Commit ChangeLog entries.
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
85 };
86
87 /* Information about accumulators to expand. */
88
89 struct var_to_expand
90 {
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
101 };
102
103 /* Information about optimization applied in
104 the unrolled loop. */
105
106 struct opt_info
107 {
108 htab_t insns_to_split; /* A hashtable of insns to split. */
109 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
110 to expand. */
111 unsigned first_new_block; /* The first basic block that was
112 duplicated. */
113 basic_block loop_exit; /* The loop exit basic block. */
114 basic_block loop_preheader; /* The loop preheader basic block. */
115 };
116
117 static void decide_unrolling_and_peeling (struct loops *, int);
118 static void peel_loops_completely (struct loops *, int);
119 static void decide_peel_simple (struct loop *, int);
120 static void decide_peel_once_rolling (struct loop *, int);
121 static void decide_peel_completely (struct loop *, int);
122 static void decide_unroll_stupid (struct loop *, int);
123 static void decide_unroll_constant_iterations (struct loop *, int);
124 static void decide_unroll_runtime_iterations (struct loop *, int);
125 static void peel_loop_simple (struct loops *, struct loop *);
126 static void peel_loop_completely (struct loops *, struct loop *);
127 static void unroll_loop_stupid (struct loops *, struct loop *);
128 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
129 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
130 static struct opt_info *analyze_insns_in_loop (struct loop *);
131 static void opt_info_start_duplication (struct opt_info *);
132 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
133 static void free_opt_info (struct opt_info *);
134 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
135 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
136 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
137 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
138 static int insert_var_expansion_initialization (void **, void *);
139 static int combine_var_copies_in_loop_exit (void **, void *);
140 static int release_var_copies (void **, void *);
141 static rtx get_expansion (struct var_to_expand *);
142
143 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
144 void
145 unroll_and_peel_loops (struct loops *loops, int flags)
146 {
147 struct loop *loop, *next;
148 bool check;
149
150 /* First perform complete loop peeling (it is almost surely a win,
151 and affects parameters for further decision a lot). */
152 peel_loops_completely (loops, flags);
153
154 /* Now decide rest of unrolling and peeling. */
155 decide_unrolling_and_peeling (loops, flags);
156
157 loop = loops->tree_root;
158 while (loop->inner)
159 loop = loop->inner;
160
161 /* Scan the loops, inner ones first. */
162 while (loop != loops->tree_root)
163 {
164 if (loop->next)
165 {
166 next = loop->next;
167 while (next->inner)
168 next = next->inner;
169 }
170 else
171 next = loop->outer;
172
173 check = true;
174 /* And perform the appropriate transformations. */
175 switch (loop->lpt_decision.decision)
176 {
177 case LPT_PEEL_COMPLETELY:
178 /* Already done. */
179 gcc_unreachable ();
180 case LPT_PEEL_SIMPLE:
181 peel_loop_simple (loops, loop);
182 break;
183 case LPT_UNROLL_CONSTANT:
184 unroll_loop_constant_iterations (loops, loop);
185 break;
186 case LPT_UNROLL_RUNTIME:
187 unroll_loop_runtime_iterations (loops, loop);
188 break;
189 case LPT_UNROLL_STUPID:
190 unroll_loop_stupid (loops, loop);
191 break;
192 case LPT_NONE:
193 check = false;
194 break;
195 default:
196 gcc_unreachable ();
197 }
198 if (check)
199 {
200 #ifdef ENABLE_CHECKING
201 verify_dominators (CDI_DOMINATORS);
202 verify_loop_structure (loops);
203 #endif
204 }
205 loop = next;
206 }
207
208 iv_analysis_done ();
209 }
210
211 /* Check whether exit of the LOOP is at the end of loop body. */
212
213 static bool
214 loop_exit_at_end_p (struct loop *loop)
215 {
216 struct niter_desc *desc = get_simple_loop_desc (loop);
217 rtx insn;
218
219 if (desc->in_edge->dest != loop->latch)
220 return false;
221
222 /* Check that the latch is empty. */
223 FOR_BB_INSNS (loop->latch, insn)
224 {
225 if (INSN_P (insn))
226 return false;
227 }
228
229 return true;
230 }
231
232 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
233 static void
234 peel_loops_completely (struct loops *loops, int flags)
235 {
236 struct loop *loop, *next;
237
238 loop = loops->tree_root;
239 while (loop->inner)
240 loop = loop->inner;
241
242 while (loop != loops->tree_root)
243 {
244 if (loop->next)
245 {
246 next = loop->next;
247 while (next->inner)
248 next = next->inner;
249 }
250 else
251 next = loop->outer;
252
253 loop->lpt_decision.decision = LPT_NONE;
254
255 if (dump_file)
256 fprintf (dump_file,
257 "\n;; *** Considering loop %d for complete peeling ***\n",
258 loop->num);
259
260 loop->ninsns = num_loop_insns (loop);
261
262 decide_peel_once_rolling (loop, flags);
263 if (loop->lpt_decision.decision == LPT_NONE)
264 decide_peel_completely (loop, flags);
265
266 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
267 {
268 peel_loop_completely (loops, loop);
269 #ifdef ENABLE_CHECKING
270 verify_dominators (CDI_DOMINATORS);
271 verify_loop_structure (loops);
272 #endif
273 }
274 loop = next;
275 }
276 }
277
278 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
279 static void
280 decide_unrolling_and_peeling (struct loops *loops, int flags)
281 {
282 struct loop *loop = loops->tree_root, *next;
283
284 while (loop->inner)
285 loop = loop->inner;
286
287 /* Scan the loops, inner ones first. */
288 while (loop != loops->tree_root)
289 {
290 if (loop->next)
291 {
292 next = loop->next;
293 while (next->inner)
294 next = next->inner;
295 }
296 else
297 next = loop->outer;
298
299 loop->lpt_decision.decision = LPT_NONE;
300
301 if (dump_file)
302 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
303
304 /* Do not peel cold areas. */
305 if (!maybe_hot_bb_p (loop->header))
306 {
307 if (dump_file)
308 fprintf (dump_file, ";; Not considering loop, cold area\n");
309 loop = next;
310 continue;
311 }
312
313 /* Can the loop be manipulated? */
314 if (!can_duplicate_loop_p (loop))
315 {
316 if (dump_file)
317 fprintf (dump_file,
318 ";; Not considering loop, cannot duplicate\n");
319 loop = next;
320 continue;
321 }
322
323 /* Skip non-innermost loops. */
324 if (loop->inner)
325 {
326 if (dump_file)
327 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
328 loop = next;
329 continue;
330 }
331
332 loop->ninsns = num_loop_insns (loop);
333 loop->av_ninsns = average_num_loop_insns (loop);
334
335 /* Try transformations one by one in decreasing order of
336 priority. */
337
338 decide_unroll_constant_iterations (loop, flags);
339 if (loop->lpt_decision.decision == LPT_NONE)
340 decide_unroll_runtime_iterations (loop, flags);
341 if (loop->lpt_decision.decision == LPT_NONE)
342 decide_unroll_stupid (loop, flags);
343 if (loop->lpt_decision.decision == LPT_NONE)
344 decide_peel_simple (loop, flags);
345
346 loop = next;
347 }
348 }
349
350 /* Decide whether the LOOP is once rolling and suitable for complete
351 peeling. */
352 static void
353 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
