gansidecl.h (__attribute__, [...]): Delete.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "function.h"
69 #include "hard-reg-set.h"
70 #include "insn-config.h"
71 #include "insn-attr.h"
72 #include "recog.h"
73 #include "output.h"
74 #include "toplev.h"
75 \f
76 /* Next quantity number available for allocation. */
77
78 static int next_qty;
79
80 /* In all the following vectors indexed by quantity number. */
81
82 /* Element Q is the hard reg number chosen for quantity Q,
83 or -1 if none was found. */
84
85 static short *qty_phys_reg;
86
87 /* We maintain two hard register sets that indicate suggested hard registers
88 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
89 that are tied to the quantity by a simple copy. The second contains all
90 hard registers that are tied to the quantity via an arithmetic operation.
91
92 The former register set is given priority for allocation. This tends to
93 eliminate copy insns. */
94
95 /* Element Q is a set of hard registers that are suggested for quantity Q by
96 copy insns. */
97
98 static HARD_REG_SET *qty_phys_copy_sugg;
99
100 /* Element Q is a set of hard registers that are suggested for quantity Q by
101 arithmetic insns. */
102
103 static HARD_REG_SET *qty_phys_sugg;
104
105 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
106
107 static short *qty_phys_num_copy_sugg;
108
109 /* Element Q is the number of suggested registers in qty_phys_sugg. */
110
111 static short *qty_phys_num_sugg;
112
113 /* Element Q is the number of refs to quantity Q. */
114
115 static int *qty_n_refs;
116
117 /* Element Q is a reg class contained in (smaller than) the
118 preferred classes of all the pseudo regs that are tied in quantity Q.
119 This is the preferred class for allocating that quantity. */
120
121 static enum reg_class *qty_min_class;
122
123 /* Insn number (counting from head of basic block)
124 where quantity Q was born. -1 if birth has not been recorded. */
125
126 static int *qty_birth;
127
128 /* Insn number (counting from head of basic block)
129 where quantity Q died. Due to the way tying is done,
130 and the fact that we consider in this pass only regs that die but once,
131 a quantity can die only once. Each quantity's life span
132 is a set of consecutive insns. -1 if death has not been recorded. */
133
134 static int *qty_death;
135
136 /* Number of words needed to hold the data in quantity Q.
137 This depends on its machine mode. It is used for these purposes:
138 1. It is used in computing the relative importances of qtys,
139 which determines the order in which we look for regs for them.
140 2. It is used in rules that prevent tying several registers of
141 different sizes in a way that is geometrically impossible
142 (see combine_regs). */
143
144 static int *qty_size;
145
146 /* This holds the mode of the registers that are tied to qty Q,
147 or VOIDmode if registers with differing modes are tied together. */
148
149 static enum machine_mode *qty_mode;
150
151 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
152
153 static int *qty_n_calls_crossed;
154
155 /* Register class within which we allocate qty Q if we can't get
156 its preferred class. */
157
158 static enum reg_class *qty_alternate_class;
159
160 /* Element Q is nonzero if this quantity has been used in a SUBREG
161 that changes its size. */
162
163 static char *qty_changes_size;
164
165 /* Element Q is the register number of one pseudo register whose
166 reg_qty value is Q. This register should be the head of the chain
167 maintained in reg_next_in_qty. */
168
169 static int *qty_first_reg;
170
171 /* If (REG N) has been assigned a quantity number, is a register number
172 of another register assigned the same quantity number, or -1 for the
173 end of the chain. qty_first_reg point to the head of this chain. */
174
175 static int *reg_next_in_qty;
176
177 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
178 if it is >= 0,
179 of -1 if this register cannot be allocated by local-alloc,
180 or -2 if not known yet.
181
182 Note that if we see a use or death of pseudo register N with
183 reg_qty[N] == -2, register N must be local to the current block. If
184 it were used in more than one block, we would have reg_qty[N] == -1.
185 This relies on the fact that if reg_basic_block[N] is >= 0, register N
186 will not appear in any other block. We save a considerable number of
187 tests by exploiting this.
188
189 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
190 be referenced. */
191
192 static int *reg_qty;
193
194 /* The offset (in words) of register N within its quantity.
195 This can be nonzero if register N is SImode, and has been tied
196 to a subreg of a DImode register. */
197
198 static char *reg_offset;
199
200 /* Vector of substitutions of register numbers,
201 used to map pseudo regs into hardware regs.
202 This is set up as a result of register allocation.
203 Element N is the hard reg assigned to pseudo reg N,
204 or is -1 if no hard reg was assigned.
205 If N is a hard reg number, element N is N. */
206
207 short *reg_renumber;
208
209 /* Set of hard registers live at the current point in the scan
210 of the instructions in a basic block. */
211
212 static HARD_REG_SET regs_live;
213
214 /* Each set of hard registers indicates registers live at a particular
215 point in the basic block. For N even, regs_live_at[N] says which
216 hard registers are needed *after* insn N/2 (i.e., they may not
217 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
218
219 If an object is to conflict with the inputs of insn J but not the
220 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
221 if it is to conflict with the outputs of insn J but not the inputs of
222 insn J + 1, it is said to die at index J*2 + 1. */
223
224 static HARD_REG_SET *regs_live_at;
225
226 /* Communicate local vars `insn_number' and `insn'
227 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
228 static int this_insn_number;
229 static rtx this_insn;
230
231 /* Used to communicate changes made by update_equiv_regs to
232 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
233 found or created, so that we can keep track of what memory accesses might
234 be created later, e.g. by reload. */
235
236 static rtx *reg_equiv_replacement;
237
238 /* Used for communication between update_equiv_regs and no_equiv. */
239 static rtx *reg_equiv_init_insns;
240
241 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
242 static int recorded_label_ref;
243
244 static void alloc_qty PROTO((int, enum machine_mode, int, int));
245 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
246 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
247 static int contains_replace_regs PROTO((rtx, char *));
248 static int memref_referenced_p PROTO((rtx, rtx));
249 static int memref_used_between_p PROTO((rtx, rtx, rtx));
250 static void update_equiv_regs PROTO((void));
251 static void no_equiv PROTO((rtx, rtx));
252 static void block_alloc PROTO((int));
253 static int qty_sugg_compare PROTO((int, int));
254 static int qty_sugg_compare_1 PROTO((const PTR, const PTR));
255 static int qty_compare PROTO((int, int));
256 static int qty_compare_1 PROTO((const PTR, const PTR));
257 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
258 static int reg_meets_class_p PROTO((int, enum reg_class));
259 static void update_qty_class PROTO((int, int));
260 static void reg_is_set PROTO((rtx, rtx));
261 static void reg_is_born PROTO((rtx, int));
262 static void wipe_dead_reg PROTO((rtx, int));
263 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
264 int, int, int, int, int));
265 static void mark_life PROTO((int, enum machine_mode, int));
266 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
267 static int no_conflict_p PROTO((rtx, rtx, rtx));
268 static int requires_inout PROTO((const char *));
269 \f
270 /* Allocate a new quantity (new within current basic block)
271 for register number REGNO which is born at index BIRTH
272 within the block. MODE and SIZE are info on reg REGNO. */
273
274 static void
275 alloc_qty (regno, mode, size, birth)
276 int regno;
277 enum machine_mode mode;
278 int size, birth;
279 {
280 register int qty = next_qty++;
281
282 reg_qty[regno] = qty;
283 reg_offset[regno] = 0;
284 reg_next_in_qty[regno] = -1;
285
286 qty_first_reg[qty] = regno;
287 qty_size[qty] = size;
288 qty_mode[qty] = mode;
289 qty_birth[qty] = birth;
290 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
291 qty_min_class[qty] = reg_preferred_class (regno);
292 qty_alternate_class[qty] = reg_alternate_class (regno);
293 qty_n_refs[qty] = REG_N_REFS (regno);
294 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
295 }
296 \f
297 /* Main entry point of this file. */
298
299 int
300 local_alloc ()
301 {
302 register int b, i;
303 int max_qty;
304
305 /* We need to keep track of whether or not we recorded a LABEL_REF so
306 that we know if the jump optimizer needs to be rerun. */
307 recorded_label_ref = 0;
308
309 /* Leaf functions and non-leaf functions have different needs.
