operand 0 is an output that is a register that is not
1263 earlyclobber.
1264
1265 We can tie operand 0 with some operand that dies in this insn.
1266 First look for operands that are required to be in the same
1267 register as operand 0. If we find such, only try tying that
1268 operand or one that can be put into that operand if the
1269 operation is commutative. If we don't find an operand
1270 that is required to be in the same register as operand 0,
1271 we can tie with any operand.
1272
1273 Subregs in place of regs are also ok.
1274
1275 If tying is done, WIN is set nonzero. */
1276
1277 if (optimize
1278 && recog_data.n_operands > 1
1279 && recog_data.constraints[0][0] == '='
1280 && recog_data.constraints[0][1] != '&')
1281 {
1282 /* If non-negative, is an operand that must match operand 0. */
1283 int must_match_0 = -1;
1284 /* Counts number of alternatives that require a match with
1285 operand 0. */
1286 int n_matching_alts = 0;
1287
1288 for (i = 1; i < recog_data.n_operands; i++)
1289 {
1290 const char *p = recog_data.constraints[i];
1291 int this_match = (requires_inout (p));
1292
1293 n_matching_alts += this_match;
1294 if (this_match == recog_data.n_alternatives)
1295 must_match_0 = i;
1296 }
1297
1298 r0 = recog_data.operand[0];
1299 for (i = 1; i < recog_data.n_operands; i++)
1300 {
1301 /* Skip this operand if we found an operand that
1302 must match operand 0 and this operand isn't it
1303 and can't be made to be it by commutativity. */
1304
1305 if (must_match_0 >= 0 && i != must_match_0
1306 && ! (i == must_match_0 + 1
1307 && recog_data.constraints[i-1][0] == '%')
1308 && ! (i == must_match_0 - 1
1309 && recog_data.constraints[i][0] == '%'))
1310 continue;
1311
1312 /* Likewise if each alternative has some operand that
1313 must match operand zero. In that case, skip any
1314 operand that doesn't list operand 0 since we know that
1315 the operand always conflicts with operand 0. We
1316 ignore commutatity in this case to keep things simple. */
1317 if (n_matching_alts == recog_data.n_alternatives
1318 && 0 == requires_inout (recog_data.constraints[i]))
1319 continue;
1320
1321 r1 = recog_data.operand[i];
1322
1323 /* If the operand is an address, find a register in it.
1324 There may be more than one register, but we only try one
1325 of them. */
1326 if (recog_data.constraints[i][0] == 'p')
1327 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1328 r1 = XEXP (r1, 0);
1329
1330 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1331 {
1332 /* We have two priorities for hard register preferences.
1333 If we have a move insn or an insn whose first input
1334 can only be in the same register as the output, give
1335 priority to an equivalence found from that insn. */
1336 int may_save_copy
1337 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1338
1339 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1340 win = combine_regs (r1, r0, may_save_copy,
1341 insn_number, insn, 0);
1342 }
1343 if (win)
1344 break;
1345 }
1346 }
1347
1348 /* Recognize an insn sequence with an ultimate result
1349 which can safely overlap one of the inputs.
1350 The sequence begins with a CLOBBER of its result,
1351 and ends with an insn that copies the result to itself
1352 and has a REG_EQUAL note for an equivalent formula.
1353 That note indicates what the inputs are.
1354 The result and the input can overlap if each insn in
1355 the sequence either doesn't mention the input
1356 or has a REG_NO_CONFLICT note to inhibit the conflict.
1357
1358 We do the combining test at the CLOBBER so that the
1359 destination register won't have had a quantity number
1360 assigned, since that would prevent combining. */
1361
1362 if (optimize
1363 && GET_CODE (PATTERN (insn)) == CLOBBER
1364 && (r0 = XEXP (PATTERN (insn), 0),
1365 GET_CODE (r0) == REG)
1366 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1367 && XEXP (link, 0) != 0
1368 && GET_CODE (XEXP (link, 0)) == INSN
1369 && (set = single_set (XEXP (link, 0))) != 0
1370 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1371 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1372 NULL_RTX)) != 0)
1373 {
1374 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1375 /* Check that we have such a sequence. */
1376 && no_conflict_p (insn, r0, r1))
1377 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1378 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1379 && (r1 = XEXP (XEXP (note, 0), 0),
1380 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1381 && no_conflict_p (insn, r0, r1))
1382 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1383
1384 /* Here we care if the operation to be computed is
1385 commutative. */
1386 else if ((GET_CODE (XEXP (note, 0)) == EQ
1387 || GET_CODE (XEXP (note, 0)) == NE
1388 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1389 && (r1 = XEXP (XEXP (note, 0), 1),
1390 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1391 && no_conflict_p (insn, r0, r1))
1392 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1393
1394 /* If we did combine something, show the register number
1395 in question so that we know to ignore its death. */
1396 if (win)
1397 no_conflict_combined_regno = REGNO (r1);
1398 }
1399
1400 /* If registers were just tied, set COMBINED_REGNO
1401 to the number of the register used in this insn
1402 that was tied to the register set in this insn.
