c-lex.c (cb_leave_file): Harmonize conditions and order of statements to those of...
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* Information we maitain about each quantity. */
82 struct qty
83 {
84 /* The number of refs to quantity Q. */
85
86 int n_refs;
87
88 /* Insn number (counting from head of basic block)
89 where quantity Q was born. -1 if birth has not been recorded. */
90
91 int birth;
92
93 /* Insn number (counting from head of basic block)
94 where given quantity died. Due to the way tying is done,
95 and the fact that we consider in this pass only regs that die but once,
96 a quantity can die only once. Each quantity's life span
97 is a set of consecutive insns. -1 if death has not been recorded. */
98
99 int death;
100
101 /* Number of words needed to hold the data in given quantity.
102 This depends on its machine mode. It is used for these purposes:
103 1. It is used in computing the relative importances of qtys,
104 which determines the order in which we look for regs for them.
105 2. It is used in rules that prevent tying several registers of
106 different sizes in a way that is geometrically impossible
107 (see combine_regs). */
108
109 int size;
110
111 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
112
113 int n_calls_crossed;
114
115 /* The register number of one pseudo register whose reg_qty value is Q.
116 This register should be the head of the chain
117 maintained in reg_next_in_qty. */
118
119 int first_reg;
120
121 /* Reg class contained in (smaller than) the preferred classes of all
122 the pseudo regs that are tied in given quantity.
123 This is the preferred class for allocating that quantity. */
124
125 enum reg_class min_class;
126
127 /* Register class within which we allocate given qty if we can't get
128 its preferred class. */
129
130 enum reg_class alternate_class;
131
132 /* This holds the mode of the registers that are tied to given qty,
133 or VOIDmode if registers with differing modes are tied together. */
134
135 enum machine_mode mode;
136
137 /* the hard reg number chosen for given quantity,
138 or -1 if none was found. */
139
140 short phys_reg;
141
142 /* Nonzero if this quantity has been used in a SUBREG in some
143 way that is illegal. */
144
145 char changes_mode;
146
147 };
148
149 static struct qty *qty;
150
151 /* These fields are kept separately to speedup their clearing. */
152
153 /* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
157
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
160
161 /* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
163
164 static HARD_REG_SET *qty_phys_copy_sugg;
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
168
169 static HARD_REG_SET *qty_phys_sugg;
170
171 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
172
173 static short *qty_phys_num_copy_sugg;
174
175 /* Element Q is the number of suggested registers in qty_phys_sugg. */
176
177 static short *qty_phys_num_sugg;
178
179 /* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty->first_reg point to the head of this chain. */
182
183 static int *reg_next_in_qty;
184
185 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
189
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
196
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
199
200 static int *reg_qty;
201
202 /* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
205
206 static char *reg_offset;
207
208 /* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
214
215 short *reg_renumber;
216
217 /* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
219
220 static HARD_REG_SET regs_live;
221
222 /* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
226
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
231
232 static HARD_REG_SET *regs_live_at;
233
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number;
237 static rtx this_insn;
238
239 struct equivalence
240 {
241 /* Set when an attempt should be made to replace a register
242 with the associated src entry. */
243
244 char replace;
245
246 /* Set when a REG_EQUIV note is found or created. Use to
247 keep track of what memory accesses might be created later,
248 e.g. by reload. */
249
250 rtx replacement;
251
252 rtx src;
253
254 /* Loop depth is used to recognize equivalences which appear
255 to be present within the same loop (or in an inner loop). */
256
257 int loop_depth;
258
259 /* The list of each instruction which initializes this register. */
260
261 rtx init_insns;
262 };
263
264 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
265 structure for that register. */
266
267 static struct equivalence *reg_equiv;
268
269 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
270 static int recorded_label_ref;
271
272 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
273 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
274 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
275 static int equiv_init_varies_p PARAMS ((rtx));
276 static int equiv_init_movable_p PARAMS ((rtx, int));
277 static int contains_replace_regs PARAMS ((rtx));
278 static int memref_referenced_p PARAMS ((rtx, rtx));
279 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
280 static void update_equiv_regs PARAMS ((void));
281 static void no_equiv PARAMS ((rtx, rtx, void *));
282 static void block_alloc PARAMS ((int));
283 static int qty_sugg_compare PARAMS ((int, int));
284 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
285 static int qty_compare PARAMS ((int, int));
286 static int qty_compare_1 PARAMS ((const PTR, const PTR));
287 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
288 static int reg_meets_class_p PARAMS ((int, enum reg_class));
289 static void update_qty_class PARAMS ((int, int));
290 static void reg_is_set PARAMS ((rtx, rtx, void *));
291 static void reg_is_born PARAMS ((rtx, int));
292 static void wipe_dead_reg PARAMS ((rtx, int));
293 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
294 int, int, int, int, int));
295 static void mark_life PARAMS ((int, enum machine_mode, int));
296 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
297 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
298 static int requires_inout PARAMS ((const char *));
299 \f
300 /* Allocate a new quantity (new within current basic block)
301 for register number REGNO which is born at index BIRTH
302 within the block. MODE and SIZE are info on reg REGNO. */
303
304 static void
305 alloc_qty (regno, mode, size, birth)
306 int regno;
307 enum machine_mode mode;
308 int size, birth;
309 {
310 register int qtyno = next_qty++;
311
312 reg_qty[regno] = qtyno;
313 reg_offset[regno] = 0;
314 reg_next_in_qty[regno] = -1;
315
316 qty[qtyno].first_reg = regno;
317 qty[qtyno].size = size;
318 qty[qtyno].mode = mode;
319 qty[qtyno].birth = birth;
320 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
321 qty[qtyno].min_class = reg_preferred_class (regno);
322 qty[qtyno].alternate_class = reg_alternate_class (regno);
323 qty[qtyno].n_refs = REG_N_REFS (regno);
324 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
325 }
326 \f
327 /* Main entry point of this file. */
328
329 int
330 local_alloc ()
331 {
332 register int b, i;
333 int max_qty;
334
335 /* We need to keep track of whether or not we recorded a LABEL_REF so
336 that we know if the jump optimizer needs to be rerun. */
337 recorded_label_ref = 0;
338
339 /* Leaf functions and non-leaf functions have different needs.
340 If defined, let the machine say what kind of ordering we
341 should use. */
342 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
343 ORDER_REGS_FOR_LOCAL_ALLOC;
344 #endif
345
346 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
347 registers. */
348 update_equiv_regs ();
349
350 /* This sets the maximum number of quantities we can have. Quantity
351 numbers start at zero and we can have one for each pseudo. */
352 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
353
354 /* Allocate vectors of temporary data.
355 See the declarations of these variables, above,
356 for what they mean. */
357
358 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
359 qty_phys_copy_sugg
360 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
361 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
362 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
364
365 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
366 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
367 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
368
369 /* Allocate the reg_renumber array. */
370 allocate_reg_info (max_regno, FALSE, TRUE);
371
372 /* Determine which pseudo-registers can be allocated by local-alloc.
373 In general, these are the registers used only in a single block and
374 which only die once.
375
376 We need not be concerned with which block actually uses the register
377 since we will never see it outside that block. */
378
379 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
380 {
381 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
382 reg_qty[i] = -2;
383 else
384 reg_qty[i] = -1;
385 }
386
387 /* Force loop below to initialize entire quantity array. */
388 next_qty = max_qty;
389
390 /* Allocate each block's local registers, block by block. */
391
392 for (b = 0; b < n_basic_blocks; b++)
393 {
394 /* NEXT_QTY indicates which elements of the `qty_...'