354 {
355 struct niter_desc *desc;
356
357 if (dump_file)
358 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
359
360 /* Is the loop small enough? */
361 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
362 {
363 if (dump_file)
364 fprintf (dump_file, ";; Not considering loop, is too big\n");
365 return;
366 }
367
368 /* Check for simple loops. */
369 desc = get_simple_loop_desc (loop);
370
371 /* Check number of iterations. */
372 if (!desc->simple_p
373 || desc->assumptions
374 || desc->infinite
375 || !desc->const_iter
376 || desc->niter != 0)
377 {
378 if (dump_file)
379 fprintf (dump_file,
380 ";; Unable to prove that the loop rolls exactly once\n");
381 return;
382 }
383
384 /* Success. */
385 if (dump_file)
386 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
387 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
388 }
389
390 /* Decide whether the LOOP is suitable for complete peeling. */
391 static void
392 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
393 {
394 unsigned npeel;
395 struct niter_desc *desc;
396
397 if (dump_file)
398 fprintf (dump_file, "\n;; Considering peeling completely\n");
399
400 /* Skip non-innermost loops. */
401 if (loop->inner)
402 {
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
405 return;
406 }
407
408 /* Do not peel cold areas. */
409 if (!maybe_hot_bb_p (loop->header))
410 {
411 if (dump_file)
412 fprintf (dump_file, ";; Not considering loop, cold area\n");
413 return;
414 }
415
416 /* Can the loop be manipulated? */
417 if (!can_duplicate_loop_p (loop))
418 {
419 if (dump_file)
420 fprintf (dump_file,
421 ";; Not considering loop, cannot duplicate\n");
422 return;
423 }
424
425 /* npeel = number of iterations to peel. */
426 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
427 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
428 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
429
430 /* Is the loop small enough? */
431 if (!npeel)
432 {
433 if (dump_file)
434 fprintf (dump_file, ";; Not considering loop, is too big\n");
435 return;
436 }
437
438 /* Check for simple loops. */
439 desc = get_simple_loop_desc (loop);
440
441 /* Check number of iterations. */
442 if (!desc->simple_p
443 || desc->assumptions
444 || !desc->const_iter
445 || desc->infinite)
446 {
447 if (dump_file)
448 fprintf (dump_file,
449 ";; Unable to prove that the loop iterates constant times\n");
450 return;
451 }
452
453 if (desc->niter > npeel - 1)
454 {
455 if (dump_file)
456 {
457 fprintf (dump_file,
458 ";; Not peeling loop completely, rolls too much (");
459 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
460 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
461 }
462 return;
463 }
464
465 /* Success. */
466 if (dump_file)
467 fprintf (dump_file, ";; Decided to peel loop completely\n");
468 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
469 }
470
471 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
472 completely. The transformation done:
473
474 for (i = 0; i < 4; i++)
475 body;
476
477 ==>
478
479 i = 0;
480 body; i++;
481 body; i++;
482 body; i++;
483 body; i++;
484 */
485 static void
486 peel_loop_completely (struct loops *loops, struct loop *loop)
487 {
488 sbitmap wont_exit;
489 unsigned HOST_WIDE_INT npeel;
490 unsigned n_remove_edges, i;
491 edge *remove_edges, ein;
492 struct niter_desc *desc = get_simple_loop_desc (loop);
493 struct opt_info *opt_info = NULL;
494
495 npeel = desc->niter;
496
497 if (npeel)
498 {
499 bool ok;
500
501 wont_exit = sbitmap_alloc (npeel + 1);
502 sbitmap_ones (wont_exit);
503 RESET_BIT (wont_exit, 0);
504 if (desc->noloop_assumptions)
505 RESET_BIT (wont_exit, 1);
506
507 remove_edges = XCNEWVEC (edge, npeel);
508 n_remove_edges = 0;
509
510 if (flag_split_ivs_in_unroller)
511 opt_info = analyze_insns_in_loop (loop);
512
513 opt_info_start_duplication (opt_info);
514 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
515 loops, npeel,
516 wont_exit, desc->out_edge,
517 remove_edges, &n_remove_edges,
518 DLTHE_FLAG_UPDATE_FREQ
519 | DLTHE_FLAG_COMPLETTE_PEEL
520 | (opt_info
521 ? DLTHE_RECORD_COPY_NUMBER : 0));
522 gcc_assert (ok);
523
524 free (wont_exit);
525
526 if (opt_info)
527 {
528 apply_opt_in_copies (opt_info, npeel, false, true);
529 free_opt_info (opt_info);
530 }
531
532 /* Remove the exit edges. */
533 for (i = 0; i < n_remove_edges; i++)
534 remove_path (loops, remove_edges[i]);
535 free (remove_edges);
536 }
537
538 ein = desc->in_edge;
539 free_simple_loop_desc (loop);
540
541 /* Now remove the unreachable part of the last iteration and cancel
542 the loop. */
543 remove_path (loops, ein);
544
545 if (dump_file)
546 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
547 }
548
549 /* Decide whether to unroll LOOP iterating constant number of times
550 and how much. */
551
552 static void
553 decide_unroll_constant_iterations (struct loop *loop, int flags)
554 {
555 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
556 struct niter_desc *desc;
557
558 if (!(flags & UAP_UNROLL))
559 {
560 /* We were not asked to, just return back silently. */
561 return;
562 }
563
564 if (dump_file)
565 fprintf (dump_file,
566 "\n;; Considering unrolling loop with constant "
567 "number of iterations\n");
568
569 /* nunroll = total number of copies of the original loop body in
570 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
571 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
572 nunroll_by_av
573 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
574 if (nunroll > nunroll_by_av)
575 nunroll = nunroll_by_av;
576 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
577 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
578
579 /* Skip big loops. */
580 if (nunroll <= 1)
581 {
582 if (dump_file)
583 fprintf (dump_file, ";; Not considering loop, is too big\n");
584 return;
585 }
586
587 /* Check for simple loops. */
588 desc = get_simple_loop_desc (loop);
589
590 /* Check number of iterations. */
591 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
592 {
593 if (dump_file)
594 fprintf (dump_file,
595 ";; Unable to prove that the loop iterates constant times\n");
596 return;
597 }
598
599 /* Check whether the loop rolls enough to consider. */
600 if (desc->niter < 2 * nunroll)
601 {
602 if (dump_file)
603 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
604 return;
605 }
606
607 /* Success; now compute number of iterations to unroll. We alter
608 nunroll so that as few as possible copies of loop body are
609 necessary, while still not decreasing the number of unrollings
610 too much (at most by 1). */
611 best_copies = 2 * nunroll + 10;
612
613 i = 2 * nunroll + 2;
614 if (i - 1 >= desc->niter)
615 i = desc->niter - 2;
616
617 for (; i >= nunroll - 1; i--)
618 {
619 unsigned exit_mod = desc->niter % (i + 1);
620
621 if (!loop_exit_at_end_p (loop))
622 n_copies = exit_mod + i + 1;
623 else if (exit_mod != (unsigned) i
624 || desc->noloop_assumptions != NULL_RTX)
625 n_copies = exit_mod + i + 2;
626 else
627 n_copies = i + 1;
628
629 if (n_copies < best_copies)
630 {
631 best_copies = n_copies;
632 best_unroll = i;
633 }
634 }
635
636 if (dump_file)
637 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
638 best_unroll + 1, best_copies, nunroll);
639
640 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