1403 This register's qty should not be "killed". */
1404
1405 if (win)
1406 {
1407 while (GET_CODE (r1) == SUBREG)
1408 r1 = SUBREG_REG (r1);
1409 combined_regno = REGNO (r1);
1410 }
1411
1412 /* Mark the death of everything that dies in this instruction,
1413 except for anything that was just combined. */
1414
1415 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1416 if (REG_NOTE_KIND (link) == REG_DEAD
1417 && GET_CODE (XEXP (link, 0)) == REG
1418 && combined_regno != (int) REGNO (XEXP (link, 0))
1419 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1420 || ! find_reg_note (insn, REG_NO_CONFLICT,
1421 XEXP (link, 0))))
1422 wipe_dead_reg (XEXP (link, 0), 0);
1423
1424 /* Allocate qty numbers for all registers local to this block
1425 that are born (set) in this instruction.
1426 A pseudo that already has a qty is not changed. */
1427
1428 note_stores (PATTERN (insn), reg_is_set, NULL);
1429
1430 /* If anything is set in this insn and then unused, mark it as dying
1431 after this insn, so it will conflict with our outputs. This
1432 can't match with something that combined, and it doesn't matter
1433 if it did. Do this after the calls to reg_is_set since these
1434 die after, not during, the current insn. */
1435
1436 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1437 if (REG_NOTE_KIND (link) == REG_UNUSED
1438 && GET_CODE (XEXP (link, 0)) == REG)
1439 wipe_dead_reg (XEXP (link, 0), 1);
1440
1441 /* If this is an insn that has a REG_RETVAL note pointing at a
1442 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1443 block, so clear any register number that combined within it. */
1444 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1445 && GET_CODE (XEXP (note, 0)) == INSN
1446 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1447 no_conflict_combined_regno = -1;
1448 }
1449
1450 /* Set the registers live after INSN_NUMBER. Note that we never
1451 record the registers live before the block's first insn, since no
1452 pseudos we care about are live before that insn. */
1453
1454 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1455 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1456
1457 if (insn == BLOCK_END (b))
1458 break;
1459
1460 insn = NEXT_INSN (insn);
1461 }
1462
1463 /* Now every register that is local to this basic block
1464 should have been given a quantity, or else -1 meaning ignore it.
1465 Every quantity should have a known birth and death.
1466
1467 Order the qtys so we assign them registers in order of the
1468 number of suggested registers they need so we allocate those with
1469 the most restrictive needs first. */
1470
1471 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1472 for (i = 0; i < next_qty; i++)
1473 qty_order[i] = i;
1474
1475 #define EXCHANGE(I1, I2) \
1476 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1477
1478 switch (next_qty)
1479 {
1480 case 3:
1481 /* Make qty_order[2] be the one to allocate last. */
1482 if (qty_sugg_compare (0, 1) > 0)
1483 EXCHANGE (0, 1);
1484 if (qty_sugg_compare (1, 2) > 0)
1485 EXCHANGE (2, 1);
1486
1487 /* ... Fall through ... */
1488 case 2:
1489 /* Put the best one to allocate in qty_order[0]. */
1490 if (qty_sugg_compare (0, 1) > 0)
1491 EXCHANGE (0, 1);
1492
1493 /* ... Fall through ... */
1494
1495 case 1:
1496 case 0:
1497 /* Nothing to do here. */
1498 break;
1499
1500 default:
1501 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1502 }
1503
1504 /* Try to put each quantity in a suggested physical register, if it has one.