395 vectors might need to be initialized because they were used
396 for the previous block; it is set to the entire array before
397 block 0. Initialize those, with explicit loop if there are few,
398 else with bzero and bcopy. Do not initialize vectors that are
399 explicit set by `alloc_qty'. */
400
401 if (next_qty < 6)
402 {
403 for (i = 0; i < next_qty; i++)
404 {
405 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
406 qty_phys_num_copy_sugg[i] = 0;
407 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
408 qty_phys_num_sugg[i] = 0;
409 }
410 }
411 else
412 {
413 #define CLEAR(vector) \
414 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
415
416 CLEAR (qty_phys_copy_sugg);
417 CLEAR (qty_phys_num_copy_sugg);
418 CLEAR (qty_phys_sugg);
419 CLEAR (qty_phys_num_sugg);
420 }
421
422 next_qty = 0;
423
424 block_alloc (b);
425 }
426
427 free (qty);
428 free (qty_phys_copy_sugg);
429 free (qty_phys_num_copy_sugg);
430 free (qty_phys_sugg);
431 free (qty_phys_num_sugg);
432
433 free (reg_qty);
434 free (reg_offset);
435 free (reg_next_in_qty);
436
437 return recorded_label_ref;
438 }
439 \f
440 /* Used for communication between the following two functions: contains
441 a MEM that we wish to ensure remains unchanged. */
442 static rtx equiv_mem;
443
444 /* Set nonzero if EQUIV_MEM is modified. */
445 static int equiv_mem_modified;
446
447 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
448 Called via note_stores. */
449
450 static void
451 validate_equiv_mem_from_store (dest, set, data)
452 rtx dest;
453 rtx set ATTRIBUTE_UNUSED;
454 void *data ATTRIBUTE_UNUSED;
455 {
456 if ((GET_CODE (dest) == REG
457 && reg_overlap_mentioned_p (dest, equiv_mem))
458 || (GET_CODE (dest) == MEM
459 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
460 equiv_mem_modified = 1;
461 }
462
463 /* Verify that no store between START and the death of REG invalidates
464 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
465 by storing into an overlapping memory location, or with a non-const
466 CALL_INSN.
467
468 Return 1 if MEMREF remains valid. */
469
470 static int
471 validate_equiv_mem (start, reg, memref)
472 rtx start;
473 rtx reg;
474 rtx memref;
475 {
476 rtx insn;
477 rtx note;
478
479 equiv_mem = memref;
480 equiv_mem_modified = 0;
481
482 /* If the memory reference has side effects or is volatile, it isn't a
483 valid equivalence. */
484 if (side_effects_p (memref))
485 return 0;
486
487 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
488 {
489 if (! INSN_P (insn))
490 continue;
491
492 if (find_reg_note (insn, REG_DEAD, reg))
493 return 1;
494
495 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
496 && ! CONST_CALL_P (insn))
497 return 0;
498
499 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
500
501 /* If a register mentioned in MEMREF is modified via an
502 auto-increment, we lose the equivalence. Do the same if one
503 dies; although we could extend the life, it doesn't seem worth
504 the trouble. */
505
506 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
507 if ((REG_NOTE_KIND (note) == REG_INC
508 || REG_NOTE_KIND (note) == REG_DEAD)
509 && GET_CODE (XEXP (note, 0)) == REG
510 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
511 return 0;
512 }
513
514 return 0;
515 }
516
517 /* Returns zero if X is known to be invariant. */
518
519 static int
520 equiv_init_varies_p (x)
521 rtx x;
522 {
523 register RTX_CODE code = GET_CODE (x);
524 register int i;
525 register const char *fmt;
526
527 switch (code)
528 {
529 case MEM:
530 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
531
532 case QUEUED:
533 return 1;
534
535 case CONST:
536 case CONST_INT:
537 case CONST_DOUBLE:
538 case SYMBOL_REF:
539 case LABEL_REF:
540 return 0;
541
542 case REG:
543 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x);
544
545 case ASM_OPERANDS:
546 if (MEM_VOLATILE_P (x))
547 return 1;
548
549 /* FALLTHROUGH */
550
551 default:
552 break;
553 }
554
555 fmt = GET_RTX_FORMAT (code);
556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
557 if (fmt[i] == 'e')
558 {
559 if (equiv_init_varies_p (XEXP (x, i)))
560 return 1;
561 }
562 else if (fmt[i] == 'E')
563 {
564 int j;
565 for (j = 0; j < XVECLEN (x, i); j++)
566 if (equiv_init_varies_p (XVECEXP (x, i, j)))
567 return 1;
568 }
569
570 return 0;
571 }
572
573 /* Returns non-zero if X (used to initialize register REGNO) is movable.
574 X is only movable if the registers it uses have equivalent initializations
575 which appear to be within the same loop (or in an inner loop) and movable
576 or if they are not candidates for local_alloc and don't vary. */
577
578 static int
579 equiv_init_movable_p (x, regno)
580 rtx x;
581 int regno;
582 {
583 int i, j;
584 const char *fmt;
585 enum rtx_code code = GET_CODE (x);
586
587 switch (code)
588 {
589 case SET:
590 return equiv_init_movable_p (SET_SRC (x), regno);
591
592 case CC0:
593 case CLOBBER:
594 return 0;
595
596 case PRE_INC:
597 case PRE_DEC:
598 case POST_INC:
599 case POST_DEC:
600 case PRE_MODIFY:
601 case POST_MODIFY:
602 return 0;
603
604 case REG:
605 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
606 && reg_equiv[REGNO (x)].replace)
607 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x));
608
609 case UNSPEC_VOLATILE:
610 return 0;
611
612 case ASM_OPERANDS:
613 if (MEM_VOLATILE_P (x))
614 return 0;
615
616 /* FALLTHROUGH */
617
618 default:
619 break;
620 }
621
622 fmt = GET_RTX_FORMAT (code);
623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
624 switch (fmt[i])
625 {
626 case 'e':
627 if (! equiv_init_movable_p (XEXP (x, i), regno))
628 return 0;
629 break;
630 case 'E':
631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
633 return 0;
634 break;
635 }
636
637 return 1;
638 }
639
640 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
641
642 static int
643 contains_replace_regs (x)
644 rtx x;
645 {
646 int i, j;
647 const char *fmt;
648 enum rtx_code code = GET_CODE (x);
649
650 switch (code)
651 {
652 case CONST_INT:
653 case CONST:
654 case LABEL_REF:
655 case SYMBOL_REF:
656 case CONST_DOUBLE:
657 case PC:
658 case CC0:
659 case HIGH:
660 case LO_SUM:
661 return 0;
662
663 case REG:
664 return reg_equiv[REGNO (x)].replace;
665
666 default:
667 break;
668 }
669
670 fmt = GET_RTX_FORMAT (code);
671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
672 switch (fmt[i])
673 {
674 case 'e':
675 if (contains_replace_regs (XEXP (x, i)))
676 return 1;
677 break;
678 case 'E':
679 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
680 if (contains_replace_regs (XVECEXP (x, i, j)))
681 return 1;
682 break;
683 }
684
685 return 0;
686 }
687 \f
688 /* TRUE if X references a memory location that would be affected by a store
689 to MEMREF. */
690
691 static int
692 memref_referenced_p (memref, x)
693 rtx x;
694 rtx memref;
695 {
696 int i, j;
697 const char *fmt;
698 enum rtx_code code = GET_CODE (x);
699
700 switch (code)
701 {
702 case CONST_INT:
703 case CONST:
704 case LABEL_REF:
705 case SYMBOL_REF:
706 case CONST_DOUBLE:
707 case PC:
708 case CC0:
709 case HIGH:
710 case LO_SUM:
711 return 0;
712
713 case REG:
714 return (reg_equiv[REGNO (x)].replacement
715 && memref_referenced_p (memref,
716 reg_equiv[REGNO (x)].replacement));
717
718 case MEM:
719 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
720 return 1;
721 break;
722
723 case SET:
724 /* If we are setting a MEM, it doesn't count (its address does), but any
725 other SET_DEST that has a MEM in it is referencing the MEM. */
726 if (GET_CODE (SET_DEST (x)) == MEM)
727 {
728 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
729 return 1;
730 }
731 else if (memref_referenced_p (memref, SET_DEST (x)))
732 return 1;
733
734 return memref_referenced_p (memref, SET_SRC (x));
735
736 default:
737 break;
738 }
739
740 fmt = GET_RTX_FORMAT (code);
741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
742 switch (fmt[i])
743 {
744 case 'e':
745 if (memref_referenced_p (memref, XEXP (x, i)))
746 return 1;
747 break;
748 case 'E':
749 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
750 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
751 return 1;
752 break;
753 }
754
755 return 0;
756 }
757
758 /* TRUE if some insn in the range (START, END] references a memory location
759 that would be affected by a store to MEMREF. */
760
761 static int
762 memref_used_between_p (memref, start, end)
763 rtx memref;
764 rtx start;
765 rtx end;
766 {
767 rtx insn;
768
769 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
770 insn = NEXT_INSN (insn))
771 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
772 return 1;
773
774 return 0;
775 }
776 \f
777 /* Return nonzero if the rtx X is invariant over the current function. */
778 int
779 function_invariant_p (x)
780 rtx x;
781 {
782 if (CONSTANT_P (x))
783 return 1;
784 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
785 return 1;
786 if (GET_CODE (x) == PLUS
787 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
788 && CONSTANT_P (XEXP (x, 1)))
789 return 1;
790 return 0;
791 }
792
793 /* Find registers that are equivalent to a single value throughout the
794 compilation (either because they can be referenced in memory or are set once
795 from a single constant). Lower their priority for a register.
