[ARM] Add ACLE 2.0 predefined marco __ARM_FEATURE_IDIV
[gcc.git] / gcc / loop-iv.c
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
37
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
48 */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58 #include "cfgloop.h"
59 #include "expr.h"
60 #include "intl.h"
61 #include "diagnostic-core.h"
62 #include "df.h"
63 #include "hash-table.h"
64 #include "dumpfile.h"
65 #include "rtl-iter.h"
66
67 /* Possible return values of iv_get_reaching_def. */
68
69 enum iv_grd_result
70 {
71 /* More than one reaching def, or reaching def that does not
72 dominate the use. */
73 GRD_INVALID,
74
75 /* The use is trivial invariant of the loop, i.e. is not changed
76 inside the loop. */
77 GRD_INVARIANT,
78
79 /* The use is reached by initial value and a value from the
80 previous iteration. */
81 GRD_MAYBE_BIV,
82
83 /* The use has single dominating def. */
84 GRD_SINGLE_DOM
85 };
86
87 /* Information about a biv. */
88
89 struct biv_entry
90 {
91 unsigned regno; /* The register of the biv. */
92 struct rtx_iv iv; /* Value of the biv. */
93 };
94
95 static bool clean_slate = true;
96
97 static unsigned int iv_ref_table_size = 0;
98
99 /* Table of rtx_ivs indexed by the df_ref uid field. */
100 static struct rtx_iv ** iv_ref_table;
101
102 /* Induction variable stored at the reference. */
103 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
104 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
105
106 /* The current loop. */
107
108 static struct loop *current_loop;
109
110 /* Hashtable helper. */
111
112 struct biv_entry_hasher : typed_free_remove <biv_entry>
113 {
114 typedef biv_entry value_type;
115 typedef rtx_def compare_type;
116 static inline hashval_t hash (const value_type *);
117 static inline bool equal (const value_type *, const compare_type *);
118 };
119
120 /* Returns hash value for biv B. */
121
122 inline hashval_t
123 biv_entry_hasher::hash (const value_type *b)
124 {
125 return b->regno;
126 }
127
128 /* Compares biv B and register R. */
129
130 inline bool
131 biv_entry_hasher::equal (const value_type *b, const compare_type *r)
132 {
133 return b->regno == REGNO (r);
134 }
135
136 /* Bivs of the current loop. */
137
138 static hash_table<biv_entry_hasher> *bivs;
139
140 static bool iv_analyze_op (rtx_insn *, rtx, struct rtx_iv *);
141
142 /* Return the RTX code corresponding to the IV extend code EXTEND. */
143 static inline enum rtx_code
144 iv_extend_to_rtx_code (enum iv_extend_code extend)
145 {
146 switch (extend)
147 {
148 case IV_SIGN_EXTEND:
149 return SIGN_EXTEND;
150 case IV_ZERO_EXTEND:
151 return ZERO_EXTEND;
152 case IV_UNKNOWN_EXTEND:
153 return UNKNOWN;
154 }
155 gcc_unreachable ();
156 }
157
158 /* Dumps information about IV to FILE. */
159
160 extern void dump_iv_info (FILE *, struct rtx_iv *);
161 void
162 dump_iv_info (FILE *file, struct rtx_iv *iv)
163 {
164 if (!iv->base)
165 {
166 fprintf (file, "not simple");
167 return;
168 }
169
170 if (iv->step == const0_rtx
171 && !iv->first_special)
172 fprintf (file, "invariant ");
173
174 print_rtl (file, iv->base);
175 if (iv->step != const0_rtx)
176 {
177 fprintf (file, " + ");
178 print_rtl (file, iv->step);
179 fprintf (file, " * iteration");
180 }
181 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
182
183 if (iv->mode != iv->extend_mode)
184 fprintf (file, " %s to %s",
185 rtx_name[iv_extend_to_rtx_code (iv->extend)],
186 GET_MODE_NAME (iv->extend_mode));
187
188 if (iv->mult != const1_rtx)
189 {
190 fprintf (file, " * ");
191 print_rtl (file, iv->mult);
192 }
193 if (iv->delta != const0_rtx)
194 {
195 fprintf (file, " + ");
196 print_rtl (file, iv->delta);
197 }
198 if (iv->first_special)
199 fprintf (file, " (first special)");
200 }
201
202 /* Generates a subreg to get the least significant part of EXPR (in mode
203 INNER_MODE) to OUTER_MODE. */
204
205 rtx
206 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
207 enum machine_mode inner_mode)
208 {
209 return simplify_gen_subreg (outer_mode, expr, inner_mode,
210 subreg_lowpart_offset (outer_mode, inner_mode));
211 }
212
213 static void
214 check_iv_ref_table_size (void)
215 {
216 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
217 {
218 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
219 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
220 memset (&iv_ref_table[iv_ref_table_size], 0,
221 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
222 iv_ref_table_size = new_size;
223 }
224 }
225
226
227 /* Checks whether REG is a well-behaved register. */
228
229 static bool
230 simple_reg_p (rtx reg)
231 {
232 unsigned r;
233
234 if (GET_CODE (reg) == SUBREG)
235 {
236 if (!subreg_lowpart_p (reg))
237 return false;
238 reg = SUBREG_REG (reg);
239 }
240
241 if (!REG_P (reg))
242 return false;
243
244 r = REGNO (reg);
245 if (HARD_REGISTER_NUM_P (r))
246 return false;
247
248 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
249 return false;
250
251 return true;
252 }
253
254 /* Clears the information about ivs stored in df. */
255
256 static void
257 clear_iv_info (void)
258 {
259 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
260 struct rtx_iv *iv;
261
262 check_iv_ref_table_size ();
263 for (i = 0; i < n_defs; i++)
264 {
265 iv = iv_ref_table[i];
266 if (iv)
267 {
268 free (iv);
269 iv_ref_table[i] = NULL;
270 }
271 }
272
273 bivs->empty ();
274 }
275
276
277 /* Prepare the data for an induction variable analysis of a LOOP. */
278
279 void
280 iv_analysis_loop_init (struct loop *loop)
281 {
282 current_loop = loop;
283
284 /* Clear the information from the analysis of the previous loop. */
285 if (clean_slate)
286 {
287 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
288 bivs = new hash_table<biv_entry_hasher> (10);
289 clean_slate = false;
290 }
291 else
292 clear_iv_info ();
293
294 /* Get rid of the ud chains before processing the rescans. Then add
295 the problem back. */
296 df_remove_problem (df_chain);
297 df_process_deferred_rescans ();
298 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
299 df_chain_add_problem (DF_UD_CHAIN);
300 df_note_add_problem ();
301 df_analyze_loop (loop);
302 if (dump_file)
303 df_dump_region (dump_file);
304
305 check_iv_ref_table_size ();
306 }
307
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
312
313 static bool
314 latch_dominating_def (rtx reg, df_ref *def)
315 {
316 df_ref single_rd = NULL, adef;
317 unsigned regno = REGNO (reg);
318 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
319
320 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
321 {
322 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
323 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
324 continue;
325
326 /* More than one reaching definition. */
327 if (single_rd)
328 return false;
329
330 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
331 return false;
332
333 single_rd = adef;
334 }
335
336 *def = single_rd;
337 return true;
338 }
339
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
341
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
344 {
345 df_ref use, adef;
346 basic_block def_bb, use_bb;
347 rtx_insn *def_insn;
348 bool dom_p;
349
350 *def = NULL;
351 if (!simple_reg_p (reg))
352 return GRD_INVALID;
353 if (GET_CODE (reg) == SUBREG)
354 reg = SUBREG_REG (reg);
355 gcc_assert (REG_P (reg));
356
357 use = df_find_use (insn, reg);
358 gcc_assert (use != NULL);
359
360 if (!DF_REF_CHAIN (use))
361 return GRD_INVARIANT;
362
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use)->next)
365 return GRD_INVALID;
366
367 adef = DF_REF_CHAIN (use)->ref;
368
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
371 return GRD_INVALID;
372
373 def_insn = DF_REF_INSN (adef);
374 def_bb = DF_REF_BB (adef);
375 use_bb = BLOCK_FOR_INSN (insn);
376
377 if (use_bb == def_bb)
378 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
379 else
380 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
381
382 if (dom_p)
383 {
384 *def = adef;
385 return GRD_SINGLE_DOM;
386 }
387
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
390 latch. */
391 if (just_once_each_iteration_p (current_loop, def_bb))
392 return GRD_MAYBE_BIV;
393
394 return GRD_INVALID;
395 }
396
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
399
400 static bool
401 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
402 {
403 if (mode == VOIDmode)
404 mode = GET_MODE (cst);
405
406 iv->mode = mode;
407 iv->base = cst;
408 iv->step = const0_rtx;
409 iv->first_special = false;
410 iv->extend = IV_UNKNOWN_EXTEND;
411 iv->extend_mode = iv->mode;
412 iv->delta = const0_rtx;
413 iv->mult = const1_rtx;
414
415 return true;
416 }
417
418 /* Evaluates application of subreg to MODE on IV. */
419
420 static bool
421 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
422 {
423 /* If iv is invariant, just calculate the new value. */
424 if (iv->step == const0_rtx
425 && !iv->first_special)
426 {
427 rtx val = get_iv_value (iv, const0_rtx);
428 val = lowpart_subreg (mode, val,
429 iv->extend == IV_UNKNOWN_EXTEND
430 ? iv->mode : iv->extend_mode);
431
432 iv->base = val;
433 iv->extend = IV_UNKNOWN_EXTEND;
434 iv->mode = iv->extend_mode = mode;
435 iv->delta = const0_rtx;
436 iv->mult = const1_rtx;
437 return true;
438 }
439
440 if (iv->extend_mode == mode)
441 return true;
442
443 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
444 return false;
445
446 iv->extend = IV_UNKNOWN_EXTEND;
447 iv->mode = mode;
448
449 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
450 simplify_gen_binary (MULT, iv->extend_mode,
451 iv->base, iv->mult));
452 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
453 iv->mult = const1_rtx;
454 iv->delta = const0_rtx;
455 iv->first_special = false;
456
457 return true;
458 }
459
460 /* Evaluates application of EXTEND to MODE on IV. */
461
462 static bool
463 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
464 {
465 /* If iv is invariant, just calculate the new value. */
466 if (iv->step == const0_rtx
467 && !iv->first_special)
468 {
469 rtx val = get_iv_value (iv, const0_rtx);
470 if (iv->extend_mode != iv->mode
471 && iv->extend != IV_UNKNOWN_EXTEND
472 && iv->extend != extend)
473 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
474 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
475 val,
476 iv->extend == extend
477 ? iv->extend_mode : iv->mode);
478 iv->base = val;
479 iv->extend = IV_UNKNOWN_EXTEND;
