Fix copyrights.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Allocation of hard register numbers to pseudo registers is done in
24 two passes. In this pass we consider only regs that are born and
25 die once within one basic block. We do this one basic block at a
26 time. Then the next pass allocates the registers that remain.
27 Two passes are used because this pass uses methods that work only
28 on linear code, but that do a better job than the general methods
29 used in global_alloc, and more quickly too.
30
31 The assignments made are recorded in the vector reg_renumber
32 whose space is allocated here. The rtl code itself is not altered.
33
34 We assign each instruction in the basic block a number
35 which is its order from the beginning of the block.
36 Then we can represent the lifetime of a pseudo register with
37 a pair of numbers, and check for conflicts easily.
38 We can record the availability of hard registers with a
39 HARD_REG_SET for each instruction. The HARD_REG_SET
40 contains 0 or 1 for each hard reg.
41
42 To avoid register shuffling, we tie registers together when one
43 dies by being copied into another, or dies in an instruction that
44 does arithmetic to produce another. The tied registers are
45 allocated as one. Registers with different reg class preferences
46 can never be tied unless the class preferred by one is a subclass
47 of the one preferred by the other.
48
49 Tying is represented with "quantity numbers".
50 A non-tied register is given a new quantity number.
51 Tied registers have the same quantity number.
52
53 We have provision to exempt registers, even when they are contained
54 within the block, that can be tied to others that are not contained in it.
55 This is so that global_alloc could process them both and tie them then.
56 But this is currently disabled since tying in global_alloc is not
57 yet implemented. */
58
59 /* Pseudos allocated here can be reallocated by global.c if the hard register
60 is used as a spill register. Currently we don't allocate such pseudos
61 here if their preferred class is likely to be used by spills. */
62
63 #include "config.h"
64 #include "system.h"
65 #include "rtl.h"
66 #include "tm_p.h"
67 #include "flags.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "hard-reg-set.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 \f
78 /* Next quantity number available for allocation. */
79
80 static int next_qty;
81
82 /* Information we maitain about each quantity. */
83 struct qty
84 {
85 /* The number of refs to quantity Q. */
86
87 int n_refs;
88
89 /* Insn number (counting from head of basic block)
90 where quantity Q was born. -1 if birth has not been recorded. */
91
92 int birth;
93
94 /* Insn number (counting from head of basic block)
95 where given quantity died. Due to the way tying is done,
96 and the fact that we consider in this pass only regs that die but once,
97 a quantity can die only once. Each quantity's life span
98 is a set of consecutive insns. -1 if death has not been recorded. */
99
100 int death;
101
102 /* Number of words needed to hold the data in given quantity.
103 This depends on its machine mode. It is used for these purposes:
104 1. It is used in computing the relative importances of qtys,
105 which determines the order in which we look for regs for them.
106 2. It is used in rules that prevent tying several registers of
107 different sizes in a way that is geometrically impossible
108 (see combine_regs). */
109
110 int size;
111
112 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
113
114 int n_calls_crossed;
115
116 /* The register number of one pseudo register whose reg_qty value is Q.
117 This register should be the head of the chain
118 maintained in reg_next_in_qty. */
119
120 int first_reg;
121
122 /* Reg class contained in (smaller than) the preferred classes of all
123 the pseudo regs that are tied in given quantity.
124 This is the preferred class for allocating that quantity. */
125
126 enum reg_class min_class;
127
128 /* Register class within which we allocate given qty if we can't get
129 its preferred class. */
130
131 enum reg_class alternate_class;
132
133 /* This holds the mode of the registers that are tied to given qty,
134 or VOIDmode if registers with differing modes are tied together. */
135
136 enum machine_mode mode;
137
138 /* the hard reg number chosen for given quantity,
139 or -1 if none was found. */
140
141 short phys_reg;
142
143 /* Nonzero if this quantity has been used in a SUBREG that changes
144 its size. */
145
146 char changes_size;
147
148 };
149
150 static struct qty *qty;
151
152 /* These fields are kept separately to speedup their clearing. */
153
154 /* We maintain two hard register sets that indicate suggested hard registers
155 for each quantity. The first, phys_copy_sugg, contains hard registers
156 that are tied to the quantity by a simple copy. The second contains all
157 hard registers that are tied to the quantity via an arithmetic operation.
158
159 The former register set is given priority for allocation. This tends to
160 eliminate copy insns. */
161
162 /* Element Q is a set of hard registers that are suggested for quantity Q by
163 copy insns. */
164
165 static HARD_REG_SET *qty_phys_copy_sugg;
166
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 arithmetic insns. */
169
170 static HARD_REG_SET *qty_phys_sugg;
171
172 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
173
174 static short *qty_phys_num_copy_sugg;
175
176 /* Element Q is the number of suggested registers in qty_phys_sugg. */
177
178 static short *qty_phys_num_sugg;
179
180
181 /* If (REG N) has been assigned a quantity number, is a register number
182 of another register assigned the same quantity number, or -1 for the
183 end of the chain. qty->first_reg point to the head of this chain. */
184
185 static int *reg_next_in_qty;
186
187 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
188 if it is >= 0,
189 of -1 if this register cannot be allocated by local-alloc,
190 or -2 if not known yet.
191
192 Note that if we see a use or death of pseudo register N with
193 reg_qty[N] == -2, register N must be local to the current block. If
194 it were used in more than one block, we would have reg_qty[N] == -1.
195 This relies on the fact that if reg_basic_block[N] is >= 0, register N
196 will not appear in any other block. We save a considerable number of
197 tests by exploiting this.
198
199 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
200 be referenced. */
201
202 static int *reg_qty;
203
204 /* The offset (in words) of register N within its quantity.
205 This can be nonzero if register N is SImode, and has been tied
206 to a subreg of a DImode register. */
207
208 static char *reg_offset;
209
210 /* Vector of substitutions of register numbers,
211 used to map pseudo regs into hardware regs.
212 This is set up as a result of register allocation.
213 Element N is the hard reg assigned to pseudo reg N,
214 or is -1 if no hard reg was assigned.
215 If N is a hard reg number, element N is N. */
216
217 short *reg_renumber;
218
219 /* Set of hard registers live at the current point in the scan
220 of the instructions in a basic block. */
221
222 static HARD_REG_SET regs_live;
223
224 /* Each set of hard registers indicates registers live at a particular
225 point in the basic block. For N even, regs_live_at[N] says which
226 hard registers are needed *after* insn N/2 (i.e., they may not
227 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
228
229 If an object is to conflict with the inputs of insn J but not the
230 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
231 if it is to conflict with the outputs of insn J but not the inputs of
232 insn J + 1, it is said to die at index J*2 + 1. */
233
234 static HARD_REG_SET *regs_live_at;
235
236 /* Communicate local vars `insn_number' and `insn'
237 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
238 static int this_insn_number;
239 static rtx this_insn;
240
241 /* Used to communicate changes made by update_equiv_regs to
242 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
243 found or created, so that we can keep track of what memory accesses might
244 be created later, e.g. by reload. */
245
246 static rtx *reg_equiv_replacement;
247
248 /* Used for communication between update_equiv_regs and no_equiv. */
249 static rtx *reg_equiv_init_insns;
250
251 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
252 static int recorded_label_ref;
253
254 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
255 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
256 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
257 static int contains_replace_regs PARAMS ((rtx, char *));
258 static int memref_referenced_p PARAMS ((rtx, rtx));
259 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
260 static void update_equiv_regs PARAMS ((void));
261 static void no_equiv PARAMS ((rtx, rtx, void *));
262 static void block_alloc PARAMS ((int));
263 static int qty_sugg_compare PARAMS ((int, int));
264 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
265 static int qty_compare PARAMS ((int, int));
266 static int qty_compare_1 PARAMS ((const PTR, const PTR));
267 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
268 static int reg_meets_class_p PARAMS ((int, enum reg_class));
269 static void update_qty_class PARAMS ((int, int));
270 static void reg_is_set PARAMS ((rtx, rtx, void *));
271 static void reg_is_born PARAMS ((rtx, int));
272 static void wipe_dead_reg PARAMS ((rtx, int));
273 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
274 int, int, int, int, int));
275 static void mark_life PARAMS ((int, enum machine_mode, int));
276 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
277 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
278 static int requires_inout PARAMS ((const char *));
279 \f
280 /* Allocate a new quantity (new within current basic block)
281 for register number REGNO which is born at index BIRTH
282 within the block. MODE and SIZE are info on reg REGNO. */
283
284 static void
285 alloc_qty (regno, mode, size, birth)
286 int regno;
287 enum machine_mode mode;
288 int size, birth;
289 {
290 register int qtyno = next_qty++;
291
292 reg_qty[regno] = qtyno;
293 reg_offset[regno] = 0;
294 reg_next_in_qty[regno] = -1;
295
296 qty[qtyno].first_reg = regno;
297 qty[qtyno].size = size;
298 qty[qtyno].mode = mode;
299 qty[qtyno].birth = birth;
300 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
301 qty[qtyno].min_class = reg_preferred_class (regno);
302 qty[qtyno].alternate_class = reg_alternate_class (regno);
303 qty[qtyno].n_refs = REG_N_REFS (regno);
304 qty[qtyno].changes_size = REG_CHANGES_SIZE (regno);
305 }
306 \f
307 /* Main entry point of this file. */
308
309 int
310 local_alloc ()
311 {
312 register int b, i;
313 int max_qty;
314
315 /* We need to keep track of whether or not we recorded a LABEL_REF so
316 that we know if the jump optimizer needs to be rerun. */
317 recorded_label_ref = 0;
318
319 /* Leaf functions and non-leaf functions have different needs.
