ChangeLog.2, [...]: Fix spelling errors.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 \f
78 /* Next quantity number available for allocation. */
79
80 static int next_qty;
81
82 /* Information we maintain about each quantity. */
83 struct qty
84 {
85 /* The number of refs to quantity Q. */
86
87 int n_refs;
88
89 /* The frequency of uses of quantity Q. */
90
91 int freq;
92
93 /* Insn number (counting from head of basic block)
94 where quantity Q was born. -1 if birth has not been recorded. */
95
96 int birth;
97
98 /* Insn number (counting from head of basic block)
99 where given quantity died. Due to the way tying is done,
100 and the fact that we consider in this pass only regs that die but once,
101 a quantity can die only once. Each quantity's life span
102 is a set of consecutive insns. -1 if death has not been recorded. */
103
104 int death;
105
106 /* Number of words needed to hold the data in given quantity.
107 This depends on its machine mode. It is used for these purposes:
108 1. It is used in computing the relative importances of qtys,
109 which determines the order in which we look for regs for them.
110 2. It is used in rules that prevent tying several registers of
111 different sizes in a way that is geometrically impossible
112 (see combine_regs). */
113
114 int size;
115
116 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
117
118 int n_calls_crossed;
119
120 /* The register number of one pseudo register whose reg_qty value is Q.
121 This register should be the head of the chain
122 maintained in reg_next_in_qty. */
123
124 int first_reg;
125
126 /* Reg class contained in (smaller than) the preferred classes of all
127 the pseudo regs that are tied in given quantity.
128 This is the preferred class for allocating that quantity. */
129
130 enum reg_class min_class;
131
132 /* Register class within which we allocate given qty if we can't get
133 its preferred class. */
134
135 enum reg_class alternate_class;
136
137 /* This holds the mode of the registers that are tied to given qty,
138 or VOIDmode if registers with differing modes are tied together. */
139
140 enum machine_mode mode;
141
142 /* the hard reg number chosen for given quantity,
143 or -1 if none was found. */
144
145 short phys_reg;
146
147 /* Nonzero if this quantity has been used in a SUBREG in some
148 way that is illegal. */
149
150 char changes_mode;
151
152 };
153
154 static struct qty *qty;
155
156 /* These fields are kept separately to speedup their clearing. */
157
158 /* We maintain two hard register sets that indicate suggested hard registers
159 for each quantity. The first, phys_copy_sugg, contains hard registers
160 that are tied to the quantity by a simple copy. The second contains all
161 hard registers that are tied to the quantity via an arithmetic operation.
162
163 The former register set is given priority for allocation. This tends to
164 eliminate copy insns. */
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 copy insns. */
168
169 static HARD_REG_SET *qty_phys_copy_sugg;
170
171 /* Element Q is a set of hard registers that are suggested for quantity Q by
172 arithmetic insns. */
173
174 static HARD_REG_SET *qty_phys_sugg;
175
176 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
177
178 static short *qty_phys_num_copy_sugg;
179
180 /* Element Q is the number of suggested registers in qty_phys_sugg. */
181
182 static short *qty_phys_num_sugg;
183
184 /* If (REG N) has been assigned a quantity number, is a register number
185 of another register assigned the same quantity number, or -1 for the
186 end of the chain. qty->first_reg point to the head of this chain. */
187
188 static int *reg_next_in_qty;
189
190 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
191 if it is >= 0,
192 of -1 if this register cannot be allocated by local-alloc,
193 or -2 if not known yet.
194
195 Note that if we see a use or death of pseudo register N with
196 reg_qty[N] == -2, register N must be local to the current block. If
197 it were used in more than one block, we would have reg_qty[N] == -1.
198 This relies on the fact that if reg_basic_block[N] is >= 0, register N
199 will not appear in any other block. We save a considerable number of
200 tests by exploiting this.
201
202 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
203 be referenced. */
204
205 static int *reg_qty;
206
207 /* The offset (in words) of register N within its quantity.
208 This can be nonzero if register N is SImode, and has been tied
209 to a subreg of a DImode register. */
210
211 static char *reg_offset;
212
213 /* Vector of substitutions of register numbers,
214 used to map pseudo regs into hardware regs.
215 This is set up as a result of register allocation.
216 Element N is the hard reg assigned to pseudo reg N,
217 or is -1 if no hard reg was assigned.
218 If N is a hard reg number, element N is N. */
219
220 short *reg_renumber;
221
222 /* Set of hard registers live at the current point in the scan
223 of the instructions in a basic block. */
224
225 static HARD_REG_SET regs_live;
226
227 /* Each set of hard registers indicates registers live at a particular
228 point in the basic block. For N even, regs_live_at[N] says which
229 hard registers are needed *after* insn N/2 (i.e., they may not
230 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
231
232 If an object is to conflict with the inputs of insn J but not the
233 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
234 if it is to conflict with the outputs of insn J but not the inputs of
235 insn J + 1, it is said to die at index J*2 + 1. */
236
237 static HARD_REG_SET *regs_live_at;
238
239 /* Communicate local vars `insn_number' and `insn'
240 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
241 static int this_insn_number;
242 static rtx this_insn;
243
244 struct equivalence
245 {
246 /* Set when an attempt should be made to replace a register
247 with the associated src entry. */
248
249 char replace;
250
251 /* Set when a REG_EQUIV note is found or created. Use to
252 keep track of what memory accesses might be created later,
253 e.g. by reload. */
254
255 rtx replacement;
256
257 rtx src;
258
259 /* Loop depth is used to recognize equivalences which appear
260 to be present within the same loop (or in an inner loop). */
261
262 int loop_depth;
263
264 /* The list of each instruction which initializes this register. */
265
266 rtx init_insns;
267 };
268
269 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
270 structure for that register. */
271
272 static struct equivalence *reg_equiv;
273
274 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
275 static int recorded_label_ref;
276
277 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
278 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
279 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
280 static int equiv_init_varies_p PARAMS ((rtx));
281 static int equiv_init_movable_p PARAMS ((rtx, int));
282 static int contains_replace_regs PARAMS ((rtx));
283 static int memref_referenced_p PARAMS ((rtx, rtx));
284 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
285 static void update_equiv_regs PARAMS ((void));
286 static void no_equiv PARAMS ((rtx, rtx, void *));
287 static void block_alloc PARAMS ((int));
288 static int qty_sugg_compare PARAMS ((int, int));
289 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
290 static int qty_compare PARAMS ((int, int));
291 static int qty_compare_1 PARAMS ((const PTR, const PTR));
292 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
293 static int reg_meets_class_p PARAMS ((int, enum reg_class));
294 static void update_qty_class PARAMS ((int, int));
295 static void reg_is_set PARAMS ((rtx, rtx, void *));
296 static void reg_is_born PARAMS ((rtx, int));
297 static void wipe_dead_reg PARAMS ((rtx, int));
298 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
299 int, int, int, int, int));
300 static void mark_life PARAMS ((int, enum machine_mode, int));
301 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
302 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
303 static int requires_inout PARAMS ((const char *));
304 \f
305 /* Allocate a new quantity (new within current basic block)
306 for register number REGNO which is born at index BIRTH
307 within the block. MODE and SIZE are info on reg REGNO. */
308
309 static void
310 alloc_qty (regno, mode, size, birth)
311 int regno;
312 enum machine_mode mode;
313 int size, birth;
314 {
315 int qtyno = next_qty++;
316
317 reg_qty[regno] = qtyno;
318 reg_offset[regno] = 0;
319 reg_next_in_qty[regno] = -1;
320
321 qty[qtyno].first_reg = regno;
322 qty[qtyno].size = size;
323 qty[qtyno].mode = mode;
324 qty[qtyno].birth = birth;
325 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
326 qty[qtyno].min_class = reg_preferred_class (regno);
327 qty[qtyno].alternate_class = reg_alternate_class (regno);
328 qty[qtyno].n_refs = REG_N_REFS (regno);
329 qty[qtyno].freq = REG_FREQ (regno);
330 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
331 }
332 \f
333 /* Main entry point of this file. */
334
335 int
336 local_alloc ()
337 {
338 int b, i;
339 int max_qty;
340
341 /* We need to keep track of whether or not we recorded a LABEL_REF so
342 that we know if the jump optimizer needs to be rerun. */
343 recorded_label_ref = 0;
344
345 /* Leaf functions and non-leaf functions have different needs.
346 If defined, let the machine say what kind of ordering we
347 should use. */
348 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
349 ORDER_REGS_FOR_LOCAL_ALLOC;
350 #endif
351
352 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
353 registers. */
354 update_equiv_regs ();
355
356 /* This sets the maximum number of quantities we can have. Quantity
357 numbers start at zero and we can have one for each pseudo. */
358 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
359
360 /* Allocate vectors of temporary data.
361 See the declarations of these variables, above,
362 for what they mean. */
363
364 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
365 qty_phys_copy_sugg
366 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
367 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
368 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
369 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
370
371 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
372 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
373 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
374
375 /* Determine which pseudo-registers can be allocated by local-alloc.
