Flow rewrite to use basic block structures and edge lists.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "insn-attr.h"
71 #include "recog.h"
72 #include "output.h"
73 #include "toplev.h"
74 \f
75 /* Next quantity number available for allocation. */
76
77 static int next_qty;
78
79 /* In all the following vectors indexed by quantity number. */
80
81 /* Element Q is the hard reg number chosen for quantity Q,
82 or -1 if none was found. */
83
84 static short *qty_phys_reg;
85
86 /* We maintain two hard register sets that indicate suggested hard registers
87 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
88 that are tied to the quantity by a simple copy. The second contains all
89 hard registers that are tied to the quantity via an arithmetic operation.
90
91 The former register set is given priority for allocation. This tends to
92 eliminate copy insns. */
93
94 /* Element Q is a set of hard registers that are suggested for quantity Q by
95 copy insns. */
96
97 static HARD_REG_SET *qty_phys_copy_sugg;
98
99 /* Element Q is a set of hard registers that are suggested for quantity Q by
100 arithmetic insns. */
101
102 static HARD_REG_SET *qty_phys_sugg;
103
104 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
105
106 static short *qty_phys_num_copy_sugg;
107
108 /* Element Q is the number of suggested registers in qty_phys_sugg. */
109
110 static short *qty_phys_num_sugg;
111
112 /* Element Q is the number of refs to quantity Q. */
113
114 static int *qty_n_refs;
115
116 /* Element Q is a reg class contained in (smaller than) the
117 preferred classes of all the pseudo regs that are tied in quantity Q.
118 This is the preferred class for allocating that quantity. */
119
120 static enum reg_class *qty_min_class;
121
122 /* Insn number (counting from head of basic block)
123 where quantity Q was born. -1 if birth has not been recorded. */
124
125 static int *qty_birth;
126
127 /* Insn number (counting from head of basic block)
128 where quantity Q died. Due to the way tying is done,
129 and the fact that we consider in this pass only regs that die but once,
130 a quantity can die only once. Each quantity's life span
131 is a set of consecutive insns. -1 if death has not been recorded. */
132
133 static int *qty_death;
134
135 /* Number of words needed to hold the data in quantity Q.
136 This depends on its machine mode. It is used for these purposes:
137 1. It is used in computing the relative importances of qtys,
138 which determines the order in which we look for regs for them.
139 2. It is used in rules that prevent tying several registers of
140 different sizes in a way that is geometrically impossible
141 (see combine_regs). */
142
143 static int *qty_size;
144
145 /* This holds the mode of the registers that are tied to qty Q,
146 or VOIDmode if registers with differing modes are tied together. */
147
148 static enum machine_mode *qty_mode;
149
150 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
151
152 static int *qty_n_calls_crossed;
153
154 /* Register class within which we allocate qty Q if we can't get
155 its preferred class. */
156
157 static enum reg_class *qty_alternate_class;
158
159 /* Element Q is nonzero if this quantity has been used in a SUBREG
160 that changes its size. */
161
162 static char *qty_changes_size;
163
164 /* Element Q is the register number of one pseudo register whose
165 reg_qty value is Q. This register should be the head of the chain
166 maintained in reg_next_in_qty. */
167
168 static int *qty_first_reg;
169
170 /* If (REG N) has been assigned a quantity number, is a register number
171 of another register assigned the same quantity number, or -1 for the
172 end of the chain. qty_first_reg point to the head of this chain. */
173
174 static int *reg_next_in_qty;
175
176 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
177 if it is >= 0,
178 of -1 if this register cannot be allocated by local-alloc,
179 or -2 if not known yet.
180
181 Note that if we see a use or death of pseudo register N with
182 reg_qty[N] == -2, register N must be local to the current block. If
183 it were used in more than one block, we would have reg_qty[N] == -1.
184 This relies on the fact that if reg_basic_block[N] is >= 0, register N
185 will not appear in any other block. We save a considerable number of
186 tests by exploiting this.
187
188 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
189 be referenced. */
190
191 static int *reg_qty;
192
193 /* The offset (in words) of register N within its quantity.
194 This can be nonzero if register N is SImode, and has been tied
195 to a subreg of a DImode register. */
196
197 static char *reg_offset;
198
199 /* Vector of substitutions of register numbers,
200 used to map pseudo regs into hardware regs.
201 This is set up as a result of register allocation.
202 Element N is the hard reg assigned to pseudo reg N,
203 or is -1 if no hard reg was assigned.
204 If N is a hard reg number, element N is N. */
205
206 short *reg_renumber;
207
208 /* Set of hard registers live at the current point in the scan
209 of the instructions in a basic block. */
210
211 static HARD_REG_SET regs_live;
212
213 /* Each set of hard registers indicates registers live at a particular
214 point in the basic block. For N even, regs_live_at[N] says which
215 hard registers are needed *after* insn N/2 (i.e., they may not
216 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
217
218 If an object is to conflict with the inputs of insn J but not the
219 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
220 if it is to conflict with the outputs of insn J but not the inputs of
221 insn J + 1, it is said to die at index J*2 + 1. */
222
223 static HARD_REG_SET *regs_live_at;
224
225 /* Communicate local vars `insn_number' and `insn'
226 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
227 static int this_insn_number;
228 static rtx this_insn;
229
230 /* Used to communicate changes made by update_equiv_regs to
231 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
232 found or created, so that we can keep track of what memory accesses might
233 be created later, e.g. by reload. */
234
235 static rtx *reg_equiv_replacement;
236
237 /* Used for communication between update_equiv_regs and no_equiv. */
238 static rtx *reg_equiv_init_insns;
239
240 static void alloc_qty PROTO((int, enum machine_mode, int, int));
241 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
242 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
243 static int contains_replace_regs PROTO((rtx, char *));
244 static int memref_referenced_p PROTO((rtx, rtx));
245 static int memref_used_between_p PROTO((rtx, rtx, rtx));
246 static void update_equiv_regs PROTO((void));
247 static void no_equiv PROTO((rtx, rtx));
248 static void block_alloc PROTO((int));
249 static int qty_sugg_compare PROTO((int, int));
250 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
251 static int qty_compare PROTO((int, int));
252 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
253 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
254 static int reg_meets_class_p PROTO((int, enum reg_class));
255 static void update_qty_class PROTO((int, int));
256 static void reg_is_set PROTO((rtx, rtx));
257 static void reg_is_born PROTO((rtx, int));
258 static void wipe_dead_reg PROTO((rtx, int));
259 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
260 int, int, int, int, int));
261 static void mark_life PROTO((int, enum machine_mode, int));
262 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
263 static int no_conflict_p PROTO((rtx, rtx, rtx));
264 static int requires_inout PROTO((const char *));
265 \f
266 /* Allocate a new quantity (new within current basic block)
267 for register number REGNO which is born at index BIRTH
268 within the block. MODE and SIZE are info on reg REGNO. */
269
270 static void
271 alloc_qty (regno, mode, size, birth)
272 int regno;
273 enum machine_mode mode;
274 int size, birth;
275 {
276 register int qty = next_qty++;
277
278 reg_qty[regno] = qty;
279 reg_offset[regno] = 0;
280 reg_next_in_qty[regno] = -1;
281
282 qty_first_reg[qty] = regno;
283 qty_size[qty] = size;
284 qty_mode[qty] = mode;
285 qty_birth[qty] = birth;
286 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
287 qty_min_class[qty] = reg_preferred_class (regno);
288 qty_alternate_class[qty] = reg_alternate_class (regno);
289 qty_n_refs[qty] = REG_N_REFS (regno);
290 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
291 }
292 \f
293 /* Main entry point of this file. */
294
295 void
296 local_alloc ()
297 {
298 register int b, i;
299 int max_qty;
300
301 /* Leaf functions and non-leaf functions have different needs.
302 If defined, let the machine say what kind of ordering we
303 should use. */
304 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
305 ORDER_REGS_FOR_LOCAL_ALLOC;
306 #endif
307
308 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
309 registers. */
310 update_equiv_regs ();
311
312 /* This sets the maximum number of quantities we can have. Quantity
313 numbers start at zero and we can have one for each pseudo. */
314 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
315
316 /* Allocate vectors of temporary data.
