20020201-1.c: Remove declarations for exit, abort, rand, srand.
[gcc.git] / gcc / loop-iv.c
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This is a simple analysis of induction variables of the loop. The major use
22 is for determining the number of iterations of a loop for loop unrolling,
23 doloop optimization and branch prediction. The iv information is computed
24 on demand.
25
26 Induction variables are analyzed by walking the use-def chains. When
27 a basic induction variable (biv) is found, it is cached in the bivs
28 hash table. When register is proved to be a biv, its description
29 is stored to DF_REF_DATA of the def reference.
30
31 The analysis works always with one loop -- you must call
32 iv_analysis_loop_init (loop) for it. All the other functions then work with
33 this loop. When you need to work with another loop, just call
34 iv_analysis_loop_init for it. When you no longer need iv analysis, call
35 iv_analysis_done () to clean up the memory.
36
37 The available functions are:
38
39 iv_analyze (insn, reg, iv): Stores the description of the induction variable
40 corresponding to the use of register REG in INSN to IV. Returns true if
41 REG is an induction variable in INSN. false otherwise.
42 If use of REG is not found in INSN, following insns are scanned (so that
43 we may call this function on insn returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used bu
48 EXPR must also be used in INSN.
49 */
50
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "tm.h"
55 #include "rtl.h"
56 #include "hard-reg-set.h"
57 #include "obstack.h"
58 #include "basic-block.h"
59 #include "cfgloop.h"
60 #include "expr.h"
61 #include "intl.h"
62 #include "diagnostic-core.h"
63 #include "df.h"
64 #include "hashtab.h"
65 #include "dumpfile.h"
66
67 /* Possible return values of iv_get_reaching_def. */
68
69 enum iv_grd_result
70 {
71 /* More than one reaching def, or reaching def that does not
72 dominate the use. */
73 GRD_INVALID,
74
75 /* The use is trivial invariant of the loop, i.e. is not changed
76 inside the loop. */
77 GRD_INVARIANT,
78
79 /* The use is reached by initial value and a value from the
80 previous iteration. */
81 GRD_MAYBE_BIV,
82
83 /* The use has single dominating def. */
84 GRD_SINGLE_DOM
85 };
86
87 /* Information about a biv. */
88
89 struct biv_entry
90 {
91 unsigned regno; /* The register of the biv. */
92 struct rtx_iv iv; /* Value of the biv. */
93 };
94
95 static bool clean_slate = true;
96
97 static unsigned int iv_ref_table_size = 0;
98
99 /* Table of rtx_ivs indexed by the df_ref uid field. */
100 static struct rtx_iv ** iv_ref_table;
101
102 /* Induction variable stored at the reference. */
103 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
104 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
105
106 /* The current loop. */
107
108 static struct loop *current_loop;
109
110 /* Bivs of the current loop. */
111
112 static htab_t bivs;
113
114 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
115
116 /* Return the RTX code corresponding to the IV extend code EXTEND. */
117 static inline enum rtx_code
118 iv_extend_to_rtx_code (enum iv_extend_code extend)
119 {
120 switch (extend)
121 {
122 case IV_SIGN_EXTEND:
123 return SIGN_EXTEND;
124 case IV_ZERO_EXTEND:
125 return ZERO_EXTEND;
126 case IV_UNKNOWN_EXTEND:
127 return UNKNOWN;
128 }
129 gcc_unreachable ();
130 }
131
132 /* Dumps information about IV to FILE. */
133
134 extern void dump_iv_info (FILE *, struct rtx_iv *);
135 void
136 dump_iv_info (FILE *file, struct rtx_iv *iv)
137 {
138 if (!iv->base)
139 {
140 fprintf (file, "not simple");
141 return;
142 }
143
144 if (iv->step == const0_rtx
145 && !iv->first_special)
146 fprintf (file, "invariant ");
147
148 print_rtl (file, iv->base);
149 if (iv->step != const0_rtx)
150 {
151 fprintf (file, " + ");
152 print_rtl (file, iv->step);
153 fprintf (file, " * iteration");
154 }
155 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
156
157 if (iv->mode != iv->extend_mode)
158 fprintf (file, " %s to %s",
159 rtx_name[iv_extend_to_rtx_code (iv->extend)],
160 GET_MODE_NAME (iv->extend_mode));
161
162 if (iv->mult != const1_rtx)
163 {
164 fprintf (file, " * ");
165 print_rtl (file, iv->mult);
166 }
167 if (iv->delta != const0_rtx)
168 {
169 fprintf (file, " + ");
170 print_rtl (file, iv->delta);
171 }
172 if (iv->first_special)
173 fprintf (file, " (first special)");
174 }
175
176 /* Generates a subreg to get the least significant part of EXPR (in mode
177 INNER_MODE) to OUTER_MODE. */
178
179 rtx
180 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
181 enum machine_mode inner_mode)
182 {
183 return simplify_gen_subreg (outer_mode, expr, inner_mode,
184 subreg_lowpart_offset (outer_mode, inner_mode));
185 }
186
187 static void
188 check_iv_ref_table_size (void)
189 {
190 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE())
191 {
192 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
193 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
194 memset (&iv_ref_table[iv_ref_table_size], 0,
195 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
196 iv_ref_table_size = new_size;
197 }
198 }
199
200
201 /* Checks whether REG is a well-behaved register. */
202
203 static bool
204 simple_reg_p (rtx reg)
205 {
206 unsigned r;
207
208 if (GET_CODE (reg) == SUBREG)
209 {
210 if (!subreg_lowpart_p (reg))
211 return false;
212 reg = SUBREG_REG (reg);
213 }
214
215 if (!REG_P (reg))
216 return false;
217
218 r = REGNO (reg);
219 if (HARD_REGISTER_NUM_P (r))
220 return false;
221
222 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
223 return false;
224
225 return true;
226 }
227
228 /* Clears the information about ivs stored in df. */
229
230 static void
231 clear_iv_info (void)
232 {
233 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
234 struct rtx_iv *iv;
235
236 check_iv_ref_table_size ();
237 for (i = 0; i < n_defs; i++)
238 {
239 iv = iv_ref_table[i];
240 if (iv)
241 {
242 free (iv);
243 iv_ref_table[i] = NULL;
244 }
245 }
246
247 htab_empty (bivs);
248 }
249
250 /* Returns hash value for biv B. */
251
252 static hashval_t
253 biv_hash (const void *b)
254 {
255 return ((const struct biv_entry *) b)->regno;
256 }
257
258 /* Compares biv B and register R. */
259
260 static int
261 biv_eq (const void *b, const void *r)
262 {
263 return ((const struct biv_entry *) b)->regno == REGNO ((const_rtx) r);
264 }
265
266 /* Prepare the data for an induction variable analysis of a LOOP. */
267
268 void
269 iv_analysis_loop_init (struct loop *loop)
270 {
271 basic_block *body = get_loop_body_in_dom_order (loop), bb;
272 bitmap blocks = BITMAP_ALLOC (NULL);
273 unsigned i;
274
275 current_loop = loop;
276
277 /* Clear the information from the analysis of the previous loop. */
278 if (clean_slate)
279 {
280 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
281 bivs = htab_create (10, biv_hash, biv_eq, free);
282 clean_slate = false;
283 }
284 else
285 clear_iv_info ();
286
287 for (i = 0; i < loop->num_nodes; i++)
288 {
289 bb = body[i];
290 bitmap_set_bit (blocks, bb->index);
291 }
292 /* Get rid of the ud chains before processing the rescans. Then add
293 the problem back. */
294 df_remove_problem (df_chain);
295 df_process_deferred_rescans ();
296 df_chain_add_problem (DF_UD_CHAIN);
297 df_note_add_problem ();
298 df_set_blocks (blocks);
299 df_analyze ();
300 if (dump_file)
301 df_dump_region (dump_file);
302
303 check_iv_ref_table_size ();
304 BITMAP_FREE (blocks);
305 free (body);
306 }
307
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
312
313 static bool
314 latch_dominating_def (rtx reg, df_ref *def)
315 {
316 df_ref single_rd = NULL, adef;
317 unsigned regno = REGNO (reg);
318 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
319
320 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
321 {
322 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
323 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
324 continue;
325
326 /* More than one reaching definition. */
327 if (single_rd)
328 return false;
329
330 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
331 return false;
332
333 single_rd = adef;
334 }
335
336 *def = single_rd;
337 return true;
338 }
339
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
341
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
344 {
345 df_ref use, adef;
346 basic_block def_bb, use_bb;
347 rtx def_insn;
348 bool dom_p;
349
350 *def = NULL;
351 if (!simple_reg_p (reg))
352 return GRD_INVALID;
353 if (GET_CODE (reg) == SUBREG)
354 reg = SUBREG_REG (reg);
355 gcc_assert (REG_P (reg));
356
357 use = df_find_use (insn, reg);
358 gcc_assert (use != NULL);
359
360 if (!DF_REF_CHAIN (use))
361 return GRD_INVARIANT;
362
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use)->next)
365 return GRD_INVALID;
366
367 adef = DF_REF_CHAIN (use)->ref;
368
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
371 return GRD_INVALID;
372
373 def_insn = DF_REF_INSN (adef);
374 def_bb = DF_REF_BB (adef);
375 use_bb = BLOCK_FOR_INSN (insn);
376
377 if (use_bb == def_bb)
378 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
379 else
380 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
381
382 if (dom_p)
383 {
384 *def = adef;
385 return GRD_SINGLE_DOM;
386 }
387
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
390 latch. */
391 if (just_once_each_iteration_p (current_loop, def_bb))
392 return GRD_MAYBE_BIV;
393