310 If defined, let the machine say what kind of ordering we
311 should use. */
312 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
313 ORDER_REGS_FOR_LOCAL_ALLOC;
314 #endif
315
316 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
317 registers. */
318 update_equiv_regs ();
319
320 /* This sets the maximum number of quantities we can have. Quantity
321 numbers start at zero and we can have one for each pseudo. */
322 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
323
324 /* Allocate vectors of temporary data.
325 See the declarations of these variables, above,
326 for what they mean. */
327
328 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
329 qty_phys_copy_sugg
330 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
331 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
332 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
333 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
334 qty_birth = (int *) alloca (max_qty * sizeof (int));
335 qty_death = (int *) alloca (max_qty * sizeof (int));
336 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
337 qty_size = (int *) alloca (max_qty * sizeof (int));
338 qty_mode
339 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
340 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
341 qty_min_class
342 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
343 qty_alternate_class
344 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
345 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
346 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
347
348 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
349 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
350 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
351
352 /* Allocate the reg_renumber array */
353 allocate_reg_info (max_regno, FALSE, TRUE);
354
355 /* Determine which pseudo-registers can be allocated by local-alloc.
356 In general, these are the registers used only in a single block and
357 which only die once. However, if a register's preferred class has only
358 a few entries, don't allocate this register here unless it is preferred
359 or nothing since retry_global_alloc won't be able to move it to
360 GENERAL_REGS if a reload register of this class is needed.
361
362 We need not be concerned with which block actually uses the register
363 since we will never see it outside that block. */
364
365 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
366 {
367 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
368 && (reg_alternate_class (i) == NO_REGS
369 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
370 reg_qty[i] = -2;
371 else
372 reg_qty[i] = -1;
373 }
374
375 /* Force loop below to initialize entire quantity array. */
376 next_qty = max_qty;
377
378 /* Allocate each block's local registers, block by block. */
379
380 for (b = 0; b < n_basic_blocks; b++)
381 {
382 /* NEXT_QTY indicates which elements of the `qty_...'
383 vectors might need to be initialized because they were used
384 for the previous block; it is set to the entire array before
385 block 0. Initialize those, with explicit loop if there are few,
386 else with bzero and bcopy. Do not initialize vectors that are
387 explicit set by `alloc_qty'. */
388
389 if (next_qty < 6)
390 {
391 for (i = 0; i < next_qty; i++)
392 {
393 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
394 qty_phys_num_copy_sugg[i] = 0;
395 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
396 qty_phys_num_sugg[i] = 0;
397 }
398 }
399 else
400 {
401 #define CLEAR(vector) \
402 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
403
404 CLEAR (qty_phys_copy_sugg);
405 CLEAR (qty_phys_num_copy_sugg);
406 CLEAR (qty_phys_sugg);
407 CLEAR (qty_phys_num_sugg);
408 }
409
410 next_qty = 0;
411
412 block_alloc (b);
413 #ifdef USE_C_ALLOCA
414 alloca (0);
415 #endif
416 }
417
418 free (reg_qty);
419 free (reg_offset);
420 free (reg_next_in_qty);
421 return recorded_label_ref;
422 }
423 \f
424 /* Depth of loops we are in while in update_equiv_regs. */
425 static int loop_depth;
426
427 /* Used for communication between the following two functions: contains
428 a MEM that we wish to ensure remains unchanged. */
429 static rtx equiv_mem;
430
431 /* Set nonzero if EQUIV_MEM is modified. */
432 static int equiv_mem_modified;
433
434 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
435 Called via note_stores. */
436
437 static void
438 validate_equiv_mem_from_store (dest, set)
439 rtx dest;
440 rtx set ATTRIBUTE_UNUSED;
441 {
442 if ((GET_CODE (dest) == REG
443 && reg_overlap_mentioned_p (dest, equiv_mem))
444 || (GET_CODE (dest) == MEM
445 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
446 equiv_mem_modified = 1;
447 }
448
449 /* Verify that no store between START and the death of REG invalidates
450 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
451 by storing into an overlapping memory location, or with a non-const
452 CALL_INSN.
453
454 Return 1 if MEMREF remains valid. */
455
456 static int
457 validate_equiv_mem (start, reg, memref)
458 rtx start;
459 rtx reg;
460 rtx memref;
461 {
462 rtx insn;
463 rtx note;
464
465 equiv_mem = memref;
466 equiv_mem_modified = 0;
467
468 /* If the memory reference has side effects or is volatile, it isn't a
469 valid equivalence. */
470 if (side_effects_p (memref))
471 return 0;
472
473 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
474 {
475 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
476 continue;
477
478 if (find_reg_note (insn, REG_DEAD, reg))
479 return 1;
480
481 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
482 && ! CONST_CALL_P (insn))
483 return 0;
484
485 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
486
487 /* If a register mentioned in MEMREF is modified via an
488 auto-increment, we lose the equivalence. Do the same if one
489 dies; although we could extend the life, it doesn't seem worth
490 the trouble. */
491
492 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
493 if ((REG_NOTE_KIND (note) == REG_INC
494 || REG_NOTE_KIND (note) == REG_DEAD)
495 && GET_CODE (XEXP (note, 0)) == REG
496 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
497 return 0;
498 }
499
500 return 0;
501 }
502
503 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
504
505 static int
506 contains_replace_regs (x, reg_equiv_replace)
507 rtx x;
508 char *reg_equiv_replace;
509 {
510 int i, j;
511 const char *fmt;
512 enum rtx_code code = GET_CODE (x);
513
514 switch (code)
515 {
516 case CONST_INT:
517 case CONST:
518 case LABEL_REF:
519 case SYMBOL_REF:
520 case CONST_DOUBLE:
521 case PC:
522 case CC0:
523 case HIGH:
524 case LO_SUM:
525 return 0;
526
527 case REG:
528 return reg_equiv_replace[REGNO (x)];
529
530 default:
531 break;
532 }
533
534 fmt = GET_RTX_FORMAT (code);
535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
536 switch (fmt[i])
537 {
538 case 'e':
539 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
540 return 1;
541 break;
542 case 'E':
543 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
544 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
545 return 1;
546 break;
547 }
548
549 return 0;
550 }
551 \f
552 /* TRUE if X references a memory location that would be affected by a store
553 to MEMREF. */
554
555 static int
556 memref_referenced_p (memref, x)
557 rtx x;
558 rtx memref;
559 {
560 int i, j;
561 const char *fmt;
562 enum rtx_code code = GET_CODE (x);
563
564 switch (code)
565 {
566 case CONST_INT:
567 case CONST:
568 case LABEL_REF:
569 case SYMBOL_REF:
570 case CONST_DOUBLE:
571 case PC:
572 case CC0:
573 case HIGH:
574 case LO_SUM:
575 return 0;
576
577 case REG:
578 return (reg_equiv_replacement[REGNO (x)]
579 && memref_referenced_p (memref,
580 reg_equiv_replacement[REGNO (x)]));
581
582 case MEM:
583 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
584 return 1;
585 break;
586
587 case SET:
588 /* If we are setting a MEM, it doesn't count (its address does), but any
589 other SET_DEST that has a MEM in it is referencing the MEM. */
590 if (GET_CODE (SET_DEST (x)) == MEM)
591 {
592 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
593 return 1;
594 }
595 else if (memref_referenced_p (memref, SET_DEST (x)))
596 return 1;
597
598 return memref_referenced_p (memref, SET_SRC (x));
599
600 default:
601 break;
602 }
603
604 fmt = GET_RTX_FORMAT (code);
605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
606 switch (fmt[i])
607 {
608 case 'e':
609 if (memref_referenced_p (memref, XEXP (x, i)))
610 return 1;
611 break;
612 case 'E':
613 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
614 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
615 return 1;
616 break;
617 }
618
619 return 0;
620 }
621
622 /* TRUE if some insn in the range (START, END] references a memory location
623 that would be affected by a store to MEMREF. */
624
625 static int
626 memref_used_between_p (memref, start, end)
627 rtx memref;
628 rtx start;
629 rtx end;
630 {
631 rtx insn;
632
633 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
634 insn = NEXT_INSN (insn))
635 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
636 && memref_referenced_p (memref, PATTERN (insn)))
637 return 1;
638
639 return 0;
640 }
641 \f
642 /* Return nonzero if the rtx X is invariant over the current function. */
643 int
644 function_invariant_p (x)
645 rtx x;
646 {
647 if (CONSTANT_P (x))
648 return 1;
649 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
650 return 1;
651 if (GET_CODE (x) == PLUS
652 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
653 && CONSTANT_P (XEXP (x, 1)))
654 return 1;
655 return 0;
656 }
657
658 /* Find registers that are equivalent to a single value throughout the
659 compilation (either because they can be referenced in memory or are set once
660 from a single constant). Lower their priority for a register.
