[RS6000] Don't restore fixed regs
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "memmodel.h"
29 #include "optabs.h"
30 #include "emit-rtl.h"
31 #include "recog.h"
32 #include "profile.h"
33 #include "cfgrtl.h"
34 #include "cfgloop.h"
35 #include "params.h"
36 #include "dojump.h"
37 #include "expr.h"
38 #include "dumpfile.h"
39
40 /* This pass performs loop unrolling. We only perform this
41 optimization on innermost loops (with single exception) because
42 the impact on performance is greatest here, and we want to avoid
43 unnecessary code size growth. The gain is caused by greater sequentiality
44 of code, better code to optimize for further passes and in some cases
45 by fewer testings of exit conditions. The main problem is code growth,
46 that impacts performance negatively due to effect of caches.
47
48 What we do:
49
50 -- unrolling of loops that roll constant times; this is almost always
51 win, as we get rid of exit condition tests.
52 -- unrolling of loops that roll number of times that we can compute
53 in runtime; we also get rid of exit condition tests here, but there
54 is the extra expense for calculating the number of iterations
55 -- simple unrolling of remaining loops; this is performed only if we
56 are asked to, as the gain is questionable in this case and often
57 it may even slow down the code
58 For more detailed descriptions of each of those, see comments at
59 appropriate function below.
60
61 There is a lot of parameters (defined and described in params.def) that
62 control how much we unroll.
63
64 ??? A great problem is that we don't have a good way how to determine
65 how many times we should unroll the loop; the experiments I have made
66 showed that this choice may affect performance in order of several %.
67 */
68
69 /* Information about induction variables to split. */
70
71 struct iv_to_split
72 {
73 rtx_insn *insn; /* The insn in that the induction variable occurs. */
74 rtx orig_var; /* The variable (register) for the IV before split. */
75 rtx base_var; /* The variable on that the values in the further
76 iterations are based. */
77 rtx step; /* Step of the induction variable. */
78 struct iv_to_split *next; /* Next entry in walking order. */
79 };
80
81 /* Information about accumulators to expand. */
82
83 struct var_to_expand
84 {
85 rtx_insn *insn; /* The insn in that the variable expansion occurs. */
86 rtx reg; /* The accumulator which is expanded. */
87 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
88 struct var_to_expand *next; /* Next entry in walking order. */
89 enum rtx_code op; /* The type of the accumulation - addition, subtraction
90 or multiplication. */
91 int expansion_count; /* Count the number of expansions generated so far. */
92 int reuse_expansion; /* The expansion we intend to reuse to expand
93 the accumulator. If REUSE_EXPANSION is 0 reuse
94 the original accumulator. Else use
95 var_expansions[REUSE_EXPANSION - 1]. */
96 };
97
98 /* Hashtable helper for iv_to_split. */
99
100 struct iv_split_hasher : free_ptr_hash <iv_to_split>
101 {
102 static inline hashval_t hash (const iv_to_split *);
103 static inline bool equal (const iv_to_split *, const iv_to_split *);
104 };
105
106
107 /* A hash function for information about insns to split. */
108
109 inline hashval_t
110 iv_split_hasher::hash (const iv_to_split *ivts)
111 {
112 return (hashval_t) INSN_UID (ivts->insn);
113 }
114
115 /* An equality functions for information about insns to split. */
116
117 inline bool
118 iv_split_hasher::equal (const iv_to_split *i1, const iv_to_split *i2)
119 {
120 return i1->insn == i2->insn;
121 }
122
123 /* Hashtable helper for iv_to_split. */
124
125 struct var_expand_hasher : free_ptr_hash <var_to_expand>
126 {
127 static inline hashval_t hash (const var_to_expand *);
128 static inline bool equal (const var_to_expand *, const var_to_expand *);
129 };
130
131 /* Return a hash for VES. */
132
133 inline hashval_t
134 var_expand_hasher::hash (const var_to_expand *ves)
135 {
136 return (hashval_t) INSN_UID (ves->insn);
137 }
138
139 /* Return true if I1 and I2 refer to the same instruction. */
140
141 inline bool
142 var_expand_hasher::equal (const var_to_expand *i1, const var_to_expand *i2)
143 {
144 return i1->insn == i2->insn;
145 }
146
147 /* Information about optimization applied in
148 the unrolled loop. */
149
150 struct opt_info
151 {
152 hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
153 split. */
154 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
155 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
156 hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
157 insns with accumulators to expand. */
158 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
159 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
160 unsigned first_new_block; /* The first basic block that was
161 duplicated. */
162 basic_block loop_exit; /* The loop exit basic block. */
163 basic_block loop_preheader; /* The loop preheader basic block. */
164 };
165
166 static void decide_unroll_stupid (struct loop *, int);
167 static void decide_unroll_constant_iterations (struct loop *, int);
168 static void decide_unroll_runtime_iterations (struct loop *, int);
169 static void unroll_loop_stupid (struct loop *);
170 static void decide_unrolling (int);
171 static void unroll_loop_constant_iterations (struct loop *);
172 static void unroll_loop_runtime_iterations (struct loop *);
173 static struct opt_info *analyze_insns_in_loop (struct loop *);
174 static void opt_info_start_duplication (struct opt_info *);
175 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
176 static void free_opt_info (struct opt_info *);
177 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx_insn *);
178 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
179 static struct iv_to_split *analyze_iv_to_split_insn (rtx_insn *);
180 static void expand_var_during_unrolling (struct var_to_expand *, rtx_insn *);
181 static void insert_var_expansion_initialization (struct var_to_expand *,
182 basic_block);
183 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
184 basic_block);
185 static rtx get_expansion (struct var_to_expand *);
186
187 /* Emit a message summarizing the unroll that will be
188 performed for LOOP, along with the loop's location LOCUS, if
189 appropriate given the dump or -fopt-info settings. */
190
191 static void
192 report_unroll (struct loop *loop, location_t locus)
193 {
194 dump_flags_t report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS;
195
196 if (loop->lpt_decision.decision == LPT_NONE)
197 return;
198
199 if (!dump_enabled_p ())
200 return;
201
202 dump_printf_loc (report_flags, locus,
203 "loop unrolled %d times",
204 loop->lpt_decision.times);
205 if (profile_info && loop->header->count.initialized_p ())
206 dump_printf (report_flags,
207 " (header execution count %d)",
208 (int)loop->header->count.to_gcov_type ());
209
210 dump_printf (report_flags, "\n");
211 }
212
213 /* Decide whether unroll loops and how much. */
214 static void
215 decide_unrolling (int flags)
216 {
217 struct loop *loop;
218
219 /* Scan the loops, inner ones first. */
220 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
221 {
222 loop->lpt_decision.decision = LPT_NONE;
223 location_t locus = get_loop_location (loop);
224
225 if (dump_enabled_p ())
226 dump_printf_loc (MSG_NOTE, locus,
227 ";; *** Considering loop %d at BB %d for "
228 "unrolling ***\n",
229 loop->num, loop->header->index);
230
231 /* Do not peel cold areas. */
232 if (optimize_loop_for_size_p (loop))
233 {
234 if (dump_file)
235 fprintf (dump_file, ";; Not considering loop, cold area\n");
