lto-cgraph.c (output_profile_summary, [...]): Use gcov streaming; stream hot bb thres...
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "params.h"
30 #include "expr.h"
31 #include "hashtab.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "dumpfile.h"
35
36 /* This pass performs loop unrolling and peeling. We only perform these
37 optimizations on innermost loops (with single exception) because
38 the impact on performance is greatest here, and we want to avoid
39 unnecessary code size growth. The gain is caused by greater sequentiality
40 of code, better code to optimize for further passes and in some cases
41 by fewer testings of exit conditions. The main problem is code growth,
42 that impacts performance negatively due to effect of caches.
43
44 What we do:
45
46 -- complete peeling of once-rolling loops; this is the above mentioned
47 exception, as this causes loop to be cancelled completely and
48 does not cause code growth
49 -- complete peeling of loops that roll (small) constant times.
50 -- simple peeling of first iterations of loops that do not roll much
51 (according to profile feedback)
52 -- unrolling of loops that roll constant times; this is almost always
53 win, as we get rid of exit condition tests.
54 -- unrolling of loops that roll number of times that we can compute
55 in runtime; we also get rid of exit condition tests here, but there
56 is the extra expense for calculating the number of iterations
57 -- simple unrolling of remaining loops; this is performed only if we
58 are asked to, as the gain is questionable in this case and often
59 it may even slow down the code
60 For more detailed descriptions of each of those, see comments at
61 appropriate function below.
62
63 There is a lot of parameters (defined and described in params.def) that
64 control how much we unroll/peel.
65
66 ??? A great problem is that we don't have a good way how to determine
67 how many times we should unroll the loop; the experiments I have made
68 showed that this choice may affect performance in order of several %.
69 */
70
71 /* Information about induction variables to split. */
72
73 struct iv_to_split
74 {
75 rtx insn; /* The insn in that the induction variable occurs. */
76 rtx orig_var; /* The variable (register) for the IV before split. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 struct iv_to_split *next; /* Next entry in walking order. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
86 };
87
88 /* Information about accumulators to expand. */
89
90 struct var_to_expand
91 {
92 rtx insn; /* The insn in that the variable expansion occurs. */
93 rtx reg; /* The accumulator which is expanded. */
94 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
95 struct var_to_expand *next; /* Next entry in walking order. */
96 enum rtx_code op; /* The type of the accumulation - addition, subtraction
97 or multiplication. */
98 int expansion_count; /* Count the number of expansions generated so far. */
99 int reuse_expansion; /* The expansion we intend to reuse to expand
100 the accumulator. If REUSE_EXPANSION is 0 reuse
101 the original accumulator. Else use
102 var_expansions[REUSE_EXPANSION - 1]. */
103 };
104
105 /* Information about optimization applied in
106 the unrolled loop. */
107
108 struct opt_info
109 {
110 htab_t insns_to_split; /* A hashtable of insns to split. */
111 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
112 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
113 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
114 to expand. */
115 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
116 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
117 unsigned first_new_block; /* The first basic block that was
118 duplicated. */
119 basic_block loop_exit; /* The loop exit basic block. */
120 basic_block loop_preheader; /* The loop preheader basic block. */
121 };
122
123 static void decide_unrolling_and_peeling (int);
124 static void peel_loops_completely (int);
125 static void decide_peel_simple (struct loop *, int);
126 static void decide_peel_once_rolling (struct loop *, int);
127 static void decide_peel_completely (struct loop *, int);
128 static void decide_unroll_stupid (struct loop *, int);
129 static void decide_unroll_constant_iterations (struct loop *, int);
130 static void decide_unroll_runtime_iterations (struct loop *, int);
131 static void peel_loop_simple (struct loop *);
132 static void peel_loop_completely (struct loop *);
133 static void unroll_loop_stupid (struct loop *);
134 static void unroll_loop_constant_iterations (struct loop *);
135 static void unroll_loop_runtime_iterations (struct loop *);
136 static struct opt_info *analyze_insns_in_loop (struct loop *);
137 static void opt_info_start_duplication (struct opt_info *);
138 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
139 static void free_opt_info (struct opt_info *);
140 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
141 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
142 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
143 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
144 static void insert_var_expansion_initialization (struct var_to_expand *,
145 basic_block);
146 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
147 basic_block);
148 static rtx get_expansion (struct var_to_expand *);
149
150 /* Emit a message summarizing the unroll or peel that will be
151 performed for LOOP, along with the loop's location LOCUS, if
152 appropriate given the dump or -fopt-info settings. */
153
154 static void
155 report_unroll_peel (struct loop *loop, location_t locus)
156 {
157 struct niter_desc *desc;
158 int niters = 0;
159 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
160
161 if (!dump_enabled_p ())
162 return;
163
164 /* In the special case where the loop never iterated, emit
165 a different message so that we don't report an unroll by 0.
166 This matches the equivalent message emitted during tree unrolling. */
167 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
168 && !loop->lpt_decision.times)
169 {
170 dump_printf_loc (report_flags, locus,
171 "Turned loop into non-loop; it never loops.\n");
172 return;
173 }
174
175 desc = get_simple_loop_desc (loop);
176
177 if (desc->const_iter)
178 niters = desc->niter;
179 else if (loop->header->count)
180 niters = expected_loop_iterations (loop);
181
182 dump_printf_loc (report_flags, locus,
183 "%s loop %d times",
184 (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
185 ? "Completely unroll"
186 : (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
187 ? "Peel" : "Unroll")),
188 loop->lpt_decision.times);
189 if (profile_info)
190 dump_printf (report_flags,
191 " (header execution count %d",
192 (int)loop->header->count);
193 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
194 dump_printf (report_flags,
195 "%s%s iterations %d)",
196 profile_info ? ", " : " (",
197 desc->const_iter ? "const" : "average",
198 niters);
199 else if (profile_info)
200 dump_printf (report_flags, ")");
201
202 dump_printf (report_flags, "\n");
203 }
204
205 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
206 void
207 unroll_and_peel_loops (int flags)
208 {
209 struct loop *loop;
210 bool changed = false;
211 loop_iterator li;
212
213 /* First perform complete loop peeling (it is almost surely a win,
214 and affects parameters for further decision a lot). */
215 peel_loops_completely (flags);
216
217 /* Now decide rest of unrolling and peeling. */
218 decide_unrolling_and_peeling (flags);
219
220 /* Scan the loops, inner ones first. */
221 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
222 {
223 /* And perform the appropriate transformations. */
224 switch (loop->lpt_decision.decision)
225 {
226 case LPT_PEEL_COMPLETELY:
227 /* Already done. */
228 gcc_unreachable ();
229 case LPT_PEEL_SIMPLE:
230 peel_loop_simple (loop);
231 changed = true;
232 break;
233 case LPT_UNROLL_CONSTANT:
234 unroll_loop_constant_iterations (loop);
235 changed = true;
236 break;
237 case LPT_UNROLL_RUNTIME:
238 unroll_loop_runtime_iterations (loop);
239 changed = true;
240 break;
241 case LPT_UNROLL_STUPID:
242 unroll_loop_stupid (loop);
243 changed = true;
244 break;
245 case LPT_NONE:
246 break;
247 default:
248 gcc_unreachable ();
249 }
250 }
251
252 if (changed)
253 {
254 calculate_dominance_info (CDI_DOMINATORS);
255 fix_loop_structure (NULL);
256 }
257
258 iv_analysis_done ();
259 }
260
261 /* Check whether exit of the LOOP is at the end of loop body. */
262
263 static bool
264 loop_exit_at_end_p (struct loop *loop)
265 {
266 struct niter_desc *desc = get_simple_loop_desc (loop);
267 rtx insn;
268
269 if (desc->in_edge->dest != loop->latch)
270 return false;
271
272 /* Check that the latch is empty. */
273 FOR_BB_INSNS (loop->latch, insn)
274 {
275 if (NONDEBUG_INSN_P (insn))
276 return false;
277 }
278
279 return true;
280 }
281
282 /* Depending on FLAGS, check whether to peel loops completely and do so. */