320 If defined, let the machine say what kind of ordering we
321 should use. */
322 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
323 ORDER_REGS_FOR_LOCAL_ALLOC;
324 #endif
325
326 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
327 registers. */
328 update_equiv_regs ();
329
330 /* This sets the maximum number of quantities we can have. Quantity
331 numbers start at zero and we can have one for each pseudo. */
332 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
333
334 /* Allocate vectors of temporary data.
335 See the declarations of these variables, above,
336 for what they mean. */
337
338 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
339 qty_phys_copy_sugg
340 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
341 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
342 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
343 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
344
345 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
346 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
347 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
348
349 /* Allocate the reg_renumber array */
350 allocate_reg_info (max_regno, FALSE, TRUE);
351
352 /* Determine which pseudo-registers can be allocated by local-alloc.
353 In general, these are the registers used only in a single block and
354 which only die once. However, if a register's preferred class has only
355 a few entries, don't allocate this register here unless it is preferred
356 or nothing since retry_global_alloc won't be able to move it to
357 GENERAL_REGS if a reload register of this class is needed.
358
359 We need not be concerned with which block actually uses the register
360 since we will never see it outside that block. */
361
362 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
363 {
364 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
365 && (reg_alternate_class (i) == NO_REGS
366 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
367 reg_qty[i] = -2;
368 else
369 reg_qty[i] = -1;
370 }
371
372 /* Force loop below to initialize entire quantity array. */
373 next_qty = max_qty;
374
375 /* Allocate each block's local registers, block by block. */
376
377 for (b = 0; b < n_basic_blocks; b++)
378 {
379 /* NEXT_QTY indicates which elements of the `qty_...'
380 vectors might need to be initialized because they were used
381 for the previous block; it is set to the entire array before
382 block 0. Initialize those, with explicit loop if there are few,
383 else with bzero and bcopy. Do not initialize vectors that are
384 explicit set by `alloc_qty'. */
385
386 if (next_qty < 6)
387 {
388 for (i = 0; i < next_qty; i++)
389 {
390 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
391 qty_phys_num_copy_sugg[i] = 0;
392 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
393 qty_phys_num_sugg[i] = 0;
394 }
395 }
396 else
397 {
398 #define CLEAR(vector) \
399 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
400
401 CLEAR (qty_phys_copy_sugg);
402 CLEAR (qty_phys_num_copy_sugg);
403 CLEAR (qty_phys_sugg);
404 CLEAR (qty_phys_num_sugg);
405 }
406
407 next_qty = 0;
408
409 block_alloc (b);
410 }
411
412 free (qty);
413 free (qty_phys_copy_sugg);
414 free (qty_phys_num_copy_sugg);
415 free (qty_phys_sugg);
416 free (qty_phys_num_sugg);
417
418 free (reg_qty);
419 free (reg_offset);
420 free (reg_next_in_qty);
421
422 return recorded_label_ref;
423 }
424 \f
425 /* Depth of loops we are in while in update_equiv_regs. */
426 static int loop_depth;
427
428 /* Used for communication between the following two functions: contains
429 a MEM that we wish to ensure remains unchanged. */
430 static rtx equiv_mem;
431
432 /* Set nonzero if EQUIV_MEM is modified. */
433 static int equiv_mem_modified;
434
435 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
436 Called via note_stores. */
437
438 static void
439 validate_equiv_mem_from_store (dest, set, data)
440 rtx dest;
441 rtx set ATTRIBUTE_UNUSED;
442 void *data ATTRIBUTE_UNUSED;
443 {
444 if ((GET_CODE (dest) == REG
445 && reg_overlap_mentioned_p (dest, equiv_mem))
446 || (GET_CODE (dest) == MEM
447 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
448 equiv_mem_modified = 1;
449 }
450
451 /* Verify that no store between START and the death of REG invalidates
452 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
453 by storing into an overlapping memory location, or with a non-const
454 CALL_INSN.
455
456 Return 1 if MEMREF remains valid. */
457
458 static int
459 validate_equiv_mem (start, reg, memref)
460 rtx start;
461 rtx reg;
462 rtx memref;
463 {
464 rtx insn;
465 rtx note;
466
467 equiv_mem = memref;
468 equiv_mem_modified = 0;
469
470 /* If the memory reference has side effects or is volatile, it isn't a
471 valid equivalence. */
472 if (side_effects_p (memref))
473 return 0;
474
475 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
476 {
477 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
478 continue;
479
480 if (find_reg_note (insn, REG_DEAD, reg))
481 return 1;
482
483 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
484 && ! CONST_CALL_P (insn))
485 return 0;
486
487 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
488
489 /* If a register mentioned in MEMREF is modified via an
490 auto-increment, we lose the equivalence. Do the same if one
491 dies; although we could extend the life, it doesn't seem worth
492 the trouble. */
493
494 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
495 if ((REG_NOTE_KIND (note) == REG_INC
496 || REG_NOTE_KIND (note) == REG_DEAD)
497 && GET_CODE (XEXP (note, 0)) == REG
498 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
499 return 0;
500 }
501
502 return 0;
503 }
504
505 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
506
507 static int
508 contains_replace_regs (x, reg_equiv_replace)
509 rtx x;
510 char *reg_equiv_replace;
511 {
512 int i, j;
513 const char *fmt;
514 enum rtx_code code = GET_CODE (x);
515
516 switch (code)
517 {
518 case CONST_INT:
519 case CONST:
520 case LABEL_REF:
521 case SYMBOL_REF:
522 case CONST_DOUBLE:
523 case PC:
524 case CC0:
525 case HIGH:
526 case LO_SUM:
527 return 0;
528
529 case REG:
530 return reg_equiv_replace[REGNO (x)];
531
532 default:
533 break;
534 }
535
536 fmt = GET_RTX_FORMAT (code);
537 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
538 switch (fmt[i])
539 {
540 case 'e':
541 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
542 return 1;
543 break;
544 case 'E':
545 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
546 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
547 return 1;
548 break;
549 }
550
551 return 0;
552 }
553 \f
554 /* TRUE if X references a memory location that would be affected by a store
555 to MEMREF. */
556
557 static int
558 memref_referenced_p (memref, x)
559 rtx x;
560 rtx memref;
561 {
562 int i, j;
563 const char *fmt;
564 enum rtx_code code = GET_CODE (x);
565
566 switch (code)
567 {
568 case CONST_INT:
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 case CONST_DOUBLE:
573 case PC:
574 case CC0:
575 case HIGH:
576 case LO_SUM:
577 return 0;
578
579 case REG:
580 return (reg_equiv_replacement[REGNO (x)]
581 && memref_referenced_p (memref,
582 reg_equiv_replacement[REGNO (x)]));
583
584 case MEM:
585 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
586 return 1;
587 break;
588
589 case SET:
590 /* If we are setting a MEM, it doesn't count (its address does), but any
591 other SET_DEST that has a MEM in it is referencing the MEM. */
592 if (GET_CODE (SET_DEST (x)) == MEM)
593 {
594 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
595 return 1;
596 }
597 else if (memref_referenced_p (memref, SET_DEST (x)))
598 return 1;
599
600 return memref_referenced_p (memref, SET_SRC (x));
601
602 default:
603 break;
604 }
605
606 fmt = GET_RTX_FORMAT (code);
607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
608 switch (fmt[i])
609 {
610 case 'e':
611 if (memref_referenced_p (memref, XEXP (x, i)))
612 return 1;
613 break;
614 case 'E':
615 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
616 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
617 return 1;
618 break;
619 }
620
621 return 0;
622 }
623
624 /* TRUE if some insn in the range (START, END] references a memory location
625 that would be affected by a store to MEMREF. */
626
627 static int
628 memref_used_between_p (memref, start, end)
629 rtx memref;
630 rtx start;
631 rtx end;
632 {
633 rtx insn;
634
635 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
636 insn = NEXT_INSN (insn))
637 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
638 && memref_referenced_p (memref, PATTERN (insn)))
639 return 1;
640
641 return 0;
642 }
643 \f
644 /* Return nonzero if the rtx X is invariant over the current function. */
645 int
646 function_invariant_p (x)
647 rtx x;
648 {
649 if (CONSTANT_P (x))
650 return 1;
651 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
652 return 1;
653 if (GET_CODE (x) == PLUS
654 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
655 && CONSTANT_P (XEXP (x, 1)))
656 return 1;
657 return 0;
658 }
659
660 /* Find registers that are equivalent to a single value throughout the
661 compilation (either because they can be referenced in memory or are set once
662 from a single constant). Lower their priority for a register.