236 continue;
237 }
238
239 /* Can the loop be manipulated? */
240 if (!can_duplicate_loop_p (loop))
241 {
242 if (dump_file)
243 fprintf (dump_file,
244 ";; Not considering loop, cannot duplicate\n");
245 continue;
246 }
247
248 /* Skip non-innermost loops. */
249 if (loop->inner)
250 {
251 if (dump_file)
252 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
253 continue;
254 }
255
256 loop->ninsns = num_loop_insns (loop);
257 loop->av_ninsns = average_num_loop_insns (loop);
258
259 /* Try transformations one by one in decreasing order of
260 priority. */
261
262 decide_unroll_constant_iterations (loop, flags);
263 if (loop->lpt_decision.decision == LPT_NONE)
264 decide_unroll_runtime_iterations (loop, flags);
265 if (loop->lpt_decision.decision == LPT_NONE)
266 decide_unroll_stupid (loop, flags);
267
268 report_unroll (loop, locus);
269 }
270 }
271
272 /* Unroll LOOPS. */
273 void
274 unroll_loops (int flags)
275 {
276 struct loop *loop;
277 bool changed = false;
278
279 /* Now decide rest of unrolling. */
280 decide_unrolling (flags);
281
282 /* Scan the loops, inner ones first. */
283 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
284 {
285 /* And perform the appropriate transformations. */
286 switch (loop->lpt_decision.decision)
287 {
288 case LPT_UNROLL_CONSTANT:
289 unroll_loop_constant_iterations (loop);
290 changed = true;
291 break;
292 case LPT_UNROLL_RUNTIME:
293 unroll_loop_runtime_iterations (loop);
294 changed = true;
295 break;
296 case LPT_UNROLL_STUPID:
297 unroll_loop_stupid (loop);
298 changed = true;
299 break;
300 case LPT_NONE:
301 break;
302 default:
303 gcc_unreachable ();
304 }
305 }
306
307 if (changed)
308 {
309 calculate_dominance_info (CDI_DOMINATORS);
310 fix_loop_structure (NULL);
311 }
312
313 iv_analysis_done ();
314 }
315
316 /* Check whether exit of the LOOP is at the end of loop body. */
317
318 static bool
319 loop_exit_at_end_p (struct loop *loop)
320 {
321 struct niter_desc *desc = get_simple_loop_desc (loop);
322 rtx_insn *insn;
323
324 /* We should never have conditional in latch block. */
325 gcc_assert (desc->in_edge->dest != loop->header);
326
327 if (desc->in_edge->dest != loop->latch)
328 return false;
329
330 /* Check that the latch is empty. */
331 FOR_BB_INSNS (loop->latch, insn)
332 {
333 if (INSN_P (insn) && active_insn_p (insn))
334 return false;
335 }
336
337 return true;
338 }
339
340 /* Decide whether to unroll LOOP iterating constant number of times
341 and how much. */
342
343 static void
344 decide_unroll_constant_iterations (struct loop *loop, int flags)
345 {
346 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
347 struct niter_desc *desc;
348 widest_int iterations;
349
350 if (!(flags & UAP_UNROLL))
351 {
352 /* We were not asked to, just return back silently. */
353 return;
354 }
355
356 if (dump_file)
357 fprintf (dump_file,
358 "\n;; Considering unrolling loop with constant "
359 "number of iterations\n");
360
361 /* nunroll = total number of copies of the original loop body in
362 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
363 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
364 nunroll_by_av
365 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
366 if (nunroll > nunroll_by_av)
367 nunroll = nunroll_by_av;
368 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
369 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
370
371 if (targetm.loop_unroll_adjust)
372 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
373
374 /* Skip big loops. */
375 if (nunroll <= 1)
376 {
377 if (dump_file)
378 fprintf (dump_file, ";; Not considering loop, is too big\n");
379 return;
380 }
381
382 /* Check for simple loops. */
383 desc = get_simple_loop_desc (loop);
384
385 /* Check number of iterations. */
386 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
387 {
388 if (dump_file)
389 fprintf (dump_file,
390 ";; Unable to prove that the loop iterates constant times\n");
391 return;
392 }
393
394 /* Check whether the loop rolls enough to consider.
395 Consult also loop bounds and profile; in the case the loop has more
396 than one exit it may well loop less than determined maximal number
397 of iterations. */
398 if (desc->niter < 2 * nunroll
399 || ((get_estimated_loop_iterations (loop, &iterations)
400 || get_likely_max_loop_iterations (loop, &iterations))
401 && wi::ltu_p (iterations, 2 * nunroll)))
402 {
403 if (dump_file)
404 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
405 return;
406 }
407
408 /* Success; now compute number of iterations to unroll. We alter
409 nunroll so that as few as possible copies of loop body are
410 necessary, while still not decreasing the number of unrollings
411 too much (at most by 1). */
412 best_copies = 2 * nunroll + 10;
413
414 i = 2 * nunroll + 2;
415 if (i - 1 >= desc->niter)
416 i = desc->niter - 2;
417
418 for (; i >= nunroll - 1; i--)
419 {
420 unsigned exit_mod = desc->niter % (i + 1);
421
422 if (!loop_exit_at_end_p (loop))
423 n_copies = exit_mod + i + 1;
424 else if (exit_mod != (unsigned) i
425 || desc->noloop_assumptions != NULL_RTX)
426 n_copies = exit_mod + i + 2;
427 else
428 n_copies = i + 1;
429
430 if (n_copies < best_copies)
431 {
432 best_copies = n_copies;
433 best_unroll = i;
434 }
435 }
436
437 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
438 loop->lpt_decision.times = best_unroll;
439 }
440
441 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
442 The transformation does this:
443
444 for (i = 0; i < 102; i++)
445 body;
446
447 ==> (LOOP->LPT_DECISION.TIMES == 3)
448
449 i = 0;
450 body; i++;
451 body; i++;
452 while (i < 102)
453 {
454 body; i++;
455 body; i++;
456 body; i++;
457 body; i++;
458 }
459 */
460 static void
461 unroll_loop_constant_iterations (struct loop *loop)
462 {
463 unsigned HOST_WIDE_INT niter;
464 unsigned exit_mod;
465 unsigned i;
466 edge e;
467 unsigned max_unroll = loop->lpt_decision.times;
468 struct niter_desc *desc = get_simple_loop_desc (loop);
469 bool exit_at_end = loop_exit_at_end_p (loop);
470 struct opt_info *opt_info = NULL;
471 bool ok;
472
473 niter = desc->niter;
474
475 /* Should not get here (such loop should be peeled instead). */
476 gcc_assert (niter > max_unroll + 1);
477
478 exit_mod = niter % (max_unroll + 1);
479
480 auto_sbitmap wont_exit (max_unroll + 1);
481 bitmap_ones (wont_exit);
482
483 auto_vec<edge> remove_edges;
484 if (flag_split_ivs_in_unroller
485 || flag_variable_expansion_in_unroller)
486 opt_info = analyze_insns_in_loop (loop);
487
488 if (!exit_at_end)
489 {
490 /* The exit is not at the end of the loop; leave exit test
491 in the first copy, so that the loops that start with test
492 of exit condition have continuous body after unrolling. */
493
494 if (dump_file)
495 fprintf (dump_file, ";; Condition at beginning of loop.\n");
496
497 /* Peel exit_mod iterations. */
498 bitmap_clear_bit (wont_exit, 0);
499 if (desc->noloop_assumptions)
500 bitmap_clear_bit (wont_exit, 1);
501
502 if (exit_mod)
503 {
504 opt_info_start_duplication (opt_info);
505 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
506 exit_mod,
507 wont_exit, desc->out_edge,
508 &remove_edges,
509 DLTHE_FLAG_UPDATE_FREQ
510 | (opt_info && exit_mod > 1
511 ? DLTHE_RECORD_COPY_NUMBER
512 : 0));
513 gcc_assert (ok);
514
515 if (opt_info && exit_mod > 1)
516 apply_opt_in_copies (opt_info, exit_mod, false, false);
517
518 desc->noloop_assumptions = NULL_RTX;
519 desc->niter -= exit_mod;
520 loop->nb_iterations_upper_bound -= exit_mod;
521 if (loop->any_estimate
522 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
523 loop->nb_iterations_estimate -= exit_mod;