394 return GRD_INVALID;
395 }
396
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
399
400 static bool
401 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
402 {
403 if (mode == VOIDmode)
404 mode = GET_MODE (cst);
405
406 iv->mode = mode;
407 iv->base = cst;
408 iv->step = const0_rtx;
409 iv->first_special = false;
410 iv->extend = IV_UNKNOWN_EXTEND;
411 iv->extend_mode = iv->mode;
412 iv->delta = const0_rtx;
413 iv->mult = const1_rtx;
414
415 return true;
416 }
417
418 /* Evaluates application of subreg to MODE on IV. */
419
420 static bool
421 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
422 {
423 /* If iv is invariant, just calculate the new value. */
424 if (iv->step == const0_rtx
425 && !iv->first_special)
426 {
427 rtx val = get_iv_value (iv, const0_rtx);
428 val = lowpart_subreg (mode, val, iv->extend_mode);
429
430 iv->base = val;
431 iv->extend = IV_UNKNOWN_EXTEND;
432 iv->mode = iv->extend_mode = mode;
433 iv->delta = const0_rtx;
434 iv->mult = const1_rtx;
435 return true;
436 }
437
438 if (iv->extend_mode == mode)
439 return true;
440
441 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
442 return false;
443
444 iv->extend = IV_UNKNOWN_EXTEND;
445 iv->mode = mode;
446
447 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
448 simplify_gen_binary (MULT, iv->extend_mode,
449 iv->base, iv->mult));
450 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
451 iv->mult = const1_rtx;
452 iv->delta = const0_rtx;
453 iv->first_special = false;
454
455 return true;
456 }
457
458 /* Evaluates application of EXTEND to MODE on IV. */
459
460 static bool
461 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
462 {
463 /* If iv is invariant, just calculate the new value. */
464 if (iv->step == const0_rtx
465 && !iv->first_special)
466 {
467 rtx val = get_iv_value (iv, const0_rtx);
468 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
469 val, iv->extend_mode);
470 iv->base = val;
471 iv->extend = IV_UNKNOWN_EXTEND;
472 iv->mode = iv->extend_mode = mode;
473 iv->delta = const0_rtx;
474 iv->mult = const1_rtx;
475 return true;
476 }
477
478 if (mode != iv->extend_mode)
479 return false;
480
481 if (iv->extend != IV_UNKNOWN_EXTEND
482 && iv->extend != extend)
483 return false;
484
485 iv->extend = extend;
486
487 return true;
488 }
489
490 /* Evaluates negation of IV. */
491
492 static bool
493 iv_neg (struct rtx_iv *iv)
494 {
495 if (iv->extend == IV_UNKNOWN_EXTEND)
496 {
497 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
498 iv->base, iv->extend_mode);
499 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
500 iv->step, iv->extend_mode);
501 }
502 else
503 {
504 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
505 iv->delta, iv->extend_mode);
506 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
507 iv->mult, iv->extend_mode);
508 }
509
510 return true;
511 }
512
513 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
514
515 static bool
516 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
517 {
518 enum machine_mode mode;
519 rtx arg;
520
521 /* Extend the constant to extend_mode of the other operand if necessary. */
522 if (iv0->extend == IV_UNKNOWN_EXTEND
523 && iv0->mode == iv0->extend_mode
524 && iv0->step == const0_rtx
525 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
526 {
527 iv0->extend_mode = iv1->extend_mode;
528 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
529 iv0->base, iv0->mode);
530 }
531 if (iv1->extend == IV_UNKNOWN_EXTEND
532 && iv1->mode == iv1->extend_mode
533 && iv1->step == const0_rtx
534 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
535 {
536 iv1->extend_mode = iv0->extend_mode;
537 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
538 iv1->base, iv1->mode);
539 }
540
541 mode = iv0->extend_mode;
542 if (mode != iv1->extend_mode)
543 return false;
544
545 if (iv0->extend == IV_UNKNOWN_EXTEND
546 && iv1->extend == IV_UNKNOWN_EXTEND)
547 {
548 if (iv0->mode != iv1->mode)
549 return false;
550
551 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
552 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
553
554 return true;
555 }
556
557 /* Handle addition of constant. */
558 if (iv1->extend == IV_UNKNOWN_EXTEND
559 && iv1->mode == mode
560 && iv1->step == const0_rtx)
561 {
562 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
563 return true;
564 }
565
566 if (iv0->extend == IV_UNKNOWN_EXTEND
567 && iv0->mode == mode
568 && iv0->step == const0_rtx)
569 {
570 arg = iv0->base;
571 *iv0 = *iv1;
572 if (op == MINUS
573 && !iv_neg (iv0))
574 return false;
575
576 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
577 return true;
578 }
579
580 return false;
581 }
582
583 /* Evaluates multiplication of IV by constant CST. */
584
585 static bool
586 iv_mult (struct rtx_iv *iv, rtx mby)
587 {
588 enum machine_mode mode = iv->extend_mode;
589
590 if (GET_MODE (mby) != VOIDmode
591 && GET_MODE (mby) != mode)
592 return false;
593
594 if (iv->extend == IV_UNKNOWN_EXTEND)
595 {
596 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
597 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
598 }
599 else
600 {
601 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
602 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
603 }
604
605 return true;
606 }
607
608 /* Evaluates shift of IV by constant CST. */
609
610 static bool
611 iv_shift (struct rtx_iv *iv, rtx mby)
612 {
613 enum machine_mode mode = iv->extend_mode;
614
615 if (GET_MODE (mby) != VOIDmode
616 && GET_MODE (mby) != mode)
617 return false;
618
619 if (iv->extend == IV_UNKNOWN_EXTEND)
620 {
621 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
622 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
623 }
624 else
625 {
626 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
627 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
628 }
629
630 return true;
631 }
632
633 /* The recursive part of get_biv_step. Gets the value of the single value
634 defined by DEF wrto initial value of REG inside loop, in shape described
635 at get_biv_step. */
636
637 static bool
638 get_biv_step_1 (df_ref def, rtx reg,
639 rtx *inner_step, enum machine_mode *inner_mode,
640 enum iv_extend_code *extend, enum machine_mode outer_mode,
641 rtx *outer_step)
642 {
643 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
644 rtx next, nextr, tmp;
645 enum rtx_code code;
646 rtx insn = DF_REF_INSN (def);
647 df_ref next_def;
648 enum iv_grd_result res;
649
650 set = single_set (insn);
651 if (!set)
652 return false;
653
654 rhs = find_reg_equal_equiv_note (insn);
655 if (rhs)
656 rhs = XEXP (rhs, 0);
657 else
658 rhs = SET_SRC (set);
659
660 code = GET_CODE (rhs);
661 switch (code)
662 {
663 case SUBREG:
664 case REG:
665 next = rhs;
666 break;
667
668 case PLUS:
669 case MINUS:
670 op0 = XEXP (rhs, 0);
671 op1 = XEXP (rhs, 1);
672
673 if (code == PLUS && CONSTANT_P (op0))
674 {
675 tmp = op0; op0 = op1; op1 = tmp;
676 }
677
678 if (!simple_reg_p (op0)
679 || !CONSTANT_P (op1))
680 return false;
681
682 if (GET_MODE (rhs) != outer_mode)
683 {
684 /* ppc64 uses expressions like
685
686 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
687
688 this is equivalent to
689
690 (set x':DI (plus:DI y:DI 1))
691 (set x:SI (subreg:SI (x':DI)). */
692 if (GET_CODE (op0) != SUBREG)
693 return false;
694 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
695 return false;
696 }
697
698 next = op0;
699 break;
700
701 case SIGN_EXTEND:
702 case ZERO_EXTEND:
703 if (GET_MODE (rhs) != outer_mode)
704 return false;
705
706 op0 = XEXP (rhs, 0);
707 if (!simple_reg_p (op0))
708 return false;
709
710 next = op0;
711 break;
712
713 default:
714 return false;
715 }
716
717 if (GET_CODE (next) == SUBREG)
718 {
719 if (!subreg_lowpart_p (next))
720 return false;
721
722 nextr = SUBREG_REG (next);
723 if (GET_MODE (nextr) != outer_mode)
724 return false;
725 }
726 else
727 nextr = next;
728
729 res = iv_get_reaching_def (insn, nextr, &next_def);
730
731 if (res == GRD_INVALID || res == GRD_INVARIANT)
732 return false;
733
734 if (res == GRD_MAYBE_BIV)
735 {
736 if (!rtx_equal_p (nextr, reg))
737 return false;
738
739 *inner_step = const0_rtx;
740 *extend = IV_UNKNOWN_EXTEND;
741 *inner_mode = outer_mode;
742 *outer_step = const0_rtx;
743 }
744 else if (!get_biv_step_1 (next_def, reg,
745 inner_step, inner_mode, extend, outer_mode,
746 outer_step))
747 return false;
748
749 if (GET_CODE (next) == SUBREG)
750 {
751 enum machine_mode amode = GET_MODE (next);
752
753 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
754 return false;
755
756 *inner_mode = amode;
757 *inner_step = simplify_gen_binary (PLUS, outer_mode,
758 *inner_step, *outer_step);
759 *outer_step = const0_rtx;
760 *extend = IV_UNKNOWN_EXTEND;
761 }
762
763 switch (code)
764 {
765 case REG:
766 case SUBREG:
767 break;
768
769 case PLUS:
770 case MINUS:
771 if (*inner_mode == outer_mode
772 /* See comment in previous switch. */
773 || GET_MODE (rhs) != outer_mode)
774 *inner_step = simplify_gen_binary (code, outer_mode,
775 *inner_step, op1);
776 else
777 *outer_step = simplify_gen_binary (code, outer_mode,
778 *outer_step, op1);
779 break;
780
781 case SIGN_EXTEND:
782 case ZERO_EXTEND:
783 gcc_assert (GET_MODE (op0) == *inner_mode
784 && *extend == IV_UNKNOWN_EXTEND
785 && *outer_step == const0_rtx);
786
787 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
788 break;
789
790 default:
791 return false;
792 }
793
794 return true;