796
797 If such a register is only referenced once, try substituting its value
798 into the using insn. If it succeeds, we can eliminate the register
799 completely. */
800
801 static void
802 update_equiv_regs ()
803 {
804 rtx insn;
805 int block;
806 int loop_depth;
807
808 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
809
810 init_alias_analysis ();
811
812 /* Scan the insns and find which registers have equivalences. Do this
813 in a separate scan of the insns because (due to -fcse-follow-jumps)
814 a register can be set below its use. */
815 loop_depth = 0;
816 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
817 {
818 rtx note;
819 rtx set;
820 rtx dest, src;
821 int regno;
822
823 if (GET_CODE (insn) == NOTE)
824 {
825 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
826 ++loop_depth;
827 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
828 {
829 if (! loop_depth)
830 abort ();
831 --loop_depth;
832 }
833 }
834
835 if (! INSN_P (insn))
836 continue;
837
838 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
839 if (REG_NOTE_KIND (note) == REG_INC)
840 no_equiv (XEXP (note, 0), note, NULL);
841
842 set = single_set (insn);
843
844 /* If this insn contains more (or less) than a single SET,
845 only mark all destinations as having no known equivalence. */
846 if (set == 0)
847 {
848 note_stores (PATTERN (insn), no_equiv, NULL);
849 continue;
850 }
851 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
852 {
853 int i;
854
855 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
856 {
857 rtx part = XVECEXP (PATTERN (insn), 0, i);
858 if (part != set)
859 note_stores (part, no_equiv, NULL);
860 }
861 }
862
863 dest = SET_DEST (set);
864 src = SET_SRC (set);
865
866 /* If this sets a MEM to the contents of a REG that is only used
867 in a single basic block, see if the register is always equivalent
868 to that memory location and if moving the store from INSN to the
869 insn that set REG is safe. If so, put a REG_EQUIV note on the
870 initializing insn.
871
872 Don't add a REG_EQUIV note if the insn already has one. The existing
873 REG_EQUIV is likely more useful than the one we are adding.
874
875 If one of the regs in the address has reg_equiv[REGNO].replace set,
876 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
877 optimization may move the set of this register immediately before
878 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
879 the mention in the REG_EQUIV note would be to an uninitialized
880 pseudo. */
881 /* ????? This test isn't good enough; we might see a MEM with a use of
882 a pseudo register before we see its setting insn that will cause
883 reg_equiv[].replace for that pseudo to be set.
884 Equivalences to MEMs should be made in another pass, after the
885 reg_equiv[].replace information has been gathered. */
886
887 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
888 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
889 && REG_BASIC_BLOCK (regno) >= 0
890 && REG_N_SETS (regno) == 1
891 && reg_equiv[regno].init_insns != 0
892 && reg_equiv[regno].init_insns != const0_rtx
893 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
894 REG_EQUIV, NULL_RTX)
895 && ! contains_replace_regs (XEXP (dest, 0)))
896 {
897 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
898 if (validate_equiv_mem (init_insn, src, dest)
899 && ! memref_used_between_p (dest, init_insn, insn))
900 REG_NOTES (init_insn)
901 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
902 }
903
904 /* We only handle the case of a pseudo register being set
905 once, or always to the same value. */
906 /* ??? The mn10200 port breaks if we add equivalences for
907 values that need an ADDRESS_REGS register and set them equivalent
908 to a MEM of a pseudo. The actual problem is in the over-conservative
909 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
910 calculate_needs, but we traditionally work around this problem
911 here by rejecting equivalences when the destination is in a register
912 that's likely spilled. This is fragile, of course, since the
913 preferred class of a pseudo depends on all instructions that set
914 or use it. */
915
916 if (GET_CODE (dest) != REG
917 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
918 || reg_equiv[regno].init_insns == const0_rtx
919 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
920 && GET_CODE (src) == MEM))
921 {
922 /* This might be seting a SUBREG of a pseudo, a pseudo that is
923 also set somewhere else to a constant. */
924 note_stores (set, no_equiv, NULL);
925 continue;
926 }
927
928 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
929
930 /* cse sometimes generates function invariants, but doesn't put a
931 REG_EQUAL note on the insn. Since this note would be redundant,
932 there's no point creating it earlier than here. */
933 if (! note && ! rtx_varies_p (src))
934 REG_NOTES (insn)
935 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
936
937 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
938 since it represents a function call */
939 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
940 note = NULL_RTX;
941
942 if (REG_N_SETS (regno) != 1
943 && (! note
944 || rtx_varies_p (XEXP (note, 0))
945 || (reg_equiv[regno].replacement
946 && ! rtx_equal_p (XEXP (note, 0),
947 reg_equiv[regno].replacement))))
948 {
949 no_equiv (dest, set, NULL);
950 continue;
951 }
952 /* Record this insn as initializing this register. */
953 reg_equiv[regno].init_insns
954 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
955
956 /* If this register is known to be equal to a constant, record that
957 it is always equivalent to the constant. */
958 if (note && ! rtx_varies_p (XEXP (note, 0)))
959 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
960
961 /* If this insn introduces a "constant" register, decrease the priority
962 of that register. Record this insn if the register is only used once
963 more and the equivalence value is the same as our source.
964
965 The latter condition is checked for two reasons: First, it is an
966 indication that it may be more efficient to actually emit the insn
967 as written (if no registers are available, reload will substitute
968 the equivalence). Secondly, it avoids problems with any registers
969 dying in this insn whose death notes would be missed.
970
971 If we don't have a REG_EQUIV note, see if this insn is loading
972 a register used only in one basic block from a MEM. If so, and the
973 MEM remains unchanged for the life of the register, add a REG_EQUIV
974 note. */
975
976 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
977
978 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
979 && GET_CODE (SET_SRC (set)) == MEM
980 && validate_equiv_mem (insn, dest, SET_SRC (set)))
981 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
982 REG_NOTES (insn));
983
984 if (note)
985 {
986 int regno = REGNO (dest);
987
988 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
989 We might end up substituting the LABEL_REF for uses of the
990 pseudo here or later. That kind of transformation may turn an
991 indirect jump into a direct jump, in which case we must rerun the
992 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
993 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
994 || (GET_CODE (XEXP (note, 0)) == CONST
995 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
996 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
997 == LABEL_REF)))
998 recorded_label_ref = 1;
999
1000 reg_equiv[regno].replacement = XEXP (note, 0);
1001 reg_equiv[regno].src = src;
1002 reg_equiv[regno].loop_depth = loop_depth;
1003
1004 /* Don't mess with things live during setjmp. */
1005 if (REG_LIVE_LENGTH (regno) >= 0)
1006 {
1007 /* Note that the statement below does not affect the priority
1008 in local-alloc! */
1009 REG_LIVE_LENGTH (regno) *= 2;
1010
1011
1012 /* If the register is referenced exactly twice, meaning it is
1013 set once and used once, indicate that the reference may be
1014 replaced by the equivalence we computed above. Do this
1015 even if the register is only used in one block so that
1016 dependencies can be handled where the last register is
1017 used in a different block (i.e. HIGH / LO_SUM sequences)
1018 and to reduce the number of registers alive across calls.
1019
1020 It would be nice to use "loop_depth * 2" in the compare
1021 below. Unfortunately, LOOP_DEPTH need not be constant within
1022 a basic block so this would be too complicated.
1023
1024 This case normally occurs when a parameter is read from
1025 memory and then used exactly once, not in a loop. */
1026
1027 if (REG_N_REFS (regno) == 2
1028 && (rtx_equal_p (XEXP (note, 0), src)
1029 || ! equiv_init_varies_p (src))
1030 && GET_CODE (insn) == INSN
1031 && equiv_init_movable_p (PATTERN (insn), regno))
1032 reg_equiv[regno].replace = 1;
1033 }
1034 }
1035 }
1036
1037 /* Now scan all regs killed in an insn to see if any of them are
1038 registers only used that once. If so, see if we can replace the
1039 reference with the equivalent from. If we can, delete the
1040 initializing reference and this register will go away. If we
1041 can't replace the reference, and the initialzing reference is
1042 within the same loop (or in an inner loop), then move the register
1043 initialization just before the use, so that they are in the same
1044 basic block.
