3b4c8e5931c62df925120609c0362e96c9058dfd
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
85 };
86
87 DEF_VEC_P(rtx);
88 DEF_VEC_ALLOC_P(rtx,heap);
89
90 /* Information about accumulators to expand. */
91
92 struct var_to_expand
93 {
94 rtx insn; /* The insn in that the variable expansion occurs. */
95 rtx reg; /* The accumulator which is expanded. */
96 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
104 };
105
106 /* Information about optimization applied in
107 the unrolled loop. */
108
109 struct opt_info
110 {
111 htab_t insns_to_split; /* A hashtable of insns to split. */
112 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
113 to expand. */
114 unsigned first_new_block; /* The first basic block that was
115 duplicated. */
116 basic_block loop_exit; /* The loop exit basic block. */
117 basic_block loop_preheader; /* The loop preheader basic block. */
118 };
119
120 static void decide_unrolling_and_peeling (struct loops *, int);
121 static void peel_loops_completely (struct loops *, int);
122 static void decide_peel_simple (struct loop *, int);
123 static void decide_peel_once_rolling (struct loop *, int);
124 static void decide_peel_completely (struct loop *, int);
125 static void decide_unroll_stupid (struct loop *, int);
126 static void decide_unroll_constant_iterations (struct loop *, int);
127 static void decide_unroll_runtime_iterations (struct loop *, int);
128 static void peel_loop_simple (struct loops *, struct loop *);
129 static void peel_loop_completely (struct loops *, struct loop *);
130 static void unroll_loop_stupid (struct loops *, struct loop *);
131 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
132 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
133 static struct opt_info *analyze_insns_in_loop (struct loop *);
134 static void opt_info_start_duplication (struct opt_info *);
135 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
136 static void free_opt_info (struct opt_info *);
137 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
138 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
139 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
140 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
141 static int insert_var_expansion_initialization (void **, void *);
142 static int combine_var_copies_in_loop_exit (void **, void *);
143 static int release_var_copies (void **, void *);
144 static rtx get_expansion (struct var_to_expand *);
145
146 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
147 void
148 unroll_and_peel_loops (struct loops *loops, int flags)
149 {
150 struct loop *loop, *next;
151 bool check;
152
153 /* First perform complete loop peeling (it is almost surely a win,
154 and affects parameters for further decision a lot). */
155 peel_loops_completely (loops, flags);
156
157 /* Now decide rest of unrolling and peeling. */
158 decide_unrolling_and_peeling (loops, flags);
159
160 loop = loops->tree_root;
161 while (loop->inner)
162 loop = loop->inner;
163
164 /* Scan the loops, inner ones first. */
165 while (loop != loops->tree_root)
166 {
167 if (loop->next)
168 {
169 next = loop->next;
170 while (next->inner)
171 next = next->inner;
172 }
173 else
174 next = loop->outer;
175
176 check = true;
177 /* And perform the appropriate transformations. */
178 switch (loop->lpt_decision.decision)
179 {
180 case LPT_PEEL_COMPLETELY:
181 /* Already done. */
182 gcc_unreachable ();
183 case LPT_PEEL_SIMPLE:
184 peel_loop_simple (loops, loop);
185 break;
186 case LPT_UNROLL_CONSTANT:
187 unroll_loop_constant_iterations (loops, loop);
188 break;
189 case LPT_UNROLL_RUNTIME:
190 unroll_loop_runtime_iterations (loops, loop);
191 break;
192 case LPT_UNROLL_STUPID:
193 unroll_loop_stupid (loops, loop);
194 break;
195 case LPT_NONE:
196 check = false;
197 break;
198 default:
199 gcc_unreachable ();
200 }
201 if (check)
202 {
203 #ifdef ENABLE_CHECKING
204 verify_dominators (CDI_DOMINATORS);
205 verify_loop_structure (loops);
206 #endif
207 }
208 loop = next;
209 }
210
211 iv_analysis_done ();
212 }
213
214 /* Check whether exit of the LOOP is at the end of loop body. */
215
216 static bool
217 loop_exit_at_end_p (struct loop *loop)
218 {
219 struct niter_desc *desc = get_simple_loop_desc (loop);
220 rtx insn;
221
222 if (desc->in_edge->dest != loop->latch)
223 return false;
224
225 /* Check that the latch is empty. */
226 FOR_BB_INSNS (loop->latch, insn)
227 {
228 if (INSN_P (insn))
229 return false;
230 }
231
232 return true;
233 }
234
235 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
236 static void
237 peel_loops_completely (struct loops *loops, int flags)
238 {
239 struct loop *loop, *next;
240
241 loop = loops->tree_root;
242 while (loop->inner)
243 loop = loop->inner;
244
245 while (loop != loops->tree_root)
246 {
247 if (loop->next)
248 {
249 next = loop->next;
250 while (next->inner)
251 next = next->inner;
252 }
253 else
254 next = loop->outer;
255
256 loop->lpt_decision.decision = LPT_NONE;
257
258 if (dump_file)
259 fprintf (dump_file,
260 "\n;; *** Considering loop %d for complete peeling ***\n",
261 loop->num);
262
263 loop->ninsns = num_loop_insns (loop);
264
265 decide_peel_once_rolling (loop, flags);
266 if (loop->lpt_decision.decision == LPT_NONE)
267 decide_peel_completely (loop, flags);
268
269 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
270 {
271 peel_loop_completely (loops, loop);
272 #ifdef ENABLE_CHECKING
273 verify_dominators (CDI_DOMINATORS);
274 verify_loop_structure (loops);
275 #endif
276 }
277 loop = next;
278 }
279 }
280
281 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
282 static void
283 decide_unrolling_and_peeling (struct loops *loops, int flags)
284 {
285 struct loop *loop = loops->tree_root, *next;
286
287 while (loop->inner)
288 loop = loop->inner;
289
290 /* Scan the loops, inner ones first. */
291 while (loop != loops->tree_root)
292 {
293 if (loop->next)
294 {
295 next = loop->next;
296 while (next->inner)
297 next = next->inner;
298 }
299 else
300 next = loop->outer;
301
302 loop->lpt_decision.decision = LPT_NONE;
303
304 if (dump_file)
305 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
306
307 /* Do not peel cold areas. */
308 if (!maybe_hot_bb_p (loop->header))
309 {
310 if (dump_file)
311 fprintf (dump_file, ";; Not considering loop, cold area\n");
312 loop = next;
313 continue;
314 }
315
316 /* Can the loop be manipulated? */
317 if (!can_duplicate_loop_p (loop))
318 {
319 if (dump_file)
320 fprintf (dump_file,
321 ";; Not considering loop, cannot duplicate\n");
322 loop = next;
323 continue;
324 }
325
326 /* Skip non-innermost loops. */
327 if (loop->inner)
328 {
329 if (dump_file)
330 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
331 loop = next;
332 continue;
333 }
334
335 loop->ninsns = num_loop_insns (loop);
336 loop->av_ninsns = average_num_loop_insns (loop);
337
338 /* Try transformations one by one in decreasing order of
339 priority. */
340
341 decide_unroll_constant_iterations (loop, flags);
342 if (loop->lpt_decision.decision == LPT_NONE)
343 decide_unroll_runtime_iterations (loop, flags);
344 if (loop->lpt_decision.decision == LPT_NONE)
345 decide_unroll_stupid (loop, flags);
346 if (loop->lpt_decision.decision == LPT_NONE)