795 }
796
797 /* Gets the operation on register REG inside loop, in shape
798
799 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
800
801 If the operation cannot be described in this shape, return false.
802 LAST_DEF is the definition of REG that dominates loop latch. */
803
804 static bool
805 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
806 enum machine_mode *inner_mode, enum iv_extend_code *extend,
807 enum machine_mode *outer_mode, rtx *outer_step)
808 {
809 *outer_mode = GET_MODE (reg);
810
811 if (!get_biv_step_1 (last_def, reg,
812 inner_step, inner_mode, extend, *outer_mode,
813 outer_step))
814 return false;
815
816 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
817 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
818
819 return true;
820 }
821
822 /* Records information that DEF is induction variable IV. */
823
824 static void
825 record_iv (df_ref def, struct rtx_iv *iv)
826 {
827 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
828
829 *recorded_iv = *iv;
830 check_iv_ref_table_size ();
831 DF_REF_IV_SET (def, recorded_iv);
832 }
833
834 /* If DEF was already analyzed for bivness, store the description of the biv to
835 IV and return true. Otherwise return false. */
836
837 static bool
838 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
839 {
840 struct biv_entry *biv =
841 (struct biv_entry *) htab_find_with_hash (bivs, def, REGNO (def));
842
843 if (!biv)
844 return false;
845
846 *iv = biv->iv;
847 return true;
848 }
849
850 static void
851 record_biv (rtx def, struct rtx_iv *iv)
852 {
853 struct biv_entry *biv = XNEW (struct biv_entry);
854 void **slot = htab_find_slot_with_hash (bivs, def, REGNO (def), INSERT);
855
856 biv->regno = REGNO (def);
857 biv->iv = *iv;
858 gcc_assert (!*slot);
859 *slot = biv;
860 }
861
862 /* Determines whether DEF is a biv and if so, stores its description
863 to *IV. */
864
865 static bool
866 iv_analyze_biv (rtx def, struct rtx_iv *iv)
867 {
868 rtx inner_step, outer_step;
869 enum machine_mode inner_mode, outer_mode;
870 enum iv_extend_code extend;
871 df_ref last_def;
872
873 if (dump_file)
874 {
875 fprintf (dump_file, "Analyzing ");
876 print_rtl (dump_file, def);
877 fprintf (dump_file, " for bivness.\n");
878 }
879
880 if (!REG_P (def))
881 {
882 if (!CONSTANT_P (def))
883 return false;
884
885 return iv_constant (iv, def, VOIDmode);
886 }
887
888 if (!latch_dominating_def (def, &last_def))
889 {
890 if (dump_file)
891 fprintf (dump_file, " not simple.\n");
892 return false;
893 }
894
895 if (!last_def)
896 return iv_constant (iv, def, VOIDmode);
897
898 if (analyzed_for_bivness_p (def, iv))
899 {
900 if (dump_file)
901 fprintf (dump_file, " already analysed.\n");
902 return iv->base != NULL_RTX;
903 }
904
905 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
906 &outer_mode, &outer_step))
907 {
908 iv->base = NULL_RTX;
909 goto end;
910 }
911
912 /* Loop transforms base to es (base + inner_step) + outer_step,
913 where es means extend of subreg between inner_mode and outer_mode.
914 The corresponding induction variable is
915
916 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
917
918 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
919 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
920 iv->mode = inner_mode;
921 iv->extend_mode = outer_mode;
922 iv->extend = extend;
923 iv->mult = const1_rtx;
924 iv->delta = outer_step;
925 iv->first_special = inner_mode != outer_mode;
926
927 end:
928 if (dump_file)
929 {
930 fprintf (dump_file, " ");
931 dump_iv_info (dump_file, iv);
932 fprintf (dump_file, "\n");
933 }
934
935 record_biv (def, iv);
936 return iv->base != NULL_RTX;
937 }
938
939 /* Analyzes expression RHS used at INSN and stores the result to *IV.
940 The mode of the induction variable is MODE. */
941
942 bool
943 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
944 {
945 rtx mby = NULL_RTX, tmp;
946 rtx op0 = NULL_RTX, op1 = NULL_RTX;
947 struct rtx_iv iv0, iv1;
948 enum rtx_code code = GET_CODE (rhs);
949 enum machine_mode omode = mode;
950
951 iv->mode = VOIDmode;
952 iv->base = NULL_RTX;
953 iv->step = NULL_RTX;
954
955 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
956
957 if (CONSTANT_P (rhs)
958 || REG_P (rhs)
959 || code == SUBREG)
960 {
961 if (!iv_analyze_op (insn, rhs, iv))
962 return false;
963
964 if (iv->mode == VOIDmode)
965 {
966 iv->mode = mode;
967 iv->extend_mode = mode;
968 }
969
970 return true;
971 }
972
973 switch (code)
974 {
975 case REG:
976 op0 = rhs;
977 break;
978
979 case SIGN_EXTEND:
980 case ZERO_EXTEND:
981 case NEG:
982 op0 = XEXP (rhs, 0);
983 omode = GET_MODE (op0);
984 break;
985
986 case PLUS:
987 case MINUS:
988 op0 = XEXP (rhs, 0);
989 op1 = XEXP (rhs, 1);
990 break;
991
992 case MULT:
993 op0 = XEXP (rhs, 0);
994 mby = XEXP (rhs, 1);
995 if (!CONSTANT_P (mby))
996 {
997 tmp = op0;
998 op0 = mby;
999 mby = tmp;
1000 }
1001 if (!CONSTANT_P (mby))
1002 return false;
1003 break;
1004
1005 case ASHIFT:
1006 op0 = XEXP (rhs, 0);
1007 mby = XEXP (rhs, 1);
1008 if (!CONSTANT_P (mby))
1009 return false;
1010 break;
1011
1012 default:
1013 return false;
1014 }
1015
1016 if (op0
1017 && !iv_analyze_expr (insn, op0, omode, &iv0))
1018 return false;
1019
1020 if (op1
1021 && !iv_analyze_expr (insn, op1, omode, &iv1))
1022 return false;
1023
1024 switch (code)
1025 {
1026 case SIGN_EXTEND:
1027 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1028 return false;
1029 break;
1030
1031 case ZERO_EXTEND:
1032 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1033 return false;
1034 break;
1035
1036 case NEG:
1037 if (!iv_neg (&iv0))
1038 return false;
1039 break;
1040
1041 case PLUS:
1042 case MINUS:
1043 if (!iv_add (&iv0, &iv1, code))
1044 return false;
1045 break;
1046
1047 case MULT:
1048 if (!iv_mult (&iv0, mby))
1049 return false;
1050 break;
1051
1052 case ASHIFT:
1053 if (!iv_shift (&iv0, mby))
1054 return false;
1055 break;
1056
1057 default:
1058 break;
1059 }
1060
1061 *iv = iv0;
1062 return iv->base != NULL_RTX;
1063 }
1064
1065 /* Analyzes iv DEF and stores the result to *IV. */
1066
1067 static bool
1068 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1069 {
1070 rtx insn = DF_REF_INSN (def);
1071 rtx reg = DF_REF_REG (def);
1072 rtx set, rhs;
1073
1074 if (dump_file)
1075 {
1076 fprintf (dump_file, "Analyzing def of ");
1077 print_rtl (dump_file, reg);
1078 fprintf (dump_file, " in insn ");
1079 print_rtl_single (dump_file, insn);
1080 }
1081
1082 check_iv_ref_table_size ();
1083 if (DF_REF_IV (def))
1084 {
1085 if (dump_file)
1086 fprintf (dump_file, " already analysed.\n");
1087 *iv = *DF_REF_IV (def);
1088 return iv->base != NULL_RTX;
1089 }
1090
1091 iv->mode = VOIDmode;
1092 iv->base = NULL_RTX;
1093 iv->step = NULL_RTX;
1094
1095 if (!REG_P (reg))
1096 return false;
1097
1098 set = single_set (insn);
1099 if (!set)
1100 return false;
1101
1102 if (!REG_P (SET_DEST (set)))
1103 return false;
1104
1105 gcc_assert (SET_DEST (set) == reg);
1106 rhs = find_reg_equal_equiv_note (insn);
1107 if (rhs)
1108 rhs = XEXP (rhs, 0);
1109 else
1110 rhs = SET_SRC (set);
1111
1112 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1113 record_iv (def, iv);
1114
1115 if (dump_file)
1116 {
1117 print_rtl (dump_file, reg);
1118 fprintf (dump_file, " in insn ");
1119 print_rtl_single (dump_file, insn);
1120 fprintf (dump_file, " is ");
1121 dump_iv_info (dump_file, iv);
1122 fprintf (dump_file, "\n");
1123 }
1124
1125 return iv->base != NULL_RTX;
1126 }
1127
1128 /* Analyzes operand OP of INSN and stores the result to *IV. */
1129
1130 static bool
1131 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1132 {
1133 df_ref def = NULL;
1134 enum iv_grd_result res;
1135
1136 if (dump_file)
1137 {
1138 fprintf (dump_file, "Analyzing operand ");
1139 print_rtl (dump_file, op);
1140 fprintf (dump_file, " of insn ");
1141 print_rtl_single (dump_file, insn);
1142 }
1143
1144 if (function_invariant_p (op))
1145 res = GRD_INVARIANT;
1146 else if (GET_CODE (op) == SUBREG)
1147 {
1148 if (!subreg_lowpart_p (op))
1149 return false;
1150
1151 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1152 return false;
1153
1154 return iv_subreg (iv, GET_MODE (op));
1155 }
1156 else
1157 {
1158 res = iv_get_reaching_def (insn, op, &def);
1159 if (res == GRD_INVALID)
1160 {
1161 if (dump_file)
1162 fprintf (dump_file, " not simple.\n");
1163 return false;
1164 }
1165 }
1166
1167 if (res == GRD_INVARIANT)
1168 {
1169 iv_constant (iv, op, VOIDmode);
1170
1171 if (dump_file)
1172 {
1173 fprintf (dump_file, " ");
1174 dump_iv_info (dump_file, iv);
1175 fprintf (dump_file, "\n");
1176 }
1177 return true;
1178 }
1179
1180 if (res == GRD_MAYBE_BIV)
1181 return iv_analyze_biv (op, iv);
1182
1183 return iv_analyze_def (def, iv);
1184 }
1185
1186 /* Analyzes value VAL at INSN and stores the result to *IV. */
1187
1188 bool
1189 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1190 {
1191 rtx reg;
1192
1193 /* We must find the insn in that val is used, so that we get to UD chains.