480 iv->mode = iv->extend_mode = mode;
481 iv->delta = const0_rtx;
482 iv->mult = const1_rtx;
483 return true;
484 }
485
486 if (mode != iv->extend_mode)
487 return false;
488
489 if (iv->extend != IV_UNKNOWN_EXTEND
490 && iv->extend != extend)
491 return false;
492
493 iv->extend = extend;
494
495 return true;
496 }
497
498 /* Evaluates negation of IV. */
499
500 static bool
501 iv_neg (struct rtx_iv *iv)
502 {
503 if (iv->extend == IV_UNKNOWN_EXTEND)
504 {
505 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
506 iv->base, iv->extend_mode);
507 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
508 iv->step, iv->extend_mode);
509 }
510 else
511 {
512 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
513 iv->delta, iv->extend_mode);
514 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
515 iv->mult, iv->extend_mode);
516 }
517
518 return true;
519 }
520
521 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
522
523 static bool
524 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
525 {
526 enum machine_mode mode;
527 rtx arg;
528
529 /* Extend the constant to extend_mode of the other operand if necessary. */
530 if (iv0->extend == IV_UNKNOWN_EXTEND
531 && iv0->mode == iv0->extend_mode
532 && iv0->step == const0_rtx
533 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
534 {
535 iv0->extend_mode = iv1->extend_mode;
536 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
537 iv0->base, iv0->mode);
538 }
539 if (iv1->extend == IV_UNKNOWN_EXTEND
540 && iv1->mode == iv1->extend_mode
541 && iv1->step == const0_rtx
542 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
543 {
544 iv1->extend_mode = iv0->extend_mode;
545 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
546 iv1->base, iv1->mode);
547 }
548
549 mode = iv0->extend_mode;
550 if (mode != iv1->extend_mode)
551 return false;
552
553 if (iv0->extend == IV_UNKNOWN_EXTEND
554 && iv1->extend == IV_UNKNOWN_EXTEND)
555 {
556 if (iv0->mode != iv1->mode)
557 return false;
558
559 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
560 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
561
562 return true;
563 }
564
565 /* Handle addition of constant. */
566 if (iv1->extend == IV_UNKNOWN_EXTEND
567 && iv1->mode == mode
568 && iv1->step == const0_rtx)
569 {
570 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
571 return true;
572 }
573
574 if (iv0->extend == IV_UNKNOWN_EXTEND
575 && iv0->mode == mode
576 && iv0->step == const0_rtx)
577 {
578 arg = iv0->base;
579 *iv0 = *iv1;
580 if (op == MINUS
581 && !iv_neg (iv0))
582 return false;
583
584 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
585 return true;
586 }
587
588 return false;
589 }
590
591 /* Evaluates multiplication of IV by constant CST. */
592
593 static bool
594 iv_mult (struct rtx_iv *iv, rtx mby)
595 {
596 enum machine_mode mode = iv->extend_mode;
597
598 if (GET_MODE (mby) != VOIDmode
599 && GET_MODE (mby) != mode)
600 return false;
601
602 if (iv->extend == IV_UNKNOWN_EXTEND)
603 {
604 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
605 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
606 }
607 else
608 {
609 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
610 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
611 }
612
613 return true;
614 }
615
616 /* Evaluates shift of IV by constant CST. */
617
618 static bool
619 iv_shift (struct rtx_iv *iv, rtx mby)
620 {
621 enum machine_mode mode = iv->extend_mode;
622
623 if (GET_MODE (mby) != VOIDmode
624 && GET_MODE (mby) != mode)
625 return false;
626
627 if (iv->extend == IV_UNKNOWN_EXTEND)
628 {
629 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
630 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
631 }
632 else
633 {
634 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
635 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
636 }
637
638 return true;
639 }
640
641 /* The recursive part of get_biv_step. Gets the value of the single value
642 defined by DEF wrto initial value of REG inside loop, in shape described
643 at get_biv_step. */
644
645 static bool
646 get_biv_step_1 (df_ref def, rtx reg,
647 rtx *inner_step, enum machine_mode *inner_mode,
648 enum iv_extend_code *extend, enum machine_mode outer_mode,
649 rtx *outer_step)
650 {
651 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
652 rtx next, nextr, tmp;
653 enum rtx_code code;
654 rtx_insn *insn = DF_REF_INSN (def);
655 df_ref next_def;
656 enum iv_grd_result res;
657
658 set = single_set (insn);
659 if (!set)
660 return false;
661
662 rhs = find_reg_equal_equiv_note (insn);
663 if (rhs)
664 rhs = XEXP (rhs, 0);
665 else
666 rhs = SET_SRC (set);
667
668 code = GET_CODE (rhs);
669 switch (code)
670 {
671 case SUBREG:
672 case REG:
673 next = rhs;
674 break;
675
676 case PLUS:
677 case MINUS:
678 op0 = XEXP (rhs, 0);
679 op1 = XEXP (rhs, 1);
680
681 if (code == PLUS && CONSTANT_P (op0))
682 {
683 tmp = op0; op0 = op1; op1 = tmp;
684 }
685
686 if (!simple_reg_p (op0)
687 || !CONSTANT_P (op1))
688 return false;
689
690 if (GET_MODE (rhs) != outer_mode)
691 {
692 /* ppc64 uses expressions like
693
694 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
695
696 this is equivalent to
697
698 (set x':DI (plus:DI y:DI 1))
699 (set x:SI (subreg:SI (x':DI)). */
700 if (GET_CODE (op0) != SUBREG)
701 return false;
702 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
703 return false;
704 }
705
706 next = op0;
707 break;
708
709 case SIGN_EXTEND:
710 case ZERO_EXTEND:
711 if (GET_MODE (rhs) != outer_mode)
712 return false;
713
714 op0 = XEXP (rhs, 0);
715 if (!simple_reg_p (op0))
716 return false;
717
718 next = op0;
719 break;
720
721 default:
722 return false;
723 }
724
725 if (GET_CODE (next) == SUBREG)
726 {
727 if (!subreg_lowpart_p (next))
728 return false;
729
730 nextr = SUBREG_REG (next);
731 if (GET_MODE (nextr) != outer_mode)
732 return false;
733 }
734 else
735 nextr = next;
736
737 res = iv_get_reaching_def (insn, nextr, &next_def);
738
739 if (res == GRD_INVALID || res == GRD_INVARIANT)
740 return false;
741
742 if (res == GRD_MAYBE_BIV)
743 {
744 if (!rtx_equal_p (nextr, reg))
745 return false;
746
747 *inner_step = const0_rtx;
748 *extend = IV_UNKNOWN_EXTEND;
749 *inner_mode = outer_mode;
750 *outer_step = const0_rtx;
751 }
752 else if (!get_biv_step_1 (next_def, reg,
753 inner_step, inner_mode, extend, outer_mode,
754 outer_step))
755 return false;
756
757 if (GET_CODE (next) == SUBREG)
758 {
759 enum machine_mode amode = GET_MODE (next);
760
761 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
762 return false;
763
764 *inner_mode = amode;
765 *inner_step = simplify_gen_binary (PLUS, outer_mode,
766 *inner_step, *outer_step);
767 *outer_step = const0_rtx;
768 *extend = IV_UNKNOWN_EXTEND;
769 }
770
771 switch (code)
772 {
773 case REG:
774 case SUBREG:
775 break;
776
777 case PLUS:
778 case MINUS:
779 if (*inner_mode == outer_mode
780 /* See comment in previous switch. */
781 || GET_MODE (rhs) != outer_mode)
782 *inner_step = simplify_gen_binary (code, outer_mode,
783 *inner_step, op1);
784 else
785 *outer_step = simplify_gen_binary (code, outer_mode,
786 *outer_step, op1);
787 break;
788
789 case SIGN_EXTEND:
790 case ZERO_EXTEND:
791 gcc_assert (GET_MODE (op0) == *inner_mode
792 && *extend == IV_UNKNOWN_EXTEND
793 && *outer_step == const0_rtx);
794
795 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
796 break;
797
798 default:
799 return false;
800 }
801
802 return true;
803 }
804
805 /* Gets the operation on register REG inside loop, in shape
806
807 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
808
809 If the operation cannot be described in this shape, return false.
810 LAST_DEF is the definition of REG that dominates loop latch. */
811
812 static bool
813 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
814 enum machine_mode *inner_mode, enum iv_extend_code *extend,
815 enum machine_mode *outer_mode, rtx *outer_step)
816 {
817 *outer_mode = GET_MODE (reg);
818
819 if (!get_biv_step_1 (last_def, reg,
820 inner_step, inner_mode, extend, *outer_mode,
821 outer_step))
822 return false;
823
824 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
825 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
826
827 return true;
828 }
829
830 /* Records information that DEF is induction variable IV. */
831
832 static void
833 record_iv (df_ref def, struct rtx_iv *iv)
834 {
835 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
836
837 *recorded_iv = *iv;
838 check_iv_ref_table_size ();
839 DF_REF_IV_SET (def, recorded_iv);
840 }
841
842 /* If DEF was already analyzed for bivness, store the description of the biv to
843 IV and return true. Otherwise return false. */
844
845 static bool
846 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
847 {
848 struct biv_entry *biv = bivs->find_with_hash (def, REGNO (def));
849
850 if (!biv)
851 return false;
852
853 *iv = biv->iv;
854 return true;
855 }
856
857 static void
858 record_biv (rtx def, struct rtx_iv *iv)
859 {
860 struct biv_entry *biv = XNEW (struct biv_entry);
861 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT);
862
863 biv->regno = REGNO (def);
864 biv->iv = *iv;
865 gcc_assert (!*slot);
866 *slot = biv;
867 }
868
869 /* Determines whether DEF is a biv and if so, stores its description
870 to *IV. */
871
872 static bool
873 iv_analyze_biv (rtx def, struct rtx_iv *iv)
874 {
875 rtx inner_step, outer_step;
876 enum machine_mode inner_mode, outer_mode;
877 enum iv_extend_code extend;
878 df_ref last_def;
879
880 if (dump_file)
881 {
882 fprintf (dump_file, "Analyzing ");
883 print_rtl (dump_file, def);
884 fprintf (dump_file, " for bivness.\n");
885 }
886
887 if (!REG_P (def))
888 {
889 if (!CONSTANT_P (def))
890 return false;
891
892 return iv_constant (iv, def, VOIDmode);
893 }
894
895 if (!latch_dominating_def (def, &last_def))
896 {
897 if (dump_file)
898 fprintf (dump_file, " not simple.\n");
899 return false;
900 }
901
902 if (!last_def)
903 return iv_constant (iv, def, VOIDmode);
904
905 if (analyzed_for_bivness_p (def, iv))
906 {
907 if (dump_file)
908 fprintf (dump_file, " already analysed.\n");
909 return iv->base != NULL_RTX;
910 }
911
912 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
913 &outer_mode, &outer_step))
914 {
915 iv->base = NULL_RTX;
916 goto end;
917 }
918
919 /* Loop transforms base to es (base + inner_step) + outer_step,
920 where es means extend of subreg between inner_mode and outer_mode.