1505 This may cause registers to be allocated that otherwise wouldn't be, but
1506 this seems acceptable in local allocation (unlike global allocation). */
1507 for (i = 0; i < next_qty; i++)
1508 {
1509 q = qty_order[i];
1510 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1511 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1512 0, 1, qty[q].birth, qty[q].death);
1513 else
1514 qty[q].phys_reg = -1;
1515 }
1516
1517 /* Order the qtys so we assign them registers in order of
1518 decreasing length of life. Normally call qsort, but if we
1519 have only a very small number of quantities, sort them ourselves. */
1520
1521 for (i = 0; i < next_qty; i++)
1522 qty_order[i] = i;
1523
1524 #define EXCHANGE(I1, I2) \
1525 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1526
1527 switch (next_qty)
1528 {
1529 case 3:
1530 /* Make qty_order[2] be the one to allocate last. */
1531 if (qty_compare (0, 1) > 0)
1532 EXCHANGE (0, 1);
1533 if (qty_compare (1, 2) > 0)
1534 EXCHANGE (2, 1);
1535
1536 /* ... Fall through ... */
1537 case 2:
1538 /* Put the best one to allocate in qty_order[0]. */
1539 if (qty_compare (0, 1) > 0)
1540 EXCHANGE (0, 1);
1541
1542 /* ... Fall through ... */
1543
1544 case 1:
1545 case 0:
1546 /* Nothing to do here. */
1547 break;
1548
1549 default:
1550 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1551 }
1552
1553 /* Now for each qty that is not a hardware register,
1554 look for a hardware register to put it in.
1555 First try the register class that is cheapest for this qty,
1556 if there is more than one class. */
1557
1558 for (i = 0; i < next_qty; i++)
1559 {
1560 q = qty_order[i];
1561 if (qty[q].phys_reg < 0)
1562 {
1563 #ifdef INSN_SCHEDULING
1564 /* These values represent the adjusted lifetime of a qty so
1565 that it conflicts with qtys which appear near the start/end
1566 of this qty's lifetime.
1567
1568 The purpose behind extending the lifetime of this qty is to
1569 discourage the register allocator from creating false
1570 dependencies.
1571
1572 The adjustment value is choosen to indicate that this qty
1573 conflicts with all the qtys in the instructions immediately
1574 before and after the lifetime of this qty.
1575
1576 Experiments have shown that higher values tend to hurt
1577 overall code performance.
1578
1579 If allocation using the extended lifetime fails we will try
1580 again with the qty's unadjusted lifetime. */
1581 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1582 int fake_death = MIN (insn_number * 2 + 1,
1583 qty[q].death + 2 - qty[q].death % 2);
1584 #endif
1585
1586 if (N_REG_CLASSES > 1)
1587 {
1588 #ifdef INSN_SCHEDULING
1589 /* We try to avoid using hard registers allocated to qtys which
1590 are born immediately after this qty or die immediately before
1591 this qty.
1592
1593 This optimization is only appropriate when we will run
1594 a scheduling pass after reload and we are not optimizing
1595 for code size. */
1596 if (flag_schedule_insns_after_reload
1597 && !optimize_size
1598 && !SMALL_REGISTER_CLASSES)
1599 {
1600 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1601 qty[q].mode, q, 0, 0,
1602 fake_birth, fake_death);
1603 if (qty[q].phys_reg >= 0)
1604 continue;
1605 }
1606 #endif
1607 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1608 qty[q].mode, q, 0, 0,
1609 qty[q].birth, qty[q].death);
1610 if (qty[q].phys_reg >= 0)
1611 continue;
1612 }
1613
1614 #ifdef INSN_SCHEDULING
1615 /* Similarly, avoid false dependencies. */
1616 if (flag_schedule_insns_after_reload
1617 && !optimize_size
1618 && !SMALL_REGISTER_CLASSES
1619 && qty[q].alternate_class != NO_REGS)
1620 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1621 qty[q].mode, q, 0, 0,
1622 fake_birth, fake_death);
1623 #endif
1624 if (qty[q].alternate_class != NO_REGS)
1625 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1626 qty[q].mode, q, 0, 0,
1627 qty[q].birth, qty[q].death);
1628 }
1629 }
1630
1631 /* Now propagate the register assignments
1632 to the pseudo regs belonging to the qtys. */
1633
1634 for (q = 0; q < next_qty; q++)
1635 if (qty[q].phys_reg >= 0)
1636 {
1637 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1638 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1639 }
1640
1641 /* Clean up. */
1642 free (regs_live_at);
1643 free (qty_order);
1644 }
1645 \f
1646 /* Compare two quantities' priority for getting real registers.
1647 We give shorter-lived quantities higher priority.
1648 Quantities with more references are also preferred, as are quantities that
1649 require multiple registers. This is the identical prioritization as
1650 done by global-alloc.
1651
1652 We used to give preference to registers with *longer* lives, but using
1653 the same algorithm in both local- and global-alloc can speed up execution
1654 of some programs by as much as a factor of three! */
1655
1656 /* Note that the quotient will never be bigger than
1657 the value of floor_log2 times the maximum number of
1658 times a register can occur in one insn (surely less than 100).