376 In general, these are the registers used only in a single block and
377 which only die once.
378
379 We need not be concerned with which block actually uses the register
380 since we will never see it outside that block. */
381
382 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
383 {
384 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
385 reg_qty[i] = -2;
386 else
387 reg_qty[i] = -1;
388 }
389
390 /* Force loop below to initialize entire quantity array. */
391 next_qty = max_qty;
392
393 /* Allocate each block's local registers, block by block. */
394
395 for (b = 0; b < n_basic_blocks; b++)
396 {
397 /* NEXT_QTY indicates which elements of the `qty_...'
398 vectors might need to be initialized because they were used
399 for the previous block; it is set to the entire array before
400 block 0. Initialize those, with explicit loop if there are few,
401 else with bzero and bcopy. Do not initialize vectors that are
402 explicit set by `alloc_qty'. */
403
404 if (next_qty < 6)
405 {
406 for (i = 0; i < next_qty; i++)
407 {
408 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
409 qty_phys_num_copy_sugg[i] = 0;
410 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
411 qty_phys_num_sugg[i] = 0;
412 }
413 }
414 else
415 {
416 #define CLEAR(vector) \
417 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
418
419 CLEAR (qty_phys_copy_sugg);
420 CLEAR (qty_phys_num_copy_sugg);
421 CLEAR (qty_phys_sugg);
422 CLEAR (qty_phys_num_sugg);
423 }
424
425 next_qty = 0;
426
427 block_alloc (b);
428 }
429
430 free (qty);
431 free (qty_phys_copy_sugg);
432 free (qty_phys_num_copy_sugg);
433 free (qty_phys_sugg);
434 free (qty_phys_num_sugg);
435
436 free (reg_qty);
437 free (reg_offset);
438 free (reg_next_in_qty);
439
440 return recorded_label_ref;
441 }
442 \f
443 /* Used for communication between the following two functions: contains
444 a MEM that we wish to ensure remains unchanged. */
445 static rtx equiv_mem;
446
447 /* Set nonzero if EQUIV_MEM is modified. */
448 static int equiv_mem_modified;
449
450 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
451 Called via note_stores. */
452
453 static void
454 validate_equiv_mem_from_store (dest, set, data)
455 rtx dest;
456 rtx set ATTRIBUTE_UNUSED;
457 void *data ATTRIBUTE_UNUSED;
458 {
459 if ((GET_CODE (dest) == REG
460 && reg_overlap_mentioned_p (dest, equiv_mem))
461 || (GET_CODE (dest) == MEM
462 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
463 equiv_mem_modified = 1;
464 }
465
466 /* Verify that no store between START and the death of REG invalidates
467 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
468 by storing into an overlapping memory location, or with a non-const
469 CALL_INSN.
470
471 Return 1 if MEMREF remains valid. */
472
473 static int
474 validate_equiv_mem (start, reg, memref)
475 rtx start;
476 rtx reg;
477 rtx memref;
478 {
479 rtx insn;
480 rtx note;
481
482 equiv_mem = memref;
483 equiv_mem_modified = 0;
484
485 /* If the memory reference has side effects or is volatile, it isn't a
486 valid equivalence. */
487 if (side_effects_p (memref))
488 return 0;
489
490 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
491 {
492 if (! INSN_P (insn))
493 continue;
494
495 if (find_reg_note (insn, REG_DEAD, reg))
496 return 1;
497
498 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
499 && ! CONST_OR_PURE_CALL_P (insn))
500 return 0;
501
502 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
503
504 /* If a register mentioned in MEMREF is modified via an
505 auto-increment, we lose the equivalence. Do the same if one
506 dies; although we could extend the life, it doesn't seem worth
507 the trouble. */
508
509 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
510 if ((REG_NOTE_KIND (note) == REG_INC
511 || REG_NOTE_KIND (note) == REG_DEAD)
512 && GET_CODE (XEXP (note, 0)) == REG
513 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
514 return 0;
515 }
516
517 return 0;
518 }
519
520 /* Returns zero if X is known to be invariant. */
521
522 static int
523 equiv_init_varies_p (x)
524 rtx x;
525 {
526 RTX_CODE code = GET_CODE (x);
527 int i;
528 const char *fmt;
529
530 switch (code)
531 {
532 case MEM:
533 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
534
535 case QUEUED:
536 return 1;
537
538 case CONST:
539 case CONST_INT:
540 case CONST_DOUBLE:
541 case SYMBOL_REF:
542 case LABEL_REF:
543 return 0;
544
545 case REG:
546 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
547
548 case ASM_OPERANDS:
549 if (MEM_VOLATILE_P (x))
550 return 1;
551
552 /* FALLTHROUGH */
553
554 default:
555 break;
556 }
557
558 fmt = GET_RTX_FORMAT (code);
559 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
560 if (fmt[i] == 'e')
561 {
562 if (equiv_init_varies_p (XEXP (x, i)))
563 return 1;
564 }
565 else if (fmt[i] == 'E')
566 {
567 int j;
568 for (j = 0; j < XVECLEN (x, i); j++)
569 if (equiv_init_varies_p (XVECEXP (x, i, j)))
570 return 1;
571 }
572
573 return 0;
574 }
575
576 /* Returns non-zero if X (used to initialize register REGNO) is movable.
577 X is only movable if the registers it uses have equivalent initializations
578 which appear to be within the same loop (or in an inner loop) and movable
579 or if they are not candidates for local_alloc and don't vary. */
580
581 static int
582 equiv_init_movable_p (x, regno)
583 rtx x;
584 int regno;
585 {
586 int i, j;
587 const char *fmt;
588 enum rtx_code code = GET_CODE (x);
589
590 switch (code)
591 {
592 case SET:
593 return equiv_init_movable_p (SET_SRC (x), regno);
594
595 case CC0:
596 case CLOBBER:
597 return 0;
598
599 case PRE_INC:
600 case PRE_DEC:
601 case POST_INC:
602 case POST_DEC:
603 case PRE_MODIFY:
604 case POST_MODIFY:
605 return 0;
606
607 case REG:
608 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
609 && reg_equiv[REGNO (x)].replace)
610 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
611
612 case UNSPEC_VOLATILE:
613 return 0;
614
615 case ASM_OPERANDS:
616 if (MEM_VOLATILE_P (x))
617 return 0;
618
619 /* FALLTHROUGH */
620
621 default:
622 break;
623 }
624
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
627 switch (fmt[i])
628 {
629 case 'e':
630 if (! equiv_init_movable_p (XEXP (x, i), regno))
631 return 0;
632 break;
633 case 'E':
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
636 return 0;
637 break;
638 }
639
640 return 1;
641 }
642
643 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
644
645 static int
646 contains_replace_regs (x)
647 rtx x;
648 {
649 int i, j;
650 const char *fmt;
651 enum rtx_code code = GET_CODE (x);
652
653 switch (code)
654 {
655 case CONST_INT:
656 case CONST:
657 case LABEL_REF:
658 case SYMBOL_REF:
659 case CONST_DOUBLE:
660 case PC:
661 case CC0:
662 case HIGH:
663 case LO_SUM:
664 return 0;
665
666 case REG:
667 return reg_equiv[REGNO (x)].replace;
668
669 default:
670 break;
671 }
672
673 fmt = GET_RTX_FORMAT (code);
674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
675 switch (fmt[i])
676 {
677 case 'e':
678 if (contains_replace_regs (XEXP (x, i)))
679 return 1;
680 break;
681 case 'E':
682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
683 if (contains_replace_regs (XVECEXP (x, i, j)))
684 return 1;
685 break;
686 }
687
688 return 0;
689 }
690 \f
691 /* TRUE if X references a memory location that would be affected by a store
692 to MEMREF. */
693
694 static int
695 memref_referenced_p (memref, x)
696 rtx x;
697 rtx memref;
698 {
699 int i, j;
700 const char *fmt;
701 enum rtx_code code = GET_CODE (x);
702
703 switch (code)
704 {
705 case CONST_INT:
706 case CONST:
707 case LABEL_REF:
708 case SYMBOL_REF:
709 case CONST_DOUBLE:
710 case PC:
711 case CC0:
712 case HIGH:
713 case LO_SUM:
714 return 0;
715
716 case REG:
717 return (reg_equiv[REGNO (x)].replacement
718 && memref_referenced_p (memref,
719 reg_equiv[REGNO (x)].replacement));
720
721 case MEM:
722 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
723 return 1;
724 break;
725
726 case SET:
727 /* If we are setting a MEM, it doesn't count (its address does), but any
728 other SET_DEST that has a MEM in it is referencing the MEM. */
729 if (GET_CODE (SET_DEST (x)) == MEM)
730 {
731 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
732 return 1;
733 }
734 else if (memref_referenced_p (memref, SET_DEST (x)))
735 return 1;
736
737 return memref_referenced_p (memref, SET_SRC (x));
738
739 default:
740 break;
741 }
742
743 fmt = GET_RTX_FORMAT (code);
744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
745 switch (fmt[i])
746 {
747 case 'e':
748 if (memref_referenced_p (memref, XEXP (x, i)))
749 return 1;
750 break;
751 case 'E':
752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
753 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
754 return 1;
755 break;
756 }
757
758 return 0;
759 }
760
761 /* TRUE if some insn in the range (START, END] references a memory location
762 that would be affected by a store to MEMREF. */
763
764 static int
765 memref_used_between_p (memref, start, end)
766 rtx memref;
767 rtx start;
768 rtx end;
769 {
770 rtx insn;
771
772 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
773 insn = NEXT_INSN (insn))
774 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
775 return 1;
776
777 return 0;
778 }
779 \f
780 /* Return nonzero if the rtx X is invariant over the current function. */
781 int
782 function_invariant_p (x)
783 rtx x;
784 {
785 if (CONSTANT_P (x))
786 return 1;
787 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
788 return 1;
789 if (GET_CODE (x) == PLUS
790 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
791 && CONSTANT_P (XEXP (x, 1)))
792 return 1;
793 return 0;
794 }
795
796 /* Find registers that are equivalent to a single value throughout the
797 compilation (either because they can be referenced in memory or are set once
798 from a single constant). Lower their priority for a register.