1045
1046 Skip this optimization if loop_depth isn't initially zero since
1047 that indicates a mismatch between loop begin and loop end notes
1048 (i.e. gcc.dg/noncompile/920721-2.c). */
1049 block = n_basic_blocks - 1;
1050 for (insn = (loop_depth == 0) ? get_last_insn () : NULL_RTX;
1051 insn; insn = PREV_INSN (insn))
1052 {
1053 rtx link;
1054
1055 if (! INSN_P (insn))
1056 {
1057 if (GET_CODE (insn) == NOTE)
1058 {
1059 if (NOTE_INSN_BASIC_BLOCK_P (insn))
1060 block = NOTE_BASIC_BLOCK (insn)->index - 1;
1061 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1062 {
1063 if (! loop_depth)
1064 abort ();
1065 --loop_depth;
1066 }
1067 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1068 ++loop_depth;
1069 }
1070
1071 continue;
1072 }
1073
1074 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1075 {
1076 if (REG_NOTE_KIND (link) == REG_DEAD
1077 /* Make sure this insn still refers to the register. */
1078 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1079 {
1080 int regno = REGNO (XEXP (link, 0));
1081 rtx equiv_insn;
1082
1083 if (! reg_equiv[regno].replace
1084 || reg_equiv[regno].loop_depth < loop_depth)
1085 continue;
1086
1087 /* reg_equiv[REGNO].replace gets set only when
1088 REG_N_REFS[REGNO] is 2, i.e. the register is set
1089 once and used once. (If it were only set, but not used,
1090 flow would have deleted the setting insns.) Hence
1091 there can only be one insn in reg_equiv[REGNO].init_insns. */
1092 if (reg_equiv[regno].init_insns == NULL_RTX
1093 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1094 abort ();
1095 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1096
1097 if (asm_noperands (PATTERN (equiv_insn)) < 0
1098 && validate_replace_rtx (regno_reg_rtx[regno],
1099 reg_equiv[regno].src, insn))
1100 {
1101 rtx equiv_link;
1102 rtx last_link;
1103 rtx note;
1104
1105 /* Find the last note. */
1106 for (last_link = link; XEXP (last_link, 1);
1107 last_link = XEXP (last_link, 1))
1108 ;
1109
1110 /* Append the REG_DEAD notes from equiv_insn. */
1111 equiv_link = REG_NOTES (equiv_insn);
1112 while (equiv_link)
1113 {
1114 note = equiv_link;
1115 equiv_link = XEXP (equiv_link, 1);
1116 if (REG_NOTE_KIND (note) == REG_DEAD)
1117 {
1118 remove_note (equiv_insn, note);
1119 XEXP (last_link, 1) = note;
1120 XEXP (note, 1) = NULL_RTX;
1121 last_link = note;
1122 }
1123 }
1124
1125 remove_death (regno, insn);
1126 REG_N_REFS (regno) = 0;
1127 PUT_CODE (equiv_insn, NOTE);
1128 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1129 NOTE_SOURCE_FILE (equiv_insn) = 0;
1130
1131 reg_equiv[regno].init_insns =
1132 XEXP (reg_equiv[regno].init_insns, 1);
1133 }
1134 /* Move the initialization of the register to just before
1135 INSN. Update the flow information. */
1136 else if (PREV_INSN (insn) != equiv_insn)
1137 {
1138 int l;
1139 rtx new_insn;
1140
1141 new_insn = emit_insn_before (copy_rtx (PATTERN (equiv_insn)),
1142 insn);
1143 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
1144 REG_NOTES (equiv_insn) = 0;
1145
1146 PUT_CODE (equiv_insn, NOTE);
1147 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1148 NOTE_SOURCE_FILE (equiv_insn) = 0;
1149
1150 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1151
1152 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1153 REG_N_CALLS_CROSSED (regno) = 0;
1154 REG_LIVE_LENGTH (regno) = 2;
1155
1156 if (block >= 0 && insn == BLOCK_HEAD (block))
1157 BLOCK_HEAD (block) = PREV_INSN (insn);
1158
1159 for (l = 0; l < n_basic_blocks; l++)
1160 {
1161 CLEAR_REGNO_REG_SET (
1162 BASIC_BLOCK (l)->global_live_at_start,
1163 regno);
1164 CLEAR_REGNO_REG_SET (
1165 BASIC_BLOCK (l)->global_live_at_end,
1166 regno);
1167 }
1168 }
1169 }
1170 }
1171 }
1172
1173 /* Clean up. */
1174 end_alias_analysis ();
1175 free (reg_equiv);
1176 }
1177
1178 /* Mark REG as having no known equivalence.
1179 Some instructions might have been proceessed before and furnished
1180 with REG_EQUIV notes for this register; these notes will have to be
1181 removed.
1182 STORE is the piece of RTL that does the non-constant / conflicting
1183 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1184 but needs to be there because this function is called from note_stores. */
1185 static void
1186 no_equiv (reg, store, data)
1187 rtx reg, store ATTRIBUTE_UNUSED;
1188 void *data ATTRIBUTE_UNUSED;
1189 {
1190 int regno;
1191 rtx list;
1192
1193 if (GET_CODE (reg) != REG)
1194 return;
1195 regno = REGNO (reg);
1196 list = reg_equiv[regno].init_insns;
1197 if (list == const0_rtx)
1198 return;
1199 for (; list; list = XEXP (list, 1))
1200 {
1201 rtx insn = XEXP (list, 0);
1202 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1203 }
1204 reg_equiv[regno].init_insns = const0_rtx;
1205 reg_equiv[regno].replacement = NULL_RTX;
1206 }
1207 \f
1208 /* Allocate hard regs to the pseudo regs used only within block number B.
1209 Only the pseudos that die but once can be handled. */
1210
1211 static void
1212 block_alloc (b)
1213 int b;
1214 {
1215 register int i, q;
1216 register rtx insn;
1217 rtx note;
1218 int insn_number = 0;
1219 int insn_count = 0;
1220 int max_uid = get_max_uid ();
1221 int *qty_order;
1222 int no_conflict_combined_regno = -1;
1223
1224 /* Count the instructions in the basic block. */
1225
1226 insn = BLOCK_END (b);
1227 while (1)
1228 {
1229 if (GET_CODE (insn) != NOTE)
1230 if (++insn_count > max_uid)
1231 abort ();
1232 if (insn == BLOCK_HEAD (b))
1233 break;
1234 insn = PREV_INSN (insn);
1235 }
1236
1237 /* +2 to leave room for a post_mark_life at the last insn and for
1238 the birth of a CLOBBER in the first insn. */
1239 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1240 sizeof (HARD_REG_SET));
1241
1242 /* Initialize table of hardware registers currently live. */
1243
1244 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1245
1246 /* This loop scans the instructions of the basic block
1247 and assigns quantities to registers.
1248 It computes which registers to tie. */
1249
1250 insn = BLOCK_HEAD (b);
1251 while (1)
1252 {
1253 if (GET_CODE (insn) != NOTE)
1254 insn_number++;
1255
1256 if (INSN_P (insn))
1257 {
1258 register rtx link, set;
1259 register int win = 0;
1260 register rtx r0, r1 = NULL_RTX;
1261 int combined_regno = -1;
1262 int i;
1263
1264 this_insn_number = insn_number;
1265 this_insn = insn;
1266
1267 extract_insn (insn);
1268 which_alternative = -1;
1269
1270 /* Is this insn suitable for tying two registers?
1271 If so, try doing that.
1272 Suitable insns are those with at least two operands and where
1273 operand 0 is an output that is a register that is not
1274 earlyclobber.
1275
1276 We can tie operand 0 with some operand that dies in this insn.
1277 First look for operands that are required to be in the same
1278 register as operand 0. If we find such, only try tying that
1279 operand or one that can be put into that operand if the
1280 operation is commutative. If we don't find an operand
1281 that is required to be in the same register as operand 0,
1282 we can tie with any operand.
1283
1284 Subregs in place of regs are also ok.
1285
1286 If tying is done, WIN is set nonzero. */
1287
1288 if (optimize
1289 && recog_data.n_operands > 1
1290 && recog_data.constraints[0][0] == '='
1291 && recog_data.constraints[0][1] != '&')
1292 {
1293 /* If non-negative, is an operand that must match operand 0. */
1294 int must_match_0 = -1;
1295 /* Counts number of alternatives that require a match with
1296 operand 0. */
1297 int n_matching_alts = 0;
1298
1299 for (i = 1; i < recog_data.n_operands; i++)
1300 {
1301 const char *p = recog_data.constraints[i];
1302 int this_match = (requires_inout (p));
1303
1304 n_matching_alts += this_match;
1305 if (this_match == recog_data.n_alternatives)
1306 must_match_0 = i;
1307 }
1308
1309 r0 = recog_data.operand[0];
1310 for (i = 1; i < recog_data.n_operands; i++)
1311 {
1312 /* Skip this operand if we found an operand that
1313 must match operand 0 and this operand isn't it
1314 and can't be made to be it by commutativity. */
1315
1316 if (must_match_0 >= 0 && i != must_match_0
1317 && ! (i == must_match_0 + 1
1318 && recog_data.constraints[i-1][0] == '%')
1319 && ! (i == must_match_0 - 1
1320 && recog_data.constraints[i][0] == '%'))
1321 continue;
1322
1323 /* Likewise if each alternative has some operand that
1324 must match operand zero. In that case, skip any
1325 operand that doesn't list operand 0 since we know that
1326 the operand always conflicts with operand 0. We
1327 ignore commutatity in this case to keep things simple. */
1328 if (n_matching_alts == recog_data.n_alternatives
1329 && 0 == requires_inout (recog_data.constraints[i]))
1330 continue;
1331
1332 r1 = recog_data.operand[i];
1333
1334 /* If the operand is an address, find a register in it.