1659 Multiplying this by 10000 can't overflow.
1660 QTY_CMP_PRI is also used by qty_sugg_compare. */
1661
1662 #define QTY_CMP_PRI(q) \
1663 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1664 / (qty[q].death - qty[q].birth)) * 10000))
1665
1666 static int
1667 qty_compare (q1, q2)
1668 int q1, q2;
1669 {
1670 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1671 }
1672
1673 static int
1674 qty_compare_1 (q1p, q2p)
1675 const PTR q1p;
1676 const PTR q2p;
1677 {
1678 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1679 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1680
1681 if (tem != 0)
1682 return tem;
1683
1684 /* If qtys are equally good, sort by qty number,
1685 so that the results of qsort leave nothing to chance. */
1686 return q1 - q2;
1687 }
1688 \f
1689 /* Compare two quantities' priority for getting real registers. This version
1690 is called for quantities that have suggested hard registers. First priority
1691 goes to quantities that have copy preferences, then to those that have
1692 normal preferences. Within those groups, quantities with the lower
1693 number of preferences have the highest priority. Of those, we use the same
1694 algorithm as above. */
1695
1696 #define QTY_CMP_SUGG(q) \
1697 (qty_phys_num_copy_sugg[q] \
1698 ? qty_phys_num_copy_sugg[q] \
1699 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1700
1701 static int
1702 qty_sugg_compare (q1, q2)
1703 int q1, q2;
1704 {
1705 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1706
1707 if (tem != 0)
1708 return tem;
1709
1710 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1711 }
1712
1713 static int
1714 qty_sugg_compare_1 (q1p, q2p)
1715 const PTR q1p;
1716 const PTR q2p;
1717 {
1718 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1719 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1720
1721 if (tem != 0)
1722 return tem;
1723
1724 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1725 if (tem != 0)
1726 return tem;
1727
1728 /* If qtys are equally good, sort by qty number,
1729 so that the results of qsort leave nothing to chance. */
1730 return q1 - q2;
1731 }
1732
1733 #undef QTY_CMP_SUGG
1734 #undef QTY_CMP_PRI
1735 \f
1736 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1737 Returns 1 if have done so, or 0 if cannot.
1738
1739 Combining registers means marking them as having the same quantity
1740 and adjusting the offsets within the quantity if either of
1741 them is a SUBREG).
1742
1743 We don't actually combine a hard reg with a pseudo; instead
1744 we just record the hard reg as the suggestion for the pseudo's quantity.
1745 If we really combined them, we could lose if the pseudo lives
1746 across an insn that clobbers the hard reg (eg, movstr).
1747
1748 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1749 there is no REG_DEAD note on INSN. This occurs during the processing
1750 of REG_NO_CONFLICT blocks.
1751
1752 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1753 SETREG or if the input and output must share a register.
1754 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1755
1756 There are elaborate checks for the validity of combining. */
1757
1758 static int
1759 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1760 rtx usedreg, setreg;
1761 int may_save_copy;
1762 int insn_number;
1763 rtx insn;
1764 int already_dead;
1765 {
1766 register int ureg, sreg;
1767 register int offset = 0;
1768 int usize, ssize;
1769 register int sqty;
1770
1771 /* Determine the numbers and sizes of registers being used. If a subreg
1772 is present that does not change the entire register, don't consider
1773 this a copy insn. */
1774
1775 while (GET_CODE (usedreg) == SUBREG)
1776 {
1777 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1778 may_save_copy = 0;
1779 offset += SUBREG_WORD (usedreg);
1780 usedreg = SUBREG_REG (usedreg);
1781 }
1782 if (GET_CODE (usedreg) != REG)
1783 return 0;
1784 ureg = REGNO (usedreg);
1785 usize = REG_SIZE (usedreg);
1786
1787 while (GET_CODE (setreg) == SUBREG)
1788 {
1789 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1790 may_save_copy = 0;
1791 offset -= SUBREG_WORD (setreg);
1792 setreg = SUBREG_REG (setreg);
1793 }
1794 if (GET_CODE (setreg) != REG)
1795 return 0;
1796 sreg = REGNO (setreg);
1797 ssize = REG_SIZE (setreg);
1798
1799 /* If UREG is a pseudo-register that hasn't already been assigned a
1800 quantity number, it means that it is not local to this block or dies
1801 more than once. In either event, we can't do anything with it. */
1802 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1803 /* Do not combine registers unless one fits within the other. */
1804 || (offset > 0 && usize + offset > ssize)
1805 || (offset < 0 && usize + offset < ssize)
1806 /* Do not combine with a smaller already-assigned object
1807 if that smaller object is already combined with something bigger. */
1808 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1809 && usize < qty[reg_qty[ureg]].size)
1810 /* Can't combine if SREG is not a register we can allocate. */
1811 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1812 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1813 These have already been taken care of. This probably wouldn't
1814 combine anyway, but don't take any chances. */
1815 || (ureg >= FIRST_PSEUDO_REGISTER
1816 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1817 /* Don't tie something to itself. In most cases it would make no
1818 difference, but it would screw up if the reg being tied to itself
1819 also dies in this insn. */
1820 || ureg == sreg
1821 /* Don't try to connect two different hardware registers. */
1822 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1823 /* Don't connect two different machine modes if they have different
1824 implications as to which registers may be used. */
1825 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1826 return 0;
1827
1828 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1829 qty_phys_sugg for the pseudo instead of tying them.