799
800 If such a register is only referenced once, try substituting its value
801 into the using insn. If it succeeds, we can eliminate the register
802 completely. */
803
804 static void
805 update_equiv_regs ()
806 {
807 rtx insn;
808 int block;
809 int loop_depth;
810 regset_head cleared_regs;
811 int clear_regnos = 0;
812
813 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
814 INIT_REG_SET (&cleared_regs);
815
816 init_alias_analysis ();
817
818 /* Scan the insns and find which registers have equivalences. Do this
819 in a separate scan of the insns because (due to -fcse-follow-jumps)
820 a register can be set below its use. */
821 for (block = 0; block < n_basic_blocks; block++)
822 {
823 basic_block bb = BASIC_BLOCK (block);
824 loop_depth = bb->loop_depth;
825
826 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
827 {
828 rtx note;
829 rtx set;
830 rtx dest, src;
831 int regno;
832
833 if (! INSN_P (insn))
834 continue;
835
836 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
837 if (REG_NOTE_KIND (note) == REG_INC)
838 no_equiv (XEXP (note, 0), note, NULL);
839
840 set = single_set (insn);
841
842 /* If this insn contains more (or less) than a single SET,
843 only mark all destinations as having no known equivalence. */
844 if (set == 0)
845 {
846 note_stores (PATTERN (insn), no_equiv, NULL);
847 continue;
848 }
849 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
850 {
851 int i;
852
853 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
854 {
855 rtx part = XVECEXP (PATTERN (insn), 0, i);
856 if (part != set)
857 note_stores (part, no_equiv, NULL);
858 }
859 }
860
861 dest = SET_DEST (set);
862 src = SET_SRC (set);
863
864 /* If this sets a MEM to the contents of a REG that is only used
865 in a single basic block, see if the register is always equivalent
866 to that memory location and if moving the store from INSN to the
867 insn that set REG is safe. If so, put a REG_EQUIV note on the
868 initializing insn.
869
870 Don't add a REG_EQUIV note if the insn already has one. The existing
871 REG_EQUIV is likely more useful than the one we are adding.
872
873 If one of the regs in the address has reg_equiv[REGNO].replace set,
874 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
875 optimization may move the set of this register immediately before
876 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
877 the mention in the REG_EQUIV note would be to an uninitialized
878 pseudo. */
879 /* ????? This test isn't good enough; we might see a MEM with a use of
880 a pseudo register before we see its setting insn that will cause
881 reg_equiv[].replace for that pseudo to be set.
882 Equivalences to MEMs should be made in another pass, after the
883 reg_equiv[].replace information has been gathered. */
884
885 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
886 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
887 && REG_BASIC_BLOCK (regno) >= 0
888 && REG_N_SETS (regno) == 1
889 && reg_equiv[regno].init_insns != 0
890 && reg_equiv[regno].init_insns != const0_rtx
891 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
892 REG_EQUIV, NULL_RTX)
893 && ! contains_replace_regs (XEXP (dest, 0)))
894 {
895 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
896 if (validate_equiv_mem (init_insn, src, dest)
897 && ! memref_used_between_p (dest, init_insn, insn))
898 REG_NOTES (init_insn)
899 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
900 }
901
902 /* We only handle the case of a pseudo register being set
903 once, or always to the same value. */
904 /* ??? The mn10200 port breaks if we add equivalences for
905 values that need an ADDRESS_REGS register and set them equivalent
906 to a MEM of a pseudo. The actual problem is in the over-conservative
907 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
908 calculate_needs, but we traditionally work around this problem
909 here by rejecting equivalences when the destination is in a register
910 that's likely spilled. This is fragile, of course, since the
911 preferred class of a pseudo depends on all instructions that set
912 or use it. */
913
914 if (GET_CODE (dest) != REG
915 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
916 || reg_equiv[regno].init_insns == const0_rtx
917 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
918 && GET_CODE (src) == MEM))
919 {
920 /* This might be seting a SUBREG of a pseudo, a pseudo that is
921 also set somewhere else to a constant. */
922 note_stores (set, no_equiv, NULL);
923 continue;
924 }
925
926 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
927
928 /* cse sometimes generates function invariants, but doesn't put a
929 REG_EQUAL note on the insn. Since this note would be redundant,
930 there's no point creating it earlier than here. */
931 if (! note && ! rtx_varies_p (src, 0))
932 note = set_unique_reg_note (insn, REG_EQUAL, src);
933
934 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
935 since it represents a function call */
936 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
937 note = NULL_RTX;
938
939 if (REG_N_SETS (regno) != 1
940 && (! note
941 || rtx_varies_p (XEXP (note, 0), 0)
942 || (reg_equiv[regno].replacement
943 && ! rtx_equal_p (XEXP (note, 0),
944 reg_equiv[regno].replacement))))
945 {
946 no_equiv (dest, set, NULL);
947 continue;
948 }
949 /* Record this insn as initializing this register. */
950 reg_equiv[regno].init_insns
951 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
952
953 /* If this register is known to be equal to a constant, record that
954 it is always equivalent to the constant. */
955 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
956 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
957
958 /* If this insn introduces a "constant" register, decrease the priority
959 of that register. Record this insn if the register is only used once
960 more and the equivalence value is the same as our source.
961
962 The latter condition is checked for two reasons: First, it is an
963 indication that it may be more efficient to actually emit the insn
964 as written (if no registers are available, reload will substitute
965 the equivalence). Secondly, it avoids problems with any registers
966 dying in this insn whose death notes would be missed.