1194 Since the function is sometimes called on result of get_condition,
1195 this does not necessarily have to be directly INSN; scan also the
1196 following insns. */
1197 if (simple_reg_p (val))
1198 {
1199 if (GET_CODE (val) == SUBREG)
1200 reg = SUBREG_REG (val);
1201 else
1202 reg = val;
1203
1204 while (!df_find_use (insn, reg))
1205 insn = NEXT_INSN (insn);
1206 }
1207
1208 return iv_analyze_op (insn, val, iv);
1209 }
1210
1211 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1212
1213 bool
1214 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1215 {
1216 df_ref adef;
1217
1218 adef = df_find_def (insn, def);
1219 if (!adef)
1220 return false;
1221
1222 return iv_analyze_def (adef, iv);
1223 }
1224
1225 /* Checks whether definition of register REG in INSN is a basic induction
1226 variable. IV analysis must have been initialized (via a call to
1227 iv_analysis_loop_init) for this function to produce a result. */
1228
1229 bool
1230 biv_p (rtx insn, rtx reg)
1231 {
1232 struct rtx_iv iv;
1233 df_ref def, last_def;
1234
1235 if (!simple_reg_p (reg))
1236 return false;
1237
1238 def = df_find_def (insn, reg);
1239 gcc_assert (def != NULL);
1240 if (!latch_dominating_def (reg, &last_def))
1241 return false;
1242 if (last_def != def)
1243 return false;
1244
1245 if (!iv_analyze_biv (reg, &iv))
1246 return false;
1247
1248 return iv.step != const0_rtx;
1249 }
1250
1251 /* Calculates value of IV at ITERATION-th iteration. */
1252
1253 rtx
1254 get_iv_value (struct rtx_iv *iv, rtx iteration)
1255 {
1256 rtx val;
1257
1258 /* We would need to generate some if_then_else patterns, and so far
1259 it is not needed anywhere. */
1260 gcc_assert (!iv->first_special);
1261
1262 if (iv->step != const0_rtx && iteration != const0_rtx)
1263 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1264 simplify_gen_binary (MULT, iv->extend_mode,
1265 iv->step, iteration));
1266 else
1267 val = iv->base;
1268
1269 if (iv->extend_mode == iv->mode)
1270 return val;
1271
1272 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1273
1274 if (iv->extend == IV_UNKNOWN_EXTEND)
1275 return val;
1276
1277 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1278 iv->extend_mode, val, iv->mode);
1279 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1280 simplify_gen_binary (MULT, iv->extend_mode,
1281 iv->mult, val));
1282
1283 return val;
1284 }
1285
1286 /* Free the data for an induction variable analysis. */
1287
1288 void
1289 iv_analysis_done (void)
1290 {
1291 if (!clean_slate)
1292 {
1293 clear_iv_info ();
1294 clean_slate = true;
1295 df_finish_pass (true);
1296 htab_delete (bivs);
1297 free (iv_ref_table);
1298 iv_ref_table = NULL;
1299 iv_ref_table_size = 0;
1300 bivs = NULL;
1301 }
1302 }
1303
1304 /* Computes inverse to X modulo (1 << MOD). */
1305
1306 static unsigned HOST_WIDEST_INT
1307 inverse (unsigned HOST_WIDEST_INT x, int mod)
1308 {
1309 unsigned HOST_WIDEST_INT mask =
1310 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1311 unsigned HOST_WIDEST_INT rslt = 1;
1312 int i;
1313
1314 for (i = 0; i < mod - 1; i++)
1315 {
1316 rslt = (rslt * x) & mask;
1317 x = (x * x) & mask;
1318 }
1319
1320 return rslt;
1321 }
1322
1323 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1324
1325 static int
1326 altered_reg_used (rtx *reg, void *alt)
1327 {
1328 if (!REG_P (*reg))
1329 return 0;
1330
1331 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1332 }
1333
1334 /* Marks registers altered by EXPR in set ALT. */
1335
1336 static void
1337 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1338 {
1339 if (GET_CODE (expr) == SUBREG)
1340 expr = SUBREG_REG (expr);
1341 if (!REG_P (expr))
1342 return;
1343
1344 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1345 }
1346
1347 /* Checks whether RHS is simple enough to process. */
1348
1349 static bool
1350 simple_rhs_p (rtx rhs)
1351 {
1352 rtx op0, op1;
1353
1354 if (function_invariant_p (rhs)
1355 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1356 return true;
1357
1358 switch (GET_CODE (rhs))
1359 {
1360 case PLUS:
1361 case MINUS:
1362 case AND:
1363 op0 = XEXP (rhs, 0);
1364 op1 = XEXP (rhs, 1);
1365 /* Allow reg OP const and reg OP reg. */
1366 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1367 && !function_invariant_p (op0))
1368 return false;
1369 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1370 && !function_invariant_p (op1))
1371 return false;
1372
1373 return true;
1374
1375 case ASHIFT:
1376 case ASHIFTRT:
1377 case LSHIFTRT:
1378 case MULT:
1379 op0 = XEXP (rhs, 0);
1380 op1 = XEXP (rhs, 1);
1381 /* Allow reg OP const. */
1382 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1383 return false;
1384 if (!function_invariant_p (op1))
1385 return false;
1386
1387 return true;
1388
1389 default:
1390 return false;
1391 }
1392 }
1393
1394 /* If REG has a single definition, replace it with its known value in EXPR.
1395 Callback for for_each_rtx. */
1396
1397 static int
1398 replace_single_def_regs (rtx *reg, void *expr1)
1399 {
1400 unsigned regno;
1401 df_ref adef;
1402 rtx set, src;
1403 rtx *expr = (rtx *)expr1;
1404
1405 if (!REG_P (*reg))
1406 return 0;
1407
1408 regno = REGNO (*reg);
1409 for (;;)
1410 {
1411 rtx note;
1412 adef = DF_REG_DEF_CHAIN (regno);
1413 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1414 || DF_REF_IS_ARTIFICIAL (adef))
1415 return -1;
1416
1417 set = single_set (DF_REF_INSN (adef));
1418 if (set == NULL || !REG_P (SET_DEST (set))
1419 || REGNO (SET_DEST (set)) != regno)
1420 return -1;
1421
1422 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1423
1424 if (note && function_invariant_p (XEXP (note, 0)))
1425 {
1426 src = XEXP (note, 0);
1427 break;
1428 }
1429 src = SET_SRC (set);
1430
1431 if (REG_P (src))
1432 {
1433 regno = REGNO (src);
1434 continue;
1435 }
1436 break;
1437 }
1438 if (!function_invariant_p (src))
1439 return -1;
1440
1441 *expr = simplify_replace_rtx (*expr, *reg, src);
1442 return 1;
1443 }
1444
1445 /* A subroutine of simplify_using_initial_values, this function examines INSN
1446 to see if it contains a suitable set that we can use to make a replacement.
1447 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1448 the set; return false otherwise. */
1449
1450 static bool
1451 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1452 {
1453 rtx set = single_set (insn);
1454 rtx lhs = NULL_RTX, rhs;
1455
1456 if (!set)
1457 return false;
1458
1459 lhs = SET_DEST (set);
1460 if (!REG_P (lhs))
1461 return false;
1462
1463 rhs = find_reg_equal_equiv_note (insn);
1464 if (rhs)
1465 rhs = XEXP (rhs, 0);
1466 else
1467 rhs = SET_SRC (set);
1468
1469 if (!simple_rhs_p (rhs))
1470 return false;
1471
1472 *dest = lhs;
1473 *src = rhs;
1474 return true;
1475 }
1476
1477 /* Using the data returned by suitable_set_for_replacement, replace DEST
1478 with SRC in *EXPR and return the new expression. Also call
1479 replace_single_def_regs if the replacement changed something. */
1480 static void
1481 replace_in_expr (rtx *expr, rtx dest, rtx src)
1482 {
1483 rtx old = *expr;
1484 *expr = simplify_replace_rtx (*expr, dest, src);
1485 if (old == *expr)
1486 return;
1487 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1488 continue;
1489 }
1490
1491 /* Checks whether A implies B. */
1492
1493 static bool
1494 implies_p (rtx a, rtx b)
1495 {
1496 rtx op0, op1, opb0, opb1, r;
1497 enum machine_mode mode;
1498
1499 if (GET_CODE (a) == EQ)
1500 {
1501 op0 = XEXP (a, 0);
1502 op1 = XEXP (a, 1);
1503
1504 if (REG_P (op0))
1505 {
1506 r = simplify_replace_rtx (b, op0, op1);
1507 if (r == const_true_rtx)
1508 return true;
1509 }
1510
1511 if (REG_P (op1))
1512 {
1513 r = simplify_replace_rtx (b, op1, op0);
1514 if (r == const_true_rtx)
1515 return true;
1516 }
1517 }
1518
1519 if (b == const_true_rtx)
1520 return true;
1521
1522 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1523 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1524 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1525 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1526 return false;
1527
1528 op0 = XEXP (a, 0);
1529 op1 = XEXP (a, 1);
1530 opb0 = XEXP (b, 0);
1531 opb1 = XEXP (b, 1);
1532
1533 mode = GET_MODE (op0);
1534 if (mode != GET_MODE (opb0))
1535 mode = VOIDmode;
1536 else if (mode == VOIDmode)
1537 {
1538 mode = GET_MODE (op1);
1539 if (mode != GET_MODE (opb1))
1540 mode = VOIDmode;
1541 }
1542
1543 /* A < B implies A + 1 <= B. */
1544 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1545 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1546 {
1547
1548 if (GET_CODE (a) == GT)
1549 {
1550 r = op0;
1551 op0 = op1;
1552 op1 = r;
1553 }
1554
1555 if (GET_CODE (b) == GE)
1556 {
1557 r = opb0;
1558 opb0 = opb1;
1559 opb1 = r;
1560 }
1561
1562 if (SCALAR_INT_MODE_P (mode)
1563 && rtx_equal_p (op1, opb1)
1564 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1565 return true;
1566 return false;
1567 }
1568
1569 /* A < B or A > B imply A != B. TODO: Likewise
1570 A + n < B implies A != B + n if neither wraps. */
1571 if (GET_CODE (b) == NE
1572 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1573 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1574 {
1575 if (rtx_equal_p (op0, opb0)
1576 && rtx_equal_p (op1, opb1))
1577 return true;
1578 }
1579
1580 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1581 if (GET_CODE (a) == NE
1582 && op1 == const0_rtx)
1583 {
1584 if ((GET_CODE (b) == GTU
1585 && opb1 == const0_rtx)
1586 || (GET_CODE (b) == GEU
1587 && opb1 == const1_rtx))
1588 return rtx_equal_p (op0, opb0);
1589 }
1590
1591 /* A != N is equivalent to A - (N + 1) <u -1. */
1592 if (GET_CODE (a) == NE
1593 && CONST_INT_P (op1)
1594 && GET_CODE (b) == LTU
1595 && opb1 == constm1_rtx
1596 && GET_CODE (opb0) == PLUS
1597 && CONST_INT_P (XEXP (opb0, 1))
1598 /* Avoid overflows. */
1599 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1600 != ((unsigned HOST_WIDE_INT)1
1601 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1602 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1603 return rtx_equal_p (op0, XEXP (opb0, 0));
1604
1605 /* Likewise, A != N implies A - N > 0. */
1606 if (GET_CODE (a) == NE
1607 && CONST_INT_P (op1))
1608 {
1609 if (GET_CODE (b) == GTU
1610 && GET_CODE (opb0) == PLUS
1611 && opb1 == const0_rtx
1612 && CONST_INT_P (XEXP (opb0, 1))
1613 /* Avoid overflows. */
1614 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1615 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1616 && rtx_equal_p (XEXP (opb0, 0), op0))
1617 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1618 if (GET_CODE (b) == GEU
1619 && GET_CODE (opb0) == PLUS
1620 && opb1 == const1_rtx
1621 && CONST_INT_P (XEXP (opb0, 1))
1622 /* Avoid overflows. */
1623 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1624 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1625 && rtx_equal_p (XEXP (opb0, 0), op0))
1626 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1627 }
1628
1629 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1630 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1631 && CONST_INT_P (op1)
1632 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1633 || INTVAL (op1) >= 0)
1634 && GET_CODE (b) == LTU
1635 && CONST_INT_P (opb1)
1636 && rtx_equal_p (op0, opb0))
1637 return INTVAL (opb1) < 0;
1638
1639 return false;
1640 }
1641
1642 /* Canonicalizes COND so that
1643
1644 (1) Ensure that operands are ordered according to
1645 swap_commutative_operands_p.