1830
1831 Return "failure" so that the lifespan of UREG is terminated here;
1832 that way the two lifespans will be disjoint and nothing will prevent
1833 the pseudo reg from being given this hard reg. */
1834
1835 if (ureg < FIRST_PSEUDO_REGISTER)
1836 {
1837 /* Allocate a quantity number so we have a place to put our
1838 suggestions. */
1839 if (reg_qty[sreg] == -2)
1840 reg_is_born (setreg, 2 * insn_number);
1841
1842 if (reg_qty[sreg] >= 0)
1843 {
1844 if (may_save_copy
1845 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1846 {
1847 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1848 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1849 }
1850 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1851 {
1852 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1853 qty_phys_num_sugg[reg_qty[sreg]]++;
1854 }
1855 }
1856 return 0;
1857 }
1858
1859 /* Similarly for SREG a hard register and UREG a pseudo register. */
1860
1861 if (sreg < FIRST_PSEUDO_REGISTER)
1862 {
1863 if (may_save_copy
1864 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1865 {
1866 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1867 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1868 }
1869 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1870 {
1871 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1872 qty_phys_num_sugg[reg_qty[ureg]]++;
1873 }
1874 return 0;
1875 }
1876
1877 /* At this point we know that SREG and UREG are both pseudos.
1878 Do nothing if SREG already has a quantity or is a register that we
1879 don't allocate. */
1880 if (reg_qty[sreg] >= -1
1881 /* If we are not going to let any regs live across calls,
1882 don't tie a call-crossing reg to a non-call-crossing reg. */
1883 || (current_function_has_nonlocal_label
1884 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1885 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1886 return 0;
1887
1888 /* We don't already know about SREG, so tie it to UREG
1889 if this is the last use of UREG, provided the classes they want
1890 are compatible. */
1891
1892 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1893 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1894 {
1895 /* Add SREG to UREG's quantity. */
1896 sqty = reg_qty[ureg];
1897 reg_qty[sreg] = sqty;
1898 reg_offset[sreg] = reg_offset[ureg] + offset;
1899 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1900 qty[sqty].first_reg = sreg;
1901
1902 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1903 update_qty_class (sqty, sreg);
1904
1905 /* Update info about quantity SQTY. */
1906 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1907 qty[sqty].n_refs += REG_N_REFS (sreg);
1908 if (usize < ssize)
1909 {
1910 register int i;
1911
1912 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1913 reg_offset[i] -= offset;
1914
1915 qty[sqty].size = ssize;
1916 qty[sqty].mode = GET_MODE (setreg);
1917 }
1918 }
1919 else
1920 return 0;
1921
1922 return 1;
1923 }
1924 \f
1925 /* Return 1 if the preferred class of REG allows it to be tied
1926 to a quantity or register whose class is CLASS.
1927 True if REG's reg class either contains or is contained in CLASS. */
1928
1929 static int
1930 reg_meets_class_p (reg, class)
1931 int reg;
1932 enum reg_class class;
1933 {
1934 register enum reg_class rclass = reg_preferred_class (reg);
1935 return (reg_class_subset_p (rclass, class)
1936 || reg_class_subset_p (class, rclass));
1937 }
1938
1939 /* Update the class of QTYNO assuming that REG is being tied to it. */
1940
1941 static void
1942 update_qty_class (qtyno, reg)
1943 int qtyno;
1944 int reg;
1945 {
1946 enum reg_class rclass = reg_preferred_class (reg);
1947 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1948 qty[qtyno].min_class = rclass;
1949
1950 rclass = reg_alternate_class (reg);
1951 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1952 qty[qtyno].alternate_class = rclass;
1953
1954 if (REG_CHANGES_MODE (reg))
1955 qty[qtyno].changes_mode = 1;
1956 }
1957 \f
1958 /* Handle something which alters the value of an rtx REG.