663
664 If such a register is only referenced once, try substituting its value
665 into the using insn. If it succeeds, we can eliminate the register
666 completely. */
667
668 static void
669 update_equiv_regs ()
670 {
671 /* Set when an attempt should be made to replace a register with the
672 associated reg_equiv_replacement entry at the end of this function. */
673 char *reg_equiv_replace;
674 rtx insn;
675 int block, depth;
676
677 reg_equiv_replace = (char *) xcalloc (max_regno, sizeof *reg_equiv_replace);
678 reg_equiv_init_insns = (rtx *) xcalloc (max_regno, sizeof (rtx));
679 reg_equiv_replacement = (rtx *) xcalloc (max_regno, sizeof (rtx));
680
681 init_alias_analysis ();
682
683 loop_depth = 0;
684
685 /* Scan the insns and find which registers have equivalences. Do this
686 in a separate scan of the insns because (due to -fcse-follow-jumps)
687 a register can be set below its use. */
688 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
689 {
690 rtx note;
691 rtx set;
692 rtx dest, src;
693 int regno;
694
695 if (GET_CODE (insn) == NOTE)
696 {
697 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
698 loop_depth++;
699 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
700 loop_depth--;
701 }
702
703 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
704 continue;
705
706 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
707 if (REG_NOTE_KIND (note) == REG_INC)
708 no_equiv (XEXP (note, 0), note, NULL);
709
710 set = single_set (insn);
711
712 /* If this insn contains more (or less) than a single SET,
713 only mark all destinations as having no known equivalence. */
714 if (set == 0)
715 {
716 note_stores (PATTERN (insn), no_equiv, NULL);
717 continue;
718 }
719 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
720 {
721 int i;
722
723 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
724 {
725 rtx part = XVECEXP (PATTERN (insn), 0, i);
726 if (part != set)
727 note_stores (part, no_equiv, NULL);
728 }
729 }
730
731 dest = SET_DEST (set);
732 src = SET_SRC (set);
733
734 /* If this sets a MEM to the contents of a REG that is only used
735 in a single basic block, see if the register is always equivalent
736 to that memory location and if moving the store from INSN to the
737 insn that set REG is safe. If so, put a REG_EQUIV note on the
738 initializing insn.
739
740 Don't add a REG_EQUIV note if the insn already has one. The existing
741 REG_EQUIV is likely more useful than the one we are adding.
742
743 If one of the regs in the address is marked as reg_equiv_replace,
744 then we can't add this REG_EQUIV note. The reg_equiv_replace
745 optimization may move the set of this register immediately before
746 insn, which puts it after reg_equiv_init_insns[regno], and hence
747 the mention in the REG_EQUIV note would be to an uninitialized
748 pseudo. */
749 /* ????? This test isn't good enough; we might see a MEM with a use of
750 a pseudo register before we see its setting insn that will cause
751 reg_equiv_replace for that pseudo to be set.
752 Equivalences to MEMs should be made in another pass, after the
753 reg_equiv_replace information has been gathered. */
754
755 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
756 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
757 && REG_BASIC_BLOCK (regno) >= 0
758 && REG_N_SETS (regno) == 1
759 && reg_equiv_init_insns[regno] != 0
760 && reg_equiv_init_insns[regno] != const0_rtx
761 && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
762 REG_EQUIV, NULL_RTX)
763 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
764 {
765 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
766 if (validate_equiv_mem (init_insn, src, dest)
767 && ! memref_used_between_p (dest, init_insn, insn))
768 REG_NOTES (init_insn)
769 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
770 }
771
772 /* We only handle the case of a pseudo register being set
773 once, or always to the same value. */
774 /* ??? The mn10200 port breaks if we add equivalences for
775 values that need an ADDRESS_REGS register and set them equivalent
776 to a MEM of a pseudo. The actual problem is in the over-conservative
777 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
778 calculate_needs, but we traditionally work around this problem
779 here by rejecting equivalences when the destination is in a register
780 that's likely spilled. This is fragile, of course, since the
781 preferred class of a pseudo depends on all instructions that set
782 or use it. */
783
784 if (GET_CODE (dest) != REG
785 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
786 || reg_equiv_init_insns[regno] == const0_rtx
787 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
788 && GET_CODE (src) == MEM))
789 {
790 /* This might be seting a SUBREG of a pseudo, a pseudo that is
791 also set somewhere else to a constant. */
792 note_stores (set, no_equiv, NULL);
793 continue;
794 }
795 /* Don't handle the equivalence if the source is in a register
796 class that's likely to be spilled. */
797 if (GET_CODE (src) == REG
798 && REGNO (src) >= FIRST_PSEUDO_REGISTER
799 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
800 {
801 no_equiv (dest, set, NULL);
802 continue;
803 }
804
805 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
806
807 if (REG_N_SETS (regno) != 1
808 && (! note
809 || ! function_invariant_p (XEXP (note, 0))
810 || (reg_equiv_replacement[regno]
811 && ! rtx_equal_p (XEXP (note, 0),
812 reg_equiv_replacement[regno]))))
813 {
814 no_equiv (dest, set, NULL);
815 continue;
816 }
817 /* Record this insn as initializing this register. */
818 reg_equiv_init_insns[regno]
819 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
820
821 /* If this register is known to be equal to a constant, record that
822 it is always equivalent to the constant. */
823 if (note && function_invariant_p (XEXP (note, 0)))
824 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
825
826 /* If this insn introduces a "constant" register, decrease the priority
827 of that register. Record this insn if the register is only used once
828 more and the equivalence value is the same as our source.
829
830 The latter condition is checked for two reasons: First, it is an
831 indication that it may be more efficient to actually emit the insn
832 as written (if no registers are available, reload will substitute
833 the equivalence). Secondly, it avoids problems with any registers
834 dying in this insn whose death notes would be missed.
835
836 If we don't have a REG_EQUIV note, see if this insn is loading
837 a register used only in one basic block from a MEM. If so, and the
838 MEM remains unchanged for the life of the register, add a REG_EQUIV
839 note. */
840
841 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
842
843 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
844 && GET_CODE (SET_SRC (set)) == MEM
845 && validate_equiv_mem (insn, dest, SET_SRC (set)))
846 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
847 REG_NOTES (insn));
848
849 if (note)
850 {
851 int regno = REGNO (dest);
852
853 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
854 We might end up substituting the LABEL_REF for uses of the
855 pseudo here or later. That kind of transformation may turn an
856 indirect jump into a direct jump, in which case we must rerun the
857 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
858 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
859 || (GET_CODE (XEXP (note, 0)) == CONST
860 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
861 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
862 == LABEL_REF)))
863 recorded_label_ref = 1;
864
865
866 reg_equiv_replacement[regno] = XEXP (note, 0);
867
868 /* Don't mess with things live during setjmp. */
869 if (REG_LIVE_LENGTH (regno) >= 0)
870 {
871 /* Note that the statement below does not affect the priority
872 in local-alloc! */
873 REG_LIVE_LENGTH (regno) *= 2;
874
875
876 /* If the register is referenced exactly twice, meaning it is
877 set once and used once, indicate that the reference may be
878 replaced by the equivalence we computed above. If the
879 register is only used in one basic block, this can't succeed
880 or combine would have done it.
881
882 It would be nice to use "loop_depth * 2" in the compare
883 below. Unfortunately, LOOP_DEPTH need not be constant within
884 a basic block so this would be too complicated.