1646 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1647 for GE, GEU, and LEU. */
1648
1649 rtx
1650 canon_condition (rtx cond)
1651 {
1652 rtx tem;
1653 rtx op0, op1;
1654 enum rtx_code code;
1655 enum machine_mode mode;
1656
1657 code = GET_CODE (cond);
1658 op0 = XEXP (cond, 0);
1659 op1 = XEXP (cond, 1);
1660
1661 if (swap_commutative_operands_p (op0, op1))
1662 {
1663 code = swap_condition (code);
1664 tem = op0;
1665 op0 = op1;
1666 op1 = tem;
1667 }
1668
1669 mode = GET_MODE (op0);
1670 if (mode == VOIDmode)
1671 mode = GET_MODE (op1);
1672 gcc_assert (mode != VOIDmode);
1673
1674 if (CONST_INT_P (op1)
1675 && GET_MODE_CLASS (mode) != MODE_CC
1676 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1677 {
1678 HOST_WIDE_INT const_val = INTVAL (op1);
1679 unsigned HOST_WIDE_INT uconst_val = const_val;
1680 unsigned HOST_WIDE_INT max_val
1681 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1682
1683 switch (code)
1684 {
1685 case LE:
1686 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1687 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1688 break;
1689
1690 /* When cross-compiling, const_val might be sign-extended from
1691 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1692 case GE:
1693 if ((HOST_WIDE_INT) (const_val & max_val)
1694 != (((HOST_WIDE_INT) 1
1695 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1696 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1697 break;
1698
1699 case LEU:
1700 if (uconst_val < max_val)
1701 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1702 break;
1703
1704 case GEU:
1705 if (uconst_val != 0)
1706 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1707 break;
1708
1709 default:
1710 break;
1711 }
1712 }
1713
1714 if (op0 != XEXP (cond, 0)
1715 || op1 != XEXP (cond, 1)
1716 || code != GET_CODE (cond)
1717 || GET_MODE (cond) != SImode)
1718 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1719
1720 return cond;
1721 }
1722
1723 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1724 set of altered regs. */
1725
1726 void
1727 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1728 {
1729 rtx rev, reve, exp = *expr;
1730
1731 /* If some register gets altered later, we do not really speak about its
1732 value at the time of comparison. */
1733 if (altered
1734 && for_each_rtx (&cond, altered_reg_used, altered))
1735 return;
1736
1737 if (GET_CODE (cond) == EQ
1738 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1739 {
1740 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1741 return;
1742 }
1743
1744 if (!COMPARISON_P (exp))
1745 return;
1746
1747 rev = reversed_condition (cond);
1748 reve = reversed_condition (exp);
1749
1750 cond = canon_condition (cond);
1751 exp = canon_condition (exp);
1752 if (rev)
1753 rev = canon_condition (rev);
1754 if (reve)
1755 reve = canon_condition (reve);
1756
1757 if (rtx_equal_p (exp, cond))
1758 {
1759 *expr = const_true_rtx;
1760 return;
1761 }
1762
1763 if (rev && rtx_equal_p (exp, rev))
1764 {
1765 *expr = const0_rtx;
1766 return;
1767 }
1768
1769 if (implies_p (cond, exp))
1770 {
1771 *expr = const_true_rtx;
1772 return;
1773 }
1774
1775 if (reve && implies_p (cond, reve))
1776 {
1777 *expr = const0_rtx;
1778 return;
1779 }
1780
1781 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1782 be false. */
1783 if (rev && implies_p (exp, rev))
1784 {
1785 *expr = const0_rtx;
1786 return;
1787 }
1788
1789 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1790 if (rev && reve && implies_p (reve, rev))
1791 {
1792 *expr = const_true_rtx;
1793 return;
1794 }
1795
1796 /* We would like to have some other tests here. TODO. */
1797
1798 return;
1799 }
1800
1801 /* Use relationship between A and *B to eventually eliminate *B.
1802 OP is the operation we consider. */
1803
1804 static void
1805 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1806 {
1807 switch (op)
1808 {
1809 case AND:
1810 /* If A implies *B, we may replace *B by true. */
1811 if (implies_p (a, *b))
1812 *b = const_true_rtx;
1813 break;
1814
1815 case IOR:
1816 /* If *B implies A, we may replace *B by false. */
1817 if (implies_p (*b, a))
1818 *b = const0_rtx;
1819 break;
1820
1821 default:
1822 gcc_unreachable ();
1823 }
1824 }
1825
1826 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1827 operation we consider. */
1828
1829 static void
1830 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1831 {
1832 rtx elt;
1833
1834 for (elt = tail; elt; elt = XEXP (elt, 1))
1835 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1836 for (elt = tail; elt; elt = XEXP (elt, 1))
1837 eliminate_implied_condition (op, XEXP (elt, 0), head);
1838 }
1839
1840 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1841 is a list, its elements are assumed to be combined using OP. */
1842
1843 static void
1844 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1845 {
1846 bool expression_valid;
1847 rtx head, tail, insn, cond_list, last_valid_expr;
1848 rtx neutral, aggr;
1849 regset altered, this_altered;
1850 edge e;
1851
1852 if (!*expr)
1853 return;
1854
1855 if (CONSTANT_P (*expr))
1856 return;
1857
1858 if (GET_CODE (*expr) == EXPR_LIST)
1859 {
1860 head = XEXP (*expr, 0);
1861 tail = XEXP (*expr, 1);
1862
1863 eliminate_implied_conditions (op, &head, tail);
1864
1865 switch (op)
1866 {
1867 case AND:
1868 neutral = const_true_rtx;
1869 aggr = const0_rtx;
1870 break;
1871
1872 case IOR:
1873 neutral = const0_rtx;
1874 aggr = const_true_rtx;
1875 break;
1876
1877 default:
1878 gcc_unreachable ();
1879 }
1880
1881 simplify_using_initial_values (loop, UNKNOWN, &head);
1882 if (head == aggr)
1883 {
1884 XEXP (*expr, 0) = aggr;
1885 XEXP (*expr, 1) = NULL_RTX;
1886 return;
1887 }
1888 else if (head == neutral)
1889 {
1890 *expr = tail;
1891 simplify_using_initial_values (loop, op, expr);
1892 return;
1893 }
1894 simplify_using_initial_values (loop, op, &tail);
1895
1896 if (tail && XEXP (tail, 0) == aggr)
1897 {
1898 *expr = tail;
1899 return;
1900 }
1901
1902 XEXP (*expr, 0) = head;
1903 XEXP (*expr, 1) = tail;
1904 return;
1905 }
1906
1907 gcc_assert (op == UNKNOWN);
1908
1909 for (;;)
1910 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1911 break;
1912 if (CONSTANT_P (*expr))
1913 return;
1914
1915 e = loop_preheader_edge (loop);
1916 if (e->src == ENTRY_BLOCK_PTR)
1917 return;
1918
1919 altered = ALLOC_REG_SET (&reg_obstack);
1920 this_altered = ALLOC_REG_SET (&reg_obstack);
1921
1922 expression_valid = true;
1923 last_valid_expr = *expr;
1924 cond_list = NULL_RTX;
1925 while (1)
1926 {
1927 insn = BB_END (e->src);
1928 if (any_condjump_p (insn))
1929 {
1930 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1931
1932 if (cond && (e->flags & EDGE_FALLTHRU))
1933 cond = reversed_condition (cond);
1934 if (cond)
1935 {
1936 rtx old = *expr;
1937 simplify_using_condition (cond, expr, altered);
1938 if (old != *expr)
1939 {
1940 rtx note;
1941 if (CONSTANT_P (*expr))
1942 goto out;
1943 for (note = cond_list; note; note = XEXP (note, 1))
1944 {
1945 simplify_using_condition (XEXP (note, 0), expr, altered);
1946 if (CONSTANT_P (*expr))
1947 goto out;
1948 }
1949 }
1950 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1951 }
1952 }
1953
1954 FOR_BB_INSNS_REVERSE (e->src, insn)
1955 {
1956 rtx src, dest;
1957 rtx old = *expr;
1958
1959 if (!INSN_P (insn))
1960 continue;
1961
1962 CLEAR_REG_SET (this_altered);
1963 note_stores (PATTERN (insn), mark_altered, this_altered);
1964 if (CALL_P (insn))
1965 {
1966 int i;
1967
1968 /* Kill all call clobbered registers. */
1969 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1970 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1971 SET_REGNO_REG_SET (this_altered, i);
1972 }
1973
1974 if (suitable_set_for_replacement (insn, &dest, &src))
1975 {
1976 rtx *pnote, *pnote_next;
1977
1978 replace_in_expr (expr, dest, src);
1979 if (CONSTANT_P (*expr))
1980 goto out;
1981
1982 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1983 {
1984 rtx note = *pnote;
1985 rtx old_cond = XEXP (note, 0);
1986
1987 pnote_next = &XEXP (note, 1);
1988 replace_in_expr (&XEXP (note, 0), dest, src);
1989
1990 /* We can no longer use a condition that has been simplified
1991 to a constant, and simplify_using_condition will abort if
1992 we try. */
1993 if (CONSTANT_P (XEXP (note, 0)))
1994 {
1995 *pnote = *pnote_next;
1996 pnote_next = pnote;
1997 free_EXPR_LIST_node (note);
1998 }
1999 /* Retry simplifications with this condition if either the
2000 expression or the condition changed. */
2001 else if (old_cond != XEXP (note, 0) || old != *expr)
2002 simplify_using_condition (XEXP (note, 0), expr, altered);
2003 }
2004 }
2005 else
2006 /* If we did not use this insn to make a replacement, any overlap
2007 between stores in this insn and our expression will cause the
2008 expression to become invalid. */
2009 if (for_each_rtx (expr, altered_reg_used, this_altered))
2010 goto out;
2011
2012 if (CONSTANT_P (*expr))
2013 goto out;
2014
2015 IOR_REG_SET (altered, this_altered);
2016
2017 /* If the expression now contains regs that have been altered, we
2018 can't return it to the caller. However, it is still valid for
2019 further simplification, so keep searching to see if we can
2020 eventually turn it into a constant. */
2021 if (for_each_rtx (expr, altered_reg_used, altered))
2022 expression_valid = false;
2023 if (expression_valid)
2024 last_valid_expr = *expr;
2025 }
2026
2027 if (!single_pred_p (e->src)
2028 || single_pred (e->src) == ENTRY_BLOCK_PTR)
2029 break;
2030 e = single_pred_edge (e->src);
2031 }
2032
2033 out:
2034 free_EXPR_LIST_list (&cond_list);
2035 if (!CONSTANT_P (*expr))
2036 *expr = last_valid_expr;
2037 FREE_REG_SET (altered);
2038 FREE_REG_SET (this_altered);
2039 }
2040
2041 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2042 that IV occurs as left operands of comparison COND and its signedness
2043 is SIGNED_P to DESC. */
2044
2045 static void
2046 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2047 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2048 {
2049 rtx mmin, mmax, cond_over, cond_under;
2050