1959
1960 REG is whatever is set or clobbered. SETTER is the rtx that
1961 is modifying the register.
1962
1963 If it is not really a register, we do nothing.
1964 The file-global variables `this_insn' and `this_insn_number'
1965 carry info from `block_alloc'. */
1966
1967 static void
1968 reg_is_set (reg, setter, data)
1969 rtx reg;
1970 rtx setter;
1971 void *data ATTRIBUTE_UNUSED;
1972 {
1973 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1974 a hard register. These may actually not exist any more. */
1975
1976 if (GET_CODE (reg) != SUBREG
1977 && GET_CODE (reg) != REG)
1978 return;
1979
1980 /* Mark this register as being born. If it is used in a CLOBBER, mark
1981 it as being born halfway between the previous insn and this insn so that
1982 it conflicts with our inputs but not the outputs of the previous insn. */
1983
1984 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1985 }
1986 \f
1987 /* Handle beginning of the life of register REG.
1988 BIRTH is the index at which this is happening. */
1989
1990 static void
1991 reg_is_born (reg, birth)
1992 rtx reg;
1993 int birth;
1994 {
1995 register int regno;
1996
1997 if (GET_CODE (reg) == SUBREG)
1998 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1999 else
2000 regno = REGNO (reg);
2001
2002 if (regno < FIRST_PSEUDO_REGISTER)
2003 {
2004 mark_life (regno, GET_MODE (reg), 1);
2005
2006 /* If the register was to have been born earlier that the present
2007 insn, mark it as live where it is actually born. */
2008 if (birth < 2 * this_insn_number)
2009 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2010 }
2011 else
2012 {
2013 if (reg_qty[regno] == -2)
2014 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2015
2016 /* If this register has a quantity number, show that it isn't dead. */
2017 if (reg_qty[regno] >= 0)
2018 qty[reg_qty[regno]].death = -1;
2019 }
2020 }
2021
2022 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2023 REG is an output that is dying (i.e., it is never used), otherwise it
2024 is an input (the normal case).
2025 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2026
2027 static void
2028 wipe_dead_reg (reg, output_p)
2029 register rtx reg;
2030 int output_p;
2031 {
2032 register int regno = REGNO (reg);
2033
2034 /* If this insn has multiple results,
2035 and the dead reg is used in one of the results,
2036 extend its life to after this insn,
2037 so it won't get allocated together with any other result of this insn.
2038
2039 It is unsafe to use !single_set here since it will ignore an unused
2040 output. Just because an output is unused does not mean the compiler
2041 can assume the side effect will not occur. Consider if REG appears
2042 in the address of an output and we reload the output. If we allocate
2043 REG to the same hard register as an unused output we could set the hard
2044 register before the output reload insn. */
2045 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2046 && multiple_sets (this_insn))
2047 {
2048 int i;
2049 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2050 {
2051 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2052 if (GET_CODE (set) == SET
2053 && GET_CODE (SET_DEST (set)) != REG
2054 && !rtx_equal_p (reg, SET_DEST (set))
2055 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2056 output_p = 1;
2057 }
2058 }
2059
2060 /* If this register is used in an auto-increment address, then extend its
2061 life to after this insn, so that it won't get allocated together with
2062 the result of this insn. */
2063 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2064 output_p = 1;
2065
2066 if (regno < FIRST_PSEUDO_REGISTER)
2067 {
2068 mark_life (regno, GET_MODE (reg), 0);
2069
2070 /* If a hard register is dying as an output, mark it as in use at
2071 the beginning of this insn (the above statement would cause this
2072 not to happen). */
2073 if (output_p)
2074 post_mark_life (regno, GET_MODE (reg), 1,
2075 2 * this_insn_number, 2 * this_insn_number + 1);
2076 }
2077
2078 else if (reg_qty[regno] >= 0)
2079 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2080 }
2081 \f
2082 /* Find a block of SIZE words of hard regs in reg_class CLASS
2083 that can hold something of machine-mode MODE
2084 (but actually we test only the first of the block for holding MODE)
2085 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2086 and return the number of the first of them.
2087 Return -1 if such a block cannot be found.
2088 If QTYNO crosses calls, insist on a register preserved by calls,
2089 unless ACCEPT_CALL_CLOBBERED is nonzero.