524 else
525 loop->any_estimate = false;
526 if (loop->any_likely_upper_bound
527 && wi::leu_p (exit_mod, loop->nb_iterations_likely_upper_bound))
528 loop->nb_iterations_likely_upper_bound -= exit_mod;
529 else
530 loop->any_likely_upper_bound = false;
531 }
532
533 bitmap_set_bit (wont_exit, 1);
534 }
535 else
536 {
537 /* Leave exit test in last copy, for the same reason as above if
538 the loop tests the condition at the end of loop body. */
539
540 if (dump_file)
541 fprintf (dump_file, ";; Condition at end of loop.\n");
542
543 /* We know that niter >= max_unroll + 2; so we do not need to care of
544 case when we would exit before reaching the loop. So just peel
545 exit_mod + 1 iterations. */
546 if (exit_mod != max_unroll
547 || desc->noloop_assumptions)
548 {
549 bitmap_clear_bit (wont_exit, 0);
550 if (desc->noloop_assumptions)
551 bitmap_clear_bit (wont_exit, 1);
552
553 opt_info_start_duplication (opt_info);
554 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
555 exit_mod + 1,
556 wont_exit, desc->out_edge,
557 &remove_edges,
558 DLTHE_FLAG_UPDATE_FREQ
559 | (opt_info && exit_mod > 0
560 ? DLTHE_RECORD_COPY_NUMBER
561 : 0));
562 gcc_assert (ok);
563
564 if (opt_info && exit_mod > 0)
565 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
566
567 desc->niter -= exit_mod + 1;
568 loop->nb_iterations_upper_bound -= exit_mod + 1;
569 if (loop->any_estimate
570 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
571 loop->nb_iterations_estimate -= exit_mod + 1;
572 else
573 loop->any_estimate = false;
574 if (loop->any_likely_upper_bound
575 && wi::leu_p (exit_mod + 1, loop->nb_iterations_likely_upper_bound))
576 loop->nb_iterations_likely_upper_bound -= exit_mod + 1;
577 else
578 loop->any_likely_upper_bound = false;
579 desc->noloop_assumptions = NULL_RTX;
580
581 bitmap_set_bit (wont_exit, 0);
582 bitmap_set_bit (wont_exit, 1);
583 }
584
585 bitmap_clear_bit (wont_exit, max_unroll);
586 }
587
588 /* Now unroll the loop. */
589
590 opt_info_start_duplication (opt_info);
591 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
592 max_unroll,
593 wont_exit, desc->out_edge,
594 &remove_edges,
595 DLTHE_FLAG_UPDATE_FREQ
596 | (opt_info
597 ? DLTHE_RECORD_COPY_NUMBER
598 : 0));
599 gcc_assert (ok);
600
601 if (opt_info)
602 {
603 apply_opt_in_copies (opt_info, max_unroll, true, true);
604 free_opt_info (opt_info);
605 }
606
607 if (exit_at_end)
608 {
609 basic_block exit_block = get_bb_copy (desc->in_edge->src);
610 /* Find a new in and out edge; they are in the last copy we have made. */
611
612 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
613 {
614 desc->out_edge = EDGE_SUCC (exit_block, 0);
615 desc->in_edge = EDGE_SUCC (exit_block, 1);
616 }
617 else
618 {
619 desc->out_edge = EDGE_SUCC (exit_block, 1);
620 desc->in_edge = EDGE_SUCC (exit_block, 0);
621 }
622 }
623
624 desc->niter /= max_unroll + 1;
625 loop->nb_iterations_upper_bound
626 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
627 if (loop->any_estimate)
628 loop->nb_iterations_estimate
629 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
630 if (loop->any_likely_upper_bound)
631 loop->nb_iterations_likely_upper_bound
632 = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
633 desc->niter_expr = GEN_INT (desc->niter);
634
635 /* Remove the edges. */
636 FOR_EACH_VEC_ELT (remove_edges, i, e)
637 remove_path (e);
638
639 if (dump_file)
640 fprintf (dump_file,
641 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
642 max_unroll, num_loop_insns (loop));
643 }
644
645 /* Decide whether to unroll LOOP iterating runtime computable number of times
646 and how much. */
647 static void
648 decide_unroll_runtime_iterations (struct loop *loop, int flags)
649 {
650 unsigned nunroll, nunroll_by_av, i;
651 struct niter_desc *desc;
652 widest_int iterations;
653
654 if (!(flags & UAP_UNROLL))
655 {
656 /* We were not asked to, just return back silently. */
657 return;
658 }
659
660 if (dump_file)
661 fprintf (dump_file,
662 "\n;; Considering unrolling loop with runtime "
663 "computable number of iterations\n");
664
665 /* nunroll = total number of copies of the original loop body in
666 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
667 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
668 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
669 if (nunroll > nunroll_by_av)
670 nunroll = nunroll_by_av;
671 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
672 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
673
674 if (targetm.loop_unroll_adjust)
675 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
676
677 /* Skip big loops. */
678 if (nunroll <= 1)
679 {
680 if (dump_file)
681 fprintf (dump_file, ";; Not considering loop, is too big\n");
682 return;
683 }
684
685 /* Check for simple loops. */
686 desc = get_simple_loop_desc (loop);
687
688 /* Check simpleness. */
689 if (!desc->simple_p || desc->assumptions)
690 {
691 if (dump_file)
692 fprintf (dump_file,
693 ";; Unable to prove that the number of iterations "
694 "can be counted in runtime\n");
695 return;
696 }
697
698 if (desc->const_iter)
699 {
700 if (dump_file)
701 fprintf (dump_file, ";; Loop iterates constant times\n");
702 return;
703 }
704
705 /* Check whether the loop rolls. */
706 if ((get_estimated_loop_iterations (loop, &iterations)
707 || get_likely_max_loop_iterations (loop, &iterations))
708 && wi::ltu_p (iterations, 2 * nunroll))
709 {
710 if (dump_file)
711 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
712 return;
713 }
714
715 /* Success; now force nunroll to be power of 2, as we are unable to
716 cope with overflows in computation of number of iterations. */
717 for (i = 1; 2 * i <= nunroll; i *= 2)
718 continue;
719
720 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
721 loop->lpt_decision.times = i - 1;
722 }
723
724 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
725 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
726 and NULL is returned instead. */
727
728 basic_block
729 split_edge_and_insert (edge e, rtx_insn *insns)
730 {
731 basic_block bb;
732
733 if (!insns)
734 return NULL;
735 bb = split_edge (e);
736 emit_insn_after (insns, BB_END (bb));
737
738 /* ??? We used to assume that INSNS can contain control flow insns, and
739 that we had to try to find sub basic blocks in BB to maintain a valid
740 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
741 and call break_superblocks when going out of cfglayout mode. But it
742 turns out that this never happens; and that if it does ever happen,
743 the verify_flow_info at the end of the RTL loop passes would fail.
744
745 There are two reasons why we expected we could have control flow insns
746 in INSNS. The first is when a comparison has to be done in parts, and
747 the second is when the number of iterations is computed for loops with
748 the number of iterations known at runtime. In both cases, test cases
749 to get control flow in INSNS appear to be impossible to construct:
750
751 * If do_compare_rtx_and_jump needs several branches to do comparison
752 in a mode that needs comparison by parts, we cannot analyze the
753 number of iterations of the loop, and we never get to unrolling it.
754
755 * The code in expand_divmod that was suspected to cause creation of
756 branching code seems to be only accessed for signed division. The
757 divisions used by # of iterations analysis are always unsigned.
758 Problems might arise on architectures that emits branching code
759 for some operations that may appear in the unroller (especially
760 for division), but we have no such architectures.