921 The corresponding induction variable is
922
923 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
924
925 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
926 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
927 iv->mode = inner_mode;
928 iv->extend_mode = outer_mode;
929 iv->extend = extend;
930 iv->mult = const1_rtx;
931 iv->delta = outer_step;
932 iv->first_special = inner_mode != outer_mode;
933
934 end:
935 if (dump_file)
936 {
937 fprintf (dump_file, " ");
938 dump_iv_info (dump_file, iv);
939 fprintf (dump_file, "\n");
940 }
941
942 record_biv (def, iv);
943 return iv->base != NULL_RTX;
944 }
945
946 /* Analyzes expression RHS used at INSN and stores the result to *IV.
947 The mode of the induction variable is MODE. */
948
949 bool
950 iv_analyze_expr (rtx_insn *insn, rtx rhs, enum machine_mode mode,
951 struct rtx_iv *iv)
952 {
953 rtx mby = NULL_RTX, tmp;
954 rtx op0 = NULL_RTX, op1 = NULL_RTX;
955 struct rtx_iv iv0, iv1;
956 enum rtx_code code = GET_CODE (rhs);
957 enum machine_mode omode = mode;
958
959 iv->mode = VOIDmode;
960 iv->base = NULL_RTX;
961 iv->step = NULL_RTX;
962
963 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
964
965 if (CONSTANT_P (rhs)
966 || REG_P (rhs)
967 || code == SUBREG)
968 {
969 if (!iv_analyze_op (insn, rhs, iv))
970 return false;
971
972 if (iv->mode == VOIDmode)
973 {
974 iv->mode = mode;
975 iv->extend_mode = mode;
976 }
977
978 return true;
979 }
980
981 switch (code)
982 {
983 case REG:
984 op0 = rhs;
985 break;
986
987 case SIGN_EXTEND:
988 case ZERO_EXTEND:
989 case NEG:
990 op0 = XEXP (rhs, 0);
991 omode = GET_MODE (op0);
992 break;
993
994 case PLUS:
995 case MINUS:
996 op0 = XEXP (rhs, 0);
997 op1 = XEXP (rhs, 1);
998 break;
999
1000 case MULT:
1001 op0 = XEXP (rhs, 0);
1002 mby = XEXP (rhs, 1);
1003 if (!CONSTANT_P (mby))
1004 {
1005 tmp = op0;
1006 op0 = mby;
1007 mby = tmp;
1008 }
1009 if (!CONSTANT_P (mby))
1010 return false;
1011 break;
1012
1013 case ASHIFT:
1014 op0 = XEXP (rhs, 0);
1015 mby = XEXP (rhs, 1);
1016 if (!CONSTANT_P (mby))
1017 return false;
1018 break;
1019
1020 default:
1021 return false;
1022 }
1023
1024 if (op0
1025 && !iv_analyze_expr (insn, op0, omode, &iv0))
1026 return false;
1027
1028 if (op1
1029 && !iv_analyze_expr (insn, op1, omode, &iv1))
1030 return false;
1031
1032 switch (code)
1033 {
1034 case SIGN_EXTEND:
1035 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1036 return false;
1037 break;
1038
1039 case ZERO_EXTEND:
1040 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1041 return false;
1042 break;
1043
1044 case NEG:
1045 if (!iv_neg (&iv0))
1046 return false;
1047 break;
1048
1049 case PLUS:
1050 case MINUS:
1051 if (!iv_add (&iv0, &iv1, code))
1052 return false;
1053 break;
1054
1055 case MULT:
1056 if (!iv_mult (&iv0, mby))
1057 return false;
1058 break;
1059
1060 case ASHIFT:
1061 if (!iv_shift (&iv0, mby))
1062 return false;
1063 break;
1064
1065 default:
1066 break;
1067 }
1068
1069 *iv = iv0;
1070 return iv->base != NULL_RTX;
1071 }
1072
1073 /* Analyzes iv DEF and stores the result to *IV. */
1074
1075 static bool
1076 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1077 {
1078 rtx_insn *insn = DF_REF_INSN (def);
1079 rtx reg = DF_REF_REG (def);
1080 rtx set, rhs;
1081
1082 if (dump_file)
1083 {
1084 fprintf (dump_file, "Analyzing def of ");
1085 print_rtl (dump_file, reg);
1086 fprintf (dump_file, " in insn ");
1087 print_rtl_single (dump_file, insn);
1088 }
1089
1090 check_iv_ref_table_size ();
1091 if (DF_REF_IV (def))
1092 {
1093 if (dump_file)
1094 fprintf (dump_file, " already analysed.\n");
1095 *iv = *DF_REF_IV (def);
1096 return iv->base != NULL_RTX;
1097 }
1098
1099 iv->mode = VOIDmode;
1100 iv->base = NULL_RTX;
1101 iv->step = NULL_RTX;
1102
1103 if (!REG_P (reg))
1104 return false;
1105
1106 set = single_set (insn);
1107 if (!set)
1108 return false;
1109
1110 if (!REG_P (SET_DEST (set)))
1111 return false;
1112
1113 gcc_assert (SET_DEST (set) == reg);
1114 rhs = find_reg_equal_equiv_note (insn);
1115 if (rhs)
1116 rhs = XEXP (rhs, 0);
1117 else
1118 rhs = SET_SRC (set);
1119
1120 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1121 record_iv (def, iv);
1122
1123 if (dump_file)
1124 {
1125 print_rtl (dump_file, reg);
1126 fprintf (dump_file, " in insn ");
1127 print_rtl_single (dump_file, insn);
1128 fprintf (dump_file, " is ");
1129 dump_iv_info (dump_file, iv);
1130 fprintf (dump_file, "\n");
1131 }
1132
1133 return iv->base != NULL_RTX;
1134 }
1135
1136 /* Analyzes operand OP of INSN and stores the result to *IV. */
1137
1138 static bool
1139 iv_analyze_op (rtx_insn *insn, rtx op, struct rtx_iv *iv)
1140 {
1141 df_ref def = NULL;
1142 enum iv_grd_result res;
1143
1144 if (dump_file)
1145 {
1146 fprintf (dump_file, "Analyzing operand ");
1147 print_rtl (dump_file, op);
1148 fprintf (dump_file, " of insn ");
1149 print_rtl_single (dump_file, insn);
1150 }
1151
1152 if (function_invariant_p (op))
1153 res = GRD_INVARIANT;
1154 else if (GET_CODE (op) == SUBREG)
1155 {
1156 if (!subreg_lowpart_p (op))
1157 return false;
1158
1159 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1160 return false;
1161
1162 return iv_subreg (iv, GET_MODE (op));
1163 }
1164 else
1165 {
1166 res = iv_get_reaching_def (insn, op, &def);
1167 if (res == GRD_INVALID)
1168 {
1169 if (dump_file)
1170 fprintf (dump_file, " not simple.\n");
1171 return false;
1172 }
1173 }
1174
1175 if (res == GRD_INVARIANT)
1176 {
1177 iv_constant (iv, op, VOIDmode);
1178
1179 if (dump_file)
1180 {
1181 fprintf (dump_file, " ");
1182 dump_iv_info (dump_file, iv);
1183 fprintf (dump_file, "\n");
1184 }
1185 return true;
1186 }
1187
1188 if (res == GRD_MAYBE_BIV)
1189 return iv_analyze_biv (op, iv);
1190
1191 return iv_analyze_def (def, iv);
1192 }
1193
1194 /* Analyzes value VAL at INSN and stores the result to *IV. */
1195
1196 bool
1197 iv_analyze (rtx_insn *insn, rtx val, struct rtx_iv *iv)
1198 {
1199 rtx reg;
1200
1201 /* We must find the insn in that val is used, so that we get to UD chains.
