c-parse.in (cast_expr): Constify.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "basic-block.h"
68 #include "regs.h"
69 #include "function.h"
70 #include "hard-reg-set.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 \f
77 /* Next quantity number available for allocation. */
78
79 static int next_qty;
80
81 /* In all the following vectors indexed by quantity number. */
82
83 /* Element Q is the hard reg number chosen for quantity Q,
84 or -1 if none was found. */
85
86 static short *qty_phys_reg;
87
88 /* We maintain two hard register sets that indicate suggested hard registers
89 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
90 that are tied to the quantity by a simple copy. The second contains all
91 hard registers that are tied to the quantity via an arithmetic operation.
92
93 The former register set is given priority for allocation. This tends to
94 eliminate copy insns. */
95
96 /* Element Q is a set of hard registers that are suggested for quantity Q by
97 copy insns. */
98
99 static HARD_REG_SET *qty_phys_copy_sugg;
100
101 /* Element Q is a set of hard registers that are suggested for quantity Q by
102 arithmetic insns. */
103
104 static HARD_REG_SET *qty_phys_sugg;
105
106 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
107
108 static short *qty_phys_num_copy_sugg;
109
110 /* Element Q is the number of suggested registers in qty_phys_sugg. */
111
112 static short *qty_phys_num_sugg;
113
114 /* Element Q is the number of refs to quantity Q. */
115
116 static int *qty_n_refs;
117
118 /* Element Q is a reg class contained in (smaller than) the
119 preferred classes of all the pseudo regs that are tied in quantity Q.
120 This is the preferred class for allocating that quantity. */
121
122 static enum reg_class *qty_min_class;
123
124 /* Insn number (counting from head of basic block)
125 where quantity Q was born. -1 if birth has not been recorded. */
126
127 static int *qty_birth;
128
129 /* Insn number (counting from head of basic block)
130 where quantity Q died. Due to the way tying is done,
131 and the fact that we consider in this pass only regs that die but once,
132 a quantity can die only once. Each quantity's life span
133 is a set of consecutive insns. -1 if death has not been recorded. */
134
135 static int *qty_death;
136
137 /* Number of words needed to hold the data in quantity Q.
138 This depends on its machine mode. It is used for these purposes:
139 1. It is used in computing the relative importances of qtys,
140 which determines the order in which we look for regs for them.
141 2. It is used in rules that prevent tying several registers of
142 different sizes in a way that is geometrically impossible
143 (see combine_regs). */
144
145 static int *qty_size;
146
147 /* This holds the mode of the registers that are tied to qty Q,
148 or VOIDmode if registers with differing modes are tied together. */
149
150 static enum machine_mode *qty_mode;
151
152 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
153
154 static int *qty_n_calls_crossed;
155
156 /* Register class within which we allocate qty Q if we can't get
157 its preferred class. */
158
159 static enum reg_class *qty_alternate_class;
160
161 /* Element Q is nonzero if this quantity has been used in a SUBREG
162 that changes its size. */
163
164 static char *qty_changes_size;
165
166 /* Element Q is the register number of one pseudo register whose
167 reg_qty value is Q. This register should be the head of the chain
168 maintained in reg_next_in_qty. */
169
170 static int *qty_first_reg;
171
172 /* If (REG N) has been assigned a quantity number, is a register number
173 of another register assigned the same quantity number, or -1 for the
174 end of the chain. qty_first_reg point to the head of this chain. */
175
176 static int *reg_next_in_qty;
177
178 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
179 if it is >= 0,
180 of -1 if this register cannot be allocated by local-alloc,
181 or -2 if not known yet.
182
183 Note that if we see a use or death of pseudo register N with
184 reg_qty[N] == -2, register N must be local to the current block. If
185 it were used in more than one block, we would have reg_qty[N] == -1.
186 This relies on the fact that if reg_basic_block[N] is >= 0, register N
187 will not appear in any other block. We save a considerable number of
188 tests by exploiting this.
189
190 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
191 be referenced. */
192
193 static int *reg_qty;
194
195 /* The offset (in words) of register N within its quantity.
196 This can be nonzero if register N is SImode, and has been tied
197 to a subreg of a DImode register. */
198
199 static char *reg_offset;
200
201 /* Vector of substitutions of register numbers,
202 used to map pseudo regs into hardware regs.
203 This is set up as a result of register allocation.
204 Element N is the hard reg assigned to pseudo reg N,
205 or is -1 if no hard reg was assigned.
206 If N is a hard reg number, element N is N. */
207
208 short *reg_renumber;
209
210 /* Set of hard registers live at the current point in the scan
211 of the instructions in a basic block. */
212
213 static HARD_REG_SET regs_live;
214
215 /* Each set of hard registers indicates registers live at a particular
216 point in the basic block. For N even, regs_live_at[N] says which
217 hard registers are needed *after* insn N/2 (i.e., they may not
218 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
219
220 If an object is to conflict with the inputs of insn J but not the
221 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
222 if it is to conflict with the outputs of insn J but not the inputs of
223 insn J + 1, it is said to die at index J*2 + 1. */
224
225 static HARD_REG_SET *regs_live_at;
226
227 /* Communicate local vars `insn_number' and `insn'
228 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
229 static int this_insn_number;
230 static rtx this_insn;
231
232 /* Used to communicate changes made by update_equiv_regs to
233 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
234 found or created, so that we can keep track of what memory accesses might
235 be created later, e.g. by reload. */
236
237 static rtx *reg_equiv_replacement;
238
239 /* Used for communication between update_equiv_regs and no_equiv. */
240 static rtx *reg_equiv_init_insns;
241
242 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
243 static int recorded_label_ref;
244
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
247 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
248 static int contains_replace_regs PROTO((rtx, char *));
249 static int memref_referenced_p PROTO((rtx, rtx));
250 static int memref_used_between_p PROTO((rtx, rtx, rtx));
251 static void update_equiv_regs PROTO((void));
252 static void no_equiv PROTO((rtx, rtx));
253 static void block_alloc PROTO((int));
254 static int qty_sugg_compare PROTO((int, int));
255 static int qty_sugg_compare_1 PROTO((const PTR, const PTR));
256 static int qty_compare PROTO((int, int));
257 static int qty_compare_1 PROTO((const PTR, const PTR));
258 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
259 static int reg_meets_class_p PROTO((int, enum reg_class));
260 static void update_qty_class PROTO((int, int));
261 static void reg_is_set PROTO((rtx, rtx));
262 static void reg_is_born PROTO((rtx, int));
263 static void wipe_dead_reg PROTO((rtx, int));
264 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
265 int, int, int, int, int));
266 static void mark_life PROTO((int, enum machine_mode, int));
267 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
268 static int no_conflict_p PROTO((rtx, rtx, rtx));
269 static int requires_inout PROTO((const char *));
270 \f
271 /* Allocate a new quantity (new within current basic block)
272 for register number REGNO which is born at index BIRTH
273 within the block. MODE and SIZE are info on reg REGNO. */
274
275 static void
276 alloc_qty (regno, mode, size, birth)
277 int regno;
278 enum machine_mode mode;
279 int size, birth;
280 {
281 register int qty = next_qty++;
282
283 reg_qty[regno] = qty;
284 reg_offset[regno] = 0;
285 reg_next_in_qty[regno] = -1;
286
287 qty_first_reg[qty] = regno;
288 qty_size[qty] = size;
289 qty_mode[qty] = mode;
290 qty_birth[qty] = birth;
291 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
292 qty_min_class[qty] = reg_preferred_class (regno);
293 qty_alternate_class[qty] = reg_alternate_class (regno);
294 qty_n_refs[qty] = REG_N_REFS (regno);
295 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
296 }
297 \f
298 /* Main entry point of this file. */
299
300 int
301 local_alloc ()
302 {
303 register int b, i;
304 int max_qty;
305
306 /* We need to keep track of whether or not we recorded a LABEL_REF so
307 that we know if the jump optimizer needs to be rerun. */
308 recorded_label_ref = 0;
309
310 /* Leaf functions and non-leaf functions have different needs.
311 If defined, let the machine say what kind of ordering we
312 should use. */
313 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
314 ORDER_REGS_FOR_LOCAL_ALLOC;
315 #endif
316
317 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
318 registers. */
319 update_equiv_regs ();
320
321 /* This sets the maximum number of quantities we can have. Quantity
322 numbers start at zero and we can have one for each pseudo. */
323 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
324
325 /* Allocate vectors of temporary data.