761
762 Considering all this, it was decided that we should for now assume
763 that INSNS can in theory contain control flow insns, but in practice
764 it never does. So we don't handle the theoretical case, and should
765 a real failure ever show up, we have a pretty good clue for how to
766 fix it. */
767
768 return bb;
769 }
770
771 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
772 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
773 in order to create a jump. */
774
775 static rtx_insn *
776 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp,
777 rtx_code_label *label, profile_probability prob,
778 rtx_insn *cinsn)
779 {
780 rtx_insn *seq;
781 rtx_jump_insn *jump;
782 rtx cond;
783 machine_mode mode;
784
785 mode = GET_MODE (op0);
786 if (mode == VOIDmode)
787 mode = GET_MODE (op1);
788
789 start_sequence ();
790 if (GET_MODE_CLASS (mode) == MODE_CC)
791 {
792 /* A hack -- there seems to be no easy generic way how to make a
793 conditional jump from a ccmode comparison. */
794 gcc_assert (cinsn);
795 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
796 gcc_assert (GET_CODE (cond) == comp);
797 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
798 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
799 emit_jump_insn (copy_insn (PATTERN (cinsn)));
800 jump = as_a <rtx_jump_insn *> (get_last_insn ());
801 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
802 LABEL_NUSES (JUMP_LABEL (jump))++;
803 redirect_jump (jump, label, 0);
804 }
805 else
806 {
807 gcc_assert (!cinsn);
808
809 op0 = force_operand (op0, NULL_RTX);
810 op1 = force_operand (op1, NULL_RTX);
811 do_compare_rtx_and_jump (op0, op1, comp, 0,
812 mode, NULL_RTX, NULL, label,
813 profile_probability::uninitialized ());
814 jump = as_a <rtx_jump_insn *> (get_last_insn ());
815 jump->set_jump_target (label);
816 LABEL_NUSES (label)++;
817 }
818 if (prob.initialized_p ())
819 add_reg_br_prob_note (jump, prob);
820
821 seq = get_insns ();
822 end_sequence ();
823
824 return seq;
825 }
826
827 /* Unroll LOOP for which we are able to count number of iterations in runtime
828 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
829 extra care for case n < 0):
830
831 for (i = 0; i < n; i++)
832 body;
833
834 ==> (LOOP->LPT_DECISION.TIMES == 3)
835
836 i = 0;
837 mod = n % 4;
838
839 switch (mod)
840 {
841 case 3:
842 body; i++;
843 case 2:
844 body; i++;
845 case 1:
846 body; i++;
847 case 0: ;
848 }
849
850 while (i < n)
851 {
852 body; i++;
853 body; i++;
854 body; i++;
855 body; i++;
856 }
857 */
858 static void
859 unroll_loop_runtime_iterations (struct loop *loop)
860 {
861 rtx old_niter, niter, tmp;
862 rtx_insn *init_code, *branch_code;
863 unsigned i, j;
864 profile_probability p;
865 basic_block preheader, *body, swtch, ezc_swtch = NULL;
866 int may_exit_copy, iter_freq, new_freq;
867 profile_count iter_count, new_count;
868 unsigned n_peel;
869 edge e;
870 bool extra_zero_check, last_may_exit;
871 unsigned max_unroll = loop->lpt_decision.times;
872 struct niter_desc *desc = get_simple_loop_desc (loop);
873 bool exit_at_end = loop_exit_at_end_p (loop);
874 struct opt_info *opt_info = NULL;
875 bool ok;
876
877 if (flag_split_ivs_in_unroller
878 || flag_variable_expansion_in_unroller)
879 opt_info = analyze_insns_in_loop (loop);
880
881 /* Remember blocks whose dominators will have to be updated. */
882 auto_vec<basic_block> dom_bbs;
883
884 body = get_loop_body (loop);
885 for (i = 0; i < loop->num_nodes; i++)
886 {
887 vec<basic_block> ldom;
888 basic_block bb;
889
890 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
891 FOR_EACH_VEC_ELT (ldom, j, bb)
892 if (!flow_bb_inside_loop_p (loop, bb))
893 dom_bbs.safe_push (bb);
894
895 ldom.release ();
896 }
897 free (body);
898
899 if (!exit_at_end)
900 {
901 /* Leave exit in first copy (for explanation why see comment in
902 unroll_loop_constant_iterations). */
903 may_exit_copy = 0;
904 n_peel = max_unroll - 1;
905 extra_zero_check = true;
906 last_may_exit = false;
907 }
908 else
909 {
910 /* Leave exit in last copy (for explanation why see comment in
911 unroll_loop_constant_iterations). */
912 may_exit_copy = max_unroll;
913 n_peel = max_unroll;
914 extra_zero_check = false;
915 last_may_exit = true;
916 }
917
918 /* Get expression for number of iterations. */
919 start_sequence ();
920 old_niter = niter = gen_reg_rtx (desc->mode);
921 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
922 if (tmp != niter)
923 emit_move_insn (niter, tmp);
924
925 /* For loops that exit at end and whose number of iterations is reliable,
926 add one to niter to account for first pass through loop body before
927 reaching exit test. */
928 if (exit_at_end && !desc->noloop_assumptions)
929 {
930 niter = expand_simple_binop (desc->mode, PLUS,
931 niter, const1_rtx,
932 NULL_RTX, 0, OPTAB_LIB_WIDEN);
933 old_niter = niter;
934 }
935
936 /* Count modulo by ANDing it with max_unroll; we use the fact that
937 the number of unrollings is a power of two, and thus this is correct
938 even if there is overflow in the computation. */
939 niter = expand_simple_binop (desc->mode, AND,
940 niter, gen_int_mode (max_unroll, desc->mode),
941 NULL_RTX, 0, OPTAB_LIB_WIDEN);
942
943 init_code = get_insns ();
944 end_sequence ();
945 unshare_all_rtl_in_chain (init_code);
946
947 /* Precondition the loop. */
948 split_edge_and_insert (loop_preheader_edge (loop), init_code);
949
950 auto_vec<edge> remove_edges;
951
952 auto_sbitmap wont_exit (max_unroll + 2);
953
954 if (extra_zero_check || desc->noloop_assumptions)
955 {
956 /* Peel the first copy of loop body. Leave the exit test if the number
957 of iterations is not reliable. Also record the place of the extra zero
958 check. */
959 bitmap_clear (wont_exit);
960 if (!desc->noloop_assumptions)
961 bitmap_set_bit (wont_exit, 1);
962 ezc_swtch = loop_preheader_edge (loop)->src;
963 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
964 1, wont_exit, desc->out_edge,
965 &remove_edges,
966 DLTHE_FLAG_UPDATE_FREQ);
967 gcc_assert (ok);
968 }
969
970 /* Record the place where switch will be built for preconditioning. */
971 swtch = split_edge (loop_preheader_edge (loop));
972
973 /* Compute frequency/count increments for each switch block and initialize
974 innermost switch block. Switch blocks and peeled loop copies are built
975 from innermost outward. */
976 iter_freq = new_freq = swtch->frequency / (max_unroll + 1);
977 iter_count = new_count = swtch->count.apply_scale (1, max_unroll + 1);
978 swtch->frequency = new_freq;
979 swtch->count = new_count;
980 single_succ_edge (swtch)->count = new_count;
981
982 for (i = 0; i < n_peel; i++)
983 {
984 /* Peel the copy. */
985 bitmap_clear (wont_exit);
986 if (i != n_peel - 1 || !last_may_exit)
987 bitmap_set_bit (wont_exit, 1);
988 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
989 1, wont_exit, desc->out_edge,
990 &remove_edges,
991 DLTHE_FLAG_UPDATE_FREQ);
992 gcc_assert (ok);
993
994 /* Create item for switch. */
995 j = n_peel - i - (extra_zero_check ? 0 : 1);
996 p = profile_probability::always ().apply_scale (1, i + 2);
997
998 preheader = split_edge (loop_preheader_edge (loop));
999 /* Add in frequency/count of edge from switch block. */
1000 preheader->frequency += iter_freq;
1001 preheader->count += iter_count;
1002 single_succ_edge (preheader)->count = preheader->count;
1003 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1004 block_label (preheader), p,
1005 NULL);
1006
1007 /* We rely on the fact that the compare and jump cannot be optimized out,
1008 and hence the cfg we create is correct. */
1009 gcc_assert (branch_code != NULL_RTX);
1010
1011 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1012 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1013 single_succ_edge (swtch)->probability = p.invert ();
1014 single_succ_edge (swtch)->count = new_count;
1015 new_freq += iter_freq;
1016 new_count += iter_count;
1017 swtch->frequency = new_freq;
1018 swtch->count = new_count;
1019 e = make_edge (swtch, preheader,
1020 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1021 e->count = iter_count;
1022 e->probability = p;
1023 }
1024
1025 if (extra_zero_check)
1026 {
1027 /* Add branch for zero iterations. */
1028 p = profile_probability::always ().apply_scale (1, max_unroll + 1);
1029 swtch = ezc_swtch;
1030 preheader = split_edge (loop_preheader_edge (loop));
1031 /* Recompute frequency/count adjustments since initial peel copy may
1032 have exited and reduced those values that were computed above. */
1033 iter_freq = swtch->frequency / (max_unroll + 1);
1034 iter_count = swtch->count.apply_scale (1, max_unroll + 1);
1035 /* Add in frequency/count of edge from switch block. */
1036 preheader->frequency += iter_freq;
1037 preheader->count += iter_count;
1038 single_succ_edge (preheader)->count = preheader->count;
1039 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1040 block_label (preheader), p,