1202 Since the function is sometimes called on result of get_condition,
1203 this does not necessarily have to be directly INSN; scan also the
1204 following insns. */
1205 if (simple_reg_p (val))
1206 {
1207 if (GET_CODE (val) == SUBREG)
1208 reg = SUBREG_REG (val);
1209 else
1210 reg = val;
1211
1212 while (!df_find_use (insn, reg))
1213 insn = NEXT_INSN (insn);
1214 }
1215
1216 return iv_analyze_op (insn, val, iv);
1217 }
1218
1219 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1220
1221 bool
1222 iv_analyze_result (rtx_insn *insn, rtx def, struct rtx_iv *iv)
1223 {
1224 df_ref adef;
1225
1226 adef = df_find_def (insn, def);
1227 if (!adef)
1228 return false;
1229
1230 return iv_analyze_def (adef, iv);
1231 }
1232
1233 /* Checks whether definition of register REG in INSN is a basic induction
1234 variable. IV analysis must have been initialized (via a call to
1235 iv_analysis_loop_init) for this function to produce a result. */
1236
1237 bool
1238 biv_p (rtx_insn *insn, rtx reg)
1239 {
1240 struct rtx_iv iv;
1241 df_ref def, last_def;
1242
1243 if (!simple_reg_p (reg))
1244 return false;
1245
1246 def = df_find_def (insn, reg);
1247 gcc_assert (def != NULL);
1248 if (!latch_dominating_def (reg, &last_def))
1249 return false;
1250 if (last_def != def)
1251 return false;
1252
1253 if (!iv_analyze_biv (reg, &iv))
1254 return false;
1255
1256 return iv.step != const0_rtx;
1257 }
1258
1259 /* Calculates value of IV at ITERATION-th iteration. */
1260
1261 rtx
1262 get_iv_value (struct rtx_iv *iv, rtx iteration)
1263 {
1264 rtx val;
1265
1266 /* We would need to generate some if_then_else patterns, and so far
1267 it is not needed anywhere. */
1268 gcc_assert (!iv->first_special);
1269
1270 if (iv->step != const0_rtx && iteration != const0_rtx)
1271 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1272 simplify_gen_binary (MULT, iv->extend_mode,
1273 iv->step, iteration));
1274 else
1275 val = iv->base;
1276
1277 if (iv->extend_mode == iv->mode)
1278 return val;
1279
1280 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1281
1282 if (iv->extend == IV_UNKNOWN_EXTEND)
1283 return val;
1284
1285 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1286 iv->extend_mode, val, iv->mode);
1287 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1288 simplify_gen_binary (MULT, iv->extend_mode,
1289 iv->mult, val));
1290
1291 return val;
1292 }
1293
1294 /* Free the data for an induction variable analysis. */
1295
1296 void
1297 iv_analysis_done (void)
1298 {
1299 if (!clean_slate)
1300 {
1301 clear_iv_info ();
1302 clean_slate = true;
1303 df_finish_pass (true);
1304 delete bivs;
1305 bivs = NULL;
1306 free (iv_ref_table);
1307 iv_ref_table = NULL;
1308 iv_ref_table_size = 0;
1309 }
1310 }
1311
1312 /* Computes inverse to X modulo (1 << MOD). */
1313
1314 static uint64_t
1315 inverse (uint64_t x, int mod)
1316 {
1317 uint64_t mask =
1318 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1319 uint64_t rslt = 1;
1320 int i;
1321
1322 for (i = 0; i < mod - 1; i++)
1323 {
1324 rslt = (rslt * x) & mask;
1325 x = (x * x) & mask;
1326 }
1327
1328 return rslt;
1329 }
1330
1331 /* Checks whether any register in X is in set ALT. */
1332
1333 static bool
1334 altered_reg_used (const_rtx x, bitmap alt)
1335 {
1336 subrtx_iterator::array_type array;
1337 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1338 {
1339 const_rtx x = *iter;
1340 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x)))
1341 return true;
1342 }
1343 return false;
1344 }
1345
1346 /* Marks registers altered by EXPR in set ALT. */
1347
1348 static void
1349 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1350 {
1351 if (GET_CODE (expr) == SUBREG)
1352 expr = SUBREG_REG (expr);
1353 if (!REG_P (expr))
1354 return;
1355
1356 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1357 }
1358
1359 /* Checks whether RHS is simple enough to process. */
1360
1361 static bool
1362 simple_rhs_p (rtx rhs)
1363 {
1364 rtx op0, op1;
1365
1366 if (function_invariant_p (rhs)
1367 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1368 return true;
1369
1370 switch (GET_CODE (rhs))
1371 {
1372 case PLUS:
1373 case MINUS:
1374 case AND:
1375 op0 = XEXP (rhs, 0);
1376 op1 = XEXP (rhs, 1);
1377 /* Allow reg OP const and reg OP reg. */
1378 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1379 && !function_invariant_p (op0))
1380 return false;
1381 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1382 && !function_invariant_p (op1))
1383 return false;
1384
1385 return true;
1386
1387 case ASHIFT:
1388 case ASHIFTRT:
1389 case LSHIFTRT:
1390 case MULT:
1391 op0 = XEXP (rhs, 0);
1392 op1 = XEXP (rhs, 1);
1393 /* Allow reg OP const. */
1394 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1395 return false;
1396 if (!function_invariant_p (op1))
1397 return false;
1398
1399 return true;
1400
1401 default:
1402 return false;
1403 }
1404 }
1405
1406 /* If REGNO has a single definition, return its known value, otherwise return
1407 null. */
1408
1409 static rtx
1410 find_single_def_src (unsigned int regno)
1411 {
1412 df_ref adef;
1413 rtx set, src;
1414
1415 for (;;)
1416 {
1417 rtx note;
1418 adef = DF_REG_DEF_CHAIN (regno);
1419 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1420 || DF_REF_IS_ARTIFICIAL (adef))
1421 return NULL_RTX;
1422
1423 set = single_set (DF_REF_INSN (adef));
1424 if (set == NULL || !REG_P (SET_DEST (set))
1425 || REGNO (SET_DEST (set)) != regno)
1426 return NULL_RTX;
1427
1428 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1429
1430 if (note && function_invariant_p (XEXP (note, 0)))
1431 {
1432 src = XEXP (note, 0);
1433 break;
1434 }
1435 src = SET_SRC (set);
1436
1437 if (REG_P (src))
1438 {
1439 regno = REGNO (src);
1440 continue;
1441 }
1442 break;
1443 }
1444 if (!function_invariant_p (src))
1445 return NULL_RTX;
1446
1447 return src;
1448 }
1449
1450 /* If any registers in *EXPR that have a single definition, try to replace
1451 them with the known-equivalent values. */
1452
1453 static void
1454 replace_single_def_regs (rtx *expr)
1455 {
1456 subrtx_var_iterator::array_type array;
1457 repeat:
1458 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)
1459 {
1460 rtx x = *iter;
1461 if (REG_P (x))
1462 if (rtx new_x = find_single_def_src (REGNO (x)))
1463 {
1464 *expr = simplify_replace_rtx (*expr, x, new_x);
1465 goto repeat;
1466 }
1467 }
1468 }
1469
1470 /* A subroutine of simplify_using_initial_values, this function examines INSN
1471 to see if it contains a suitable set that we can use to make a replacement.
1472 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1473 the set; return false otherwise. */
1474
1475 static bool
1476 suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
1477 {
1478 rtx set = single_set (insn);
1479 rtx lhs = NULL_RTX, rhs;
1480
1481 if (!set)
1482 return false;
1483
1484 lhs = SET_DEST (set);
1485 if (!REG_P (lhs))
1486 return false;
1487
1488 rhs = find_reg_equal_equiv_note (insn);
1489 if (rhs)
1490 rhs = XEXP (rhs, 0);
1491 else
1492 rhs = SET_SRC (set);
1493
1494 if (!simple_rhs_p (rhs))
1495 return false;
1496
1497 *dest = lhs;
1498 *src = rhs;
1499 return true;
1500 }
1501
1502 /* Using the data returned by suitable_set_for_replacement, replace DEST
1503 with SRC in *EXPR and return the new expression. Also call
1504 replace_single_def_regs if the replacement changed something. */
1505 static void
1506 replace_in_expr (rtx *expr, rtx dest, rtx src)
1507 {
1508 rtx old = *expr;
1509 *expr = simplify_replace_rtx (*expr, dest, src);
1510 if (old == *expr)
1511 return;
1512 replace_single_def_regs (expr);
1513 }
1514
1515 /* Checks whether A implies B. */
1516
1517 static bool
1518 implies_p (rtx a, rtx b)
1519 {
1520 rtx op0, op1, opb0, opb1, r;
1521 enum machine_mode mode;
1522
1523 if (rtx_equal_p (a, b))
1524 return true;
1525
1526 if (GET_CODE (a) == EQ)
1527 {
1528 op0 = XEXP (a, 0);
1529 op1 = XEXP (a, 1);
1530
1531 if (REG_P (op0)
1532 || (GET_CODE (op0) == SUBREG
1533 && REG_P (SUBREG_REG (op0))))
1534 {
1535 r = simplify_replace_rtx (b, op0, op1);
1536 if (r == const_true_rtx)
1537 return true;
1538 }
1539
1540 if (REG_P (op1)
1541 || (GET_CODE (op1) == SUBREG
1542 && REG_P (SUBREG_REG (op1))))
1543 {
1544 r = simplify_replace_rtx (b, op1, op0);
1545 if (r == const_true_rtx)
1546 return true;
1547 }
1548 }
1549
1550 if (b == const_true_rtx)
1551 return true;
1552
1553 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1554 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1555 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1556 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1557 return false;
1558
1559 op0 = XEXP (a, 0);
1560 op1 = XEXP (a, 1);
1561 opb0 = XEXP (b, 0);
1562 opb1 = XEXP (b, 1);
1563
1564 mode = GET_MODE (op0);
1565 if (mode != GET_MODE (opb0))
1566 mode = VOIDmode;
1567 else if (mode == VOIDmode)
1568 {
1569 mode = GET_MODE (op1);
1570 if (mode != GET_MODE (opb1))
1571 mode = VOIDmode;
1572 }
1573
1574 /* A < B implies A + 1 <= B. */
1575 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1576 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1577 {
1578
1579 if (GET_CODE (a) == GT)
1580 {
1581 r = op0;
1582 op0 = op1;
1583 op1 = r;
1584 }
1585
1586 if (GET_CODE (b) == GE)
1587 {
1588 r = opb0;
1589 opb0 = opb1;
1590 opb1 = r;
1591 }
1592
1593 if (SCALAR_INT_MODE_P (mode)
1594 && rtx_equal_p (op1, opb1)
1595 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1596 return true;
1597 return false;
1598 }
1599
1600 /* A < B or A > B imply A != B. TODO: Likewise
1601 A + n < B implies A != B + n if neither wraps. */
1602 if (GET_CODE (b) == NE
1603 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1604 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1605 {
1606 if (rtx_equal_p (op0, opb0)
1607 && rtx_equal_p (op1, opb1))
1608 return true;
1609 }
1610
1611 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1612 if (GET_CODE (a) == NE
1613 && op1 == const0_rtx)
1614 {
1615 if ((GET_CODE (b) == GTU
1616 && opb1 == const0_rtx)
1617 || (GET_CODE (b) == GEU
1618 && opb1 == const1_rtx))
1619 return rtx_equal_p (op0, opb0);
1620 }
1621
1622 /* A != N is equivalent to A - (N + 1) <u -1. */
1623 if (GET_CODE (a) == NE
1624 && CONST_INT_P (op1)
1625 && GET_CODE (b) == LTU
1626 && opb1 == constm1_rtx
1627 && GET_CODE (opb0) == PLUS
1628 && CONST_INT_P (XEXP (opb0, 1))
1629 /* Avoid overflows. */
1630 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1631 != ((unsigned HOST_WIDE_INT)1
1632 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1633 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1634 return rtx_equal_p (op0, XEXP (opb0, 0));
1635
1636 /* Likewise, A != N implies A - N > 0. */
1637 if (GET_CODE (a) == NE
1638 && CONST_INT_P (op1))
1639 {
1640 if (GET_CODE (b) == GTU
1641 && GET_CODE (opb0) == PLUS
1642 && opb1 == const0_rtx
1643 && CONST_INT_P (XEXP (opb0, 1))
1644 /* Avoid overflows. */
1645 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1646 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1647 && rtx_equal_p (XEXP (opb0, 0), op0))
1648 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1649 if (GET_CODE (b) == GEU
1650 && GET_CODE (opb0) == PLUS
1651 && opb1 == const1_rtx
1652 && CONST_INT_P (XEXP (opb0, 1))
1653 /* Avoid overflows. */
1654 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1655 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1656 && rtx_equal_p (XEXP (opb0, 0), op0))
1657 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1658 }
1659
1660 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1661 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1662 && CONST_INT_P (op1)
1663 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1664 || INTVAL (op1) >= 0)
1665 && GET_CODE (b) == LTU
1666 && CONST_INT_P (opb1)
1667 && rtx_equal_p (op0, opb0))
1668 return INTVAL (opb1) < 0;
1669
1670 return false;
1671 }
1672
1673 /* Canonicalizes COND so that
1674
1675 (1) Ensure that operands are ordered according to
1676 swap_commutative_operands_p.