326 See the declarations of these variables, above,
327 for what they mean. */
328
329 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
330 qty_phys_copy_sugg
331 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
332 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
333 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
334 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
335 qty_birth = (int *) alloca (max_qty * sizeof (int));
336 qty_death = (int *) alloca (max_qty * sizeof (int));
337 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
338 qty_size = (int *) alloca (max_qty * sizeof (int));
339 qty_mode
340 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
341 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
342 qty_min_class
343 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
344 qty_alternate_class
345 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
346 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
347 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
348
349 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
350 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
351 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
352
353 /* Allocate the reg_renumber array */
354 allocate_reg_info (max_regno, FALSE, TRUE);
355
356 /* Determine which pseudo-registers can be allocated by local-alloc.
357 In general, these are the registers used only in a single block and
358 which only die once. However, if a register's preferred class has only
359 a few entries, don't allocate this register here unless it is preferred
360 or nothing since retry_global_alloc won't be able to move it to
361 GENERAL_REGS if a reload register of this class is needed.
362
363 We need not be concerned with which block actually uses the register
364 since we will never see it outside that block. */
365
366 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
367 {
368 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
369 && (reg_alternate_class (i) == NO_REGS
370 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
371 reg_qty[i] = -2;
372 else
373 reg_qty[i] = -1;
374 }
375
376 /* Force loop below to initialize entire quantity array. */
377 next_qty = max_qty;
378
379 /* Allocate each block's local registers, block by block. */
380
381 for (b = 0; b < n_basic_blocks; b++)
382 {
383 /* NEXT_QTY indicates which elements of the `qty_...'
384 vectors might need to be initialized because they were used
385 for the previous block; it is set to the entire array before
386 block 0. Initialize those, with explicit loop if there are few,
387 else with bzero and bcopy. Do not initialize vectors that are
388 explicit set by `alloc_qty'. */
389
390 if (next_qty < 6)
391 {
392 for (i = 0; i < next_qty; i++)
393 {
394 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
395 qty_phys_num_copy_sugg[i] = 0;
396 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
397 qty_phys_num_sugg[i] = 0;
398 }
399 }
400 else
401 {
402 #define CLEAR(vector) \
403 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
404
405 CLEAR (qty_phys_copy_sugg);
406 CLEAR (qty_phys_num_copy_sugg);
407 CLEAR (qty_phys_sugg);
408 CLEAR (qty_phys_num_sugg);
409 }
410
411 next_qty = 0;
412
413 block_alloc (b);
414 #ifdef USE_C_ALLOCA
415 alloca (0);
416 #endif
417 }
418
419 free (reg_qty);
420 free (reg_offset);
421 free (reg_next_in_qty);
422 return recorded_label_ref;
423 }
424 \f
425 /* Depth of loops we are in while in update_equiv_regs. */
426 static int loop_depth;
427
428 /* Used for communication between the following two functions: contains
429 a MEM that we wish to ensure remains unchanged. */
430 static rtx equiv_mem;
431
432 /* Set nonzero if EQUIV_MEM is modified. */
433 static int equiv_mem_modified;
434
435 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
436 Called via note_stores. */
437
438 static void
439 validate_equiv_mem_from_store (dest, set)
440 rtx dest;
441 rtx set ATTRIBUTE_UNUSED;
442 {
443 if ((GET_CODE (dest) == REG
444 && reg_overlap_mentioned_p (dest, equiv_mem))
445 || (GET_CODE (dest) == MEM
446 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
447 equiv_mem_modified = 1;
448 }
449
450 /* Verify that no store between START and the death of REG invalidates
451 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
452 by storing into an overlapping memory location, or with a non-const
453 CALL_INSN.
454
455 Return 1 if MEMREF remains valid. */
456
457 static int
458 validate_equiv_mem (start, reg, memref)
459 rtx start;
460 rtx reg;
461 rtx memref;
462 {
463 rtx insn;
464 rtx note;
465
466 equiv_mem = memref;
467 equiv_mem_modified = 0;
468
469 /* If the memory reference has side effects or is volatile, it isn't a
470 valid equivalence. */
471 if (side_effects_p (memref))
472 return 0;
473
474 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
475 {
476 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
477 continue;
478
479 if (find_reg_note (insn, REG_DEAD, reg))
480 return 1;
481
482 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
483 && ! CONST_CALL_P (insn))
484 return 0;
485
486 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
487
488 /* If a register mentioned in MEMREF is modified via an
489 auto-increment, we lose the equivalence. Do the same if one
490 dies; although we could extend the life, it doesn't seem worth
491 the trouble. */
492
493 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
494 if ((REG_NOTE_KIND (note) == REG_INC
495 || REG_NOTE_KIND (note) == REG_DEAD)
496 && GET_CODE (XEXP (note, 0)) == REG
497 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
498 return 0;
499 }
500
501 return 0;
502 }
503
504 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
505
506 static int
507 contains_replace_regs (x, reg_equiv_replace)
508 rtx x;
509 char *reg_equiv_replace;
510 {
511 int i, j;
512 const char *fmt;
513 enum rtx_code code = GET_CODE (x);
514
515 switch (code)
516 {
517 case CONST_INT:
518 case CONST:
519 case LABEL_REF:
520 case SYMBOL_REF:
521 case CONST_DOUBLE:
522 case PC:
523 case CC0:
524 case HIGH:
525 case LO_SUM:
526 return 0;
527
528 case REG:
529 return reg_equiv_replace[REGNO (x)];
530
531 default:
532 break;
533 }
534
535 fmt = GET_RTX_FORMAT (code);
536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
537 switch (fmt[i])
538 {
539 case 'e':
540 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
541 return 1;
542 break;
543 case 'E':
544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
545 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
546 return 1;
547 break;
548 }
549
550 return 0;
551 }
552 \f
553 /* TRUE if X references a memory location that would be affected by a store
554 to MEMREF. */
555
556 static int
557 memref_referenced_p (memref, x)
558 rtx x;
559 rtx memref;
560 {
561 int i, j;
562 const char *fmt;
563 enum rtx_code code = GET_CODE (x);
564
565 switch (code)
566 {
567 case CONST_INT:
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 case CONST_DOUBLE:
572 case PC:
573 case CC0:
574 case HIGH:
575 case LO_SUM:
576 return 0;
577
578 case REG:
579 return (reg_equiv_replacement[REGNO (x)]
580 && memref_referenced_p (memref,
581 reg_equiv_replacement[REGNO (x)]));
582
583 case MEM:
584 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
585 return 1;
586 break;
587
588 case SET:
589 /* If we are setting a MEM, it doesn't count (its address does), but any
590 other SET_DEST that has a MEM in it is referencing the MEM. */
591 if (GET_CODE (SET_DEST (x)) == MEM)
592 {
593 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
594 return 1;
595 }
596 else if (memref_referenced_p (memref, SET_DEST (x)))
597 return 1;
598
599 return memref_referenced_p (memref, SET_SRC (x));
600
601 default:
602 break;
603 }
604
605 fmt = GET_RTX_FORMAT (code);
606 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
607 switch (fmt[i])
608 {
609 case 'e':
610 if (memref_referenced_p (memref, XEXP (x, i)))
611 return 1;
612 break;
613 case 'E':
614 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
615 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
616 return 1;
617 break;
618 }
619
620 return 0;
621 }
622
623 /* TRUE if some insn in the range (START, END] references a memory location
624 that would be affected by a store to MEMREF. */
625
626 static int
627 memref_used_between_p (memref, start, end)
628 rtx memref;
629 rtx start;
630 rtx end;
631 {
632 rtx insn;
633
634 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
635 insn = NEXT_INSN (insn))
636 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
637 && memref_referenced_p (memref, PATTERN (insn)))
638 return 1;
639
640 return 0;
641 }
642 \f
643 /* Return nonzero if the rtx X is invariant over the current function. */
644 int
645 function_invariant_p (x)
646 rtx x;
647 {
648 if (CONSTANT_P (x))
649 return 1;
650 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
651 return 1;
652 if (GET_CODE (x) == PLUS
653 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
654 && CONSTANT_P (XEXP (x, 1)))
655 return 1;
656 return 0;
657 }
658
659 /* Find registers that are equivalent to a single value throughout the
660 compilation (either because they can be referenced in memory or are set once
661 from a single constant). Lower their priority for a register.