661
662 If such a register is only referenced once, try substituting its value
663 into the using insn. If it succeeds, we can eliminate the register
664 completely. */
665
666 static void
667 update_equiv_regs ()
668 {
669 /* Set when an attempt should be made to replace a register with the
670 associated reg_equiv_replacement entry at the end of this function. */
671 char *reg_equiv_replace
672 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
673 rtx insn;
674 int block, depth;
675
676 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
677 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
678
679 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
680 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
681 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
682
683 init_alias_analysis ();
684
685 loop_depth = 1;
686
687 /* Scan the insns and find which registers have equivalences. Do this
688 in a separate scan of the insns because (due to -fcse-follow-jumps)
689 a register can be set below its use. */
690 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
691 {
692 rtx note;
693 rtx set;
694 rtx dest, src;
695 int regno;
696
697 if (GET_CODE (insn) == NOTE)
698 {
699 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
700 loop_depth++;
701 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
702 loop_depth--;
703 }
704
705 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
706 continue;
707
708 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
709 if (REG_NOTE_KIND (note) == REG_INC)
710 no_equiv (XEXP (note, 0), note);
711
712 set = single_set (insn);
713
714 /* If this insn contains more (or less) than a single SET,
715 only mark all destinations as having no known equivalence. */
716 if (set == 0)
717 {
718 note_stores (PATTERN (insn), no_equiv);
719 continue;
720 }
721 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
722 {
723 int i;
724
725 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
726 {
727 rtx part = XVECEXP (PATTERN (insn), 0, i);
728 if (part != set)
729 note_stores (part, no_equiv);
730 }
731 }
732
733 dest = SET_DEST (set);
734 src = SET_SRC (set);
735
736 /* If this sets a MEM to the contents of a REG that is only used
737 in a single basic block, see if the register is always equivalent
738 to that memory location and if moving the store from INSN to the
739 insn that set REG is safe. If so, put a REG_EQUIV note on the
740 initializing insn.
741
742 Don't add a REG_EQUIV note if the insn already has one. The existing
743 REG_EQUIV is likely more useful than the one we are adding.
744
745 If one of the regs in the address is marked as reg_equiv_replace,
746 then we can't add this REG_EQUIV note. The reg_equiv_replace
747 optimization may move the set of this register immediately before
748 insn, which puts it after reg_equiv_init_insns[regno], and hence
749 the mention in the REG_EQUIV note would be to an uninitialized
750 pseudo. */
751 /* ????? This test isn't good enough; we might see a MEM with a use of
752 a pseudo register before we see its setting insn that will cause
753 reg_equiv_replace for that pseudo to be set.
754 Equivalences to MEMs should be made in another pass, after the
755 reg_equiv_replace information has been gathered. */
756
757 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
758 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
759 && REG_BASIC_BLOCK (regno) >= 0
760 && REG_N_SETS (regno) == 1
761 && reg_equiv_init_insns[regno] != 0
762 && reg_equiv_init_insns[regno] != const0_rtx
763 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
764 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
765 {
766 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
767 if (validate_equiv_mem (init_insn, src, dest)
768 && ! memref_used_between_p (dest, init_insn, insn))
769 REG_NOTES (init_insn)
770 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
771 }
772
773 /* We only handle the case of a pseudo register being set
774 once, or always to the same value. */
775 /* ??? The mn10200 port breaks if we add equivalences for
776 values that need an ADDRESS_REGS register and set them equivalent
777 to a MEM of a pseudo. The actual problem is in the over-conservative
778 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
779 calculate_needs, but we traditionally work around this problem
780 here by rejecting equivalences when the destination is in a register
781 that's likely spilled. This is fragile, of course, since the
782 preferred class of a pseudo depends on all instructions that set
783 or use it. */
784
785 if (GET_CODE (dest) != REG
786 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
787 || reg_equiv_init_insns[regno] == const0_rtx
788 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
789 && GET_CODE (src) == MEM))
790 {
791 /* This might be seting a SUBREG of a pseudo, a pseudo that is
792 also set somewhere else to a constant. */
793 note_stores (set, no_equiv);
794 continue;
795 }
796 /* Don't handle the equivalence if the source is in a register
797 class that's likely to be spilled. */
798 if (GET_CODE (src) == REG
799 && REGNO (src) >= FIRST_PSEUDO_REGISTER
800 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
801 {
802 no_equiv (dest, set);
803 continue;
804 }
805
806 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
807
808 if (REG_N_SETS (regno) != 1
809 && (! note
810 || ! function_invariant_p (XEXP (note, 0))
811 || (reg_equiv_replacement[regno]
812 && ! rtx_equal_p (XEXP (note, 0),
813 reg_equiv_replacement[regno]))))
814 {
815 no_equiv (dest, set);
816 continue;
817 }
818 /* Record this insn as initializing this register. */
819 reg_equiv_init_insns[regno]
820 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
821
822 /* If this register is known to be equal to a constant, record that
823 it is always equivalent to the constant. */
824 if (note && function_invariant_p (XEXP (note, 0)))
825 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
826
827 /* If this insn introduces a "constant" register, decrease the priority
828 of that register. Record this insn if the register is only used once
829 more and the equivalence value is the same as our source.
830
831 The latter condition is checked for two reasons: First, it is an
832 indication that it may be more efficient to actually emit the insn
833 as written (if no registers are available, reload will substitute
834 the equivalence). Secondly, it avoids problems with any registers
835 dying in this insn whose death notes would be missed.
836
837 If we don't have a REG_EQUIV note, see if this insn is loading
838 a register used only in one basic block from a MEM. If so, and the
839 MEM remains unchanged for the life of the register, add a REG_EQUIV
840 note. */
841
842 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
843
844 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
845 && GET_CODE (SET_SRC (set)) == MEM
846 && validate_equiv_mem (insn, dest, SET_SRC (set)))
847 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
848 REG_NOTES (insn));
849
850 if (note)
851 {
852 int regno = REGNO (dest);
853
854 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
855 We might end up substituting the LABEL_REF for uses of the
856 pseudo here or later. That kind of transformation may turn an
857 indirect jump into a direct jump, in which case we must rerun the
858 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
859 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
860 || (GET_CODE (XEXP (note, 0)) == CONST
861 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
862 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
863 == LABEL_REF)))
864 recorded_label_ref = 1;
865
866
867 reg_equiv_replacement[regno] = XEXP (note, 0);
868
869 /* Don't mess with things live during setjmp. */
870 if (REG_LIVE_LENGTH (regno) >= 0)
871 {
872 /* Note that the statement below does not affect the priority
873 in local-alloc! */
874 REG_LIVE_LENGTH (regno) *= 2;
875
876
877 /* If the register is referenced exactly twice, meaning it is
878 set once and used once, indicate that the reference may be
879 replaced by the equivalence we computed above. If the
880 register is only used in one basic block, this can't succeed
881 or combine would have done it.
882
883 It would be nice to use "loop_depth * 2" in the compare
884 below. Unfortunately, LOOP_DEPTH need not be constant within
885 a basic block so this would be too complicated.