283 static void
284 peel_loops_completely (int flags)
285 {
286 struct loop *loop;
287 loop_iterator li;
288 bool changed = false;
289
290 /* Scan the loops, the inner ones first. */
291 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
292 {
293 loop->lpt_decision.decision = LPT_NONE;
294 location_t locus = get_loop_location (loop);
295
296 if (dump_enabled_p ())
297 dump_printf_loc (TDF_RTL, locus,
298 ";; *** Considering loop %d at BB %d for "
299 "complete peeling ***\n",
300 loop->num, loop->header->index);
301
302 loop->ninsns = num_loop_insns (loop);
303
304 decide_peel_once_rolling (loop, flags);
305 if (loop->lpt_decision.decision == LPT_NONE)
306 decide_peel_completely (loop, flags);
307
308 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
309 {
310 report_unroll_peel (loop, locus);
311 peel_loop_completely (loop);
312 changed = true;
313 }
314 }
315
316 if (changed)
317 {
318 calculate_dominance_info (CDI_DOMINATORS);
319 fix_loop_structure (NULL);
320 }
321 }
322
323 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
324 static void
325 decide_unrolling_and_peeling (int flags)
326 {
327 struct loop *loop;
328 loop_iterator li;
329
330 /* Scan the loops, inner ones first. */
331 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
332 {
333 loop->lpt_decision.decision = LPT_NONE;
334 location_t locus = get_loop_location (loop);
335
336 if (dump_enabled_p ())
337 dump_printf_loc (TDF_RTL, locus,
338 ";; *** Considering loop %d at BB %d for "
339 "unrolling and peeling ***\n",
340 loop->num, loop->header->index);
341
342 /* Do not peel cold areas. */
343 if (optimize_loop_for_size_p (loop))
344 {
345 if (dump_file)
346 fprintf (dump_file, ";; Not considering loop, cold area\n");
347 continue;
348 }
349
350 /* Can the loop be manipulated? */
351 if (!can_duplicate_loop_p (loop))
352 {
353 if (dump_file)
354 fprintf (dump_file,
355 ";; Not considering loop, cannot duplicate\n");
356 continue;
357 }
358
359 /* Skip non-innermost loops. */
360 if (loop->inner)
361 {
362 if (dump_file)
363 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
364 continue;
365 }
366
367 loop->ninsns = num_loop_insns (loop);
368 loop->av_ninsns = average_num_loop_insns (loop);
369
370 /* Try transformations one by one in decreasing order of
371 priority. */
372
373 decide_unroll_constant_iterations (loop, flags);
374 if (loop->lpt_decision.decision == LPT_NONE)
375 decide_unroll_runtime_iterations (loop, flags);
376 if (loop->lpt_decision.decision == LPT_NONE)
377 decide_unroll_stupid (loop, flags);
378 if (loop->lpt_decision.decision == LPT_NONE)
379 decide_peel_simple (loop, flags);
380
381 report_unroll_peel (loop, locus);
382 }
383 }
384
385 /* Decide whether the LOOP is once rolling and suitable for complete
386 peeling. */
387 static void
388 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
389 {
390 struct niter_desc *desc;
391
392 if (dump_file)
393 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
394
395 /* Is the loop small enough? */
396 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
397 {
398 if (dump_file)
399 fprintf (dump_file, ";; Not considering loop, is too big\n");
400 return;
401 }
402
403 /* Check for simple loops. */
404 desc = get_simple_loop_desc (loop);
405
406 /* Check number of iterations. */
407 if (!desc->simple_p
408 || desc->assumptions
409 || desc->infinite
410 || !desc->const_iter
411 || (desc->niter != 0
412 && max_loop_iterations_int (loop) != 0))
413 {
414 if (dump_file)
415 fprintf (dump_file,
416 ";; Unable to prove that the loop rolls exactly once\n");
417 return;
418 }
419
420 /* Success. */
421 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
422 }
423
424 /* Decide whether the LOOP is suitable for complete peeling. */
425 static void
426 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
427 {
428 unsigned npeel;
429 struct niter_desc *desc;
430
431 if (dump_file)
432 fprintf (dump_file, "\n;; Considering peeling completely\n");
433
434 /* Skip non-innermost loops. */
435 if (loop->inner)
436 {
437 if (dump_file)
438 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
439 return;
440 }
441
442 /* Do not peel cold areas. */
443 if (optimize_loop_for_size_p (loop))
444 {
445 if (dump_file)
446 fprintf (dump_file, ";; Not considering loop, cold area\n");
447 return;
448 }
449
450 /* Can the loop be manipulated? */
451 if (!can_duplicate_loop_p (loop))
452 {
453 if (dump_file)
454 fprintf (dump_file,
455 ";; Not considering loop, cannot duplicate\n");
456 return;
457 }
458
459 /* npeel = number of iterations to peel. */
460 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
461 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
462 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
463
464 /* Is the loop small enough? */
465 if (!npeel)
466 {
467 if (dump_file)
468 fprintf (dump_file, ";; Not considering loop, is too big\n");
469 return;
470 }
471
472 /* Check for simple loops. */
473 desc = get_simple_loop_desc (loop);
474
475 /* Check number of iterations. */
476 if (!desc->simple_p
477 || desc->assumptions
478 || !desc->const_iter
479 || desc->infinite)
480 {
481 if (dump_file)
482 fprintf (dump_file,
483 ";; Unable to prove that the loop iterates constant times\n");
484 return;
485 }
486
487 if (desc->niter > npeel - 1)
488 {
489 if (dump_file)
490 {
491 fprintf (dump_file,
492 ";; Not peeling loop completely, rolls too much (");
493 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
494 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
495 }
496 return;
497 }
498
499 /* Success. */
500 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
501 }
502
503 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
504 completely. The transformation done:
505
506 for (i = 0; i < 4; i++)
507 body;
508
509 ==>
510
511 i = 0;
512 body; i++;
513 body; i++;
514 body; i++;
515 body; i++;
516 */
517 static void
518 peel_loop_completely (struct loop *loop)
519 {
520 sbitmap wont_exit;
521 unsigned HOST_WIDE_INT npeel;
522 unsigned i;
523 vec<edge> remove_edges;
524 edge ein;
525 struct niter_desc *desc = get_simple_loop_desc (loop);
526 struct opt_info *opt_info = NULL;
527
528 npeel = desc->niter;
529
530 if (npeel)
531 {
532 bool ok;
533
534 wont_exit = sbitmap_alloc (npeel + 1);
535 bitmap_ones (wont_exit);
536 bitmap_clear_bit (wont_exit, 0);
537 if (desc->noloop_assumptions)
538 bitmap_clear_bit (wont_exit, 1);
539
540 remove_edges.create (0);
541
542 if (flag_split_ivs_in_unroller)
543 opt_info = analyze_insns_in_loop (loop);
544
545 opt_info_start_duplication (opt_info);
546 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
547 npeel,
548 wont_exit, desc->out_edge,
549 &remove_edges,
550 DLTHE_FLAG_UPDATE_FREQ
551 | DLTHE_FLAG_COMPLETTE_PEEL
552 | (opt_info
553 ? DLTHE_RECORD_COPY_NUMBER : 0));
554 gcc_assert (ok);
555
556 free (wont_exit);
557
558 if (opt_info)
559 {
560 apply_opt_in_copies (opt_info, npeel, false, true);
561 free_opt_info (opt_info);
562 }
563
564 /* Remove the exit edges. */
565 FOR_EACH_VEC_ELT (remove_edges, i, ein)
566 remove_path (ein);
567 remove_edges.release ();
568 }
569
570 ein = desc->in_edge;
571 free_simple_loop_desc (loop);
572
573 /* Now remove the unreachable part of the last iteration and cancel
574 the loop. */
575 remove_path (ein);
576
577 if (dump_file)
578 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
579 }
580
581 /* Decide whether to unroll LOOP iterating constant number of times
582 and how much. */
583
584 static void
585 decide_unroll_constant_iterations (struct loop *loop, int flags)
586 {
587 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
588 struct niter_desc *desc;
589 double_int iterations;
590
591 if (!(flags & UAP_UNROLL))
592 {
593 /* We were not asked to, just return back silently. */
594 return;
595 }
596
597 if (dump_file)
598 fprintf (dump_file,
599 "\n;; Considering unrolling loop with constant "
600 "number of iterations\n");
601
602 /* nunroll = total number of copies of the original loop body in
603 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
604 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
605 nunroll_by_av
606 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
607 if (nunroll > nunroll_by_av)
608 nunroll = nunroll_by_av;
609 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
610 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
611
612 /* Skip big loops. */
613 if (nunroll <= 1)
614 {
615 if (dump_file)
616 fprintf (dump_file, ";; Not considering loop, is too big\n");
617 return;
618 }
619
620 /* Check for simple loops. */
621 desc = get_simple_loop_desc (loop);
622
623 /* Check number of iterations. */
624 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
625 {
626 if (dump_file)
627 fprintf (dump_file,
628 ";; Unable to prove that the loop iterates constant times\n");
629 return;
630 }
631
632 /* Check whether the loop rolls enough to consider.