1041 NULL);
1042 gcc_assert (branch_code != NULL_RTX);
1043
1044 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1045 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1046 single_succ_edge (swtch)->probability = p.invert ();
1047 single_succ_edge (swtch)->count -= iter_count;
1048 e = make_edge (swtch, preheader,
1049 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1050 e->count = iter_count;
1051 e->probability = p;
1052 }
1053
1054 /* Recount dominators for outer blocks. */
1055 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1056
1057 /* And unroll loop. */
1058
1059 bitmap_ones (wont_exit);
1060 bitmap_clear_bit (wont_exit, may_exit_copy);
1061 opt_info_start_duplication (opt_info);
1062
1063 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1064 max_unroll,
1065 wont_exit, desc->out_edge,
1066 &remove_edges,
1067 DLTHE_FLAG_UPDATE_FREQ
1068 | (opt_info
1069 ? DLTHE_RECORD_COPY_NUMBER
1070 : 0));
1071 gcc_assert (ok);
1072
1073 if (opt_info)
1074 {
1075 apply_opt_in_copies (opt_info, max_unroll, true, true);
1076 free_opt_info (opt_info);
1077 }
1078
1079 if (exit_at_end)
1080 {
1081 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1082 /* Find a new in and out edge; they are in the last copy we have
1083 made. */
1084
1085 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1086 {
1087 desc->out_edge = EDGE_SUCC (exit_block, 0);
1088 desc->in_edge = EDGE_SUCC (exit_block, 1);
1089 }
1090 else
1091 {
1092 desc->out_edge = EDGE_SUCC (exit_block, 1);
1093 desc->in_edge = EDGE_SUCC (exit_block, 0);
1094 }
1095 }
1096
1097 /* Remove the edges. */
1098 FOR_EACH_VEC_ELT (remove_edges, i, e)
1099 remove_path (e);
1100
1101 /* We must be careful when updating the number of iterations due to
1102 preconditioning and the fact that the value must be valid at entry
1103 of the loop. After passing through the above code, we see that
1104 the correct new number of iterations is this: */
1105 gcc_assert (!desc->const_iter);
1106 desc->niter_expr =
1107 simplify_gen_binary (UDIV, desc->mode, old_niter,
1108 gen_int_mode (max_unroll + 1, desc->mode));
1109 loop->nb_iterations_upper_bound
1110 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1111 if (loop->any_estimate)
1112 loop->nb_iterations_estimate
1113 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1114 if (loop->any_likely_upper_bound)
1115 loop->nb_iterations_likely_upper_bound
1116 = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
1117 if (exit_at_end)
1118 {
1119 desc->niter_expr =
1120 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1121 desc->noloop_assumptions = NULL_RTX;
1122 --loop->nb_iterations_upper_bound;
1123 if (loop->any_estimate
1124 && loop->nb_iterations_estimate != 0)
1125 --loop->nb_iterations_estimate;
1126 else
1127 loop->any_estimate = false;
1128 if (loop->any_likely_upper_bound
1129 && loop->nb_iterations_likely_upper_bound != 0)
1130 --loop->nb_iterations_likely_upper_bound;
1131 else
1132 loop->any_likely_upper_bound = false;
1133 }
1134
1135 if (dump_file)
1136 fprintf (dump_file,
1137 ";; Unrolled loop %d times, counting # of iterations "
1138 "in runtime, %i insns\n",
1139 max_unroll, num_loop_insns (loop));
1140 }
1141
1142 /* Decide whether to unroll LOOP stupidly and how much. */
1143 static void
1144 decide_unroll_stupid (struct loop *loop, int flags)
1145 {
1146 unsigned nunroll, nunroll_by_av, i;
1147 struct niter_desc *desc;
1148 widest_int iterations;
1149
1150 if (!(flags & UAP_UNROLL_ALL))
1151 {
1152 /* We were not asked to, just return back silently. */
1153 return;
1154 }
1155
1156 if (dump_file)
1157 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1158
1159 /* nunroll = total number of copies of the original loop body in
1160 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1161 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1162 nunroll_by_av
1163 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1164 if (nunroll > nunroll_by_av)
1165 nunroll = nunroll_by_av;
1166 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1167 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1168
1169 if (targetm.loop_unroll_adjust)
1170 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1171
1172 /* Skip big loops. */
1173 if (nunroll <= 1)
1174 {
1175 if (dump_file)
1176 fprintf (dump_file, ";; Not considering loop, is too big\n");
1177 return;
1178 }
1179
1180 /* Check for simple loops. */
1181 desc = get_simple_loop_desc (loop);
1182
1183 /* Check simpleness. */
1184 if (desc->simple_p && !desc->assumptions)
1185 {
1186 if (dump_file)
1187 fprintf (dump_file, ";; The loop is simple\n");
1188 return;
1189 }
1190
1191 /* Do not unroll loops with branches inside -- it increases number
1192 of mispredicts.
1193 TODO: this heuristic needs tunning; call inside the loop body
1194 is also relatively good reason to not unroll. */
1195 if (num_loop_branches (loop) > 1)
1196 {
1197 if (dump_file)
1198 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1199 return;
1200 }
1201
1202 /* Check whether the loop rolls. */
1203 if ((get_estimated_loop_iterations (loop, &iterations)
1204 || get_likely_max_loop_iterations (loop, &iterations))
1205 && wi::ltu_p (iterations, 2 * nunroll))
1206 {
1207 if (dump_file)
1208 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1209 return;
1210 }
1211
1212 /* Success. Now force nunroll to be power of 2, as it seems that this
1213 improves results (partially because of better alignments, partially
1214 because of some dark magic). */
1215 for (i = 1; 2 * i <= nunroll; i *= 2)
1216 continue;
1217
1218 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1219 loop->lpt_decision.times = i - 1;
1220 }
1221
1222 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1223
1224 while (cond)
1225 body;
1226
1227 ==> (LOOP->LPT_DECISION.TIMES == 3)
1228
1229 while (cond)
1230 {
1231 body;
1232 if (!cond) break;
1233 body;
1234 if (!cond) break;
1235 body;
1236 if (!cond) break;
1237 body;
1238 }
1239 */
1240 static void
1241 unroll_loop_stupid (struct loop *loop)
1242 {
1243 unsigned nunroll = loop->lpt_decision.times;
1244 struct niter_desc *desc = get_simple_loop_desc (loop);
1245 struct opt_info *opt_info = NULL;
1246 bool ok;
1247
1248 if (flag_split_ivs_in_unroller
1249 || flag_variable_expansion_in_unroller)
1250 opt_info = analyze_insns_in_loop (loop);
1251
1252 auto_sbitmap wont_exit (nunroll + 1);
1253 bitmap_clear (wont_exit);
1254 opt_info_start_duplication (opt_info);
1255
1256 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1257 nunroll, wont_exit,
1258 NULL, NULL,
1259 DLTHE_FLAG_UPDATE_FREQ
1260 | (opt_info
1261 ? DLTHE_RECORD_COPY_NUMBER
1262 : 0));
1263 gcc_assert (ok);
1264
1265 if (opt_info)
1266 {
1267 apply_opt_in_copies (opt_info, nunroll, true, true);
1268 free_opt_info (opt_info);
1269 }
1270
1271 if (desc->simple_p)
1272 {
1273 /* We indeed may get here provided that there are nontrivial assumptions
1274 for a loop to be really simple. We could update the counts, but the
1275 problem is that we are unable to decide which exit will be taken
1276 (not really true in case the number of iterations is constant,
1277 but no one will do anything with this information, so we do not
1278 worry about it). */
1279 desc->simple_p = false;
1280 }
1281
1282 if (dump_file)
1283 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1284 nunroll, num_loop_insns (loop));
1285 }
1286
1287 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1288 Set *DEBUG_USES to the number of debug insns that reference the
1289 variable. */
1290
1291 static bool
1292 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1293 int *debug_uses)
1294 {
1295 basic_block *body, bb;
1296 unsigned i;
1297 int count_ref = 0;
1298 rtx_insn *insn;
1299
1300 body = get_loop_body (loop);
1301 for (i = 0; i < loop->num_nodes; i++)
1302 {
1303 bb = body[i];
1304
1305 FOR_BB_INSNS (bb, insn)
1306 if (!rtx_referenced_p (reg, insn))
1307 continue;
1308 else if (DEBUG_INSN_P (insn))
1309 ++*debug_uses;
1310 else if (++count_ref > 1)
1311 break;
1312 }
1313 free (body);
1314 return (count_ref == 1);
1315 }
1316
1317 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1318
1319 static void
1320 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1321 {
1322 basic_block *body, bb;
1323 unsigned i;
1324 rtx_insn *insn;
1325
1326 body = get_loop_body (loop);
1327 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1328 {
1329 bb = body[i];
1330
1331 FOR_BB_INSNS (bb, insn)
1332 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1333 continue;
1334 else
1335 {
1336 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1337 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1338 if (!--debug_uses)
1339 break;
1340 }
1341 }
1342 free (body);
1343 }
1344
1345 /* Determine whether INSN contains an accumulator
1346 which can be expanded into separate copies,
1347 one for each copy of the LOOP body.