347 decide_peel_simple (loop, flags);
348
349 loop = next;
350 }
351 }
352
353 /* Decide whether the LOOP is once rolling and suitable for complete
354 peeling. */
355 static void
356 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
357 {
358 struct niter_desc *desc;
359
360 if (dump_file)
361 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
362
363 /* Is the loop small enough? */
364 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
365 {
366 if (dump_file)
367 fprintf (dump_file, ";; Not considering loop, is too big\n");
368 return;
369 }
370
371 /* Check for simple loops. */
372 desc = get_simple_loop_desc (loop);
373
374 /* Check number of iterations. */
375 if (!desc->simple_p
376 || desc->assumptions
377 || desc->infinite
378 || !desc->const_iter
379 || desc->niter != 0)
380 {
381 if (dump_file)
382 fprintf (dump_file,
383 ";; Unable to prove that the loop rolls exactly once\n");
384 return;
385 }
386
387 /* Success. */
388 if (dump_file)
389 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
390 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
391 }
392
393 /* Decide whether the LOOP is suitable for complete peeling. */
394 static void
395 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
396 {
397 unsigned npeel;
398 struct niter_desc *desc;
399
400 if (dump_file)
401 fprintf (dump_file, "\n;; Considering peeling completely\n");
402
403 /* Skip non-innermost loops. */
404 if (loop->inner)
405 {
406 if (dump_file)
407 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
408 return;
409 }
410
411 /* Do not peel cold areas. */
412 if (!maybe_hot_bb_p (loop->header))
413 {
414 if (dump_file)
415 fprintf (dump_file, ";; Not considering loop, cold area\n");
416 return;
417 }
418
419 /* Can the loop be manipulated? */
420 if (!can_duplicate_loop_p (loop))
421 {
422 if (dump_file)
423 fprintf (dump_file,
424 ";; Not considering loop, cannot duplicate\n");
425 return;
426 }
427
428 /* npeel = number of iterations to peel. */
429 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
430 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
431 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
432
433 /* Is the loop small enough? */
434 if (!npeel)
435 {
436 if (dump_file)
437 fprintf (dump_file, ";; Not considering loop, is too big\n");
438 return;
439 }
440
441 /* Check for simple loops. */
442 desc = get_simple_loop_desc (loop);
443
444 /* Check number of iterations. */
445 if (!desc->simple_p
446 || desc->assumptions
447 || !desc->const_iter
448 || desc->infinite)
449 {
450 if (dump_file)
451 fprintf (dump_file,
452 ";; Unable to prove that the loop iterates constant times\n");
453 return;
454 }
455
456 if (desc->niter > npeel - 1)
457 {
458 if (dump_file)
459 {
460 fprintf (dump_file,
461 ";; Not peeling loop completely, rolls too much (");
462 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
463 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
464 }
465 return;
466 }
467
468 /* Success. */
469 if (dump_file)
470 fprintf (dump_file, ";; Decided to peel loop completely\n");
471 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
472 }
473
474 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
475 completely. The transformation done:
476
477 for (i = 0; i < 4; i++)
478 body;
479
480 ==>
481
482 i = 0;
483 body; i++;
484 body; i++;
485 body; i++;
486 body; i++;
487 */
488 static void
489 peel_loop_completely (struct loops *loops, struct loop *loop)
490 {
491 sbitmap wont_exit;
492 unsigned HOST_WIDE_INT npeel;
493 unsigned n_remove_edges, i;
494 edge *remove_edges, ein;
495 struct niter_desc *desc = get_simple_loop_desc (loop);
496 struct opt_info *opt_info = NULL;
497
498 npeel = desc->niter;
499
500 if (npeel)
501 {
502 bool ok;
503
504 wont_exit = sbitmap_alloc (npeel + 1);
505 sbitmap_ones (wont_exit);
506 RESET_BIT (wont_exit, 0);
507 if (desc->noloop_assumptions)
508 RESET_BIT (wont_exit, 1);
509
510 remove_edges = xcalloc (npeel, sizeof (edge));
511 n_remove_edges = 0;
512
513 if (flag_split_ivs_in_unroller)
514 opt_info = analyze_insns_in_loop (loop);
515
516 opt_info_start_duplication (opt_info);
517 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
518 loops, npeel,
519 wont_exit, desc->out_edge,
520 remove_edges, &n_remove_edges,
521 DLTHE_FLAG_UPDATE_FREQ
522 | DLTHE_FLAG_COMPLETTE_PEEL
523 | (opt_info
524 ? DLTHE_RECORD_COPY_NUMBER : 0));
525 gcc_assert (ok);
526
527 free (wont_exit);
528
529 if (opt_info)
530 {
531 apply_opt_in_copies (opt_info, npeel, false, true);
532 free_opt_info (opt_info);
533 }
534
535 /* Remove the exit edges. */
536 for (i = 0; i < n_remove_edges; i++)
537 remove_path (loops, remove_edges[i]);
538 free (remove_edges);
539 }
540
541 ein = desc->in_edge;
542 free_simple_loop_desc (loop);
543
544 /* Now remove the unreachable part of the last iteration and cancel
545 the loop. */
546 remove_path (loops, ein);
547
548 if (dump_file)
549 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
550 }
551
552 /* Decide whether to unroll LOOP iterating constant number of times
553 and how much. */
554
555 static void
556 decide_unroll_constant_iterations (struct loop *loop, int flags)
557 {
558 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
559 struct niter_desc *desc;
560
561 if (!(flags & UAP_UNROLL))
562 {
563 /* We were not asked to, just return back silently. */
564 return;
565 }
566
567 if (dump_file)
568 fprintf (dump_file,
569 "\n;; Considering unrolling loop with constant "
570 "number of iterations\n");
571
572 /* nunroll = total number of copies of the original loop body in
573 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
574 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
575 nunroll_by_av
576 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
577 if (nunroll > nunroll_by_av)
578 nunroll = nunroll_by_av;
579 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
580 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
581
582 /* Skip big loops. */
583 if (nunroll <= 1)
584 {
585 if (dump_file)
586 fprintf (dump_file, ";; Not considering loop, is too big\n");
587 return;
588 }
589
590 /* Check for simple loops. */
591 desc = get_simple_loop_desc (loop);
592
593 /* Check number of iterations. */
594 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
595 {
596 if (dump_file)
597 fprintf (dump_file,
598 ";; Unable to prove that the loop iterates constant times\n");
599 return;
600 }
601
602 /* Check whether the loop rolls enough to consider. */
603 if (desc->niter < 2 * nunroll)
604 {
605 if (dump_file)
606 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
607 return;
608 }
609
610 /* Success; now compute number of iterations to unroll. We alter
611 nunroll so that as few as possible copies of loop body are
612 necessary, while still not decreasing the number of unrollings
613 too much (at most by 1). */
614 best_copies = 2 * nunroll + 10;
615
616 i = 2 * nunroll + 2;
617 if (i - 1 >= desc->niter)
618 i = desc->niter - 2;
619
620 for (; i >= nunroll - 1; i--)
621 {
622 unsigned exit_mod = desc->niter % (i + 1);
623
624 if (!loop_exit_at_end_p (loop))
625 n_copies = exit_mod + i + 1;
626 else if (exit_mod != (unsigned) i
627 || desc->noloop_assumptions != NULL_RTX)
628 n_copies = exit_mod + i + 2;