662
663 If such a register is only referenced once, try substituting its value
664 into the using insn. If it succeeds, we can eliminate the register
665 completely. */
666
667 static void
668 update_equiv_regs ()
669 {
670 /* Set when an attempt should be made to replace a register with the
671 associated reg_equiv_replacement entry at the end of this function. */
672 char *reg_equiv_replace
673 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
674 rtx insn;
675 int block, depth;
676
677 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
678 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
679
680 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
681 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
682 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
683
684 init_alias_analysis ();
685
686 loop_depth = 1;
687
688 /* Scan the insns and find which registers have equivalences. Do this
689 in a separate scan of the insns because (due to -fcse-follow-jumps)
690 a register can be set below its use. */
691 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
692 {
693 rtx note;
694 rtx set;
695 rtx dest, src;
696 int regno;
697
698 if (GET_CODE (insn) == NOTE)
699 {
700 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
701 loop_depth++;
702 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
703 loop_depth--;
704 }
705
706 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
707 continue;
708
709 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
710 if (REG_NOTE_KIND (note) == REG_INC)
711 no_equiv (XEXP (note, 0), note);
712
713 set = single_set (insn);
714
715 /* If this insn contains more (or less) than a single SET,
716 only mark all destinations as having no known equivalence. */
717 if (set == 0)
718 {
719 note_stores (PATTERN (insn), no_equiv);
720 continue;
721 }
722 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
723 {
724 int i;
725
726 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
727 {
728 rtx part = XVECEXP (PATTERN (insn), 0, i);
729 if (part != set)
730 note_stores (part, no_equiv);
731 }
732 }
733
734 dest = SET_DEST (set);
735 src = SET_SRC (set);
736
737 /* If this sets a MEM to the contents of a REG that is only used
738 in a single basic block, see if the register is always equivalent
739 to that memory location and if moving the store from INSN to the
740 insn that set REG is safe. If so, put a REG_EQUIV note on the
741 initializing insn.
742
743 Don't add a REG_EQUIV note if the insn already has one. The existing
744 REG_EQUIV is likely more useful than the one we are adding.
745
746 If one of the regs in the address is marked as reg_equiv_replace,
747 then we can't add this REG_EQUIV note. The reg_equiv_replace
748 optimization may move the set of this register immediately before
749 insn, which puts it after reg_equiv_init_insns[regno], and hence
750 the mention in the REG_EQUIV note would be to an uninitialized
751 pseudo. */
752 /* ????? This test isn't good enough; we might see a MEM with a use of
753 a pseudo register before we see its setting insn that will cause
754 reg_equiv_replace for that pseudo to be set.
755 Equivalences to MEMs should be made in another pass, after the
756 reg_equiv_replace information has been gathered. */
757
758 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
759 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
760 && REG_BASIC_BLOCK (regno) >= 0
761 && REG_N_SETS (regno) == 1
762 && reg_equiv_init_insns[regno] != 0
763 && reg_equiv_init_insns[regno] != const0_rtx
764 && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
765 REG_EQUIV, NULL_RTX)
766 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
767 {
768 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
769 if (validate_equiv_mem (init_insn, src, dest)
770 && ! memref_used_between_p (dest, init_insn, insn))
771 REG_NOTES (init_insn)
772 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
773 }
774
775 /* We only handle the case of a pseudo register being set
776 once, or always to the same value. */
777 /* ??? The mn10200 port breaks if we add equivalences for
778 values that need an ADDRESS_REGS register and set them equivalent
779 to a MEM of a pseudo. The actual problem is in the over-conservative
780 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
781 calculate_needs, but we traditionally work around this problem
782 here by rejecting equivalences when the destination is in a register
783 that's likely spilled. This is fragile, of course, since the
784 preferred class of a pseudo depends on all instructions that set
785 or use it. */
786
787 if (GET_CODE (dest) != REG
788 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
789 || reg_equiv_init_insns[regno] == const0_rtx
790 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
791 && GET_CODE (src) == MEM))
792 {
793 /* This might be seting a SUBREG of a pseudo, a pseudo that is
794 also set somewhere else to a constant. */
795 note_stores (set, no_equiv);
796 continue;
797 }
798 /* Don't handle the equivalence if the source is in a register
799 class that's likely to be spilled. */
800 if (GET_CODE (src) == REG
801 && REGNO (src) >= FIRST_PSEUDO_REGISTER
802 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
803 {
804 no_equiv (dest, set);
805 continue;
806 }
807
808 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
809
810 if (REG_N_SETS (regno) != 1
811 && (! note
812 || ! function_invariant_p (XEXP (note, 0))
813 || (reg_equiv_replacement[regno]
814 && ! rtx_equal_p (XEXP (note, 0),
815 reg_equiv_replacement[regno]))))
816 {
817 no_equiv (dest, set);
818 continue;
819 }
820 /* Record this insn as initializing this register. */
821 reg_equiv_init_insns[regno]
822 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
823
824 /* If this register is known to be equal to a constant, record that
825 it is always equivalent to the constant. */
826 if (note && function_invariant_p (XEXP (note, 0)))
827 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
828
829 /* If this insn introduces a "constant" register, decrease the priority
830 of that register. Record this insn if the register is only used once
831 more and the equivalence value is the same as our source.
832
833 The latter condition is checked for two reasons: First, it is an
834 indication that it may be more efficient to actually emit the insn
835 as written (if no registers are available, reload will substitute
836 the equivalence). Secondly, it avoids problems with any registers
837 dying in this insn whose death notes would be missed.
838
839 If we don't have a REG_EQUIV note, see if this insn is loading
840 a register used only in one basic block from a MEM. If so, and the
841 MEM remains unchanged for the life of the register, add a REG_EQUIV
842 note. */
843
844 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
845
846 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
847 && GET_CODE (SET_SRC (set)) == MEM
848 && validate_equiv_mem (insn, dest, SET_SRC (set)))
849 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
850 REG_NOTES (insn));
851
852 if (note)
853 {
854 int regno = REGNO (dest);
855
856 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
857 We might end up substituting the LABEL_REF for uses of the
858 pseudo here or later. That kind of transformation may turn an
859 indirect jump into a direct jump, in which case we must rerun the
860 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
861 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
862 || (GET_CODE (XEXP (note, 0)) == CONST
863 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
864 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
865 == LABEL_REF)))
866 recorded_label_ref = 1;
867
868
869 reg_equiv_replacement[regno] = XEXP (note, 0);
870
871 /* Don't mess with things live during setjmp. */
872 if (REG_LIVE_LENGTH (regno) >= 0)
873 {
874 /* Note that the statement below does not affect the priority
875 in local-alloc! */
876 REG_LIVE_LENGTH (regno) *= 2;
877
878
879 /* If the register is referenced exactly twice, meaning it is
880 set once and used once, indicate that the reference may be
881 replaced by the equivalence we computed above. If the
882 register is only used in one basic block, this can't succeed
883 or combine would have done it.
884
885 It would be nice to use "loop_depth * 2" in the compare
886 below. Unfortunately, LOOP_DEPTH need not be constant within
887 a basic block so this would be too complicated.