886
887 This case normally occurs when a parameter is read from
888 memory and then used exactly once, not in a loop. */
889
890 if (REG_N_REFS (regno) == 2
891 && REG_BASIC_BLOCK (regno) < 0
892 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
893 reg_equiv_replace[regno] = 1;
894 }
895 }
896 }
897
898 /* Now scan all regs killed in an insn to see if any of them are
899 registers only used that once. If so, see if we can replace the
900 reference with the equivalent from. If we can, delete the
901 initializing reference and this register will go away. If we
902 can't replace the reference, and the instruction is not in a
903 loop, then move the register initialization just before the use,
904 so that they are in the same basic block. */
905 block = -1;
906 depth = 0;
907 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
908 {
909 rtx link;
910
911 /* Keep track of which basic block we are in. */
912 if (block + 1 < n_basic_blocks
913 && BLOCK_HEAD (block + 1) == insn)
914 ++block;
915
916 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
917 {
918 if (GET_CODE (insn) == NOTE)
919 {
920 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
921 ++depth;
922 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
923 {
924 --depth;
925 if (depth < 0)
926 abort ();
927 }
928 }
929
930 continue;
931 }
932
933 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
934 {
935 if (REG_NOTE_KIND (link) == REG_DEAD
936 /* Make sure this insn still refers to the register. */
937 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
938 {
939 int regno = REGNO (XEXP (link, 0));
940 rtx equiv_insn;
941
942 if (! reg_equiv_replace[regno])
943 continue;
944
945 /* reg_equiv_replace[REGNO] gets set only when
946 REG_N_REFS[REGNO] is 2, i.e. the register is set
947 once and used once. (If it were only set, but not used,
948 flow would have deleted the setting insns.) Hence
949 there can only be one insn in reg_equiv_init_insns. */
950 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
951
952 if (validate_replace_rtx (regno_reg_rtx[regno],
953 reg_equiv_replacement[regno], insn))
954 {
955 remove_death (regno, insn);
956 REG_N_REFS (regno) = 0;
957 PUT_CODE (equiv_insn, NOTE);
958 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
959 NOTE_SOURCE_FILE (equiv_insn) = 0;
960 }
961 /* If we aren't in a loop, and there are no calls in
962 INSN or in the initialization of the register, then
963 move the initialization of the register to just
964 before INSN. Update the flow information. */
965 else if (depth == 0
966 && GET_CODE (equiv_insn) == INSN
967 && GET_CODE (insn) == INSN
968 && REG_BASIC_BLOCK (regno) < 0)
969 {
970 int l;
971
972 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
973 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
974 REG_NOTES (equiv_insn) = 0;
975
976 PUT_CODE (equiv_insn, NOTE);
977 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
978 NOTE_SOURCE_FILE (equiv_insn) = 0;
979
980 if (block < 0)
981 REG_BASIC_BLOCK (regno) = 0;
982 else
983 REG_BASIC_BLOCK (regno) = block;
984 REG_N_CALLS_CROSSED (regno) = 0;
985 REG_LIVE_LENGTH (regno) = 2;
986
987 if (block >= 0 && insn == BLOCK_HEAD (block))
988 BLOCK_HEAD (block) = PREV_INSN (insn);
989
990 for (l = 0; l < n_basic_blocks; l++)
991 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
992 regno);
993 }
994 }
995 }
996 }
997 }
998
999 /* Mark REG as having no known equivalence.
1000 Some instructions might have been proceessed before and furnished
1001 with REG_EQUIV notes for this register; these notes will have to be
1002 removed.
1003 STORE is the piece of RTL that does the non-constant / conflicting
1004 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1005 but needs to be there because this function is called from note_stores. */
1006 static void
1007 no_equiv (reg, store)
1008 rtx reg, store ATTRIBUTE_UNUSED;
1009 {
1010 int regno;
1011 rtx list;
1012
1013 if (GET_CODE (reg) != REG)
1014 return;
1015 regno = REGNO (reg);
1016 list = reg_equiv_init_insns[regno];
1017 if (list == const0_rtx)
1018 return;
1019 for (; list; list = XEXP (list, 1))
1020 {
1021 rtx insn = XEXP (list, 0);
1022 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1023 }
1024 reg_equiv_init_insns[regno] = const0_rtx;
1025 reg_equiv_replacement[regno] = NULL_RTX;
1026 }
1027 \f
1028 /* Allocate hard regs to the pseudo regs used only within block number B.
1029 Only the pseudos that die but once can be handled. */
1030
1031 static void
1032 block_alloc (b)
1033 int b;
1034 {
1035 register int i, q;
1036 register rtx insn;
1037 rtx note;
1038 int insn_number = 0;
1039 int insn_count = 0;
1040 int max_uid = get_max_uid ();
1041 int *qty_order;
1042 int no_conflict_combined_regno = -1;
1043
1044 /* Count the instructions in the basic block. */
1045
1046 insn = BLOCK_END (b);
1047 while (1)
1048 {
1049 if (GET_CODE (insn) != NOTE)
1050 if (++insn_count > max_uid)
1051 abort ();
1052 if (insn == BLOCK_HEAD (b))
1053 break;
1054 insn = PREV_INSN (insn);
1055 }
1056
1057 /* +2 to leave room for a post_mark_life at the last insn and for
1058 the birth of a CLOBBER in the first insn. */
1059 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1060 * sizeof (HARD_REG_SET));
1061 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1062
1063 /* Initialize table of hardware registers currently live. */
1064
1065 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1066
1067 /* This loop scans the instructions of the basic block
1068 and assigns quantities to registers.
1069 It computes which registers to tie. */
1070
1071 insn = BLOCK_HEAD (b);
1072 while (1)
1073 {
1074 if (GET_CODE (insn) != NOTE)
1075 insn_number++;
1076
1077 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1078 {
1079 register rtx link, set;
1080 register int win = 0;
1081 register rtx r0, r1;
1082 int combined_regno = -1;
1083 int i;
1084 #ifndef REGISTER_CONSTRAINTS
1085 register rtx body = PATTERN (insn);
1086 #endif
1087
1088 this_insn_number = insn_number;
1089 this_insn = insn;
1090
1091 extract_insn (insn);
1092 which_alternative = -1;
1093
1094 /* Is this insn suitable for tying two registers?
1095 If so, try doing that.
1096 Suitable insns are those with at least two operands and where
1097 operand 0 is an output that is a register that is not
1098 earlyclobber.
1099
1100 We can tie operand 0 with some operand that dies in this insn.
1101 First look for operands that are required to be in the same
1102 register as operand 0. If we find such, only try tying that
1103 operand or one that can be put into that operand if the
1104 operation is commutative. If we don't find an operand
1105 that is required to be in the same register as operand 0,
1106 we can tie with any operand.
1107
1108 Subregs in place of regs are also ok.
1109
1110 If tying is done, WIN is set nonzero. */
1111
1112 if (1
1113 #ifdef REGISTER_CONSTRAINTS
1114 && recog_n_operands > 1
1115 && recog_constraints[0][0] == '='
1116 && recog_constraints[0][1] != '&'
1117 #else
1118 && GET_CODE (PATTERN (insn)) == SET
1119 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1120 #endif
1121 )
1122 {
1123 #ifdef REGISTER_CONSTRAINTS
1124 /* If non-negative, is an operand that must match operand 0. */
1125 int must_match_0 = -1;
1126 /* Counts number of alternatives that require a match with
1127 operand 0. */
1128 int n_matching_alts = 0;
1129
1130 for (i = 1; i < recog_n_operands; i++)
1131 {
1132 const char *p = recog_constraints[i];
1133 int this_match = (requires_inout (p));
1134
1135 n_matching_alts += this_match;
1136 if (this_match == recog_n_alternatives)
1137 must_match_0 = i;
1138 }
1139 #endif
1140
1141 r0 = recog_operand[0];
1142 for (i = 1; i < recog_n_operands; i++)
1143 {
1144 #ifdef REGISTER_CONSTRAINTS
1145 /* Skip this operand if we found an operand that
1146 must match operand 0 and this operand isn't it
1147 and can't be made to be it by commutativity. */
1148
1149 if (must_match_0 >= 0 && i != must_match_0
1150 && ! (i == must_match_0 + 1
1151 && recog_constraints[i-1][0] == '%')
1152 && ! (i == must_match_0 - 1
1153 && recog_constraints[i][0] == '%'))
1154 continue;
1155
1156 /* Likewise if each alternative has some operand that
1157 must match operand zero. In that case, skip any
1158 operand that doesn't list operand 0 since we know that
1159 the operand always conflicts with operand 0. We
1160 ignore commutatity in this case to keep things simple. */
1161 if (n_matching_alts == recog_n_alternatives
1162 && 0 == requires_inout (recog_constraints[i]))
1163 continue;
1164 #endif
1165
1166 r1 = recog_operand[i];
1167
1168 /* If the operand is an address, find a register in it.
1169 There may be more than one register, but we only try one
1170 of them. */
1171 if (
1172 #ifdef REGISTER_CONSTRAINTS
1173 recog_constraints[i][0] == 'p'
1174 #else
1175 recog_operand_address_p[i]
1176 #endif
1177 )
1178 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1179 r1 = XEXP (r1, 0);
1180
1181 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1182 {
1183 /* We have two priorities for hard register preferences.