629 else
630 n_copies = i + 1;
631
632 if (n_copies < best_copies)
633 {
634 best_copies = n_copies;
635 best_unroll = i;
636 }
637 }
638
639 if (dump_file)
640 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
641 best_unroll + 1, best_copies, nunroll);
642
643 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
644 loop->lpt_decision.times = best_unroll;
645
646 if (dump_file)
647 fprintf (dump_file,
648 ";; Decided to unroll the constant times rolling loop, %d times.\n",
649 loop->lpt_decision.times);
650 }
651
652 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
653 times. The transformation does this:
654
655 for (i = 0; i < 102; i++)
656 body;
657
658 ==>
659
660 i = 0;
661 body; i++;
662 body; i++;
663 while (i < 102)
664 {
665 body; i++;
666 body; i++;
667 body; i++;
668 body; i++;
669 }
670 */
671 static void
672 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
673 {
674 unsigned HOST_WIDE_INT niter;
675 unsigned exit_mod;
676 sbitmap wont_exit;
677 unsigned n_remove_edges, i;
678 edge *remove_edges;
679 unsigned max_unroll = loop->lpt_decision.times;
680 struct niter_desc *desc = get_simple_loop_desc (loop);
681 bool exit_at_end = loop_exit_at_end_p (loop);
682 struct opt_info *opt_info = NULL;
683 bool ok;
684
685 niter = desc->niter;
686
687 /* Should not get here (such loop should be peeled instead). */
688 gcc_assert (niter > max_unroll + 1);
689
690 exit_mod = niter % (max_unroll + 1);
691
692 wont_exit = sbitmap_alloc (max_unroll + 1);
693 sbitmap_ones (wont_exit);
694
695 remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
696 n_remove_edges = 0;
697 if (flag_split_ivs_in_unroller
698 || flag_variable_expansion_in_unroller)
699 opt_info = analyze_insns_in_loop (loop);
700
701 if (!exit_at_end)
702 {
703 /* The exit is not at the end of the loop; leave exit test
704 in the first copy, so that the loops that start with test
705 of exit condition have continuous body after unrolling. */
706
707 if (dump_file)
708 fprintf (dump_file, ";; Condition on beginning of loop.\n");
709
710 /* Peel exit_mod iterations. */
711 RESET_BIT (wont_exit, 0);
712 if (desc->noloop_assumptions)
713 RESET_BIT (wont_exit, 1);
714
715 if (exit_mod)
716 {
717 opt_info_start_duplication (opt_info);
718 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
719 loops, exit_mod,
720 wont_exit, desc->out_edge,
721 remove_edges, &n_remove_edges,
722 DLTHE_FLAG_UPDATE_FREQ
723 | (opt_info && exit_mod > 1
724 ? DLTHE_RECORD_COPY_NUMBER
725 : 0));
726 gcc_assert (ok);
727
728 if (opt_info && exit_mod > 1)
729 apply_opt_in_copies (opt_info, exit_mod, false, false);
730
731 desc->noloop_assumptions = NULL_RTX;
732 desc->niter -= exit_mod;
733 desc->niter_max -= exit_mod;
734 }
735
736 SET_BIT (wont_exit, 1);
737 }
738 else
739 {
740 /* Leave exit test in last copy, for the same reason as above if
741 the loop tests the condition at the end of loop body. */
742
743 if (dump_file)
744 fprintf (dump_file, ";; Condition on end of loop.\n");
745
746 /* We know that niter >= max_unroll + 2; so we do not need to care of
747 case when we would exit before reaching the loop. So just peel
748 exit_mod + 1 iterations. */
749 if (exit_mod != max_unroll
750 || desc->noloop_assumptions)
751 {
752 RESET_BIT (wont_exit, 0);
753 if (desc->noloop_assumptions)
754 RESET_BIT (wont_exit, 1);
755
756 opt_info_start_duplication (opt_info);
757 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
758 loops, exit_mod + 1,
759 wont_exit, desc->out_edge,
760 remove_edges, &n_remove_edges,
761 DLTHE_FLAG_UPDATE_FREQ
762 | (opt_info && exit_mod > 0
763 ? DLTHE_RECORD_COPY_NUMBER
764 : 0));
765 gcc_assert (ok);
766
767 if (opt_info && exit_mod > 0)
768 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
769
770 desc->niter -= exit_mod + 1;
771 desc->niter_max -= exit_mod + 1;
772 desc->noloop_assumptions = NULL_RTX;
773
774 SET_BIT (wont_exit, 0);
775 SET_BIT (wont_exit, 1);
776 }
777
778 RESET_BIT (wont_exit, max_unroll);
779 }
780
781 /* Now unroll the loop. */
782
783 opt_info_start_duplication (opt_info);
784 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
785 loops, max_unroll,
786 wont_exit, desc->out_edge,
787 remove_edges, &n_remove_edges,
788 DLTHE_FLAG_UPDATE_FREQ
789 | (opt_info
790 ? DLTHE_RECORD_COPY_NUMBER
791 : 0));
792 gcc_assert (ok);
793
794 if (opt_info)
795 {
796 apply_opt_in_copies (opt_info, max_unroll, true, true);
797 free_opt_info (opt_info);
798 }
799
800 free (wont_exit);
801
802 if (exit_at_end)
803 {
804 basic_block exit_block = get_bb_copy (desc->in_edge->src);
805 /* Find a new in and out edge; they are in the last copy we have made. */
806
807 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
808 {
809 desc->out_edge = EDGE_SUCC (exit_block, 0);
810 desc->in_edge = EDGE_SUCC (exit_block, 1);
811 }
812 else
813 {
814 desc->out_edge = EDGE_SUCC (exit_block, 1);
815 desc->in_edge = EDGE_SUCC (exit_block, 0);
816 }
817 }
818
819 desc->niter /= max_unroll + 1;
820 desc->niter_max /= max_unroll + 1;
821 desc->niter_expr = GEN_INT (desc->niter);
822
823 /* Remove the edges. */
824 for (i = 0; i < n_remove_edges; i++)
825 remove_path (loops, remove_edges[i]);
826 free (remove_edges);
827
828 if (dump_file)
829 fprintf (dump_file,
830 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
831 max_unroll, num_loop_insns (loop));
832 }
833
834 /* Decide whether to unroll LOOP iterating runtime computable number of times
835 and how much. */
836 static void
837 decide_unroll_runtime_iterations (struct loop *loop, int flags)
838 {
839 unsigned nunroll, nunroll_by_av, i;
840 struct niter_desc *desc;
841
842 if (!(flags & UAP_UNROLL))
843 {
844 /* We were not asked to, just return back silently. */
845 return;
846 }
847
848 if (dump_file)
849 fprintf (dump_file,
850 "\n;; Considering unrolling loop with runtime "
851 "computable number of iterations\n");
852
853 /* nunroll = total number of copies of the original loop body in
854 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
855 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
856 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
857 if (nunroll > nunroll_by_av)
858 nunroll = nunroll_by_av;
859 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
860 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
861
862 /* Skip big loops. */
863 if (nunroll <= 1)
864 {
865 if (dump_file)
866 fprintf (dump_file, ";; Not considering loop, is too big\n");
867 return;
868 }
869
870 /* Check for simple loops. */
871 desc = get_simple_loop_desc (loop);
872
873 /* Check simpleness. */
874 if (!desc->simple_p || desc->assumptions)
875 {
876 if (dump_file)
877 fprintf (dump_file,
878 ";; Unable to prove that the number of iterations "
879 "can be counted in runtime\n");
880 return;
881 }
882
883 if (desc->const_iter)
884 {
885 if (dump_file)
886 fprintf (dump_file, ";; Loop iterates constant times\n");
887 return;
888 }
889
890 /* If we have profile feedback, check whether the loop rolls. */
891 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
892 {
893 if (dump_file)
894 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
895 return;
896 }
897
898 /* Success; now force nunroll to be power of 2, as we are unable to