967
968 If we don't have a REG_EQUIV note, see if this insn is loading
969 a register used only in one basic block from a MEM. If so, and the
970 MEM remains unchanged for the life of the register, add a REG_EQUIV
971 note. */
972
973 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
974
975 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
976 && GET_CODE (SET_SRC (set)) == MEM
977 && validate_equiv_mem (insn, dest, SET_SRC (set)))
978 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
979 REG_NOTES (insn));
980
981 if (note)
982 {
983 int regno = REGNO (dest);
984
985 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
986 We might end up substituting the LABEL_REF for uses of the
987 pseudo here or later. That kind of transformation may turn an
988 indirect jump into a direct jump, in which case we must rerun the
989 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
990 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
991 || (GET_CODE (XEXP (note, 0)) == CONST
992 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
993 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
994 == LABEL_REF)))
995 recorded_label_ref = 1;
996
997 reg_equiv[regno].replacement = XEXP (note, 0);
998 reg_equiv[regno].src = src;
999 reg_equiv[regno].loop_depth = loop_depth;
1000
1001 /* Don't mess with things live during setjmp. */
1002 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1003 {
1004 /* Note that the statement below does not affect the priority
1005 in local-alloc! */
1006 REG_LIVE_LENGTH (regno) *= 2;
1007
1008
1009 /* If the register is referenced exactly twice, meaning it is
1010 set once and used once, indicate that the reference may be
1011 replaced by the equivalence we computed above. Do this
1012 even if the register is only used in one block so that
1013 dependencies can be handled where the last register is
1014 used in a different block (i.e. HIGH / LO_SUM sequences)
1015 and to reduce the number of registers alive across
1016 calls. */
1017
1018 if (REG_N_REFS (regno) == 2
1019 && (rtx_equal_p (XEXP (note, 0), src)
1020 || ! equiv_init_varies_p (src))
1021 && GET_CODE (insn) == INSN
1022 && equiv_init_movable_p (PATTERN (insn), regno))
1023 reg_equiv[regno].replace = 1;
1024 }
1025 }
1026 }
1027 }
1028
1029 /* Now scan all regs killed in an insn to see if any of them are
1030 registers only used that once. If so, see if we can replace the
1031 reference with the equivalent from. If we can, delete the
1032 initializing reference and this register will go away. If we
1033 can't replace the reference, and the initialzing reference is
1034 within the same loop (or in an inner loop), then move the register
1035 initialization just before the use, so that they are in the same
1036 basic block. */
1037 for (block = n_basic_blocks - 1; block >= 0; block--)
1038 {
1039 basic_block bb = BASIC_BLOCK (block);
1040
1041 loop_depth = bb->loop_depth;
1042 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1043 {
1044 rtx link;
1045
1046 if (! INSN_P (insn))
1047 continue;
1048
1049 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1050 {
1051 if (REG_NOTE_KIND (link) == REG_DEAD
1052 /* Make sure this insn still refers to the register. */
1053 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1054 {
1055 int regno = REGNO (XEXP (link, 0));
1056 rtx equiv_insn;
1057
1058 if (! reg_equiv[regno].replace
1059 || reg_equiv[regno].loop_depth < loop_depth)
1060 continue;
1061
1062 /* reg_equiv[REGNO].replace gets set only when
1063 REG_N_REFS[REGNO] is 2, i.e. the register is set
1064 once and used once. (If it were only set, but not used,
1065 flow would have deleted the setting insns.) Hence
1066 there can only be one insn in reg_equiv[REGNO].init_insns. */
1067 if (reg_equiv[regno].init_insns == NULL_RTX
1068 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1069 abort ();
1070 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1071
1072 /* We may not move instructions that can throw, since
1073 that changes basic block boundaries and we are not
1074 prepared to adjust the CFG to match. */
1075 if (can_throw_internal (equiv_insn))
1076 continue;
1077
1078 if (asm_noperands (PATTERN (equiv_insn)) < 0
1079 && validate_replace_rtx (regno_reg_rtx[regno],
1080 reg_equiv[regno].src, insn))
1081 {
1082 rtx equiv_link;
1083 rtx last_link;
1084 rtx note;
1085
1086 /* Find the last note. */
1087 for (last_link = link; XEXP (last_link, 1);
1088 last_link = XEXP (last_link, 1))
1089 ;
1090
1091 /* Append the REG_DEAD notes from equiv_insn. */
1092 equiv_link = REG_NOTES (equiv_insn);
1093 while (equiv_link)
1094 {
1095 note = equiv_link;
1096 equiv_link = XEXP (equiv_link, 1);
1097 if (REG_NOTE_KIND (note) == REG_DEAD)
1098 {
1099 remove_note (equiv_insn, note);
1100 XEXP (last_link, 1) = note;
1101 XEXP (note, 1) = NULL_RTX;
1102 last_link = note;
1103 }
1104 }
1105
1106 remove_death (regno, insn);
1107 REG_N_REFS (regno) = 0;
1108 REG_FREQ (regno) = 0;
1109 delete_insn (equiv_insn);
1110
1111 reg_equiv[regno].init_insns
1112 = XEXP (reg_equiv[regno].init_insns, 1);
1113 }
1114 /* Move the initialization of the register to just before
1115 INSN. Update the flow information. */
1116 else if (PREV_INSN (insn) != equiv_insn)
1117 {
1118 rtx new_insn;
1119
1120 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1121 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1122 REG_NOTES (equiv_insn) = 0;
1123
1124 /* Make sure this insn is recognized before reload begins,
1125 otherwise eliminate_regs_in_insn will abort. */
1126 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1127
1128 delete_insn (equiv_insn);
1129
1130 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1131
1132 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1133 REG_N_CALLS_CROSSED (regno) = 0;
1134 REG_LIVE_LENGTH (regno) = 2;
1135
1136 if (block >= 0 && insn == BLOCK_HEAD (block))
1137 BLOCK_HEAD (block) = PREV_INSN (insn);
1138
1139 /* Remember to clear REGNO from all basic block's live
1140 info. */
1141 SET_REGNO_REG_SET (&cleared_regs, regno);
1142 clear_regnos++;
1143 }
1144 }
1145 }
1146 }
1147 }
1148
1149 /* Clear all dead REGNOs from all basic block's live info. */
1150 if (clear_regnos)
1151 {
1152 int j, l;
1153 if (clear_regnos > 8)
1154 {
1155 for (l = 0; l < n_basic_blocks; l++)
1156 {
1157 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1158 &cleared_regs);
1159 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1160 &cleared_regs);
1161 }
1162 }
1163 else
1164 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1165 {
1166 for (l = 0; l < n_basic_blocks; l++)
1167 {
1168 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1169 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1170 }
1171 });
1172 }
1173
1174 /* Clean up. */
1175 end_alias_analysis ();
1176 CLEAR_REG_SET (&cleared_regs);
1177 free (reg_equiv);
1178 }
1179
1180 /* Mark REG as having no known equivalence.
1181 Some instructions might have been proceessed before and furnished
1182 with REG_EQUIV notes for this register; these notes will have to be
1183 removed.
1184 STORE is the piece of RTL that does the non-constant / conflicting
1185 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1186 but needs to be there because this function is called from note_stores. */
1187 static void
1188 no_equiv (reg, store, data)
1189 rtx reg, store ATTRIBUTE_UNUSED;
1190 void *data ATTRIBUTE_UNUSED;
1191 {
1192 int regno;
1193 rtx list;
1194
1195 if (GET_CODE (reg) != REG)
1196 return;
1197 regno = REGNO (reg);
1198 list = reg_equiv[regno].init_insns;
1199 if (list == const0_rtx)
1200 return;
1201 for (; list; list = XEXP (list, 1))
1202 {
1203 rtx insn = XEXP (list, 0);
1204 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1205 }
1206 reg_equiv[regno].init_insns = const0_rtx;
1207 reg_equiv[regno].replacement = NULL_RTX;
1208 }
1209 \f
1210 /* Allocate hard regs to the pseudo regs used only within block number B.
1211 Only the pseudos that die but once can be handled. */
1212
1213 static void
1214 block_alloc (b)
1215 int b;
1216 {
1217 int i, q;
1218 rtx insn;
1219 rtx note;
1220 int insn_number = 0;
1221 int insn_count = 0;
1222 int max_uid = get_max_uid ();
1223 int *qty_order;
1224 int no_conflict_combined_regno = -1;
1225
1226 /* Count the instructions in the basic block. */
1227
1228 insn = BLOCK_END (b);
1229 while (1)
1230 {
1231 if (GET_CODE (insn) != NOTE)
1232 if (++insn_count > max_uid)
1233 abort ();
1234 if (insn == BLOCK_HEAD (b))
1235 break;
1236 insn = PREV_INSN (insn);
1237 }
1238
1239 /* +2 to leave room for a post_mark_life at the last insn and for
1240 the birth of a CLOBBER in the first insn. */
1241 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1242 sizeof (HARD_REG_SET));
1243
1244 /* Initialize table of hardware registers currently live. */
1245
1246 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1247
1248 /* This loop scans the instructions of the basic block
1249 and assigns quantities to registers.
1250 It computes which registers to tie. */
1251
1252 insn = BLOCK_HEAD (b);
1253 while (1)
1254 {
1255 if (GET_CODE (insn) != NOTE)
1256 insn_number++;
1257
1258 if (INSN_P (insn))
1259 {
1260 rtx link, set;
1261 int win = 0;
1262 rtx r0, r1 = NULL_RTX;
1263 int combined_regno = -1;
1264 int i;
1265
1266 this_insn_number = insn_number;
1267 this_insn = insn;
1268
1269 extract_insn (insn);
1270 which_alternative = -1;
1271
1272 /* Is this insn suitable for tying two registers?
1273 If so, try doing that.
1274 Suitable insns are those with at least two operands and where
1275 operand 0 is an output that is a register that is not
1276 earlyclobber.
1277
1278 We can tie operand 0 with some operand that dies in this insn.
1279 First look for operands that are required to be in the same
1280 register as operand 0. If we find such, only try tying that
1281 operand or one that can be put into that operand if the
1282 operation is commutative. If we don't find an operand
1283 that is required to be in the same register as operand 0,
1284 we can tie with any operand.
1285
1286 Subregs in place of regs are also ok.
1287
1288 If tying is done, WIN is set nonzero. */
1289
1290 if (optimize
1291 && recog_data.n_operands > 1
1292 && recog_data.constraints[0][0] == '='
1293 && recog_data.constraints[0][1] != '&')
1294 {
1295 /* If non-negative, is an operand that must match operand 0. */
1296 int must_match_0 = -1;
1297 /* Counts number of alternatives that require a match with
1298 operand 0. */
1299 int n_matching_alts = 0;
1300
1301 for (i = 1; i < recog_data.n_operands; i++)
1302 {
1303 const char *p = recog_data.constraints[i];
1304 int this_match = requires_inout (p);
1305
1306 n_matching_alts += this_match;
1307 if (this_match == recog_data.n_alternatives)
1308 must_match_0 = i;
1309 }
1310
1311 r0 = recog_data.operand[0];
1312 for (i = 1; i < recog_data.n_operands; i++)
1313 {
1314 /* Skip this operand if we found an operand that
1315 must match operand 0 and this operand isn't it
1316 and can't be made to be it by commutativity. */
1317
1318 if (must_match_0 >= 0 && i != must_match_0
1319 && ! (i == must_match_0 + 1
1320 && recog_data.constraints[i-1][0] == '%')
1321 && ! (i == must_match_0 - 1
1322 && recog_data.constraints[i][0] == '%'))
1323 continue;
1324
1325 /* Likewise if each alternative has some operand that
1326 must match operand zero. In that case, skip any
1327 operand that doesn't list operand 0 since we know that
1328 the operand always conflicts with operand 0. We
1329 ignore commutatity in this case to keep things simple. */
1330 if (n_matching_alts == recog_data.n_alternatives
1331 && 0 == requires_inout (recog_data.constraints[i]))
1332 continue;
1333
1334 r1 = recog_data.operand[i];
1335
1336 /* If the operand is an address, find a register in it.