317 See the declarations of these variables, above,
318 for what they mean. */
319
320 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
321 qty_phys_copy_sugg
322 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
323 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
324 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
325 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
326 qty_birth = (int *) alloca (max_qty * sizeof (int));
327 qty_death = (int *) alloca (max_qty * sizeof (int));
328 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
329 qty_size = (int *) alloca (max_qty * sizeof (int));
330 qty_mode
331 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
332 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
333 qty_min_class
334 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
335 qty_alternate_class
336 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
337 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
338 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
339
340 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
341 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
342 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
343
344 /* Allocate the reg_renumber array */
345 allocate_reg_info (max_regno, FALSE, TRUE);
346
347 /* Determine which pseudo-registers can be allocated by local-alloc.
348 In general, these are the registers used only in a single block and
349 which only die once. However, if a register's preferred class has only
350 a few entries, don't allocate this register here unless it is preferred
351 or nothing since retry_global_alloc won't be able to move it to
352 GENERAL_REGS if a reload register of this class is needed.
353
354 We need not be concerned with which block actually uses the register
355 since we will never see it outside that block. */
356
357 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
358 {
359 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
360 && (reg_alternate_class (i) == NO_REGS
361 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
362 reg_qty[i] = -2;
363 else
364 reg_qty[i] = -1;
365 }
366
367 /* Force loop below to initialize entire quantity array. */
368 next_qty = max_qty;
369
370 /* Allocate each block's local registers, block by block. */
371
372 for (b = 0; b < n_basic_blocks; b++)
373 {
374 /* NEXT_QTY indicates which elements of the `qty_...'
375 vectors might need to be initialized because they were used
376 for the previous block; it is set to the entire array before
377 block 0. Initialize those, with explicit loop if there are few,
378 else with bzero and bcopy. Do not initialize vectors that are
379 explicit set by `alloc_qty'. */
380
381 if (next_qty < 6)
382 {
383 for (i = 0; i < next_qty; i++)
384 {
385 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
386 qty_phys_num_copy_sugg[i] = 0;
387 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
388 qty_phys_num_sugg[i] = 0;
389 }
390 }
391 else
392 {
393 #define CLEAR(vector) \
394 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
395
396 CLEAR (qty_phys_copy_sugg);
397 CLEAR (qty_phys_num_copy_sugg);
398 CLEAR (qty_phys_sugg);
399 CLEAR (qty_phys_num_sugg);
400 }
401
402 next_qty = 0;
403
404 block_alloc (b);
405 #ifdef USE_C_ALLOCA
406 alloca (0);
407 #endif
408 }
409
410 free (reg_qty);
411 free (reg_offset);
412 free (reg_next_in_qty);
413 }
414 \f
415 /* Depth of loops we are in while in update_equiv_regs. */
416 static int loop_depth;
417
418 /* Used for communication between the following two functions: contains
419 a MEM that we wish to ensure remains unchanged. */
420 static rtx equiv_mem;
421
422 /* Set nonzero if EQUIV_MEM is modified. */
423 static int equiv_mem_modified;
424
425 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
426 Called via note_stores. */
427
428 static void
429 validate_equiv_mem_from_store (dest, set)
430 rtx dest;
431 rtx set ATTRIBUTE_UNUSED;
432 {
433 if ((GET_CODE (dest) == REG
434 && reg_overlap_mentioned_p (dest, equiv_mem))
435 || (GET_CODE (dest) == MEM
436 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
437 equiv_mem_modified = 1;
438 }
439
440 /* Verify that no store between START and the death of REG invalidates
441 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
442 by storing into an overlapping memory location, or with a non-const
443 CALL_INSN.
444
445 Return 1 if MEMREF remains valid. */
446
447 static int
448 validate_equiv_mem (start, reg, memref)
449 rtx start;
450 rtx reg;
451 rtx memref;
452 {
453 rtx insn;
454 rtx note;
455
456 equiv_mem = memref;
457 equiv_mem_modified = 0;
458
459 /* If the memory reference has side effects or is volatile, it isn't a
460 valid equivalence. */
461 if (side_effects_p (memref))
462 return 0;
463
464 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
465 {
466 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
467 continue;
468
469 if (find_reg_note (insn, REG_DEAD, reg))
470 return 1;
471
472 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
473 && ! CONST_CALL_P (insn))
474 return 0;
475
476 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
477
478 /* If a register mentioned in MEMREF is modified via an
479 auto-increment, we lose the equivalence. Do the same if one
480 dies; although we could extend the life, it doesn't seem worth
481 the trouble. */
482
483 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
484 if ((REG_NOTE_KIND (note) == REG_INC
485 || REG_NOTE_KIND (note) == REG_DEAD)
486 && GET_CODE (XEXP (note, 0)) == REG
487 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
488 return 0;
489 }
490
491 return 0;
492 }
493
494 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
495
496 static int
497 contains_replace_regs (x, reg_equiv_replace)
498 rtx x;
499 char *reg_equiv_replace;
500 {
501 int i, j;
502 char *fmt;
503 enum rtx_code code = GET_CODE (x);
504
505 switch (code)
506 {
507 case CONST_INT:
508 case CONST:
509 case LABEL_REF:
510 case SYMBOL_REF:
511 case CONST_DOUBLE:
512 case PC:
513 case CC0:
514 case HIGH:
515 case LO_SUM:
516 return 0;
517
518 case REG:
519 return reg_equiv_replace[REGNO (x)];
520
521 default:
522 break;
523 }
524
525 fmt = GET_RTX_FORMAT (code);
526 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
527 switch (fmt[i])
528 {
529 case 'e':
530 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
531 return 1;
532 break;
533 case 'E':
534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
535 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
536 return 1;
537 break;
538 }
539
540 return 0;
541 }
542 \f
543 /* TRUE if X references a memory location that would be affected by a store
544 to MEMREF. */
545
546 static int
547 memref_referenced_p (memref, x)
548 rtx x;
549 rtx memref;
550 {
551 int i, j;
552 char *fmt;
553 enum rtx_code code = GET_CODE (x);
554
555 switch (code)
556 {
557 case CONST_INT:
558 case CONST:
559 case LABEL_REF:
560 case SYMBOL_REF:
561 case CONST_DOUBLE:
562 case PC:
563 case CC0:
564 case HIGH:
565 case LO_SUM:
566 return 0;
567
568 case REG:
569 return (reg_equiv_replacement[REGNO (x)]
570 && memref_referenced_p (memref,
571 reg_equiv_replacement[REGNO (x)]));
572
573 case MEM:
574 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
575 return 1;
576 break;
577
578 case SET:
579 /* If we are setting a MEM, it doesn't count (its address does), but any
580 other SET_DEST that has a MEM in it is referencing the MEM. */
581 if (GET_CODE (SET_DEST (x)) == MEM)
582 {
583 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
584 return 1;
585 }
586 else if (memref_referenced_p (memref, SET_DEST (x)))
587 return 1;
588
589 return memref_referenced_p (memref, SET_SRC (x));
590
591 default:
592 break;
593 }
594
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597 switch (fmt[i])
598 {
599 case 'e':
600 if (memref_referenced_p (memref, XEXP (x, i)))
601 return 1;
602 break;
603 case 'E':
604 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
605 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
606 return 1;
607 break;
608 }
609
610 return 0;
611 }
612
613 /* TRUE if some insn in the range (START, END] references a memory location
614 that would be affected by a store to MEMREF. */
615
616 static int
617 memref_used_between_p (memref, start, end)
618 rtx memref;
619 rtx start;
620 rtx end;
621 {
622 rtx insn;
623
624 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
625 insn = NEXT_INSN (insn))
626 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
627 && memref_referenced_p (memref, PATTERN (insn)))
628 return 1;
629
630 return 0;
631 }
632 \f
633 /* Return nonzero if the rtx X is invariant over the current function. */
634 int
635 function_invariant_p (x)
636 rtx x;
637 {
638 if (CONSTANT_P (x))
639 return 1;
640 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
641 return 1;
642 if (GET_CODE (x) == PLUS
643 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
644 && CONSTANT_P (XEXP (x, 1)))
645 return 1;
646 return 0;
647 }
648
649 /* Find registers that are equivalent to a single value throughout the
650 compilation (either because they can be referenced in memory or are set once
651 from a single constant). Lower their priority for a register.