1184 If we have a move insn or an insn whose first input
1185 can only be in the same register as the output, give
1186 priority to an equivalence found from that insn. */
1187 int may_save_copy
1188 #ifdef REGISTER_CONSTRAINTS
1189 = (r1 == recog_operand[i] && must_match_0 >= 0);
1190 #else
1191 = (SET_DEST (body) == r0 && SET_SRC (body) == r1);
1192 #endif
1193
1194 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1195 win = combine_regs (r1, r0, may_save_copy,
1196 insn_number, insn, 0);
1197 }
1198 if (win)
1199 break;
1200 }
1201 }
1202
1203 /* Recognize an insn sequence with an ultimate result
1204 which can safely overlap one of the inputs.
1205 The sequence begins with a CLOBBER of its result,
1206 and ends with an insn that copies the result to itself
1207 and has a REG_EQUAL note for an equivalent formula.
1208 That note indicates what the inputs are.
1209 The result and the input can overlap if each insn in
1210 the sequence either doesn't mention the input
1211 or has a REG_NO_CONFLICT note to inhibit the conflict.
1212
1213 We do the combining test at the CLOBBER so that the
1214 destination register won't have had a quantity number
1215 assigned, since that would prevent combining. */
1216
1217 if (GET_CODE (PATTERN (insn)) == CLOBBER
1218 && (r0 = XEXP (PATTERN (insn), 0),
1219 GET_CODE (r0) == REG)
1220 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1221 && XEXP (link, 0) != 0
1222 && GET_CODE (XEXP (link, 0)) == INSN
1223 && (set = single_set (XEXP (link, 0))) != 0
1224 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1225 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1226 NULL_RTX)) != 0)
1227 {
1228 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1229 /* Check that we have such a sequence. */
1230 && no_conflict_p (insn, r0, r1))
1231 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1232 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1233 && (r1 = XEXP (XEXP (note, 0), 0),
1234 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1235 && no_conflict_p (insn, r0, r1))
1236 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1237
1238 /* Here we care if the operation to be computed is
1239 commutative. */
1240 else if ((GET_CODE (XEXP (note, 0)) == EQ
1241 || GET_CODE (XEXP (note, 0)) == NE
1242 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1243 && (r1 = XEXP (XEXP (note, 0), 1),
1244 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1245 && no_conflict_p (insn, r0, r1))
1246 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1247
1248 /* If we did combine something, show the register number
1249 in question so that we know to ignore its death. */
1250 if (win)
1251 no_conflict_combined_regno = REGNO (r1);
1252 }
1253
1254 /* If registers were just tied, set COMBINED_REGNO
1255 to the number of the register used in this insn
1256 that was tied to the register set in this insn.
1257 This register's qty should not be "killed". */
1258
1259 if (win)
1260 {
1261 while (GET_CODE (r1) == SUBREG)
1262 r1 = SUBREG_REG (r1);
1263 combined_regno = REGNO (r1);
1264 }
1265
1266 /* Mark the death of everything that dies in this instruction,
1267 except for anything that was just combined. */
1268
1269 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1270 if (REG_NOTE_KIND (link) == REG_DEAD
1271 && GET_CODE (XEXP (link, 0)) == REG
1272 && combined_regno != REGNO (XEXP (link, 0))
1273 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1274 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1275 wipe_dead_reg (XEXP (link, 0), 0);
1276
1277 /* Allocate qty numbers for all registers local to this block
1278 that are born (set) in this instruction.
1279 A pseudo that already has a qty is not changed. */
1280
1281 note_stores (PATTERN (insn), reg_is_set);
1282
1283 /* If anything is set in this insn and then unused, mark it as dying
1284 after this insn, so it will conflict with our outputs. This
1285 can't match with something that combined, and it doesn't matter
1286 if it did. Do this after the calls to reg_is_set since these
1287 die after, not during, the current insn. */
1288
1289 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1290 if (REG_NOTE_KIND (link) == REG_UNUSED
1291 && GET_CODE (XEXP (link, 0)) == REG)
1292 wipe_dead_reg (XEXP (link, 0), 1);
1293
1294 /* If this is an insn that has a REG_RETVAL note pointing at a
1295 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1296 block, so clear any register number that combined within it. */
1297 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1298 && GET_CODE (XEXP (note, 0)) == INSN
1299 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1300 no_conflict_combined_regno = -1;
1301 }
1302
1303 /* Set the registers live after INSN_NUMBER. Note that we never
1304 record the registers live before the block's first insn, since no
1305 pseudos we care about are live before that insn. */
1306
1307 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1308 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1309
1310 if (insn == BLOCK_END (b))
1311 break;
1312
1313 insn = NEXT_INSN (insn);
1314 }
1315
1316 /* Now every register that is local to this basic block
1317 should have been given a quantity, or else -1 meaning ignore it.
1318 Every quantity should have a known birth and death.
1319
1320 Order the qtys so we assign them registers in order of the
1321 number of suggested registers they need so we allocate those with
1322 the most restrictive needs first. */
1323
1324 qty_order = (int *) alloca (next_qty * sizeof (int));
1325 for (i = 0; i < next_qty; i++)
1326 qty_order[i] = i;
1327
1328 #define EXCHANGE(I1, I2) \
1329 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1330
1331 switch (next_qty)
1332 {
1333 case 3:
1334 /* Make qty_order[2] be the one to allocate last. */
1335 if (qty_sugg_compare (0, 1) > 0)
1336 EXCHANGE (0, 1);
1337 if (qty_sugg_compare (1, 2) > 0)
1338 EXCHANGE (2, 1);
1339
1340 /* ... Fall through ... */
1341 case 2:
1342 /* Put the best one to allocate in qty_order[0]. */
1343 if (qty_sugg_compare (0, 1) > 0)
1344 EXCHANGE (0, 1);
1345
1346 /* ... Fall through ... */
1347
1348 case 1:
1349 case 0:
1350 /* Nothing to do here. */
1351 break;
1352
1353 default:
1354 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1355 }
1356
1357 /* Try to put each quantity in a suggested physical register, if it has one.
1358 This may cause registers to be allocated that otherwise wouldn't be, but
1359 this seems acceptable in local allocation (unlike global allocation). */
1360 for (i = 0; i < next_qty; i++)
1361 {
1362 q = qty_order[i];
1363 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1364 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1365 0, 1, qty_birth[q], qty_death[q]);
1366 else
1367 qty_phys_reg[q] = -1;
1368 }
1369
1370 /* Order the qtys so we assign them registers in order of
1371 decreasing length of life. Normally call qsort, but if we
1372 have only a very small number of quantities, sort them ourselves. */
1373
1374 for (i = 0; i < next_qty; i++)
1375 qty_order[i] = i;
1376
1377 #define EXCHANGE(I1, I2) \
1378 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1379
1380 switch (next_qty)
1381 {
1382 case 3:
1383 /* Make qty_order[2] be the one to allocate last. */
1384 if (qty_compare (0, 1) > 0)
1385 EXCHANGE (0, 1);
1386 if (qty_compare (1, 2) > 0)
1387 EXCHANGE (2, 1);
1388
1389 /* ... Fall through ... */
1390 case 2:
1391 /* Put the best one to allocate in qty_order[0]. */
1392 if (qty_compare (0, 1) > 0)
1393 EXCHANGE (0, 1);
1394
1395 /* ... Fall through ... */
1396
1397 case 1:
1398 case 0:
1399 /* Nothing to do here. */
1400 break;
1401
1402 default:
1403 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1404 }
1405
1406 /* Now for each qty that is not a hardware register,
1407 look for a hardware register to put it in.
1408 First try the register class that is cheapest for this qty,
1409 if there is more than one class. */
1410
1411 for (i = 0; i < next_qty; i++)
1412 {
1413 q = qty_order[i];
1414 if (qty_phys_reg[q] < 0)
1415 {
1416 #ifdef INSN_SCHEDULING
1417 /* These values represent the adjusted lifetime of a qty so
1418 that it conflicts with qtys which appear near the start/end
1419 of this qty's lifetime.
1420
1421 The purpose behind extending the lifetime of this qty is to
1422 discourage the register allocator from creating false
1423 dependencies.
1424
1425 The adjustment value is choosen to indicate that this qty
1426 conflicts with all the qtys in the instructions immediately
1427 before and after the lifetime of this qty.
1428
1429 Experiments have shown that higher values tend to hurt
1430 overall code performance.