888
889 This case normally occurs when a parameter is read from
890 memory and then used exactly once, not in a loop. */
891
892 if (REG_N_REFS (regno) == 2
893 && REG_BASIC_BLOCK (regno) < 0
894 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
895 reg_equiv_replace[regno] = 1;
896 }
897 }
898 }
899
900 /* Now scan all regs killed in an insn to see if any of them are
901 registers only used that once. If so, see if we can replace the
902 reference with the equivalent from. If we can, delete the
903 initializing reference and this register will go away. If we
904 can't replace the reference, and the instruction is not in a
905 loop, then move the register initialization just before the use,
906 so that they are in the same basic block. */
907 block = -1;
908 depth = 0;
909 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
910 {
911 rtx link;
912
913 /* Keep track of which basic block we are in. */
914 if (block + 1 < n_basic_blocks
915 && BLOCK_HEAD (block + 1) == insn)
916 ++block;
917
918 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
919 {
920 if (GET_CODE (insn) == NOTE)
921 {
922 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
923 ++depth;
924 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
925 {
926 --depth;
927 if (depth < 0)
928 abort ();
929 }
930 }
931
932 continue;
933 }
934
935 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
936 {
937 if (REG_NOTE_KIND (link) == REG_DEAD
938 /* Make sure this insn still refers to the register. */
939 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
940 {
941 int regno = REGNO (XEXP (link, 0));
942 rtx equiv_insn;
943
944 if (! reg_equiv_replace[regno])
945 continue;
946
947 /* reg_equiv_replace[REGNO] gets set only when
948 REG_N_REFS[REGNO] is 2, i.e. the register is set
949 once and used once. (If it were only set, but not used,
950 flow would have deleted the setting insns.) Hence
951 there can only be one insn in reg_equiv_init_insns. */
952 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
953
954 if (validate_replace_rtx (regno_reg_rtx[regno],
955 reg_equiv_replacement[regno], insn))
956 {
957 remove_death (regno, insn);
958 REG_N_REFS (regno) = 0;
959 PUT_CODE (equiv_insn, NOTE);
960 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
961 NOTE_SOURCE_FILE (equiv_insn) = 0;
962 }
963 /* If we aren't in a loop, and there are no calls in
964 INSN or in the initialization of the register, then
965 move the initialization of the register to just
966 before INSN. Update the flow information. */
967 else if (depth == 0
968 && GET_CODE (equiv_insn) == INSN
969 && GET_CODE (insn) == INSN
970 && REG_BASIC_BLOCK (regno) < 0)
971 {
972 int l;
973
974 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
975 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
976 REG_NOTES (equiv_insn) = 0;
977
978 PUT_CODE (equiv_insn, NOTE);
979 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
980 NOTE_SOURCE_FILE (equiv_insn) = 0;
981
982 if (block < 0)
983 REG_BASIC_BLOCK (regno) = 0;
984 else
985 REG_BASIC_BLOCK (regno) = block;
986 REG_N_CALLS_CROSSED (regno) = 0;
987 REG_LIVE_LENGTH (regno) = 2;
988
989 if (block >= 0 && insn == BLOCK_HEAD (block))
990 BLOCK_HEAD (block) = PREV_INSN (insn);
991
992 for (l = 0; l < n_basic_blocks; l++)
993 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
994 regno);
995 }
996 }
997 }
998 }
999 }
1000
1001 /* Mark REG as having no known equivalence.
1002 Some instructions might have been proceessed before and furnished
1003 with REG_EQUIV notes for this register; these notes will have to be
1004 removed.
1005 STORE is the piece of RTL that does the non-constant / conflicting
1006 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1007 but needs to be there because this function is called from note_stores. */
1008 static void
1009 no_equiv (reg, store)
1010 rtx reg, store ATTRIBUTE_UNUSED;
1011 {
1012 int regno;
1013 rtx list;
1014
1015 if (GET_CODE (reg) != REG)
1016 return;
1017 regno = REGNO (reg);
1018 list = reg_equiv_init_insns[regno];
1019 if (list == const0_rtx)
1020 return;
1021 for (; list; list = XEXP (list, 1))
1022 {
1023 rtx insn = XEXP (list, 0);
1024 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1025 }
1026 reg_equiv_init_insns[regno] = const0_rtx;
1027 reg_equiv_replacement[regno] = NULL_RTX;
1028 }
1029 \f
1030 /* Allocate hard regs to the pseudo regs used only within block number B.
1031 Only the pseudos that die but once can be handled. */
1032
1033 static void
1034 block_alloc (b)
1035 int b;
1036 {
1037 register int i, q;
1038 register rtx insn;
1039 rtx note;
1040 int insn_number = 0;
1041 int insn_count = 0;
1042 int max_uid = get_max_uid ();
1043 int *qty_order;
1044 int no_conflict_combined_regno = -1;
1045
1046 /* Count the instructions in the basic block. */
1047
1048 insn = BLOCK_END (b);
1049 while (1)
1050 {
1051 if (GET_CODE (insn) != NOTE)
1052 if (++insn_count > max_uid)
1053 abort ();
1054 if (insn == BLOCK_HEAD (b))
1055 break;
1056 insn = PREV_INSN (insn);
1057 }
1058
1059 /* +2 to leave room for a post_mark_life at the last insn and for
1060 the birth of a CLOBBER in the first insn. */
1061 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1062 * sizeof (HARD_REG_SET));
1063 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1064
1065 /* Initialize table of hardware registers currently live. */
1066
1067 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1068
1069 /* This loop scans the instructions of the basic block
1070 and assigns quantities to registers.
1071 It computes which registers to tie. */
1072
1073 insn = BLOCK_HEAD (b);
1074 while (1)
1075 {
1076 if (GET_CODE (insn) != NOTE)
1077 insn_number++;
1078
1079 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1080 {
1081 register rtx link, set;
1082 register int win = 0;
1083 register rtx r0, r1;
1084 int combined_regno = -1;
1085 int i;
1086
1087 this_insn_number = insn_number;
1088 this_insn = insn;
1089
1090 extract_insn (insn);
1091 which_alternative = -1;
1092
1093 /* Is this insn suitable for tying two registers?
1094 If so, try doing that.
1095 Suitable insns are those with at least two operands and where
1096 operand 0 is an output that is a register that is not
1097 earlyclobber.
1098
1099 We can tie operand 0 with some operand that dies in this insn.
1100 First look for operands that are required to be in the same
1101 register as operand 0. If we find such, only try tying that
1102 operand or one that can be put into that operand if the
1103 operation is commutative. If we don't find an operand
1104 that is required to be in the same register as operand 0,
1105 we can tie with any operand.
1106
1107 Subregs in place of regs are also ok.
1108
1109 If tying is done, WIN is set nonzero. */
1110
1111 if (recog_data.n_operands > 1
1112 && recog_data.constraints[0][0] == '='
1113 && recog_data.constraints[0][1] != '&')
1114 {
1115 /* If non-negative, is an operand that must match operand 0. */
1116 int must_match_0 = -1;
1117 /* Counts number of alternatives that require a match with
1118 operand 0. */
1119 int n_matching_alts = 0;
1120
1121 for (i = 1; i < recog_data.n_operands; i++)
1122 {
1123 const char *p = recog_data.constraints[i];
1124 int this_match = (requires_inout (p));
1125
1126 n_matching_alts += this_match;
1127 if (this_match == recog_data.n_alternatives)
1128 must_match_0 = i;
1129 }
1130
1131 r0 = recog_data.operand[0];
1132 for (i = 1; i < recog_data.n_operands; i++)
1133 {
1134 /* Skip this operand if we found an operand that
1135 must match operand 0 and this operand isn't it
1136 and can't be made to be it by commutativity. */
1137
1138 if (must_match_0 >= 0 && i != must_match_0
1139 && ! (i == must_match_0 + 1
1140 && recog_data.constraints[i-1][0] == '%')
1141 && ! (i == must_match_0 - 1
1142 && recog_data.constraints[i][0] == '%'))
1143 continue;
1144
1145 /* Likewise if each alternative has some operand that
1146 must match operand zero. In that case, skip any
1147 operand that doesn't list operand 0 since we know that
1148 the operand always conflicts with operand 0. We
1149 ignore commutatity in this case to keep things simple. */
1150 if (n_matching_alts == recog_data.n_alternatives
1151 && 0 == requires_inout (recog_data.constraints[i]))
1152 continue;
1153
1154 r1 = recog_data.operand[i];
1155
1156 /* If the operand is an address, find a register in it.
1157 There may be more than one register, but we only try one
1158 of them. */
1159 if (recog_data.constraints[i][0] == 'p')
1160 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1161 r1 = XEXP (r1, 0);
1162
1163 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1164 {
1165 /* We have two priorities for hard register preferences.
1166 If we have a move insn or an insn whose first input
1167 can only be in the same register as the output, give
1168 priority to an equivalence found from that insn. */
1169 int may_save_copy
1170 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1171
1172 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1173 win = combine_regs (r1, r0, may_save_copy,
1174 insn_number, insn, 0);
1175 }
1176 if (win)
1177 break;
1178 }
1179 }
1180
1181 /* Recognize an insn sequence with an ultimate result
1182 which can safely overlap one of the inputs.