1348
1349 for (i = 0 ; i < n; i++)
1350 sum += a[i];
1351
1352 ==>
1353
1354 sum += a[i]
1355 ....
1356 i = i+1;
1357 sum1 += a[i]
1358 ....
1359 i = i+1
1360 sum2 += a[i];
1361 ....
1362
1363 Return NULL if INSN contains no opportunity for expansion of accumulator.
1364 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1365 information and return a pointer to it.
1366 */
1367
1368 static struct var_to_expand *
1369 analyze_insn_to_expand_var (struct loop *loop, rtx_insn *insn)
1370 {
1371 rtx set, dest, src;
1372 struct var_to_expand *ves;
1373 unsigned accum_pos;
1374 enum rtx_code code;
1375 int debug_uses = 0;
1376
1377 set = single_set (insn);
1378 if (!set)
1379 return NULL;
1380
1381 dest = SET_DEST (set);
1382 src = SET_SRC (set);
1383 code = GET_CODE (src);
1384
1385 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1386 return NULL;
1387
1388 if (FLOAT_MODE_P (GET_MODE (dest)))
1389 {
1390 if (!flag_associative_math)
1391 return NULL;
1392 /* In the case of FMA, we're also changing the rounding. */
1393 if (code == FMA && !flag_unsafe_math_optimizations)
1394 return NULL;
1395 }
1396
1397 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1398 in MD. But if there is no optab to generate the insn, we can not
1399 perform the variable expansion. This can happen if an MD provides
1400 an insn but not a named pattern to generate it, for example to avoid
1401 producing code that needs additional mode switches like for x87/mmx.
1402
1403 So we check have_insn_for which looks for an optab for the operation
1404 in SRC. If it doesn't exist, we can't perform the expansion even
1405 though INSN is valid. */
1406 if (!have_insn_for (code, GET_MODE (src)))
1407 return NULL;
1408
1409 if (!REG_P (dest)
1410 && !(GET_CODE (dest) == SUBREG
1411 && REG_P (SUBREG_REG (dest))))
1412 return NULL;
1413
1414 /* Find the accumulator use within the operation. */
1415 if (code == FMA)
1416 {
1417 /* We only support accumulation via FMA in the ADD position. */
1418 if (!rtx_equal_p (dest, XEXP (src, 2)))
1419 return NULL;
1420 accum_pos = 2;
1421 }
1422 else if (rtx_equal_p (dest, XEXP (src, 0)))
1423 accum_pos = 0;
1424 else if (rtx_equal_p (dest, XEXP (src, 1)))
1425 {
1426 /* The method of expansion that we are using; which includes the
1427 initialization of the expansions with zero and the summation of
1428 the expansions at the end of the computation will yield wrong
1429 results for (x = something - x) thus avoid using it in that case. */
1430 if (code == MINUS)
1431 return NULL;
1432 accum_pos = 1;
1433 }
1434 else
1435 return NULL;
1436
1437 /* It must not otherwise be used. */
1438 if (code == FMA)
1439 {
1440 if (rtx_referenced_p (dest, XEXP (src, 0))
1441 || rtx_referenced_p (dest, XEXP (src, 1)))
1442 return NULL;
1443 }
1444 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1445 return NULL;
1446
1447 /* It must be used in exactly one insn. */
1448 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1449 return NULL;
1450
1451 if (dump_file)
1452 {
1453 fprintf (dump_file, "\n;; Expanding Accumulator ");
1454 print_rtl (dump_file, dest);
1455 fprintf (dump_file, "\n");
1456 }
1457
1458 if (debug_uses)
1459 /* Instead of resetting the debug insns, we could replace each
1460 debug use in the loop with the sum or product of all expanded
1461 accumulators. Since we'll only know of all expansions at the
1462 end, we'd have to keep track of which vars_to_expand a debug
1463 insn in the loop references, take note of each copy of the
1464 debug insn during unrolling, and when it's all done, compute
1465 the sum or product of each variable and adjust the original
1466 debug insn and each copy thereof. What a pain! */
1467 reset_debug_uses_in_loop (loop, dest, debug_uses);
1468
1469 /* Record the accumulator to expand. */
1470 ves = XNEW (struct var_to_expand);
1471 ves->insn = insn;
1472 ves->reg = copy_rtx (dest);
1473 ves->var_expansions.create (1);
1474 ves->next = NULL;
1475 ves->op = GET_CODE (src);
1476 ves->expansion_count = 0;
1477 ves->reuse_expansion = 0;
1478 return ves;
1479 }
1480
1481 /* Determine whether there is an induction variable in INSN that
1482 we would like to split during unrolling.
1483
1484 I.e. replace
1485
1486 i = i + 1;
1487 ...
1488 i = i + 1;
1489 ...
1490 i = i + 1;
1491 ...
1492
1493 type chains by
1494
1495 i0 = i + 1
1496 ...
1497 i = i0 + 1
1498 ...
1499 i = i0 + 2
1500 ...
1501
1502 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1503 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1504 pointer to it. */
1505
1506 static struct iv_to_split *
1507 analyze_iv_to_split_insn (rtx_insn *insn)
1508 {
1509 rtx set, dest;
1510 struct rtx_iv iv;
1511 struct iv_to_split *ivts;
1512 bool ok;
1513
1514 /* For now we just split the basic induction variables. Later this may be
1515 extended for example by selecting also addresses of memory references. */
1516 set = single_set (insn);
1517 if (!set)
1518 return NULL;
1519
1520 dest = SET_DEST (set);
1521 if (!REG_P (dest))
1522 return NULL;
1523
1524 if (!biv_p (insn, dest))
1525 return NULL;
1526
1527 ok = iv_analyze_result (insn, dest, &iv);
1528
1529 /* This used to be an assert under the assumption that if biv_p returns
1530 true that iv_analyze_result must also return true. However, that
1531 assumption is not strictly correct as evidenced by pr25569.
1532
1533 Returning NULL when iv_analyze_result returns false is safe and
1534 avoids the problems in pr25569 until the iv_analyze_* routines
1535 can be fixed, which is apparently hard and time consuming
1536 according to their author. */
1537 if (! ok)
1538 return NULL;
1539
1540 if (iv.step == const0_rtx
1541 || iv.mode != iv.extend_mode)
1542 return NULL;
1543
1544 /* Record the insn to split. */
1545 ivts = XNEW (struct iv_to_split);
1546 ivts->insn = insn;
1547 ivts->orig_var = dest;
1548 ivts->base_var = NULL_RTX;
1549 ivts->step = iv.step;
1550 ivts->next = NULL;
1551
1552 return ivts;
1553 }
1554
1555 /* Determines which of insns in LOOP can be optimized.