1337 There may be more than one register, but we only try one
1338 of them. */
1339 if (recog_data.constraints[i][0] == 'p')
1340 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1341 r1 = XEXP (r1, 0);
1342
1343 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1344 {
1345 /* We have two priorities for hard register preferences.
1346 If we have a move insn or an insn whose first input
1347 can only be in the same register as the output, give
1348 priority to an equivalence found from that insn. */
1349 int may_save_copy
1350 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1351
1352 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1353 win = combine_regs (r1, r0, may_save_copy,
1354 insn_number, insn, 0);
1355 }
1356 if (win)
1357 break;
1358 }
1359 }
1360
1361 /* Recognize an insn sequence with an ultimate result
1362 which can safely overlap one of the inputs.
1363 The sequence begins with a CLOBBER of its result,
1364 and ends with an insn that copies the result to itself
1365 and has a REG_EQUAL note for an equivalent formula.
1366 That note indicates what the inputs are.
1367 The result and the input can overlap if each insn in
1368 the sequence either doesn't mention the input
1369 or has a REG_NO_CONFLICT note to inhibit the conflict.
1370
1371 We do the combining test at the CLOBBER so that the
1372 destination register won't have had a quantity number
1373 assigned, since that would prevent combining. */
1374
1375 if (optimize
1376 && GET_CODE (PATTERN (insn)) == CLOBBER
1377 && (r0 = XEXP (PATTERN (insn), 0),
1378 GET_CODE (r0) == REG)
1379 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1380 && XEXP (link, 0) != 0
1381 && GET_CODE (XEXP (link, 0)) == INSN
1382 && (set = single_set (XEXP (link, 0))) != 0
1383 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1384 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1385 NULL_RTX)) != 0)
1386 {
1387 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1388 /* Check that we have such a sequence. */
1389 && no_conflict_p (insn, r0, r1))
1390 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1391 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1392 && (r1 = XEXP (XEXP (note, 0), 0),
1393 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1394 && no_conflict_p (insn, r0, r1))
1395 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1396
1397 /* Here we care if the operation to be computed is
1398 commutative. */
1399 else if ((GET_CODE (XEXP (note, 0)) == EQ
1400 || GET_CODE (XEXP (note, 0)) == NE
1401 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1402 && (r1 = XEXP (XEXP (note, 0), 1),
1403 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1404 && no_conflict_p (insn, r0, r1))
1405 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1406
1407 /* If we did combine something, show the register number
1408 in question so that we know to ignore its death. */
1409 if (win)
1410 no_conflict_combined_regno = REGNO (r1);
1411 }
1412
1413 /* If registers were just tied, set COMBINED_REGNO
1414 to the number of the register used in this insn
1415 that was tied to the register set in this insn.
1416 This register's qty should not be "killed". */
1417
1418 if (win)
1419 {
1420 while (GET_CODE (r1) == SUBREG)
1421 r1 = SUBREG_REG (r1);
1422 combined_regno = REGNO (r1);
1423 }
1424
1425 /* Mark the death of everything that dies in this instruction,
1426 except for anything that was just combined. */
1427
1428 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1429 if (REG_NOTE_KIND (link) == REG_DEAD
1430 && GET_CODE (XEXP (link, 0)) == REG
1431 && combined_regno != (int) REGNO (XEXP (link, 0))
1432 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1433 || ! find_reg_note (insn, REG_NO_CONFLICT,
1434 XEXP (link, 0))))
1435 wipe_dead_reg (XEXP (link, 0), 0);
1436
1437 /* Allocate qty numbers for all registers local to this block
1438 that are born (set) in this instruction.
1439 A pseudo that already has a qty is not changed. */
1440
1441 note_stores (PATTERN (insn), reg_is_set, NULL);
1442
1443 /* If anything is set in this insn and then unused, mark it as dying
1444 after this insn, so it will conflict with our outputs. This
1445 can't match with something that combined, and it doesn't matter
1446 if it did. Do this after the calls to reg_is_set since these
1447 die after, not during, the current insn. */
1448
1449 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1450 if (REG_NOTE_KIND (link) == REG_UNUSED
1451 && GET_CODE (XEXP (link, 0)) == REG)
1452 wipe_dead_reg (XEXP (link, 0), 1);
1453
1454 /* If this is an insn that has a REG_RETVAL note pointing at a
1455 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1456 block, so clear any register number that combined within it. */
1457 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1458 && GET_CODE (XEXP (note, 0)) == INSN
1459 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1460 no_conflict_combined_regno = -1;
1461 }
1462
1463 /* Set the registers live after INSN_NUMBER. Note that we never
1464 record the registers live before the block's first insn, since no
1465 pseudos we care about are live before that insn. */
1466
1467 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1468 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1469
1470 if (insn == BLOCK_END (b))
1471 break;
1472
1473 insn = NEXT_INSN (insn);
1474 }
1475
1476 /* Now every register that is local to this basic block
1477 should have been given a quantity, or else -1 meaning ignore it.
1478 Every quantity should have a known birth and death.
1479
1480 Order the qtys so we assign them registers in order of the
1481 number of suggested registers they need so we allocate those with
1482 the most restrictive needs first. */
1483
1484 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1485 for (i = 0; i < next_qty; i++)
1486 qty_order[i] = i;
1487
1488 #define EXCHANGE(I1, I2) \
1489 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1490
1491 switch (next_qty)
1492 {
1493 case 3:
1494 /* Make qty_order[2] be the one to allocate last. */
1495 if (qty_sugg_compare (0, 1) > 0)
1496 EXCHANGE (0, 1);
1497 if (qty_sugg_compare (1, 2) > 0)
1498 EXCHANGE (2, 1);
1499
1500 /* ... Fall through ... */
1501 case 2:
1502 /* Put the best one to allocate in qty_order[0]. */
1503 if (qty_sugg_compare (0, 1) > 0)
1504 EXCHANGE (0, 1);
1505
1506 /* ... Fall through ... */
1507
1508 case 1:
1509 case 0:
1510 /* Nothing to do here. */
1511 break;
1512
1513 default:
1514 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1515 }
1516
1517 /* Try to put each quantity in a suggested physical register, if it has one.
1518 This may cause registers to be allocated that otherwise wouldn't be, but
1519 this seems acceptable in local allocation (unlike global allocation). */
1520 for (i = 0; i < next_qty; i++)
1521 {
1522 q = qty_order[i];
1523 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1524 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1525 0, 1, qty[q].birth, qty[q].death);
1526 else
1527 qty[q].phys_reg = -1;
1528 }
1529
1530 /* Order the qtys so we assign them registers in order of
1531 decreasing length of life. Normally call qsort, but if we
1532 have only a very small number of quantities, sort them ourselves. */
1533
1534 for (i = 0; i < next_qty; i++)
1535 qty_order[i] = i;
1536
1537 #define EXCHANGE(I1, I2) \
1538 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1539
1540 switch (next_qty)
1541 {
1542 case 3:
1543 /* Make qty_order[2] be the one to allocate last. */
1544 if (qty_compare (0, 1) > 0)
1545 EXCHANGE (0, 1);
1546 if (qty_compare (1, 2) > 0)
1547 EXCHANGE (2, 1);
1548
1549 /* ... Fall through ... */
1550 case 2:
1551 /* Put the best one to allocate in qty_order[0]. */
1552 if (qty_compare (0, 1) > 0)
1553 EXCHANGE (0, 1);
1554
1555 /* ... Fall through ... */
1556
1557 case 1:
1558 case 0:
1559 /* Nothing to do here. */
1560 break;
1561
1562 default:
1563 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1564 }
1565
1566 /* Now for each qty that is not a hardware register,
1567 look for a hardware register to put it in.
1568 First try the register class that is cheapest for this qty,
1569 if there is more than one class. */
1570
1571 for (i = 0; i < next_qty; i++)
1572 {
1573 q = qty_order[i];
1574 if (qty[q].phys_reg < 0)
1575 {
1576 #ifdef INSN_SCHEDULING
1577 /* These values represent the adjusted lifetime of a qty so
1578 that it conflicts with qtys which appear near the start/end
1579 of this qty's lifetime.