2090
2091 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2092 register is available. If not, return -1. */
2093
2094 static int
2095 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2096 born_index, dead_index)
2097 enum reg_class class;
2098 enum machine_mode mode;
2099 int qtyno;
2100 int accept_call_clobbered;
2101 int just_try_suggested;
2102 int born_index, dead_index;
2103 {
2104 register int i, ins;
2105 #ifdef HARD_REG_SET
2106 /* Declare it register if it's a scalar. */
2107 register
2108 #endif
2109 HARD_REG_SET used, first_used;
2110 #ifdef ELIMINABLE_REGS
2111 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2112 #endif
2113
2114 /* Validate our parameters. */
2115 if (born_index < 0 || born_index > dead_index)
2116 abort ();
2117
2118 /* Don't let a pseudo live in a reg across a function call
2119 if we might get a nonlocal goto. */
2120 if (current_function_has_nonlocal_label
2121 && qty[qtyno].n_calls_crossed > 0)
2122 return -1;
2123
2124 if (accept_call_clobbered)
2125 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2126 else if (qty[qtyno].n_calls_crossed == 0)
2127 COPY_HARD_REG_SET (used, fixed_reg_set);
2128 else
2129 COPY_HARD_REG_SET (used, call_used_reg_set);
2130
2131 if (accept_call_clobbered)
2132 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2133
2134 for (ins = born_index; ins < dead_index; ins++)
2135 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2136
2137 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2138
2139 /* Don't use the frame pointer reg in local-alloc even if
2140 we may omit the frame pointer, because if we do that and then we
2141 need a frame pointer, reload won't know how to move the pseudo
2142 to another hard reg. It can move only regs made by global-alloc.
2143
2144 This is true of any register that can be eliminated. */
2145 #ifdef ELIMINABLE_REGS
2146 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2147 SET_HARD_REG_BIT (used, eliminables[i].from);
2148 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2149 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2150 that it might be eliminated into. */
2151 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2152 #endif
2153 #else
2154 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2155 #endif
2156
2157 #ifdef CLASS_CANNOT_CHANGE_MODE
2158 if (qty[qtyno].changes_mode)
2159 IOR_HARD_REG_SET (used,
2160 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2161 #endif
2162
2163 /* Normally, the registers that can be used for the first register in
2164 a multi-register quantity are the same as those that can be used for
2165 subsequent registers. However, if just trying suggested registers,
2166 restrict our consideration to them. If there are copy-suggested
2167 register, try them. Otherwise, try the arithmetic-suggested
2168 registers. */
2169 COPY_HARD_REG_SET (first_used, used);
2170
2171 if (just_try_suggested)
2172 {
2173 if (qty_phys_num_copy_sugg[qtyno] != 0)
2174 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2175 else
2176 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2177 }
2178
2179 /* If all registers are excluded, we can't do anything. */
2180 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2181
2182 /* If at least one would be suitable, test each hard reg. */
2183
2184 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2185 {
2186 #ifdef REG_ALLOC_ORDER
2187 int regno = reg_alloc_order[i];
2188 #else
2189 int regno = i;
2190 #endif
2191 if (! TEST_HARD_REG_BIT (first_used, regno)
2192 && HARD_REGNO_MODE_OK (regno, mode)
2193 && (qty[qtyno].n_calls_crossed == 0
2194 || accept_call_clobbered
2195 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2196 {
2197 register int j;
2198 register int size1 = HARD_REGNO_NREGS (regno, mode);
2199 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2200 if (j == size1)
2201 {
2202 /* Mark that this register is in use between its birth and death
2203 insns. */
2204 post_mark_life (regno, mode, 1, born_index, dead_index);
2205 return regno;
2206 }
2207 #ifndef REG_ALLOC_ORDER
2208 /* Skip starting points we know will lose. */
2209 i += j;
2210 #endif
2211 }
2212 }
2213
2214 fail:
2215 /* If we are just trying suggested register, we have just tried copy-
2216 suggested registers, and there are arithmetic-suggested registers,
2217 try them. */
2218
2219 /* If it would be profitable to allocate a call-clobbered register
2220 and save and restore it around calls, do that. */
2221 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2222 && qty_phys_num_sugg[qtyno] != 0)
2223 {
2224 /* Don't try the copy-suggested regs again. */
2225 qty_phys_num_copy_sugg[qtyno] = 0;
2226 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2227 born_index, dead_index);
2228 }
2229
2230 /* We need not check to see if the current function has nonlocal
2231 labels because we don't put any pseudos that are live over calls in