1183 The sequence begins with a CLOBBER of its result,
1184 and ends with an insn that copies the result to itself
1185 and has a REG_EQUAL note for an equivalent formula.
1186 That note indicates what the inputs are.
1187 The result and the input can overlap if each insn in
1188 the sequence either doesn't mention the input
1189 or has a REG_NO_CONFLICT note to inhibit the conflict.
1190
1191 We do the combining test at the CLOBBER so that the
1192 destination register won't have had a quantity number
1193 assigned, since that would prevent combining. */
1194
1195 if (GET_CODE (PATTERN (insn)) == CLOBBER
1196 && (r0 = XEXP (PATTERN (insn), 0),
1197 GET_CODE (r0) == REG)
1198 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1199 && XEXP (link, 0) != 0
1200 && GET_CODE (XEXP (link, 0)) == INSN
1201 && (set = single_set (XEXP (link, 0))) != 0
1202 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1203 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1204 NULL_RTX)) != 0)
1205 {
1206 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1207 /* Check that we have such a sequence. */
1208 && no_conflict_p (insn, r0, r1))
1209 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1210 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1211 && (r1 = XEXP (XEXP (note, 0), 0),
1212 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1213 && no_conflict_p (insn, r0, r1))
1214 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1215
1216 /* Here we care if the operation to be computed is
1217 commutative. */
1218 else if ((GET_CODE (XEXP (note, 0)) == EQ
1219 || GET_CODE (XEXP (note, 0)) == NE
1220 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1221 && (r1 = XEXP (XEXP (note, 0), 1),
1222 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1223 && no_conflict_p (insn, r0, r1))
1224 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1225
1226 /* If we did combine something, show the register number
1227 in question so that we know to ignore its death. */
1228 if (win)
1229 no_conflict_combined_regno = REGNO (r1);
1230 }
1231
1232 /* If registers were just tied, set COMBINED_REGNO
1233 to the number of the register used in this insn
1234 that was tied to the register set in this insn.
1235 This register's qty should not be "killed". */
1236
1237 if (win)
1238 {
1239 while (GET_CODE (r1) == SUBREG)
1240 r1 = SUBREG_REG (r1);
1241 combined_regno = REGNO (r1);
1242 }
1243
1244 /* Mark the death of everything that dies in this instruction,
1245 except for anything that was just combined. */
1246
1247 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1248 if (REG_NOTE_KIND (link) == REG_DEAD
1249 && GET_CODE (XEXP (link, 0)) == REG
1250 && combined_regno != REGNO (XEXP (link, 0))
1251 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1252 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1253 wipe_dead_reg (XEXP (link, 0), 0);
1254
1255 /* Allocate qty numbers for all registers local to this block
1256 that are born (set) in this instruction.
1257 A pseudo that already has a qty is not changed. */
1258
1259 note_stores (PATTERN (insn), reg_is_set);
1260
1261 /* If anything is set in this insn and then unused, mark it as dying
1262 after this insn, so it will conflict with our outputs. This
1263 can't match with something that combined, and it doesn't matter
1264 if it did. Do this after the calls to reg_is_set since these
1265 die after, not during, the current insn. */
1266
1267 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1268 if (REG_NOTE_KIND (link) == REG_UNUSED
1269 && GET_CODE (XEXP (link, 0)) == REG)
1270 wipe_dead_reg (XEXP (link, 0), 1);
1271
1272 /* If this is an insn that has a REG_RETVAL note pointing at a
1273 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1274 block, so clear any register number that combined within it. */
1275 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1276 && GET_CODE (XEXP (note, 0)) == INSN
1277 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1278 no_conflict_combined_regno = -1;
1279 }
1280
1281 /* Set the registers live after INSN_NUMBER. Note that we never
1282 record the registers live before the block's first insn, since no
1283 pseudos we care about are live before that insn. */
1284
1285 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1286 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1287
1288 if (insn == BLOCK_END (b))
1289 break;
1290
1291 insn = NEXT_INSN (insn);
1292 }
1293
1294 /* Now every register that is local to this basic block
1295 should have been given a quantity, or else -1 meaning ignore it.
1296 Every quantity should have a known birth and death.
1297
1298 Order the qtys so we assign them registers in order of the
1299 number of suggested registers they need so we allocate those with
1300 the most restrictive needs first. */
1301
1302 qty_order = (int *) alloca (next_qty * sizeof (int));
1303 for (i = 0; i < next_qty; i++)
1304 qty_order[i] = i;
1305
1306 #define EXCHANGE(I1, I2) \
1307 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1308
1309 switch (next_qty)
1310 {
1311 case 3:
1312 /* Make qty_order[2] be the one to allocate last. */
1313 if (qty_sugg_compare (0, 1) > 0)
1314 EXCHANGE (0, 1);
1315 if (qty_sugg_compare (1, 2) > 0)
1316 EXCHANGE (2, 1);
1317
1318 /* ... Fall through ... */
1319 case 2:
1320 /* Put the best one to allocate in qty_order[0]. */
1321 if (qty_sugg_compare (0, 1) > 0)
1322 EXCHANGE (0, 1);
1323
1324 /* ... Fall through ... */
1325
1326 case 1:
1327 case 0:
1328 /* Nothing to do here. */
1329 break;
1330
1331 default:
1332 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1333 }
1334
1335 /* Try to put each quantity in a suggested physical register, if it has one.
1336 This may cause registers to be allocated that otherwise wouldn't be, but
1337 this seems acceptable in local allocation (unlike global allocation). */
1338 for (i = 0; i < next_qty; i++)
1339 {
1340 q = qty_order[i];
1341 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1342 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1343 0, 1, qty_birth[q], qty_death[q]);
1344 else
1345 qty_phys_reg[q] = -1;
1346 }
1347
1348 /* Order the qtys so we assign them registers in order of
1349 decreasing length of life. Normally call qsort, but if we
1350 have only a very small number of quantities, sort them ourselves. */
1351
1352 for (i = 0; i < next_qty; i++)
1353 qty_order[i] = i;
1354
1355 #define EXCHANGE(I1, I2) \
1356 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1357
1358 switch (next_qty)
1359 {
1360 case 3:
1361 /* Make qty_order[2] be the one to allocate last. */
1362 if (qty_compare (0, 1) > 0)
1363 EXCHANGE (0, 1);
1364 if (qty_compare (1, 2) > 0)
1365 EXCHANGE (2, 1);
1366
1367 /* ... Fall through ... */
1368 case 2:
1369 /* Put the best one to allocate in qty_order[0]. */
1370 if (qty_compare (0, 1) > 0)
1371 EXCHANGE (0, 1);
1372
1373 /* ... Fall through ... */
1374
1375 case 1:
1376 case 0:
1377 /* Nothing to do here. */
1378 break;
1379
1380 default:
1381 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1382 }
1383
1384 /* Now for each qty that is not a hardware register,
1385 look for a hardware register to put it in.
1386 First try the register class that is cheapest for this qty,
1387 if there is more than one class. */
1388
1389 for (i = 0; i < next_qty; i++)
1390 {
1391 q = qty_order[i];
1392 if (qty_phys_reg[q] < 0)
1393 {
1394 #ifdef INSN_SCHEDULING
1395 /* These values represent the adjusted lifetime of a qty so
1396 that it conflicts with qtys which appear near the start/end
1397 of this qty's lifetime.
1398
1399 The purpose behind extending the lifetime of this qty is to
1400 discourage the register allocator from creating false
1401 dependencies.
1402
1403 The adjustment value is choosen to indicate that this qty
1404 conflicts with all the qtys in the instructions immediately
1405 before and after the lifetime of this qty.
1406
1407 Experiments have shown that higher values tend to hurt
1408 overall code performance.
1409
1410 If allocation using the extended lifetime fails we will try
1411 again with the qty's unadjusted lifetime. */
1412 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1413 int fake_death = MIN (insn_number * 2 + 1,
1414 qty_death[q] + 2 - qty_death[q] % 2);
1415 #endif
1416
1417 if (N_REG_CLASSES > 1)
1418 {
1419 #ifdef INSN_SCHEDULING
1420 /* We try to avoid using hard registers allocated to qtys which
1421 are born immediately after this qty or die immediately before
1422 this qty.