633 Consult also loop bounds and profile; in the case the loop has more
634 than one exit it may well loop less than determined maximal number
635 of iterations. */
636 if (desc->niter < 2 * nunroll
637 || ((estimated_loop_iterations (loop, &iterations)
638 || max_loop_iterations (loop, &iterations))
639 && iterations.ult (double_int::from_shwi (2 * nunroll))))
640 {
641 if (dump_file)
642 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
643 return;
644 }
645
646 /* Success; now compute number of iterations to unroll. We alter
647 nunroll so that as few as possible copies of loop body are
648 necessary, while still not decreasing the number of unrollings
649 too much (at most by 1). */
650 best_copies = 2 * nunroll + 10;
651
652 i = 2 * nunroll + 2;
653 if (i - 1 >= desc->niter)
654 i = desc->niter - 2;
655
656 for (; i >= nunroll - 1; i--)
657 {
658 unsigned exit_mod = desc->niter % (i + 1);
659
660 if (!loop_exit_at_end_p (loop))
661 n_copies = exit_mod + i + 1;
662 else if (exit_mod != (unsigned) i
663 || desc->noloop_assumptions != NULL_RTX)
664 n_copies = exit_mod + i + 2;
665 else
666 n_copies = i + 1;
667
668 if (n_copies < best_copies)
669 {
670 best_copies = n_copies;
671 best_unroll = i;
672 }
673 }
674
675 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
676 loop->lpt_decision.times = best_unroll;
677 }
678
679 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
680 The transformation does this:
681
682 for (i = 0; i < 102; i++)
683 body;
684
685 ==> (LOOP->LPT_DECISION.TIMES == 3)
686
687 i = 0;
688 body; i++;
689 body; i++;
690 while (i < 102)
691 {
692 body; i++;
693 body; i++;
694 body; i++;
695 body; i++;
696 }
697 */
698 static void
699 unroll_loop_constant_iterations (struct loop *loop)
700 {
701 unsigned HOST_WIDE_INT niter;
702 unsigned exit_mod;
703 sbitmap wont_exit;
704 unsigned i;
705 vec<edge> remove_edges;
706 edge e;
707 unsigned max_unroll = loop->lpt_decision.times;
708 struct niter_desc *desc = get_simple_loop_desc (loop);
709 bool exit_at_end = loop_exit_at_end_p (loop);
710 struct opt_info *opt_info = NULL;
711 bool ok;
712
713 niter = desc->niter;
714
715 /* Should not get here (such loop should be peeled instead). */
716 gcc_assert (niter > max_unroll + 1);
717
718 exit_mod = niter % (max_unroll + 1);
719
720 wont_exit = sbitmap_alloc (max_unroll + 1);
721 bitmap_ones (wont_exit);
722
723 remove_edges.create (0);
724 if (flag_split_ivs_in_unroller
725 || flag_variable_expansion_in_unroller)
726 opt_info = analyze_insns_in_loop (loop);
727
728 if (!exit_at_end)
729 {
730 /* The exit is not at the end of the loop; leave exit test
731 in the first copy, so that the loops that start with test
732 of exit condition have continuous body after unrolling. */
733
734 if (dump_file)
735 fprintf (dump_file, ";; Condition at beginning of loop.\n");
736
737 /* Peel exit_mod iterations. */
738 bitmap_clear_bit (wont_exit, 0);
739 if (desc->noloop_assumptions)
740 bitmap_clear_bit (wont_exit, 1);
741
742 if (exit_mod)
743 {
744 opt_info_start_duplication (opt_info);
745 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
746 exit_mod,
747 wont_exit, desc->out_edge,
748 &remove_edges,
749 DLTHE_FLAG_UPDATE_FREQ
750 | (opt_info && exit_mod > 1
751 ? DLTHE_RECORD_COPY_NUMBER
752 : 0));
753 gcc_assert (ok);
754
755 if (opt_info && exit_mod > 1)
756 apply_opt_in_copies (opt_info, exit_mod, false, false);
757
758 desc->noloop_assumptions = NULL_RTX;
759 desc->niter -= exit_mod;
760 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod);
761 if (loop->any_estimate
762 && double_int::from_uhwi (exit_mod).ule
763 (loop->nb_iterations_estimate))
764 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod);
765 else
766 loop->any_estimate = false;
767 }
768
769 bitmap_set_bit (wont_exit, 1);
770 }
771 else
772 {
773 /* Leave exit test in last copy, for the same reason as above if
774 the loop tests the condition at the end of loop body. */
775
776 if (dump_file)
777 fprintf (dump_file, ";; Condition at end of loop.\n");
778
779 /* We know that niter >= max_unroll + 2; so we do not need to care of
780 case when we would exit before reaching the loop. So just peel
781 exit_mod + 1 iterations. */
782 if (exit_mod != max_unroll
783 || desc->noloop_assumptions)
784 {
785 bitmap_clear_bit (wont_exit, 0);
786 if (desc->noloop_assumptions)
787 bitmap_clear_bit (wont_exit, 1);
788
789 opt_info_start_duplication (opt_info);
790 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
791 exit_mod + 1,
792 wont_exit, desc->out_edge,
793 &remove_edges,
794 DLTHE_FLAG_UPDATE_FREQ
795 | (opt_info && exit_mod > 0
796 ? DLTHE_RECORD_COPY_NUMBER
797 : 0));
798 gcc_assert (ok);
799
800 if (opt_info && exit_mod > 0)
801 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
802
803 desc->niter -= exit_mod + 1;
804 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod + 1);
805 if (loop->any_estimate
806 && double_int::from_uhwi (exit_mod + 1).ule
807 (loop->nb_iterations_estimate))
808 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod + 1);
809 else
810 loop->any_estimate = false;
811 desc->noloop_assumptions = NULL_RTX;
812
813 bitmap_set_bit (wont_exit, 0);
814 bitmap_set_bit (wont_exit, 1);
815 }
816
817 bitmap_clear_bit (wont_exit, max_unroll);
818 }
819
820 /* Now unroll the loop. */
821
822 opt_info_start_duplication (opt_info);
823 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
824 max_unroll,
825 wont_exit, desc->out_edge,
826 &remove_edges,
827 DLTHE_FLAG_UPDATE_FREQ
828 | (opt_info
829 ? DLTHE_RECORD_COPY_NUMBER
830 : 0));
831 gcc_assert (ok);
832
833 if (opt_info)
834 {
835 apply_opt_in_copies (opt_info, max_unroll, true, true);
836 free_opt_info (opt_info);
837 }
838
839 free (wont_exit);
840
841 if (exit_at_end)
842 {
843 basic_block exit_block = get_bb_copy (desc->in_edge->src);
844 /* Find a new in and out edge; they are in the last copy we have made. */
845
846 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
847 {
848 desc->out_edge = EDGE_SUCC (exit_block, 0);
849 desc->in_edge = EDGE_SUCC (exit_block, 1);
850 }
851 else
852 {
853 desc->out_edge = EDGE_SUCC (exit_block, 1);
854 desc->in_edge = EDGE_SUCC (exit_block, 0);
855 }
856 }
857
858 desc->niter /= max_unroll + 1;
859 loop->nb_iterations_upper_bound
860 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
861 + 1),
862 TRUNC_DIV_EXPR);
863 if (loop->any_estimate)
864 loop->nb_iterations_estimate
865 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
866 + 1),
867 TRUNC_DIV_EXPR);
868 desc->niter_expr = GEN_INT (desc->niter);
869
870 /* Remove the edges. */
871 FOR_EACH_VEC_ELT (remove_edges, i, e)
872 remove_path (e);
873 remove_edges.release ();
874
875 if (dump_file)
876 fprintf (dump_file,
877 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
878 max_unroll, num_loop_insns (loop));
879 }
880
881 /* Decide whether to unroll LOOP iterating runtime computable number of times
882 and how much. */
883 static void
884 decide_unroll_runtime_iterations (struct loop *loop, int flags)
885 {
886 unsigned nunroll, nunroll_by_av, i;
887 struct niter_desc *desc;
888 double_int iterations;
889
890 if (!(flags & UAP_UNROLL))
891 {
892 /* We were not asked to, just return back silently. */
893 return;
894 }
895
896 if (dump_file)
897 fprintf (dump_file,
898 "\n;; Considering unrolling loop with runtime "
899 "computable number of iterations\n");
900
901 /* nunroll = total number of copies of the original loop body in
902 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
903 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
904 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
905 if (nunroll > nunroll_by_av)
906 nunroll = nunroll_by_av;
907 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
908 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
909
910 if (targetm.loop_unroll_adjust)
911 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
912
913 /* Skip big loops. */
914 if (nunroll <= 1)
915 {
916 if (dump_file)
917 fprintf (dump_file, ";; Not considering loop, is too big\n");
918 return;
919 }
920
921 /* Check for simple loops. */
922 desc = get_simple_loop_desc (loop);
923
924 /* Check simpleness. */
925 if (!desc->simple_p || desc->assumptions)
926 {
927 if (dump_file)
928 fprintf (dump_file,
929 ";; Unable to prove that the number of iterations "
930 "can be counted in runtime\n");
931 return;
932 }
933
934 if (desc->const_iter)
935 {
936 if (dump_file)
937 fprintf (dump_file, ";; Loop iterates constant times\n");
938 return;
939 }
940
941 /* Check whether the loop rolls. */
942 if ((estimated_loop_iterations (loop, &iterations)
943 || max_loop_iterations (loop, &iterations))
944 && iterations.ult (double_int::from_shwi (2 * nunroll)))
945 {
946 if (dump_file)
947 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
948 return;
949 }
950
951 /* Success; now force nunroll to be power of 2, as we are unable to
952 cope with overflows in computation of number of iterations. */
953 for (i = 1; 2 * i <= nunroll; i *= 2)
954 continue;
955
956 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
957 loop->lpt_decision.times = i - 1;
958 }
959
960 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
961 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
962 and NULL is returned instead. */
963
964 basic_block
965 split_edge_and_insert (edge e, rtx insns)
966 {
967 basic_block bb;
968
969 if (!insns)
970 return NULL;
971 bb = split_edge (e);
972 emit_insn_after (insns, BB_END (bb));
973
974 /* ??? We used to assume that INSNS can contain control flow insns, and
975 that we had to try to find sub basic blocks in BB to maintain a valid
976 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
977 and call break_superblocks when going out of cfglayout mode. But it
978 turns out that this never happens; and that if it does ever happen,
979 the TODO_verify_flow at the end of the RTL loop passes would fail.