899 cope with overflows in computation of number of iterations. */
900 for (i = 1; 2 * i <= nunroll; i *= 2)
901 continue;
902
903 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
904 loop->lpt_decision.times = i - 1;
905
906 if (dump_file)
907 fprintf (dump_file,
908 ";; Decided to unroll the runtime computable "
909 "times rolling loop, %d times.\n",
910 loop->lpt_decision.times);
911 }
912
913 /* Unroll LOOP for that we are able to count number of iterations in runtime
914 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
915 extra care for case n < 0):
916
917 for (i = 0; i < n; i++)
918 body;
919
920 ==>
921
922 i = 0;
923 mod = n % 4;
924
925 switch (mod)
926 {
927 case 3:
928 body; i++;
929 case 2:
930 body; i++;
931 case 1:
932 body; i++;
933 case 0: ;
934 }
935
936 while (i < n)
937 {
938 body; i++;
939 body; i++;
940 body; i++;
941 body; i++;
942 }
943 */
944 static void
945 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
946 {
947 rtx old_niter, niter, init_code, branch_code, tmp;
948 unsigned i, j, p;
949 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
950 unsigned n_dom_bbs;
951 sbitmap wont_exit;
952 int may_exit_copy;
953 unsigned n_peel, n_remove_edges;
954 edge *remove_edges, e;
955 bool extra_zero_check, last_may_exit;
956 unsigned max_unroll = loop->lpt_decision.times;
957 struct niter_desc *desc = get_simple_loop_desc (loop);
958 bool exit_at_end = loop_exit_at_end_p (loop);
959 struct opt_info *opt_info = NULL;
960 bool ok;
961
962 if (flag_split_ivs_in_unroller
963 || flag_variable_expansion_in_unroller)
964 opt_info = analyze_insns_in_loop (loop);
965
966 /* Remember blocks whose dominators will have to be updated. */
967 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
968 n_dom_bbs = 0;
969
970 body = get_loop_body (loop);
971 for (i = 0; i < loop->num_nodes; i++)
972 {
973 unsigned nldom;
974 basic_block *ldom;
975
976 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
977 for (j = 0; j < nldom; j++)
978 if (!flow_bb_inside_loop_p (loop, ldom[j]))
979 dom_bbs[n_dom_bbs++] = ldom[j];
980
981 free (ldom);
982 }
983 free (body);
984
985 if (!exit_at_end)
986 {
987 /* Leave exit in first copy (for explanation why see comment in
988 unroll_loop_constant_iterations). */
989 may_exit_copy = 0;
990 n_peel = max_unroll - 1;
991 extra_zero_check = true;
992 last_may_exit = false;
993 }
994 else
995 {
996 /* Leave exit in last copy (for explanation why see comment in
997 unroll_loop_constant_iterations). */
998 may_exit_copy = max_unroll;
999 n_peel = max_unroll;
1000 extra_zero_check = false;
1001 last_may_exit = true;
1002 }
1003
1004 /* Get expression for number of iterations. */
1005 start_sequence ();
1006 old_niter = niter = gen_reg_rtx (desc->mode);
1007 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1008 if (tmp != niter)
1009 emit_move_insn (niter, tmp);
1010
1011 /* Count modulo by ANDing it with max_unroll; we use the fact that
1012 the number of unrollings is a power of two, and thus this is correct
1013 even if there is overflow in the computation. */
1014 niter = expand_simple_binop (desc->mode, AND,
1015 niter,
1016 GEN_INT (max_unroll),
1017 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1018
1019 init_code = get_insns ();
1020 end_sequence ();
1021
1022 /* Precondition the loop. */
1023 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1024
1025 remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
1026 n_remove_edges = 0;
1027
1028 wont_exit = sbitmap_alloc (max_unroll + 2);
1029
1030 /* Peel the first copy of loop body (almost always we must leave exit test
1031 here; the only exception is when we have extra zero check and the number
1032 of iterations is reliable. Also record the place of (possible) extra
1033 zero check. */
1034 sbitmap_zero (wont_exit);
1035 if (extra_zero_check
1036 && !desc->noloop_assumptions)
1037 SET_BIT (wont_exit, 1);
1038 ezc_swtch = loop_preheader_edge (loop)->src;
1039 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1040 loops, 1,
1041 wont_exit, desc->out_edge,
1042 remove_edges, &n_remove_edges,
1043 DLTHE_FLAG_UPDATE_FREQ);
1044 gcc_assert (ok);
1045
1046 /* Record the place where switch will be built for preconditioning. */
1047 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1048 NULL_RTX);
1049
1050 for (i = 0; i < n_peel; i++)
1051 {
1052 /* Peel the copy. */
1053 sbitmap_zero (wont_exit);
1054 if (i != n_peel - 1 || !last_may_exit)
1055 SET_BIT (wont_exit, 1);
1056 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1057 loops, 1,
1058 wont_exit, desc->out_edge,
1059 remove_edges, &n_remove_edges,
1060 DLTHE_FLAG_UPDATE_FREQ);
1061 gcc_assert (ok);
1062
1063 /* Create item for switch. */
1064 j = n_peel - i - (extra_zero_check ? 0 : 1);
1065 p = REG_BR_PROB_BASE / (i + 2);
1066
1067 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1068 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1069 block_label (preheader), p,
1070 NULL_RTX);
1071
1072 swtch = loop_split_edge_with (single_pred_edge (swtch), branch_code);
1073 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1074 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1075 e = make_edge (swtch, preheader,
1076 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1077 e->probability = p;
1078 }
1079
1080 if (extra_zero_check)
1081 {
1082 /* Add branch for zero iterations. */
1083 p = REG_BR_PROB_BASE / (max_unroll + 1);
1084 swtch = ezc_swtch;
1085 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1086 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1087 block_label (preheader), p,
1088 NULL_RTX);
1089
1090 swtch = loop_split_edge_with (single_succ_edge (swtch), branch_code);
1091 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1092 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1093 e = make_edge (swtch, preheader,
1094 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1095 e->probability = p;
1096 }
1097
1098 /* Recount dominators for outer blocks. */
1099 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1100
1101 /* And unroll loop. */
1102
1103 sbitmap_ones (wont_exit);
1104 RESET_BIT (wont_exit, may_exit_copy);
1105 opt_info_start_duplication (opt_info);
1106
1107 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1108 loops, max_unroll,
1109 wont_exit, desc->out_edge,
1110 remove_edges, &n_remove_edges,
1111 DLTHE_FLAG_UPDATE_FREQ
1112 | (opt_info
1113 ? DLTHE_RECORD_COPY_NUMBER
1114 : 0));
1115 gcc_assert (ok);
1116
1117 if (opt_info)
1118 {
1119 apply_opt_in_copies (opt_info, max_unroll, true, true);
1120 free_opt_info (opt_info);
1121 }
1122
1123 free (wont_exit);
1124
1125 if (exit_at_end)
1126 {
1127 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1128 /* Find a new in and out edge; they are in the last copy we have
1129 made. */
1130
1131 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1132 {
1133 desc->out_edge = EDGE_SUCC (exit_block, 0);
1134 desc->in_edge = EDGE_SUCC (exit_block, 1);
1135 }
1136 else
1137 {
1138 desc->out_edge = EDGE_SUCC (exit_block, 1);
1139 desc->in_edge = EDGE_SUCC (exit_block, 0);
1140 }
1141 }
1142
1143 /* Remove the edges. */
1144 for (i = 0; i < n_remove_edges; i++)
1145 remove_path (loops, remove_edges[i]);
1146 free (remove_edges);