2051 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2052 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2053 iv->base, mmin);
2054 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2055 iv->base, mmax);
2056
2057 switch (cond)
2058 {
2059 case LE:
2060 case LT:
2061 case LEU:
2062 case LTU:
2063 if (cond_under != const0_rtx)
2064 desc->infinite =
2065 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2066 if (cond_over != const0_rtx)
2067 desc->noloop_assumptions =
2068 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2069 break;
2070
2071 case GE:
2072 case GT:
2073 case GEU:
2074 case GTU:
2075 if (cond_over != const0_rtx)
2076 desc->infinite =
2077 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2078 if (cond_under != const0_rtx)
2079 desc->noloop_assumptions =
2080 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2081 break;
2082
2083 case NE:
2084 if (cond_over != const0_rtx)
2085 desc->infinite =
2086 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2087 if (cond_under != const0_rtx)
2088 desc->infinite =
2089 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2090 break;
2091
2092 default:
2093 gcc_unreachable ();
2094 }
2095
2096 iv->mode = mode;
2097 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2098 }
2099
2100 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2101 subregs of the same mode if possible (sometimes it is necessary to add
2102 some assumptions to DESC). */
2103
2104 static bool
2105 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2106 enum rtx_code cond, struct niter_desc *desc)
2107 {
2108 enum machine_mode comp_mode;
2109 bool signed_p;
2110
2111 /* If the ivs behave specially in the first iteration, or are
2112 added/multiplied after extending, we ignore them. */
2113 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2114 return false;
2115 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2116 return false;
2117
2118 /* If there is some extend, it must match signedness of the comparison. */
2119 switch (cond)
2120 {
2121 case LE:
2122 case LT:
2123 if (iv0->extend == IV_ZERO_EXTEND
2124 || iv1->extend == IV_ZERO_EXTEND)
2125 return false;
2126 signed_p = true;
2127 break;
2128
2129 case LEU:
2130 case LTU:
2131 if (iv0->extend == IV_SIGN_EXTEND
2132 || iv1->extend == IV_SIGN_EXTEND)
2133 return false;
2134 signed_p = false;
2135 break;
2136
2137 case NE:
2138 if (iv0->extend != IV_UNKNOWN_EXTEND
2139 && iv1->extend != IV_UNKNOWN_EXTEND
2140 && iv0->extend != iv1->extend)
2141 return false;
2142
2143 signed_p = false;
2144 if (iv0->extend != IV_UNKNOWN_EXTEND)
2145 signed_p = iv0->extend == IV_SIGN_EXTEND;
2146 if (iv1->extend != IV_UNKNOWN_EXTEND)
2147 signed_p = iv1->extend == IV_SIGN_EXTEND;
2148 break;
2149
2150 default:
2151 gcc_unreachable ();
2152 }
2153
2154 /* Values of both variables should be computed in the same mode. These
2155 might indeed be different, if we have comparison like
2156
2157 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2158
2159 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2160 in different modes. This does not seem impossible to handle, but
2161 it hardly ever occurs in practice.
2162
2163 The only exception is the case when one of operands is invariant.
2164 For example pentium 3 generates comparisons like
2165 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2166 definitely do not want this prevent the optimization. */
2167 comp_mode = iv0->extend_mode;
2168 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2169 comp_mode = iv1->extend_mode;
2170
2171 if (iv0->extend_mode != comp_mode)
2172 {
2173 if (iv0->mode != iv0->extend_mode
2174 || iv0->step != const0_rtx)
2175 return false;
2176
2177 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2178 comp_mode, iv0->base, iv0->mode);
2179 iv0->extend_mode = comp_mode;
2180 }
2181
2182 if (iv1->extend_mode != comp_mode)
2183 {
2184 if (iv1->mode != iv1->extend_mode
2185 || iv1->step != const0_rtx)
2186 return false;
2187
2188 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2189 comp_mode, iv1->base, iv1->mode);
2190 iv1->extend_mode = comp_mode;
2191 }
2192
2193 /* Check that both ivs belong to a range of a single mode. If one of the
2194 operands is an invariant, we may need to shorten it into the common
2195 mode. */
2196 if (iv0->mode == iv0->extend_mode
2197 && iv0->step == const0_rtx
2198 && iv0->mode != iv1->mode)
2199 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2200
2201 if (iv1->mode == iv1->extend_mode
2202 && iv1->step == const0_rtx
2203 && iv0->mode != iv1->mode)
2204 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2205
2206 if (iv0->mode != iv1->mode)
2207 return false;
2208
2209 desc->mode = iv0->mode;
2210 desc->signed_p = signed_p;
2211
2212 return true;
2213 }
2214
2215 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2216 result. This function is called from iv_number_of_iterations with
2217 a number of fields in DESC already filled in. OLD_NITER is the original
2218 expression for the number of iterations, before we tried to simplify it. */
2219
2220 static unsigned HOST_WIDEST_INT
2221 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2222 {
2223 rtx niter = desc->niter_expr;
2224 rtx mmin, mmax, cmp;
2225 unsigned HOST_WIDEST_INT nmax, inc;
2226
2227 if (GET_CODE (niter) == AND
2228 && CONST_INT_P (XEXP (niter, 0)))
2229 {
2230 nmax = INTVAL (XEXP (niter, 0));
2231 if (!(nmax & (nmax + 1)))
2232 return nmax;
2233 }
2234
2235 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2236 nmax = INTVAL (mmax) - INTVAL (mmin);
2237
2238 if (GET_CODE (niter) == UDIV)
2239 {
2240 if (!CONST_INT_P (XEXP (niter, 1)))
2241 return nmax;
2242 inc = INTVAL (XEXP (niter, 1));
2243 niter = XEXP (niter, 0);
2244 }
2245 else
2246 inc = 1;
2247
2248 /* We could use a binary search here, but for now improving the upper
2249 bound by just one eliminates one important corner case. */
2250 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2251 desc->mode, old_niter, mmax);
2252 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2253 if (cmp == const_true_rtx)
2254 {
2255 nmax--;
2256
2257 if (dump_file)
2258 fprintf (dump_file, ";; improved upper bound by one.\n");
2259 }
2260 return nmax / inc;
2261 }
2262
2263 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2264 the result into DESC. Very similar to determine_number_of_iterations
2265 (basically its rtl version), complicated by things like subregs. */
2266
2267 static void
2268 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2269 struct niter_desc *desc)
2270 {
2271 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2272 struct rtx_iv iv0, iv1, tmp_iv;
2273 rtx assumption, may_not_xform;
2274 enum rtx_code cond;
2275 enum machine_mode mode, comp_mode;
2276 rtx mmin, mmax, mode_mmin, mode_mmax;
2277 unsigned HOST_WIDEST_INT s, size, d, inv, max;
2278 HOST_WIDEST_INT up, down, inc, step_val;
2279 int was_sharp = false;
2280 rtx old_niter;
2281 bool step_is_pow2;
2282
2283 /* The meaning of these assumptions is this:
2284 if !assumptions
2285 then the rest of information does not have to be valid
2286 if noloop_assumptions then the loop does not roll
2287 if infinite then this exit is never used */
2288
2289 desc->assumptions = NULL_RTX;
2290 desc->noloop_assumptions = NULL_RTX;
2291 desc->infinite = NULL_RTX;
2292 desc->simple_p = true;
2293
2294 desc->const_iter = false;
2295 desc->niter_expr = NULL_RTX;
2296 desc->niter_max = 0;
2297 if (loop->any_upper_bound
2298 && double_int_fits_in_uhwi_p (loop->nb_iterations_upper_bound))
2299 desc->niter_max = loop->nb_iterations_upper_bound.low;
2300
2301 cond = GET_CODE (condition);
2302 gcc_assert (COMPARISON_P (condition));
2303
2304 mode = GET_MODE (XEXP (condition, 0));
2305 if (mode == VOIDmode)
2306 mode = GET_MODE (XEXP (condition, 1));
2307 /* The constant comparisons should be folded. */
2308 gcc_assert (mode != VOIDmode);
2309
2310 /* We only handle integers or pointers. */
2311 if (GET_MODE_CLASS (mode) != MODE_INT
2312 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2313 goto fail;
2314
2315 op0 = XEXP (condition, 0);
2316 if (!iv_analyze (insn, op0, &iv0))
2317 goto fail;
2318 if (iv0.extend_mode == VOIDmode)
2319 iv0.mode = iv0.extend_mode = mode;
2320
2321 op1 = XEXP (condition, 1);
2322 if (!iv_analyze (insn, op1, &iv1))
2323 goto fail;
2324 if (iv1.extend_mode == VOIDmode)
2325 iv1.mode = iv1.extend_mode = mode;
2326
2327 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2328 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2329 goto fail;
2330
2331 /* Check condition and normalize it. */
2332
2333 switch (cond)
2334 {
2335 case GE:
2336 case GT:
2337 case GEU:
2338 case GTU:
2339 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2340 cond = swap_condition (cond);
2341 break;
2342 case NE:
2343 case LE:
2344 case LEU:
2345 case LT:
2346 case LTU:
2347 break;
2348 default:
2349 goto fail;
2350 }
2351
2352 /* Handle extends. This is relatively nontrivial, so we only try in some
2353 easy cases, when we can canonicalize the ivs (possibly by adding some
2354 assumptions) to shape subreg (base + i * step). This function also fills
2355 in desc->mode and desc->signed_p. */
2356
2357 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2358 goto fail;
2359
2360 comp_mode = iv0.extend_mode;
2361 mode = iv0.mode;
2362 size = GET_MODE_BITSIZE (mode);
2363 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2364 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2365 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2366
2367 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2368 goto fail;
2369
2370 /* We can take care of the case of two induction variables chasing each other
2371 if the test is NE. I have never seen a loop using it, but still it is
2372 cool. */
2373 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2374 {
2375 if (cond != NE)
2376 goto fail;
2377
2378 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2379 iv1.step = const0_rtx;
2380 }
2381
2382 /* This is either infinite loop or the one that ends immediately, depending