980
981 There are two reasons why we expected we could have control flow insns
982 in INSNS. The first is when a comparison has to be done in parts, and
983 the second is when the number of iterations is computed for loops with
984 the number of iterations known at runtime. In both cases, test cases
985 to get control flow in INSNS appear to be impossible to construct:
986
987 * If do_compare_rtx_and_jump needs several branches to do comparison
988 in a mode that needs comparison by parts, we cannot analyze the
989 number of iterations of the loop, and we never get to unrolling it.
990
991 * The code in expand_divmod that was suspected to cause creation of
992 branching code seems to be only accessed for signed division. The
993 divisions used by # of iterations analysis are always unsigned.
994 Problems might arise on architectures that emits branching code
995 for some operations that may appear in the unroller (especially
996 for division), but we have no such architectures.
997
998 Considering all this, it was decided that we should for now assume
999 that INSNS can in theory contain control flow insns, but in practice
1000 it never does. So we don't handle the theoretical case, and should
1001 a real failure ever show up, we have a pretty good clue for how to
1002 fix it. */
1003
1004 return bb;
1005 }
1006
1007 /* Unroll LOOP for which we are able to count number of iterations in runtime
1008 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1009 extra care for case n < 0):
1010
1011 for (i = 0; i < n; i++)
1012 body;
1013
1014 ==> (LOOP->LPT_DECISION.TIMES == 3)
1015
1016 i = 0;
1017 mod = n % 4;
1018
1019 switch (mod)
1020 {
1021 case 3:
1022 body; i++;
1023 case 2:
1024 body; i++;
1025 case 1:
1026 body; i++;
1027 case 0: ;
1028 }
1029
1030 while (i < n)
1031 {
1032 body; i++;
1033 body; i++;
1034 body; i++;
1035 body; i++;
1036 }
1037 */
1038 static void
1039 unroll_loop_runtime_iterations (struct loop *loop)
1040 {
1041 rtx old_niter, niter, init_code, branch_code, tmp;
1042 unsigned i, j, p;
1043 basic_block preheader, *body, swtch, ezc_swtch;
1044 vec<basic_block> dom_bbs;
1045 sbitmap wont_exit;
1046 int may_exit_copy;
1047 unsigned n_peel;
1048 vec<edge> remove_edges;
1049 edge e;
1050 bool extra_zero_check, last_may_exit;
1051 unsigned max_unroll = loop->lpt_decision.times;
1052 struct niter_desc *desc = get_simple_loop_desc (loop);
1053 bool exit_at_end = loop_exit_at_end_p (loop);
1054 struct opt_info *opt_info = NULL;
1055 bool ok;
1056
1057 if (flag_split_ivs_in_unroller
1058 || flag_variable_expansion_in_unroller)
1059 opt_info = analyze_insns_in_loop (loop);
1060
1061 /* Remember blocks whose dominators will have to be updated. */
1062 dom_bbs.create (0);
1063
1064 body = get_loop_body (loop);
1065 for (i = 0; i < loop->num_nodes; i++)
1066 {
1067 vec<basic_block> ldom;
1068 basic_block bb;
1069
1070 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1071 FOR_EACH_VEC_ELT (ldom, j, bb)
1072 if (!flow_bb_inside_loop_p (loop, bb))
1073 dom_bbs.safe_push (bb);
1074
1075 ldom.release ();
1076 }
1077 free (body);
1078
1079 if (!exit_at_end)
1080 {
1081 /* Leave exit in first copy (for explanation why see comment in
1082 unroll_loop_constant_iterations). */
1083 may_exit_copy = 0;
1084 n_peel = max_unroll - 1;
1085 extra_zero_check = true;
1086 last_may_exit = false;
1087 }
1088 else
1089 {
1090 /* Leave exit in last copy (for explanation why see comment in
1091 unroll_loop_constant_iterations). */
1092 may_exit_copy = max_unroll;
1093 n_peel = max_unroll;
1094 extra_zero_check = false;
1095 last_may_exit = true;
1096 }
1097
1098 /* Get expression for number of iterations. */
1099 start_sequence ();
1100 old_niter = niter = gen_reg_rtx (desc->mode);
1101 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1102 if (tmp != niter)
1103 emit_move_insn (niter, tmp);
1104
1105 /* Count modulo by ANDing it with max_unroll; we use the fact that
1106 the number of unrollings is a power of two, and thus this is correct
1107 even if there is overflow in the computation. */
1108 niter = expand_simple_binop (desc->mode, AND,
1109 niter,
1110 GEN_INT (max_unroll),
1111 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1112
1113 init_code = get_insns ();
1114 end_sequence ();
1115 unshare_all_rtl_in_chain (init_code);
1116
1117 /* Precondition the loop. */
1118 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1119
1120 remove_edges.create (0);
1121
1122 wont_exit = sbitmap_alloc (max_unroll + 2);
1123
1124 /* Peel the first copy of loop body (almost always we must leave exit test
1125 here; the only exception is when we have extra zero check and the number
1126 of iterations is reliable. Also record the place of (possible) extra
1127 zero check. */
1128 bitmap_clear (wont_exit);
1129 if (extra_zero_check
1130 && !desc->noloop_assumptions)
1131 bitmap_set_bit (wont_exit, 1);
1132 ezc_swtch = loop_preheader_edge (loop)->src;
1133 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1134 1, wont_exit, desc->out_edge,
1135 &remove_edges,
1136 DLTHE_FLAG_UPDATE_FREQ);
1137 gcc_assert (ok);
1138
1139 /* Record the place where switch will be built for preconditioning. */
1140 swtch = split_edge (loop_preheader_edge (loop));
1141
1142 for (i = 0; i < n_peel; i++)
1143 {
1144 /* Peel the copy. */
1145 bitmap_clear (wont_exit);
1146 if (i != n_peel - 1 || !last_may_exit)
1147 bitmap_set_bit (wont_exit, 1);
1148 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1149 1, wont_exit, desc->out_edge,
1150 &remove_edges,
1151 DLTHE_FLAG_UPDATE_FREQ);
1152 gcc_assert (ok);
1153
1154 /* Create item for switch. */
1155 j = n_peel - i - (extra_zero_check ? 0 : 1);
1156 p = REG_BR_PROB_BASE / (i + 2);
1157
1158 preheader = split_edge (loop_preheader_edge (loop));
1159 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1160 block_label (preheader), p,
1161 NULL_RTX);
1162
1163 /* We rely on the fact that the compare and jump cannot be optimized out,
1164 and hence the cfg we create is correct. */
1165 gcc_assert (branch_code != NULL_RTX);
1166
1167 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1168 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1169 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1170 e = make_edge (swtch, preheader,
1171 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1172 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1173 e->probability = p;
1174 }
1175
1176 if (extra_zero_check)
1177 {
1178 /* Add branch for zero iterations. */
1179 p = REG_BR_PROB_BASE / (max_unroll + 1);
1180 swtch = ezc_swtch;
1181 preheader = split_edge (loop_preheader_edge (loop));
1182 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1183 block_label (preheader), p,
1184 NULL_RTX);
1185 gcc_assert (branch_code != NULL_RTX);
1186
1187 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1188 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1189 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1190 e = make_edge (swtch, preheader,
1191 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1192 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1193 e->probability = p;
1194 }
1195
1196 /* Recount dominators for outer blocks. */
1197 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1198
1199 /* And unroll loop. */
1200
1201 bitmap_ones (wont_exit);
1202 bitmap_clear_bit (wont_exit, may_exit_copy);
1203 opt_info_start_duplication (opt_info);
1204
1205 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1206 max_unroll,
1207 wont_exit, desc->out_edge,
1208 &remove_edges,
1209 DLTHE_FLAG_UPDATE_FREQ
1210 | (opt_info
1211 ? DLTHE_RECORD_COPY_NUMBER
1212 : 0));
1213 gcc_assert (ok);
1214
1215 if (opt_info)
1216 {
1217 apply_opt_in_copies (opt_info, max_unroll, true, true);
1218 free_opt_info (opt_info);
1219 }
1220
1221 free (wont_exit);
1222
1223 if (exit_at_end)
1224 {
1225 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1226 /* Find a new in and out edge; they are in the last copy we have
1227 made. */
1228
1229 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1230 {
1231 desc->out_edge = EDGE_SUCC (exit_block, 0);
1232 desc->in_edge = EDGE_SUCC (exit_block, 1);
1233 }
1234 else
1235 {
1236 desc->out_edge = EDGE_SUCC (exit_block, 1);
1237 desc->in_edge = EDGE_SUCC (exit_block, 0);
1238 }
1239 }
1240
1241 /* Remove the edges. */
1242 FOR_EACH_VEC_ELT (remove_edges, i, e)
1243 remove_path (e);
1244 remove_edges.release ();
1245
1246 /* We must be careful when updating the number of iterations due to
1247 preconditioning and the fact that the value must be valid at entry
1248 of the loop. After passing through the above code, we see that
1249 the correct new number of iterations is this: */
1250 gcc_assert (!desc->const_iter);
1251 desc->niter_expr =
1252 simplify_gen_binary (UDIV, desc->mode, old_niter,
1253 GEN_INT (max_unroll + 1));
1254 loop->nb_iterations_upper_bound
1255 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
1256 + 1),
1257 TRUNC_DIV_EXPR);
1258 if (loop->any_estimate)
1259 loop->nb_iterations_estimate
1260 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
1261 + 1),
1262 TRUNC_DIV_EXPR);
1263 if (exit_at_end)
1264 {
1265 desc->niter_expr =
1266 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1267 desc->noloop_assumptions = NULL_RTX;
1268 --loop->nb_iterations_upper_bound;
1269 if (loop->any_estimate
1270 && loop->nb_iterations_estimate != double_int_zero)
1271 --loop->nb_iterations_estimate;
1272 else
1273 loop->any_estimate = false;
1274 }
1275
1276 if (dump_file)
1277 fprintf (dump_file,
1278 ";; Unrolled loop %d times, counting # of iterations "
1279 "in runtime, %i insns\n",
1280 max_unroll, num_loop_insns (loop));
1281
1282 dom_bbs.release ();
1283 }
1284
1285 /* Decide whether to simply peel LOOP and how much. */
1286 static void
1287 decide_peel_simple (struct loop *loop, int flags)
1288 {
1289 unsigned npeel;
1290 double_int iterations;
1291
1292 if (!(flags & UAP_PEEL))
1293 {
1294 /* We were not asked to, just return back silently. */
1295 return;
1296 }
1297
1298 if (dump_file)
1299 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1300
1301 /* npeel = number of iterations to peel. */
1302 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1303 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1304 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1305
1306 /* Skip big loops. */
1307 if (!npeel)
1308 {
1309 if (dump_file)
1310 fprintf (dump_file, ";; Not considering loop, is too big\n");
1311 return;
1312 }
1313
1314 /* Do not simply peel loops with branches inside -- it increases number
1315 of mispredicts.