652
653 If such a register is only referenced once, try substituting its value
654 into the using insn. If it succeeds, we can eliminate the register
655 completely. */
656
657 static void
658 update_equiv_regs ()
659 {
660 /* Set when an attempt should be made to replace a register with the
661 associated reg_equiv_replacement entry at the end of this function. */
662 char *reg_equiv_replace
663 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
664 rtx insn;
665 int block, depth;
666
667 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
668 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
669
670 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
671 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
672 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
673
674 init_alias_analysis ();
675
676 loop_depth = 1;
677
678 /* Scan the insns and find which registers have equivalences. Do this
679 in a separate scan of the insns because (due to -fcse-follow-jumps)
680 a register can be set below its use. */
681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
682 {
683 rtx note;
684 rtx set;
685 rtx dest, src;
686 int regno;
687
688 if (GET_CODE (insn) == NOTE)
689 {
690 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
691 loop_depth++;
692 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
693 loop_depth--;
694 }
695
696 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
697 continue;
698
699 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
700 if (REG_NOTE_KIND (note) == REG_INC)
701 no_equiv (XEXP (note, 0), note);
702
703 set = single_set (insn);
704
705 /* If this insn contains more (or less) than a single SET,
706 only mark all destinations as having no known equivalence. */
707 if (set == 0)
708 {
709 note_stores (PATTERN (insn), no_equiv);
710 continue;
711 }
712 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
713 {
714 int i;
715
716 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
717 {
718 rtx part = XVECEXP (PATTERN (insn), 0, i);
719 if (part != set)
720 note_stores (part, no_equiv);
721 }
722 }
723
724 dest = SET_DEST (set);
725 src = SET_SRC (set);
726
727 /* If this sets a MEM to the contents of a REG that is only used
728 in a single basic block, see if the register is always equivalent
729 to that memory location and if moving the store from INSN to the
730 insn that set REG is safe. If so, put a REG_EQUIV note on the
731 initializing insn.
732
733 Don't add a REG_EQUIV note if the insn already has one. The existing
734 REG_EQUIV is likely more useful than the one we are adding.
735
736 If one of the regs in the address is marked as reg_equiv_replace,
737 then we can't add this REG_EQUIV note. The reg_equiv_replace
738 optimization may move the set of this register immediately before
739 insn, which puts it after reg_equiv_init_insns[regno], and hence
740 the mention in the REG_EQUIV note would be to an uninitialized
741 pseudo. */
742 /* ????? This test isn't good enough; we might see a MEM with a use of
743 a pseudo register before we see its setting insn that will cause
744 reg_equiv_replace for that pseudo to be set.
745 Equivalences to MEMs should be made in another pass, after the
746 reg_equiv_replace information has been gathered. */
747
748 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
749 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
750 && REG_BASIC_BLOCK (regno) >= 0
751 && REG_N_SETS (regno) == 1
752 && reg_equiv_init_insns[regno] != 0
753 && reg_equiv_init_insns[regno] != const0_rtx
754 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
755 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
756 {
757 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
758 if (validate_equiv_mem (init_insn, src, dest)
759 && ! memref_used_between_p (dest, init_insn, insn))
760 REG_NOTES (init_insn)
761 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
762 }
763
764 /* We only handle the case of a pseudo register being set
765 once, or always to the same value. */
766 /* ??? The mn10200 port breaks if we add equivalences for
767 values that need an ADDRESS_REGS register and set them equivalent
768 to a MEM of a pseudo. The actual problem is in the over-conservative
769 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
770 calculate_needs, but we traditionally work around this problem
771 here by rejecting equivalences when the destination is in a register
772 that's likely spilled. This is fragile, of course, since the
773 preferred class of a pseudo depends on all instructions that set
774 or use it. */
775
776 if (GET_CODE (dest) != REG
777 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
778 || reg_equiv_init_insns[regno] == const0_rtx
779 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
780 && GET_CODE (src) == MEM))
781 {
782 /* This might be seting a SUBREG of a pseudo, a pseudo that is
783 also set somewhere else to a constant. */
784 note_stores (set, no_equiv);
785 continue;
786 }
787 /* Don't handle the equivalence if the source is in a register
788 class that's likely to be spilled. */
789 if (GET_CODE (src) == REG
790 && REGNO (src) >= FIRST_PSEUDO_REGISTER
791 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
792 {
793 no_equiv (dest, set);
794 continue;
795 }
796
797 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
798
799 if (REG_N_SETS (regno) != 1
800 && (! note
801 || ! function_invariant_p (XEXP (note, 0))
802 || (reg_equiv_replacement[regno]
803 && ! rtx_equal_p (XEXP (note, 0),
804 reg_equiv_replacement[regno]))))
805 {
806 no_equiv (dest, set);
807 continue;
808 }
809 /* Record this insn as initializing this register. */
810 reg_equiv_init_insns[regno]
811 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
812
813 /* If this register is known to be equal to a constant, record that
814 it is always equivalent to the constant. */
815 if (note && function_invariant_p (XEXP (note, 0)))
816 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
817
818 /* If this insn introduces a "constant" register, decrease the priority
819 of that register. Record this insn if the register is only used once
820 more and the equivalence value is the same as our source.
821
822 The latter condition is checked for two reasons: First, it is an
823 indication that it may be more efficient to actually emit the insn
824 as written (if no registers are available, reload will substitute
825 the equivalence). Secondly, it avoids problems with any registers
826 dying in this insn whose death notes would be missed.
827
828 If we don't have a REG_EQUIV note, see if this insn is loading
829 a register used only in one basic block from a MEM. If so, and the
830 MEM remains unchanged for the life of the register, add a REG_EQUIV
831 note. */
832
833 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
834
835 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
836 && GET_CODE (SET_SRC (set)) == MEM
837 && validate_equiv_mem (insn, dest, SET_SRC (set)))
838 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
839 REG_NOTES (insn));
840
841 if (note)
842 {
843 int regno = REGNO (dest);
844
845 reg_equiv_replacement[regno] = XEXP (note, 0);
846
847 /* Don't mess with things live during setjmp. */
848 if (REG_LIVE_LENGTH (regno) >= 0)
849 {
850 /* Note that the statement below does not affect the priority
851 in local-alloc! */
852 REG_LIVE_LENGTH (regno) *= 2;
853
854
855 /* If the register is referenced exactly twice, meaning it is
856 set once and used once, indicate that the reference may be
857 replaced by the equivalence we computed above. If the
858 register is only used in one basic block, this can't succeed
859 or combine would have done it.
860
861 It would be nice to use "loop_depth * 2" in the compare
862 below. Unfortunately, LOOP_DEPTH need not be constant within
863 a basic block so this would be too complicated.