1556 Return a OPT_INFO struct with the relevant hash tables filled
1557 with all insns to be optimized. The FIRST_NEW_BLOCK field
1558 is undefined for the return value. */
1559
1560 static struct opt_info *
1561 analyze_insns_in_loop (struct loop *loop)
1562 {
1563 basic_block *body, bb;
1564 unsigned i;
1565 struct opt_info *opt_info = XCNEW (struct opt_info);
1566 rtx_insn *insn;
1567 struct iv_to_split *ivts = NULL;
1568 struct var_to_expand *ves = NULL;
1569 iv_to_split **slot1;
1570 var_to_expand **slot2;
1571 vec<edge> edges = get_loop_exit_edges (loop);
1572 edge exit;
1573 bool can_apply = false;
1574
1575 iv_analysis_loop_init (loop);
1576
1577 body = get_loop_body (loop);
1578
1579 if (flag_split_ivs_in_unroller)
1580 {
1581 opt_info->insns_to_split
1582 = new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1583 opt_info->iv_to_split_head = NULL;
1584 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1585 }
1586
1587 /* Record the loop exit bb and loop preheader before the unrolling. */
1588 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1589
1590 if (edges.length () == 1)
1591 {
1592 exit = edges[0];
1593 if (!(exit->flags & EDGE_COMPLEX))
1594 {
1595 opt_info->loop_exit = split_edge (exit);
1596 can_apply = true;
1597 }
1598 }
1599
1600 if (flag_variable_expansion_in_unroller
1601 && can_apply)
1602 {
1603 opt_info->insns_with_var_to_expand
1604 = new hash_table<var_expand_hasher> (5 * loop->num_nodes);
1605 opt_info->var_to_expand_head = NULL;
1606 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1607 }
1608
1609 for (i = 0; i < loop->num_nodes; i++)
1610 {
1611 bb = body[i];
1612 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1613 continue;
1614
1615 FOR_BB_INSNS (bb, insn)
1616 {
1617 if (!INSN_P (insn))
1618 continue;
1619
1620 if (opt_info->insns_to_split)
1621 ivts = analyze_iv_to_split_insn (insn);
1622
1623 if (ivts)
1624 {
1625 slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
1626 gcc_assert (*slot1 == NULL);
1627 *slot1 = ivts;
1628 *opt_info->iv_to_split_tail = ivts;
1629 opt_info->iv_to_split_tail = &ivts->next;
1630 continue;
1631 }
1632
1633 if (opt_info->insns_with_var_to_expand)
1634 ves = analyze_insn_to_expand_var (loop, insn);
1635
1636 if (ves)
1637 {
1638 slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
1639 gcc_assert (*slot2 == NULL);
1640 *slot2 = ves;
1641 *opt_info->var_to_expand_tail = ves;
1642 opt_info->var_to_expand_tail = &ves->next;
1643 }
1644 }
1645 }
1646
1647 edges.release ();
1648 free (body);
1649 return opt_info;
1650 }
1651
1652 /* Called just before loop duplication. Records start of duplicated area
1653 to OPT_INFO. */
1654
1655 static void
1656 opt_info_start_duplication (struct opt_info *opt_info)
1657 {
1658 if (opt_info)
1659 opt_info->first_new_block = last_basic_block_for_fn (cfun);
1660 }
1661
1662 /* Determine the number of iterations between initialization of the base
1663 variable and the current copy (N_COPY). N_COPIES is the total number
1664 of newly created copies. UNROLLING is true if we are unrolling
1665 (not peeling) the loop. */
1666
1667 static unsigned
1668 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1669 {
1670 if (unrolling)
1671 {
1672 /* If we are unrolling, initialization is done in the original loop
1673 body (number 0). */
1674 return n_copy;
1675 }
1676 else
1677 {
1678 /* If we are peeling, the copy in that the initialization occurs has
1679 number 1. The original loop (number 0) is the last. */
1680 if (n_copy)
1681 return n_copy - 1;
1682 else
1683 return n_copies;
1684 }
1685 }
1686
1687 /* Allocate basic variable for the induction variable chain. */
1688
1689 static void
1690 allocate_basic_variable (struct iv_to_split *ivts)
1691 {
1692 rtx expr = SET_SRC (single_set (ivts->insn));
1693
1694 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1695 }
1696
1697 /* Insert initialization of basic variable of IVTS before INSN, taking
1698 the initial value from INSN. */
1699
1700 static void
1701 insert_base_initialization (struct iv_to_split *ivts, rtx_insn *insn)
1702 {
1703 rtx expr = copy_rtx (SET_SRC (single_set (insn)));
1704 rtx_insn *seq;
1705
1706 start_sequence ();
1707 expr = force_operand (expr, ivts->base_var);
1708 if (expr != ivts->base_var)
1709 emit_move_insn (ivts->base_var, expr);
1710 seq = get_insns ();
1711 end_sequence ();
1712
1713 emit_insn_before (seq, insn);
1714 }
1715
1716 /* Replace the use of induction variable described in IVTS in INSN
1717 by base variable + DELTA * step. */
1718
1719 static void
1720 split_iv (struct iv_to_split *ivts, rtx_insn *insn, unsigned delta)
1721 {
1722 rtx expr, *loc, incr, var;
1723 rtx_insn *seq;
1724 machine_mode mode = GET_MODE (ivts->base_var);
1725 rtx src, dest, set;
1726
1727 /* Construct base + DELTA * step. */
1728 if (!delta)
1729 expr = ivts->base_var;
1730 else
1731 {
1732 incr = simplify_gen_binary (MULT, mode,
1733 ivts->step, gen_int_mode (delta, mode));
1734 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1735 ivts->base_var, incr);
1736 }
1737
1738 /* Figure out where to do the replacement. */
1739 loc = &SET_SRC (single_set (insn));
1740
1741 /* If we can make the replacement right away, we're done. */
1742 if (validate_change (insn, loc, expr, 0))
1743 return;
1744
1745 /* Otherwise, force EXPR into a register and try again. */
1746 start_sequence ();
1747 var = gen_reg_rtx (mode);
1748 expr = force_operand (expr, var);
1749 if (expr != var)
1750 emit_move_insn (var, expr);
1751 seq = get_insns ();
1752 end_sequence ();
1753 emit_insn_before (seq, insn);
1754
1755 if (validate_change (insn, loc, var, 0))
1756 return;
1757
1758 /* The last chance. Try recreating the assignment in insn
1759 completely from scratch. */
1760 set = single_set (insn);
1761 gcc_assert (set);
1762
1763 start_sequence ();
1764 *loc = var;
1765 src = copy_rtx (SET_SRC (set));
1766 dest = copy_rtx (SET_DEST (set));
1767 src = force_operand (src, dest);
1768 if (src != dest)
1769 emit_move_insn (dest, src);
1770 seq = get_insns ();
1771 end_sequence ();
1772
1773 emit_insn_before (seq, insn);
1774 delete_insn (insn);
1775 }
1776
1777
1778 /* Return one expansion of the accumulator recorded in struct VE. */
1779
1780 static rtx
1781 get_expansion (struct var_to_expand *ve)
1782 {
1783 rtx reg;
1784
1785 if (ve->reuse_expansion == 0)
1786 reg = ve->reg;
1787 else
1788 reg = ve->var_expansions[ve->reuse_expansion - 1];
1789
1790 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
1791 ve->reuse_expansion = 0;
1792 else
1793 ve->reuse_expansion++;
1794
1795 return reg;
1796 }
1797
1798
1799 /* Given INSN replace the uses of the accumulator recorded in VE
1800 with a new register. */
1801
1802 static void
1803 expand_var_during_unrolling (struct var_to_expand *ve, rtx_insn *insn)
1804 {
1805 rtx new_reg, set;
1806 bool really_new_expansion = false;
1807
1808 set = single_set (insn);
1809 gcc_assert (set);
1810
1811 /* Generate a new register only if the expansion limit has not been
1812 reached. Else reuse an already existing expansion. */
1813 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1814 {
1815 really_new_expansion = true;
1816 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1817 }
1818 else
1819 new_reg = get_expansion (ve);
1820
1821 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
1822 if (apply_change_group ())
1823 if (really_new_expansion)
1824 {
1825 ve->var_expansions.safe_push (new_reg);
1826 ve->expansion_count++;
1827 }
1828 }
1829
1830 /* Initialize the variable expansions in loop preheader. PLACE is the
1831 loop-preheader basic block where the initialization of the
1832 expansions should take place. The expansions are initialized with
1833 (-0) when the operation is plus or minus to honor sign zero. This
1834 way we can prevent cases where the sign of the final result is
1835 effected by the sign of the expansion. Here is an example to
1836 demonstrate this:
1837
1838 for (i = 0 ; i < n; i++)
1839 sum += something;
1840
1841 ==>
1842
1843 sum += something
1844 ....
1845 i = i+1;
1846 sum1 += something
1847 ....
1848 i = i+1
1849 sum2 += something;
1850 ....