885
886 This case normally occurs when a parameter is read from
887 memory and then used exactly once, not in a loop. */
888
889 if (REG_N_REFS (regno) == 2
890 && REG_BASIC_BLOCK (regno) < 0
891 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
892 reg_equiv_replace[regno] = 1;
893 }
894 }
895 }
896
897 /* Now scan all regs killed in an insn to see if any of them are
898 registers only used that once. If so, see if we can replace the
899 reference with the equivalent from. If we can, delete the
900 initializing reference and this register will go away. If we
901 can't replace the reference, and the instruction is not in a
902 loop, then move the register initialization just before the use,
903 so that they are in the same basic block. */
904 block = -1;
905 depth = 0;
906 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
907 {
908 rtx link;
909
910 /* Keep track of which basic block we are in. */
911 if (block + 1 < n_basic_blocks
912 && BLOCK_HEAD (block + 1) == insn)
913 ++block;
914
915 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
916 {
917 if (GET_CODE (insn) == NOTE)
918 {
919 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
920 ++depth;
921 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
922 {
923 --depth;
924 if (depth < 0)
925 abort ();
926 }
927 }
928
929 continue;
930 }
931
932 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
933 {
934 if (REG_NOTE_KIND (link) == REG_DEAD
935 /* Make sure this insn still refers to the register. */
936 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
937 {
938 int regno = REGNO (XEXP (link, 0));
939 rtx equiv_insn;
940
941 if (! reg_equiv_replace[regno])
942 continue;
943
944 /* reg_equiv_replace[REGNO] gets set only when
945 REG_N_REFS[REGNO] is 2, i.e. the register is set
946 once and used once. (If it were only set, but not used,
947 flow would have deleted the setting insns.) Hence
948 there can only be one insn in reg_equiv_init_insns. */
949 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
950
951 if (validate_replace_rtx (regno_reg_rtx[regno],
952 reg_equiv_replacement[regno], insn))
953 {
954 remove_death (regno, insn);
955 REG_N_REFS (regno) = 0;
956 PUT_CODE (equiv_insn, NOTE);
957 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
958 NOTE_SOURCE_FILE (equiv_insn) = 0;
959 }
960 /* If we aren't in a loop, and there are no calls in
961 INSN or in the initialization of the register, then
962 move the initialization of the register to just
963 before INSN. Update the flow information. */
964 else if (depth == 0
965 && GET_CODE (equiv_insn) == INSN
966 && GET_CODE (insn) == INSN
967 && REG_BASIC_BLOCK (regno) < 0)
968 {
969 int l;
970
971 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
972 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
973 REG_NOTES (equiv_insn) = 0;
974
975 PUT_CODE (equiv_insn, NOTE);
976 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
977 NOTE_SOURCE_FILE (equiv_insn) = 0;
978
979 if (block < 0)
980 REG_BASIC_BLOCK (regno) = 0;
981 else
982 REG_BASIC_BLOCK (regno) = block;
983 REG_N_CALLS_CROSSED (regno) = 0;
984 REG_LIVE_LENGTH (regno) = 2;
985
986 if (block >= 0 && insn == BLOCK_HEAD (block))
987 BLOCK_HEAD (block) = PREV_INSN (insn);
988
989 for (l = 0; l < n_basic_blocks; l++)
990 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
991 regno);
992 }
993 }
994 }
995 }
996
997 /* Clean up. */
998 end_alias_analysis ();
999 free (reg_equiv_replace);
1000 free (reg_equiv_init_insns);
1001 free (reg_equiv_replacement);
1002 }
1003
1004 /* Mark REG as having no known equivalence.
1005 Some instructions might have been proceessed before and furnished
1006 with REG_EQUIV notes for this register; these notes will have to be
1007 removed.
1008 STORE is the piece of RTL that does the non-constant / conflicting
1009 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1010 but needs to be there because this function is called from note_stores. */
1011 static void
1012 no_equiv (reg, store, data)
1013 rtx reg, store ATTRIBUTE_UNUSED;
1014 void *data ATTRIBUTE_UNUSED;
1015 {
1016 int regno;
1017 rtx list;
1018
1019 if (GET_CODE (reg) != REG)
1020 return;
1021 regno = REGNO (reg);
1022 list = reg_equiv_init_insns[regno];
1023 if (list == const0_rtx)
1024 return;
1025 for (; list; list = XEXP (list, 1))
1026 {
1027 rtx insn = XEXP (list, 0);
1028 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1029 }
1030 reg_equiv_init_insns[regno] = const0_rtx;
1031 reg_equiv_replacement[regno] = NULL_RTX;
1032 }
1033 \f
1034 /* Allocate hard regs to the pseudo regs used only within block number B.
1035 Only the pseudos that die but once can be handled. */
1036
1037 static void
1038 block_alloc (b)
1039 int b;
1040 {
1041 register int i, q;
1042 register rtx insn;
1043 rtx note;
1044 int insn_number = 0;
1045 int insn_count = 0;
1046 int max_uid = get_max_uid ();
1047 int *qty_order;
1048 int no_conflict_combined_regno = -1;
1049
1050 /* Count the instructions in the basic block. */
1051
1052 insn = BLOCK_END (b);
1053 while (1)
1054 {
1055 if (GET_CODE (insn) != NOTE)
1056 if (++insn_count > max_uid)
1057 abort ();
1058 if (insn == BLOCK_HEAD (b))
1059 break;
1060 insn = PREV_INSN (insn);
1061 }
1062
1063 /* +2 to leave room for a post_mark_life at the last insn and for
1064 the birth of a CLOBBER in the first insn. */
1065 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1066 sizeof (HARD_REG_SET));
1067
1068 /* Initialize table of hardware registers currently live. */
1069
1070 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1071
1072 /* This loop scans the instructions of the basic block
1073 and assigns quantities to registers.
1074 It computes which registers to tie. */
1075
1076 insn = BLOCK_HEAD (b);
1077 while (1)
1078 {
1079 if (GET_CODE (insn) != NOTE)
1080 insn_number++;
1081
1082 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1083 {
1084 register rtx link, set;
1085 register int win = 0;
1086 register rtx r0, r1 = NULL_RTX;
1087 int combined_regno = -1;
1088 int i;
1089
1090 this_insn_number = insn_number;
1091 this_insn = insn;
1092
1093 extract_insn (insn);
1094 which_alternative = -1;
1095
1096 /* Is this insn suitable for tying two registers?
1097 If so, try doing that.
1098 Suitable insns are those with at least two operands and where
1099 operand 0 is an output that is a register that is not
1100 earlyclobber.
1101
1102 We can tie operand 0 with some operand that dies in this insn.
1103 First look for operands that are required to be in the same
1104 register as operand 0. If we find such, only try tying that
1105 operand or one that can be put into that operand if the
1106 operation is commutative. If we don't find an operand
1107 that is required to be in the same register as operand 0,
1108 we can tie with any operand.
1109
1110 Subregs in place of regs are also ok.
1111
1112 If tying is done, WIN is set nonzero. */
1113
1114 if (optimize
1115 && recog_data.n_operands > 1
1116 && recog_data.constraints[0][0] == '='
1117 && recog_data.constraints[0][1] != '&')
1118 {
1119 /* If non-negative, is an operand that must match operand 0. */
1120 int must_match_0 = -1;
1121 /* Counts number of alternatives that require a match with
1122 operand 0. */
1123 int n_matching_alts = 0;
1124
1125 for (i = 1; i < recog_data.n_operands; i++)
1126 {
1127 const char *p = recog_data.constraints[i];
1128 int this_match = (requires_inout (p));
1129
1130 n_matching_alts += this_match;
1131 if (this_match == recog_data.n_alternatives)
1132 must_match_0 = i;
1133 }
1134
1135 r0 = recog_data.operand[0];
1136 for (i = 1; i < recog_data.n_operands; i++)
1137 {
1138 /* Skip this operand if we found an operand that
1139 must match operand 0 and this operand isn't it
1140 and can't be made to be it by commutativity. */
1141
1142 if (must_match_0 >= 0 && i != must_match_0
1143 && ! (i == must_match_0 + 1
1144 && recog_data.constraints[i-1][0] == '%')
1145 && ! (i == must_match_0 - 1
1146 && recog_data.constraints[i][0] == '%'))
1147 continue;
1148
1149 /* Likewise if each alternative has some operand that
1150 must match operand zero. In that case, skip any
1151 operand that doesn't list operand 0 since we know that
1152 the operand always conflicts with operand 0. We
1153 ignore commutatity in this case to keep things simple. */
1154 if (n_matching_alts == recog_data.n_alternatives
1155 && 0 == requires_inout (recog_data.constraints[i]))
1156 continue;
1157
1158 r1 = recog_data.operand[i];
1159
1160 /* If the operand is an address, find a register in it.