1147
1148 /* We must be careful when updating the number of iterations due to
1149 preconditioning and the fact that the value must be valid at entry
1150 of the loop. After passing through the above code, we see that
1151 the correct new number of iterations is this: */
1152 gcc_assert (!desc->const_iter);
1153 desc->niter_expr =
1154 simplify_gen_binary (UDIV, desc->mode, old_niter,
1155 GEN_INT (max_unroll + 1));
1156 desc->niter_max /= max_unroll + 1;
1157 if (exit_at_end)
1158 {
1159 desc->niter_expr =
1160 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1161 desc->noloop_assumptions = NULL_RTX;
1162 desc->niter_max--;
1163 }
1164
1165 if (dump_file)
1166 fprintf (dump_file,
1167 ";; Unrolled loop %d times, counting # of iterations "
1168 "in runtime, %i insns\n",
1169 max_unroll, num_loop_insns (loop));
1170 }
1171
1172 /* Decide whether to simply peel LOOP and how much. */
1173 static void
1174 decide_peel_simple (struct loop *loop, int flags)
1175 {
1176 unsigned npeel;
1177 struct niter_desc *desc;
1178
1179 if (!(flags & UAP_PEEL))
1180 {
1181 /* We were not asked to, just return back silently. */
1182 return;
1183 }
1184
1185 if (dump_file)
1186 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1187
1188 /* npeel = number of iterations to peel. */
1189 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1190 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1191 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1192
1193 /* Skip big loops. */
1194 if (!npeel)
1195 {
1196 if (dump_file)
1197 fprintf (dump_file, ";; Not considering loop, is too big\n");
1198 return;
1199 }
1200
1201 /* Check for simple loops. */
1202 desc = get_simple_loop_desc (loop);
1203
1204 /* Check number of iterations. */
1205 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1206 {
1207 if (dump_file)
1208 fprintf (dump_file, ";; Loop iterates constant times\n");
1209 return;
1210 }
1211
1212 /* Do not simply peel loops with branches inside -- it increases number
1213 of mispredicts. */
1214 if (num_loop_branches (loop) > 1)
1215 {
1216 if (dump_file)
1217 fprintf (dump_file, ";; Not peeling, contains branches\n");
1218 return;
1219 }
1220
1221 if (loop->header->count)
1222 {
1223 unsigned niter = expected_loop_iterations (loop);
1224 if (niter + 1 > npeel)
1225 {
1226 if (dump_file)
1227 {
1228 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1229 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1230 (HOST_WIDEST_INT) (niter + 1));
1231 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1232 npeel);
1233 }
1234 return;
1235 }
1236 npeel = niter + 1;
1237 }
1238 else
1239 {
1240 /* For now we have no good heuristics to decide whether loop peeling
1241 will be effective, so disable it. */
1242 if (dump_file)
1243 fprintf (dump_file,
1244 ";; Not peeling loop, no evidence it will be profitable\n");
1245 return;
1246 }
1247
1248 /* Success. */
1249 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1250 loop->lpt_decision.times = npeel;
1251
1252 if (dump_file)
1253 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1254 loop->lpt_decision.times);
1255 }
1256
1257 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1258 while (cond)
1259 body;
1260
1261 ==>
1262
1263 if (!cond) goto end;
1264 body;
1265 if (!cond) goto end;
1266 body;
1267 while (cond)
1268 body;
1269 end: ;
1270 */
1271 static void
1272 peel_loop_simple (struct loops *loops, struct loop *loop)
1273 {
1274 sbitmap wont_exit;
1275 unsigned npeel = loop->lpt_decision.times;
1276 struct niter_desc *desc = get_simple_loop_desc (loop);
1277 struct opt_info *opt_info = NULL;
1278 bool ok;
1279
1280 if (flag_split_ivs_in_unroller && npeel > 1)
1281 opt_info = analyze_insns_in_loop (loop);
1282
1283 wont_exit = sbitmap_alloc (npeel + 1);
1284 sbitmap_zero (wont_exit);
1285
1286 opt_info_start_duplication (opt_info);
1287
1288 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1289 loops, npeel, wont_exit,
1290 NULL, NULL,
1291 NULL, DLTHE_FLAG_UPDATE_FREQ
1292 | (opt_info
1293 ? DLTHE_RECORD_COPY_NUMBER
1294 : 0));
1295 gcc_assert (ok);
1296
1297 free (wont_exit);
1298
1299 if (opt_info)
1300 {
1301 apply_opt_in_copies (opt_info, npeel, false, false);
1302 free_opt_info (opt_info);
1303 }
1304
1305 if (desc->simple_p)
1306 {
1307 if (desc->const_iter)
1308 {
1309 desc->niter -= npeel;
1310 desc->niter_expr = GEN_INT (desc->niter);
1311 desc->noloop_assumptions = NULL_RTX;
1312 }
1313 else
1314 {
1315 /* We cannot just update niter_expr, as its value might be clobbered
1316 inside loop. We could handle this by counting the number into
1317 temporary just like we do in runtime unrolling, but it does not
1318 seem worthwhile. */
1319 free_simple_loop_desc (loop);
1320 }
1321 }
1322 if (dump_file)
1323 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1324 }
1325
1326 /* Decide whether to unroll LOOP stupidly and how much. */
1327 static void
1328 decide_unroll_stupid (struct loop *loop, int flags)
1329 {
1330 unsigned nunroll, nunroll_by_av, i;
1331 struct niter_desc *desc;
1332
1333 if (!(flags & UAP_UNROLL_ALL))
1334 {
1335 /* We were not asked to, just return back silently. */
1336 return;
1337 }
1338
1339 if (dump_file)
1340 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1341
1342 /* nunroll = total number of copies of the original loop body in
1343 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1344 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1345 nunroll_by_av
1346 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1347 if (nunroll > nunroll_by_av)
1348 nunroll = nunroll_by_av;
1349 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1350 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1351
1352 /* Skip big loops. */
1353 if (nunroll <= 1)
1354 {
1355 if (dump_file)
1356 fprintf (dump_file, ";; Not considering loop, is too big\n");
1357 return;
1358 }
1359
1360 /* Check for simple loops. */
1361 desc = get_simple_loop_desc (loop);
1362
1363 /* Check simpleness. */
1364 if (desc->simple_p && !desc->assumptions)
1365 {
1366 if (dump_file)
1367 fprintf (dump_file, ";; The loop is simple\n");
1368 return;
1369 }
1370
1371 /* Do not unroll loops with branches inside -- it increases number
1372 of mispredicts. */
1373 if (num_loop_branches (loop) > 1)
1374 {
1375 if (dump_file)
1376 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1377 return;
1378 }
1379
1380 /* If we have profile feedback, check whether the loop rolls. */
1381 if (loop->header->count
1382 && expected_loop_iterations (loop) < 2 * nunroll)
1383 {
1384 if (dump_file)
1385 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1386 return;
1387 }
1388
1389 /* Success. Now force nunroll to be power of 2, as it seems that this
1390 improves results (partially because of better alignments, partially
1391 because of some dark magic). */
1392 for (i = 1; 2 * i <= nunroll; i *= 2)
1393 continue;
1394
1395 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1396 loop->lpt_decision.times = i - 1;
1397
1398 if (dump_file)
1399 fprintf (dump_file,
1400 ";; Decided to unroll the loop stupidly, %d times.\n",
1401 loop->lpt_decision.times);
1402 }
1403
1404 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1405 while (cond)