1677 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1678 for GE, GEU, and LEU. */
1679
1680 rtx
1681 canon_condition (rtx cond)
1682 {
1683 rtx tem;
1684 rtx op0, op1;
1685 enum rtx_code code;
1686 enum machine_mode mode;
1687
1688 code = GET_CODE (cond);
1689 op0 = XEXP (cond, 0);
1690 op1 = XEXP (cond, 1);
1691
1692 if (swap_commutative_operands_p (op0, op1))
1693 {
1694 code = swap_condition (code);
1695 tem = op0;
1696 op0 = op1;
1697 op1 = tem;
1698 }
1699
1700 mode = GET_MODE (op0);
1701 if (mode == VOIDmode)
1702 mode = GET_MODE (op1);
1703 gcc_assert (mode != VOIDmode);
1704
1705 if (CONST_INT_P (op1)
1706 && GET_MODE_CLASS (mode) != MODE_CC
1707 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1708 {
1709 HOST_WIDE_INT const_val = INTVAL (op1);
1710 unsigned HOST_WIDE_INT uconst_val = const_val;
1711 unsigned HOST_WIDE_INT max_val
1712 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1713
1714 switch (code)
1715 {
1716 case LE:
1717 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1718 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1719 break;
1720
1721 /* When cross-compiling, const_val might be sign-extended from
1722 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1723 case GE:
1724 if ((HOST_WIDE_INT) (const_val & max_val)
1725 != (((HOST_WIDE_INT) 1
1726 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1727 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1728 break;
1729
1730 case LEU:
1731 if (uconst_val < max_val)
1732 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1733 break;
1734
1735 case GEU:
1736 if (uconst_val != 0)
1737 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1738 break;
1739
1740 default:
1741 break;
1742 }
1743 }
1744
1745 if (op0 != XEXP (cond, 0)
1746 || op1 != XEXP (cond, 1)
1747 || code != GET_CODE (cond)
1748 || GET_MODE (cond) != SImode)
1749 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1750
1751 return cond;
1752 }
1753
1754 /* Reverses CONDition; returns NULL if we cannot. */
1755
1756 static rtx
1757 reversed_condition (rtx cond)
1758 {
1759 enum rtx_code reversed;
1760 reversed = reversed_comparison_code (cond, NULL);
1761 if (reversed == UNKNOWN)
1762 return NULL_RTX;
1763 else
1764 return gen_rtx_fmt_ee (reversed,
1765 GET_MODE (cond), XEXP (cond, 0),
1766 XEXP (cond, 1));
1767 }
1768
1769 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1770 set of altered regs. */
1771
1772 void
1773 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1774 {
1775 rtx rev, reve, exp = *expr;
1776
1777 /* If some register gets altered later, we do not really speak about its
1778 value at the time of comparison. */
1779 if (altered && altered_reg_used (cond, altered))
1780 return;
1781
1782 if (GET_CODE (cond) == EQ
1783 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1784 {
1785 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1786 return;
1787 }
1788
1789 if (!COMPARISON_P (exp))
1790 return;
1791
1792 rev = reversed_condition (cond);
1793 reve = reversed_condition (exp);
1794
1795 cond = canon_condition (cond);
1796 exp = canon_condition (exp);
1797 if (rev)
1798 rev = canon_condition (rev);
1799 if (reve)
1800 reve = canon_condition (reve);
1801
1802 if (rtx_equal_p (exp, cond))
1803 {
1804 *expr = const_true_rtx;
1805 return;
1806 }
1807
1808 if (rev && rtx_equal_p (exp, rev))
1809 {
1810 *expr = const0_rtx;
1811 return;
1812 }
1813
1814 if (implies_p (cond, exp))
1815 {
1816 *expr = const_true_rtx;
1817 return;
1818 }
1819
1820 if (reve && implies_p (cond, reve))
1821 {
1822 *expr = const0_rtx;
1823 return;
1824 }
1825
1826 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1827 be false. */
1828 if (rev && implies_p (exp, rev))
1829 {
1830 *expr = const0_rtx;
1831 return;
1832 }
1833
1834 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1835 if (rev && reve && implies_p (reve, rev))
1836 {
1837 *expr = const_true_rtx;
1838 return;
1839 }
1840
1841 /* We would like to have some other tests here. TODO. */
1842
1843 return;
1844 }
1845
1846 /* Use relationship between A and *B to eventually eliminate *B.
1847 OP is the operation we consider. */
1848
1849 static void
1850 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1851 {
1852 switch (op)
1853 {
1854 case AND:
1855 /* If A implies *B, we may replace *B by true. */
1856 if (implies_p (a, *b))
1857 *b = const_true_rtx;
1858 break;
1859
1860 case IOR:
1861 /* If *B implies A, we may replace *B by false. */
1862 if (implies_p (*b, a))
1863 *b = const0_rtx;
1864 break;
1865
1866 default:
1867 gcc_unreachable ();
1868 }
1869 }
1870
1871 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1872 operation we consider. */
1873
1874 static void
1875 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1876 {
1877 rtx elt;
1878
1879 for (elt = tail; elt; elt = XEXP (elt, 1))
1880 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1881 for (elt = tail; elt; elt = XEXP (elt, 1))
1882 eliminate_implied_condition (op, XEXP (elt, 0), head);
1883 }
1884
1885 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1886 is a list, its elements are assumed to be combined using OP. */
1887
1888 static void
1889 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1890 {
1891 bool expression_valid;
1892 rtx head, tail, last_valid_expr;
1893 rtx_expr_list *cond_list;
1894 rtx_insn *insn;
1895 rtx neutral, aggr;
1896 regset altered, this_altered;
1897 edge e;
1898
1899 if (!*expr)
1900 return;
1901
1902 if (CONSTANT_P (*expr))
1903 return;
1904
1905 if (GET_CODE (*expr) == EXPR_LIST)
1906 {
1907 head = XEXP (*expr, 0);
1908 tail = XEXP (*expr, 1);
1909
1910 eliminate_implied_conditions (op, &head, tail);
1911
1912 switch (op)
1913 {
1914 case AND:
1915 neutral = const_true_rtx;
1916 aggr = const0_rtx;
1917 break;
1918
1919 case IOR:
1920 neutral = const0_rtx;
1921 aggr = const_true_rtx;
1922 break;
1923
1924 default:
1925 gcc_unreachable ();
1926 }
1927
1928 simplify_using_initial_values (loop, UNKNOWN, &head);
1929 if (head == aggr)
1930 {
1931 XEXP (*expr, 0) = aggr;
1932 XEXP (*expr, 1) = NULL_RTX;
1933 return;
1934 }
1935 else if (head == neutral)
1936 {
1937 *expr = tail;
1938 simplify_using_initial_values (loop, op, expr);
1939 return;
1940 }
1941 simplify_using_initial_values (loop, op, &tail);
1942
1943 if (tail && XEXP (tail, 0) == aggr)
1944 {
1945 *expr = tail;
1946 return;
1947 }
1948
1949 XEXP (*expr, 0) = head;
1950 XEXP (*expr, 1) = tail;
1951 return;
1952 }
1953
1954 gcc_assert (op == UNKNOWN);
1955
1956 replace_single_def_regs (expr);
1957 if (CONSTANT_P (*expr))
1958 return;
1959
1960 e = loop_preheader_edge (loop);
1961 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1962 return;
1963
1964 altered = ALLOC_REG_SET (&reg_obstack);
1965 this_altered = ALLOC_REG_SET (&reg_obstack);
1966
1967 expression_valid = true;
1968 last_valid_expr = *expr;
1969 cond_list = NULL;
1970 while (1)
1971 {
1972 insn = BB_END (e->src);
1973 if (any_condjump_p (insn))
1974 {
1975 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1976
1977 if (cond && (e->flags & EDGE_FALLTHRU))
1978 cond = reversed_condition (cond);
1979 if (cond)
1980 {
1981 rtx old = *expr;
1982 simplify_using_condition (cond, expr, altered);
1983 if (old != *expr)
1984 {
1985 rtx note;
1986 if (CONSTANT_P (*expr))
1987 goto out;
1988 for (note = cond_list; note; note = XEXP (note, 1))
1989 {
1990 simplify_using_condition (XEXP (note, 0), expr, altered);
1991 if (CONSTANT_P (*expr))
1992 goto out;
1993 }
1994 }
1995 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1996 }
1997 }
1998
1999 FOR_BB_INSNS_REVERSE (e->src, insn)
2000 {
2001 rtx src, dest;
2002 rtx old = *expr;
2003
2004 if (!INSN_P (insn))
2005 continue;
2006
2007 CLEAR_REG_SET (this_altered);
2008 note_stores (PATTERN (insn), mark_altered, this_altered);
2009 if (CALL_P (insn))
2010 {
2011 /* Kill all call clobbered registers. */
2012 unsigned int i;
2013 hard_reg_set_iterator hrsi;
2014 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
2015 0, i, hrsi)
2016 SET_REGNO_REG_SET (this_altered, i);
2017 }
2018
2019 if (suitable_set_for_replacement (insn, &dest, &src))
2020 {
2021 rtx_expr_list **pnote, **pnote_next;
2022
2023 replace_in_expr (expr, dest, src);
2024 if (CONSTANT_P (*expr))
2025 goto out;
2026
2027 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2028 {
2029 rtx note = *pnote;
2030 rtx old_cond = XEXP (note, 0);
2031
2032 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
2033 replace_in_expr (&XEXP (note, 0), dest, src);
2034
2035 /* We can no longer use a condition that has been simplified
2036 to a constant, and simplify_using_condition will abort if
2037 we try. */
2038 if (CONSTANT_P (XEXP (note, 0)))
2039 {
2040 *pnote = *pnote_next;
2041 pnote_next = pnote;
2042 free_EXPR_LIST_node (note);
2043 }
2044 /* Retry simplifications with this condition if either the
2045 expression or the condition changed. */
2046 else if (old_cond != XEXP (note, 0) || old != *expr)
2047 simplify_using_condition (XEXP (note, 0), expr, altered);
2048 }
2049 }
2050 else
2051 {
2052 rtx_expr_list **pnote, **pnote_next;
2053
2054 /* If we did not use this insn to make a replacement, any overlap
2055 between stores in this insn and our expression will cause the
2056 expression to become invalid. */
2057 if (altered_reg_used (*expr, this_altered))
2058 goto out;
2059
2060 /* Likewise for the conditions. */
2061 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2062 {
2063 rtx note = *pnote;
2064 rtx old_cond = XEXP (note, 0);
2065
2066 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
2067 if (altered_reg_used (old_cond, this_altered))
2068 {
2069 *pnote = *pnote_next;
2070 pnote_next = pnote;
2071 free_EXPR_LIST_node (note);
2072 }
2073 }
2074 }
2075
2076 if (CONSTANT_P (*expr))
2077 goto out;
2078
2079 IOR_REG_SET (altered, this_altered);
2080
2081 /* If the expression now contains regs that have been altered, we
2082 can't return it to the caller. However, it is still valid for
2083 further simplification, so keep searching to see if we can
2084 eventually turn it into a constant. */
2085 if (altered_reg_used (*expr, altered))
2086 expression_valid = false;
2087 if (expression_valid)
2088 last_valid_expr = *expr;
2089 }
2090
2091 if (!single_pred_p (e->src)
2092 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2093 break;
2094 e = single_pred_edge (e->src);
2095 }
2096
2097 out:
2098 free_EXPR_LIST_list (&cond_list);
2099 if (!CONSTANT_P (*expr))