1580
1581 The purpose behind extending the lifetime of this qty is to
1582 discourage the register allocator from creating false
1583 dependencies.
1584
1585 The adjustment value is chosen to indicate that this qty
1586 conflicts with all the qtys in the instructions immediately
1587 before and after the lifetime of this qty.
1588
1589 Experiments have shown that higher values tend to hurt
1590 overall code performance.
1591
1592 If allocation using the extended lifetime fails we will try
1593 again with the qty's unadjusted lifetime. */
1594 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1595 int fake_death = MIN (insn_number * 2 + 1,
1596 qty[q].death + 2 - qty[q].death % 2);
1597 #endif
1598
1599 if (N_REG_CLASSES > 1)
1600 {
1601 #ifdef INSN_SCHEDULING
1602 /* We try to avoid using hard registers allocated to qtys which
1603 are born immediately after this qty or die immediately before
1604 this qty.
1605
1606 This optimization is only appropriate when we will run
1607 a scheduling pass after reload and we are not optimizing
1608 for code size. */
1609 if (flag_schedule_insns_after_reload
1610 && !optimize_size
1611 && !SMALL_REGISTER_CLASSES)
1612 {
1613 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1614 qty[q].mode, q, 0, 0,
1615 fake_birth, fake_death);
1616 if (qty[q].phys_reg >= 0)
1617 continue;
1618 }
1619 #endif
1620 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1621 qty[q].mode, q, 0, 0,
1622 qty[q].birth, qty[q].death);
1623 if (qty[q].phys_reg >= 0)
1624 continue;
1625 }
1626
1627 #ifdef INSN_SCHEDULING
1628 /* Similarly, avoid false dependencies. */
1629 if (flag_schedule_insns_after_reload
1630 && !optimize_size
1631 && !SMALL_REGISTER_CLASSES
1632 && qty[q].alternate_class != NO_REGS)
1633 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1634 qty[q].mode, q, 0, 0,
1635 fake_birth, fake_death);
1636 #endif
1637 if (qty[q].alternate_class != NO_REGS)
1638 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1639 qty[q].mode, q, 0, 0,
1640 qty[q].birth, qty[q].death);
1641 }
1642 }
1643
1644 /* Now propagate the register assignments
1645 to the pseudo regs belonging to the qtys. */
1646
1647 for (q = 0; q < next_qty; q++)
1648 if (qty[q].phys_reg >= 0)
1649 {
1650 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1651 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1652 }
1653
1654 /* Clean up. */
1655 free (regs_live_at);
1656 free (qty_order);
1657 }
1658 \f
1659 /* Compare two quantities' priority for getting real registers.
1660 We give shorter-lived quantities higher priority.
1661 Quantities with more references are also preferred, as are quantities that
1662 require multiple registers. This is the identical prioritization as
1663 done by global-alloc.
1664
1665 We used to give preference to registers with *longer* lives, but using
1666 the same algorithm in both local- and global-alloc can speed up execution
1667 of some programs by as much as a factor of three! */
1668
1669 /* Note that the quotient will never be bigger than
1670 the value of floor_log2 times the maximum number of
1671 times a register can occur in one insn (surely less than 100)
1672 weighted by frequency (max REG_FREQ_MAX).
1673 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1674 QTY_CMP_PRI is also used by qty_sugg_compare. */
1675
1676 #define QTY_CMP_PRI(q) \
1677 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1678 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1679
1680 static int
1681 qty_compare (q1, q2)
1682 int q1, q2;
1683 {
1684 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1685 }
1686
1687 static int
1688 qty_compare_1 (q1p, q2p)
1689 const PTR q1p;
1690 const PTR q2p;
1691 {
1692 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1693 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1694
1695 if (tem != 0)
1696 return tem;
1697
1698 /* If qtys are equally good, sort by qty number,
1699 so that the results of qsort leave nothing to chance. */
1700 return q1 - q2;
1701 }
1702 \f
1703 /* Compare two quantities' priority for getting real registers. This version
1704 is called for quantities that have suggested hard registers. First priority
1705 goes to quantities that have copy preferences, then to those that have
1706 normal preferences. Within those groups, quantities with the lower
1707 number of preferences have the highest priority. Of those, we use the same
1708 algorithm as above. */
1709
1710 #define QTY_CMP_SUGG(q) \
1711 (qty_phys_num_copy_sugg[q] \
1712 ? qty_phys_num_copy_sugg[q] \
1713 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1714
1715 static int
1716 qty_sugg_compare (q1, q2)
1717 int q1, q2;
1718 {
1719 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1720
1721 if (tem != 0)
1722 return tem;
1723
1724 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1725 }
1726
1727 static int
1728 qty_sugg_compare_1 (q1p, q2p)
1729 const PTR q1p;
1730 const PTR q2p;
1731 {
1732 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1733 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1734
1735 if (tem != 0)
1736 return tem;
1737
1738 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1739 if (tem != 0)
1740 return tem;
1741
1742 /* If qtys are equally good, sort by qty number,
1743 so that the results of qsort leave nothing to chance. */
1744 return q1 - q2;
1745 }
1746
1747 #undef QTY_CMP_SUGG
1748 #undef QTY_CMP_PRI
1749 \f
1750 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1751 Returns 1 if have done so, or 0 if cannot.
1752
1753 Combining registers means marking them as having the same quantity
1754 and adjusting the offsets within the quantity if either of
1755 them is a SUBREG).
1756
1757 We don't actually combine a hard reg with a pseudo; instead
1758 we just record the hard reg as the suggestion for the pseudo's quantity.
1759 If we really combined them, we could lose if the pseudo lives
1760 across an insn that clobbers the hard reg (eg, movstr).
1761
1762 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1763 there is no REG_DEAD note on INSN. This occurs during the processing
1764 of REG_NO_CONFLICT blocks.
1765
1766 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1767 SETREG or if the input and output must share a register.
1768 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1769
1770 There are elaborate checks for the validity of combining. */
1771
1772 static int
1773 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1774 rtx usedreg, setreg;
1775 int may_save_copy;
1776 int insn_number;
1777 rtx insn;
1778 int already_dead;
1779 {
1780 int ureg, sreg;
1781 int offset = 0;
1782 int usize, ssize;
1783 int sqty;
1784
1785 /* Determine the numbers and sizes of registers being used. If a subreg
1786 is present that does not change the entire register, don't consider
1787 this a copy insn. */
1788
1789 while (GET_CODE (usedreg) == SUBREG)
1790 {
1791 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1792 may_save_copy = 0;
1793 if (REGNO (SUBREG_REG (usedreg)) < FIRST_PSEUDO_REGISTER)
1794 offset += subreg_regno_offset (REGNO (SUBREG_REG (usedreg)),
1795 GET_MODE (SUBREG_REG (usedreg)),
1796 SUBREG_BYTE (usedreg),
1797 GET_MODE (usedreg));
1798 else
1799 offset += (SUBREG_BYTE (usedreg)
1800 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1801 usedreg = SUBREG_REG (usedreg);
1802 }
1803 if (GET_CODE (usedreg) != REG)
1804 return 0;
1805 ureg = REGNO (usedreg);
1806 if (ureg < FIRST_PSEUDO_REGISTER)
1807 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1808 else
1809 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1810 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1811 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1812
1813 while (GET_CODE (setreg) == SUBREG)
1814 {
1815 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1816 may_save_copy = 0;
1817 if (REGNO (SUBREG_REG (setreg)) < FIRST_PSEUDO_REGISTER)
1818 offset -= subreg_regno_offset (REGNO (SUBREG_REG (setreg)),
1819 GET_MODE (SUBREG_REG (setreg)),
1820 SUBREG_BYTE (setreg),
1821 GET_MODE (setreg));
1822 else
1823 offset -= (SUBREG_BYTE (setreg)
1824 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1825 setreg = SUBREG_REG (setreg);
1826 }
1827 if (GET_CODE (setreg) != REG)
1828 return 0;
1829 sreg = REGNO (setreg);
1830 if (sreg < FIRST_PSEUDO_REGISTER)
1831 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1832 else
1833 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1834 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1835 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1836
1837 /* If UREG is a pseudo-register that hasn't already been assigned a
1838 quantity number, it means that it is not local to this block or dies
1839 more than once. In either event, we can't do anything with it. */
1840 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1841 /* Do not combine registers unless one fits within the other. */
1842 || (offset > 0 && usize + offset > ssize)
1843 || (offset < 0 && usize + offset < ssize)
1844 /* Do not combine with a smaller already-assigned object
1845 if that smaller object is already combined with something bigger. */
1846 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1847 && usize < qty[reg_qty[ureg]].size)
1848 /* Can't combine if SREG is not a register we can allocate. */
1849 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1850 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1851 These have already been taken care of. This probably wouldn't
1852 combine anyway, but don't take any chances. */
1853 || (ureg >= FIRST_PSEUDO_REGISTER
1854 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1855 /* Don't tie something to itself. In most cases it would make no
1856 difference, but it would screw up if the reg being tied to itself
1857 also dies in this insn. */
1858 || ureg == sreg
1859 /* Don't try to connect two different hardware registers. */
1860 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1861 /* Don't connect two different machine modes if they have different
1862 implications as to which registers may be used. */
1863 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1864 return 0;
1865
1866 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1867 qty_phys_sugg for the pseudo instead of tying them.