1423
1424 This optimization is only appropriate when we will run
1425 a scheduling pass after reload and we are not optimizing
1426 for code size. */
1427 if (flag_schedule_insns_after_reload
1428 && !optimize_size
1429 && !SMALL_REGISTER_CLASSES)
1430 {
1431
1432 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1433 qty_mode[q], q, 0, 0,
1434 fake_birth, fake_death);
1435 if (qty_phys_reg[q] >= 0)
1436 continue;
1437 }
1438 #endif
1439 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1440 qty_mode[q], q, 0, 0,
1441 qty_birth[q], qty_death[q]);
1442 if (qty_phys_reg[q] >= 0)
1443 continue;
1444 }
1445
1446 #ifdef INSN_SCHEDULING
1447 /* Similarly, avoid false dependencies. */
1448 if (flag_schedule_insns_after_reload
1449 && !optimize_size
1450 && !SMALL_REGISTER_CLASSES
1451 && qty_alternate_class[q] != NO_REGS)
1452 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1453 qty_mode[q], q, 0, 0,
1454 fake_birth, fake_death);
1455 #endif
1456 if (qty_alternate_class[q] != NO_REGS)
1457 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1458 qty_mode[q], q, 0, 0,
1459 qty_birth[q], qty_death[q]);
1460 }
1461 }
1462
1463 /* Now propagate the register assignments
1464 to the pseudo regs belonging to the qtys. */
1465
1466 for (q = 0; q < next_qty; q++)
1467 if (qty_phys_reg[q] >= 0)
1468 {
1469 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1470 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1471 }
1472 }
1473 \f
1474 /* Compare two quantities' priority for getting real registers.
1475 We give shorter-lived quantities higher priority.
1476 Quantities with more references are also preferred, as are quantities that
1477 require multiple registers. This is the identical prioritization as
1478 done by global-alloc.
1479
1480 We used to give preference to registers with *longer* lives, but using
1481 the same algorithm in both local- and global-alloc can speed up execution
1482 of some programs by as much as a factor of three! */
1483
1484 /* Note that the quotient will never be bigger than
1485 the value of floor_log2 times the maximum number of
1486 times a register can occur in one insn (surely less than 100).
1487 Multiplying this by 10000 can't overflow.
1488 QTY_CMP_PRI is also used by qty_sugg_compare. */
1489
1490 #define QTY_CMP_PRI(q) \
1491 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1492 / (qty_death[q] - qty_birth[q])) * 10000))
1493
1494 static int
1495 qty_compare (q1, q2)
1496 int q1, q2;
1497 {
1498 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1499 }
1500
1501 static int
1502 qty_compare_1 (q1p, q2p)
1503 const PTR q1p;
1504 const PTR q2p;
1505 {
1506 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1507 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1508
1509 if (tem != 0)
1510 return tem;
1511
1512 /* If qtys are equally good, sort by qty number,
1513 so that the results of qsort leave nothing to chance. */
1514 return q1 - q2;
1515 }
1516 \f
1517 /* Compare two quantities' priority for getting real registers. This version
1518 is called for quantities that have suggested hard registers. First priority
1519 goes to quantities that have copy preferences, then to those that have
1520 normal preferences. Within those groups, quantities with the lower
1521 number of preferences have the highest priority. Of those, we use the same
1522 algorithm as above. */
1523
1524 #define QTY_CMP_SUGG(q) \
1525 (qty_phys_num_copy_sugg[q] \
1526 ? qty_phys_num_copy_sugg[q] \
1527 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1528
1529 static int
1530 qty_sugg_compare (q1, q2)
1531 int q1, q2;
1532 {
1533 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1534
1535 if (tem != 0)
1536 return tem;
1537
1538 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1539 }
1540
1541 static int
1542 qty_sugg_compare_1 (q1p, q2p)
1543 const PTR q1p;
1544 const PTR q2p;
1545 {
1546 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1547 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1548
1549 if (tem != 0)
1550 return tem;
1551
1552 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1553 if (tem != 0)
1554 return tem;
1555
1556 /* If qtys are equally good, sort by qty number,
1557 so that the results of qsort leave nothing to chance. */
1558 return q1 - q2;
1559 }
1560
1561 #undef QTY_CMP_SUGG
1562 #undef QTY_CMP_PRI
1563 \f
1564 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1565 Returns 1 if have done so, or 0 if cannot.
1566
1567 Combining registers means marking them as having the same quantity
1568 and adjusting the offsets within the quantity if either of
1569 them is a SUBREG).
1570
1571 We don't actually combine a hard reg with a pseudo; instead
1572 we just record the hard reg as the suggestion for the pseudo's quantity.
1573 If we really combined them, we could lose if the pseudo lives
1574 across an insn that clobbers the hard reg (eg, movstr).
1575
1576 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1577 there is no REG_DEAD note on INSN. This occurs during the processing
1578 of REG_NO_CONFLICT blocks.
1579
1580 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1581 SETREG or if the input and output must share a register.
1582 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1583
1584 There are elaborate checks for the validity of combining. */
1585
1586
1587 static int
1588 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1589 rtx usedreg, setreg;
1590 int may_save_copy;
1591 int insn_number;
1592 rtx insn;
1593 int already_dead;
1594 {
1595 register int ureg, sreg;
1596 register int offset = 0;
1597 int usize, ssize;
1598 register int sqty;
1599
1600 /* Determine the numbers and sizes of registers being used. If a subreg
1601 is present that does not change the entire register, don't consider
1602 this a copy insn. */
1603
1604 while (GET_CODE (usedreg) == SUBREG)
1605 {
1606 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1607 may_save_copy = 0;
1608 offset += SUBREG_WORD (usedreg);
1609 usedreg = SUBREG_REG (usedreg);
1610 }
1611 if (GET_CODE (usedreg) != REG)
1612 return 0;
1613 ureg = REGNO (usedreg);
1614 usize = REG_SIZE (usedreg);
1615
1616 while (GET_CODE (setreg) == SUBREG)
1617 {
1618 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1619 may_save_copy = 0;
1620 offset -= SUBREG_WORD (setreg);
1621 setreg = SUBREG_REG (setreg);
1622 }
1623 if (GET_CODE (setreg) != REG)
1624 return 0;
1625 sreg = REGNO (setreg);
1626 ssize = REG_SIZE (setreg);
1627
1628 /* If UREG is a pseudo-register that hasn't already been assigned a
1629 quantity number, it means that it is not local to this block or dies
1630 more than once. In either event, we can't do anything with it. */
1631 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1632 /* Do not combine registers unless one fits within the other. */
1633 || (offset > 0 && usize + offset > ssize)
1634 || (offset < 0 && usize + offset < ssize)
1635 /* Do not combine with a smaller already-assigned object
1636 if that smaller object is already combined with something bigger. */
1637 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1638 && usize < qty_size[reg_qty[ureg]])
1639 /* Can't combine if SREG is not a register we can allocate. */
1640 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1641 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1642 These have already been taken care of. This probably wouldn't
1643 combine anyway, but don't take any chances. */
1644 || (ureg >= FIRST_PSEUDO_REGISTER
1645 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1646 /* Don't tie something to itself. In most cases it would make no
1647 difference, but it would screw up if the reg being tied to itself
1648 also dies in this insn. */
1649 || ureg == sreg
1650 /* Don't try to connect two different hardware registers. */
1651 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1652 /* Don't use a hard reg that might be spilled. */
1653 || (ureg < FIRST_PSEUDO_REGISTER
1654 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1655 || (sreg < FIRST_PSEUDO_REGISTER
1656 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1657 /* Don't connect two different machine modes if they have different
1658 implications as to which registers may be used. */
1659 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1660 return 0;
1661
1662 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1663 qty_phys_sugg for the pseudo instead of tying them.