1431
1432 If allocation using the extended lifetime fails we will try
1433 again with the qty's unadjusted lifetime. */
1434 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1435 int fake_death = MIN (insn_number * 2 + 1,
1436 qty_death[q] + 2 - qty_death[q] % 2);
1437 #endif
1438
1439 if (N_REG_CLASSES > 1)
1440 {
1441 #ifdef INSN_SCHEDULING
1442 /* We try to avoid using hard registers allocated to qtys which
1443 are born immediately after this qty or die immediately before
1444 this qty.
1445
1446 This optimization is only appropriate when we will run
1447 a scheduling pass after reload and we are not optimizing
1448 for code size. */
1449 if (flag_schedule_insns_after_reload
1450 && !optimize_size
1451 && !SMALL_REGISTER_CLASSES)
1452 {
1453
1454 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1455 qty_mode[q], q, 0, 0,
1456 fake_birth, fake_death);
1457 if (qty_phys_reg[q] >= 0)
1458 continue;
1459 }
1460 #endif
1461 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1462 qty_mode[q], q, 0, 0,
1463 qty_birth[q], qty_death[q]);
1464 if (qty_phys_reg[q] >= 0)
1465 continue;
1466 }
1467
1468 #ifdef INSN_SCHEDULING
1469 /* Similarly, avoid false dependencies. */
1470 if (flag_schedule_insns_after_reload
1471 && !optimize_size
1472 && !SMALL_REGISTER_CLASSES
1473 && qty_alternate_class[q] != NO_REGS)
1474 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1475 qty_mode[q], q, 0, 0,
1476 fake_birth, fake_death);
1477 #endif
1478 if (qty_alternate_class[q] != NO_REGS)
1479 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1480 qty_mode[q], q, 0, 0,
1481 qty_birth[q], qty_death[q]);
1482 }
1483 }
1484
1485 /* Now propagate the register assignments
1486 to the pseudo regs belonging to the qtys. */
1487
1488 for (q = 0; q < next_qty; q++)
1489 if (qty_phys_reg[q] >= 0)
1490 {
1491 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1492 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1493 }
1494 }
1495 \f
1496 /* Compare two quantities' priority for getting real registers.
1497 We give shorter-lived quantities higher priority.
1498 Quantities with more references are also preferred, as are quantities that
1499 require multiple registers. This is the identical prioritization as
1500 done by global-alloc.
1501
1502 We used to give preference to registers with *longer* lives, but using
1503 the same algorithm in both local- and global-alloc can speed up execution
1504 of some programs by as much as a factor of three! */
1505
1506 /* Note that the quotient will never be bigger than
1507 the value of floor_log2 times the maximum number of
1508 times a register can occur in one insn (surely less than 100).
1509 Multiplying this by 10000 can't overflow.
1510 QTY_CMP_PRI is also used by qty_sugg_compare. */
1511
1512 #define QTY_CMP_PRI(q) \
1513 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1514 / (qty_death[q] - qty_birth[q])) * 10000))
1515
1516 static int
1517 qty_compare (q1, q2)
1518 int q1, q2;
1519 {
1520 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1521 }
1522
1523 static int
1524 qty_compare_1 (q1p, q2p)
1525 const PTR q1p;
1526 const PTR q2p;
1527 {
1528 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1529 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1530
1531 if (tem != 0)
1532 return tem;
1533
1534 /* If qtys are equally good, sort by qty number,
1535 so that the results of qsort leave nothing to chance. */
1536 return q1 - q2;
1537 }
1538 \f
1539 /* Compare two quantities' priority for getting real registers. This version
1540 is called for quantities that have suggested hard registers. First priority
1541 goes to quantities that have copy preferences, then to those that have
1542 normal preferences. Within those groups, quantities with the lower
1543 number of preferences have the highest priority. Of those, we use the same
1544 algorithm as above. */
1545
1546 #define QTY_CMP_SUGG(q) \
1547 (qty_phys_num_copy_sugg[q] \
1548 ? qty_phys_num_copy_sugg[q] \
1549 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1550
1551 static int
1552 qty_sugg_compare (q1, q2)
1553 int q1, q2;
1554 {
1555 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1556
1557 if (tem != 0)
1558 return tem;
1559
1560 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1561 }
1562
1563 static int
1564 qty_sugg_compare_1 (q1p, q2p)
1565 const PTR q1p;
1566 const PTR q2p;
1567 {
1568 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1569 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1570
1571 if (tem != 0)
1572 return tem;
1573
1574 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1575 if (tem != 0)
1576 return tem;
1577
1578 /* If qtys are equally good, sort by qty number,
1579 so that the results of qsort leave nothing to chance. */
1580 return q1 - q2;
1581 }
1582
1583 #undef QTY_CMP_SUGG
1584 #undef QTY_CMP_PRI
1585 \f
1586 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1587 Returns 1 if have done so, or 0 if cannot.
1588
1589 Combining registers means marking them as having the same quantity
1590 and adjusting the offsets within the quantity if either of
1591 them is a SUBREG).
1592
1593 We don't actually combine a hard reg with a pseudo; instead
1594 we just record the hard reg as the suggestion for the pseudo's quantity.
1595 If we really combined them, we could lose if the pseudo lives
1596 across an insn that clobbers the hard reg (eg, movstr).
1597
1598 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1599 there is no REG_DEAD note on INSN. This occurs during the processing
1600 of REG_NO_CONFLICT blocks.
1601
1602 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1603 SETREG or if the input and output must share a register.
1604 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1605
1606 There are elaborate checks for the validity of combining. */
1607
1608
1609 static int
1610 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1611 rtx usedreg, setreg;
1612 int may_save_copy;
1613 int insn_number;
1614 rtx insn;
1615 int already_dead;
1616 {
1617 register int ureg, sreg;
1618 register int offset = 0;
1619 int usize, ssize;
1620 register int sqty;
1621
1622 /* Determine the numbers and sizes of registers being used. If a subreg
1623 is present that does not change the entire register, don't consider
1624 this a copy insn. */
1625
1626 while (GET_CODE (usedreg) == SUBREG)
1627 {
1628 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1629 may_save_copy = 0;
1630 offset += SUBREG_WORD (usedreg);
1631 usedreg = SUBREG_REG (usedreg);
1632 }
1633 if (GET_CODE (usedreg) != REG)
1634 return 0;
1635 ureg = REGNO (usedreg);
1636 usize = REG_SIZE (usedreg);
1637
1638 while (GET_CODE (setreg) == SUBREG)
1639 {
1640 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1641 may_save_copy = 0;
1642 offset -= SUBREG_WORD (setreg);
1643 setreg = SUBREG_REG (setreg);
1644 }
1645 if (GET_CODE (setreg) != REG)
1646 return 0;
1647 sreg = REGNO (setreg);
1648 ssize = REG_SIZE (setreg);
1649
1650 /* If UREG is a pseudo-register that hasn't already been assigned a
1651 quantity number, it means that it is not local to this block or dies
1652 more than once. In either event, we can't do anything with it. */
1653 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1654 /* Do not combine registers unless one fits within the other. */
1655 || (offset > 0 && usize + offset > ssize)
1656 || (offset < 0 && usize + offset < ssize)
1657 /* Do not combine with a smaller already-assigned object
1658 if that smaller object is already combined with something bigger. */
1659 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1660 && usize < qty_size[reg_qty[ureg]])
1661 /* Can't combine if SREG is not a register we can allocate. */
1662 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1663 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1664 These have already been taken care of. This probably wouldn't
1665 combine anyway, but don't take any chances. */
1666 || (ureg >= FIRST_PSEUDO_REGISTER
1667 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1668 /* Don't tie something to itself. In most cases it would make no
1669 difference, but it would screw up if the reg being tied to itself
1670 also dies in this insn. */
1671 || ureg == sreg
1672 /* Don't try to connect two different hardware registers. */
1673 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1674 /* Don't use a hard reg that might be spilled. */
1675 || (ureg < FIRST_PSEUDO_REGISTER
1676 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1677 || (sreg < FIRST_PSEUDO_REGISTER
1678 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1679 /* Don't connect two different machine modes if they have different
1680 implications as to which registers may be used. */
1681 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1682 return 0;
1683
1684 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1685 qty_phys_sugg for the pseudo instead of tying them.