864
865 This case normally occurs when a parameter is read from
866 memory and then used exactly once, not in a loop. */
867
868 if (REG_N_REFS (regno) == 2
869 && REG_BASIC_BLOCK (regno) < 0
870 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
871 reg_equiv_replace[regno] = 1;
872 }
873 }
874 }
875
876 /* Now scan all regs killed in an insn to see if any of them are
877 registers only used that once. If so, see if we can replace the
878 reference with the equivalent from. If we can, delete the
879 initializing reference and this register will go away. If we
880 can't replace the reference, and the instruction is not in a
881 loop, then move the register initialization just before the use,
882 so that they are in the same basic block. */
883 block = -1;
884 depth = 0;
885 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
886 {
887 rtx link;
888
889 /* Keep track of which basic block we are in. */
890 if (block + 1 < n_basic_blocks
891 && BLOCK_HEAD (block + 1) == insn)
892 ++block;
893
894 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
895 {
896 if (GET_CODE (insn) == NOTE)
897 {
898 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
899 ++depth;
900 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
901 {
902 --depth;
903 if (depth < 0)
904 abort ();
905 }
906 }
907
908 continue;
909 }
910
911 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
912 {
913 if (REG_NOTE_KIND (link) == REG_DEAD
914 /* Make sure this insn still refers to the register. */
915 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
916 {
917 int regno = REGNO (XEXP (link, 0));
918 rtx equiv_insn;
919
920 if (! reg_equiv_replace[regno])
921 continue;
922
923 /* reg_equiv_replace[REGNO] gets set only when
924 REG_N_REFS[REGNO] is 2, i.e. the register is set
925 once and used once. (If it were only set, but not used,
926 flow would have deleted the setting insns.) Hence
927 there can only be one insn in reg_equiv_init_insns. */
928 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
929
930 if (validate_replace_rtx (regno_reg_rtx[regno],
931 reg_equiv_replacement[regno], insn))
932 {
933 remove_death (regno, insn);
934 REG_N_REFS (regno) = 0;
935 PUT_CODE (equiv_insn, NOTE);
936 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
937 NOTE_SOURCE_FILE (equiv_insn) = 0;
938 }
939 /* If we aren't in a loop, and there are no calls in
940 INSN or in the initialization of the register, then
941 move the initialization of the register to just
942 before INSN. Update the flow information. */
943 else if (depth == 0
944 && GET_CODE (equiv_insn) == INSN
945 && GET_CODE (insn) == INSN
946 && REG_BASIC_BLOCK (regno) < 0)
947 {
948 int l;
949
950 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
951 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
952
953 PUT_CODE (equiv_insn, NOTE);
954 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
955 NOTE_SOURCE_FILE (equiv_insn) = 0;
956 REG_NOTES (equiv_insn) = 0;
957
958 if (block < 0)
959 REG_BASIC_BLOCK (regno) = 0;
960 else
961 REG_BASIC_BLOCK (regno) = block;
962 REG_N_CALLS_CROSSED (regno) = 0;
963 REG_LIVE_LENGTH (regno) = 2;
964
965 if (block >= 0 && insn == BLOCK_HEAD (block))
966 BLOCK_HEAD (block) = PREV_INSN (insn);
967
968 for (l = 0; l < n_basic_blocks; l++)
969 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
970 regno);
971 }
972 }
973 }
974 }
975 }
976
977 /* Mark REG as having no known equivalence.
978 Some instructions might have been proceessed before and furnished
979 with REG_EQUIV notes for this register; these notes will have to be
980 removed.
981 STORE is the piece of RTL that does the non-constant / conflicting
982 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
983 but needs to be there because this function is called from note_stores. */
984 static void
985 no_equiv (reg, store)
986 rtx reg, store;
987 {
988 int regno;
989 rtx list;
990
991 if (GET_CODE (reg) != REG)
992 return;
993 regno = REGNO (reg);
994 list = reg_equiv_init_insns[regno];
995 if (list == const0_rtx)
996 return;
997 for (; list; list = XEXP (list, 1))
998 {
999 rtx insn = XEXP (list, 0);
1000 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1001 }
1002 reg_equiv_init_insns[regno] = const0_rtx;
1003 reg_equiv_replacement[regno] = NULL_RTX;
1004 }
1005 \f
1006 /* Allocate hard regs to the pseudo regs used only within block number B.
1007 Only the pseudos that die but once can be handled. */
1008
1009 static void
1010 block_alloc (b)
1011 int b;
1012 {
1013 register int i, q;
1014 register rtx insn;
1015 rtx note;
1016 int insn_number = 0;
1017 int insn_count = 0;
1018 int max_uid = get_max_uid ();
1019 int *qty_order;
1020 int no_conflict_combined_regno = -1;
1021
1022 /* Count the instructions in the basic block. */
1023
1024 insn = BLOCK_END (b);
1025 while (1)
1026 {
1027 if (GET_CODE (insn) != NOTE)
1028 if (++insn_count > max_uid)
1029 abort ();
1030 if (insn == BLOCK_HEAD (b))
1031 break;
1032 insn = PREV_INSN (insn);
1033 }
1034
1035 /* +2 to leave room for a post_mark_life at the last insn and for
1036 the birth of a CLOBBER in the first insn. */
1037 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1038 * sizeof (HARD_REG_SET));
1039 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1040
1041 /* Initialize table of hardware registers currently live. */
1042
1043 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1044
1045 /* This loop scans the instructions of the basic block
1046 and assigns quantities to registers.
1047 It computes which registers to tie. */
1048
1049 insn = BLOCK_HEAD (b);
1050 while (1)
1051 {
1052 register rtx body = PATTERN (insn);
1053
1054 if (GET_CODE (insn) != NOTE)
1055 insn_number++;
1056
1057 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1058 {
1059 register rtx link, set;
1060 register int win = 0;
1061 register rtx r0, r1;
1062 int combined_regno = -1;
1063 int i;
1064
1065 this_insn_number = insn_number;
1066 this_insn = insn;
1067
1068 extract_insn (insn);
1069 which_alternative = -1;
1070
1071 /* Is this insn suitable for tying two registers?
1072 If so, try doing that.
1073 Suitable insns are those with at least two operands and where
1074 operand 0 is an output that is a register that is not
1075 earlyclobber.
1076
1077 We can tie operand 0 with some operand that dies in this insn.
1078 First look for operands that are required to be in the same
1079 register as operand 0. If we find such, only try tying that
1080 operand or one that can be put into that operand if the
1081 operation is commutative. If we don't find an operand
1082 that is required to be in the same register as operand 0,
1083 we can tie with any operand.
1084
1085 Subregs in place of regs are also ok.
1086
1087 If tying is done, WIN is set nonzero. */
1088
1089 if (1
1090 #ifdef REGISTER_CONSTRAINTS
1091 && recog_n_operands > 1
1092 && recog_constraints[0][0] == '='
1093 && recog_constraints[0][1] != '&'
1094 #else
1095 && GET_CODE (PATTERN (insn)) == SET
1096 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1097 #endif
1098 )
1099 {
1100 #ifdef REGISTER_CONSTRAINTS
1101 /* If non-negative, is an operand that must match operand 0. */
1102 int must_match_0 = -1;
1103 /* Counts number of alternatives that require a match with
1104 operand 0. */
1105 int n_matching_alts = 0;
1106
1107 for (i = 1; i < recog_n_operands; i++)
1108 {
1109 const char *p = recog_constraints[i];
1110 int this_match = (requires_inout (p));
1111
1112 n_matching_alts += this_match;
1113 if (this_match == recog_n_alternatives)
1114 must_match_0 = i;
1115 }
1116 #endif
1117
1118 r0 = recog_operand[0];
1119 for (i = 1; i < recog_n_operands; i++)
1120 {
1121 #ifdef REGISTER_CONSTRAINTS
1122 /* Skip this operand if we found an operand that
1123 must match operand 0 and this operand isn't it
1124 and can't be made to be it by commutativity. */
1125
1126 if (must_match_0 >= 0 && i != must_match_0
1127 && ! (i == must_match_0 + 1
1128 && recog_constraints[i-1][0] == '%')
1129 && ! (i == must_match_0 - 1
1130 && recog_constraints[i][0] == '%'))
1131 continue;
1132
1133 /* Likewise if each alternative has some operand that
1134 must match operand zero. In that case, skip any
1135 operand that doesn't list operand 0 since we know that
1136 the operand always conflicts with operand 0. We
1137 ignore commutatity in this case to keep things simple. */
1138 if (n_matching_alts == recog_n_alternatives
1139 && 0 == requires_inout (recog_constraints[i]))
1140 continue;
1141 #endif
1142
1143 r1 = recog_operand[i];
1144
1145 /* If the operand is an address, find a register in it.
1146 There may be more than one register, but we only try one
1147 of them. */
1148 if (
1149 #ifdef REGISTER_CONSTRAINTS
1150 recog_constraints[i][0] == 'p'
1151 #else
1152 recog_operand_address_p[i]
1153 #endif
1154 )
1155 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1156 r1 = XEXP (r1, 0);
1157
1158 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1159 {
1160 /* We have two priorities for hard register preferences.
1161 If we have a move insn or an insn whose first input
1162 can only be in the same register as the output, give
1163 priority to an equivalence found from that insn. */
1164 int may_save_copy
1165 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1166 #ifdef REGISTER_CONSTRAINTS
1167 || (r1 == recog_operand[i] && must_match_0 >= 0)
1168 #endif
1169 );
1170
1171 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1172 win = combine_regs (r1, r0, may_save_copy,
1173 insn_number, insn, 0);
1174 }
1175 if (win)
1176 break;
1177 }
1178 }
1179
1180 /* Recognize an insn sequence with an ultimate result
1181 which can safely overlap one of the inputs.