1664
1665 Return "failure" so that the lifespan of UREG is terminated here;
1666 that way the two lifespans will be disjoint and nothing will prevent
1667 the pseudo reg from being given this hard reg. */
1668
1669 if (ureg < FIRST_PSEUDO_REGISTER)
1670 {
1671 /* Allocate a quantity number so we have a place to put our
1672 suggestions. */
1673 if (reg_qty[sreg] == -2)
1674 reg_is_born (setreg, 2 * insn_number);
1675
1676 if (reg_qty[sreg] >= 0)
1677 {
1678 if (may_save_copy
1679 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1680 {
1681 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1682 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1683 }
1684 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1685 {
1686 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1687 qty_phys_num_sugg[reg_qty[sreg]]++;
1688 }
1689 }
1690 return 0;
1691 }
1692
1693 /* Similarly for SREG a hard register and UREG a pseudo register. */
1694
1695 if (sreg < FIRST_PSEUDO_REGISTER)
1696 {
1697 if (may_save_copy
1698 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1699 {
1700 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1701 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1702 }
1703 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1704 {
1705 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1706 qty_phys_num_sugg[reg_qty[ureg]]++;
1707 }
1708 return 0;
1709 }
1710
1711 /* At this point we know that SREG and UREG are both pseudos.
1712 Do nothing if SREG already has a quantity or is a register that we
1713 don't allocate. */
1714 if (reg_qty[sreg] >= -1
1715 /* If we are not going to let any regs live across calls,
1716 don't tie a call-crossing reg to a non-call-crossing reg. */
1717 || (current_function_has_nonlocal_label
1718 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1719 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1720 return 0;
1721
1722 /* We don't already know about SREG, so tie it to UREG
1723 if this is the last use of UREG, provided the classes they want
1724 are compatible. */
1725
1726 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1727 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1728 {
1729 /* Add SREG to UREG's quantity. */
1730 sqty = reg_qty[ureg];
1731 reg_qty[sreg] = sqty;
1732 reg_offset[sreg] = reg_offset[ureg] + offset;
1733 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1734 qty_first_reg[sqty] = sreg;
1735
1736 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1737 update_qty_class (sqty, sreg);
1738
1739 /* Update info about quantity SQTY. */
1740 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1741 qty_n_refs[sqty] += REG_N_REFS (sreg);
1742 if (usize < ssize)
1743 {
1744 register int i;
1745
1746 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1747 reg_offset[i] -= offset;
1748
1749 qty_size[sqty] = ssize;
1750 qty_mode[sqty] = GET_MODE (setreg);
1751 }
1752 }
1753 else
1754 return 0;
1755
1756 return 1;
1757 }
1758 \f
1759 /* Return 1 if the preferred class of REG allows it to be tied
1760 to a quantity or register whose class is CLASS.
1761 True if REG's reg class either contains or is contained in CLASS. */
1762
1763 static int
1764 reg_meets_class_p (reg, class)
1765 int reg;
1766 enum reg_class class;
1767 {
1768 register enum reg_class rclass = reg_preferred_class (reg);
1769 return (reg_class_subset_p (rclass, class)
1770 || reg_class_subset_p (class, rclass));
1771 }
1772
1773 /* Update the class of QTY assuming that REG is being tied to it. */
1774
1775 static void
1776 update_qty_class (qty, reg)
1777 int qty;
1778 int reg;
1779 {
1780 enum reg_class rclass = reg_preferred_class (reg);
1781 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1782 qty_min_class[qty] = rclass;
1783
1784 rclass = reg_alternate_class (reg);
1785 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1786 qty_alternate_class[qty] = rclass;
1787
1788 if (REG_CHANGES_SIZE (reg))
1789 qty_changes_size[qty] = 1;
1790 }
1791 \f
1792 /* Handle something which alters the value of an rtx REG.
1793
1794 REG is whatever is set or clobbered. SETTER is the rtx that
1795 is modifying the register.
1796
1797 If it is not really a register, we do nothing.
1798 The file-global variables `this_insn' and `this_insn_number'
1799 carry info from `block_alloc'. */
1800
1801 static void
1802 reg_is_set (reg, setter)
1803 rtx reg;
1804 rtx setter;
1805 {
1806 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1807 a hard register. These may actually not exist any more. */
1808
1809 if (GET_CODE (reg) != SUBREG
1810 && GET_CODE (reg) != REG)
1811 return;
1812
1813 /* Mark this register as being born. If it is used in a CLOBBER, mark
1814 it as being born halfway between the previous insn and this insn so that
1815 it conflicts with our inputs but not the outputs of the previous insn. */
1816
1817 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1818 }
1819 \f
1820 /* Handle beginning of the life of register REG.
1821 BIRTH is the index at which this is happening. */
1822
1823 static void
1824 reg_is_born (reg, birth)
1825 rtx reg;
1826 int birth;
1827 {
1828 register int regno;
1829
1830 if (GET_CODE (reg) == SUBREG)
1831 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1832 else
1833 regno = REGNO (reg);
1834
1835 if (regno < FIRST_PSEUDO_REGISTER)
1836 {
1837 mark_life (regno, GET_MODE (reg), 1);
1838
1839 /* If the register was to have been born earlier that the present
1840 insn, mark it as live where it is actually born. */
1841 if (birth < 2 * this_insn_number)
1842 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1843 }
1844 else
1845 {
1846 if (reg_qty[regno] == -2)
1847 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1848
1849 /* If this register has a quantity number, show that it isn't dead. */
1850 if (reg_qty[regno] >= 0)
1851 qty_death[reg_qty[regno]] = -1;
1852 }
1853 }
1854
1855 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1856 REG is an output that is dying (i.e., it is never used), otherwise it
1857 is an input (the normal case).
1858 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1859
1860 static void
1861 wipe_dead_reg (reg, output_p)
1862 register rtx reg;
1863 int output_p;
1864 {
1865 register int regno = REGNO (reg);
1866
1867 /* If this insn has multiple results,
1868 and the dead reg is used in one of the results,
1869 extend its life to after this insn,
1870 so it won't get allocated together with any other result of this insn.
1871
1872 It is unsafe to use !single_set here since it will ignore an unused
1873 output. Just because an output is unused does not mean the compiler
1874 can assume the side effect will not occur. Consider if REG appears
1875 in the address of an output and we reload the output. If we allocate
1876 REG to the same hard register as an unused output we could set the hard
1877 register before the output reload insn. */
1878 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1879 && multiple_sets (this_insn))
1880 {
1881 int i;
1882 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1883 {
1884 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1885 if (GET_CODE (set) == SET
1886 && GET_CODE (SET_DEST (set)) != REG
1887 && !rtx_equal_p (reg, SET_DEST (set))
1888 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1889 output_p = 1;
1890 }
1891 }
1892
1893 /* If this register is used in an auto-increment address, then extend its
1894 life to after this insn, so that it won't get allocated together with
1895 the result of this insn. */
1896 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1897 output_p = 1;
1898
1899 if (regno < FIRST_PSEUDO_REGISTER)
1900 {
1901 mark_life (regno, GET_MODE (reg), 0);
1902
1903 /* If a hard register is dying as an output, mark it as in use at
1904 the beginning of this insn (the above statement would cause this
1905 not to happen). */
1906 if (output_p)
1907 post_mark_life (regno, GET_MODE (reg), 1,
1908 2 * this_insn_number, 2 * this_insn_number+ 1);
1909 }
1910
1911 else if (reg_qty[regno] >= 0)
1912 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1913 }
1914 \f
1915 /* Find a block of SIZE words of hard regs in reg_class CLASS
1916 that can hold something of machine-mode MODE
1917 (but actually we test only the first of the block for holding MODE)
1918 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1919 and return the number of the first of them.
1920 Return -1 if such a block cannot be found.
1921 If QTY crosses calls, insist on a register preserved by calls,
1922 unless ACCEPT_CALL_CLOBBERED is nonzero.
1923
1924 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1925 register is available. If not, return -1. */
1926
1927 static int
1928 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1929 born_index, dead_index)
1930 enum reg_class class;
1931 enum machine_mode mode;
1932 int qty;
1933 int accept_call_clobbered;
1934 int just_try_suggested;
1935 int born_index, dead_index;
1936 {
1937 register int i, ins;
1938 #ifdef HARD_REG_SET
1939 register /* Declare it register if it's a scalar. */
1940 #endif
1941 HARD_REG_SET used, first_used;
1942 #ifdef ELIMINABLE_REGS
1943 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1944 #endif
1945
1946 /* Validate our parameters. */
1947 if (born_index < 0 || born_index > dead_index)
1948 abort ();
1949
1950 /* Don't let a pseudo live in a reg across a function call
1951 if we might get a nonlocal goto. */
1952 if (current_function_has_nonlocal_label
1953 && qty_n_calls_crossed[qty] > 0)
1954 return -1;
1955
1956 if (accept_call_clobbered)
1957 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1958 else if (qty_n_calls_crossed[qty] == 0)
1959 COPY_HARD_REG_SET (used, fixed_reg_set);
1960 else
1961 COPY_HARD_REG_SET (used, call_used_reg_set);
1962
1963 if (accept_call_clobbered)
1964 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1965
1966 for (ins = born_index; ins < dead_index; ins++)
1967 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1968
1969 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1970
1971 /* Don't use the frame pointer reg in local-alloc even if
1972 we may omit the frame pointer, because if we do that and then we
1973 need a frame pointer, reload won't know how to move the pseudo
1974 to another hard reg. It can move only regs made by global-alloc.