1316 Exception is when we do have profile and we however have good chance
1317 to peel proper number of iterations loop will iterate in practice.
1318 TODO: this heuristic needs tunning; while for complette unrolling
1319 the branch inside loop mostly eliminates any improvements, for
1320 peeling it is not the case. Also a function call inside loop is
1321 also branch from branch prediction POV (and probably better reason
1322 to not unroll/peel). */
1323 if (num_loop_branches (loop) > 1
1324 && profile_status != PROFILE_READ)
1325 {
1326 if (dump_file)
1327 fprintf (dump_file, ";; Not peeling, contains branches\n");
1328 return;
1329 }
1330
1331 /* If we have realistic estimate on number of iterations, use it. */
1332 if (estimated_loop_iterations (loop, &iterations))
1333 {
1334 if (double_int::from_shwi (npeel).ule (iterations))
1335 {
1336 if (dump_file)
1337 {
1338 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1339 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1340 (HOST_WIDEST_INT) (iterations.to_shwi () + 1));
1341 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1342 npeel);
1343 }
1344 return;
1345 }
1346 npeel = iterations.to_shwi () + 1;
1347 }
1348 /* If we have small enough bound on iterations, we can still peel (completely
1349 unroll). */
1350 else if (max_loop_iterations (loop, &iterations)
1351 && iterations.ult (double_int::from_shwi (npeel)))
1352 npeel = iterations.to_shwi () + 1;
1353 else
1354 {
1355 /* For now we have no good heuristics to decide whether loop peeling
1356 will be effective, so disable it. */
1357 if (dump_file)
1358 fprintf (dump_file,
1359 ";; Not peeling loop, no evidence it will be profitable\n");
1360 return;
1361 }
1362
1363 /* Success. */
1364 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1365 loop->lpt_decision.times = npeel;
1366 }
1367
1368 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1369
1370 while (cond)
1371 body;
1372
1373 ==> (LOOP->LPT_DECISION.TIMES == 3)
1374
1375 if (!cond) goto end;
1376 body;
1377 if (!cond) goto end;
1378 body;
1379 if (!cond) goto end;
1380 body;
1381 while (cond)
1382 body;
1383 end: ;
1384 */
1385 static void
1386 peel_loop_simple (struct loop *loop)
1387 {
1388 sbitmap wont_exit;
1389 unsigned npeel = loop->lpt_decision.times;
1390 struct niter_desc *desc = get_simple_loop_desc (loop);
1391 struct opt_info *opt_info = NULL;
1392 bool ok;
1393
1394 if (flag_split_ivs_in_unroller && npeel > 1)
1395 opt_info = analyze_insns_in_loop (loop);
1396
1397 wont_exit = sbitmap_alloc (npeel + 1);
1398 bitmap_clear (wont_exit);
1399
1400 opt_info_start_duplication (opt_info);
1401
1402 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1403 npeel, wont_exit, NULL,
1404 NULL, DLTHE_FLAG_UPDATE_FREQ
1405 | (opt_info
1406 ? DLTHE_RECORD_COPY_NUMBER
1407 : 0));
1408 gcc_assert (ok);
1409
1410 free (wont_exit);
1411
1412 if (opt_info)
1413 {
1414 apply_opt_in_copies (opt_info, npeel, false, false);
1415 free_opt_info (opt_info);
1416 }
1417
1418 if (desc->simple_p)
1419 {
1420 if (desc->const_iter)
1421 {
1422 desc->niter -= npeel;
1423 desc->niter_expr = GEN_INT (desc->niter);
1424 desc->noloop_assumptions = NULL_RTX;
1425 }
1426 else
1427 {
1428 /* We cannot just update niter_expr, as its value might be clobbered
1429 inside loop. We could handle this by counting the number into
1430 temporary just like we do in runtime unrolling, but it does not
1431 seem worthwhile. */
1432 free_simple_loop_desc (loop);
1433 }
1434 }
1435 if (dump_file)
1436 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1437 }
1438
1439 /* Decide whether to unroll LOOP stupidly and how much. */
1440 static void
1441 decide_unroll_stupid (struct loop *loop, int flags)
1442 {
1443 unsigned nunroll, nunroll_by_av, i;
1444 struct niter_desc *desc;
1445 double_int iterations;
1446
1447 if (!(flags & UAP_UNROLL_ALL))
1448 {
1449 /* We were not asked to, just return back silently. */
1450 return;
1451 }
1452
1453 if (dump_file)
1454 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1455
1456 /* nunroll = total number of copies of the original loop body in
1457 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1458 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1459 nunroll_by_av
1460 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1461 if (nunroll > nunroll_by_av)
1462 nunroll = nunroll_by_av;
1463 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1464 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1465
1466 if (targetm.loop_unroll_adjust)
1467 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1468
1469 /* Skip big loops. */
1470 if (nunroll <= 1)
1471 {
1472 if (dump_file)
1473 fprintf (dump_file, ";; Not considering loop, is too big\n");
1474 return;
1475 }
1476
1477 /* Check for simple loops. */
1478 desc = get_simple_loop_desc (loop);
1479
1480 /* Check simpleness. */
1481 if (desc->simple_p && !desc->assumptions)
1482 {
1483 if (dump_file)
1484 fprintf (dump_file, ";; The loop is simple\n");
1485 return;
1486 }
1487
1488 /* Do not unroll loops with branches inside -- it increases number
1489 of mispredicts.