1182 The sequence begins with a CLOBBER of its result,
1183 and ends with an insn that copies the result to itself
1184 and has a REG_EQUAL note for an equivalent formula.
1185 That note indicates what the inputs are.
1186 The result and the input can overlap if each insn in
1187 the sequence either doesn't mention the input
1188 or has a REG_NO_CONFLICT note to inhibit the conflict.
1189
1190 We do the combining test at the CLOBBER so that the
1191 destination register won't have had a quantity number
1192 assigned, since that would prevent combining. */
1193
1194 if (GET_CODE (PATTERN (insn)) == CLOBBER
1195 && (r0 = XEXP (PATTERN (insn), 0),
1196 GET_CODE (r0) == REG)
1197 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1198 && XEXP (link, 0) != 0
1199 && GET_CODE (XEXP (link, 0)) == INSN
1200 && (set = single_set (XEXP (link, 0))) != 0
1201 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1202 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1203 NULL_RTX)) != 0)
1204 {
1205 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1206 /* Check that we have such a sequence. */
1207 && no_conflict_p (insn, r0, r1))
1208 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1209 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1210 && (r1 = XEXP (XEXP (note, 0), 0),
1211 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1212 && no_conflict_p (insn, r0, r1))
1213 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1214
1215 /* Here we care if the operation to be computed is
1216 commutative. */
1217 else if ((GET_CODE (XEXP (note, 0)) == EQ
1218 || GET_CODE (XEXP (note, 0)) == NE
1219 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1220 && (r1 = XEXP (XEXP (note, 0), 1),
1221 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1222 && no_conflict_p (insn, r0, r1))
1223 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1224
1225 /* If we did combine something, show the register number
1226 in question so that we know to ignore its death. */
1227 if (win)
1228 no_conflict_combined_regno = REGNO (r1);
1229 }
1230
1231 /* If registers were just tied, set COMBINED_REGNO
1232 to the number of the register used in this insn
1233 that was tied to the register set in this insn.
1234 This register's qty should not be "killed". */
1235
1236 if (win)
1237 {
1238 while (GET_CODE (r1) == SUBREG)
1239 r1 = SUBREG_REG (r1);
1240 combined_regno = REGNO (r1);
1241 }
1242
1243 /* Mark the death of everything that dies in this instruction,
1244 except for anything that was just combined. */
1245
1246 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1247 if (REG_NOTE_KIND (link) == REG_DEAD
1248 && GET_CODE (XEXP (link, 0)) == REG
1249 && combined_regno != REGNO (XEXP (link, 0))
1250 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1251 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1252 wipe_dead_reg (XEXP (link, 0), 0);
1253
1254 /* Allocate qty numbers for all registers local to this block
1255 that are born (set) in this instruction.
1256 A pseudo that already has a qty is not changed. */
1257
1258 note_stores (PATTERN (insn), reg_is_set);
1259
1260 /* If anything is set in this insn and then unused, mark it as dying
1261 after this insn, so it will conflict with our outputs. This
1262 can't match with something that combined, and it doesn't matter
1263 if it did. Do this after the calls to reg_is_set since these
1264 die after, not during, the current insn. */
1265
1266 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1267 if (REG_NOTE_KIND (link) == REG_UNUSED
1268 && GET_CODE (XEXP (link, 0)) == REG)
1269 wipe_dead_reg (XEXP (link, 0), 1);
1270
1271 /* If this is an insn that has a REG_RETVAL note pointing at a
1272 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1273 block, so clear any register number that combined within it. */
1274 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1275 && GET_CODE (XEXP (note, 0)) == INSN
1276 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1277 no_conflict_combined_regno = -1;
1278 }
1279
1280 /* Set the registers live after INSN_NUMBER. Note that we never
1281 record the registers live before the block's first insn, since no
1282 pseudos we care about are live before that insn. */
1283
1284 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1285 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1286
1287 if (insn == BLOCK_END (b))
1288 break;
1289
1290 insn = NEXT_INSN (insn);
1291 }
1292
1293 /* Now every register that is local to this basic block
1294 should have been given a quantity, or else -1 meaning ignore it.
1295 Every quantity should have a known birth and death.
1296
1297 Order the qtys so we assign them registers in order of the
1298 number of suggested registers they need so we allocate those with
1299 the most restrictive needs first. */
1300
1301 qty_order = (int *) alloca (next_qty * sizeof (int));
1302 for (i = 0; i < next_qty; i++)
1303 qty_order[i] = i;
1304
1305 #define EXCHANGE(I1, I2) \
1306 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1307
1308 switch (next_qty)
1309 {
1310 case 3:
1311 /* Make qty_order[2] be the one to allocate last. */
1312 if (qty_sugg_compare (0, 1) > 0)
1313 EXCHANGE (0, 1);
1314 if (qty_sugg_compare (1, 2) > 0)
1315 EXCHANGE (2, 1);
1316
1317 /* ... Fall through ... */
1318 case 2:
1319 /* Put the best one to allocate in qty_order[0]. */
1320 if (qty_sugg_compare (0, 1) > 0)
1321 EXCHANGE (0, 1);
1322
1323 /* ... Fall through ... */
1324
1325 case 1:
1326 case 0:
1327 /* Nothing to do here. */
1328 break;
1329
1330 default:
1331 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1332 }
1333
1334 /* Try to put each quantity in a suggested physical register, if it has one.
1335 This may cause registers to be allocated that otherwise wouldn't be, but
1336 this seems acceptable in local allocation (unlike global allocation). */
1337 for (i = 0; i < next_qty; i++)
1338 {
1339 q = qty_order[i];
1340 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1341 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1342 0, 1, qty_birth[q], qty_death[q]);
1343 else
1344 qty_phys_reg[q] = -1;
1345 }
1346
1347 /* Order the qtys so we assign them registers in order of
1348 decreasing length of life. Normally call qsort, but if we
1349 have only a very small number of quantities, sort them ourselves. */
1350
1351 for (i = 0; i < next_qty; i++)
1352 qty_order[i] = i;
1353
1354 #define EXCHANGE(I1, I2) \
1355 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1356
1357 switch (next_qty)
1358 {
1359 case 3:
1360 /* Make qty_order[2] be the one to allocate last. */
1361 if (qty_compare (0, 1) > 0)
1362 EXCHANGE (0, 1);
1363 if (qty_compare (1, 2) > 0)
1364 EXCHANGE (2, 1);
1365
1366 /* ... Fall through ... */
1367 case 2:
1368 /* Put the best one to allocate in qty_order[0]. */
1369 if (qty_compare (0, 1) > 0)
1370 EXCHANGE (0, 1);
1371
1372 /* ... Fall through ... */
1373
1374 case 1:
1375 case 0:
1376 /* Nothing to do here. */
1377 break;
1378
1379 default:
1380 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1381 }
1382
1383 /* Now for each qty that is not a hardware register,
1384 look for a hardware register to put it in.
1385 First try the register class that is cheapest for this qty,
1386 if there is more than one class. */
1387
1388 for (i = 0; i < next_qty; i++)
1389 {
1390 q = qty_order[i];
1391 if (qty_phys_reg[q] < 0)
1392 {
1393 #ifdef INSN_SCHEDULING
1394 /* These values represent the adjusted lifetime of a qty so
1395 that it conflicts with qtys which appear near the start/end
1396 of this qty's lifetime.
1397
1398 The purpose behind extending the lifetime of this qty is to
1399 discourage the register allocator from creating false
1400 dependencies.
1401
1402 The adjustment value is choosen to indicate that this qty
1403 conflicts with all the qtys in the instructions immediately
1404 before and after the lifetime of this qty.
1405
1406 Experiments have shown that higher values tend to hurt
1407 overall code performance.
1408
1409 If allocation using the extended lifetime fails we will try
1410 again with the qty's unadjusted lifetime. */
1411 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1412 int fake_death = MIN (insn_number * 2 + 1,
1413 qty_death[q] + 2 - qty_death[q] % 2);
1414 #endif
1415
1416 if (N_REG_CLASSES > 1)
1417 {
1418 #ifdef INSN_SCHEDULING
1419 /* We try to avoid using hard registers allocated to qtys which
1420 are born immediately after this qty or die immediately before
1421 this qty.