641 loop->lpt_decision.times = best_unroll;
642
643 if (dump_file)
644 fprintf (dump_file,
645 ";; Decided to unroll the constant times rolling loop, %d times.\n",
646 loop->lpt_decision.times);
647 }
648
649 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
650 times. The transformation does this:
651
652 for (i = 0; i < 102; i++)
653 body;
654
655 ==>
656
657 i = 0;
658 body; i++;
659 body; i++;
660 while (i < 102)
661 {
662 body; i++;
663 body; i++;
664 body; i++;
665 body; i++;
666 }
667 */
668 static void
669 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
670 {
671 unsigned HOST_WIDE_INT niter;
672 unsigned exit_mod;
673 sbitmap wont_exit;
674 unsigned n_remove_edges, i;
675 edge *remove_edges;
676 unsigned max_unroll = loop->lpt_decision.times;
677 struct niter_desc *desc = get_simple_loop_desc (loop);
678 bool exit_at_end = loop_exit_at_end_p (loop);
679 struct opt_info *opt_info = NULL;
680 bool ok;
681
682 niter = desc->niter;
683
684 /* Should not get here (such loop should be peeled instead). */
685 gcc_assert (niter > max_unroll + 1);
686
687 exit_mod = niter % (max_unroll + 1);
688
689 wont_exit = sbitmap_alloc (max_unroll + 1);
690 sbitmap_ones (wont_exit);
691
692 remove_edges = XCNEWVEC (edge, max_unroll + exit_mod + 1);
693 n_remove_edges = 0;
694 if (flag_split_ivs_in_unroller
695 || flag_variable_expansion_in_unroller)
696 opt_info = analyze_insns_in_loop (loop);
697
698 if (!exit_at_end)
699 {
700 /* The exit is not at the end of the loop; leave exit test
701 in the first copy, so that the loops that start with test
702 of exit condition have continuous body after unrolling. */
703
704 if (dump_file)
705 fprintf (dump_file, ";; Condition on beginning of loop.\n");
706
707 /* Peel exit_mod iterations. */
708 RESET_BIT (wont_exit, 0);
709 if (desc->noloop_assumptions)
710 RESET_BIT (wont_exit, 1);
711
712 if (exit_mod)
713 {
714 opt_info_start_duplication (opt_info);
715 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
716 loops, exit_mod,
717 wont_exit, desc->out_edge,
718 remove_edges, &n_remove_edges,
719 DLTHE_FLAG_UPDATE_FREQ
720 | (opt_info && exit_mod > 1
721 ? DLTHE_RECORD_COPY_NUMBER
722 : 0));
723 gcc_assert (ok);
724
725 if (opt_info && exit_mod > 1)
726 apply_opt_in_copies (opt_info, exit_mod, false, false);
727
728 desc->noloop_assumptions = NULL_RTX;
729 desc->niter -= exit_mod;
730 desc->niter_max -= exit_mod;
731 }
732
733 SET_BIT (wont_exit, 1);
734 }
735 else
736 {
737 /* Leave exit test in last copy, for the same reason as above if
738 the loop tests the condition at the end of loop body. */
739
740 if (dump_file)
741 fprintf (dump_file, ";; Condition on end of loop.\n");
742
743 /* We know that niter >= max_unroll + 2; so we do not need to care of
744 case when we would exit before reaching the loop. So just peel
745 exit_mod + 1 iterations. */
746 if (exit_mod != max_unroll
747 || desc->noloop_assumptions)
748 {
749 RESET_BIT (wont_exit, 0);
750 if (desc->noloop_assumptions)
751 RESET_BIT (wont_exit, 1);
752
753 opt_info_start_duplication (opt_info);
754 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
755 loops, exit_mod + 1,
756 wont_exit, desc->out_edge,
757 remove_edges, &n_remove_edges,
758 DLTHE_FLAG_UPDATE_FREQ
759 | (opt_info && exit_mod > 0
760 ? DLTHE_RECORD_COPY_NUMBER
761 : 0));
762 gcc_assert (ok);
763
764 if (opt_info && exit_mod > 0)
765 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
766
767 desc->niter -= exit_mod + 1;
768 desc->niter_max -= exit_mod + 1;
769 desc->noloop_assumptions = NULL_RTX;
770
771 SET_BIT (wont_exit, 0);
772 SET_BIT (wont_exit, 1);
773 }
774
775 RESET_BIT (wont_exit, max_unroll);
776 }
777
778 /* Now unroll the loop. */
779
780 opt_info_start_duplication (opt_info);
781 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
782 loops, max_unroll,
783 wont_exit, desc->out_edge,
784 remove_edges, &n_remove_edges,
785 DLTHE_FLAG_UPDATE_FREQ
786 | (opt_info
787 ? DLTHE_RECORD_COPY_NUMBER
788 : 0));
789 gcc_assert (ok);
790
791 if (opt_info)
792 {
793 apply_opt_in_copies (opt_info, max_unroll, true, true);
794 free_opt_info (opt_info);
795 }
796
797 free (wont_exit);
798
799 if (exit_at_end)
800 {
801 basic_block exit_block = get_bb_copy (desc->in_edge->src);
802 /* Find a new in and out edge; they are in the last copy we have made. */
803
804 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
805 {
806 desc->out_edge = EDGE_SUCC (exit_block, 0);
807 desc->in_edge = EDGE_SUCC (exit_block, 1);
808 }
809 else
810 {
811 desc->out_edge = EDGE_SUCC (exit_block, 1);
812 desc->in_edge = EDGE_SUCC (exit_block, 0);
813 }
814 }
815
816 desc->niter /= max_unroll + 1;
817 desc->niter_max /= max_unroll + 1;
818 desc->niter_expr = GEN_INT (desc->niter);
819
820 /* Remove the edges. */
821 for (i = 0; i < n_remove_edges; i++)
822 remove_path (loops, remove_edges[i]);
823 free (remove_edges);
824
825 if (dump_file)
826 fprintf (dump_file,
827 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
828 max_unroll, num_loop_insns (loop));
829 }
830
831 /* Decide whether to unroll LOOP iterating runtime computable number of times
832 and how much. */
833 static void
834 decide_unroll_runtime_iterations (struct loop *loop, int flags)
835 {
836 unsigned nunroll, nunroll_by_av, i;
837 struct niter_desc *desc;
838
839 if (!(flags & UAP_UNROLL))
840 {
841 /* We were not asked to, just return back silently. */
842 return;
843 }
844
845 if (dump_file)
846 fprintf (dump_file,
847 "\n;; Considering unrolling loop with runtime "
848 "computable number of iterations\n");
849
850 /* nunroll = total number of copies of the original loop body in
851 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
852 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
853 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
854 if (nunroll > nunroll_by_av)
855 nunroll = nunroll_by_av;
856 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
857 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
858
859 /* Skip big loops. */
860 if (nunroll <= 1)
861 {
862 if (dump_file)
863 fprintf (dump_file, ";; Not considering loop, is too big\n");
864 return;
865 }
866
867 /* Check for simple loops. */
868 desc = get_simple_loop_desc (loop);
869
870 /* Check simpleness. */
871 if (!desc->simple_p || desc->assumptions)
872 {
873 if (dump_file)
874 fprintf (dump_file,
875 ";; Unable to prove that the number of iterations "
876 "can be counted in runtime\n");
877 return;
878 }
879
880 if (desc->const_iter)
881 {
882 if (dump_file)
883 fprintf (dump_file, ";; Loop iterates constant times\n");
884 return;
885 }
886
887 /* If we have profile feedback, check whether the loop rolls. */
888 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
889 {
890 if (dump_file)
891 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
892 return;
893 }
894
895 /* Success; now force nunroll to be power of 2, as we are unable to
896 cope with overflows in computation of number of iterations. */
897 for (i = 1; 2 * i <= nunroll; i *= 2)
898 continue;
899
900 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
901 loop->lpt_decision.times = i - 1;
902
903 if (dump_file)
904 fprintf (dump_file,
905 ";; Decided to unroll the runtime computable "
906 "times rolling loop, %d times.\n",