1335 There may be more than one register, but we only try one
1336 of them. */
1337 if (recog_data.constraints[i][0] == 'p')
1338 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1339 r1 = XEXP (r1, 0);
1340
1341 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1342 {
1343 /* We have two priorities for hard register preferences.
1344 If we have a move insn or an insn whose first input
1345 can only be in the same register as the output, give
1346 priority to an equivalence found from that insn. */
1347 int may_save_copy
1348 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1349
1350 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1351 win = combine_regs (r1, r0, may_save_copy,
1352 insn_number, insn, 0);
1353 }
1354 if (win)
1355 break;
1356 }
1357 }
1358
1359 /* Recognize an insn sequence with an ultimate result
1360 which can safely overlap one of the inputs.
1361 The sequence begins with a CLOBBER of its result,
1362 and ends with an insn that copies the result to itself
1363 and has a REG_EQUAL note for an equivalent formula.
1364 That note indicates what the inputs are.
1365 The result and the input can overlap if each insn in
1366 the sequence either doesn't mention the input
1367 or has a REG_NO_CONFLICT note to inhibit the conflict.
1368
1369 We do the combining test at the CLOBBER so that the
1370 destination register won't have had a quantity number
1371 assigned, since that would prevent combining. */
1372
1373 if (optimize
1374 && GET_CODE (PATTERN (insn)) == CLOBBER
1375 && (r0 = XEXP (PATTERN (insn), 0),
1376 GET_CODE (r0) == REG)
1377 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1378 && XEXP (link, 0) != 0
1379 && GET_CODE (XEXP (link, 0)) == INSN
1380 && (set = single_set (XEXP (link, 0))) != 0
1381 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1382 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1383 NULL_RTX)) != 0)
1384 {
1385 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1386 /* Check that we have such a sequence. */
1387 && no_conflict_p (insn, r0, r1))
1388 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1389 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1390 && (r1 = XEXP (XEXP (note, 0), 0),
1391 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1392 && no_conflict_p (insn, r0, r1))
1393 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1394
1395 /* Here we care if the operation to be computed is
1396 commutative. */
1397 else if ((GET_CODE (XEXP (note, 0)) == EQ
1398 || GET_CODE (XEXP (note, 0)) == NE
1399 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1400 && (r1 = XEXP (XEXP (note, 0), 1),
1401 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1402 && no_conflict_p (insn, r0, r1))
1403 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1404
1405 /* If we did combine something, show the register number
1406 in question so that we know to ignore its death. */
1407 if (win)
1408 no_conflict_combined_regno = REGNO (r1);
1409 }
1410
1411 /* If registers were just tied, set COMBINED_REGNO
1412 to the number of the register used in this insn
1413 that was tied to the register set in this insn.
1414 This register's qty should not be "killed". */
1415
1416 if (win)
1417 {
1418 while (GET_CODE (r1) == SUBREG)
1419 r1 = SUBREG_REG (r1);
1420 combined_regno = REGNO (r1);
1421 }
1422
1423 /* Mark the death of everything that dies in this instruction,
1424 except for anything that was just combined. */
1425
1426 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1427 if (REG_NOTE_KIND (link) == REG_DEAD
1428 && GET_CODE (XEXP (link, 0)) == REG
1429 && combined_regno != (int) REGNO (XEXP (link, 0))
1430 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1431 || ! find_reg_note (insn, REG_NO_CONFLICT,
1432 XEXP (link, 0))))
1433 wipe_dead_reg (XEXP (link, 0), 0);
1434
1435 /* Allocate qty numbers for all registers local to this block
1436 that are born (set) in this instruction.
1437 A pseudo that already has a qty is not changed. */
1438
1439 note_stores (PATTERN (insn), reg_is_set, NULL);
1440
1441 /* If anything is set in this insn and then unused, mark it as dying
1442 after this insn, so it will conflict with our outputs. This
1443 can't match with something that combined, and it doesn't matter
1444 if it did. Do this after the calls to reg_is_set since these
1445 die after, not during, the current insn. */
1446
1447 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1448 if (REG_NOTE_KIND (link) == REG_UNUSED
1449 && GET_CODE (XEXP (link, 0)) == REG)
1450 wipe_dead_reg (XEXP (link, 0), 1);
1451
1452 /* If this is an insn that has a REG_RETVAL note pointing at a
1453 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1454 block, so clear any register number that combined within it. */
1455 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1456 && GET_CODE (XEXP (note, 0)) == INSN
1457 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1458 no_conflict_combined_regno = -1;
1459 }
1460
1461 /* Set the registers live after INSN_NUMBER. Note that we never
1462 record the registers live before the block's first insn, since no
1463 pseudos we care about are live before that insn. */
1464
1465 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1466 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1467
1468 if (insn == BLOCK_END (b))
1469 break;
1470
1471 insn = NEXT_INSN (insn);
1472 }
1473
1474 /* Now every register that is local to this basic block
1475 should have been given a quantity, or else -1 meaning ignore it.
1476 Every quantity should have a known birth and death.
1477
1478 Order the qtys so we assign them registers in order of the
1479 number of suggested registers they need so we allocate those with
1480 the most restrictive needs first. */
1481
1482 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1483 for (i = 0; i < next_qty; i++)
1484 qty_order[i] = i;
1485
1486 #define EXCHANGE(I1, I2) \
1487 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1488
1489 switch (next_qty)
1490 {
1491 case 3:
1492 /* Make qty_order[2] be the one to allocate last. */
1493 if (qty_sugg_compare (0, 1) > 0)
1494 EXCHANGE (0, 1);
1495 if (qty_sugg_compare (1, 2) > 0)
1496 EXCHANGE (2, 1);
1497
1498 /* ... Fall through ... */
1499 case 2:
1500 /* Put the best one to allocate in qty_order[0]. */
1501 if (qty_sugg_compare (0, 1) > 0)
1502 EXCHANGE (0, 1);
1503
1504 /* ... Fall through ... */
1505
1506 case 1:
1507 case 0:
1508 /* Nothing to do here. */
1509 break;
1510
1511 default:
1512 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1513 }
1514
1515 /* Try to put each quantity in a suggested physical register, if it has one.
1516 This may cause registers to be allocated that otherwise wouldn't be, but
1517 this seems acceptable in local allocation (unlike global allocation). */
1518 for (i = 0; i < next_qty; i++)
1519 {
1520 q = qty_order[i];
1521 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1522 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1523 0, 1, qty[q].birth, qty[q].death);
1524 else
1525 qty[q].phys_reg = -1;
1526 }
1527
1528 /* Order the qtys so we assign them registers in order of
1529 decreasing length of life. Normally call qsort, but if we
1530 have only a very small number of quantities, sort them ourselves. */
1531
1532 for (i = 0; i < next_qty; i++)
1533 qty_order[i] = i;
1534
1535 #define EXCHANGE(I1, I2) \
1536 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1537
1538 switch (next_qty)
1539 {
1540 case 3:
1541 /* Make qty_order[2] be the one to allocate last. */
1542 if (qty_compare (0, 1) > 0)
1543 EXCHANGE (0, 1);
1544 if (qty_compare (1, 2) > 0)
1545 EXCHANGE (2, 1);
1546
1547 /* ... Fall through ... */
1548 case 2:
1549 /* Put the best one to allocate in qty_order[0]. */
1550 if (qty_compare (0, 1) > 0)
1551 EXCHANGE (0, 1);
1552
1553 /* ... Fall through ... */
1554
1555 case 1:
1556 case 0:
1557 /* Nothing to do here. */
1558 break;
1559
1560 default:
1561 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1562 }
1563
1564 /* Now for each qty that is not a hardware register,
1565 look for a hardware register to put it in.
1566 First try the register class that is cheapest for this qty,
1567 if there is more than one class. */
1568
1569 for (i = 0; i < next_qty; i++)
1570 {
1571 q = qty_order[i];
1572 if (qty[q].phys_reg < 0)
1573 {
1574 #ifdef INSN_SCHEDULING
1575 /* These values represent the adjusted lifetime of a qty so
1576 that it conflicts with qtys which appear near the start/end
1577 of this qty's lifetime.