1422
1423 This optimization is only appropriate when we will run
1424 a scheduling pass after reload and we are not optimizing
1425 for code size. */
1426 if (flag_schedule_insns_after_reload
1427 && !optimize_size
1428 && !SMALL_REGISTER_CLASSES)
1429 {
1430
1431 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1432 qty_mode[q], q, 0, 0,
1433 fake_birth, fake_death);
1434 if (qty_phys_reg[q] >= 0)
1435 continue;
1436 }
1437 #endif
1438 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1439 qty_mode[q], q, 0, 0,
1440 qty_birth[q], qty_death[q]);
1441 if (qty_phys_reg[q] >= 0)
1442 continue;
1443 }
1444
1445 #ifdef INSN_SCHEDULING
1446 /* Similarly, avoid false dependencies. */
1447 if (flag_schedule_insns_after_reload
1448 && !optimize_size
1449 && !SMALL_REGISTER_CLASSES
1450 && qty_alternate_class[q] != NO_REGS)
1451 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1452 qty_mode[q], q, 0, 0,
1453 fake_birth, fake_death);
1454 #endif
1455 if (qty_alternate_class[q] != NO_REGS)
1456 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1457 qty_mode[q], q, 0, 0,
1458 qty_birth[q], qty_death[q]);
1459 }
1460 }
1461
1462 /* Now propagate the register assignments
1463 to the pseudo regs belonging to the qtys. */
1464
1465 for (q = 0; q < next_qty; q++)
1466 if (qty_phys_reg[q] >= 0)
1467 {
1468 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1469 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1470 }
1471 }
1472 \f
1473 /* Compare two quantities' priority for getting real registers.
1474 We give shorter-lived quantities higher priority.
1475 Quantities with more references are also preferred, as are quantities that
1476 require multiple registers. This is the identical prioritization as
1477 done by global-alloc.
1478
1479 We used to give preference to registers with *longer* lives, but using
1480 the same algorithm in both local- and global-alloc can speed up execution
1481 of some programs by as much as a factor of three! */
1482
1483 /* Note that the quotient will never be bigger than
1484 the value of floor_log2 times the maximum number of
1485 times a register can occur in one insn (surely less than 100).
1486 Multiplying this by 10000 can't overflow.
1487 QTY_CMP_PRI is also used by qty_sugg_compare. */
1488
1489 #define QTY_CMP_PRI(q) \
1490 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1491 / (qty_death[q] - qty_birth[q])) * 10000))
1492
1493 static int
1494 qty_compare (q1, q2)
1495 int q1, q2;
1496 {
1497 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1498 }
1499
1500 static int
1501 qty_compare_1 (q1p, q2p)
1502 const GENERIC_PTR q1p;
1503 const GENERIC_PTR q2p;
1504 {
1505 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1506 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1507
1508 if (tem != 0)
1509 return tem;
1510
1511 /* If qtys are equally good, sort by qty number,
1512 so that the results of qsort leave nothing to chance. */
1513 return q1 - q2;
1514 }
1515 \f
1516 /* Compare two quantities' priority for getting real registers. This version
1517 is called for quantities that have suggested hard registers. First priority
1518 goes to quantities that have copy preferences, then to those that have
1519 normal preferences. Within those groups, quantities with the lower
1520 number of preferences have the highest priority. Of those, we use the same
1521 algorithm as above. */
1522
1523 #define QTY_CMP_SUGG(q) \
1524 (qty_phys_num_copy_sugg[q] \
1525 ? qty_phys_num_copy_sugg[q] \
1526 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1527
1528 static int
1529 qty_sugg_compare (q1, q2)
1530 int q1, q2;
1531 {
1532 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1533
1534 if (tem != 0)
1535 return tem;
1536
1537 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1538 }
1539
1540 static int
1541 qty_sugg_compare_1 (q1p, q2p)
1542 const GENERIC_PTR q1p;
1543 const GENERIC_PTR q2p;
1544 {
1545 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1546 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1547
1548 if (tem != 0)
1549 return tem;
1550
1551 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1552 if (tem != 0)
1553 return tem;
1554
1555 /* If qtys are equally good, sort by qty number,
1556 so that the results of qsort leave nothing to chance. */
1557 return q1 - q2;
1558 }
1559
1560 #undef QTY_CMP_SUGG
1561 #undef QTY_CMP_PRI
1562 \f
1563 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1564 Returns 1 if have done so, or 0 if cannot.
1565
1566 Combining registers means marking them as having the same quantity
1567 and adjusting the offsets within the quantity if either of
1568 them is a SUBREG).
1569
1570 We don't actually combine a hard reg with a pseudo; instead
1571 we just record the hard reg as the suggestion for the pseudo's quantity.
1572 If we really combined them, we could lose if the pseudo lives
1573 across an insn that clobbers the hard reg (eg, movstr).
1574
1575 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1576 there is no REG_DEAD note on INSN. This occurs during the processing
1577 of REG_NO_CONFLICT blocks.
1578
1579 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1580 SETREG or if the input and output must share a register.
1581 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1582
1583 There are elaborate checks for the validity of combining. */
1584
1585
1586 static int
1587 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1588 rtx usedreg, setreg;
1589 int may_save_copy;
1590 int insn_number;
1591 rtx insn;
1592 int already_dead;
1593 {
1594 register int ureg, sreg;
1595 register int offset = 0;
1596 int usize, ssize;
1597 register int sqty;
1598
1599 /* Determine the numbers and sizes of registers being used. If a subreg
1600 is present that does not change the entire register, don't consider
1601 this a copy insn. */
1602
1603 while (GET_CODE (usedreg) == SUBREG)
1604 {
1605 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1606 may_save_copy = 0;
1607 offset += SUBREG_WORD (usedreg);
1608 usedreg = SUBREG_REG (usedreg);
1609 }
1610 if (GET_CODE (usedreg) != REG)
1611 return 0;
1612 ureg = REGNO (usedreg);
1613 usize = REG_SIZE (usedreg);
1614
1615 while (GET_CODE (setreg) == SUBREG)
1616 {
1617 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1618 may_save_copy = 0;
1619 offset -= SUBREG_WORD (setreg);
1620 setreg = SUBREG_REG (setreg);
1621 }
1622 if (GET_CODE (setreg) != REG)
1623 return 0;
1624 sreg = REGNO (setreg);
1625 ssize = REG_SIZE (setreg);
1626
1627 /* If UREG is a pseudo-register that hasn't already been assigned a
1628 quantity number, it means that it is not local to this block or dies
1629 more than once. In either event, we can't do anything with it. */
1630 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1631 /* Do not combine registers unless one fits within the other. */
1632 || (offset > 0 && usize + offset > ssize)
1633 || (offset < 0 && usize + offset < ssize)
1634 /* Do not combine with a smaller already-assigned object
1635 if that smaller object is already combined with something bigger. */
1636 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1637 && usize < qty_size[reg_qty[ureg]])
1638 /* Can't combine if SREG is not a register we can allocate. */
1639 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1640 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1641 These have already been taken care of. This probably wouldn't
1642 combine anyway, but don't take any chances. */
1643 || (ureg >= FIRST_PSEUDO_REGISTER
1644 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1645 /* Don't tie something to itself. In most cases it would make no
1646 difference, but it would screw up if the reg being tied to itself
1647 also dies in this insn. */
1648 || ureg == sreg
1649 /* Don't try to connect two different hardware registers. */
1650 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1651 /* Don't connect two different machine modes if they have different
1652 implications as to which registers may be used. */
1653 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1654 return 0;
1655
1656 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1657 qty_phys_sugg for the pseudo instead of tying them.
1658
1659 Return "failure" so that the lifespan of UREG is terminated here;
1660 that way the two lifespans will be disjoint and nothing will prevent
1661 the pseudo reg from being given this hard reg. */
1662
1663 if (ureg < FIRST_PSEUDO_REGISTER)
1664 {
1665 /* Allocate a quantity number so we have a place to put our
1666 suggestions. */
1667 if (reg_qty[sreg] == -2)
1668 reg_is_born (setreg, 2 * insn_number);
1669
1670 if (reg_qty[sreg] >= 0)
1671 {
1672 if (may_save_copy
1673 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1674 {
1675 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1676 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1677 }
1678 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1679 {
1680 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1681 qty_phys_num_sugg[reg_qty[sreg]]++;
1682 }
1683 }
1684 return 0;
1685 }
1686
1687 /* Similarly for SREG a hard register and UREG a pseudo register. */
1688
1689 if (sreg < FIRST_PSEUDO_REGISTER)
1690 {
1691 if (may_save_copy
1692 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1693 {
1694 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1695 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1696 }
1697 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1698 {
1699 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1700 qty_phys_num_sugg[reg_qty[ureg]]++;
1701 }
1702 return 0;
1703 }
1704
1705 /* At this point we know that SREG and UREG are both pseudos.