1406 body;
1407
1408 ==>
1409
1410 while (cond)
1411 {
1412 body;
1413 if (!cond) break;
1414 body;
1415 if (!cond) break;
1416 body;
1417 if (!cond) break;
1418 body;
1419 }
1420 */
1421 static void
1422 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1423 {
1424 sbitmap wont_exit;
1425 unsigned nunroll = loop->lpt_decision.times;
1426 struct niter_desc *desc = get_simple_loop_desc (loop);
1427 struct opt_info *opt_info = NULL;
1428 bool ok;
1429
1430 if (flag_split_ivs_in_unroller
1431 || flag_variable_expansion_in_unroller)
1432 opt_info = analyze_insns_in_loop (loop);
1433
1434
1435 wont_exit = sbitmap_alloc (nunroll + 1);
1436 sbitmap_zero (wont_exit);
1437 opt_info_start_duplication (opt_info);
1438
1439 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1440 loops, nunroll, wont_exit,
1441 NULL, NULL, NULL,
1442 DLTHE_FLAG_UPDATE_FREQ
1443 | (opt_info
1444 ? DLTHE_RECORD_COPY_NUMBER
1445 : 0));
1446 gcc_assert (ok);
1447
1448 if (opt_info)
1449 {
1450 apply_opt_in_copies (opt_info, nunroll, true, true);
1451 free_opt_info (opt_info);
1452 }
1453
1454 free (wont_exit);
1455
1456 if (desc->simple_p)
1457 {
1458 /* We indeed may get here provided that there are nontrivial assumptions
1459 for a loop to be really simple. We could update the counts, but the
1460 problem is that we are unable to decide which exit will be taken
1461 (not really true in case the number of iterations is constant,
1462 but noone will do anything with this information, so we do not
1463 worry about it). */
1464 desc->simple_p = false;
1465 }
1466
1467 if (dump_file)
1468 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1469 nunroll, num_loop_insns (loop));
1470 }
1471
1472 /* A hash function for information about insns to split. */
1473
1474 static hashval_t
1475 si_info_hash (const void *ivts)
1476 {
1477 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1478 }
1479
1480 /* An equality functions for information about insns to split. */
1481
1482 static int
1483 si_info_eq (const void *ivts1, const void *ivts2)
1484 {
1485 const struct iv_to_split *i1 = ivts1;
1486 const struct iv_to_split *i2 = ivts2;
1487
1488 return i1->insn == i2->insn;
1489 }
1490
1491 /* Return a hash for VES, which is really a "var_to_expand *". */
1492
1493 static hashval_t
1494 ve_info_hash (const void *ves)
1495 {
1496 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1497 }
1498
1499 /* Return true if IVTS1 and IVTS2 (which are really both of type
1500 "var_to_expand *") refer to the same instruction. */
1501
1502 static int
1503 ve_info_eq (const void *ivts1, const void *ivts2)
1504 {
1505 const struct var_to_expand *i1 = ivts1;
1506 const struct var_to_expand *i2 = ivts2;
1507
1508 return i1->insn == i2->insn;
1509 }
1510
1511 /* Returns true if REG is referenced in one insn in LOOP. */
1512
1513 bool
1514 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1515 {
1516 basic_block *body, bb;
1517 unsigned i;
1518 int count_ref = 0;
1519 rtx insn;
1520
1521 body = get_loop_body (loop);
1522 for (i = 0; i < loop->num_nodes; i++)
1523 {
1524 bb = body[i];
1525
1526 FOR_BB_INSNS (bb, insn)
1527 {
1528 if (rtx_referenced_p (reg, insn))
1529 count_ref++;
1530 }
1531 }
1532 return (count_ref == 1);
1533 }
1534
1535 /* Determine whether INSN contains an accumulator
1536 which can be expanded into separate copies,
1537 one for each copy of the LOOP body.
1538
1539 for (i = 0 ; i < n; i++)
1540 sum += a[i];
1541
1542 ==>
1543
1544 sum += a[i]
1545 ....
1546 i = i+1;
1547 sum1 += a[i]
1548 ....
1549 i = i+1
1550 sum2 += a[i];
1551 ....
1552
1553 Return NULL if INSN contains no opportunity for expansion of accumulator.
1554 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1555 information and return a pointer to it.
1556 */
1557
1558 static struct var_to_expand *
1559 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1560 {
1561 rtx set, dest, src, op1;
1562 struct var_to_expand *ves;
1563 enum machine_mode mode1, mode2;
1564
1565 set = single_set (insn);
1566 if (!set)
1567 return NULL;
1568
1569 dest = SET_DEST (set);
1570 src = SET_SRC (set);
1571
1572 if (GET_CODE (src) != PLUS
1573 && GET_CODE (src) != MINUS
1574 && GET_CODE (src) != MULT)
1575 return NULL;
1576
1577 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1578 in MD. But if there is no optab to generate the insn, we can not
1579 perform the variable expansion. This can happen if an MD provides
1580 an insn but not a named pattern to generate it, for example to avoid
1581 producing code that needs additional mode switches like for x87/mmx.
1582
1583 So we check have_insn_for which looks for an optab for the operation
1584 in SRC. If it doesn't exist, we can't perform the expansion even
1585 though INSN is valid. */
1586 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1587 return NULL;
1588
1589 if (!XEXP (src, 0))
1590 return NULL;
1591
1592 op1 = XEXP (src, 0);
1593
1594 if (!REG_P (dest)
1595 && !(GET_CODE (dest) == SUBREG
1596 && REG_P (SUBREG_REG (dest))))
1597 return NULL;
1598
1599 if (!rtx_equal_p (dest, op1))
1600 return NULL;
1601
1602 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1603 return NULL;
1604
1605 if (rtx_referenced_p (dest, XEXP (src, 1)))
1606 return NULL;
1607
1608 mode1 = GET_MODE (dest);
1609 mode2 = GET_MODE (XEXP (src, 1));
1610 if ((FLOAT_MODE_P (mode1)
1611 || FLOAT_MODE_P (mode2))
1612 && !flag_unsafe_math_optimizations)
1613 return NULL;
1614
1615 /* Record the accumulator to expand. */
1616 ves = xmalloc (sizeof (struct var_to_expand));
1617 ves->insn = insn;
1618 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1619 ves->reg = copy_rtx (dest);
1620 ves->op = GET_CODE (src);
1621 ves->expansion_count = 0;
1622 ves->reuse_expansion = 0;
1623 return ves;
1624 }
1625
1626 /* Determine whether there is an induction variable in INSN that
1627 we would like to split during unrolling.
1628
1629 I.e. replace
1630
1631 i = i + 1;
1632 ...
1633 i = i + 1;
1634 ...
1635 i = i + 1;
1636 ...
1637
1638 type chains by
1639
1640 i0 = i + 1
1641 ...
1642 i = i0 + 1
1643 ...
1644 i = i0 + 2
1645 ...
1646
1647 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1648 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1649 pointer to it. */
1650
1651 static struct iv_to_split *
1652 analyze_iv_to_split_insn (rtx insn)
1653 {
1654 rtx set, dest;
1655 struct rtx_iv iv;
1656 struct iv_to_split *ivts;
1657 bool ok;
1658
1659 /* For now we just split the basic induction variables. Later this may be
1660 extended for example by selecting also addresses of memory references. */
1661 set = single_set (insn);
1662 if (!set)
1663 return NULL;
1664
1665 dest = SET_DEST (set);
1666 if (!REG_P (dest))
1667 return NULL;
1668
1669 if (!biv_p (insn, dest))
1670 return NULL;
1671
1672 ok = iv_analyze_result (insn, dest, &iv);
1673 gcc_assert (ok);
1674
1675 if (iv.step == const0_rtx
1676 || iv.mode != iv.extend_mode)
1677 return NULL;
1678
1679 /* Record the insn to split. */
1680 ivts = xmalloc (sizeof (struct iv_to_split));
1681 ivts->insn = insn;
1682 ivts->base_var = NULL_RTX;
1683 ivts->step = iv.step;
1684 ivts->n_loc = 1;
1685 ivts->loc[0] = 1;
1686
1687 return ivts;
1688 }
1689
1690 /* Determines which of insns in LOOP can be optimized.