2100 *expr = last_valid_expr;
2101 FREE_REG_SET (altered);
2102 FREE_REG_SET (this_altered);
2103 }
2104
2105 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2106 that IV occurs as left operands of comparison COND and its signedness
2107 is SIGNED_P to DESC. */
2108
2109 static void
2110 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2111 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2112 {
2113 rtx mmin, mmax, cond_over, cond_under;
2114
2115 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2116 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2117 iv->base, mmin);
2118 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2119 iv->base, mmax);
2120
2121 switch (cond)
2122 {
2123 case LE:
2124 case LT:
2125 case LEU:
2126 case LTU:
2127 if (cond_under != const0_rtx)
2128 desc->infinite =
2129 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2130 if (cond_over != const0_rtx)
2131 desc->noloop_assumptions =
2132 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2133 break;
2134
2135 case GE:
2136 case GT:
2137 case GEU:
2138 case GTU:
2139 if (cond_over != const0_rtx)
2140 desc->infinite =
2141 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2142 if (cond_under != const0_rtx)
2143 desc->noloop_assumptions =
2144 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2145 break;
2146
2147 case NE:
2148 if (cond_over != const0_rtx)
2149 desc->infinite =
2150 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2151 if (cond_under != const0_rtx)
2152 desc->infinite =
2153 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2154 break;
2155
2156 default:
2157 gcc_unreachable ();
2158 }
2159
2160 iv->mode = mode;
2161 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2162 }
2163
2164 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2165 subregs of the same mode if possible (sometimes it is necessary to add
2166 some assumptions to DESC). */
2167
2168 static bool
2169 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2170 enum rtx_code cond, struct niter_desc *desc)
2171 {
2172 enum machine_mode comp_mode;
2173 bool signed_p;
2174
2175 /* If the ivs behave specially in the first iteration, or are
2176 added/multiplied after extending, we ignore them. */
2177 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2178 return false;
2179 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2180 return false;
2181
2182 /* If there is some extend, it must match signedness of the comparison. */
2183 switch (cond)
2184 {
2185 case LE:
2186 case LT:
2187 if (iv0->extend == IV_ZERO_EXTEND
2188 || iv1->extend == IV_ZERO_EXTEND)
2189 return false;
2190 signed_p = true;
2191 break;
2192
2193 case LEU:
2194 case LTU:
2195 if (iv0->extend == IV_SIGN_EXTEND
2196 || iv1->extend == IV_SIGN_EXTEND)
2197 return false;
2198 signed_p = false;
2199 break;
2200
2201 case NE:
2202 if (iv0->extend != IV_UNKNOWN_EXTEND
2203 && iv1->extend != IV_UNKNOWN_EXTEND
2204 && iv0->extend != iv1->extend)
2205 return false;
2206
2207 signed_p = false;
2208 if (iv0->extend != IV_UNKNOWN_EXTEND)
2209 signed_p = iv0->extend == IV_SIGN_EXTEND;
2210 if (iv1->extend != IV_UNKNOWN_EXTEND)
2211 signed_p = iv1->extend == IV_SIGN_EXTEND;
2212 break;
2213
2214 default:
2215 gcc_unreachable ();
2216 }
2217
2218 /* Values of both variables should be computed in the same mode. These
2219 might indeed be different, if we have comparison like
2220
2221 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2222
2223 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2224 in different modes. This does not seem impossible to handle, but
2225 it hardly ever occurs in practice.
2226
2227 The only exception is the case when one of operands is invariant.
2228 For example pentium 3 generates comparisons like
2229 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2230 definitely do not want this prevent the optimization. */
2231 comp_mode = iv0->extend_mode;
2232 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2233 comp_mode = iv1->extend_mode;
2234
2235 if (iv0->extend_mode != comp_mode)
2236 {
2237 if (iv0->mode != iv0->extend_mode
2238 || iv0->step != const0_rtx)
2239 return false;
2240
2241 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2242 comp_mode, iv0->base, iv0->mode);
2243 iv0->extend_mode = comp_mode;
2244 }
2245
2246 if (iv1->extend_mode != comp_mode)
2247 {
2248 if (iv1->mode != iv1->extend_mode
2249 || iv1->step != const0_rtx)
2250 return false;
2251
2252 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2253 comp_mode, iv1->base, iv1->mode);
2254 iv1->extend_mode = comp_mode;
2255 }
2256
2257 /* Check that both ivs belong to a range of a single mode. If one of the
2258 operands is an invariant, we may need to shorten it into the common
2259 mode. */
2260 if (iv0->mode == iv0->extend_mode
2261 && iv0->step == const0_rtx
2262 && iv0->mode != iv1->mode)
2263 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2264
2265 if (iv1->mode == iv1->extend_mode
2266 && iv1->step == const0_rtx
2267 && iv0->mode != iv1->mode)
2268 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2269
2270 if (iv0->mode != iv1->mode)
2271 return false;
2272
2273 desc->mode = iv0->mode;
2274 desc->signed_p = signed_p;
2275
2276 return true;
2277 }
2278
2279 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2280 result. This function is called from iv_number_of_iterations with
2281 a number of fields in DESC already filled in. OLD_NITER is the original
2282 expression for the number of iterations, before we tried to simplify it. */
2283
2284 static uint64_t
2285 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2286 {
2287 rtx niter = desc->niter_expr;
2288 rtx mmin, mmax, cmp;
2289 uint64_t nmax, inc;
2290 uint64_t andmax = 0;
2291
2292 /* We used to look for constant operand 0 of AND,
2293 but canonicalization should always make this impossible. */
2294 gcc_checking_assert (GET_CODE (niter) != AND
2295 || !CONST_INT_P (XEXP (niter, 0)));
2296
2297 if (GET_CODE (niter) == AND
2298 && CONST_INT_P (XEXP (niter, 1)))
2299 {
2300 andmax = UINTVAL (XEXP (niter, 1));
2301 niter = XEXP (niter, 0);
2302 }
2303
2304 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2305 nmax = INTVAL (mmax) - INTVAL (mmin);
2306
2307 if (GET_CODE (niter) == UDIV)
2308 {
2309 if (!CONST_INT_P (XEXP (niter, 1)))
2310 return nmax;
2311 inc = INTVAL (XEXP (niter, 1));
2312 niter = XEXP (niter, 0);
2313 }
2314 else
2315 inc = 1;
2316
2317 /* We could use a binary search here, but for now improving the upper
2318 bound by just one eliminates one important corner case. */
2319 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2320 desc->mode, old_niter, mmax);
2321 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2322 if (cmp == const_true_rtx)
2323 {
2324 nmax--;
2325
2326 if (dump_file)
2327 fprintf (dump_file, ";; improved upper bound by one.\n");
2328 }
2329 nmax /= inc;
2330 if (andmax)
2331 nmax = MIN (nmax, andmax);
2332 if (dump_file)
2333 fprintf (dump_file, ";; Determined upper bound %"PRId64".\n",
2334 nmax);
2335 return nmax;
2336 }
2337
2338 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2339 the result into DESC. Very similar to determine_number_of_iterations
2340 (basically its rtl version), complicated by things like subregs. */
2341
2342 static void
2343 iv_number_of_iterations (struct loop *loop, rtx_insn *insn, rtx condition,
2344 struct niter_desc *desc)
2345 {
2346 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2347 struct rtx_iv iv0, iv1, tmp_iv;
2348 rtx assumption, may_not_xform;
2349 enum rtx_code cond;
2350 enum machine_mode mode, comp_mode;
2351 rtx mmin, mmax, mode_mmin, mode_mmax;
2352 uint64_t s, size, d, inv, max;
2353 int64_t up, down, inc, step_val;
2354 int was_sharp = false;
2355 rtx old_niter;
2356 bool step_is_pow2;
2357
2358 /* The meaning of these assumptions is this:
2359 if !assumptions
2360 then the rest of information does not have to be valid
2361 if noloop_assumptions then the loop does not roll
2362 if infinite then this exit is never used */
2363
2364 desc->assumptions = NULL_RTX;
2365 desc->noloop_assumptions = NULL_RTX;
2366 desc->infinite = NULL_RTX;
2367 desc->simple_p = true;
2368
2369 desc->const_iter = false;
2370 desc->niter_expr = NULL_RTX;
2371
2372 cond = GET_CODE (condition);
2373 gcc_assert (COMPARISON_P (condition));
2374
2375 mode = GET_MODE (XEXP (condition, 0));
2376 if (mode == VOIDmode)
2377 mode = GET_MODE (XEXP (condition, 1));
2378 /* The constant comparisons should be folded. */
2379 gcc_assert (mode != VOIDmode);
2380
2381 /* We only handle integers or pointers. */
2382 if (GET_MODE_CLASS (mode) != MODE_INT
2383 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2384 goto fail;
2385
2386 op0 = XEXP (condition, 0);
2387 if (!iv_analyze (insn, op0, &iv0))
2388 goto fail;
2389 if (iv0.extend_mode == VOIDmode)
2390 iv0.mode = iv0.extend_mode = mode;
2391
2392 op1 = XEXP (condition, 1);
2393 if (!iv_analyze (insn, op1, &iv1))
2394 goto fail;
2395 if (iv1.extend_mode == VOIDmode)
2396 iv1.mode = iv1.extend_mode = mode;
2397
2398 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2399 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2400 goto fail;
2401
2402 /* Check condition and normalize it. */
2403
2404 switch (cond)
2405 {
2406 case GE:
2407 case GT:
2408 case GEU:
2409 case GTU:
2410 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2411 cond = swap_condition (cond);
2412 break;
2413 case NE:
2414 case LE:
2415 case LEU:
2416 case LT:
2417 case LTU:
2418 break;
2419 default:
2420 goto fail;
2421 }
2422
2423 /* Handle extends. This is relatively nontrivial, so we only try in some
2424 easy cases, when we can canonicalize the ivs (possibly by adding some
2425 assumptions) to shape subreg (base + i * step). This function also fills
2426 in desc->mode and desc->signed_p. */
2427
2428 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2429 goto fail;
2430
2431 comp_mode = iv0.extend_mode;
2432 mode = iv0.mode;
2433 size = GET_MODE_PRECISION (mode);
2434 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2435 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2436 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2437
2438 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2439 goto fail;
2440
2441 /* We can take care of the case of two induction variables chasing each other
2442 if the test is NE. I have never seen a loop using it, but still it is
2443 cool. */