1578
1579 The purpose behind extending the lifetime of this qty is to
1580 discourage the register allocator from creating false
1581 dependencies.
1582
1583 The adjustment value is choosen to indicate that this qty
1584 conflicts with all the qtys in the instructions immediately
1585 before and after the lifetime of this qty.
1586
1587 Experiments have shown that higher values tend to hurt
1588 overall code performance.
1589
1590 If allocation using the extended lifetime fails we will try
1591 again with the qty's unadjusted lifetime. */
1592 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1593 int fake_death = MIN (insn_number * 2 + 1,
1594 qty[q].death + 2 - qty[q].death % 2);
1595 #endif
1596
1597 if (N_REG_CLASSES > 1)
1598 {
1599 #ifdef INSN_SCHEDULING
1600 /* We try to avoid using hard registers allocated to qtys which
1601 are born immediately after this qty or die immediately before
1602 this qty.
1603
1604 This optimization is only appropriate when we will run
1605 a scheduling pass after reload and we are not optimizing
1606 for code size. */
1607 if (flag_schedule_insns_after_reload
1608 && !optimize_size
1609 && !SMALL_REGISTER_CLASSES)
1610 {
1611 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1612 qty[q].mode, q, 0, 0,
1613 fake_birth, fake_death);
1614 if (qty[q].phys_reg >= 0)
1615 continue;
1616 }
1617 #endif
1618 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1619 qty[q].mode, q, 0, 0,
1620 qty[q].birth, qty[q].death);
1621 if (qty[q].phys_reg >= 0)
1622 continue;
1623 }
1624
1625 #ifdef INSN_SCHEDULING
1626 /* Similarly, avoid false dependencies. */
1627 if (flag_schedule_insns_after_reload
1628 && !optimize_size
1629 && !SMALL_REGISTER_CLASSES
1630 && qty[q].alternate_class != NO_REGS)
1631 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1632 qty[q].mode, q, 0, 0,
1633 fake_birth, fake_death);
1634 #endif
1635 if (qty[q].alternate_class != NO_REGS)
1636 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1637 qty[q].mode, q, 0, 0,
1638 qty[q].birth, qty[q].death);
1639 }
1640 }
1641
1642 /* Now propagate the register assignments
1643 to the pseudo regs belonging to the qtys. */
1644
1645 for (q = 0; q < next_qty; q++)
1646 if (qty[q].phys_reg >= 0)
1647 {
1648 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1649 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1650 }
1651
1652 /* Clean up. */
1653 free (regs_live_at);
1654 free (qty_order);
1655 }
1656 \f
1657 /* Compare two quantities' priority for getting real registers.
1658 We give shorter-lived quantities higher priority.
1659 Quantities with more references are also preferred, as are quantities that
1660 require multiple registers. This is the identical prioritization as
1661 done by global-alloc.
1662
1663 We used to give preference to registers with *longer* lives, but using
1664 the same algorithm in both local- and global-alloc can speed up execution
1665 of some programs by as much as a factor of three! */
1666
1667 /* Note that the quotient will never be bigger than
1668 the value of floor_log2 times the maximum number of
1669 times a register can occur in one insn (surely less than 100).
1670 Multiplying this by 10000 can't overflow.
1671 QTY_CMP_PRI is also used by qty_sugg_compare. */
1672
1673 #define QTY_CMP_PRI(q) \
1674 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].n_refs * qty[q].size) \
1675 / (qty[q].death - qty[q].birth)) * 10000))
1676
1677 static int
1678 qty_compare (q1, q2)
1679 int q1, q2;
1680 {
1681 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1682 }
1683
1684 static int
1685 qty_compare_1 (q1p, q2p)
1686 const PTR q1p;
1687 const PTR q2p;
1688 {
1689 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1690 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1691
1692 if (tem != 0)
1693 return tem;
1694
1695 /* If qtys are equally good, sort by qty number,
1696 so that the results of qsort leave nothing to chance. */
1697 return q1 - q2;
1698 }
1699 \f
1700 /* Compare two quantities' priority for getting real registers. This version
1701 is called for quantities that have suggested hard registers. First priority
1702 goes to quantities that have copy preferences, then to those that have
1703 normal preferences. Within those groups, quantities with the lower
1704 number of preferences have the highest priority. Of those, we use the same
1705 algorithm as above. */
1706
1707 #define QTY_CMP_SUGG(q) \
1708 (qty_phys_num_copy_sugg[q] \
1709 ? qty_phys_num_copy_sugg[q] \
1710 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1711
1712 static int
1713 qty_sugg_compare (q1, q2)
1714 int q1, q2;
1715 {
1716 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1717
1718 if (tem != 0)
1719 return tem;
1720
1721 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1722 }
1723
1724 static int
1725 qty_sugg_compare_1 (q1p, q2p)
1726 const PTR q1p;
1727 const PTR q2p;
1728 {
1729 register int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1730 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1731
1732 if (tem != 0)
1733 return tem;
1734
1735 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1736 if (tem != 0)
1737 return tem;
1738
1739 /* If qtys are equally good, sort by qty number,
1740 so that the results of qsort leave nothing to chance. */
1741 return q1 - q2;
1742 }
1743
1744 #undef QTY_CMP_SUGG
1745 #undef QTY_CMP_PRI
1746 \f
1747 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1748 Returns 1 if have done so, or 0 if cannot.
1749
1750 Combining registers means marking them as having the same quantity
1751 and adjusting the offsets within the quantity if either of
1752 them is a SUBREG).
1753
1754 We don't actually combine a hard reg with a pseudo; instead
1755 we just record the hard reg as the suggestion for the pseudo's quantity.
1756 If we really combined them, we could lose if the pseudo lives
1757 across an insn that clobbers the hard reg (eg, movstr).
1758
1759 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1760 there is no REG_DEAD note on INSN. This occurs during the processing
1761 of REG_NO_CONFLICT blocks.
1762
1763 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1764 SETREG or if the input and output must share a register.
1765 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1766
1767 There are elaborate checks for the validity of combining. */
1768
1769 static int
1770 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1771 rtx usedreg, setreg;
1772 int may_save_copy;
1773 int insn_number;
1774 rtx insn;
1775 int already_dead;
1776 {
1777 register int ureg, sreg;
1778 register int offset = 0;
1779 int usize, ssize;
1780 register int sqty;
1781
1782 /* Determine the numbers and sizes of registers being used. If a subreg
1783 is present that does not change the entire register, don't consider
1784 this a copy insn. */
1785
1786 while (GET_CODE (usedreg) == SUBREG)
1787 {
1788 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1789 may_save_copy = 0;
1790 offset += SUBREG_WORD (usedreg);
1791 usedreg = SUBREG_REG (usedreg);
1792 }
1793 if (GET_CODE (usedreg) != REG)
1794 return 0;
1795 ureg = REGNO (usedreg);
1796 usize = REG_SIZE (usedreg);
1797
1798 while (GET_CODE (setreg) == SUBREG)
1799 {
1800 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1801 may_save_copy = 0;
1802 offset -= SUBREG_WORD (setreg);
1803 setreg = SUBREG_REG (setreg);
1804 }
1805 if (GET_CODE (setreg) != REG)
1806 return 0;
1807 sreg = REGNO (setreg);
1808 ssize = REG_SIZE (setreg);
1809
1810 /* If UREG is a pseudo-register that hasn't already been assigned a
1811 quantity number, it means that it is not local to this block or dies
1812 more than once. In either event, we can't do anything with it. */
1813 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1814 /* Do not combine registers unless one fits within the other. */
1815 || (offset > 0 && usize + offset > ssize)
1816 || (offset < 0 && usize + offset < ssize)
1817 /* Do not combine with a smaller already-assigned object
1818 if that smaller object is already combined with something bigger. */
1819 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1820 && usize < qty[reg_qty[ureg]].size)
1821 /* Can't combine if SREG is not a register we can allocate. */
1822 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1823 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1824 These have already been taken care of. This probably wouldn't
1825 combine anyway, but don't take any chances. */
1826 || (ureg >= FIRST_PSEUDO_REGISTER
1827 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1828 /* Don't tie something to itself. In most cases it would make no
1829 difference, but it would screw up if the reg being tied to itself
1830 also dies in this insn. */
1831 || ureg == sreg
1832 /* Don't try to connect two different hardware registers. */
1833 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1834 /* Don't connect two different machine modes if they have different
1835 implications as to which registers may be used. */
1836 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1837 return 0;
1838
1839 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1840 qty_phys_sugg for the pseudo instead of tying them.