1161 There may be more than one register, but we only try one
1162 of them. */
1163 if (recog_data.constraints[i][0] == 'p')
1164 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1165 r1 = XEXP (r1, 0);
1166
1167 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1168 {
1169 /* We have two priorities for hard register preferences.
1170 If we have a move insn or an insn whose first input
1171 can only be in the same register as the output, give
1172 priority to an equivalence found from that insn. */
1173 int may_save_copy
1174 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1175
1176 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1177 win = combine_regs (r1, r0, may_save_copy,
1178 insn_number, insn, 0);
1179 }
1180 if (win)
1181 break;
1182 }
1183 }
1184
1185 /* Recognize an insn sequence with an ultimate result
1186 which can safely overlap one of the inputs.
1187 The sequence begins with a CLOBBER of its result,
1188 and ends with an insn that copies the result to itself
1189 and has a REG_EQUAL note for an equivalent formula.
1190 That note indicates what the inputs are.
1191 The result and the input can overlap if each insn in
1192 the sequence either doesn't mention the input
1193 or has a REG_NO_CONFLICT note to inhibit the conflict.
1194
1195 We do the combining test at the CLOBBER so that the
1196 destination register won't have had a quantity number
1197 assigned, since that would prevent combining. */
1198
1199 if (optimize
1200 && GET_CODE (PATTERN (insn)) == CLOBBER
1201 && (r0 = XEXP (PATTERN (insn), 0),
1202 GET_CODE (r0) == REG)
1203 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1204 && XEXP (link, 0) != 0
1205 && GET_CODE (XEXP (link, 0)) == INSN
1206 && (set = single_set (XEXP (link, 0))) != 0
1207 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1208 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1209 NULL_RTX)) != 0)
1210 {
1211 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1212 /* Check that we have such a sequence. */
1213 && no_conflict_p (insn, r0, r1))
1214 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1215 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1216 && (r1 = XEXP (XEXP (note, 0), 0),
1217 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1218 && no_conflict_p (insn, r0, r1))
1219 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1220
1221 /* Here we care if the operation to be computed is
1222 commutative. */
1223 else if ((GET_CODE (XEXP (note, 0)) == EQ
1224 || GET_CODE (XEXP (note, 0)) == NE
1225 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1226 && (r1 = XEXP (XEXP (note, 0), 1),
1227 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1228 && no_conflict_p (insn, r0, r1))
1229 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1230
1231 /* If we did combine something, show the register number
1232 in question so that we know to ignore its death. */
1233 if (win)
1234 no_conflict_combined_regno = REGNO (r1);
1235 }
1236
1237 /* If registers were just tied, set COMBINED_REGNO
1238 to the number of the register used in this insn
1239 that was tied to the register set in this insn.
1240 This register's qty should not be "killed". */
1241
1242 if (win)
1243 {
1244 while (GET_CODE (r1) == SUBREG)
1245 r1 = SUBREG_REG (r1);
1246 combined_regno = REGNO (r1);
1247 }
1248
1249 /* Mark the death of everything that dies in this instruction,
1250 except for anything that was just combined. */
1251
1252 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1253 if (REG_NOTE_KIND (link) == REG_DEAD
1254 && GET_CODE (XEXP (link, 0)) == REG
1255 && combined_regno != REGNO (XEXP (link, 0))
1256 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1257 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1258 wipe_dead_reg (XEXP (link, 0), 0);
1259
1260 /* Allocate qty numbers for all registers local to this block
1261 that are born (set) in this instruction.
1262 A pseudo that already has a qty is not changed. */
1263
1264 note_stores (PATTERN (insn), reg_is_set, NULL);
1265
1266 /* If anything is set in this insn and then unused, mark it as dying
1267 after this insn, so it will conflict with our outputs. This
1268 can't match with something that combined, and it doesn't matter
1269 if it did. Do this after the calls to reg_is_set since these
1270 die after, not during, the current insn. */
1271
1272 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1273 if (REG_NOTE_KIND (link) == REG_UNUSED
1274 && GET_CODE (XEXP (link, 0)) == REG)
1275 wipe_dead_reg (XEXP (link, 0), 1);
1276
1277 /* If this is an insn that has a REG_RETVAL note pointing at a
1278 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1279 block, so clear any register number that combined within it. */
1280 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1281 && GET_CODE (XEXP (note, 0)) == INSN
1282 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1283 no_conflict_combined_regno = -1;
1284 }
1285
1286 /* Set the registers live after INSN_NUMBER. Note that we never
1287 record the registers live before the block's first insn, since no
1288 pseudos we care about are live before that insn. */
1289
1290 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1291 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1292
1293 if (insn == BLOCK_END (b))
1294 break;
1295
1296 insn = NEXT_INSN (insn);
1297 }
1298
1299 /* Now every register that is local to this basic block
1300 should have been given a quantity, or else -1 meaning ignore it.
1301 Every quantity should have a known birth and death.
1302
1303 Order the qtys so we assign them registers in order of the
1304 number of suggested registers they need so we allocate those with
1305 the most restrictive needs first. */
1306
1307 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1308 for (i = 0; i < next_qty; i++)
1309 qty_order[i] = i;
1310
1311 #define EXCHANGE(I1, I2) \
1312 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1313
1314 switch (next_qty)
1315 {
1316 case 3:
1317 /* Make qty_order[2] be the one to allocate last. */
1318 if (qty_sugg_compare (0, 1) > 0)
1319 EXCHANGE (0, 1);
1320 if (qty_sugg_compare (1, 2) > 0)
1321 EXCHANGE (2, 1);
1322
1323 /* ... Fall through ... */
1324 case 2:
1325 /* Put the best one to allocate in qty_order[0]. */
1326 if (qty_sugg_compare (0, 1) > 0)
1327 EXCHANGE (0, 1);
1328
1329 /* ... Fall through ... */
1330
1331 case 1:
1332 case 0:
1333 /* Nothing to do here. */
1334 break;
1335
1336 default:
1337 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1338 }
1339
1340 /* Try to put each quantity in a suggested physical register, if it has one.
1341 This may cause registers to be allocated that otherwise wouldn't be, but
1342 this seems acceptable in local allocation (unlike global allocation). */
1343 for (i = 0; i < next_qty; i++)
1344 {
1345 q = qty_order[i];
1346 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1347 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1348 0, 1, qty[q].birth, qty[q].death);
1349 else
1350 qty[q].phys_reg = -1;
1351 }
1352
1353 /* Order the qtys so we assign them registers in order of
1354 decreasing length of life. Normally call qsort, but if we
1355 have only a very small number of quantities, sort them ourselves. */
1356
1357 for (i = 0; i < next_qty; i++)
1358 qty_order[i] = i;
1359
1360 #define EXCHANGE(I1, I2) \
1361 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1362
1363 switch (next_qty)
1364 {
1365 case 3:
1366 /* Make qty_order[2] be the one to allocate last. */
1367 if (qty_compare (0, 1) > 0)
1368 EXCHANGE (0, 1);
1369 if (qty_compare (1, 2) > 0)
1370 EXCHANGE (2, 1);
1371
1372 /* ... Fall through ... */
1373 case 2:
1374 /* Put the best one to allocate in qty_order[0]. */
1375 if (qty_compare (0, 1) > 0)
1376 EXCHANGE (0, 1);
1377
1378 /* ... Fall through ... */
1379
1380 case 1:
1381 case 0:
1382 /* Nothing to do here. */
1383 break;
1384
1385 default:
1386 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1387 }
1388
1389 /* Now for each qty that is not a hardware register,
1390 look for a hardware register to put it in.
1391 First try the register class that is cheapest for this qty,
1392 if there is more than one class. */
1393
1394 for (i = 0; i < next_qty; i++)
1395 {
1396 q = qty_order[i];
1397 if (qty[q].phys_reg < 0)
1398 {
1399 #ifdef INSN_SCHEDULING
1400 /* These values represent the adjusted lifetime of a qty so
1401 that it conflicts with qtys which appear near the start/end
1402 of this qty's lifetime.
1403
1404 The purpose behind extending the lifetime of this qty is to
1405 discourage the register allocator from creating false
1406 dependencies.
1407
1408 The adjustment value is choosen to indicate that this qty
1409 conflicts with all the qtys in the instructions immediately
1410 before and after the lifetime of this qty.