2444 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2445 {
2446 if (cond != NE)
2447 goto fail;
2448
2449 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2450 iv1.step = const0_rtx;
2451 }
2452
2453 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2454 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2455
2456 /* This is either infinite loop or the one that ends immediately, depending
2457 on initial values. Unswitching should remove this kind of conditions. */
2458 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2459 goto fail;
2460
2461 if (cond != NE)
2462 {
2463 if (iv0.step == const0_rtx)
2464 step_val = -INTVAL (iv1.step);
2465 else
2466 step_val = INTVAL (iv0.step);
2467
2468 /* Ignore loops of while (i-- < 10) type. */
2469 if (step_val < 0)
2470 goto fail;
2471
2472 step_is_pow2 = !(step_val & (step_val - 1));
2473 }
2474 else
2475 {
2476 /* We do not care about whether the step is power of two in this
2477 case. */
2478 step_is_pow2 = false;
2479 step_val = 0;
2480 }
2481
2482 /* Some more condition normalization. We must record some assumptions
2483 due to overflows. */
2484 switch (cond)
2485 {
2486 case LT:
2487 case LTU:
2488 /* We want to take care only of non-sharp relationals; this is easy,
2489 as in cases the overflow would make the transformation unsafe
2490 the loop does not roll. Seemingly it would make more sense to want
2491 to take care of sharp relationals instead, as NE is more similar to
2492 them, but the problem is that here the transformation would be more
2493 difficult due to possibly infinite loops. */
2494 if (iv0.step == const0_rtx)
2495 {
2496 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2497 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2498 mode_mmax);
2499 if (assumption == const_true_rtx)
2500 goto zero_iter_simplify;
2501 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2502 iv0.base, const1_rtx);
2503 }
2504 else
2505 {
2506 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2507 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2508 mode_mmin);
2509 if (assumption == const_true_rtx)
2510 goto zero_iter_simplify;
2511 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2512 iv1.base, constm1_rtx);
2513 }
2514
2515 if (assumption != const0_rtx)
2516 desc->noloop_assumptions =
2517 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2518 cond = (cond == LT) ? LE : LEU;
2519
2520 /* It will be useful to be able to tell the difference once more in
2521 LE -> NE reduction. */
2522 was_sharp = true;
2523 break;
2524 default: ;
2525 }
2526
2527 /* Take care of trivially infinite loops. */
2528 if (cond != NE)
2529 {
2530 if (iv0.step == const0_rtx)
2531 {
2532 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2533 if (rtx_equal_p (tmp, mode_mmin))
2534 {
2535 desc->infinite =
2536 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2537 /* Fill in the remaining fields somehow. */
2538 goto zero_iter_simplify;
2539 }
2540 }
2541 else
2542 {
2543 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2544 if (rtx_equal_p (tmp, mode_mmax))
2545 {
2546 desc->infinite =
2547 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2548 /* Fill in the remaining fields somehow. */
2549 goto zero_iter_simplify;
2550 }
2551 }
2552 }
2553
2554 /* If we can we want to take care of NE conditions instead of size
2555 comparisons, as they are much more friendly (most importantly
2556 this takes care of special handling of loops with step 1). We can
2557 do it if we first check that upper bound is greater or equal to
2558 lower bound, their difference is constant c modulo step and that
2559 there is not an overflow. */
2560 if (cond != NE)
2561 {
2562 if (iv0.step == const0_rtx)
2563 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2564 else
2565 step = iv0.step;
2566 step = lowpart_subreg (mode, step, comp_mode);
2567 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2568 delta = lowpart_subreg (mode, delta, comp_mode);
2569 delta = simplify_gen_binary (UMOD, mode, delta, step);
2570 may_xform = const0_rtx;
2571 may_not_xform = const_true_rtx;
2572
2573 if (CONST_INT_P (delta))
2574 {
2575 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2576 {
2577 /* A special case. We have transformed condition of type
2578 for (i = 0; i < 4; i += 4)
2579 into
2580 for (i = 0; i <= 3; i += 4)
2581 obviously if the test for overflow during that transformation
2582 passed, we cannot overflow here. Most importantly any
2583 loop with sharp end condition and step 1 falls into this
2584 category, so handling this case specially is definitely
2585 worth the troubles. */
2586 may_xform = const_true_rtx;
2587 }
2588 else if (iv0.step == const0_rtx)
2589 {
2590 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2591 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2592 bound = lowpart_subreg (mode, bound, comp_mode);
2593 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2594 may_xform = simplify_gen_relational (cond, SImode, mode,
2595 bound, tmp);
2596 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2597 SImode, mode,
2598 bound, tmp);
2599 }
2600 else
2601 {
2602 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2603 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2604 bound = lowpart_subreg (mode, bound, comp_mode);
2605 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2606 may_xform = simplify_gen_relational (cond, SImode, mode,
2607 tmp, bound);
2608 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2609 SImode, mode,
2610 tmp, bound);
2611 }
2612 }
2613
2614 if (may_xform != const0_rtx)
2615 {
2616 /* We perform the transformation always provided that it is not
2617 completely senseless. This is OK, as we would need this assumption
2618 to determine the number of iterations anyway. */
2619 if (may_xform != const_true_rtx)
2620 {
2621 /* If the step is a power of two and the final value we have
2622 computed overflows, the cycle is infinite. Otherwise it
2623 is nontrivial to compute the number of iterations. */
2624 if (step_is_pow2)
2625 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2626 desc->infinite);
2627 else
2628 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2629 desc->assumptions);
2630 }
2631
2632 /* We are going to lose some information about upper bound on
2633 number of iterations in this step, so record the information
2634 here. */
2635 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2636 if (CONST_INT_P (iv1.base))
2637 up = INTVAL (iv1.base);
2638 else
2639 up = INTVAL (mode_mmax) - inc;
2640 down = INTVAL (CONST_INT_P (iv0.base)
2641 ? iv0.base
2642 : mode_mmin);
2643 max = (up - down) / inc + 1;
2644 if (!desc->infinite
2645 && !desc->assumptions)
2646 record_niter_bound (loop, max, false, true);
2647
2648 if (iv0.step == const0_rtx)
2649 {
2650 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2651 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2652 }
2653 else
2654 {
2655 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2656 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2657 }
2658
2659 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2660 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2661 assumption = simplify_gen_relational (reverse_condition (cond),
2662 SImode, mode, tmp0, tmp1);
2663 if (assumption == const_true_rtx)
2664 goto zero_iter_simplify;
2665 else if (assumption != const0_rtx)
2666 desc->noloop_assumptions =
2667 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2668 cond = NE;
2669 }
2670 }
2671
2672 /* Count the number of iterations. */
2673 if (cond == NE)
2674 {
2675 /* Everything we do here is just arithmetics modulo size of mode. This
2676 makes us able to do more involved computations of number of iterations
2677 than in other cases. First transform the condition into shape
2678 s * i <> c, with s positive. */
2679 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2680 iv0.base = const0_rtx;
2681 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2682 iv1.step = const0_rtx;
2683 if (INTVAL (iv0.step) < 0)
2684 {
2685 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2686 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
2687 }
2688 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2689
2690 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2691 is infinite. Otherwise, the number of iterations is
2692 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2693 s = INTVAL (iv0.step); d = 1;
2694 while (s % 2 != 1)
2695 {
2696 s /= 2;
2697 d *= 2;
2698 size--;
2699 }
2700 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1);
2701
2702 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2703 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2704 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2705 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2706
2707 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2708 inv = inverse (s, size);
2709 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2710 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2711 }
2712 else
2713 {
2714 if (iv1.step == const0_rtx)
2715 /* Condition in shape a + s * i <= b
2716 We must know that b + s does not overflow and a <= b + s and then we
2717 can compute number of iterations as (b + s - a) / s. (It might
2718 seem that we in fact could be more clever about testing the b + s
2719 overflow condition using some information about b - a mod s,
2720 but it was already taken into account during LE -> NE transform). */
2721 {
2722 step = iv0.step;
2723 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2724 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2725
2726 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2727 lowpart_subreg (mode, step,
2728 comp_mode));
2729 if (step_is_pow2)
2730 {
2731 rtx t0, t1;
2732
2733 /* If s is power of 2, we know that the loop is infinite if
2734 a % s <= b % s and b + s overflows. */
2735 assumption = simplify_gen_relational (reverse_condition (cond),
2736 SImode, mode,
2737 tmp1, bound);
2738
2739 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2740 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2741 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2742 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2743 desc->infinite =
2744 alloc_EXPR_LIST (0, assumption, desc->infinite);
2745 }
2746 else
2747 {
2748 assumption = simplify_gen_relational (cond, SImode, mode,
2749 tmp1, bound);
2750 desc->assumptions =