907 loop->lpt_decision.times);
908 }
909
910 /* Unroll LOOP for that we are able to count number of iterations in runtime
911 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
912 extra care for case n < 0):
913
914 for (i = 0; i < n; i++)
915 body;
916
917 ==>
918
919 i = 0;
920 mod = n % 4;
921
922 switch (mod)
923 {
924 case 3:
925 body; i++;
926 case 2:
927 body; i++;
928 case 1:
929 body; i++;
930 case 0: ;
931 }
932
933 while (i < n)
934 {
935 body; i++;
936 body; i++;
937 body; i++;
938 body; i++;
939 }
940 */
941 static void
942 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
943 {
944 rtx old_niter, niter, init_code, branch_code, tmp;
945 unsigned i, j, p;
946 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
947 unsigned n_dom_bbs;
948 sbitmap wont_exit;
949 int may_exit_copy;
950 unsigned n_peel, n_remove_edges;
951 edge *remove_edges, e;
952 bool extra_zero_check, last_may_exit;
953 unsigned max_unroll = loop->lpt_decision.times;
954 struct niter_desc *desc = get_simple_loop_desc (loop);
955 bool exit_at_end = loop_exit_at_end_p (loop);
956 struct opt_info *opt_info = NULL;
957 bool ok;
958
959 if (flag_split_ivs_in_unroller
960 || flag_variable_expansion_in_unroller)
961 opt_info = analyze_insns_in_loop (loop);
962
963 /* Remember blocks whose dominators will have to be updated. */
964 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
965 n_dom_bbs = 0;
966
967 body = get_loop_body (loop);
968 for (i = 0; i < loop->num_nodes; i++)
969 {
970 unsigned nldom;
971 basic_block *ldom;
972
973 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
974 for (j = 0; j < nldom; j++)
975 if (!flow_bb_inside_loop_p (loop, ldom[j]))
976 dom_bbs[n_dom_bbs++] = ldom[j];
977
978 free (ldom);
979 }
980 free (body);
981
982 if (!exit_at_end)
983 {
984 /* Leave exit in first copy (for explanation why see comment in
985 unroll_loop_constant_iterations). */
986 may_exit_copy = 0;
987 n_peel = max_unroll - 1;
988 extra_zero_check = true;
989 last_may_exit = false;
990 }
991 else
992 {
993 /* Leave exit in last copy (for explanation why see comment in
994 unroll_loop_constant_iterations). */
995 may_exit_copy = max_unroll;
996 n_peel = max_unroll;
997 extra_zero_check = false;
998 last_may_exit = true;
999 }
1000
1001 /* Get expression for number of iterations. */
1002 start_sequence ();
1003 old_niter = niter = gen_reg_rtx (desc->mode);
1004 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1005 if (tmp != niter)
1006 emit_move_insn (niter, tmp);
1007
1008 /* Count modulo by ANDing it with max_unroll; we use the fact that
1009 the number of unrollings is a power of two, and thus this is correct
1010 even if there is overflow in the computation. */
1011 niter = expand_simple_binop (desc->mode, AND,
1012 niter,
1013 GEN_INT (max_unroll),
1014 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1015
1016 init_code = get_insns ();
1017 end_sequence ();
1018
1019 /* Precondition the loop. */
1020 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1021
1022 remove_edges = XCNEWVEC (edge, max_unroll + n_peel + 1);
1023 n_remove_edges = 0;
1024
1025 wont_exit = sbitmap_alloc (max_unroll + 2);
1026
1027 /* Peel the first copy of loop body (almost always we must leave exit test
1028 here; the only exception is when we have extra zero check and the number
1029 of iterations is reliable. Also record the place of (possible) extra
1030 zero check. */
1031 sbitmap_zero (wont_exit);
1032 if (extra_zero_check
1033 && !desc->noloop_assumptions)
1034 SET_BIT (wont_exit, 1);
1035 ezc_swtch = loop_preheader_edge (loop)->src;
1036 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1037 loops, 1,
1038 wont_exit, desc->out_edge,
1039 remove_edges, &n_remove_edges,
1040 DLTHE_FLAG_UPDATE_FREQ);
1041 gcc_assert (ok);
1042
1043 /* Record the place where switch will be built for preconditioning. */
1044 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1045 NULL_RTX);
1046
1047 for (i = 0; i < n_peel; i++)
1048 {
1049 /* Peel the copy. */
1050 sbitmap_zero (wont_exit);
1051 if (i != n_peel - 1 || !last_may_exit)
1052 SET_BIT (wont_exit, 1);
1053 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1054 loops, 1,
1055 wont_exit, desc->out_edge,
1056 remove_edges, &n_remove_edges,
1057 DLTHE_FLAG_UPDATE_FREQ);
1058 gcc_assert (ok);
1059
1060 /* Create item for switch. */
1061 j = n_peel - i - (extra_zero_check ? 0 : 1);
1062 p = REG_BR_PROB_BASE / (i + 2);
1063
1064 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1065 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1066 block_label (preheader), p,
1067 NULL_RTX);
1068
1069 swtch = loop_split_edge_with (single_pred_edge (swtch), branch_code);
1070 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1071 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1072 e = make_edge (swtch, preheader,
1073 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1074 e->probability = p;
1075 }
1076
1077 if (extra_zero_check)
1078 {
1079 /* Add branch for zero iterations. */
1080 p = REG_BR_PROB_BASE / (max_unroll + 1);
1081 swtch = ezc_swtch;
1082 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1083 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1084 block_label (preheader), p,
1085 NULL_RTX);
1086
1087 swtch = loop_split_edge_with (single_succ_edge (swtch), branch_code);
1088 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1089 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1090 e = make_edge (swtch, preheader,
1091 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1092 e->probability = p;
1093 }
1094
1095 /* Recount dominators for outer blocks. */
1096 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1097
1098 /* And unroll loop. */
1099
1100 sbitmap_ones (wont_exit);
1101 RESET_BIT (wont_exit, may_exit_copy);
1102 opt_info_start_duplication (opt_info);
1103
1104 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1105 loops, max_unroll,
1106 wont_exit, desc->out_edge,
1107 remove_edges, &n_remove_edges,
1108 DLTHE_FLAG_UPDATE_FREQ
1109 | (opt_info
1110 ? DLTHE_RECORD_COPY_NUMBER
1111 : 0));
1112 gcc_assert (ok);
1113
1114 if (opt_info)
1115 {
1116 apply_opt_in_copies (opt_info, max_unroll, true, true);
1117 free_opt_info (opt_info);
1118 }
1119
1120 free (wont_exit);
1121
1122 if (exit_at_end)
1123 {
1124 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1125 /* Find a new in and out edge; they are in the last copy we have
1126 made. */
1127
1128 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1129 {
1130 desc->out_edge = EDGE_SUCC (exit_block, 0);
1131 desc->in_edge = EDGE_SUCC (exit_block, 1);
1132 }
1133 else
1134 {
1135 desc->out_edge = EDGE_SUCC (exit_block, 1);
1136 desc->in_edge = EDGE_SUCC (exit_block, 0);
1137 }
1138 }
1139
1140 /* Remove the edges. */
1141 for (i = 0; i < n_remove_edges; i++)
1142 remove_path (loops, remove_edges[i]);
1143 free (remove_edges);
1144
1145 /* We must be careful when updating the number of iterations due to
1146 preconditioning and the fact that the value must be valid at entry
1147 of the loop. After passing through the above code, we see that
1148 the correct new number of iterations is this: */
1149 gcc_assert (!desc->const_iter);
1150 desc->niter_expr =
1151 simplify_gen_binary (UDIV, desc->mode, old_niter,