1975
1976 This is true of any register that can be eliminated. */
1977 #ifdef ELIMINABLE_REGS
1978 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1979 SET_HARD_REG_BIT (used, eliminables[i].from);
1980 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1981 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1982 that it might be eliminated into. */
1983 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1984 #endif
1985 #else
1986 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1987 #endif
1988
1989 #ifdef CLASS_CANNOT_CHANGE_SIZE
1990 if (qty_changes_size[qty])
1991 IOR_HARD_REG_SET (used,
1992 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1993 #endif
1994
1995 /* Normally, the registers that can be used for the first register in
1996 a multi-register quantity are the same as those that can be used for
1997 subsequent registers. However, if just trying suggested registers,
1998 restrict our consideration to them. If there are copy-suggested
1999 register, try them. Otherwise, try the arithmetic-suggested
2000 registers. */
2001 COPY_HARD_REG_SET (first_used, used);
2002
2003 if (just_try_suggested)
2004 {
2005 if (qty_phys_num_copy_sugg[qty] != 0)
2006 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2007 else
2008 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2009 }
2010
2011 /* If all registers are excluded, we can't do anything. */
2012 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2013
2014 /* If at least one would be suitable, test each hard reg. */
2015
2016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2017 {
2018 #ifdef REG_ALLOC_ORDER
2019 int regno = reg_alloc_order[i];
2020 #else
2021 int regno = i;
2022 #endif
2023 if (! TEST_HARD_REG_BIT (first_used, regno)
2024 && HARD_REGNO_MODE_OK (regno, mode)
2025 && (qty_n_calls_crossed[qty] == 0
2026 || accept_call_clobbered
2027 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2028 {
2029 register int j;
2030 register int size1 = HARD_REGNO_NREGS (regno, mode);
2031 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2032 if (j == size1)
2033 {
2034 /* Mark that this register is in use between its birth and death
2035 insns. */
2036 post_mark_life (regno, mode, 1, born_index, dead_index);
2037 return regno;
2038 }
2039 #ifndef REG_ALLOC_ORDER
2040 i += j; /* Skip starting points we know will lose */
2041 #endif
2042 }
2043 }
2044
2045 fail:
2046
2047 /* If we are just trying suggested register, we have just tried copy-
2048 suggested registers, and there are arithmetic-suggested registers,
2049 try them. */
2050
2051 /* If it would be profitable to allocate a call-clobbered register
2052 and save and restore it around calls, do that. */
2053 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2054 && qty_phys_num_sugg[qty] != 0)
2055 {
2056 /* Don't try the copy-suggested regs again. */
2057 qty_phys_num_copy_sugg[qty] = 0;
2058 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2059 born_index, dead_index);
2060 }
2061
2062 /* We need not check to see if the current function has nonlocal
2063 labels because we don't put any pseudos that are live over calls in
2064 registers in that case. */
2065
2066 if (! accept_call_clobbered
2067 && flag_caller_saves
2068 && ! just_try_suggested
2069 && qty_n_calls_crossed[qty] != 0
2070 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2071 {
2072 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2073 if (i >= 0)
2074 caller_save_needed = 1;
2075 return i;
2076 }
2077 return -1;
2078 }
2079 \f
2080 /* Mark that REGNO with machine-mode MODE is live starting from the current
2081 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2082 is zero). */
2083
2084 static void
2085 mark_life (regno, mode, life)
2086 register int regno;
2087 enum machine_mode mode;
2088 int life;
2089 {
2090 register int j = HARD_REGNO_NREGS (regno, mode);
2091 if (life)
2092 while (--j >= 0)
2093 SET_HARD_REG_BIT (regs_live, regno + j);
2094 else
2095 while (--j >= 0)
2096 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2097 }
2098
2099 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2100 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2101 to insn number DEATH (exclusive). */
2102
2103 static void
2104 post_mark_life (regno, mode, life, birth, death)
2105 int regno;
2106 enum machine_mode mode;
2107 int life, birth, death;
2108 {
2109 register int j = HARD_REGNO_NREGS (regno, mode);
2110 #ifdef HARD_REG_SET
2111 register /* Declare it register if it's a scalar. */
2112 #endif
2113 HARD_REG_SET this_reg;
2114
2115 CLEAR_HARD_REG_SET (this_reg);
2116 while (--j >= 0)
2117 SET_HARD_REG_BIT (this_reg, regno + j);
2118
2119 if (life)
2120 while (birth < death)
2121 {
2122 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2123 birth++;
2124 }
2125 else
2126 while (birth < death)
2127 {
2128 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2129 birth++;
2130 }
2131 }
2132 \f
2133 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2134 is the register being clobbered, and R1 is a register being used in
2135 the equivalent expression.
2136
2137 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2138 in which it is used, return 1.
2139
2140 Otherwise, return 0. */
2141
2142 static int
2143 no_conflict_p (insn, r0, r1)
2144 rtx insn, r0, r1;
2145 {
2146 int ok = 0;
2147 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2148 rtx p, last;
2149
2150 /* If R1 is a hard register, return 0 since we handle this case
2151 when we scan the insns that actually use it. */
2152
2153 if (note == 0
2154 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2155 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2156 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2157 return 0;
2158
2159 last = XEXP (note, 0);
2160
2161 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2162 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2163 {
2164 if (find_reg_note (p, REG_DEAD, r1))
2165 ok = 1;
2166
2167 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2168 some earlier optimization pass has inserted instructions into
2169 the sequence, and it is not safe to perform this optimization.
2170 Note that emit_no_conflict_block always ensures that this is
2171 true when these sequences are created. */
2172 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2173 return 0;
2174 }
2175
2176 return ok;
2177 }
2178 \f
2179 /* Return the number of alternatives for which the constraint string P
2180 indicates that the operand must be equal to operand 0 and that no register
2181 is acceptable. */
2182
2183 static int
2184 requires_inout (p)
2185 const char *p;
2186 {
2187 char c;
2188 int found_zero = 0;
2189 int reg_allowed = 0;
2190 int num_matching_alts = 0;
2191
2192 while ((c = *p++))
2193 switch (c)
2194 {
2195 case '=': case '+': case '?':
2196 case '#': case '&': case '!':
2197 case '*': case '%':
2198 case '1': case '2': case '3': case '4': case '5':
2199 case '6': case '7': case '8': case '9':
2200 case 'm': case '<': case '>': case 'V': case 'o':
2201 case 'E': case 'F': case 'G': case 'H':
2202 case 's': case 'i': case 'n':
2203 case 'I': case 'J': case 'K': case 'L':
2204 case 'M': case 'N': case 'O': case 'P':
2205 #ifdef EXTRA_CONSTRAINT
2206 case 'Q': case 'R': case 'S': case 'T': case 'U':
2207 #endif
2208 case 'X':
2209 /* These don't say anything we care about. */
2210 break;
2211
2212 case ',':
2213 if (found_zero && ! reg_allowed)
2214 num_matching_alts++;
2215
2216 found_zero = reg_allowed = 0;
2217 break;
2218
2219 case '0':
2220 found_zero = 1;
2221 break;
2222
2223 case 'p':
2224 case 'g': case 'r':
2225 default:
2226 reg_allowed = 1;
2227 break;
2228 }
2229
2230 if (found_zero && ! reg_allowed)
2231 num_matching_alts++;
2232
2233 return num_matching_alts;
2234 }
2235 \f
2236 void
2237 dump_local_alloc (file)
2238 FILE *file;
2239 {
2240 register int i;
2241 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2242 if (reg_renumber[i] != -1)
2243 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2244 }