2751 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2752 }
2753
2754 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2755 tmp = lowpart_subreg (mode, tmp, comp_mode);
2756 assumption = simplify_gen_relational (reverse_condition (cond),
2757 SImode, mode, tmp0, tmp);
2758
2759 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2760 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2761 }
2762 else
2763 {
2764 /* Condition in shape a <= b - s * i
2765 We must know that a - s does not overflow and a - s <= b and then
2766 we can again compute number of iterations as (b - (a - s)) / s. */
2767 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2768 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2769 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2770
2771 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2772 lowpart_subreg (mode, step, comp_mode));
2773 if (step_is_pow2)
2774 {
2775 rtx t0, t1;
2776
2777 /* If s is power of 2, we know that the loop is infinite if
2778 a % s <= b % s and a - s overflows. */
2779 assumption = simplify_gen_relational (reverse_condition (cond),
2780 SImode, mode,
2781 bound, tmp0);
2782
2783 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2784 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2785 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2786 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2787 desc->infinite =
2788 alloc_EXPR_LIST (0, assumption, desc->infinite);
2789 }
2790 else
2791 {
2792 assumption = simplify_gen_relational (cond, SImode, mode,
2793 bound, tmp0);
2794 desc->assumptions =
2795 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2796 }
2797
2798 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2799 tmp = lowpart_subreg (mode, tmp, comp_mode);
2800 assumption = simplify_gen_relational (reverse_condition (cond),
2801 SImode, mode,
2802 tmp, tmp1);
2803 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2804 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2805 }
2806 if (assumption == const_true_rtx)
2807 goto zero_iter_simplify;
2808 else if (assumption != const0_rtx)
2809 desc->noloop_assumptions =
2810 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2811 delta = simplify_gen_binary (UDIV, mode, delta, step);
2812 desc->niter_expr = delta;
2813 }
2814
2815 old_niter = desc->niter_expr;
2816
2817 simplify_using_initial_values (loop, AND, &desc->assumptions);
2818 if (desc->assumptions
2819 && XEXP (desc->assumptions, 0) == const0_rtx)
2820 goto fail;
2821 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2822 simplify_using_initial_values (loop, IOR, &desc->infinite);
2823 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2824
2825 /* Rerun the simplification. Consider code (created by copying loop headers)
2826
2827 i = 0;
2828
2829 if (0 < n)
2830 {
2831 do
2832 {
2833 i++;
2834 } while (i < n);
2835 }
2836
2837 The first pass determines that i = 0, the second pass uses it to eliminate
2838 noloop assumption. */
2839
2840 simplify_using_initial_values (loop, AND, &desc->assumptions);
2841 if (desc->assumptions
2842 && XEXP (desc->assumptions, 0) == const0_rtx)
2843 goto fail;
2844 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2845 simplify_using_initial_values (loop, IOR, &desc->infinite);
2846 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2847
2848 if (desc->noloop_assumptions
2849 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2850 goto zero_iter;
2851
2852 if (CONST_INT_P (desc->niter_expr))
2853 {
2854 uint64_t val = INTVAL (desc->niter_expr);
2855
2856 desc->const_iter = true;
2857 desc->niter = val & GET_MODE_MASK (desc->mode);
2858 if (!desc->infinite
2859 && !desc->assumptions)
2860 record_niter_bound (loop, desc->niter, false, true);
2861 }
2862 else
2863 {
2864 max = determine_max_iter (loop, desc, old_niter);
2865 if (!max)
2866 goto zero_iter_simplify;
2867 if (!desc->infinite
2868 && !desc->assumptions)
2869 record_niter_bound (loop, max, false, true);
2870
2871 /* simplify_using_initial_values does a copy propagation on the registers
2872 in the expression for the number of iterations. This prolongs life
2873 ranges of registers and increases register pressure, and usually
2874 brings no gain (and if it happens to do, the cse pass will take care
2875 of it anyway). So prevent this behavior, unless it enabled us to
2876 derive that the number of iterations is a constant. */
2877 desc->niter_expr = old_niter;
2878 }
2879
2880 return;
2881
2882 zero_iter_simplify:
2883 /* Simplify the assumptions. */
2884 simplify_using_initial_values (loop, AND, &desc->assumptions);
2885 if (desc->assumptions
2886 && XEXP (desc->assumptions, 0) == const0_rtx)
2887 goto fail;
2888 simplify_using_initial_values (loop, IOR, &desc->infinite);
2889
2890 /* Fallthru. */
2891 zero_iter:
2892 desc->const_iter = true;
2893 desc->niter = 0;
2894 record_niter_bound (loop, 0, true, true);
2895 desc->noloop_assumptions = NULL_RTX;
2896 desc->niter_expr = const0_rtx;
2897 return;
2898
2899 fail:
2900 desc->simple_p = false;
2901 return;
2902 }
2903
2904 /* Checks whether E is a simple exit from LOOP and stores its description
2905 into DESC. */
2906
2907 static void
2908 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2909 {
2910 basic_block exit_bb;
2911 rtx condition;
2912 rtx_insn *at;
2913 edge ein;
2914
2915 exit_bb = e->src;
2916 desc->simple_p = false;
2917
2918 /* It must belong directly to the loop. */
2919 if (exit_bb->loop_father != loop)
2920 return;
2921
2922 /* It must be tested (at least) once during any iteration. */
2923 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2924 return;
2925
2926 /* It must end in a simple conditional jump. */
2927 if (!any_condjump_p (BB_END (exit_bb)))
2928 return;
2929
2930 ein = EDGE_SUCC (exit_bb, 0);
2931 if (ein == e)
2932 ein = EDGE_SUCC (exit_bb, 1);
2933
2934 desc->out_edge = e;
2935 desc->in_edge = ein;
2936
2937 /* Test whether the condition is suitable. */
2938 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2939 return;
2940
2941 if (ein->flags & EDGE_FALLTHRU)
2942 {
2943 condition = reversed_condition (condition);
2944 if (!condition)
2945 return;
2946 }
2947
2948 /* Check that we are able to determine number of iterations and fill
2949 in information about it. */
2950 iv_number_of_iterations (loop, at, condition, desc);
2951 }
2952
2953 /* Finds a simple exit of LOOP and stores its description into DESC. */
2954
2955 void
2956 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2957 {
2958 unsigned i;
2959 basic_block *body;
2960 edge e;
2961 struct niter_desc act;
2962 bool any = false;
2963 edge_iterator ei;
2964
2965 desc->simple_p = false;
2966 body = get_loop_body (loop);
2967
2968 for (i = 0; i < loop->num_nodes; i++)
2969 {
2970 FOR_EACH_EDGE (e, ei, body[i]->succs)
2971 {
2972 if (flow_bb_inside_loop_p (loop, e->dest))
2973 continue;
2974
2975 check_simple_exit (loop, e, &act);
2976 if (!act.simple_p)
2977 continue;
2978
2979 if (!any)
2980 any = true;
2981 else
2982 {
2983 /* Prefer constant iterations; the less the better. */
2984 if (!act.const_iter
2985 || (desc->const_iter && act.niter >= desc->niter))
2986 continue;
2987
2988 /* Also if the actual exit may be infinite, while the old one
2989 not, prefer the old one. */
2990 if (act.infinite && !desc->infinite)
2991 continue;
2992 }
2993
2994 *desc = act;
2995 }
2996 }
2997
2998 if (dump_file)
2999 {
3000 if (desc->simple_p)
3001 {
3002 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
3003 fprintf (dump_file, " simple exit %d -> %d\n",
3004 desc->out_edge->src->index,
3005 desc->out_edge->dest->index);
3006 if (desc->assumptions)
3007 {
3008 fprintf (dump_file, " assumptions: ");
3009 print_rtl (dump_file, desc->assumptions);
3010 fprintf (dump_file, "\n");
3011 }
3012 if (desc->noloop_assumptions)
3013 {
3014 fprintf (dump_file, " does not roll if: ");
3015 print_rtl (dump_file, desc->noloop_assumptions);
3016 fprintf (dump_file, "\n");
3017 }
3018 if (desc->infinite)
3019 {
3020 fprintf (dump_file, " infinite if: ");
3021 print_rtl (dump_file, desc->infinite);
3022 fprintf (dump_file, "\n");
3023 }
3024
3025 fprintf (dump_file, " number of iterations: ");
3026 print_rtl (dump_file, desc->niter_expr);
3027 fprintf (dump_file, "\n");
3028
3029 fprintf (dump_file, " upper bound: %li\n",
3030 (long)get_max_loop_iterations_int (loop));
3031 fprintf (dump_file, " realistic bound: %li\n",
3032 (long)get_estimated_loop_iterations_int (loop));
3033 }
3034 else
3035 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
3036 }
3037
3038 free (body);
3039 }
3040
3041 /* Creates a simple loop description of LOOP if it was not computed
3042 already. */
3043
3044 struct niter_desc *
3045 get_simple_loop_desc (struct loop *loop)
3046 {
3047 struct niter_desc *desc = simple_loop_desc (loop);
3048
3049 if (desc)
3050 return desc;
3051
3052 /* At least desc->infinite is not always initialized by
3053 find_simple_loop_exit. */
3054 desc = ggc_cleared_alloc<niter_desc> ();
3055 iv_analysis_loop_init (loop);
3056 find_simple_exit (loop, desc);
3057 loop->simple_loop_desc = desc;
3058
3059 if (desc->simple_p && (desc->assumptions || desc->infinite))
3060 {
3061 const char *wording;
3062
3063 /* Assume that no overflow happens and that the loop is finite.
3064 We already warned at the tree level if we ran optimizations there. */
3065 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3066 {
3067 if (desc->infinite)
3068 {
3069 wording =
3070 flag_unsafe_loop_optimizations
3071 ? N_("assuming that the loop is not infinite")
3072 : N_("cannot optimize possibly infinite loops");
3073 warning (OPT_Wunsafe_loop_optimizations, "%s",
3074 gettext (wording));
3075 }
3076 if (desc->assumptions)
3077 {
3078 wording =
3079 flag_unsafe_loop_optimizations
3080 ? N_("assuming that the loop counter does not overflow")
3081 : N_("cannot optimize loop, the loop counter may overflow");
3082 warning (OPT_Wunsafe_loop_optimizations, "%s",
3083 gettext (wording));
3084 }
3085 }
3086
3087 if (flag_unsafe_loop_optimizations)
3088 {
3089 desc->assumptions = NULL_RTX;
3090 desc->infinite = NULL_RTX;
3091 }
3092 }
3093
3094 return desc;
3095 }
3096
3097 /* Releases simple loop description for LOOP. */
3098
3099 void
3100 free_simple_loop_desc (struct loop *loop)
3101 {
3102 struct niter_desc *desc = simple_loop_desc (loop);
3103
3104 if (!desc)
3105 return;
3106
3107 ggc_free (desc);
3108 loop->simple_loop_desc = NULL;
3109 }