1411
1412 Experiments have shown that higher values tend to hurt
1413 overall code performance.
1414
1415 If allocation using the extended lifetime fails we will try
1416 again with the qty's unadjusted lifetime. */
1417 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1418 int fake_death = MIN (insn_number * 2 + 1,
1419 qty[q].death + 2 - qty[q].death % 2);
1420 #endif
1421
1422 if (N_REG_CLASSES > 1)
1423 {
1424 #ifdef INSN_SCHEDULING
1425 /* We try to avoid using hard registers allocated to qtys which
1426 are born immediately after this qty or die immediately before
1427 this qty.
1428
1429 This optimization is only appropriate when we will run
1430 a scheduling pass after reload and we are not optimizing
1431 for code size. */
1432 if (flag_schedule_insns_after_reload
1433 && !optimize_size
1434 && !SMALL_REGISTER_CLASSES)
1435 {
1436
1437 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1438 qty[q].mode, q, 0, 0,
1439 fake_birth, fake_death);
1440 if (qty[q].phys_reg >= 0)
1441 continue;
1442 }
1443 #endif
1444 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1445 qty[q].mode, q, 0, 0,
1446 qty[q].birth, qty[q].death);
1447 if (qty[q].phys_reg >= 0)
1448 continue;
1449 }
1450
1451 #ifdef INSN_SCHEDULING
1452 /* Similarly, avoid false dependencies. */
1453 if (flag_schedule_insns_after_reload
1454 && !optimize_size
1455 && !SMALL_REGISTER_CLASSES
1456 && qty[q].alternate_class != NO_REGS)
1457 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1458 qty[q].mode, q, 0, 0,
1459 fake_birth, fake_death);
1460 #endif
1461 if (qty[q].alternate_class != NO_REGS)
1462 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1463 qty[q].mode, q, 0, 0,
1464 qty[q].birth, qty[q].death);
1465 }
1466 }
1467
1468 /* Now propagate the register assignments
1469 to the pseudo regs belonging to the qtys. */
1470
1471 for (q = 0; q < next_qty; q++)
1472 if (qty[q].phys_reg >= 0)
1473 {
1474 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1475 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1476 }
1477
1478 /* Clean up. */
1479 free (regs_live_at);
1480 free (qty_order);
1481 }
1482 \f
1483 /* Compare two quantities' priority for getting real registers.
1484 We give shorter-lived quantities higher priority.
1485 Quantities with more references are also preferred, as are quantities that
1486 require multiple registers. This is the identical prioritization as
1487 done by global-alloc.
1488
1489 We used to give preference to registers with *longer* lives, but using
1490 the same algorithm in both local- and global-alloc can speed up execution
1491 of some programs by as much as a factor of three! */
1492
1493 /* Note that the quotient will never be bigger than
1494 the value of floor_log2 times the maximum number of
1495 times a register can occur in one insn (surely less than 100).
1496 Multiplying this by 10000 can't overflow.
1497 QTY_CMP_PRI is also used by qty_sugg_compare. */
1498
1499 #define QTY_CMP_PRI(q) \
1500 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1501 / (qty[q].death - qty[q].birth)) * 10000))
1502
1503 static int
1504 qty_compare (q1, q2)
1505 int q1, q2;
1506 {
1507 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1508 }
1509
1510 static int
1511 qty_compare_1 (q1p, q2p)
1512 const PTR q1p;
1513 const PTR q2p;
1514 {
1515 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1516 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1517
1518 if (tem != 0)
1519 return tem;
1520
1521 /* If qtys are equally good, sort by qty number,
1522 so that the results of qsort leave nothing to chance. */
1523 return q1 - q2;
1524 }
1525 \f
1526 /* Compare two quantities' priority for getting real registers. This version
1527 is called for quantities that have suggested hard registers. First priority
1528 goes to quantities that have copy preferences, then to those that have
1529 normal preferences. Within those groups, quantities with the lower
1530 number of preferences have the highest priority. Of those, we use the same
1531 algorithm as above. */
1532
1533 #define QTY_CMP_SUGG(q) \
1534 (qty_phys_num_copy_sugg[q] \
1535 ? qty_phys_num_copy_sugg[q] \
1536 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1537
1538 static int
1539 qty_sugg_compare (q1, q2)
1540 int q1, q2;
1541 {
1542 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1543
1544 if (tem != 0)
1545 return tem;
1546
1547 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1548 }
1549
1550 static int
1551 qty_sugg_compare_1 (q1p, q2p)
1552 const PTR q1p;
1553 const PTR q2p;
1554 {
1555 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1556 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1557
1558 if (tem != 0)
1559 return tem;
1560
1561 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1562 if (tem != 0)
1563 return tem;
1564
1565 /* If qtys are equally good, sort by qty number,
1566 so that the results of qsort leave nothing to chance. */
1567 return q1 - q2;
1568 }
1569
1570 #undef QTY_CMP_SUGG
1571 #undef QTY_CMP_PRI
1572 \f
1573 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1574 Returns 1 if have done so, or 0 if cannot.
1575
1576 Combining registers means marking them as having the same quantity
1577 and adjusting the offsets within the quantity if either of
1578 them is a SUBREG).
1579
1580 We don't actually combine a hard reg with a pseudo; instead
1581 we just record the hard reg as the suggestion for the pseudo's quantity.
1582 If we really combined them, we could lose if the pseudo lives
1583 across an insn that clobbers the hard reg (eg, movstr).
1584
1585 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1586 there is no REG_DEAD note on INSN. This occurs during the processing
1587 of REG_NO_CONFLICT blocks.
1588
1589 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1590 SETREG or if the input and output must share a register.
1591 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1592
1593 There are elaborate checks for the validity of combining. */
1594
1595
1596 static int
1597 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1598 rtx usedreg, setreg;
1599 int may_save_copy;
1600 int insn_number;
1601 rtx insn;
1602 int already_dead;
1603 {
1604 register int ureg, sreg;
1605 register int offset = 0;
1606 int usize, ssize;
1607 register int sqty;
1608
1609 /* Determine the numbers and sizes of registers being used. If a subreg
1610 is present that does not change the entire register, don't consider
1611 this a copy insn. */
1612
1613 while (GET_CODE (usedreg) == SUBREG)
1614 {
1615 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1616 may_save_copy = 0;
1617 offset += SUBREG_WORD (usedreg);
1618 usedreg = SUBREG_REG (usedreg);
1619 }
1620 if (GET_CODE (usedreg) != REG)
1621 return 0;
1622 ureg = REGNO (usedreg);
1623 usize = REG_SIZE (usedreg);
1624
1625 while (GET_CODE (setreg) == SUBREG)
1626 {
1627 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1628 may_save_copy = 0;
1629 offset -= SUBREG_WORD (setreg);
1630 setreg = SUBREG_REG (setreg);
1631 }
1632 if (GET_CODE (setreg) != REG)
1633 return 0;
1634 sreg = REGNO (setreg);
1635 ssize = REG_SIZE (setreg);
1636
1637 /* If UREG is a pseudo-register that hasn't already been assigned a
1638 quantity number, it means that it is not local to this block or dies
1639 more than once. In either event, we can't do anything with it. */
1640 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1641 /* Do not combine registers unless one fits within the other. */
1642 || (offset > 0 && usize + offset > ssize)
1643 || (offset < 0 && usize + offset < ssize)
1644 /* Do not combine with a smaller already-assigned object
1645 if that smaller object is already combined with something bigger. */
1646 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1647 && usize < qty[reg_qty[ureg]].size)
1648 /* Can't combine if SREG is not a register we can allocate. */
1649 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1650 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1651 These have already been taken care of. This probably wouldn't
1652 combine anyway, but don't take any chances. */
1653 || (ureg >= FIRST_PSEUDO_REGISTER
1654 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1655 /* Don't tie something to itself. In most cases it would make no
1656 difference, but it would screw up if the reg being tied to itself
1657 also dies in this insn. */
1658 || ureg == sreg
1659 /* Don't try to connect two different hardware registers. */
1660 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1661 /* Don't use a hard reg that might be spilled. */
1662 || (ureg < FIRST_PSEUDO_REGISTER
1663 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1664 || (sreg < FIRST_PSEUDO_REGISTER
1665 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1666 /* Don't connect two different machine modes if they have different
1667 implications as to which registers may be used. */
1668 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1669 return 0;
1670
1671 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1672 qty_phys_sugg for the pseudo instead of tying them.