1686
1687 Return "failure" so that the lifespan of UREG is terminated here;
1688 that way the two lifespans will be disjoint and nothing will prevent
1689 the pseudo reg from being given this hard reg. */
1690
1691 if (ureg < FIRST_PSEUDO_REGISTER)
1692 {
1693 /* Allocate a quantity number so we have a place to put our
1694 suggestions. */
1695 if (reg_qty[sreg] == -2)
1696 reg_is_born (setreg, 2 * insn_number);
1697
1698 if (reg_qty[sreg] >= 0)
1699 {
1700 if (may_save_copy
1701 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1702 {
1703 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1704 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1705 }
1706 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1707 {
1708 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1709 qty_phys_num_sugg[reg_qty[sreg]]++;
1710 }
1711 }
1712 return 0;
1713 }
1714
1715 /* Similarly for SREG a hard register and UREG a pseudo register. */
1716
1717 if (sreg < FIRST_PSEUDO_REGISTER)
1718 {
1719 if (may_save_copy
1720 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1721 {
1722 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1723 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1724 }
1725 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1726 {
1727 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1728 qty_phys_num_sugg[reg_qty[ureg]]++;
1729 }
1730 return 0;
1731 }
1732
1733 /* At this point we know that SREG and UREG are both pseudos.
1734 Do nothing if SREG already has a quantity or is a register that we
1735 don't allocate. */
1736 if (reg_qty[sreg] >= -1
1737 /* If we are not going to let any regs live across calls,
1738 don't tie a call-crossing reg to a non-call-crossing reg. */
1739 || (current_function_has_nonlocal_label
1740 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1741 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1742 return 0;
1743
1744 /* We don't already know about SREG, so tie it to UREG
1745 if this is the last use of UREG, provided the classes they want
1746 are compatible. */
1747
1748 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1749 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1750 {
1751 /* Add SREG to UREG's quantity. */
1752 sqty = reg_qty[ureg];
1753 reg_qty[sreg] = sqty;
1754 reg_offset[sreg] = reg_offset[ureg] + offset;
1755 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1756 qty_first_reg[sqty] = sreg;
1757
1758 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1759 update_qty_class (sqty, sreg);
1760
1761 /* Update info about quantity SQTY. */
1762 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1763 qty_n_refs[sqty] += REG_N_REFS (sreg);
1764 if (usize < ssize)
1765 {
1766 register int i;
1767
1768 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1769 reg_offset[i] -= offset;
1770
1771 qty_size[sqty] = ssize;
1772 qty_mode[sqty] = GET_MODE (setreg);
1773 }
1774 }
1775 else
1776 return 0;
1777
1778 return 1;
1779 }
1780 \f
1781 /* Return 1 if the preferred class of REG allows it to be tied
1782 to a quantity or register whose class is CLASS.
1783 True if REG's reg class either contains or is contained in CLASS. */
1784
1785 static int
1786 reg_meets_class_p (reg, class)
1787 int reg;
1788 enum reg_class class;
1789 {
1790 register enum reg_class rclass = reg_preferred_class (reg);
1791 return (reg_class_subset_p (rclass, class)
1792 || reg_class_subset_p (class, rclass));
1793 }
1794
1795 /* Update the class of QTY assuming that REG is being tied to it. */
1796
1797 static void
1798 update_qty_class (qty, reg)
1799 int qty;
1800 int reg;
1801 {
1802 enum reg_class rclass = reg_preferred_class (reg);
1803 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1804 qty_min_class[qty] = rclass;
1805
1806 rclass = reg_alternate_class (reg);
1807 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1808 qty_alternate_class[qty] = rclass;
1809
1810 if (REG_CHANGES_SIZE (reg))
1811 qty_changes_size[qty] = 1;
1812 }
1813 \f
1814 /* Handle something which alters the value of an rtx REG.
1815
1816 REG is whatever is set or clobbered. SETTER is the rtx that
1817 is modifying the register.
1818
1819 If it is not really a register, we do nothing.
1820 The file-global variables `this_insn' and `this_insn_number'
1821 carry info from `block_alloc'. */
1822
1823 static void
1824 reg_is_set (reg, setter)
1825 rtx reg;
1826 rtx setter;
1827 {
1828 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1829 a hard register. These may actually not exist any more. */
1830
1831 if (GET_CODE (reg) != SUBREG
1832 && GET_CODE (reg) != REG)
1833 return;
1834
1835 /* Mark this register as being born. If it is used in a CLOBBER, mark
1836 it as being born halfway between the previous insn and this insn so that
1837 it conflicts with our inputs but not the outputs of the previous insn. */
1838
1839 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1840 }
1841 \f
1842 /* Handle beginning of the life of register REG.
1843 BIRTH is the index at which this is happening. */
1844
1845 static void
1846 reg_is_born (reg, birth)
1847 rtx reg;
1848 int birth;
1849 {
1850 register int regno;
1851
1852 if (GET_CODE (reg) == SUBREG)
1853 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1854 else
1855 regno = REGNO (reg);
1856
1857 if (regno < FIRST_PSEUDO_REGISTER)
1858 {
1859 mark_life (regno, GET_MODE (reg), 1);
1860
1861 /* If the register was to have been born earlier that the present
1862 insn, mark it as live where it is actually born. */
1863 if (birth < 2 * this_insn_number)
1864 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1865 }
1866 else
1867 {
1868 if (reg_qty[regno] == -2)
1869 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1870
1871 /* If this register has a quantity number, show that it isn't dead. */
1872 if (reg_qty[regno] >= 0)
1873 qty_death[reg_qty[regno]] = -1;
1874 }
1875 }
1876
1877 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1878 REG is an output that is dying (i.e., it is never used), otherwise it
1879 is an input (the normal case).
1880 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1881
1882 static void
1883 wipe_dead_reg (reg, output_p)
1884 register rtx reg;
1885 int output_p;
1886 {
1887 register int regno = REGNO (reg);
1888
1889 /* If this insn has multiple results,
1890 and the dead reg is used in one of the results,
1891 extend its life to after this insn,
1892 so it won't get allocated together with any other result of this insn.
1893
1894 It is unsafe to use !single_set here since it will ignore an unused
1895 output. Just because an output is unused does not mean the compiler
1896 can assume the side effect will not occur. Consider if REG appears
1897 in the address of an output and we reload the output. If we allocate
1898 REG to the same hard register as an unused output we could set the hard
1899 register before the output reload insn. */
1900 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1901 && multiple_sets (this_insn))
1902 {
1903 int i;
1904 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1905 {
1906 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1907 if (GET_CODE (set) == SET
1908 && GET_CODE (SET_DEST (set)) != REG
1909 && !rtx_equal_p (reg, SET_DEST (set))
1910 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1911 output_p = 1;
1912 }
1913 }
1914
1915 /* If this register is used in an auto-increment address, then extend its
1916 life to after this insn, so that it won't get allocated together with
1917 the result of this insn. */
1918 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1919 output_p = 1;
1920
1921 if (regno < FIRST_PSEUDO_REGISTER)
1922 {
1923 mark_life (regno, GET_MODE (reg), 0);
1924
1925 /* If a hard register is dying as an output, mark it as in use at
1926 the beginning of this insn (the above statement would cause this
1927 not to happen). */
1928 if (output_p)
1929 post_mark_life (regno, GET_MODE (reg), 1,
1930 2 * this_insn_number, 2 * this_insn_number+ 1);
1931 }
1932
1933 else if (reg_qty[regno] >= 0)
1934 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1935 }
1936 \f
1937 /* Find a block of SIZE words of hard regs in reg_class CLASS
1938 that can hold something of machine-mode MODE
1939 (but actually we test only the first of the block for holding MODE)
1940 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1941 and return the number of the first of them.
1942 Return -1 if such a block cannot be found.
1943 If QTY crosses calls, insist on a register preserved by calls,
1944 unless ACCEPT_CALL_CLOBBERED is nonzero.
1945
1946 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1947 register is available. If not, return -1. */
1948
1949 static int
1950 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1951 born_index, dead_index)
1952 enum reg_class class;
1953 enum machine_mode mode;
1954 int qty;
1955 int accept_call_clobbered;
1956 int just_try_suggested;
1957 int born_index, dead_index;
1958 {
1959 register int i, ins;
1960 #ifdef HARD_REG_SET
1961 register /* Declare it register if it's a scalar. */
1962 #endif
1963 HARD_REG_SET used, first_used;
1964 #ifdef ELIMINABLE_REGS
1965 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1966 #endif
1967
1968 /* Validate our parameters. */
1969 if (born_index < 0 || born_index > dead_index)
1970 abort ();
1971
1972 /* Don't let a pseudo live in a reg across a function call
1973 if we might get a nonlocal goto. */
1974 if (current_function_has_nonlocal_label
1975 && qty_n_calls_crossed[qty] > 0)
1976 return -1;
1977
1978 if (accept_call_clobbered)
1979 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1980 else if (qty_n_calls_crossed[qty] == 0)
1981 COPY_HARD_REG_SET (used, fixed_reg_set);
1982 else
1983 COPY_HARD_REG_SET (used, call_used_reg_set);
1984
1985 if (accept_call_clobbered)
1986 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1987
1988 for (ins = born_index; ins < dead_index; ins++)
1989 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1990
1991 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1992
1993 /* Don't use the frame pointer reg in local-alloc even if
1994 we may omit the frame pointer, because if we do that and then we
1995 need a frame pointer, reload won't know how to move the pseudo
1996 to another hard reg. It can move only regs made by global-alloc.