2383 on initial values. Unswitching should remove this kind of conditions. */
2384 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2385 goto fail;
2386
2387 if (cond != NE)
2388 {
2389 if (iv0.step == const0_rtx)
2390 step_val = -INTVAL (iv1.step);
2391 else
2392 step_val = INTVAL (iv0.step);
2393
2394 /* Ignore loops of while (i-- < 10) type. */
2395 if (step_val < 0)
2396 goto fail;
2397
2398 step_is_pow2 = !(step_val & (step_val - 1));
2399 }
2400 else
2401 {
2402 /* We do not care about whether the step is power of two in this
2403 case. */
2404 step_is_pow2 = false;
2405 step_val = 0;
2406 }
2407
2408 /* Some more condition normalization. We must record some assumptions
2409 due to overflows. */
2410 switch (cond)
2411 {
2412 case LT:
2413 case LTU:
2414 /* We want to take care only of non-sharp relationals; this is easy,
2415 as in cases the overflow would make the transformation unsafe
2416 the loop does not roll. Seemingly it would make more sense to want
2417 to take care of sharp relationals instead, as NE is more similar to
2418 them, but the problem is that here the transformation would be more
2419 difficult due to possibly infinite loops. */
2420 if (iv0.step == const0_rtx)
2421 {
2422 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2423 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2424 mode_mmax);
2425 if (assumption == const_true_rtx)
2426 goto zero_iter_simplify;
2427 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2428 iv0.base, const1_rtx);
2429 }
2430 else
2431 {
2432 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2433 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2434 mode_mmin);
2435 if (assumption == const_true_rtx)
2436 goto zero_iter_simplify;
2437 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2438 iv1.base, constm1_rtx);
2439 }
2440
2441 if (assumption != const0_rtx)
2442 desc->noloop_assumptions =
2443 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2444 cond = (cond == LT) ? LE : LEU;
2445
2446 /* It will be useful to be able to tell the difference once more in
2447 LE -> NE reduction. */
2448 was_sharp = true;
2449 break;
2450 default: ;
2451 }
2452
2453 /* Take care of trivially infinite loops. */
2454 if (cond != NE)
2455 {
2456 if (iv0.step == const0_rtx)
2457 {
2458 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2459 if (rtx_equal_p (tmp, mode_mmin))
2460 {
2461 desc->infinite =
2462 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2463 /* Fill in the remaining fields somehow. */
2464 goto zero_iter_simplify;
2465 }
2466 }
2467 else
2468 {
2469 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2470 if (rtx_equal_p (tmp, mode_mmax))
2471 {
2472 desc->infinite =
2473 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2474 /* Fill in the remaining fields somehow. */
2475 goto zero_iter_simplify;
2476 }
2477 }
2478 }
2479
2480 /* If we can we want to take care of NE conditions instead of size
2481 comparisons, as they are much more friendly (most importantly
2482 this takes care of special handling of loops with step 1). We can
2483 do it if we first check that upper bound is greater or equal to
2484 lower bound, their difference is constant c modulo step and that
2485 there is not an overflow. */
2486 if (cond != NE)
2487 {
2488 if (iv0.step == const0_rtx)
2489 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2490 else
2491 step = iv0.step;
2492 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2493 delta = lowpart_subreg (mode, delta, comp_mode);
2494 delta = simplify_gen_binary (UMOD, mode, delta, step);
2495 may_xform = const0_rtx;
2496 may_not_xform = const_true_rtx;
2497
2498 if (CONST_INT_P (delta))
2499 {
2500 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2501 {
2502 /* A special case. We have transformed condition of type
2503 for (i = 0; i < 4; i += 4)
2504 into
2505 for (i = 0; i <= 3; i += 4)
2506 obviously if the test for overflow during that transformation
2507 passed, we cannot overflow here. Most importantly any
2508 loop with sharp end condition and step 1 falls into this
2509 category, so handling this case specially is definitely
2510 worth the troubles. */
2511 may_xform = const_true_rtx;
2512 }
2513 else if (iv0.step == const0_rtx)
2514 {
2515 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2516 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2517 bound = lowpart_subreg (mode, bound, comp_mode);
2518 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2519 may_xform = simplify_gen_relational (cond, SImode, mode,
2520 bound, tmp);
2521 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2522 SImode, mode,
2523 bound, tmp);
2524 }
2525 else
2526 {
2527 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2528 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2529 bound = lowpart_subreg (mode, bound, comp_mode);
2530 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2531 may_xform = simplify_gen_relational (cond, SImode, mode,
2532 tmp, bound);
2533 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2534 SImode, mode,
2535 tmp, bound);
2536 }
2537 }
2538
2539 if (may_xform != const0_rtx)
2540 {
2541 /* We perform the transformation always provided that it is not
2542 completely senseless. This is OK, as we would need this assumption
2543 to determine the number of iterations anyway. */
2544 if (may_xform != const_true_rtx)
2545 {
2546 /* If the step is a power of two and the final value we have
2547 computed overflows, the cycle is infinite. Otherwise it
2548 is nontrivial to compute the number of iterations. */
2549 if (step_is_pow2)
2550 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2551 desc->infinite);
2552 else
2553 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2554 desc->assumptions);
2555 }
2556
2557 /* We are going to lose some information about upper bound on
2558 number of iterations in this step, so record the information
2559 here. */
2560 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2561 if (CONST_INT_P (iv1.base))
2562 up = INTVAL (iv1.base);
2563 else
2564 up = INTVAL (mode_mmax) - inc;
2565 down = INTVAL (CONST_INT_P (iv0.base)
2566 ? iv0.base
2567 : mode_mmin);
2568 max = (up - down) / inc + 1;
2569 if (!desc->niter_max
2570 || max < desc->niter_max)
2571 desc->niter_max = max;
2572
2573 if (iv0.step == const0_rtx)
2574 {
2575 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2576 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2577 }
2578 else
2579 {
2580 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2581 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2582 }
2583
2584 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2585 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2586 assumption = simplify_gen_relational (reverse_condition (cond),
2587 SImode, mode, tmp0, tmp1);
2588 if (assumption == const_true_rtx)
2589 goto zero_iter_simplify;
2590 else if (assumption != const0_rtx)
2591 desc->noloop_assumptions =
2592 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2593 cond = NE;
2594 }
2595 }
2596
2597 /* Count the number of iterations. */
2598 if (cond == NE)
2599 {
2600 /* Everything we do here is just arithmetics modulo size of mode. This
2601 makes us able to do more involved computations of number of iterations
2602 than in other cases. First transform the condition into shape
2603 s * i <> c, with s positive. */
2604 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2605 iv0.base = const0_rtx;
2606 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2607 iv1.step = const0_rtx;
2608 if (INTVAL (iv0.step) < 0)
2609 {
2610 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2611 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2612 }
2613 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2614
2615 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2616 is infinite. Otherwise, the number of iterations is
2617 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2618 s = INTVAL (iv0.step); d = 1;
2619 while (s % 2 != 1)
2620 {
2621 s /= 2;
2622 d *= 2;
2623 size--;
2624 }
2625 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2626
2627 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2628 tmp = simplify_gen_binary (UMOD, mode, tmp1, GEN_INT (d));
2629 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2630 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2631
2632 tmp = simplify_gen_binary (UDIV, mode, tmp1, GEN_INT (d));
2633 inv = inverse (s, size);
2634 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2635 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2636 }
2637 else
2638 {
2639 if (iv1.step == const0_rtx)
2640 /* Condition in shape a + s * i <= b
2641 We must know that b + s does not overflow and a <= b + s and then we
2642 can compute number of iterations as (b + s - a) / s. (It might
2643 seem that we in fact could be more clever about testing the b + s
2644 overflow condition using some information about b - a mod s,
2645 but it was already taken into account during LE -> NE transform). */
2646 {
2647 step = iv0.step;
2648 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2649 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2650
2651 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2652 lowpart_subreg (mode, step,
2653 comp_mode));
2654 if (step_is_pow2)
2655 {
2656 rtx t0, t1;
2657
2658 /* If s is power of 2, we know that the loop is infinite if
2659 a % s <= b % s and b + s overflows. */
2660 assumption = simplify_gen_relational (reverse_condition (cond),
2661 SImode, mode,
2662 tmp1, bound);
2663
2664 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2665 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2666 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2667 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2668 desc->infinite =
2669 alloc_EXPR_LIST (0, assumption, desc->infinite);
2670 }
2671 else
2672 {
2673 assumption = simplify_gen_relational (cond, SImode, mode,
2674 tmp1, bound);
2675 desc->assumptions =
2676 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2677 }
2678