1841
1842 Return "failure" so that the lifespan of UREG is terminated here;
1843 that way the two lifespans will be disjoint and nothing will prevent
1844 the pseudo reg from being given this hard reg. */
1845
1846 if (ureg < FIRST_PSEUDO_REGISTER)
1847 {
1848 /* Allocate a quantity number so we have a place to put our
1849 suggestions. */
1850 if (reg_qty[sreg] == -2)
1851 reg_is_born (setreg, 2 * insn_number);
1852
1853 if (reg_qty[sreg] >= 0)
1854 {
1855 if (may_save_copy
1856 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1857 {
1858 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1859 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1860 }
1861 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1862 {
1863 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1864 qty_phys_num_sugg[reg_qty[sreg]]++;
1865 }
1866 }
1867 return 0;
1868 }
1869
1870 /* Similarly for SREG a hard register and UREG a pseudo register. */
1871
1872 if (sreg < FIRST_PSEUDO_REGISTER)
1873 {
1874 if (may_save_copy
1875 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1876 {
1877 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1878 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1879 }
1880 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1881 {
1882 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1883 qty_phys_num_sugg[reg_qty[ureg]]++;
1884 }
1885 return 0;
1886 }
1887
1888 /* At this point we know that SREG and UREG are both pseudos.
1889 Do nothing if SREG already has a quantity or is a register that we
1890 don't allocate. */
1891 if (reg_qty[sreg] >= -1
1892 /* If we are not going to let any regs live across calls,
1893 don't tie a call-crossing reg to a non-call-crossing reg. */
1894 || (current_function_has_nonlocal_label
1895 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1896 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1897 return 0;
1898
1899 /* We don't already know about SREG, so tie it to UREG
1900 if this is the last use of UREG, provided the classes they want
1901 are compatible. */
1902
1903 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1904 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1905 {
1906 /* Add SREG to UREG's quantity. */
1907 sqty = reg_qty[ureg];
1908 reg_qty[sreg] = sqty;
1909 reg_offset[sreg] = reg_offset[ureg] + offset;
1910 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1911 qty[sqty].first_reg = sreg;
1912
1913 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1914 update_qty_class (sqty, sreg);
1915
1916 /* Update info about quantity SQTY. */
1917 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1918 qty[sqty].n_refs += REG_N_REFS (sreg);
1919 if (usize < ssize)
1920 {
1921 register int i;
1922
1923 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1924 reg_offset[i] -= offset;
1925
1926 qty[sqty].size = ssize;
1927 qty[sqty].mode = GET_MODE (setreg);
1928 }
1929 }
1930 else
1931 return 0;
1932
1933 return 1;
1934 }
1935 \f
1936 /* Return 1 if the preferred class of REG allows it to be tied
1937 to a quantity or register whose class is CLASS.
1938 True if REG's reg class either contains or is contained in CLASS. */
1939
1940 static int
1941 reg_meets_class_p (reg, class)
1942 int reg;
1943 enum reg_class class;
1944 {
1945 register enum reg_class rclass = reg_preferred_class (reg);
1946 return (reg_class_subset_p (rclass, class)
1947 || reg_class_subset_p (class, rclass));
1948 }
1949
1950 /* Update the class of QTYNO assuming that REG is being tied to it. */
1951
1952 static void
1953 update_qty_class (qtyno, reg)
1954 int qtyno;
1955 int reg;
1956 {
1957 enum reg_class rclass = reg_preferred_class (reg);
1958 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1959 qty[qtyno].min_class = rclass;
1960
1961 rclass = reg_alternate_class (reg);
1962 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1963 qty[qtyno].alternate_class = rclass;
1964
1965 if (REG_CHANGES_MODE (reg))
1966 qty[qtyno].changes_mode = 1;
1967 }
1968 \f
1969 /* Handle something which alters the value of an rtx REG.
1970
1971 REG is whatever is set or clobbered. SETTER is the rtx that
1972 is modifying the register.
1973
1974 If it is not really a register, we do nothing.
1975 The file-global variables `this_insn' and `this_insn_number'
1976 carry info from `block_alloc'. */
1977
1978 static void
1979 reg_is_set (reg, setter, data)
1980 rtx reg;
1981 rtx setter;
1982 void *data ATTRIBUTE_UNUSED;
1983 {
1984 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1985 a hard register. These may actually not exist any more. */
1986
1987 if (GET_CODE (reg) != SUBREG
1988 && GET_CODE (reg) != REG)
1989 return;
1990
1991 /* Mark this register as being born. If it is used in a CLOBBER, mark
1992 it as being born halfway between the previous insn and this insn so that
1993 it conflicts with our inputs but not the outputs of the previous insn. */
1994
1995 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1996 }
1997 \f
1998 /* Handle beginning of the life of register REG.
1999 BIRTH is the index at which this is happening. */
2000
2001 static void
2002 reg_is_born (reg, birth)
2003 rtx reg;
2004 int birth;
2005 {
2006 register int regno;
2007
2008 if (GET_CODE (reg) == SUBREG)
2009 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
2010 else
2011 regno = REGNO (reg);
2012
2013 if (regno < FIRST_PSEUDO_REGISTER)
2014 {
2015 mark_life (regno, GET_MODE (reg), 1);
2016
2017 /* If the register was to have been born earlier that the present
2018 insn, mark it as live where it is actually born. */
2019 if (birth < 2 * this_insn_number)
2020 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2021 }
2022 else
2023 {
2024 if (reg_qty[regno] == -2)
2025 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2026
2027 /* If this register has a quantity number, show that it isn't dead. */
2028 if (reg_qty[regno] >= 0)
2029 qty[reg_qty[regno]].death = -1;
2030 }
2031 }
2032
2033 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2034 REG is an output that is dying (i.e., it is never used), otherwise it
2035 is an input (the normal case).
2036 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2037
2038 static void
2039 wipe_dead_reg (reg, output_p)
2040 register rtx reg;
2041 int output_p;
2042 {
2043 register int regno = REGNO (reg);
2044
2045 /* If this insn has multiple results,
2046 and the dead reg is used in one of the results,
2047 extend its life to after this insn,
2048 so it won't get allocated together with any other result of this insn.
2049
2050 It is unsafe to use !single_set here since it will ignore an unused
2051 output. Just because an output is unused does not mean the compiler
2052 can assume the side effect will not occur. Consider if REG appears
2053 in the address of an output and we reload the output. If we allocate
2054 REG to the same hard register as an unused output we could set the hard
2055 register before the output reload insn. */
2056 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2057 && multiple_sets (this_insn))
2058 {
2059 int i;
2060 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2061 {
2062 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2063 if (GET_CODE (set) == SET
2064 && GET_CODE (SET_DEST (set)) != REG
2065 && !rtx_equal_p (reg, SET_DEST (set))
2066 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2067 output_p = 1;
2068 }
2069 }
2070
2071 /* If this register is used in an auto-increment address, then extend its
2072 life to after this insn, so that it won't get allocated together with
2073 the result of this insn. */
2074 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2075 output_p = 1;
2076
2077 if (regno < FIRST_PSEUDO_REGISTER)
2078 {
2079 mark_life (regno, GET_MODE (reg), 0);
2080
2081 /* If a hard register is dying as an output, mark it as in use at
2082 the beginning of this insn (the above statement would cause this
2083 not to happen). */
2084 if (output_p)
2085 post_mark_life (regno, GET_MODE (reg), 1,
2086 2 * this_insn_number, 2 * this_insn_number + 1);
2087 }
2088
2089 else if (reg_qty[regno] >= 0)
2090 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2091 }
2092 \f
2093 /* Find a block of SIZE words of hard regs in reg_class CLASS
2094 that can hold something of machine-mode MODE
2095 (but actually we test only the first of the block for holding MODE)
2096 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2097 and return the number of the first of them.
2098 Return -1 if such a block cannot be found.
2099 If QTYNO crosses calls, insist on a register preserved by calls,
2100 unless ACCEPT_CALL_CLOBBERED is nonzero.