1490 TODO: this heuristic needs tunning; call inside the loop body
1491 is also relatively good reason to not unroll. */
1492 if (num_loop_branches (loop) > 1)
1493 {
1494 if (dump_file)
1495 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1496 return;
1497 }
1498
1499 /* Check whether the loop rolls. */
1500 if ((estimated_loop_iterations (loop, &iterations)
1501 || max_loop_iterations (loop, &iterations))
1502 && iterations.ult (double_int::from_shwi (2 * nunroll)))
1503 {
1504 if (dump_file)
1505 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1506 return;
1507 }
1508
1509 /* Success. Now force nunroll to be power of 2, as it seems that this
1510 improves results (partially because of better alignments, partially
1511 because of some dark magic). */
1512 for (i = 1; 2 * i <= nunroll; i *= 2)
1513 continue;
1514
1515 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1516 loop->lpt_decision.times = i - 1;
1517 }
1518
1519 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1520
1521 while (cond)
1522 body;
1523
1524 ==> (LOOP->LPT_DECISION.TIMES == 3)
1525
1526 while (cond)
1527 {
1528 body;
1529 if (!cond) break;
1530 body;
1531 if (!cond) break;
1532 body;
1533 if (!cond) break;
1534 body;
1535 }
1536 */
1537 static void
1538 unroll_loop_stupid (struct loop *loop)
1539 {
1540 sbitmap wont_exit;
1541 unsigned nunroll = loop->lpt_decision.times;
1542 struct niter_desc *desc = get_simple_loop_desc (loop);
1543 struct opt_info *opt_info = NULL;
1544 bool ok;
1545
1546 if (flag_split_ivs_in_unroller
1547 || flag_variable_expansion_in_unroller)
1548 opt_info = analyze_insns_in_loop (loop);
1549
1550
1551 wont_exit = sbitmap_alloc (nunroll + 1);
1552 bitmap_clear (wont_exit);
1553 opt_info_start_duplication (opt_info);
1554
1555 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1556 nunroll, wont_exit,
1557 NULL, NULL,
1558 DLTHE_FLAG_UPDATE_FREQ
1559 | (opt_info
1560 ? DLTHE_RECORD_COPY_NUMBER
1561 : 0));
1562 gcc_assert (ok);
1563
1564 if (opt_info)
1565 {
1566 apply_opt_in_copies (opt_info, nunroll, true, true);
1567 free_opt_info (opt_info);
1568 }
1569
1570 free (wont_exit);
1571
1572 if (desc->simple_p)
1573 {
1574 /* We indeed may get here provided that there are nontrivial assumptions
1575 for a loop to be really simple. We could update the counts, but the
1576 problem is that we are unable to decide which exit will be taken
1577 (not really true in case the number of iterations is constant,
1578 but noone will do anything with this information, so we do not
1579 worry about it). */
1580 desc->simple_p = false;
1581 }
1582
1583 if (dump_file)
1584 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1585 nunroll, num_loop_insns (loop));
1586 }
1587
1588 /* A hash function for information about insns to split. */
1589
1590 static hashval_t
1591 si_info_hash (const void *ivts)
1592 {
1593 return (hashval_t) INSN_UID (((const struct iv_to_split *) ivts)->insn);
1594 }
1595
1596 /* An equality functions for information about insns to split. */
1597
1598 static int
1599 si_info_eq (const void *ivts1, const void *ivts2)
1600 {
1601 const struct iv_to_split *const i1 = (const struct iv_to_split *) ivts1;
1602 const struct iv_to_split *const i2 = (const struct iv_to_split *) ivts2;
1603
1604 return i1->insn == i2->insn;
1605 }
1606
1607 /* Return a hash for VES, which is really a "var_to_expand *". */
1608
1609 static hashval_t
1610 ve_info_hash (const void *ves)
1611 {
1612 return (hashval_t) INSN_UID (((const struct var_to_expand *) ves)->insn);
1613 }
1614
1615 /* Return true if IVTS1 and IVTS2 (which are really both of type
1616 "var_to_expand *") refer to the same instruction. */
1617
1618 static int
1619 ve_info_eq (const void *ivts1, const void *ivts2)
1620 {
1621 const struct var_to_expand *const i1 = (const struct var_to_expand *) ivts1;
1622 const struct var_to_expand *const i2 = (const struct var_to_expand *) ivts2;
1623
1624 return i1->insn == i2->insn;
1625 }
1626
1627 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1628 Set *DEBUG_USES to the number of debug insns that reference the
1629 variable. */
1630
1631 bool
1632 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1633 int *debug_uses)
1634 {
1635 basic_block *body, bb;
1636 unsigned i;
1637 int count_ref = 0;
1638 rtx insn;
1639
1640 body = get_loop_body (loop);
1641 for (i = 0; i < loop->num_nodes; i++)
1642 {
1643 bb = body[i];
1644
1645 FOR_BB_INSNS (bb, insn)
1646 if (!rtx_referenced_p (reg, insn))
1647 continue;
1648 else if (DEBUG_INSN_P (insn))
1649 ++*debug_uses;
1650 else if (++count_ref > 1)
1651 break;
1652 }
1653 free (body);
1654 return (count_ref == 1);
1655 }
1656
1657 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1658
1659 static void
1660 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1661 {
1662 basic_block *body, bb;
1663 unsigned i;
1664 rtx insn;
1665
1666 body = get_loop_body (loop);
1667 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1668 {
1669 bb = body[i];
1670
1671 FOR_BB_INSNS (bb, insn)
1672 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1673 continue;
1674 else
1675 {
1676 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1677 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1678 if (!--debug_uses)
1679 break;
1680 }
1681 }
1682 free (body);
1683 }
1684
1685 /* Determine whether INSN contains an accumulator
1686 which can be expanded into separate copies,
1687 one for each copy of the LOOP body.
1688
1689 for (i = 0 ; i < n; i++)
1690 sum += a[i];
1691
1692 ==>
1693
1694 sum += a[i]
1695 ....
1696 i = i+1;
1697 sum1 += a[i]
1698 ....
1699 i = i+1
1700 sum2 += a[i];
1701 ....
1702
1703 Return NULL if INSN contains no opportunity for expansion of accumulator.
1704 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1705 information and return a pointer to it.
1706 */
1707
1708 static struct var_to_expand *
1709 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1710 {
1711 rtx set, dest, src;
1712 struct var_to_expand *ves;
1713 unsigned accum_pos;
1714 enum rtx_code code;
1715 int debug_uses = 0;
1716
1717 set = single_set (insn);
1718 if (!set)
1719 return NULL;
1720
1721 dest = SET_DEST (set);
1722 src = SET_SRC (set);
1723 code = GET_CODE (src);
1724
1725 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1726 return NULL;
1727
1728 if (FLOAT_MODE_P (GET_MODE (dest)))
1729 {
1730 if (!flag_associative_math)
1731 return NULL;
1732 /* In the case of FMA, we're also changing the rounding. */
1733 if (code == FMA && !flag_unsafe_math_optimizations)
1734 return NULL;
1735 }
1736
1737 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1738 in MD. But if there is no optab to generate the insn, we can not
1739 perform the variable expansion. This can happen if an MD provides
1740 an insn but not a named pattern to generate it, for example to avoid
1741 producing code that needs additional mode switches like for x87/mmx.
1742
1743 So we check have_insn_for which looks for an optab for the operation
1744 in SRC. If it doesn't exist, we can't perform the expansion even
1745 though INSN is valid. */
1746 if (!have_insn_for (code, GET_MODE (src)))
1747 return NULL;
1748
1749 if (!REG_P (dest)
1750 && !(GET_CODE (dest) == SUBREG
1751 && REG_P (SUBREG_REG (dest))))
1752 return NULL;
1753
1754 /* Find the accumulator use within the operation. */
1755 if (code == FMA)
1756 {
1757 /* We only support accumulation via FMA in the ADD position. */
1758 if (!rtx_equal_p (dest, XEXP (src, 2)))
1759 return NULL;
1760 accum_pos = 2;
1761 }
1762 else if (rtx_equal_p (dest, XEXP (src, 0)))
1763 accum_pos = 0;
1764 else if (rtx_equal_p (dest, XEXP (src, 1)))
1765 {
1766 /* The method of expansion that we are using; which includes the
1767 initialization of the expansions with zero and the summation of
1768 the expansions at the end of the computation will yield wrong
1769 results for (x = something - x) thus avoid using it in that case. */
1770 if (code == MINUS)
1771 return NULL;
1772 accum_pos = 1;
1773 }
1774 else
1775 return NULL;
1776
1777 /* It must not otherwise be used. */
1778 if (code == FMA)
1779 {
1780 if (rtx_referenced_p (dest, XEXP (src, 0))
1781 || rtx_referenced_p (dest, XEXP (src, 1)))
1782 return NULL;
1783 }
1784 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1785 return NULL;
1786
1787 /* It must be used in exactly one insn. */
1788 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1789 return NULL;
1790
1791 if (dump_file)
1792 {
1793 fprintf (dump_file, "\n;; Expanding Accumulator ");
1794 print_rtl (dump_file, dest);
1795 fprintf (dump_file, "\n");
1796 }
1797
1798 if (debug_uses)
1799 /* Instead of resetting the debug insns, we could replace each
1800 debug use in the loop with the sum or product of all expanded
1801 accummulators. Since we'll only know of all expansions at the
1802 end, we'd have to keep track of which vars_to_expand a debug
1803 insn in the loop references, take note of each copy of the
1804 debug insn during unrolling, and when it's all done, compute
1805 the sum or product of each variable and adjust the original
1806 debug insn and each copy thereof. What a pain! */
1807 reset_debug_uses_in_loop (loop, dest, debug_uses);
1808
1809 /* Record the accumulator to expand. */
1810 ves = XNEW (struct var_to_expand);
1811 ves->insn = insn;
1812 ves->reg = copy_rtx (dest);
1813 ves->var_expansions.create (1);
1814 ves->next = NULL;
1815 ves->op = GET_CODE (src);
1816 ves->expansion_count = 0;
1817 ves->reuse_expansion = 0;
1818 return ves;
1819 }
1820
1821 /* Determine whether there is an induction variable in INSN that
1822 we would like to split during unrolling.
1823
1824 I.e. replace
1825
1826 i = i + 1;
1827 ...
1828 i = i + 1;
1829 ...
1830 i = i + 1;
1831 ...
1832
1833 type chains by
1834
1835 i0 = i + 1
1836 ...
1837 i = i0 + 1
1838 ...
1839 i = i0 + 2
1840 ...
1841
1842 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1843 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1844 pointer to it. */
1845
1846 static struct iv_to_split *
1847 analyze_iv_to_split_insn (rtx insn)
1848 {
1849 rtx set, dest;
1850 struct rtx_iv iv;
1851 struct iv_to_split *ivts;
1852 bool ok;
1853
1854 /* For now we just split the basic induction variables. Later this may be
1855 extended for example by selecting also addresses of memory references. */
1856 set = single_set (insn);
1857 if (!set)
1858 return NULL;
1859
1860 dest = SET_DEST (set);
1861 if (!REG_P (dest))
1862 return NULL;
1863
1864 if (!biv_p (insn, dest))
1865 return NULL;
1866
1867 ok = iv_analyze_result (insn, dest, &iv);
1868
1869 /* This used to be an assert under the assumption that if biv_p returns
1870 true that iv_analyze_result must also return true. However, that
1871 assumption is not strictly correct as evidenced by pr25569.