1152 GEN_INT (max_unroll + 1));
1153 desc->niter_max /= max_unroll + 1;
1154 if (exit_at_end)
1155 {
1156 desc->niter_expr =
1157 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1158 desc->noloop_assumptions = NULL_RTX;
1159 desc->niter_max--;
1160 }
1161
1162 if (dump_file)
1163 fprintf (dump_file,
1164 ";; Unrolled loop %d times, counting # of iterations "
1165 "in runtime, %i insns\n",
1166 max_unroll, num_loop_insns (loop));
1167
1168 if (dom_bbs)
1169 free (dom_bbs);
1170 }
1171
1172 /* Decide whether to simply peel LOOP and how much. */
1173 static void
1174 decide_peel_simple (struct loop *loop, int flags)
1175 {
1176 unsigned npeel;
1177 struct niter_desc *desc;
1178
1179 if (!(flags & UAP_PEEL))
1180 {
1181 /* We were not asked to, just return back silently. */
1182 return;
1183 }
1184
1185 if (dump_file)
1186 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1187
1188 /* npeel = number of iterations to peel. */
1189 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1190 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1191 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1192
1193 /* Skip big loops. */
1194 if (!npeel)
1195 {
1196 if (dump_file)
1197 fprintf (dump_file, ";; Not considering loop, is too big\n");
1198 return;
1199 }
1200
1201 /* Check for simple loops. */
1202 desc = get_simple_loop_desc (loop);
1203
1204 /* Check number of iterations. */
1205 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1206 {
1207 if (dump_file)
1208 fprintf (dump_file, ";; Loop iterates constant times\n");
1209 return;
1210 }
1211
1212 /* Do not simply peel loops with branches inside -- it increases number
1213 of mispredicts. */
1214 if (num_loop_branches (loop) > 1)
1215 {
1216 if (dump_file)
1217 fprintf (dump_file, ";; Not peeling, contains branches\n");
1218 return;
1219 }
1220
1221 if (loop->header->count)
1222 {
1223 unsigned niter = expected_loop_iterations (loop);
1224 if (niter + 1 > npeel)
1225 {
1226 if (dump_file)
1227 {
1228 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1229 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1230 (HOST_WIDEST_INT) (niter + 1));
1231 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1232 npeel);
1233 }
1234 return;
1235 }
1236 npeel = niter + 1;
1237 }
1238 else
1239 {
1240 /* For now we have no good heuristics to decide whether loop peeling
1241 will be effective, so disable it. */
1242 if (dump_file)
1243 fprintf (dump_file,
1244 ";; Not peeling loop, no evidence it will be profitable\n");
1245 return;
1246 }
1247
1248 /* Success. */
1249 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1250 loop->lpt_decision.times = npeel;
1251
1252 if (dump_file)
1253 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1254 loop->lpt_decision.times);
1255 }
1256
1257 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1258 while (cond)
1259 body;
1260
1261 ==>
1262
1263 if (!cond) goto end;
1264 body;
1265 if (!cond) goto end;
1266 body;
1267 while (cond)
1268 body;
1269 end: ;
1270 */
1271 static void
1272 peel_loop_simple (struct loops *loops, struct loop *loop)
1273 {
1274 sbitmap wont_exit;
1275 unsigned npeel = loop->lpt_decision.times;
1276 struct niter_desc *desc = get_simple_loop_desc (loop);
1277 struct opt_info *opt_info = NULL;
1278 bool ok;
1279
1280 if (flag_split_ivs_in_unroller && npeel > 1)
1281 opt_info = analyze_insns_in_loop (loop);
1282
1283 wont_exit = sbitmap_alloc (npeel + 1);
1284 sbitmap_zero (wont_exit);
1285
1286 opt_info_start_duplication (opt_info);
1287
1288 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1289 loops, npeel, wont_exit,
1290 NULL, NULL,
1291 NULL, DLTHE_FLAG_UPDATE_FREQ
1292 | (opt_info
1293 ? DLTHE_RECORD_COPY_NUMBER
1294 : 0));
1295 gcc_assert (ok);
1296
1297 free (wont_exit);
1298
1299 if (opt_info)
1300 {
1301 apply_opt_in_copies (opt_info, npeel, false, false);
1302 free_opt_info (opt_info);
1303 }
1304
1305 if (desc->simple_p)
1306 {
1307 if (desc->const_iter)
1308 {
1309 desc->niter -= npeel;
1310 desc->niter_expr = GEN_INT (desc->niter);
1311 desc->noloop_assumptions = NULL_RTX;
1312 }
1313 else
1314 {
1315 /* We cannot just update niter_expr, as its value might be clobbered
1316 inside loop. We could handle this by counting the number into
1317 temporary just like we do in runtime unrolling, but it does not
1318 seem worthwhile. */
1319 free_simple_loop_desc (loop);
1320 }
1321 }
1322 if (dump_file)
1323 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1324 }
1325
1326 /* Decide whether to unroll LOOP stupidly and how much. */
1327 static void
1328 decide_unroll_stupid (struct loop *loop, int flags)
1329 {
1330 unsigned nunroll, nunroll_by_av, i;
1331 struct niter_desc *desc;
1332
1333 if (!(flags & UAP_UNROLL_ALL))
1334 {
1335 /* We were not asked to, just return back silently. */
1336 return;
1337 }
1338
1339 if (dump_file)
1340 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1341
1342 /* nunroll = total number of copies of the original loop body in
1343 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1344 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1345 nunroll_by_av
1346 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1347 if (nunroll > nunroll_by_av)
1348 nunroll = nunroll_by_av;
1349 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1350 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1351
1352 /* Skip big loops. */
1353 if (nunroll <= 1)
1354 {
1355 if (dump_file)
1356 fprintf (dump_file, ";; Not considering loop, is too big\n");
1357 return;
1358 }
1359
1360 /* Check for simple loops. */
1361 desc = get_simple_loop_desc (loop);
1362
1363 /* Check simpleness. */
1364 if (desc->simple_p && !desc->assumptions)
1365 {
1366 if (dump_file)
1367 fprintf (dump_file, ";; The loop is simple\n");
1368 return;
1369 }
1370
1371 /* Do not unroll loops with branches inside -- it increases number
1372 of mispredicts. */
1373 if (num_loop_branches (loop) > 1)
1374 {
1375 if (dump_file)
1376 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1377 return;
1378 }
1379
1380 /* If we have profile feedback, check whether the loop rolls. */
1381 if (loop->header->count
1382 && expected_loop_iterations (loop) < 2 * nunroll)
1383 {
1384 if (dump_file)
1385 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1386 return;
1387 }
1388
1389 /* Success. Now force nunroll to be power of 2, as it seems that this
1390 improves results (partially because of better alignments, partially
1391 because of some dark magic). */
1392 for (i = 1; 2 * i <= nunroll; i *= 2)
1393 continue;
1394
1395 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1396 loop->lpt_decision.times = i - 1;
1397
1398 if (dump_file)
1399 fprintf (dump_file,
1400 ";; Decided to unroll the loop stupidly, %d times.\n",
1401 loop->lpt_decision.times);
1402 }
1403
1404 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1405 while (cond)
1406 body;
1407
1408 ==>
1409
1410 while (cond)
1411 {
1412 body;
1413 if (!cond) break;
1414 body;
1415 if (!cond) break;
1416 body;
1417 if (!cond) break;
1418 body;
1419 }
1420 */
1421 static void
1422 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1423 {
1424 sbitmap wont_exit;
1425 unsigned nunroll = loop->lpt_decision.times;
1426 struct niter_desc *desc = get_simple_loop_desc (loop);