1691 Return a OPT_INFO struct with the relevant hash tables filled
1692 with all insns to be optimized. The FIRST_NEW_BLOCK field
1693 is undefined for the return value. */
1694
1695 static struct opt_info *
1696 analyze_insns_in_loop (struct loop *loop)
1697 {
1698 basic_block *body, bb;
1699 unsigned i, num_edges = 0;
1700 struct opt_info *opt_info = xcalloc (1, sizeof (struct opt_info));
1701 rtx insn;
1702 struct iv_to_split *ivts = NULL;
1703 struct var_to_expand *ves = NULL;
1704 PTR *slot1;
1705 PTR *slot2;
1706 edge *edges = get_loop_exit_edges (loop, &num_edges);
1707 bool can_apply = false;
1708
1709 iv_analysis_loop_init (loop);
1710
1711 body = get_loop_body (loop);
1712
1713 if (flag_split_ivs_in_unroller)
1714 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1715 si_info_hash, si_info_eq, free);
1716
1717 /* Record the loop exit bb and loop preheader before the unrolling. */
1718 if (!loop_preheader_edge (loop)->src)
1719 {
1720 loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1721 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1722 }
1723 else
1724 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1725
1726 if (num_edges == 1
1727 && !(edges[0]->flags & EDGE_COMPLEX))
1728 {
1729 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1730 can_apply = true;
1731 }
1732
1733 if (flag_variable_expansion_in_unroller
1734 && can_apply)
1735 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1736 ve_info_hash, ve_info_eq, free);
1737
1738 for (i = 0; i < loop->num_nodes; i++)
1739 {
1740 bb = body[i];
1741 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1742 continue;
1743
1744 FOR_BB_INSNS (bb, insn)
1745 {
1746 if (!INSN_P (insn))
1747 continue;
1748
1749 if (opt_info->insns_to_split)
1750 ivts = analyze_iv_to_split_insn (insn);
1751
1752 if (ivts)
1753 {
1754 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1755 *slot1 = ivts;
1756 continue;
1757 }
1758
1759 if (opt_info->insns_with_var_to_expand)
1760 ves = analyze_insn_to_expand_var (loop, insn);
1761
1762 if (ves)
1763 {
1764 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1765 *slot2 = ves;
1766 }
1767 }
1768 }
1769
1770 free (edges);
1771 free (body);
1772 return opt_info;
1773 }
1774
1775 /* Called just before loop duplication. Records start of duplicated area
1776 to OPT_INFO. */
1777
1778 static void
1779 opt_info_start_duplication (struct opt_info *opt_info)
1780 {
1781 if (opt_info)
1782 opt_info->first_new_block = last_basic_block;
1783 }
1784
1785 /* Determine the number of iterations between initialization of the base
1786 variable and the current copy (N_COPY). N_COPIES is the total number
1787 of newly created copies. UNROLLING is true if we are unrolling
1788 (not peeling) the loop. */
1789
1790 static unsigned
1791 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1792 {
1793 if (unrolling)
1794 {
1795 /* If we are unrolling, initialization is done in the original loop
1796 body (number 0). */
1797 return n_copy;
1798 }
1799 else
1800 {
1801 /* If we are peeling, the copy in that the initialization occurs has
1802 number 1. The original loop (number 0) is the last. */
1803 if (n_copy)
1804 return n_copy - 1;
1805 else
1806 return n_copies;
1807 }
1808 }
1809
1810 /* Locate in EXPR the expression corresponding to the location recorded
1811 in IVTS, and return a pointer to the RTX for this location. */
1812
1813 static rtx *
1814 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1815 {
1816 unsigned i;
1817 rtx *ret = &expr;
1818
1819 for (i = 0; i < ivts->n_loc; i++)
1820 ret = &XEXP (*ret, ivts->loc[i]);
1821
1822 return ret;
1823 }
1824
1825 /* Allocate basic variable for the induction variable chain. Callback for
1826 htab_traverse. */
1827
1828 static int
1829 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1830 {
1831 struct iv_to_split *ivts = *slot;
1832 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1833
1834 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1835
1836 return 1;
1837 }
1838
1839 /* Insert initialization of basic variable of IVTS before INSN, taking
1840 the initial value from INSN. */
1841
1842 static void
1843 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1844 {
1845 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1846 rtx seq;
1847
1848 start_sequence ();
1849 expr = force_operand (expr, ivts->base_var);
1850 if (expr != ivts->base_var)
1851 emit_move_insn (ivts->base_var, expr);
1852 seq = get_insns ();
1853 end_sequence ();
1854
1855 emit_insn_before (seq, insn);
1856 }
1857
1858 /* Replace the use of induction variable described in IVTS in INSN
1859 by base variable + DELTA * step. */
1860
1861 static void
1862 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1863 {
1864 rtx expr, *loc, seq, incr, var;
1865 enum machine_mode mode = GET_MODE (ivts->base_var);
1866 rtx src, dest, set;
1867
1868 /* Construct base + DELTA * step. */
1869 if (!delta)
1870 expr = ivts->base_var;
1871 else
1872 {
1873 incr = simplify_gen_binary (MULT, mode,
1874 ivts->step, gen_int_mode (delta, mode));
1875 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1876 ivts->base_var, incr);
1877 }
1878
1879 /* Figure out where to do the replacement. */
1880 loc = get_ivts_expr (single_set (insn), ivts);
1881
1882 /* If we can make the replacement right away, we're done. */
1883 if (validate_change (insn, loc, expr, 0))
1884 return;
1885
1886 /* Otherwise, force EXPR into a register and try again. */
1887 start_sequence ();
1888 var = gen_reg_rtx (mode);
1889 expr = force_operand (expr, var);
1890 if (expr != var)
1891 emit_move_insn (var, expr);
1892 seq = get_insns ();
1893 end_sequence ();
1894 emit_insn_before (seq, insn);
1895
1896 if (validate_change (insn, loc, var, 0))
1897 return;
1898
1899 /* The last chance. Try recreating the assignment in insn
1900 completely from scratch. */
1901 set = single_set (insn);
1902 gcc_assert (set);
1903
1904 start_sequence ();
1905 *loc = var;
1906 src = copy_rtx (SET_SRC (set));
1907 dest = copy_rtx (SET_DEST (set));
1908 src = force_operand (src, dest);
1909 if (src != dest)
1910 emit_move_insn (dest, src);
1911 seq = get_insns ();
1912 end_sequence ();
1913
1914 emit_insn_before (seq, insn);
1915 delete_insn (insn);
1916 }
1917
1918
1919 /* Return one expansion of the accumulator recorded in struct VE. */
1920
1921 static rtx
1922 get_expansion (struct var_to_expand *ve)
1923 {
1924 rtx reg;
1925
1926 if (ve->reuse_expansion == 0)
1927 reg = ve->reg;
1928 else
1929 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1930
1931 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1932 ve->reuse_expansion = 0;
1933 else
1934 ve->reuse_expansion++;
1935
1936 return reg;
1937 }
1938
1939
1940 /* Given INSN replace the uses of the accumulator recorded in VE
1941 with a new register. */
1942
1943 static void
1944 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1945 {
1946 rtx new_reg, set;
1947 bool really_new_expansion = false;
1948
1949 set = single_set (insn);
1950 gcc_assert (set);
1951
1952 /* Generate a new register only if the expansion limit has not been
1953 reached. Else reuse an already existing expansion. */
1954 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1955 {
1956 really_new_expansion = true;
1957 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1958 }
1959 else
1960 new_reg = get_expansion (ve);
1961
1962 validate_change (insn, &SET_DEST (set), new_reg, 1);
1963 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1964
1965 if (apply_change_group ())
1966 if (really_new_expansion)
1967 {
1968 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1969 ve->expansion_count++;
1970 }
1971 }
1972
1973 /* Initialize the variable expansions in loop preheader.