1868
1869 Return "failure" so that the lifespan of UREG is terminated here;
1870 that way the two lifespans will be disjoint and nothing will prevent
1871 the pseudo reg from being given this hard reg. */
1872
1873 if (ureg < FIRST_PSEUDO_REGISTER)
1874 {
1875 /* Allocate a quantity number so we have a place to put our
1876 suggestions. */
1877 if (reg_qty[sreg] == -2)
1878 reg_is_born (setreg, 2 * insn_number);
1879
1880 if (reg_qty[sreg] >= 0)
1881 {
1882 if (may_save_copy
1883 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1884 {
1885 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1886 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1887 }
1888 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1889 {
1890 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1891 qty_phys_num_sugg[reg_qty[sreg]]++;
1892 }
1893 }
1894 return 0;
1895 }
1896
1897 /* Similarly for SREG a hard register and UREG a pseudo register. */
1898
1899 if (sreg < FIRST_PSEUDO_REGISTER)
1900 {
1901 if (may_save_copy
1902 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1903 {
1904 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1905 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1906 }
1907 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1908 {
1909 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1910 qty_phys_num_sugg[reg_qty[ureg]]++;
1911 }
1912 return 0;
1913 }
1914
1915 /* At this point we know that SREG and UREG are both pseudos.
1916 Do nothing if SREG already has a quantity or is a register that we
1917 don't allocate. */
1918 if (reg_qty[sreg] >= -1
1919 /* If we are not going to let any regs live across calls,
1920 don't tie a call-crossing reg to a non-call-crossing reg. */
1921 || (current_function_has_nonlocal_label
1922 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1923 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1924 return 0;
1925
1926 /* We don't already know about SREG, so tie it to UREG
1927 if this is the last use of UREG, provided the classes they want
1928 are compatible. */
1929
1930 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1931 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1932 {
1933 /* Add SREG to UREG's quantity. */
1934 sqty = reg_qty[ureg];
1935 reg_qty[sreg] = sqty;
1936 reg_offset[sreg] = reg_offset[ureg] + offset;
1937 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1938 qty[sqty].first_reg = sreg;
1939
1940 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1941 update_qty_class (sqty, sreg);
1942
1943 /* Update info about quantity SQTY. */
1944 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1945 qty[sqty].n_refs += REG_N_REFS (sreg);
1946 qty[sqty].freq += REG_FREQ (sreg);
1947 if (usize < ssize)
1948 {
1949 int i;
1950
1951 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1952 reg_offset[i] -= offset;
1953
1954 qty[sqty].size = ssize;
1955 qty[sqty].mode = GET_MODE (setreg);
1956 }
1957 }
1958 else
1959 return 0;
1960
1961 return 1;
1962 }
1963 \f
1964 /* Return 1 if the preferred class of REG allows it to be tied
1965 to a quantity or register whose class is CLASS.
1966 True if REG's reg class either contains or is contained in CLASS. */
1967
1968 static int
1969 reg_meets_class_p (reg, class)
1970 int reg;
1971 enum reg_class class;
1972 {
1973 enum reg_class rclass = reg_preferred_class (reg);
1974 return (reg_class_subset_p (rclass, class)
1975 || reg_class_subset_p (class, rclass));
1976 }
1977
1978 /* Update the class of QTYNO assuming that REG is being tied to it. */
1979
1980 static void
1981 update_qty_class (qtyno, reg)
1982 int qtyno;
1983 int reg;
1984 {
1985 enum reg_class rclass = reg_preferred_class (reg);
1986 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1987 qty[qtyno].min_class = rclass;
1988
1989 rclass = reg_alternate_class (reg);
1990 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1991 qty[qtyno].alternate_class = rclass;
1992
1993 if (REG_CHANGES_MODE (reg))
1994 qty[qtyno].changes_mode = 1;
1995 }
1996 \f
1997 /* Handle something which alters the value of an rtx REG.
1998
1999 REG is whatever is set or clobbered. SETTER is the rtx that
2000 is modifying the register.
2001
2002 If it is not really a register, we do nothing.
2003 The file-global variables `this_insn' and `this_insn_number'
2004 carry info from `block_alloc'. */
2005
2006 static void
2007 reg_is_set (reg, setter, data)
2008 rtx reg;
2009 rtx setter;
2010 void *data ATTRIBUTE_UNUSED;
2011 {
2012 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2013 a hard register. These may actually not exist any more. */
2014
2015 if (GET_CODE (reg) != SUBREG
2016 && GET_CODE (reg) != REG)
2017 return;
2018
2019 /* Mark this register as being born. If it is used in a CLOBBER, mark
2020 it as being born halfway between the previous insn and this insn so that
2021 it conflicts with our inputs but not the outputs of the previous insn. */
2022
2023 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2024 }
2025 \f
2026 /* Handle beginning of the life of register REG.
2027 BIRTH is the index at which this is happening. */
2028
2029 static void
2030 reg_is_born (reg, birth)
2031 rtx reg;
2032 int birth;
2033 {
2034 int regno;
2035
2036 if (GET_CODE (reg) == SUBREG)
2037 {
2038 regno = REGNO (SUBREG_REG (reg));
2039 if (regno < FIRST_PSEUDO_REGISTER)
2040 regno = subreg_hard_regno (reg, 1);
2041 }
2042 else
2043 regno = REGNO (reg);
2044
2045 if (regno < FIRST_PSEUDO_REGISTER)
2046 {
2047 mark_life (regno, GET_MODE (reg), 1);
2048
2049 /* If the register was to have been born earlier that the present
2050 insn, mark it as live where it is actually born. */
2051 if (birth < 2 * this_insn_number)
2052 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2053 }
2054 else
2055 {
2056 if (reg_qty[regno] == -2)
2057 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2058
2059 /* If this register has a quantity number, show that it isn't dead. */
2060 if (reg_qty[regno] >= 0)
2061 qty[reg_qty[regno]].death = -1;
2062 }
2063 }
2064
2065 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2066 REG is an output that is dying (i.e., it is never used), otherwise it
2067 is an input (the normal case).
2068 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2069
2070 static void
2071 wipe_dead_reg (reg, output_p)
2072 rtx reg;
2073 int output_p;
2074 {
2075 int regno = REGNO (reg);
2076
2077 /* If this insn has multiple results,
2078 and the dead reg is used in one of the results,
2079 extend its life to after this insn,
2080 so it won't get allocated together with any other result of this insn.
2081
2082 It is unsafe to use !single_set here since it will ignore an unused
2083 output. Just because an output is unused does not mean the compiler
2084 can assume the side effect will not occur. Consider if REG appears
2085 in the address of an output and we reload the output. If we allocate
2086 REG to the same hard register as an unused output we could set the hard
2087 register before the output reload insn. */
2088 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2089 && multiple_sets (this_insn))
2090 {
2091 int i;
2092 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2093 {
2094 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2095 if (GET_CODE (set) == SET
2096 && GET_CODE (SET_DEST (set)) != REG
2097 && !rtx_equal_p (reg, SET_DEST (set))
2098 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2099 output_p = 1;
2100 }
2101 }
2102
2103 /* If this register is used in an auto-increment address, then extend its
2104 life to after this insn, so that it won't get allocated together with
2105 the result of this insn. */
2106 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2107 output_p = 1;
2108
2109 if (regno < FIRST_PSEUDO_REGISTER)
2110 {
2111 mark_life (regno, GET_MODE (reg), 0);
2112
2113 /* If a hard register is dying as an output, mark it as in use at
2114 the beginning of this insn (the above statement would cause this
2115 not to happen). */
2116 if (output_p)
2117 post_mark_life (regno, GET_MODE (reg), 1,
2118 2 * this_insn_number, 2 * this_insn_number + 1);
2119 }
2120
2121 else if (reg_qty[regno] >= 0)
2122 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2123 }
2124 \f
2125 /* Find a block of SIZE words of hard regs in reg_class CLASS
2126 that can hold something of machine-mode MODE
2127 (but actually we test only the first of the block for holding MODE)
2128 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2129 and return the number of the first of them.
2130 Return -1 if such a block cannot be found.
2131 If QTYNO crosses calls, insist on a register preserved by calls,
2132 unless ACCEPT_CALL_CLOBBERED is nonzero.