1427 struct opt_info *opt_info = NULL;
1428 bool ok;
1429
1430 if (flag_split_ivs_in_unroller
1431 || flag_variable_expansion_in_unroller)
1432 opt_info = analyze_insns_in_loop (loop);
1433
1434
1435 wont_exit = sbitmap_alloc (nunroll + 1);
1436 sbitmap_zero (wont_exit);
1437 opt_info_start_duplication (opt_info);
1438
1439 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1440 loops, nunroll, wont_exit,
1441 NULL, NULL, NULL,
1442 DLTHE_FLAG_UPDATE_FREQ
1443 | (opt_info
1444 ? DLTHE_RECORD_COPY_NUMBER
1445 : 0));
1446 gcc_assert (ok);
1447
1448 if (opt_info)
1449 {
1450 apply_opt_in_copies (opt_info, nunroll, true, true);
1451 free_opt_info (opt_info);
1452 }
1453
1454 free (wont_exit);
1455
1456 if (desc->simple_p)
1457 {
1458 /* We indeed may get here provided that there are nontrivial assumptions
1459 for a loop to be really simple. We could update the counts, but the
1460 problem is that we are unable to decide which exit will be taken
1461 (not really true in case the number of iterations is constant,
1462 but noone will do anything with this information, so we do not
1463 worry about it). */
1464 desc->simple_p = false;
1465 }
1466
1467 if (dump_file)
1468 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1469 nunroll, num_loop_insns (loop));
1470 }
1471
1472 /* A hash function for information about insns to split. */
1473
1474 static hashval_t
1475 si_info_hash (const void *ivts)
1476 {
1477 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1478 }
1479
1480 /* An equality functions for information about insns to split. */
1481
1482 static int
1483 si_info_eq (const void *ivts1, const void *ivts2)
1484 {
1485 const struct iv_to_split *i1 = ivts1;
1486 const struct iv_to_split *i2 = ivts2;
1487
1488 return i1->insn == i2->insn;
1489 }
1490
1491 /* Return a hash for VES, which is really a "var_to_expand *". */
1492
1493 static hashval_t
1494 ve_info_hash (const void *ves)
1495 {
1496 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1497 }
1498
1499 /* Return true if IVTS1 and IVTS2 (which are really both of type
1500 "var_to_expand *") refer to the same instruction. */
1501
1502 static int
1503 ve_info_eq (const void *ivts1, const void *ivts2)
1504 {
1505 const struct var_to_expand *i1 = ivts1;
1506 const struct var_to_expand *i2 = ivts2;
1507
1508 return i1->insn == i2->insn;
1509 }
1510
1511 /* Returns true if REG is referenced in one insn in LOOP. */
1512
1513 bool
1514 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1515 {
1516 basic_block *body, bb;
1517 unsigned i;
1518 int count_ref = 0;
1519 rtx insn;
1520
1521 body = get_loop_body (loop);
1522 for (i = 0; i < loop->num_nodes; i++)
1523 {
1524 bb = body[i];
1525
1526 FOR_BB_INSNS (bb, insn)
1527 {
1528 if (rtx_referenced_p (reg, insn))
1529 count_ref++;
1530 }
1531 }
1532 return (count_ref == 1);
1533 }
1534
1535 /* Determine whether INSN contains an accumulator
1536 which can be expanded into separate copies,
1537 one for each copy of the LOOP body.
1538
1539 for (i = 0 ; i < n; i++)
1540 sum += a[i];
1541
1542 ==>
1543
1544 sum += a[i]
1545 ....
1546 i = i+1;
1547 sum1 += a[i]
1548 ....
1549 i = i+1
1550 sum2 += a[i];
1551 ....
1552
1553 Return NULL if INSN contains no opportunity for expansion of accumulator.
1554 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1555 information and return a pointer to it.
1556 */
1557
1558 static struct var_to_expand *
1559 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1560 {
1561 rtx set, dest, src, op1;
1562 struct var_to_expand *ves;
1563 enum machine_mode mode1, mode2;
1564
1565 set = single_set (insn);
1566 if (!set)
1567 return NULL;
1568
1569 dest = SET_DEST (set);
1570 src = SET_SRC (set);
1571
1572 if (GET_CODE (src) != PLUS
1573 && GET_CODE (src) != MINUS
1574 && GET_CODE (src) != MULT)
1575 return NULL;
1576
1577 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1578 in MD. But if there is no optab to generate the insn, we can not
1579 perform the variable expansion. This can happen if an MD provides
1580 an insn but not a named pattern to generate it, for example to avoid
1581 producing code that needs additional mode switches like for x87/mmx.
1582
1583 So we check have_insn_for which looks for an optab for the operation
1584 in SRC. If it doesn't exist, we can't perform the expansion even
1585 though INSN is valid. */
1586 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1587 return NULL;
1588
1589 if (!XEXP (src, 0))
1590 return NULL;
1591
1592 op1 = XEXP (src, 0);
1593
1594 if (!REG_P (dest)
1595 && !(GET_CODE (dest) == SUBREG
1596 && REG_P (SUBREG_REG (dest))))
1597 return NULL;
1598
1599 if (!rtx_equal_p (dest, op1))
1600 return NULL;
1601
1602 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1603 return NULL;
1604
1605 if (rtx_referenced_p (dest, XEXP (src, 1)))
1606 return NULL;
1607
1608 mode1 = GET_MODE (dest);
1609 mode2 = GET_MODE (XEXP (src, 1));
1610 if ((FLOAT_MODE_P (mode1)
1611 || FLOAT_MODE_P (mode2))
1612 && !flag_unsafe_math_optimizations)
1613 return NULL;
1614
1615 /* Record the accumulator to expand. */
1616 ves = XNEW (struct var_to_expand);
1617 ves->insn = insn;
1618 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1619 ves->reg = copy_rtx (dest);
1620 ves->op = GET_CODE (src);
1621 ves->expansion_count = 0;
1622 ves->reuse_expansion = 0;
1623 return ves;
1624 }
1625
1626 /* Determine whether there is an induction variable in INSN that
1627 we would like to split during unrolling.
1628
1629 I.e. replace
1630
1631 i = i + 1;
1632 ...
1633 i = i + 1;
1634 ...
1635 i = i + 1;
1636 ...
1637
1638 type chains by
1639
1640 i0 = i + 1
1641 ...
1642 i = i0 + 1
1643 ...
1644 i = i0 + 2
1645 ...
1646
1647 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1648 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1649 pointer to it. */
1650
1651 static struct iv_to_split *
1652 analyze_iv_to_split_insn (rtx insn)
1653 {
1654 rtx set, dest;
1655 struct rtx_iv iv;
1656 struct iv_to_split *ivts;
1657 bool ok;
1658
1659 /* For now we just split the basic induction variables. Later this may be
1660 extended for example by selecting also addresses of memory references. */
1661 set = single_set (insn);
1662 if (!set)
1663 return NULL;
1664
1665 dest = SET_DEST (set);
1666 if (!REG_P (dest))
1667 return NULL;
1668
1669 if (!biv_p (insn, dest))
1670 return NULL;
1671
1672 ok = iv_analyze_result (insn, dest, &iv);
1673
1674 /* This used to be an assert under the assumption that if biv_p returns
1675 true that iv_analyze_result must also return true. However, that
1676 assumption is not strictly correct as evidenced by pr25569.
1677
1678 Returning NULL when iv_analyze_result returns false is safe and
1679 avoids the problems in pr25569 until the iv_analyze_* routines
1680 can be fixed, which is apparently hard and time consuming
1681 according to their author. */
1682 if (! ok)
1683 return NULL;
1684
1685 if (iv.step == const0_rtx
1686 || iv.mode != iv.extend_mode)
1687 return NULL;
1688
1689 /* Record the insn to split. */
1690 ivts = XNEW (struct iv_to_split);
1691 ivts->insn = insn;
1692 ivts->base_var = NULL_RTX;
1693 ivts->step = iv.step;
1694 ivts->n_loc = 1;
1695 ivts->loc[0] = 1;
1696
1697 return ivts;
1698 }
1699
1700 /* Determines which of insns in LOOP can be optimized.