1872
1873 Returning NULL when iv_analyze_result returns false is safe and
1874 avoids the problems in pr25569 until the iv_analyze_* routines
1875 can be fixed, which is apparently hard and time consuming
1876 according to their author. */
1877 if (! ok)
1878 return NULL;
1879
1880 if (iv.step == const0_rtx
1881 || iv.mode != iv.extend_mode)
1882 return NULL;
1883
1884 /* Record the insn to split. */
1885 ivts = XNEW (struct iv_to_split);
1886 ivts->insn = insn;
1887 ivts->orig_var = dest;
1888 ivts->base_var = NULL_RTX;
1889 ivts->step = iv.step;
1890 ivts->next = NULL;
1891 ivts->n_loc = 1;
1892 ivts->loc[0] = 1;
1893
1894 return ivts;
1895 }
1896
1897 /* Determines which of insns in LOOP can be optimized.
1898 Return a OPT_INFO struct with the relevant hash tables filled
1899 with all insns to be optimized. The FIRST_NEW_BLOCK field
1900 is undefined for the return value. */
1901
1902 static struct opt_info *
1903 analyze_insns_in_loop (struct loop *loop)
1904 {
1905 basic_block *body, bb;
1906 unsigned i;
1907 struct opt_info *opt_info = XCNEW (struct opt_info);
1908 rtx insn;
1909 struct iv_to_split *ivts = NULL;
1910 struct var_to_expand *ves = NULL;
1911 PTR *slot1;
1912 PTR *slot2;
1913 vec<edge> edges = get_loop_exit_edges (loop);
1914 edge exit;
1915 bool can_apply = false;
1916
1917 iv_analysis_loop_init (loop);
1918
1919 body = get_loop_body (loop);
1920
1921 if (flag_split_ivs_in_unroller)
1922 {
1923 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1924 si_info_hash, si_info_eq, free);
1925 opt_info->iv_to_split_head = NULL;
1926 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1927 }
1928
1929 /* Record the loop exit bb and loop preheader before the unrolling. */
1930 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1931
1932 if (edges.length () == 1)
1933 {
1934 exit = edges[0];
1935 if (!(exit->flags & EDGE_COMPLEX))
1936 {
1937 opt_info->loop_exit = split_edge (exit);
1938 can_apply = true;
1939 }
1940 }
1941
1942 if (flag_variable_expansion_in_unroller
1943 && can_apply)
1944 {
1945 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1946 ve_info_hash,
1947 ve_info_eq, free);
1948 opt_info->var_to_expand_head = NULL;
1949 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1950 }
1951
1952 for (i = 0; i < loop->num_nodes; i++)
1953 {
1954 bb = body[i];
1955 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1956 continue;
1957
1958 FOR_BB_INSNS (bb, insn)
1959 {
1960 if (!INSN_P (insn))
1961 continue;
1962
1963 if (opt_info->insns_to_split)
1964 ivts = analyze_iv_to_split_insn (insn);
1965
1966 if (ivts)
1967 {
1968 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1969 gcc_assert (*slot1 == NULL);
1970 *slot1 = ivts;
1971 *opt_info->iv_to_split_tail = ivts;
1972 opt_info->iv_to_split_tail = &ivts->next;
1973 continue;
1974 }
1975
1976 if (opt_info->insns_with_var_to_expand)
1977 ves = analyze_insn_to_expand_var (loop, insn);
1978
1979 if (ves)
1980 {
1981 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1982 gcc_assert (*slot2 == NULL);
1983 *slot2 = ves;
1984 *opt_info->var_to_expand_tail = ves;
1985 opt_info->var_to_expand_tail = &ves->next;
1986 }
1987 }
1988 }
1989
1990 edges.release ();
1991 free (body);
1992 return opt_info;
1993 }
1994
1995 /* Called just before loop duplication. Records start of duplicated area
1996 to OPT_INFO. */
1997
1998 static void
1999 opt_info_start_duplication (struct opt_info *opt_info)
2000 {
2001 if (opt_info)
2002 opt_info->first_new_block = last_basic_block;
2003 }
2004
2005 /* Determine the number of iterations between initialization of the base
2006 variable and the current copy (N_COPY). N_COPIES is the total number
2007 of newly created copies. UNROLLING is true if we are unrolling
2008 (not peeling) the loop. */
2009
2010 static unsigned
2011 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2012 {
2013 if (unrolling)
2014 {
2015 /* If we are unrolling, initialization is done in the original loop
2016 body (number 0). */
2017 return n_copy;
2018 }
2019 else
2020 {
2021 /* If we are peeling, the copy in that the initialization occurs has
2022 number 1. The original loop (number 0) is the last. */
2023 if (n_copy)
2024 return n_copy - 1;
2025 else
2026 return n_copies;
2027 }
2028 }
2029
2030 /* Locate in EXPR the expression corresponding to the location recorded
2031 in IVTS, and return a pointer to the RTX for this location. */
2032
2033 static rtx *
2034 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
2035 {
2036 unsigned i;
2037 rtx *ret = &expr;
2038
2039 for (i = 0; i < ivts->n_loc; i++)
2040 ret = &XEXP (*ret, ivts->loc[i]);
2041
2042 return ret;
2043 }
2044
2045 /* Allocate basic variable for the induction variable chain. */
2046
2047 static void
2048 allocate_basic_variable (struct iv_to_split *ivts)
2049 {
2050 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
2051
2052 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2053 }
2054
2055 /* Insert initialization of basic variable of IVTS before INSN, taking
2056 the initial value from INSN. */
2057
2058 static void
2059 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
2060 {
2061 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
2062 rtx seq;
2063
2064 start_sequence ();
2065 expr = force_operand (expr, ivts->base_var);
2066 if (expr != ivts->base_var)
2067 emit_move_insn (ivts->base_var, expr);
2068 seq = get_insns ();
2069 end_sequence ();
2070
2071 emit_insn_before (seq, insn);
2072 }
2073
2074 /* Replace the use of induction variable described in IVTS in INSN
2075 by base variable + DELTA * step. */
2076
2077 static void
2078 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
2079 {
2080 rtx expr, *loc, seq, incr, var;
2081 enum machine_mode mode = GET_MODE (ivts->base_var);
2082 rtx src, dest, set;
2083
2084 /* Construct base + DELTA * step. */
2085 if (!delta)
2086 expr = ivts->base_var;
2087 else
2088 {
2089 incr = simplify_gen_binary (MULT, mode,
2090 ivts->step, gen_int_mode (delta, mode));
2091 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2092 ivts->base_var, incr);
2093 }
2094
2095 /* Figure out where to do the replacement. */
2096 loc = get_ivts_expr (single_set (insn), ivts);
2097
2098 /* If we can make the replacement right away, we're done. */
2099 if (validate_change (insn, loc, expr, 0))
2100 return;
2101
2102 /* Otherwise, force EXPR into a register and try again. */
2103 start_sequence ();
2104 var = gen_reg_rtx (mode);
2105 expr = force_operand (expr, var);
2106 if (expr != var)
2107 emit_move_insn (var, expr);
2108 seq = get_insns ();
2109 end_sequence ();
2110 emit_insn_before (seq, insn);
2111
2112 if (validate_change (insn, loc, var, 0))
2113 return;
2114
2115 /* The last chance. Try recreating the assignment in insn
2116 completely from scratch. */
2117 set = single_set (insn);
2118 gcc_assert (set);
2119
2120 start_sequence ();
2121 *loc = var;
2122 src = copy_rtx (SET_SRC (set));
2123 dest = copy_rtx (SET_DEST (set));
2124 src = force_operand (src, dest);
2125 if (src != dest)
2126 emit_move_insn (dest, src);
2127 seq = get_insns ();
2128 end_sequence ();
2129
2130 emit_insn_before (seq, insn);
2131 delete_insn (insn);
2132 }
2133
2134
2135 /* Return one expansion of the accumulator recorded in struct VE. */
2136
2137 static rtx
2138 get_expansion (struct var_to_expand *ve)
2139 {
2140 rtx reg;
2141
2142 if (ve->reuse_expansion == 0)
2143 reg = ve->reg;
2144 else
2145 reg = ve->var_expansions[ve->reuse_expansion - 1];
2146
2147 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2148 ve->reuse_expansion = 0;
2149 else
2150 ve->reuse_expansion++;
2151
2152 return reg;
2153 }
2154
2155
2156 /* Given INSN replace the uses of the accumulator recorded in VE
2157 with a new register. */
2158
2159 static void
2160 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2161 {
2162 rtx new_reg, set;
2163 bool really_new_expansion = false;
2164
2165 set = single_set (insn);
2166 gcc_assert (set);
2167
2168 /* Generate a new register only if the expansion limit has not been
2169 reached. Else reuse an already existing expansion. */
2170 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2171 {
2172 really_new_expansion = true;
2173 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2174 }
2175 else
2176 new_reg = get_expansion (ve);
2177
2178 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2179 if (apply_change_group ())
2180 if (really_new_expansion)
2181 {
2182 ve->var_expansions.safe_push (new_reg);
2183 ve->expansion_count++;
2184 }
2185 }
2186
2187 /* Initialize the variable expansions in loop preheader. PLACE is the
2188 loop-preheader basic block where the initialization of the
2189 expansions should take place. The expansions are initialized with
2190 (-0) when the operation is plus or minus to honor sign zero. This
2191 way we can prevent cases where the sign of the final result is
2192 effected by the sign of the expansion. Here is an example to
2193 demonstrate this:
2194
2195 for (i = 0 ; i < n; i++)
2196 sum += something;
2197
2198 ==>
2199
2200 sum += something
2201 ....