2679 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2680 tmp = lowpart_subreg (mode, tmp, comp_mode);
2681 assumption = simplify_gen_relational (reverse_condition (cond),
2682 SImode, mode, tmp0, tmp);
2683
2684 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2685 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2686 }
2687 else
2688 {
2689 /* Condition in shape a <= b - s * i
2690 We must know that a - s does not overflow and a - s <= b and then
2691 we can again compute number of iterations as (b - (a - s)) / s. */
2692 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2693 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2694 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2695
2696 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2697 lowpart_subreg (mode, step, comp_mode));
2698 if (step_is_pow2)
2699 {
2700 rtx t0, t1;
2701
2702 /* If s is power of 2, we know that the loop is infinite if
2703 a % s <= b % s and a - s overflows. */
2704 assumption = simplify_gen_relational (reverse_condition (cond),
2705 SImode, mode,
2706 bound, tmp0);
2707
2708 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2709 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2710 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2711 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2712 desc->infinite =
2713 alloc_EXPR_LIST (0, assumption, desc->infinite);
2714 }
2715 else
2716 {
2717 assumption = simplify_gen_relational (cond, SImode, mode,
2718 bound, tmp0);
2719 desc->assumptions =
2720 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2721 }
2722
2723 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2724 tmp = lowpart_subreg (mode, tmp, comp_mode);
2725 assumption = simplify_gen_relational (reverse_condition (cond),
2726 SImode, mode,
2727 tmp, tmp1);
2728 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2729 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2730 }
2731 if (assumption == const_true_rtx)
2732 goto zero_iter_simplify;
2733 else if (assumption != const0_rtx)
2734 desc->noloop_assumptions =
2735 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2736 delta = simplify_gen_binary (UDIV, mode, delta, step);
2737 desc->niter_expr = delta;
2738 }
2739
2740 old_niter = desc->niter_expr;
2741
2742 simplify_using_initial_values (loop, AND, &desc->assumptions);
2743 if (desc->assumptions
2744 && XEXP (desc->assumptions, 0) == const0_rtx)
2745 goto fail;
2746 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2747 simplify_using_initial_values (loop, IOR, &desc->infinite);
2748 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2749
2750 /* Rerun the simplification. Consider code (created by copying loop headers)
2751
2752 i = 0;
2753
2754 if (0 < n)
2755 {
2756 do
2757 {
2758 i++;
2759 } while (i < n);
2760 }
2761
2762 The first pass determines that i = 0, the second pass uses it to eliminate
2763 noloop assumption. */
2764
2765 simplify_using_initial_values (loop, AND, &desc->assumptions);
2766 if (desc->assumptions
2767 && XEXP (desc->assumptions, 0) == const0_rtx)
2768 goto fail;
2769 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2770 simplify_using_initial_values (loop, IOR, &desc->infinite);
2771 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2772
2773 if (desc->noloop_assumptions
2774 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2775 goto zero_iter;
2776
2777 if (CONST_INT_P (desc->niter_expr))
2778 {
2779 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2780
2781 desc->const_iter = true;
2782 desc->niter_max = desc->niter = val & GET_MODE_MASK (desc->mode);
2783 }
2784 else
2785 {
2786 max = determine_max_iter (loop, desc, old_niter);
2787 if (!desc->niter_max
2788 || max < desc->niter_max)
2789 desc->niter_max = max;
2790
2791 /* simplify_using_initial_values does a copy propagation on the registers
2792 in the expression for the number of iterations. This prolongs life
2793 ranges of registers and increases register pressure, and usually
2794 brings no gain (and if it happens to do, the cse pass will take care
2795 of it anyway). So prevent this behavior, unless it enabled us to
2796 derive that the number of iterations is a constant. */
2797 desc->niter_expr = old_niter;
2798 }
2799
2800 return;
2801
2802 zero_iter_simplify:
2803 /* Simplify the assumptions. */
2804 simplify_using_initial_values (loop, AND, &desc->assumptions);
2805 if (desc->assumptions
2806 && XEXP (desc->assumptions, 0) == const0_rtx)
2807 goto fail;
2808 simplify_using_initial_values (loop, IOR, &desc->infinite);
2809
2810 /* Fallthru. */
2811 zero_iter:
2812 desc->const_iter = true;
2813 desc->niter = 0;
2814 desc->niter_max = 0;
2815 desc->noloop_assumptions = NULL_RTX;
2816 desc->niter_expr = const0_rtx;
2817 return;
2818
2819 fail:
2820 desc->simple_p = false;
2821 return;
2822 }
2823
2824 /* Checks whether E is a simple exit from LOOP and stores its description
2825 into DESC. */
2826
2827 static void
2828 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2829 {
2830 basic_block exit_bb;
2831 rtx condition, at;
2832 edge ein;
2833
2834 exit_bb = e->src;
2835 desc->simple_p = false;
2836
2837 /* It must belong directly to the loop. */
2838 if (exit_bb->loop_father != loop)
2839 return;
2840
2841 /* It must be tested (at least) once during any iteration. */
2842 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2843 return;
2844
2845 /* It must end in a simple conditional jump. */
2846 if (!any_condjump_p (BB_END (exit_bb)))
2847 return;
2848
2849 ein = EDGE_SUCC (exit_bb, 0);
2850 if (ein == e)
2851 ein = EDGE_SUCC (exit_bb, 1);
2852
2853 desc->out_edge = e;
2854 desc->in_edge = ein;
2855
2856 /* Test whether the condition is suitable. */
2857 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2858 return;
2859
2860 if (ein->flags & EDGE_FALLTHRU)
2861 {
2862 condition = reversed_condition (condition);
2863 if (!condition)
2864 return;
2865 }
2866
2867 /* Check that we are able to determine number of iterations and fill
2868 in information about it. */
2869 iv_number_of_iterations (loop, at, condition, desc);
2870 }
2871
2872 /* Finds a simple exit of LOOP and stores its description into DESC. */
2873
2874 void
2875 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2876 {
2877 unsigned i;
2878 basic_block *body;
2879 edge e;
2880 struct niter_desc act;
2881 bool any = false;
2882 edge_iterator ei;
2883
2884 desc->simple_p = false;
2885 body = get_loop_body (loop);
2886
2887 for (i = 0; i < loop->num_nodes; i++)
2888 {
2889 FOR_EACH_EDGE (e, ei, body[i]->succs)
2890 {
2891 if (flow_bb_inside_loop_p (loop, e->dest))
2892 continue;
2893
2894 check_simple_exit (loop, e, &act);
2895 if (!act.simple_p)
2896 continue;
2897
2898 if (!any)
2899 any = true;
2900 else
2901 {
2902 /* Prefer constant iterations; the less the better. */
2903 if (!act.const_iter
2904 || (desc->const_iter && act.niter >= desc->niter))
2905 continue;
2906
2907 /* Also if the actual exit may be infinite, while the old one
2908 not, prefer the old one. */
2909 if (act.infinite && !desc->infinite)
2910 continue;
2911 }
2912
2913 *desc = act;
2914 }
2915 }
2916
2917 if (dump_file)
2918 {
2919 if (desc->simple_p)
2920 {
2921 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2922 fprintf (dump_file, " simple exit %d -> %d\n",
2923 desc->out_edge->src->index,
2924 desc->out_edge->dest->index);
2925 if (desc->assumptions)
2926 {
2927 fprintf (dump_file, " assumptions: ");
2928 print_rtl (dump_file, desc->assumptions);
2929 fprintf (dump_file, "\n");
2930 }
2931 if (desc->noloop_assumptions)
2932 {
2933 fprintf (dump_file, " does not roll if: ");
2934 print_rtl (dump_file, desc->noloop_assumptions);
2935 fprintf (dump_file, "\n");
2936 }
2937 if (desc->infinite)
2938 {
2939 fprintf (dump_file, " infinite if: ");
2940 print_rtl (dump_file, desc->infinite);
2941 fprintf (dump_file, "\n");
2942 }
2943
2944 fprintf (dump_file, " number of iterations: ");
2945 print_rtl (dump_file, desc->niter_expr);
2946 fprintf (dump_file, "\n");
2947
2948 fprintf (dump_file, " upper bound: ");
2949 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter_max);
2950 fprintf (dump_file, "\n");
2951 }
2952 else
2953 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
2954 }
2955
2956 free (body);
2957 }
2958
2959 /* Creates a simple loop description of LOOP if it was not computed
2960 already. */
2961
2962 struct niter_desc *
2963 get_simple_loop_desc (struct loop *loop)
2964 {
2965 struct niter_desc *desc = simple_loop_desc (loop);
2966
2967 if (desc)
2968 return desc;
2969
2970 /* At least desc->infinite is not always initialized by
2971 find_simple_loop_exit. */
2972 desc = XCNEW (struct niter_desc);
2973 iv_analysis_loop_init (loop);
2974 find_simple_exit (loop, desc);
2975 loop->aux = desc;
2976
2977 if (desc->simple_p && (desc->assumptions || desc->infinite))
2978 {
2979 const char *wording;
2980
2981 /* Assume that no overflow happens and that the loop is finite.
2982 We already warned at the tree level if we ran optimizations there. */
2983 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
2984 {
2985 if (desc->infinite)
2986 {
2987 wording =
2988 flag_unsafe_loop_optimizations
2989 ? N_("assuming that the loop is not infinite")
2990 : N_("cannot optimize possibly infinite loops");
2991 warning (OPT_Wunsafe_loop_optimizations, "%s",
2992 gettext (wording));
2993 }
2994 if (desc->assumptions)
2995 {
2996 wording =
2997 flag_unsafe_loop_optimizations
2998 ? N_("assuming that the loop counter does not overflow")
2999 : N_("cannot optimize loop, the loop counter may overflow");
3000 warning (OPT_Wunsafe_loop_optimizations, "%s",
3001 gettext (wording));
3002 }
3003 }
3004
3005 if (flag_unsafe_loop_optimizations)
3006 {
3007 desc->assumptions = NULL_RTX;
3008 desc->infinite = NULL_RTX;
3009 }
3010 }
3011
3012 return desc;
3013 }
3014
3015 /* Releases simple loop description for LOOP. */
3016
3017 void
3018 free_simple_loop_desc (struct loop *loop)
3019 {
3020 struct niter_desc *desc = simple_loop_desc (loop);
3021
3022 if (!desc)
3023 return;
3024
3025 free (desc);
3026 loop->aux = NULL;
3027 }