1701 Return a OPT_INFO struct with the relevant hash tables filled
1702 with all insns to be optimized. The FIRST_NEW_BLOCK field
1703 is undefined for the return value. */
1704
1705 static struct opt_info *
1706 analyze_insns_in_loop (struct loop *loop)
1707 {
1708 basic_block *body, bb;
1709 unsigned i, num_edges = 0;
1710 struct opt_info *opt_info = XCNEW (struct opt_info);
1711 rtx insn;
1712 struct iv_to_split *ivts = NULL;
1713 struct var_to_expand *ves = NULL;
1714 PTR *slot1;
1715 PTR *slot2;
1716 edge *edges = get_loop_exit_edges (loop, &num_edges);
1717 bool can_apply = false;
1718
1719 iv_analysis_loop_init (loop);
1720
1721 body = get_loop_body (loop);
1722
1723 if (flag_split_ivs_in_unroller)
1724 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1725 si_info_hash, si_info_eq, free);
1726
1727 /* Record the loop exit bb and loop preheader before the unrolling. */
1728 if (!loop_preheader_edge (loop)->src)
1729 {
1730 loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1731 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1732 }
1733 else
1734 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1735
1736 if (num_edges == 1
1737 && !(edges[0]->flags & EDGE_COMPLEX))
1738 {
1739 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1740 can_apply = true;
1741 }
1742
1743 if (flag_variable_expansion_in_unroller
1744 && can_apply)
1745 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1746 ve_info_hash, ve_info_eq, free);
1747
1748 for (i = 0; i < loop->num_nodes; i++)
1749 {
1750 bb = body[i];
1751 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1752 continue;
1753
1754 FOR_BB_INSNS (bb, insn)
1755 {
1756 if (!INSN_P (insn))
1757 continue;
1758
1759 if (opt_info->insns_to_split)
1760 ivts = analyze_iv_to_split_insn (insn);
1761
1762 if (ivts)
1763 {
1764 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1765 *slot1 = ivts;
1766 continue;
1767 }
1768
1769 if (opt_info->insns_with_var_to_expand)
1770 ves = analyze_insn_to_expand_var (loop, insn);
1771
1772 if (ves)
1773 {
1774 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1775 *slot2 = ves;
1776 }
1777 }
1778 }
1779
1780 free (edges);
1781 free (body);
1782 return opt_info;
1783 }
1784
1785 /* Called just before loop duplication. Records start of duplicated area
1786 to OPT_INFO. */
1787
1788 static void
1789 opt_info_start_duplication (struct opt_info *opt_info)
1790 {
1791 if (opt_info)
1792 opt_info->first_new_block = last_basic_block;
1793 }
1794
1795 /* Determine the number of iterations between initialization of the base
1796 variable and the current copy (N_COPY). N_COPIES is the total number
1797 of newly created copies. UNROLLING is true if we are unrolling
1798 (not peeling) the loop. */
1799
1800 static unsigned
1801 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1802 {
1803 if (unrolling)
1804 {
1805 /* If we are unrolling, initialization is done in the original loop
1806 body (number 0). */
1807 return n_copy;
1808 }
1809 else
1810 {
1811 /* If we are peeling, the copy in that the initialization occurs has
1812 number 1. The original loop (number 0) is the last. */
1813 if (n_copy)
1814 return n_copy - 1;
1815 else
1816 return n_copies;
1817 }
1818 }
1819
1820 /* Locate in EXPR the expression corresponding to the location recorded
1821 in IVTS, and return a pointer to the RTX for this location. */
1822
1823 static rtx *
1824 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1825 {
1826 unsigned i;
1827 rtx *ret = &expr;
1828
1829 for (i = 0; i < ivts->n_loc; i++)
1830 ret = &XEXP (*ret, ivts->loc[i]);
1831
1832 return ret;
1833 }
1834
1835 /* Allocate basic variable for the induction variable chain. Callback for
1836 htab_traverse. */
1837
1838 static int
1839 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1840 {
1841 struct iv_to_split *ivts = *slot;
1842 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1843
1844 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1845
1846 return 1;
1847 }
1848
1849 /* Insert initialization of basic variable of IVTS before INSN, taking
1850 the initial value from INSN. */
1851
1852 static void
1853 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1854 {
1855 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1856 rtx seq;
1857
1858 start_sequence ();
1859 expr = force_operand (expr, ivts->base_var);
1860 if (expr != ivts->base_var)
1861 emit_move_insn (ivts->base_var, expr);
1862 seq = get_insns ();
1863 end_sequence ();
1864
1865 emit_insn_before (seq, insn);
1866 }
1867
1868 /* Replace the use of induction variable described in IVTS in INSN
1869 by base variable + DELTA * step. */
1870
1871 static void
1872 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1873 {
1874 rtx expr, *loc, seq, incr, var;
1875 enum machine_mode mode = GET_MODE (ivts->base_var);
1876 rtx src, dest, set;
1877
1878 /* Construct base + DELTA * step. */
1879 if (!delta)
1880 expr = ivts->base_var;
1881 else
1882 {
1883 incr = simplify_gen_binary (MULT, mode,
1884 ivts->step, gen_int_mode (delta, mode));
1885 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1886 ivts->base_var, incr);
1887 }
1888
1889 /* Figure out where to do the replacement. */
1890 loc = get_ivts_expr (single_set (insn), ivts);
1891
1892 /* If we can make the replacement right away, we're done. */
1893 if (validate_change (insn, loc, expr, 0))
1894 return;
1895
1896 /* Otherwise, force EXPR into a register and try again. */
1897 start_sequence ();
1898 var = gen_reg_rtx (mode);
1899 expr = force_operand (expr, var);
1900 if (expr != var)
1901 emit_move_insn (var, expr);
1902 seq = get_insns ();
1903 end_sequence ();
1904 emit_insn_before (seq, insn);
1905
1906 if (validate_change (insn, loc, var, 0))
1907 return;
1908
1909 /* The last chance. Try recreating the assignment in insn
1910 completely from scratch. */
1911 set = single_set (insn);
1912 gcc_assert (set);
1913
1914 start_sequence ();
1915 *loc = var;
1916 src = copy_rtx (SET_SRC (set));
1917 dest = copy_rtx (SET_DEST (set));
1918 src = force_operand (src, dest);
1919 if (src != dest)
1920 emit_move_insn (dest, src);
1921 seq = get_insns ();
1922 end_sequence ();
1923
1924 emit_insn_before (seq, insn);
1925 delete_insn (insn);
1926 }
1927
1928
1929 /* Return one expansion of the accumulator recorded in struct VE. */
1930
1931 static rtx
1932 get_expansion (struct var_to_expand *ve)
1933 {
1934 rtx reg;
1935
1936 if (ve->reuse_expansion == 0)
1937 reg = ve->reg;
1938 else
1939 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1940
1941 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1942 ve->reuse_expansion = 0;
1943 else
1944 ve->reuse_expansion++;
1945
1946 return reg;
1947 }
1948
1949
1950 /* Given INSN replace the uses of the accumulator recorded in VE
1951 with a new register. */
1952
1953 static void
1954 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1955 {
1956 rtx new_reg, set;
1957 bool really_new_expansion = false;
1958
1959 set = single_set (insn);
1960 gcc_assert (set);
1961
1962 /* Generate a new register only if the expansion limit has not been
1963 reached. Else reuse an already existing expansion. */
1964 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1965 {
1966 really_new_expansion = true;
1967 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1968 }
1969 else
1970 new_reg = get_expansion (ve);
1971
1972 validate_change (insn, &SET_DEST (set), new_reg, 1);
1973 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1974
1975 if (apply_change_group ())
1976 if (really_new_expansion)
1977 {
1978 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1979 ve->expansion_count++;
1980 }
1981 }
1982
1983 /* Initialize the variable expansions in loop preheader.