1997
1998 This is true of any register that can be eliminated. */
1999 #ifdef ELIMINABLE_REGS
2000 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
2001 SET_HARD_REG_BIT (used, eliminables[i].from);
2002 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2003 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2004 that it might be eliminated into. */
2005 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2006 #endif
2007 #else
2008 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2009 #endif
2010
2011 #ifdef CLASS_CANNOT_CHANGE_SIZE
2012 if (qty_changes_size[qty])
2013 IOR_HARD_REG_SET (used,
2014 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2015 #endif
2016
2017 /* Normally, the registers that can be used for the first register in
2018 a multi-register quantity are the same as those that can be used for
2019 subsequent registers. However, if just trying suggested registers,
2020 restrict our consideration to them. If there are copy-suggested
2021 register, try them. Otherwise, try the arithmetic-suggested
2022 registers. */
2023 COPY_HARD_REG_SET (first_used, used);
2024
2025 if (just_try_suggested)
2026 {
2027 if (qty_phys_num_copy_sugg[qty] != 0)
2028 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2029 else
2030 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2031 }
2032
2033 /* If all registers are excluded, we can't do anything. */
2034 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2035
2036 /* If at least one would be suitable, test each hard reg. */
2037
2038 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2039 {
2040 #ifdef REG_ALLOC_ORDER
2041 int regno = reg_alloc_order[i];
2042 #else
2043 int regno = i;
2044 #endif
2045 if (! TEST_HARD_REG_BIT (first_used, regno)
2046 && HARD_REGNO_MODE_OK (regno, mode)
2047 && (qty_n_calls_crossed[qty] == 0
2048 || accept_call_clobbered
2049 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2050 {
2051 register int j;
2052 register int size1 = HARD_REGNO_NREGS (regno, mode);
2053 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2054 if (j == size1)
2055 {
2056 /* Mark that this register is in use between its birth and death
2057 insns. */
2058 post_mark_life (regno, mode, 1, born_index, dead_index);
2059 return regno;
2060 }
2061 #ifndef REG_ALLOC_ORDER
2062 i += j; /* Skip starting points we know will lose */
2063 #endif
2064 }
2065 }
2066
2067 fail:
2068
2069 /* If we are just trying suggested register, we have just tried copy-
2070 suggested registers, and there are arithmetic-suggested registers,
2071 try them. */
2072
2073 /* If it would be profitable to allocate a call-clobbered register
2074 and save and restore it around calls, do that. */
2075 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2076 && qty_phys_num_sugg[qty] != 0)
2077 {
2078 /* Don't try the copy-suggested regs again. */
2079 qty_phys_num_copy_sugg[qty] = 0;
2080 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2081 born_index, dead_index);
2082 }
2083
2084 /* We need not check to see if the current function has nonlocal
2085 labels because we don't put any pseudos that are live over calls in
2086 registers in that case. */
2087
2088 if (! accept_call_clobbered
2089 && flag_caller_saves
2090 && ! just_try_suggested
2091 && qty_n_calls_crossed[qty] != 0
2092 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2093 {
2094 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2095 if (i >= 0)
2096 caller_save_needed = 1;
2097 return i;
2098 }
2099 return -1;
2100 }
2101 \f
2102 /* Mark that REGNO with machine-mode MODE is live starting from the current
2103 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2104 is zero). */
2105
2106 static void
2107 mark_life (regno, mode, life)
2108 register int regno;
2109 enum machine_mode mode;
2110 int life;
2111 {
2112 register int j = HARD_REGNO_NREGS (regno, mode);
2113 if (life)
2114 while (--j >= 0)
2115 SET_HARD_REG_BIT (regs_live, regno + j);
2116 else
2117 while (--j >= 0)
2118 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2119 }
2120
2121 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2122 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2123 to insn number DEATH (exclusive). */
2124
2125 static void
2126 post_mark_life (regno, mode, life, birth, death)
2127 int regno;
2128 enum machine_mode mode;
2129 int life, birth, death;
2130 {
2131 register int j = HARD_REGNO_NREGS (regno, mode);
2132 #ifdef HARD_REG_SET
2133 register /* Declare it register if it's a scalar. */
2134 #endif
2135 HARD_REG_SET this_reg;
2136
2137 CLEAR_HARD_REG_SET (this_reg);
2138 while (--j >= 0)
2139 SET_HARD_REG_BIT (this_reg, regno + j);
2140
2141 if (life)
2142 while (birth < death)
2143 {
2144 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2145 birth++;
2146 }
2147 else
2148 while (birth < death)
2149 {
2150 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2151 birth++;
2152 }
2153 }
2154 \f
2155 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2156 is the register being clobbered, and R1 is a register being used in
2157 the equivalent expression.
2158
2159 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2160 in which it is used, return 1.
2161
2162 Otherwise, return 0. */
2163
2164 static int
2165 no_conflict_p (insn, r0, r1)
2166 rtx insn, r0, r1;
2167 {
2168 int ok = 0;
2169 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2170 rtx p, last;
2171
2172 /* If R1 is a hard register, return 0 since we handle this case
2173 when we scan the insns that actually use it. */
2174
2175 if (note == 0
2176 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2177 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2178 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2179 return 0;
2180
2181 last = XEXP (note, 0);
2182
2183 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2184 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2185 {
2186 if (find_reg_note (p, REG_DEAD, r1))
2187 ok = 1;
2188
2189 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2190 some earlier optimization pass has inserted instructions into
2191 the sequence, and it is not safe to perform this optimization.
2192 Note that emit_no_conflict_block always ensures that this is
2193 true when these sequences are created. */
2194 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2195 return 0;
2196 }
2197
2198 return ok;
2199 }
2200 \f
2201 #ifdef REGISTER_CONSTRAINTS
2202
2203 /* Return the number of alternatives for which the constraint string P
2204 indicates that the operand must be equal to operand 0 and that no register
2205 is acceptable. */
2206
2207 static int
2208 requires_inout (p)
2209 const char *p;
2210 {
2211 char c;
2212 int found_zero = 0;
2213 int reg_allowed = 0;
2214 int num_matching_alts = 0;
2215
2216 while ((c = *p++))
2217 switch (c)
2218 {
2219 case '=': case '+': case '?':
2220 case '#': case '&': case '!':
2221 case '*': case '%':
2222 case '1': case '2': case '3': case '4': case '5':
2223 case '6': case '7': case '8': case '9':
2224 case 'm': case '<': case '>': case 'V': case 'o':
2225 case 'E': case 'F': case 'G': case 'H':
2226 case 's': case 'i': case 'n':
2227 case 'I': case 'J': case 'K': case 'L':
2228 case 'M': case 'N': case 'O': case 'P':
2229 #ifdef EXTRA_CONSTRAINT
2230 case 'Q': case 'R': case 'S': case 'T': case 'U':
2231 #endif
2232 case 'X':
2233 /* These don't say anything we care about. */
2234 break;
2235
2236 case ',':
2237 if (found_zero && ! reg_allowed)
2238 num_matching_alts++;
2239
2240 found_zero = reg_allowed = 0;
2241 break;
2242
2243 case '0':
2244 found_zero = 1;
2245 break;
2246
2247 case 'p':
2248 case 'g': case 'r':
2249 default:
2250 reg_allowed = 1;
2251 break;
2252 }
2253
2254 if (found_zero && ! reg_allowed)
2255 num_matching_alts++;
2256
2257 return num_matching_alts;
2258 }
2259 #endif /* REGISTER_CONSTRAINTS */
2260 \f
2261 void
2262 dump_local_alloc (file)
2263 FILE *file;
2264 {
2265 register int i;
2266 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2267 if (reg_renumber[i] != -1)
2268 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2269 }