2101
2102 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2103 register is available. If not, return -1. */
2104
2105 static int
2106 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2107 born_index, dead_index)
2108 enum reg_class class;
2109 enum machine_mode mode;
2110 int qtyno;
2111 int accept_call_clobbered;
2112 int just_try_suggested;
2113 int born_index, dead_index;
2114 {
2115 register int i, ins;
2116 #ifdef HARD_REG_SET
2117 /* Declare it register if it's a scalar. */
2118 register
2119 #endif
2120 HARD_REG_SET used, first_used;
2121 #ifdef ELIMINABLE_REGS
2122 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2123 #endif
2124
2125 /* Validate our parameters. */
2126 if (born_index < 0 || born_index > dead_index)
2127 abort ();
2128
2129 /* Don't let a pseudo live in a reg across a function call
2130 if we might get a nonlocal goto. */
2131 if (current_function_has_nonlocal_label
2132 && qty[qtyno].n_calls_crossed > 0)
2133 return -1;
2134
2135 if (accept_call_clobbered)
2136 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2137 else if (qty[qtyno].n_calls_crossed == 0)
2138 COPY_HARD_REG_SET (used, fixed_reg_set);
2139 else
2140 COPY_HARD_REG_SET (used, call_used_reg_set);
2141
2142 if (accept_call_clobbered)
2143 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2144
2145 for (ins = born_index; ins < dead_index; ins++)
2146 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2147
2148 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2149
2150 /* Don't use the frame pointer reg in local-alloc even if
2151 we may omit the frame pointer, because if we do that and then we
2152 need a frame pointer, reload won't know how to move the pseudo
2153 to another hard reg. It can move only regs made by global-alloc.
2154
2155 This is true of any register that can be eliminated. */
2156 #ifdef ELIMINABLE_REGS
2157 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2158 SET_HARD_REG_BIT (used, eliminables[i].from);
2159 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2160 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2161 that it might be eliminated into. */
2162 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2163 #endif
2164 #else
2165 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2166 #endif
2167
2168 #ifdef CLASS_CANNOT_CHANGE_MODE
2169 if (qty[qtyno].changes_mode)
2170 IOR_HARD_REG_SET (used,
2171 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2172 #endif
2173
2174 /* Normally, the registers that can be used for the first register in
2175 a multi-register quantity are the same as those that can be used for
2176 subsequent registers. However, if just trying suggested registers,
2177 restrict our consideration to them. If there are copy-suggested
2178 register, try them. Otherwise, try the arithmetic-suggested
2179 registers. */
2180 COPY_HARD_REG_SET (first_used, used);
2181
2182 if (just_try_suggested)
2183 {
2184 if (qty_phys_num_copy_sugg[qtyno] != 0)
2185 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2186 else
2187 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2188 }
2189
2190 /* If all registers are excluded, we can't do anything. */
2191 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2192
2193 /* If at least one would be suitable, test each hard reg. */
2194
2195 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2196 {
2197 #ifdef REG_ALLOC_ORDER
2198 int regno = reg_alloc_order[i];
2199 #else
2200 int regno = i;
2201 #endif
2202 if (! TEST_HARD_REG_BIT (first_used, regno)
2203 && HARD_REGNO_MODE_OK (regno, mode)
2204 && (qty[qtyno].n_calls_crossed == 0
2205 || accept_call_clobbered
2206 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2207 {
2208 register int j;
2209 register int size1 = HARD_REGNO_NREGS (regno, mode);
2210 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2211 if (j == size1)
2212 {
2213 /* Mark that this register is in use between its birth and death
2214 insns. */
2215 post_mark_life (regno, mode, 1, born_index, dead_index);
2216 return regno;
2217 }
2218 #ifndef REG_ALLOC_ORDER
2219 /* Skip starting points we know will lose. */
2220 i += j;
2221 #endif
2222 }
2223 }
2224
2225 fail:
2226 /* If we are just trying suggested register, we have just tried copy-
2227 suggested registers, and there are arithmetic-suggested registers,
2228 try them. */
2229
2230 /* If it would be profitable to allocate a call-clobbered register
2231 and save and restore it around calls, do that. */
2232 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2233 && qty_phys_num_sugg[qtyno] != 0)
2234 {
2235 /* Don't try the copy-suggested regs again. */
2236 qty_phys_num_copy_sugg[qtyno] = 0;
2237 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2238 born_index, dead_index);
2239 }
2240
2241 /* We need not check to see if the current function has nonlocal
2242 labels because we don't put any pseudos that are live over calls in
2243 registers in that case. */
2244
2245 if (! accept_call_clobbered
2246 && flag_caller_saves
2247 && ! just_try_suggested
2248 && qty[qtyno].n_calls_crossed != 0
2249 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2250 qty[qtyno].n_calls_crossed))
2251 {
2252 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2253 if (i >= 0)
2254 caller_save_needed = 1;
2255 return i;
2256 }
2257 return -1;
2258 }
2259 \f
2260 /* Mark that REGNO with machine-mode MODE is live starting from the current
2261 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2262 is zero). */
2263
2264 static void
2265 mark_life (regno, mode, life)
2266 register int regno;
2267 enum machine_mode mode;
2268 int life;
2269 {
2270 register int j = HARD_REGNO_NREGS (regno, mode);
2271 if (life)
2272 while (--j >= 0)
2273 SET_HARD_REG_BIT (regs_live, regno + j);
2274 else
2275 while (--j >= 0)
2276 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2277 }
2278
2279 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2280 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2281 to insn number DEATH (exclusive). */
2282
2283 static void
2284 post_mark_life (regno, mode, life, birth, death)
2285 int regno;
2286 enum machine_mode mode;
2287 int life, birth, death;
2288 {
2289 register int j = HARD_REGNO_NREGS (regno, mode);
2290 #ifdef HARD_REG_SET
2291 /* Declare it register if it's a scalar. */
2292 register
2293 #endif
2294 HARD_REG_SET this_reg;
2295
2296 CLEAR_HARD_REG_SET (this_reg);
2297 while (--j >= 0)
2298 SET_HARD_REG_BIT (this_reg, regno + j);
2299
2300 if (life)
2301 while (birth < death)
2302 {
2303 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2304 birth++;
2305 }
2306 else
2307 while (birth < death)
2308 {
2309 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2310 birth++;
2311 }
2312 }
2313 \f
2314 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2315 is the register being clobbered, and R1 is a register being used in
2316 the equivalent expression.
2317
2318 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2319 in which it is used, return 1.
2320
2321 Otherwise, return 0. */
2322
2323 static int
2324 no_conflict_p (insn, r0, r1)
2325 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2326 {
2327 int ok = 0;
2328 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2329 rtx p, last;
2330
2331 /* If R1 is a hard register, return 0 since we handle this case
2332 when we scan the insns that actually use it. */
2333
2334 if (note == 0
2335 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2336 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2337 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2338 return 0;
2339
2340 last = XEXP (note, 0);
2341
2342 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2343 if (INSN_P (p))
2344 {
2345 if (find_reg_note (p, REG_DEAD, r1))
2346 ok = 1;
2347
2348 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2349 some earlier optimization pass has inserted instructions into
2350 the sequence, and it is not safe to perform this optimization.
2351 Note that emit_no_conflict_block always ensures that this is
2352 true when these sequences are created. */
2353 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2354 return 0;
2355 }
2356
2357 return ok;
2358 }
2359 \f
2360 /* Return the number of alternatives for which the constraint string P
2361 indicates that the operand must be equal to operand 0 and that no register
2362 is acceptable. */
2363
2364 static int
2365 requires_inout (p)
2366 const char *p;
2367 {
2368 char c;
2369 int found_zero = 0;
2370 int reg_allowed = 0;
2371 int num_matching_alts = 0;
2372
2373 while ((c = *p++))
2374 switch (c)
2375 {
2376 case '=': case '+': case '?':
2377 case '#': case '&': case '!':
2378 case '*': case '%':
2379 case '1': case '2': case '3': case '4': case '5':
2380 case '6': case '7': case '8': case '9':
2381 case 'm': case '<': case '>': case 'V': case 'o':
2382 case 'E': case 'F': case 'G': case 'H':
2383 case 's': case 'i': case 'n':
2384 case 'I': case 'J': case 'K': case 'L':
2385 case 'M': case 'N': case 'O': case 'P':
2386 case 'X':
2387 /* These don't say anything we care about. */
2388 break;
2389
2390 case ',':
2391 if (found_zero && ! reg_allowed)
2392 num_matching_alts++;
2393
2394 found_zero = reg_allowed = 0;
2395 break;
2396
2397 case '0':
2398 found_zero = 1;
2399 break;
2400
2401 default:
2402 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2403 break;
2404 /* FALLTHRU */
2405 case 'p':
2406 case 'g': case 'r':
2407 reg_allowed = 1;
2408 break;
2409 }
2410
2411 if (found_zero && ! reg_allowed)
2412 num_matching_alts++;
2413
2414 return num_matching_alts;
2415 }
2416 \f
2417 void
2418 dump_local_alloc (file)
2419 FILE *file;
2420 {
2421 register int i;
2422 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2423 if (reg_renumber[i] != -1)
2424 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2425 }