1984 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1985 basic block where the initialization of the expansions
1986 should take place. */
1987
1988 static int
1989 insert_var_expansion_initialization (void **slot, void *place_p)
1990 {
1991 struct var_to_expand *ve = *slot;
1992 basic_block place = (basic_block)place_p;
1993 rtx seq, var, zero_init, insn;
1994 unsigned i;
1995
1996 if (VEC_length (rtx, ve->var_expansions) == 0)
1997 return 1;
1998
1999 start_sequence ();
2000 if (ve->op == PLUS || ve->op == MINUS)
2001 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2002 {
2003 zero_init = CONST0_RTX (GET_MODE (var));
2004 emit_move_insn (var, zero_init);
2005 }
2006 else if (ve->op == MULT)
2007 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2008 {
2009 zero_init = CONST1_RTX (GET_MODE (var));
2010 emit_move_insn (var, zero_init);
2011 }
2012
2013 seq = get_insns ();
2014 end_sequence ();
2015
2016 insn = BB_HEAD (place);
2017 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2018 insn = NEXT_INSN (insn);
2019
2020 emit_insn_after (seq, insn);
2021 /* Continue traversing the hash table. */
2022 return 1;
2023 }
2024
2025 /* Combine the variable expansions at the loop exit.
2026 Callbacks for htab_traverse. PLACE_P is the loop exit
2027 basic block where the summation of the expansions should
2028 take place. */
2029
2030 static int
2031 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2032 {
2033 struct var_to_expand *ve = *slot;
2034 basic_block place = (basic_block)place_p;
2035 rtx sum = ve->reg;
2036 rtx expr, seq, var, insn;
2037 unsigned i;
2038
2039 if (VEC_length (rtx, ve->var_expansions) == 0)
2040 return 1;
2041
2042 start_sequence ();
2043 if (ve->op == PLUS || ve->op == MINUS)
2044 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2045 {
2046 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2047 var, sum);
2048 }
2049 else if (ve->op == MULT)
2050 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2051 {
2052 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2053 var, sum);
2054 }
2055
2056 expr = force_operand (sum, ve->reg);
2057 if (expr != ve->reg)
2058 emit_move_insn (ve->reg, expr);
2059 seq = get_insns ();
2060 end_sequence ();
2061
2062 insn = BB_HEAD (place);
2063 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2064 insn = NEXT_INSN (insn);
2065
2066 emit_insn_after (seq, insn);
2067
2068 /* Continue traversing the hash table. */
2069 return 1;
2070 }
2071
2072 /* Apply loop optimizations in loop copies using the
2073 data which gathered during the unrolling. Structure
2074 OPT_INFO record that data.
2075
2076 UNROLLING is true if we unrolled (not peeled) the loop.
2077 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2078 the loop (as it should happen in complete unrolling, but not in ordinary
2079 peeling of the loop). */
2080
2081 static void
2082 apply_opt_in_copies (struct opt_info *opt_info,
2083 unsigned n_copies, bool unrolling,
2084 bool rewrite_original_loop)
2085 {
2086 unsigned i, delta;
2087 basic_block bb, orig_bb;
2088 rtx insn, orig_insn, next;
2089 struct iv_to_split ivts_templ, *ivts;
2090 struct var_to_expand ve_templ, *ves;
2091
2092 /* Sanity check -- we need to put initialization in the original loop
2093 body. */
2094 gcc_assert (!unrolling || rewrite_original_loop);
2095
2096 /* Allocate the basic variables (i0). */
2097 if (opt_info->insns_to_split)
2098 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2099
2100 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2101 {
2102 bb = BASIC_BLOCK (i);
2103 orig_bb = get_bb_original (bb);
2104
2105 /* bb->aux holds position in copy sequence initialized by
2106 duplicate_loop_to_header_edge. */
2107 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2108 unrolling);
2109 bb->aux = 0;
2110 orig_insn = BB_HEAD (orig_bb);
2111 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2112 {
2113 next = NEXT_INSN (insn);
2114 if (!INSN_P (insn))
2115 continue;
2116
2117 while (!INSN_P (orig_insn))
2118 orig_insn = NEXT_INSN (orig_insn);
2119
2120 ivts_templ.insn = orig_insn;
2121 ve_templ.insn = orig_insn;
2122
2123 /* Apply splitting iv optimization. */
2124 if (opt_info->insns_to_split)
2125 {
2126 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2127
2128 if (ivts)
2129 {
2130 gcc_assert (GET_CODE (PATTERN (insn))
2131 == GET_CODE (PATTERN (orig_insn)));
2132
2133 if (!delta)
2134 insert_base_initialization (ivts, insn);
2135 split_iv (ivts, insn, delta);
2136 }
2137 }
2138 /* Apply variable expansion optimization. */
2139 if (unrolling && opt_info->insns_with_var_to_expand)
2140 {
2141 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2142 if (ves)
2143 {
2144 gcc_assert (GET_CODE (PATTERN (insn))
2145 == GET_CODE (PATTERN (orig_insn)));
2146 expand_var_during_unrolling (ves, insn);
2147 }
2148 }
2149 orig_insn = NEXT_INSN (orig_insn);
2150 }
2151 }
2152
2153 if (!rewrite_original_loop)
2154 return;
2155
2156 /* Initialize the variable expansions in the loop preheader
2157 and take care of combining them at the loop exit. */
2158 if (opt_info->insns_with_var_to_expand)
2159 {
2160 htab_traverse (opt_info->insns_with_var_to_expand,
2161 insert_var_expansion_initialization,
2162 opt_info->loop_preheader);
2163 htab_traverse (opt_info->insns_with_var_to_expand,
2164 combine_var_copies_in_loop_exit,
2165 opt_info->loop_exit);
2166 }
2167
2168 /* Rewrite also the original loop body. Find them as originals of the blocks
2169 in the last copied iteration, i.e. those that have
2170 get_bb_copy (get_bb_original (bb)) == bb. */
2171 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2172 {
2173 bb = BASIC_BLOCK (i);
2174 orig_bb = get_bb_original (bb);
2175 if (get_bb_copy (orig_bb) != bb)
2176 continue;
2177
2178 delta = determine_split_iv_delta (0, n_copies, unrolling);
2179 for (orig_insn = BB_HEAD (orig_bb);
2180 orig_insn != NEXT_INSN (BB_END (bb));
2181 orig_insn = next)
2182 {
2183 next = NEXT_INSN (orig_insn);
2184
2185 if (!INSN_P (orig_insn))
2186 continue;
2187
2188 ivts_templ.insn = orig_insn;
2189 if (opt_info->insns_to_split)
2190 {
2191 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2192 if (ivts)
2193 {
2194 if (!delta)
2195 insert_base_initialization (ivts, orig_insn);
2196 split_iv (ivts, orig_insn, delta);
2197 continue;
2198 }
2199 }
2200
2201 }
2202 }
2203 }
2204
2205 /* Release the data structures used for the variable expansion
2206 optimization. Callbacks for htab_traverse. */
2207
2208 static int
2209 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2210 {
2211 struct var_to_expand *ve = *slot;
2212
2213 VEC_free (rtx, heap, ve->var_expansions);
2214
2215 /* Continue traversing the hash table. */
2216 return 1;
2217 }
2218
2219 /* Release OPT_INFO. */
2220
2221 static void
2222 free_opt_info (struct opt_info *opt_info)
2223 {
2224 if (opt_info->insns_to_split)
2225 htab_delete (opt_info->insns_to_split);
2226 if (opt_info->insns_with_var_to_expand)
2227 {
2228 htab_traverse (opt_info->insns_with_var_to_expand,
2229 release_var_copies, NULL);
2230 htab_delete (opt_info->insns_with_var_to_expand);
2231 }
2232 free (opt_info);
2233 }