1974 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1975 basic block where the initialization of the expansions
1976 should take place. */
1977
1978 static int
1979 insert_var_expansion_initialization (void **slot, void *place_p)
1980 {
1981 struct var_to_expand *ve = *slot;
1982 basic_block place = (basic_block)place_p;
1983 rtx seq, var, zero_init, insn;
1984 unsigned i;
1985
1986 if (VEC_length (rtx, ve->var_expansions) == 0)
1987 return 1;
1988
1989 start_sequence ();
1990 if (ve->op == PLUS || ve->op == MINUS)
1991 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1992 {
1993 zero_init = CONST0_RTX (GET_MODE (var));
1994 emit_move_insn (var, zero_init);
1995 }
1996 else if (ve->op == MULT)
1997 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1998 {
1999 zero_init = CONST1_RTX (GET_MODE (var));
2000 emit_move_insn (var, zero_init);
2001 }
2002
2003 seq = get_insns ();
2004 end_sequence ();
2005
2006 insn = BB_HEAD (place);
2007 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2008 insn = NEXT_INSN (insn);
2009
2010 emit_insn_after (seq, insn);
2011 /* Continue traversing the hash table. */
2012 return 1;
2013 }
2014
2015 /* Combine the variable expansions at the loop exit.
2016 Callbacks for htab_traverse. PLACE_P is the loop exit
2017 basic block where the summation of the expansions should
2018 take place. */
2019
2020 static int
2021 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2022 {
2023 struct var_to_expand *ve = *slot;
2024 basic_block place = (basic_block)place_p;
2025 rtx sum = ve->reg;
2026 rtx expr, seq, var, insn;
2027 unsigned i;
2028
2029 if (VEC_length (rtx, ve->var_expansions) == 0)
2030 return 1;
2031
2032 start_sequence ();
2033 if (ve->op == PLUS || ve->op == MINUS)
2034 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2035 {
2036 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2037 var, sum);
2038 }
2039 else if (ve->op == MULT)
2040 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2041 {
2042 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2043 var, sum);
2044 }
2045
2046 expr = force_operand (sum, ve->reg);
2047 if (expr != ve->reg)
2048 emit_move_insn (ve->reg, expr);
2049 seq = get_insns ();
2050 end_sequence ();
2051
2052 insn = BB_HEAD (place);
2053 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2054 insn = NEXT_INSN (insn);
2055
2056 emit_insn_after (seq, insn);
2057
2058 /* Continue traversing the hash table. */
2059 return 1;
2060 }
2061
2062 /* Apply loop optimizations in loop copies using the
2063 data which gathered during the unrolling. Structure
2064 OPT_INFO record that data.
2065
2066 UNROLLING is true if we unrolled (not peeled) the loop.
2067 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2068 the loop (as it should happen in complete unrolling, but not in ordinary
2069 peeling of the loop). */
2070
2071 static void
2072 apply_opt_in_copies (struct opt_info *opt_info,
2073 unsigned n_copies, bool unrolling,
2074 bool rewrite_original_loop)
2075 {
2076 unsigned i, delta;
2077 basic_block bb, orig_bb;
2078 rtx insn, orig_insn, next;
2079 struct iv_to_split ivts_templ, *ivts;
2080 struct var_to_expand ve_templ, *ves;
2081
2082 /* Sanity check -- we need to put initialization in the original loop
2083 body. */
2084 gcc_assert (!unrolling || rewrite_original_loop);
2085
2086 /* Allocate the basic variables (i0). */
2087 if (opt_info->insns_to_split)
2088 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2089
2090 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2091 {
2092 bb = BASIC_BLOCK (i);
2093 orig_bb = get_bb_original (bb);
2094
2095 /* bb->aux holds position in copy sequence initialized by
2096 duplicate_loop_to_header_edge. */
2097 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2098 unrolling);
2099 bb->aux = 0;
2100 orig_insn = BB_HEAD (orig_bb);
2101 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2102 {
2103 next = NEXT_INSN (insn);
2104 if (!INSN_P (insn))
2105 continue;
2106
2107 while (!INSN_P (orig_insn))
2108 orig_insn = NEXT_INSN (orig_insn);
2109
2110 ivts_templ.insn = orig_insn;
2111 ve_templ.insn = orig_insn;
2112
2113 /* Apply splitting iv optimization. */
2114 if (opt_info->insns_to_split)
2115 {
2116 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2117
2118 if (ivts)
2119 {
2120 gcc_assert (GET_CODE (PATTERN (insn))
2121 == GET_CODE (PATTERN (orig_insn)));
2122
2123 if (!delta)
2124 insert_base_initialization (ivts, insn);
2125 split_iv (ivts, insn, delta);
2126 }
2127 }
2128 /* Apply variable expansion optimization. */
2129 if (unrolling && opt_info->insns_with_var_to_expand)
2130 {
2131 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2132 if (ves)
2133 {
2134 gcc_assert (GET_CODE (PATTERN (insn))
2135 == GET_CODE (PATTERN (orig_insn)));
2136 expand_var_during_unrolling (ves, insn);
2137 }
2138 }
2139 orig_insn = NEXT_INSN (orig_insn);
2140 }
2141 }
2142
2143 if (!rewrite_original_loop)
2144 return;
2145
2146 /* Initialize the variable expansions in the loop preheader
2147 and take care of combining them at the loop exit. */
2148 if (opt_info->insns_with_var_to_expand)
2149 {
2150 htab_traverse (opt_info->insns_with_var_to_expand,
2151 insert_var_expansion_initialization,
2152 opt_info->loop_preheader);
2153 htab_traverse (opt_info->insns_with_var_to_expand,
2154 combine_var_copies_in_loop_exit,
2155 opt_info->loop_exit);
2156 }
2157
2158 /* Rewrite also the original loop body. Find them as originals of the blocks
2159 in the last copied iteration, i.e. those that have
2160 get_bb_copy (get_bb_original (bb)) == bb. */
2161 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2162 {
2163 bb = BASIC_BLOCK (i);
2164 orig_bb = get_bb_original (bb);
2165 if (get_bb_copy (orig_bb) != bb)
2166 continue;
2167
2168 delta = determine_split_iv_delta (0, n_copies, unrolling);
2169 for (orig_insn = BB_HEAD (orig_bb);
2170 orig_insn != NEXT_INSN (BB_END (bb));
2171 orig_insn = next)
2172 {
2173 next = NEXT_INSN (orig_insn);
2174
2175 if (!INSN_P (orig_insn))
2176 continue;
2177
2178 ivts_templ.insn = orig_insn;
2179 if (opt_info->insns_to_split)
2180 {
2181 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2182 if (ivts)
2183 {
2184 if (!delta)
2185 insert_base_initialization (ivts, orig_insn);
2186 split_iv (ivts, orig_insn, delta);
2187 continue;
2188 }
2189 }
2190
2191 }
2192 }
2193 }
2194
2195 /* Release the data structures used for the variable expansion
2196 optimization. Callbacks for htab_traverse. */
2197
2198 static int
2199 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2200 {
2201 struct var_to_expand *ve = *slot;
2202
2203 VEC_free (rtx, heap, ve->var_expansions);
2204
2205 /* Continue traversing the hash table. */
2206 return 1;
2207 }
2208
2209 /* Release OPT_INFO. */
2210
2211 static void
2212 free_opt_info (struct opt_info *opt_info)
2213 {
2214 if (opt_info->insns_to_split)
2215 htab_delete (opt_info->insns_to_split);
2216 if (opt_info->insns_with_var_to_expand)
2217 {
2218 htab_traverse (opt_info->insns_with_var_to_expand,
2219 release_var_copies, NULL);
2220 htab_delete (opt_info->insns_with_var_to_expand);
2221 }
2222 free (opt_info);
2223 }