1706 Do nothing if SREG already has a quantity or is a register that we
1707 don't allocate. */
1708 if (reg_qty[sreg] >= -1
1709 /* If we are not going to let any regs live across calls,
1710 don't tie a call-crossing reg to a non-call-crossing reg. */
1711 || (current_function_has_nonlocal_label
1712 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1713 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1714 return 0;
1715
1716 /* We don't already know about SREG, so tie it to UREG
1717 if this is the last use of UREG, provided the classes they want
1718 are compatible. */
1719
1720 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1721 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1722 {
1723 /* Add SREG to UREG's quantity. */
1724 sqty = reg_qty[ureg];
1725 reg_qty[sreg] = sqty;
1726 reg_offset[sreg] = reg_offset[ureg] + offset;
1727 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1728 qty_first_reg[sqty] = sreg;
1729
1730 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1731 update_qty_class (sqty, sreg);
1732
1733 /* Update info about quantity SQTY. */
1734 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1735 qty_n_refs[sqty] += REG_N_REFS (sreg);
1736 if (usize < ssize)
1737 {
1738 register int i;
1739
1740 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1741 reg_offset[i] -= offset;
1742
1743 qty_size[sqty] = ssize;
1744 qty_mode[sqty] = GET_MODE (setreg);
1745 }
1746 }
1747 else
1748 return 0;
1749
1750 return 1;
1751 }
1752 \f
1753 /* Return 1 if the preferred class of REG allows it to be tied
1754 to a quantity or register whose class is CLASS.
1755 True if REG's reg class either contains or is contained in CLASS. */
1756
1757 static int
1758 reg_meets_class_p (reg, class)
1759 int reg;
1760 enum reg_class class;
1761 {
1762 register enum reg_class rclass = reg_preferred_class (reg);
1763 return (reg_class_subset_p (rclass, class)
1764 || reg_class_subset_p (class, rclass));
1765 }
1766
1767 /* Update the class of QTY assuming that REG is being tied to it. */
1768
1769 static void
1770 update_qty_class (qty, reg)
1771 int qty;
1772 int reg;
1773 {
1774 enum reg_class rclass = reg_preferred_class (reg);
1775 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1776 qty_min_class[qty] = rclass;
1777
1778 rclass = reg_alternate_class (reg);
1779 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1780 qty_alternate_class[qty] = rclass;
1781
1782 if (REG_CHANGES_SIZE (reg))
1783 qty_changes_size[qty] = 1;
1784 }
1785 \f
1786 /* Handle something which alters the value of an rtx REG.
1787
1788 REG is whatever is set or clobbered. SETTER is the rtx that
1789 is modifying the register.
1790
1791 If it is not really a register, we do nothing.
1792 The file-global variables `this_insn' and `this_insn_number'
1793 carry info from `block_alloc'. */
1794
1795 static void
1796 reg_is_set (reg, setter)
1797 rtx reg;
1798 rtx setter;
1799 {
1800 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1801 a hard register. These may actually not exist any more. */
1802
1803 if (GET_CODE (reg) != SUBREG
1804 && GET_CODE (reg) != REG)
1805 return;
1806
1807 /* Mark this register as being born. If it is used in a CLOBBER, mark
1808 it as being born halfway between the previous insn and this insn so that
1809 it conflicts with our inputs but not the outputs of the previous insn. */
1810
1811 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1812 }
1813 \f
1814 /* Handle beginning of the life of register REG.
1815 BIRTH is the index at which this is happening. */
1816
1817 static void
1818 reg_is_born (reg, birth)
1819 rtx reg;
1820 int birth;
1821 {
1822 register int regno;
1823
1824 if (GET_CODE (reg) == SUBREG)
1825 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1826 else
1827 regno = REGNO (reg);
1828
1829 if (regno < FIRST_PSEUDO_REGISTER)
1830 {
1831 mark_life (regno, GET_MODE (reg), 1);
1832
1833 /* If the register was to have been born earlier that the present
1834 insn, mark it as live where it is actually born. */
1835 if (birth < 2 * this_insn_number)
1836 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1837 }
1838 else
1839 {
1840 if (reg_qty[regno] == -2)
1841 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1842
1843 /* If this register has a quantity number, show that it isn't dead. */
1844 if (reg_qty[regno] >= 0)
1845 qty_death[reg_qty[regno]] = -1;
1846 }
1847 }
1848
1849 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1850 REG is an output that is dying (i.e., it is never used), otherwise it
1851 is an input (the normal case).
1852 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1853
1854 static void
1855 wipe_dead_reg (reg, output_p)
1856 register rtx reg;
1857 int output_p;
1858 {
1859 register int regno = REGNO (reg);
1860
1861 /* If this insn has multiple results,
1862 and the dead reg is used in one of the results,
1863 extend its life to after this insn,
1864 so it won't get allocated together with any other result of this insn.
1865
1866 It is unsafe to use !single_set here since it will ignore an unused
1867 output. Just because an output is unused does not mean the compiler
1868 can assume the side effect will not occur. Consider if REG appears
1869 in the address of an output and we reload the output. If we allocate
1870 REG to the same hard register as an unused output we could set the hard
1871 register before the output reload insn. */
1872 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1873 && multiple_sets (this_insn))
1874 {
1875 int i;
1876 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1877 {
1878 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1879 if (GET_CODE (set) == SET
1880 && GET_CODE (SET_DEST (set)) != REG
1881 && !rtx_equal_p (reg, SET_DEST (set))
1882 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1883 output_p = 1;
1884 }
1885 }
1886
1887 /* If this register is used in an auto-increment address, then extend its
1888 life to after this insn, so that it won't get allocated together with
1889 the result of this insn. */
1890 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1891 output_p = 1;
1892
1893 if (regno < FIRST_PSEUDO_REGISTER)
1894 {
1895 mark_life (regno, GET_MODE (reg), 0);
1896
1897 /* If a hard register is dying as an output, mark it as in use at
1898 the beginning of this insn (the above statement would cause this
1899 not to happen). */
1900 if (output_p)
1901 post_mark_life (regno, GET_MODE (reg), 1,
1902 2 * this_insn_number, 2 * this_insn_number+ 1);
1903 }
1904
1905 else if (reg_qty[regno] >= 0)
1906 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1907 }
1908 \f
1909 /* Find a block of SIZE words of hard regs in reg_class CLASS
1910 that can hold something of machine-mode MODE
1911 (but actually we test only the first of the block for holding MODE)
1912 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1913 and return the number of the first of them.
1914 Return -1 if such a block cannot be found.
1915 If QTY crosses calls, insist on a register preserved by calls,
1916 unless ACCEPT_CALL_CLOBBERED is nonzero.
1917
1918 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1919 register is available. If not, return -1. */
1920
1921 static int
1922 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1923 born_index, dead_index)
1924 enum reg_class class;
1925 enum machine_mode mode;
1926 int qty;
1927 int accept_call_clobbered;
1928 int just_try_suggested;
1929 int born_index, dead_index;
1930 {
1931 register int i, ins;
1932 #ifdef HARD_REG_SET
1933 register /* Declare it register if it's a scalar. */
1934 #endif
1935 HARD_REG_SET used, first_used;
1936 #ifdef ELIMINABLE_REGS
1937 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1938 #endif
1939
1940 /* Validate our parameters. */
1941 if (born_index < 0 || born_index > dead_index)
1942 abort ();
1943
1944 /* Don't let a pseudo live in a reg across a function call
1945 if we might get a nonlocal goto. */
1946 if (current_function_has_nonlocal_label
1947 && qty_n_calls_crossed[qty] > 0)
1948 return -1;
1949
1950 if (accept_call_clobbered)
1951 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1952 else if (qty_n_calls_crossed[qty] == 0)
1953 COPY_HARD_REG_SET (used, fixed_reg_set);
1954 else
1955 COPY_HARD_REG_SET (used, call_used_reg_set);
1956
1957 if (accept_call_clobbered)
1958 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1959
1960 for (ins = born_index; ins < dead_index; ins++)
1961 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1962
1963 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1964
1965 /* Don't use the frame pointer reg in local-alloc even if
1966 we may omit the frame pointer, because if we do that and then we
1967 need a frame pointer, reload won't know how to move the pseudo
1968 to another hard reg. It can move only regs made by global-alloc.