1673
1674 Return "failure" so that the lifespan of UREG is terminated here;
1675 that way the two lifespans will be disjoint and nothing will prevent
1676 the pseudo reg from being given this hard reg. */
1677
1678 if (ureg < FIRST_PSEUDO_REGISTER)
1679 {
1680 /* Allocate a quantity number so we have a place to put our
1681 suggestions. */
1682 if (reg_qty[sreg] == -2)
1683 reg_is_born (setreg, 2 * insn_number);
1684
1685 if (reg_qty[sreg] >= 0)
1686 {
1687 if (may_save_copy
1688 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1689 {
1690 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1691 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1692 }
1693 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1694 {
1695 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1696 qty_phys_num_sugg[reg_qty[sreg]]++;
1697 }
1698 }
1699 return 0;
1700 }
1701
1702 /* Similarly for SREG a hard register and UREG a pseudo register. */
1703
1704 if (sreg < FIRST_PSEUDO_REGISTER)
1705 {
1706 if (may_save_copy
1707 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1708 {
1709 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1710 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1711 }
1712 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1713 {
1714 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1715 qty_phys_num_sugg[reg_qty[ureg]]++;
1716 }
1717 return 0;
1718 }
1719
1720 /* At this point we know that SREG and UREG are both pseudos.
1721 Do nothing if SREG already has a quantity or is a register that we
1722 don't allocate. */
1723 if (reg_qty[sreg] >= -1
1724 /* If we are not going to let any regs live across calls,
1725 don't tie a call-crossing reg to a non-call-crossing reg. */
1726 || (current_function_has_nonlocal_label
1727 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1728 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1729 return 0;
1730
1731 /* We don't already know about SREG, so tie it to UREG
1732 if this is the last use of UREG, provided the classes they want
1733 are compatible. */
1734
1735 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1736 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1737 {
1738 /* Add SREG to UREG's quantity. */
1739 sqty = reg_qty[ureg];
1740 reg_qty[sreg] = sqty;
1741 reg_offset[sreg] = reg_offset[ureg] + offset;
1742 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1743 qty[sqty].first_reg = sreg;
1744
1745 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1746 update_qty_class (sqty, sreg);
1747
1748 /* Update info about quantity SQTY. */
1749 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1750 qty[sqty].n_refs += REG_N_REFS (sreg);
1751 if (usize < ssize)
1752 {
1753 register int i;
1754
1755 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1756 reg_offset[i] -= offset;
1757
1758 qty[sqty].size = ssize;
1759 qty[sqty].mode = GET_MODE (setreg);
1760 }
1761 }
1762 else
1763 return 0;
1764
1765 return 1;
1766 }
1767 \f
1768 /* Return 1 if the preferred class of REG allows it to be tied
1769 to a quantity or register whose class is CLASS.
1770 True if REG's reg class either contains or is contained in CLASS. */
1771
1772 static int
1773 reg_meets_class_p (reg, class)
1774 int reg;
1775 enum reg_class class;
1776 {
1777 register enum reg_class rclass = reg_preferred_class (reg);
1778 return (reg_class_subset_p (rclass, class)
1779 || reg_class_subset_p (class, rclass));
1780 }
1781
1782 /* Update the class of QTYNO assuming that REG is being tied to it. */
1783
1784 static void
1785 update_qty_class (qtyno, reg)
1786 int qtyno;
1787 int reg;
1788 {
1789 enum reg_class rclass = reg_preferred_class (reg);
1790 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1791 qty[qtyno].min_class = rclass;
1792
1793 rclass = reg_alternate_class (reg);
1794 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1795 qty[qtyno].alternate_class = rclass;
1796
1797 if (REG_CHANGES_SIZE (reg))
1798 qty[qtyno].changes_size = 1;
1799 }
1800 \f
1801 /* Handle something which alters the value of an rtx REG.
1802
1803 REG is whatever is set or clobbered. SETTER is the rtx that
1804 is modifying the register.
1805
1806 If it is not really a register, we do nothing.
1807 The file-global variables `this_insn' and `this_insn_number'
1808 carry info from `block_alloc'. */
1809
1810 static void
1811 reg_is_set (reg, setter, data)
1812 rtx reg;
1813 rtx setter;
1814 void *data ATTRIBUTE_UNUSED;
1815 {
1816 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1817 a hard register. These may actually not exist any more. */
1818
1819 if (GET_CODE (reg) != SUBREG
1820 && GET_CODE (reg) != REG)
1821 return;
1822
1823 /* Mark this register as being born. If it is used in a CLOBBER, mark
1824 it as being born halfway between the previous insn and this insn so that
1825 it conflicts with our inputs but not the outputs of the previous insn. */
1826
1827 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1828 }
1829 \f
1830 /* Handle beginning of the life of register REG.
1831 BIRTH is the index at which this is happening. */
1832
1833 static void
1834 reg_is_born (reg, birth)
1835 rtx reg;
1836 int birth;
1837 {
1838 register int regno;
1839
1840 if (GET_CODE (reg) == SUBREG)
1841 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1842 else
1843 regno = REGNO (reg);
1844
1845 if (regno < FIRST_PSEUDO_REGISTER)
1846 {
1847 mark_life (regno, GET_MODE (reg), 1);
1848
1849 /* If the register was to have been born earlier that the present
1850 insn, mark it as live where it is actually born. */
1851 if (birth < 2 * this_insn_number)
1852 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1853 }
1854 else
1855 {
1856 if (reg_qty[regno] == -2)
1857 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1858
1859 /* If this register has a quantity number, show that it isn't dead. */
1860 if (reg_qty[regno] >= 0)
1861 qty[reg_qty[regno]].death = -1;
1862 }
1863 }
1864
1865 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1866 REG is an output that is dying (i.e., it is never used), otherwise it
1867 is an input (the normal case).
1868 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1869
1870 static void
1871 wipe_dead_reg (reg, output_p)
1872 register rtx reg;
1873 int output_p;
1874 {
1875 register int regno = REGNO (reg);
1876
1877 /* If this insn has multiple results,
1878 and the dead reg is used in one of the results,
1879 extend its life to after this insn,
1880 so it won't get allocated together with any other result of this insn.
1881
1882 It is unsafe to use !single_set here since it will ignore an unused
1883 output. Just because an output is unused does not mean the compiler
1884 can assume the side effect will not occur. Consider if REG appears
1885 in the address of an output and we reload the output. If we allocate
1886 REG to the same hard register as an unused output we could set the hard
1887 register before the output reload insn. */
1888 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1889 && multiple_sets (this_insn))
1890 {
1891 int i;
1892 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1893 {
1894 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1895 if (GET_CODE (set) == SET
1896 && GET_CODE (SET_DEST (set)) != REG
1897 && !rtx_equal_p (reg, SET_DEST (set))
1898 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1899 output_p = 1;
1900 }
1901 }
1902
1903 /* If this register is used in an auto-increment address, then extend its
1904 life to after this insn, so that it won't get allocated together with
1905 the result of this insn. */
1906 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1907 output_p = 1;
1908
1909 if (regno < FIRST_PSEUDO_REGISTER)
1910 {
1911 mark_life (regno, GET_MODE (reg), 0);
1912
1913 /* If a hard register is dying as an output, mark it as in use at
1914 the beginning of this insn (the above statement would cause this
1915 not to happen). */
1916 if (output_p)
1917 post_mark_life (regno, GET_MODE (reg), 1,
1918 2 * this_insn_number, 2 * this_insn_number+ 1);
1919 }
1920
1921 else if (reg_qty[regno] >= 0)
1922 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
1923 }
1924 \f
1925 /* Find a block of SIZE words of hard regs in reg_class CLASS
1926 that can hold something of machine-mode MODE
1927 (but actually we test only the first of the block for holding MODE)
1928 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1929 and return the number of the first of them.
1930 Return -1 if such a block cannot be found.
1931 If QTYNO crosses calls, insist on a register preserved by calls,
1932 unless ACCEPT_CALL_CLOBBERED is nonzero.