2202 i = i+1;
2203 sum1 += something
2204 ....
2205 i = i+1
2206 sum2 += something;
2207 ....
2208
2209 When SUM is initialized with -zero and SOMETHING is also -zero; the
2210 final result of sum should be -zero thus the expansions sum1 and sum2
2211 should be initialized with -zero as well (otherwise we will get +zero
2212 as the final result). */
2213
2214 static void
2215 insert_var_expansion_initialization (struct var_to_expand *ve,
2216 basic_block place)
2217 {
2218 rtx seq, var, zero_init;
2219 unsigned i;
2220 enum machine_mode mode = GET_MODE (ve->reg);
2221 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2222
2223 if (ve->var_expansions.length () == 0)
2224 return;
2225
2226 start_sequence ();
2227 switch (ve->op)
2228 {
2229 case FMA:
2230 /* Note that we only accumulate FMA via the ADD operand. */
2231 case PLUS:
2232 case MINUS:
2233 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2234 {
2235 if (honor_signed_zero_p)
2236 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2237 else
2238 zero_init = CONST0_RTX (mode);
2239 emit_move_insn (var, zero_init);
2240 }
2241 break;
2242
2243 case MULT:
2244 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2245 {
2246 zero_init = CONST1_RTX (GET_MODE (var));
2247 emit_move_insn (var, zero_init);
2248 }
2249 break;
2250
2251 default:
2252 gcc_unreachable ();
2253 }
2254
2255 seq = get_insns ();
2256 end_sequence ();
2257
2258 emit_insn_after (seq, BB_END (place));
2259 }
2260
2261 /* Combine the variable expansions at the loop exit. PLACE is the
2262 loop exit basic block where the summation of the expansions should
2263 take place. */
2264
2265 static void
2266 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2267 {
2268 rtx sum = ve->reg;
2269 rtx expr, seq, var, insn;
2270 unsigned i;
2271
2272 if (ve->var_expansions.length () == 0)
2273 return;
2274
2275 start_sequence ();
2276 switch (ve->op)
2277 {
2278 case FMA:
2279 /* Note that we only accumulate FMA via the ADD operand. */
2280 case PLUS:
2281 case MINUS:
2282 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2283 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2284 break;
2285
2286 case MULT:
2287 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2288 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2289 break;
2290
2291 default:
2292 gcc_unreachable ();
2293 }
2294
2295 expr = force_operand (sum, ve->reg);
2296 if (expr != ve->reg)
2297 emit_move_insn (ve->reg, expr);
2298 seq = get_insns ();
2299 end_sequence ();
2300
2301 insn = BB_HEAD (place);
2302 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2303 insn = NEXT_INSN (insn);
2304
2305 emit_insn_after (seq, insn);
2306 }
2307
2308 /* Strip away REG_EQUAL notes for IVs we're splitting.
2309
2310 Updating REG_EQUAL notes for IVs we split is tricky: We
2311 cannot tell until after unrolling, DF-rescanning, and liveness
2312 updating, whether an EQ_USE is reached by the split IV while
2313 the IV reg is still live. See PR55006.
2314
2315 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2316 because RTL loop-iv requires us to defer rescanning insns and
2317 any notes attached to them. So resort to old techniques... */
2318
2319 static void
2320 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx insn)
2321 {
2322 struct iv_to_split *ivts;
2323 rtx note = find_reg_equal_equiv_note (insn);
2324 if (! note)
2325 return;
2326 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2327 if (reg_mentioned_p (ivts->orig_var, note))
2328 {
2329 remove_note (insn, note);
2330 return;
2331 }
2332 }
2333
2334 /* Apply loop optimizations in loop copies using the
2335 data which gathered during the unrolling. Structure
2336 OPT_INFO record that data.
2337
2338 UNROLLING is true if we unrolled (not peeled) the loop.
2339 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2340 the loop (as it should happen in complete unrolling, but not in ordinary
2341 peeling of the loop). */
2342
2343 static void
2344 apply_opt_in_copies (struct opt_info *opt_info,
2345 unsigned n_copies, bool unrolling,
2346 bool rewrite_original_loop)
2347 {
2348 unsigned i, delta;
2349 basic_block bb, orig_bb;
2350 rtx insn, orig_insn, next;
2351 struct iv_to_split ivts_templ, *ivts;
2352 struct var_to_expand ve_templ, *ves;
2353
2354 /* Sanity check -- we need to put initialization in the original loop
2355 body. */
2356 gcc_assert (!unrolling || rewrite_original_loop);
2357
2358 /* Allocate the basic variables (i0). */
2359 if (opt_info->insns_to_split)
2360 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2361 allocate_basic_variable (ivts);
2362
2363 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2364 {
2365 bb = BASIC_BLOCK (i);
2366 orig_bb = get_bb_original (bb);
2367
2368 /* bb->aux holds position in copy sequence initialized by
2369 duplicate_loop_to_header_edge. */
2370 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2371 unrolling);
2372 bb->aux = 0;
2373 orig_insn = BB_HEAD (orig_bb);
2374 FOR_BB_INSNS_SAFE (bb, insn, next)
2375 {
2376 if (!INSN_P (insn)
2377 || (DEBUG_INSN_P (insn)
2378 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2379 continue;
2380
2381 while (!INSN_P (orig_insn)
2382 || (DEBUG_INSN_P (orig_insn)
2383 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2384 == LABEL_DECL)))
2385 orig_insn = NEXT_INSN (orig_insn);
2386
2387 ivts_templ.insn = orig_insn;
2388 ve_templ.insn = orig_insn;
2389
2390 /* Apply splitting iv optimization. */
2391 if (opt_info->insns_to_split)
2392 {
2393 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2394
2395 ivts = (struct iv_to_split *)
2396 htab_find (opt_info->insns_to_split, &ivts_templ);
2397
2398 if (ivts)
2399 {
2400 gcc_assert (GET_CODE (PATTERN (insn))
2401 == GET_CODE (PATTERN (orig_insn)));
2402
2403 if (!delta)
2404 insert_base_initialization (ivts, insn);
2405 split_iv (ivts, insn, delta);
2406 }
2407 }
2408 /* Apply variable expansion optimization. */
2409 if (unrolling && opt_info->insns_with_var_to_expand)
2410 {
2411 ves = (struct var_to_expand *)
2412 htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2413 if (ves)
2414 {
2415 gcc_assert (GET_CODE (PATTERN (insn))
2416 == GET_CODE (PATTERN (orig_insn)));
2417 expand_var_during_unrolling (ves, insn);
2418 }
2419 }
2420 orig_insn = NEXT_INSN (orig_insn);
2421 }
2422 }
2423
2424 if (!rewrite_original_loop)
2425 return;
2426
2427 /* Initialize the variable expansions in the loop preheader
2428 and take care of combining them at the loop exit. */
2429 if (opt_info->insns_with_var_to_expand)
2430 {
2431 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2432 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2433 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2434 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2435 }
2436
2437 /* Rewrite also the original loop body. Find them as originals of the blocks
2438 in the last copied iteration, i.e. those that have
2439 get_bb_copy (get_bb_original (bb)) == bb. */
2440 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2441 {
2442 bb = BASIC_BLOCK (i);
2443 orig_bb = get_bb_original (bb);
2444 if (get_bb_copy (orig_bb) != bb)
2445 continue;
2446
2447 delta = determine_split_iv_delta (0, n_copies, unrolling);
2448 for (orig_insn = BB_HEAD (orig_bb);
2449 orig_insn != NEXT_INSN (BB_END (bb));
2450 orig_insn = next)
2451 {
2452 next = NEXT_INSN (orig_insn);
2453
2454 if (!INSN_P (orig_insn))
2455 continue;
2456
2457 ivts_templ.insn = orig_insn;
2458 if (opt_info->insns_to_split)
2459 {
2460 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2461
2462 ivts = (struct iv_to_split *)
2463 htab_find (opt_info->insns_to_split, &ivts_templ);
2464 if (ivts)
2465 {
2466 if (!delta)
2467 insert_base_initialization (ivts, orig_insn);
2468 split_iv (ivts, orig_insn, delta);
2469 continue;
2470 }
2471 }
2472
2473 }
2474 }
2475 }
2476
2477 /* Release OPT_INFO. */
2478
2479 static void
2480 free_opt_info (struct opt_info *opt_info)
2481 {
2482 if (opt_info->insns_to_split)
2483 htab_delete (opt_info->insns_to_split);
2484 if (opt_info->insns_with_var_to_expand)
2485 {
2486 struct var_to_expand *ves;
2487
2488 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2489 ves->var_expansions.release ();
2490 htab_delete (opt_info->insns_with_var_to_expand);
2491 }
2492 free (opt_info);
2493 }