1969
1970 This is true of any register that can be eliminated. */
1971 #ifdef ELIMINABLE_REGS
1972 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1973 SET_HARD_REG_BIT (used, eliminables[i].from);
1974 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1975 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1976 that it might be eliminated into. */
1977 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1978 #endif
1979 #else
1980 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1981 #endif
1982
1983 #ifdef CLASS_CANNOT_CHANGE_SIZE
1984 if (qty_changes_size[qty])
1985 IOR_HARD_REG_SET (used,
1986 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1987 #endif
1988
1989 /* Normally, the registers that can be used for the first register in
1990 a multi-register quantity are the same as those that can be used for
1991 subsequent registers. However, if just trying suggested registers,
1992 restrict our consideration to them. If there are copy-suggested
1993 register, try them. Otherwise, try the arithmetic-suggested
1994 registers. */
1995 COPY_HARD_REG_SET (first_used, used);
1996
1997 if (just_try_suggested)
1998 {
1999 if (qty_phys_num_copy_sugg[qty] != 0)
2000 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2001 else
2002 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2003 }
2004
2005 /* If all registers are excluded, we can't do anything. */
2006 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2007
2008 /* If at least one would be suitable, test each hard reg. */
2009
2010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2011 {
2012 #ifdef REG_ALLOC_ORDER
2013 int regno = reg_alloc_order[i];
2014 #else
2015 int regno = i;
2016 #endif
2017 if (! TEST_HARD_REG_BIT (first_used, regno)
2018 && HARD_REGNO_MODE_OK (regno, mode)
2019 && (qty_n_calls_crossed[qty] == 0
2020 || accept_call_clobbered
2021 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2022 {
2023 register int j;
2024 register int size1 = HARD_REGNO_NREGS (regno, mode);
2025 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2026 if (j == size1)
2027 {
2028 /* Mark that this register is in use between its birth and death
2029 insns. */
2030 post_mark_life (regno, mode, 1, born_index, dead_index);
2031 return regno;
2032 }
2033 #ifndef REG_ALLOC_ORDER
2034 i += j; /* Skip starting points we know will lose */
2035 #endif
2036 }
2037 }
2038
2039 fail:
2040
2041 /* If we are just trying suggested register, we have just tried copy-
2042 suggested registers, and there are arithmetic-suggested registers,
2043 try them. */
2044
2045 /* If it would be profitable to allocate a call-clobbered register
2046 and save and restore it around calls, do that. */
2047 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2048 && qty_phys_num_sugg[qty] != 0)
2049 {
2050 /* Don't try the copy-suggested regs again. */
2051 qty_phys_num_copy_sugg[qty] = 0;
2052 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2053 born_index, dead_index);
2054 }
2055
2056 /* We need not check to see if the current function has nonlocal
2057 labels because we don't put any pseudos that are live over calls in
2058 registers in that case. */
2059
2060 if (! accept_call_clobbered
2061 && flag_caller_saves
2062 && ! just_try_suggested
2063 && qty_n_calls_crossed[qty] != 0
2064 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2065 {
2066 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2067 if (i >= 0)
2068 caller_save_needed = 1;
2069 return i;
2070 }
2071 return -1;
2072 }
2073 \f
2074 /* Mark that REGNO with machine-mode MODE is live starting from the current
2075 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2076 is zero). */
2077
2078 static void
2079 mark_life (regno, mode, life)
2080 register int regno;
2081 enum machine_mode mode;
2082 int life;
2083 {
2084 register int j = HARD_REGNO_NREGS (regno, mode);
2085 if (life)
2086 while (--j >= 0)
2087 SET_HARD_REG_BIT (regs_live, regno + j);
2088 else
2089 while (--j >= 0)
2090 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2091 }
2092
2093 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2094 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2095 to insn number DEATH (exclusive). */
2096
2097 static void
2098 post_mark_life (regno, mode, life, birth, death)
2099 int regno;
2100 enum machine_mode mode;
2101 int life, birth, death;
2102 {
2103 register int j = HARD_REGNO_NREGS (regno, mode);
2104 #ifdef HARD_REG_SET
2105 register /* Declare it register if it's a scalar. */
2106 #endif
2107 HARD_REG_SET this_reg;
2108
2109 CLEAR_HARD_REG_SET (this_reg);
2110 while (--j >= 0)
2111 SET_HARD_REG_BIT (this_reg, regno + j);
2112
2113 if (life)
2114 while (birth < death)
2115 {
2116 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2117 birth++;
2118 }
2119 else
2120 while (birth < death)
2121 {
2122 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2123 birth++;
2124 }
2125 }
2126 \f
2127 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2128 is the register being clobbered, and R1 is a register being used in
2129 the equivalent expression.
2130
2131 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2132 in which it is used, return 1.
2133
2134 Otherwise, return 0. */
2135
2136 static int
2137 no_conflict_p (insn, r0, r1)
2138 rtx insn, r0, r1;
2139 {
2140 int ok = 0;
2141 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2142 rtx p, last;
2143
2144 /* If R1 is a hard register, return 0 since we handle this case
2145 when we scan the insns that actually use it. */
2146
2147 if (note == 0
2148 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2149 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2150 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2151 return 0;
2152
2153 last = XEXP (note, 0);
2154
2155 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2156 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2157 {
2158 if (find_reg_note (p, REG_DEAD, r1))
2159 ok = 1;
2160
2161 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2162 some earlier optimization pass has inserted instructions into
2163 the sequence, and it is not safe to perform this optimization.
2164 Note that emit_no_conflict_block always ensures that this is
2165 true when these sequences are created. */
2166 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2167 return 0;
2168 }
2169
2170 return ok;
2171 }
2172 \f
2173 #ifdef REGISTER_CONSTRAINTS
2174
2175 /* Return the number of alternatives for which the constraint string P
2176 indicates that the operand must be equal to operand 0 and that no register
2177 is acceptable. */
2178
2179 static int
2180 requires_inout (p)
2181 const char *p;
2182 {
2183 char c;
2184 int found_zero = 0;
2185 int reg_allowed = 0;
2186 int num_matching_alts = 0;
2187
2188 while ((c = *p++))
2189 switch (c)
2190 {
2191 case '=': case '+': case '?':
2192 case '#': case '&': case '!':
2193 case '*': case '%':
2194 case '1': case '2': case '3': case '4':
2195 case 'm': case '<': case '>': case 'V': case 'o':
2196 case 'E': case 'F': case 'G': case 'H':
2197 case 's': case 'i': case 'n':
2198 case 'I': case 'J': case 'K': case 'L':
2199 case 'M': case 'N': case 'O': case 'P':
2200 #ifdef EXTRA_CONSTRAINT
2201 case 'Q': case 'R': case 'S': case 'T': case 'U':
2202 #endif
2203 case 'X':
2204 /* These don't say anything we care about. */
2205 break;
2206
2207 case ',':
2208 if (found_zero && ! reg_allowed)
2209 num_matching_alts++;
2210
2211 found_zero = reg_allowed = 0;
2212 break;
2213
2214 case '0':
2215 found_zero = 1;
2216 break;
2217
2218 case 'p':
2219 case 'g': case 'r':
2220 default:
2221 reg_allowed = 1;
2222 break;
2223 }
2224
2225 if (found_zero && ! reg_allowed)
2226 num_matching_alts++;
2227
2228 return num_matching_alts;
2229 }
2230 #endif /* REGISTER_CONSTRAINTS */
2231 \f
2232 void
2233 dump_local_alloc (file)
2234 FILE *file;
2235 {
2236 register int i;
2237 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2238 if (reg_renumber[i] != -1)
2239 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2240 }