1933
1934 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1935 register is available. If not, return -1. */
1936
1937 static int
1938 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
1939 born_index, dead_index)
1940 enum reg_class class;
1941 enum machine_mode mode;
1942 int qtyno;
1943 int accept_call_clobbered;
1944 int just_try_suggested;
1945 int born_index, dead_index;
1946 {
1947 register int i, ins;
1948 #ifdef HARD_REG_SET
1949 register /* Declare it register if it's a scalar. */
1950 #endif
1951 HARD_REG_SET used, first_used;
1952 #ifdef ELIMINABLE_REGS
1953 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1954 #endif
1955
1956 /* Validate our parameters. */
1957 if (born_index < 0 || born_index > dead_index)
1958 abort ();
1959
1960 /* Don't let a pseudo live in a reg across a function call
1961 if we might get a nonlocal goto. */
1962 if (current_function_has_nonlocal_label
1963 && qty[qtyno].n_calls_crossed > 0)
1964 return -1;
1965
1966 if (accept_call_clobbered)
1967 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1968 else if (qty[qtyno].n_calls_crossed == 0)
1969 COPY_HARD_REG_SET (used, fixed_reg_set);
1970 else
1971 COPY_HARD_REG_SET (used, call_used_reg_set);
1972
1973 if (accept_call_clobbered)
1974 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1975
1976 for (ins = born_index; ins < dead_index; ins++)
1977 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1978
1979 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1980
1981 /* Don't use the frame pointer reg in local-alloc even if
1982 we may omit the frame pointer, because if we do that and then we
1983 need a frame pointer, reload won't know how to move the pseudo
1984 to another hard reg. It can move only regs made by global-alloc.
1985
1986 This is true of any register that can be eliminated. */
1987 #ifdef ELIMINABLE_REGS
1988 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1989 SET_HARD_REG_BIT (used, eliminables[i].from);
1990 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1991 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1992 that it might be eliminated into. */
1993 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1994 #endif
1995 #else
1996 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1997 #endif
1998
1999 #ifdef CLASS_CANNOT_CHANGE_SIZE
2000 if (qty[qtyno].changes_size)
2001 IOR_HARD_REG_SET (used,
2002 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2003 #endif
2004
2005 /* Normally, the registers that can be used for the first register in
2006 a multi-register quantity are the same as those that can be used for
2007 subsequent registers. However, if just trying suggested registers,
2008 restrict our consideration to them. If there are copy-suggested
2009 register, try them. Otherwise, try the arithmetic-suggested
2010 registers. */
2011 COPY_HARD_REG_SET (first_used, used);
2012
2013 if (just_try_suggested)
2014 {
2015 if (qty_phys_num_copy_sugg[qtyno] != 0)
2016 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2017 else
2018 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2019 }
2020
2021 /* If all registers are excluded, we can't do anything. */
2022 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2023
2024 /* If at least one would be suitable, test each hard reg. */
2025
2026 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2027 {
2028 #ifdef REG_ALLOC_ORDER
2029 int regno = reg_alloc_order[i];
2030 #else
2031 int regno = i;
2032 #endif
2033 if (! TEST_HARD_REG_BIT (first_used, regno)
2034 && HARD_REGNO_MODE_OK (regno, mode)
2035 && (qty[qtyno].n_calls_crossed == 0
2036 || accept_call_clobbered
2037 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2038 {
2039 register int j;
2040 register int size1 = HARD_REGNO_NREGS (regno, mode);
2041 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2042 if (j == size1)
2043 {
2044 /* Mark that this register is in use between its birth and death
2045 insns. */
2046 post_mark_life (regno, mode, 1, born_index, dead_index);
2047 return regno;
2048 }
2049 #ifndef REG_ALLOC_ORDER
2050 i += j; /* Skip starting points we know will lose */
2051 #endif
2052 }
2053 }
2054
2055 fail:
2056
2057 /* If we are just trying suggested register, we have just tried copy-
2058 suggested registers, and there are arithmetic-suggested registers,
2059 try them. */
2060
2061 /* If it would be profitable to allocate a call-clobbered register
2062 and save and restore it around calls, do that. */
2063 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2064 && qty_phys_num_sugg[qtyno] != 0)
2065 {
2066 /* Don't try the copy-suggested regs again. */
2067 qty_phys_num_copy_sugg[qtyno] = 0;
2068 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2069 born_index, dead_index);
2070 }
2071
2072 /* We need not check to see if the current function has nonlocal
2073 labels because we don't put any pseudos that are live over calls in
2074 registers in that case. */
2075
2076 if (! accept_call_clobbered
2077 && flag_caller_saves
2078 && ! just_try_suggested
2079 && qty[qtyno].n_calls_crossed != 0
2080 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs, qty[qtyno].n_calls_crossed))
2081 {
2082 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2083 if (i >= 0)
2084 caller_save_needed = 1;
2085 return i;
2086 }
2087 return -1;
2088 }
2089 \f
2090 /* Mark that REGNO with machine-mode MODE is live starting from the current
2091 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2092 is zero). */
2093
2094 static void
2095 mark_life (regno, mode, life)
2096 register int regno;
2097 enum machine_mode mode;
2098 int life;
2099 {
2100 register int j = HARD_REGNO_NREGS (regno, mode);
2101 if (life)
2102 while (--j >= 0)
2103 SET_HARD_REG_BIT (regs_live, regno + j);
2104 else
2105 while (--j >= 0)
2106 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2107 }
2108
2109 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2110 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2111 to insn number DEATH (exclusive). */
2112
2113 static void
2114 post_mark_life (regno, mode, life, birth, death)
2115 int regno;
2116 enum machine_mode mode;
2117 int life, birth, death;
2118 {
2119 register int j = HARD_REGNO_NREGS (regno, mode);
2120 #ifdef HARD_REG_SET
2121 register /* Declare it register if it's a scalar. */
2122 #endif
2123 HARD_REG_SET this_reg;
2124
2125 CLEAR_HARD_REG_SET (this_reg);
2126 while (--j >= 0)
2127 SET_HARD_REG_BIT (this_reg, regno + j);
2128
2129 if (life)
2130 while (birth < death)
2131 {
2132 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2133 birth++;
2134 }
2135 else
2136 while (birth < death)
2137 {
2138 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2139 birth++;
2140 }
2141 }
2142 \f
2143 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2144 is the register being clobbered, and R1 is a register being used in
2145 the equivalent expression.
2146
2147 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2148 in which it is used, return 1.
2149
2150 Otherwise, return 0. */
2151
2152 static int
2153 no_conflict_p (insn, r0, r1)
2154 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2155 {
2156 int ok = 0;
2157 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2158 rtx p, last;
2159
2160 /* If R1 is a hard register, return 0 since we handle this case
2161 when we scan the insns that actually use it. */
2162
2163 if (note == 0
2164 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2165 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2166 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2167 return 0;
2168
2169 last = XEXP (note, 0);
2170
2171 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2172 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2173 {
2174 if (find_reg_note (p, REG_DEAD, r1))
2175 ok = 1;
2176
2177 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2178 some earlier optimization pass has inserted instructions into
2179 the sequence, and it is not safe to perform this optimization.
2180 Note that emit_no_conflict_block always ensures that this is
2181 true when these sequences are created. */
2182 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2183 return 0;
2184 }
2185
2186 return ok;
2187 }
2188 \f
2189 /* Return the number of alternatives for which the constraint string P
2190 indicates that the operand must be equal to operand 0 and that no register
2191 is acceptable. */
2192
2193 static int
2194 requires_inout (p)
2195 const char *p;
2196 {
2197 char c;
2198 int found_zero = 0;
2199 int reg_allowed = 0;
2200 int num_matching_alts = 0;
2201
2202 while ((c = *p++))
2203 switch (c)
2204 {
2205 case '=': case '+': case '?':
2206 case '#': case '&': case '!':
2207 case '*': case '%':
2208 case '1': case '2': case '3': case '4': case '5':
2209 case '6': case '7': case '8': case '9':
2210 case 'm': case '<': case '>': case 'V': case 'o':
2211 case 'E': case 'F': case 'G': case 'H':
2212 case 's': case 'i': case 'n':
2213 case 'I': case 'J': case 'K': case 'L':
2214 case 'M': case 'N': case 'O': case 'P':
2215 #ifdef EXTRA_CONSTRAINT
2216 case 'Q': case 'R': case 'S': case 'T': case 'U':
2217 #endif
2218 case 'X':
2219 /* These don't say anything we care about. */
2220 break;
2221
2222 case ',':
2223 if (found_zero && ! reg_allowed)
2224 num_matching_alts++;
2225
2226 found_zero = reg_allowed = 0;
2227 break;
2228
2229 case '0':
2230 found_zero = 1;
2231 break;
2232
2233 case 'p':
2234 case 'g': case 'r':
2235 default:
2236 reg_allowed = 1;
2237 break;
2238 }
2239
2240 if (found_zero && ! reg_allowed)
2241 num_matching_alts++;
2242
2243 return num_matching_alts;
2244 }
2245 \f
2246 void
2247 dump_local_alloc (file)
2248 FILE *file;
2249 {
2250 register int i;
2251 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2252 if (reg_renumber[i] != -1)
2253 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2254 }