2232 registers in that case. */
2233
2234 if (! accept_call_clobbered
2235 && flag_caller_saves
2236 && ! just_try_suggested
2237 && qty[qtyno].n_calls_crossed != 0
2238 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2239 qty[qtyno].n_calls_crossed))
2240 {
2241 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2242 if (i >= 0)
2243 caller_save_needed = 1;
2244 return i;
2245 }
2246 return -1;
2247 }
2248 \f
2249 /* Mark that REGNO with machine-mode MODE is live starting from the current
2250 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2251 is zero). */
2252
2253 static void
2254 mark_life (regno, mode, life)
2255 register int regno;
2256 enum machine_mode mode;
2257 int life;
2258 {
2259 register int j = HARD_REGNO_NREGS (regno, mode);
2260 if (life)
2261 while (--j >= 0)
2262 SET_HARD_REG_BIT (regs_live, regno + j);
2263 else
2264 while (--j >= 0)
2265 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2266 }
2267
2268 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2269 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2270 to insn number DEATH (exclusive). */
2271
2272 static void
2273 post_mark_life (regno, mode, life, birth, death)
2274 int regno;
2275 enum machine_mode mode;
2276 int life, birth, death;
2277 {
2278 register int j = HARD_REGNO_NREGS (regno, mode);
2279 #ifdef HARD_REG_SET
2280 /* Declare it register if it's a scalar. */
2281 register
2282 #endif
2283 HARD_REG_SET this_reg;
2284
2285 CLEAR_HARD_REG_SET (this_reg);
2286 while (--j >= 0)
2287 SET_HARD_REG_BIT (this_reg, regno + j);
2288
2289 if (life)
2290 while (birth < death)
2291 {
2292 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2293 birth++;
2294 }
2295 else
2296 while (birth < death)
2297 {
2298 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2299 birth++;
2300 }
2301 }
2302 \f
2303 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2304 is the register being clobbered, and R1 is a register being used in
2305 the equivalent expression.
2306
2307 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2308 in which it is used, return 1.
2309
2310 Otherwise, return 0. */
2311
2312 static int
2313 no_conflict_p (insn, r0, r1)
2314 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2315 {
2316 int ok = 0;
2317 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2318 rtx p, last;
2319
2320 /* If R1 is a hard register, return 0 since we handle this case
2321 when we scan the insns that actually use it. */
2322
2323 if (note == 0
2324 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2325 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2326 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2327 return 0;
2328
2329 last = XEXP (note, 0);
2330
2331 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2332 if (INSN_P (p))
2333 {
2334 if (find_reg_note (p, REG_DEAD, r1))
2335 ok = 1;
2336
2337 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2338 some earlier optimization pass has inserted instructions into
2339 the sequence, and it is not safe to perform this optimization.
2340 Note that emit_no_conflict_block always ensures that this is
2341 true when these sequences are created. */
2342 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2343 return 0;
2344 }
2345
2346 return ok;
2347 }
2348 \f
2349 /* Return the number of alternatives for which the constraint string P
2350 indicates that the operand must be equal to operand 0 and that no register
2351 is acceptable. */
2352
2353 static int
2354 requires_inout (p)
2355 const char *p;
2356 {
2357 char c;
2358 int found_zero = 0;
2359 int reg_allowed = 0;
2360 int num_matching_alts = 0;
2361
2362 while ((c = *p++))
2363 switch (c)
2364 {
2365 case '=': case '+': case '?':
2366 case '#': case '&': case '!':
2367 case '*': case '%':
2368 case '1': case '2': case '3': case '4': case '5':
2369 case '6': case '7': case '8': case '9':
2370 case 'm': case '<': case '>': case 'V': case 'o':
2371 case 'E': case 'F': case 'G': case 'H':
2372 case 's': case 'i': case 'n':
2373 case 'I': case 'J': case 'K': case 'L':
2374 case 'M': case 'N': case 'O': case 'P':
2375 case 'X':
2376 /* These don't say anything we care about. */
2377 break;
2378
2379 case ',':
2380 if (found_zero && ! reg_allowed)
2381 num_matching_alts++;
2382
2383 found_zero = reg_allowed = 0;
2384 break;
2385
2386 case '0':
2387 found_zero = 1;
2388 break;
2389
2390 default:
2391 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2392 break;
2393 /* FALLTHRU */
2394 case 'p':
2395 case 'g': case 'r':
2396 reg_allowed = 1;
2397 break;
2398 }
2399
2400 if (found_zero && ! reg_allowed)
2401 num_matching_alts++;
2402
2403 return num_matching_alts;
2404 }
2405 \f
2406 void
2407 dump_local_alloc (file)
2408 FILE *file;
2409 {
2410 register int i;
2411 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2412 if (reg_renumber[i] != -1)
2413 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2414 }