2133
2134 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2135 register is available. If not, return -1. */
2136
2137 static int
2138 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2139 born_index, dead_index)
2140 enum reg_class class;
2141 enum machine_mode mode;
2142 int qtyno;
2143 int accept_call_clobbered;
2144 int just_try_suggested;
2145 int born_index, dead_index;
2146 {
2147 int i, ins;
2148 #ifdef HARD_REG_SET
2149 /* Declare it register if it's a scalar. */
2150 register
2151 #endif
2152 HARD_REG_SET used, first_used;
2153 #ifdef ELIMINABLE_REGS
2154 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2155 #endif
2156
2157 /* Validate our parameters. */
2158 if (born_index < 0 || born_index > dead_index)
2159 abort ();
2160
2161 /* Don't let a pseudo live in a reg across a function call
2162 if we might get a nonlocal goto. */
2163 if (current_function_has_nonlocal_label
2164 && qty[qtyno].n_calls_crossed > 0)
2165 return -1;
2166
2167 if (accept_call_clobbered)
2168 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2169 else if (qty[qtyno].n_calls_crossed == 0)
2170 COPY_HARD_REG_SET (used, fixed_reg_set);
2171 else
2172 COPY_HARD_REG_SET (used, call_used_reg_set);
2173
2174 if (accept_call_clobbered)
2175 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2176
2177 for (ins = born_index; ins < dead_index; ins++)
2178 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2179
2180 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2181
2182 /* Don't use the frame pointer reg in local-alloc even if
2183 we may omit the frame pointer, because if we do that and then we
2184 need a frame pointer, reload won't know how to move the pseudo
2185 to another hard reg. It can move only regs made by global-alloc.
2186
2187 This is true of any register that can be eliminated. */
2188 #ifdef ELIMINABLE_REGS
2189 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2190 SET_HARD_REG_BIT (used, eliminables[i].from);
2191 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2192 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2193 that it might be eliminated into. */
2194 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2195 #endif
2196 #else
2197 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2198 #endif
2199
2200 #ifdef CLASS_CANNOT_CHANGE_MODE
2201 if (qty[qtyno].changes_mode)
2202 IOR_HARD_REG_SET (used,
2203 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2204 #endif
2205
2206 /* Normally, the registers that can be used for the first register in
2207 a multi-register quantity are the same as those that can be used for
2208 subsequent registers. However, if just trying suggested registers,
2209 restrict our consideration to them. If there are copy-suggested
2210 register, try them. Otherwise, try the arithmetic-suggested
2211 registers. */
2212 COPY_HARD_REG_SET (first_used, used);
2213
2214 if (just_try_suggested)
2215 {
2216 if (qty_phys_num_copy_sugg[qtyno] != 0)
2217 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2218 else
2219 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2220 }
2221
2222 /* If all registers are excluded, we can't do anything. */
2223 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2224
2225 /* If at least one would be suitable, test each hard reg. */
2226
2227 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2228 {
2229 #ifdef REG_ALLOC_ORDER
2230 int regno = reg_alloc_order[i];
2231 #else
2232 int regno = i;
2233 #endif
2234 if (! TEST_HARD_REG_BIT (first_used, regno)
2235 && HARD_REGNO_MODE_OK (regno, mode)
2236 && (qty[qtyno].n_calls_crossed == 0
2237 || accept_call_clobbered
2238 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2239 {
2240 int j;
2241 int size1 = HARD_REGNO_NREGS (regno, mode);
2242 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2243 if (j == size1)
2244 {
2245 /* Mark that this register is in use between its birth and death
2246 insns. */
2247 post_mark_life (regno, mode, 1, born_index, dead_index);
2248 return regno;
2249 }
2250 #ifndef REG_ALLOC_ORDER
2251 /* Skip starting points we know will lose. */
2252 i += j;
2253 #endif
2254 }
2255 }
2256
2257 fail:
2258 /* If we are just trying suggested register, we have just tried copy-
2259 suggested registers, and there are arithmetic-suggested registers,
2260 try them. */
2261
2262 /* If it would be profitable to allocate a call-clobbered register
2263 and save and restore it around calls, do that. */
2264 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2265 && qty_phys_num_sugg[qtyno] != 0)
2266 {
2267 /* Don't try the copy-suggested regs again. */
2268 qty_phys_num_copy_sugg[qtyno] = 0;
2269 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2270 born_index, dead_index);
2271 }
2272
2273 /* We need not check to see if the current function has nonlocal
2274 labels because we don't put any pseudos that are live over calls in
2275 registers in that case. */
2276
2277 if (! accept_call_clobbered
2278 && flag_caller_saves
2279 && ! just_try_suggested
2280 && qty[qtyno].n_calls_crossed != 0
2281 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2282 qty[qtyno].n_calls_crossed))
2283 {
2284 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2285 if (i >= 0)
2286 caller_save_needed = 1;
2287 return i;
2288 }
2289 return -1;
2290 }
2291 \f
2292 /* Mark that REGNO with machine-mode MODE is live starting from the current
2293 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2294 is zero). */
2295
2296 static void
2297 mark_life (regno, mode, life)
2298 int regno;
2299 enum machine_mode mode;
2300 int life;
2301 {
2302 int j = HARD_REGNO_NREGS (regno, mode);
2303 if (life)
2304 while (--j >= 0)
2305 SET_HARD_REG_BIT (regs_live, regno + j);
2306 else
2307 while (--j >= 0)
2308 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2309 }
2310
2311 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2312 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2313 to insn number DEATH (exclusive). */
2314
2315 static void
2316 post_mark_life (regno, mode, life, birth, death)
2317 int regno;
2318 enum machine_mode mode;
2319 int life, birth, death;
2320 {
2321 int j = HARD_REGNO_NREGS (regno, mode);
2322 #ifdef HARD_REG_SET
2323 /* Declare it register if it's a scalar. */
2324 register
2325 #endif
2326 HARD_REG_SET this_reg;
2327
2328 CLEAR_HARD_REG_SET (this_reg);
2329 while (--j >= 0)
2330 SET_HARD_REG_BIT (this_reg, regno + j);
2331
2332 if (life)
2333 while (birth < death)
2334 {
2335 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2336 birth++;
2337 }
2338 else
2339 while (birth < death)
2340 {
2341 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2342 birth++;
2343 }
2344 }
2345 \f
2346 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2347 is the register being clobbered, and R1 is a register being used in
2348 the equivalent expression.
2349
2350 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2351 in which it is used, return 1.
2352
2353 Otherwise, return 0. */
2354
2355 static int
2356 no_conflict_p (insn, r0, r1)
2357 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2358 {
2359 int ok = 0;
2360 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2361 rtx p, last;
2362
2363 /* If R1 is a hard register, return 0 since we handle this case
2364 when we scan the insns that actually use it. */
2365
2366 if (note == 0
2367 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2368 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2369 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2370 return 0;
2371
2372 last = XEXP (note, 0);
2373
2374 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2375 if (INSN_P (p))
2376 {
2377 if (find_reg_note (p, REG_DEAD, r1))
2378 ok = 1;
2379
2380 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2381 some earlier optimization pass has inserted instructions into
2382 the sequence, and it is not safe to perform this optimization.
2383 Note that emit_no_conflict_block always ensures that this is
2384 true when these sequences are created. */
2385 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2386 return 0;
2387 }
2388
2389 return ok;
2390 }
2391 \f
2392 /* Return the number of alternatives for which the constraint string P
2393 indicates that the operand must be equal to operand 0 and that no register
2394 is acceptable. */
2395
2396 static int
2397 requires_inout (p)
2398 const char *p;
2399 {
2400 char c;
2401 int found_zero = 0;
2402 int reg_allowed = 0;
2403 int num_matching_alts = 0;
2404
2405 while ((c = *p++))
2406 switch (c)
2407 {
2408 case '=': case '+': case '?':
2409 case '#': case '&': case '!':
2410 case '*': case '%':
2411 case 'm': case '<': case '>': case 'V': case 'o':
2412 case 'E': case 'F': case 'G': case 'H':
2413 case 's': case 'i': case 'n':
2414 case 'I': case 'J': case 'K': case 'L':
2415 case 'M': case 'N': case 'O': case 'P':
2416 case 'X':
2417 /* These don't say anything we care about. */
2418 break;
2419
2420 case ',':
2421 if (found_zero && ! reg_allowed)
2422 num_matching_alts++;
2423
2424 found_zero = reg_allowed = 0;
2425 break;
2426
2427 case '0':
2428 found_zero = 1;
2429 break;
2430
2431 case '1': case '2': case '3': case '4': case '5':
2432 case '6': case '7': case '8': case '9':
2433 /* Skip the balance of the matching constraint. */
2434 while (ISDIGIT (*p))
2435 p++;
2436 break;
2437
2438 default:
2439 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2440 break;
2441 /* FALLTHRU */
2442 case 'p':
2443 case 'g': case 'r':
2444 reg_allowed = 1;
2445 break;
2446 }
2447
2448 if (found_zero && ! reg_allowed)
2449 num_matching_alts++;
2450
2451 return num_matching_alts;
2452 }
2453 \f
2454 void
2455 dump_local_alloc (file)
2456 FILE *file;
2457 {
2458 int i;
2459 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2460 if (reg_renumber[i] != -1)
2461 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2462 }