1851
1852 When SUM is initialized with -zero and SOMETHING is also -zero; the
1853 final result of sum should be -zero thus the expansions sum1 and sum2
1854 should be initialized with -zero as well (otherwise we will get +zero
1855 as the final result). */
1856
1857 static void
1858 insert_var_expansion_initialization (struct var_to_expand *ve,
1859 basic_block place)
1860 {
1861 rtx_insn *seq;
1862 rtx var, zero_init;
1863 unsigned i;
1864 machine_mode mode = GET_MODE (ve->reg);
1865 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
1866
1867 if (ve->var_expansions.length () == 0)
1868 return;
1869
1870 start_sequence ();
1871 switch (ve->op)
1872 {
1873 case FMA:
1874 /* Note that we only accumulate FMA via the ADD operand. */
1875 case PLUS:
1876 case MINUS:
1877 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1878 {
1879 if (honor_signed_zero_p)
1880 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
1881 else
1882 zero_init = CONST0_RTX (mode);
1883 emit_move_insn (var, zero_init);
1884 }
1885 break;
1886
1887 case MULT:
1888 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1889 {
1890 zero_init = CONST1_RTX (GET_MODE (var));
1891 emit_move_insn (var, zero_init);
1892 }
1893 break;
1894
1895 default:
1896 gcc_unreachable ();
1897 }
1898
1899 seq = get_insns ();
1900 end_sequence ();
1901
1902 emit_insn_after (seq, BB_END (place));
1903 }
1904
1905 /* Combine the variable expansions at the loop exit. PLACE is the
1906 loop exit basic block where the summation of the expansions should
1907 take place. */
1908
1909 static void
1910 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
1911 {
1912 rtx sum = ve->reg;
1913 rtx expr, var;
1914 rtx_insn *seq, *insn;
1915 unsigned i;
1916
1917 if (ve->var_expansions.length () == 0)
1918 return;
1919
1920 /* ve->reg might be SUBREG or some other non-shareable RTL, and we use
1921 it both here and as the destination of the assignment. */
1922 sum = copy_rtx (sum);
1923 start_sequence ();
1924 switch (ve->op)
1925 {
1926 case FMA:
1927 /* Note that we only accumulate FMA via the ADD operand. */
1928 case PLUS:
1929 case MINUS:
1930 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1931 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
1932 break;
1933
1934 case MULT:
1935 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1936 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
1937 break;
1938
1939 default:
1940 gcc_unreachable ();
1941 }
1942
1943 expr = force_operand (sum, ve->reg);
1944 if (expr != ve->reg)
1945 emit_move_insn (ve->reg, expr);
1946 seq = get_insns ();
1947 end_sequence ();
1948
1949 insn = BB_HEAD (place);
1950 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1951 insn = NEXT_INSN (insn);
1952
1953 emit_insn_after (seq, insn);
1954 }
1955
1956 /* Strip away REG_EQUAL notes for IVs we're splitting.
1957
1958 Updating REG_EQUAL notes for IVs we split is tricky: We
1959 cannot tell until after unrolling, DF-rescanning, and liveness
1960 updating, whether an EQ_USE is reached by the split IV while
1961 the IV reg is still live. See PR55006.
1962
1963 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
1964 because RTL loop-iv requires us to defer rescanning insns and
1965 any notes attached to them. So resort to old techniques... */
1966
1967 static void
1968 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx_insn *insn)
1969 {
1970 struct iv_to_split *ivts;
1971 rtx note = find_reg_equal_equiv_note (insn);
1972 if (! note)
1973 return;
1974 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1975 if (reg_mentioned_p (ivts->orig_var, note))
1976 {
1977 remove_note (insn, note);
1978 return;
1979 }
1980 }
1981
1982 /* Apply loop optimizations in loop copies using the
1983 data which gathered during the unrolling. Structure
1984 OPT_INFO record that data.
1985
1986 UNROLLING is true if we unrolled (not peeled) the loop.
1987 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
1988 the loop (as it should happen in complete unrolling, but not in ordinary
1989 peeling of the loop). */
1990
1991 static void
1992 apply_opt_in_copies (struct opt_info *opt_info,
1993 unsigned n_copies, bool unrolling,
1994 bool rewrite_original_loop)
1995 {
1996 unsigned i, delta;
1997 basic_block bb, orig_bb;
1998 rtx_insn *insn, *orig_insn, *next;
1999 struct iv_to_split ivts_templ, *ivts;
2000 struct var_to_expand ve_templ, *ves;
2001
2002 /* Sanity check -- we need to put initialization in the original loop
2003 body. */
2004 gcc_assert (!unrolling || rewrite_original_loop);
2005
2006 /* Allocate the basic variables (i0). */
2007 if (opt_info->insns_to_split)
2008 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2009 allocate_basic_variable (ivts);
2010
2011 for (i = opt_info->first_new_block;
2012 i < (unsigned) last_basic_block_for_fn (cfun);
2013 i++)
2014 {
2015 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2016 orig_bb = get_bb_original (bb);
2017
2018 /* bb->aux holds position in copy sequence initialized by
2019 duplicate_loop_to_header_edge. */
2020 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2021 unrolling);
2022 bb->aux = 0;
2023 orig_insn = BB_HEAD (orig_bb);
2024 FOR_BB_INSNS_SAFE (bb, insn, next)
2025 {
2026 if (!INSN_P (insn)
2027 || (DEBUG_INSN_P (insn)
2028 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2029 continue;
2030
2031 while (!INSN_P (orig_insn)
2032 || (DEBUG_INSN_P (orig_insn)
2033 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2034 == LABEL_DECL)))
2035 orig_insn = NEXT_INSN (orig_insn);
2036
2037 ivts_templ.insn = orig_insn;
2038 ve_templ.insn = orig_insn;
2039
2040 /* Apply splitting iv optimization. */
2041 if (opt_info->insns_to_split)
2042 {
2043 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2044
2045 ivts = opt_info->insns_to_split->find (&ivts_templ);
2046
2047 if (ivts)
2048 {
2049 gcc_assert (GET_CODE (PATTERN (insn))
2050 == GET_CODE (PATTERN (orig_insn)));
2051
2052 if (!delta)
2053 insert_base_initialization (ivts, insn);
2054 split_iv (ivts, insn, delta);
2055 }
2056 }
2057 /* Apply variable expansion optimization. */
2058 if (unrolling && opt_info->insns_with_var_to_expand)
2059 {
2060 ves = (struct var_to_expand *)
2061 opt_info->insns_with_var_to_expand->find (&ve_templ);
2062 if (ves)
2063 {
2064 gcc_assert (GET_CODE (PATTERN (insn))
2065 == GET_CODE (PATTERN (orig_insn)));
2066 expand_var_during_unrolling (ves, insn);
2067 }
2068 }
2069 orig_insn = NEXT_INSN (orig_insn);
2070 }
2071 }
2072
2073 if (!rewrite_original_loop)
2074 return;
2075
2076 /* Initialize the variable expansions in the loop preheader
2077 and take care of combining them at the loop exit. */
2078 if (opt_info->insns_with_var_to_expand)
2079 {
2080 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2081 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2082 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2083 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2084 }
2085
2086 /* Rewrite also the original loop body. Find them as originals of the blocks
2087 in the last copied iteration, i.e. those that have
2088 get_bb_copy (get_bb_original (bb)) == bb. */
2089 for (i = opt_info->first_new_block;
2090 i < (unsigned) last_basic_block_for_fn (cfun);
2091 i++)
2092 {
2093 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2094 orig_bb = get_bb_original (bb);
2095 if (get_bb_copy (orig_bb) != bb)
2096 continue;
2097
2098 delta = determine_split_iv_delta (0, n_copies, unrolling);
2099 for (orig_insn = BB_HEAD (orig_bb);
2100 orig_insn != NEXT_INSN (BB_END (bb));
2101 orig_insn = next)
2102 {
2103 next = NEXT_INSN (orig_insn);
2104
2105 if (!INSN_P (orig_insn))
2106 continue;
2107
2108 ivts_templ.insn = orig_insn;
2109 if (opt_info->insns_to_split)
2110 {
2111 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2112
2113 ivts = (struct iv_to_split *)
2114 opt_info->insns_to_split->find (&ivts_templ);
2115 if (ivts)
2116 {
2117 if (!delta)
2118 insert_base_initialization (ivts, orig_insn);
2119 split_iv (ivts, orig_insn, delta);
2120 continue;
2121 }
2122 }
2123
2124 }
2125 }
2126 }
2127
2128 /* Release OPT_INFO. */
2129
2130 static void
2131 free_opt_info (struct opt_info *opt_info)
2132 {
2133 delete opt_info->insns_to_split;
2134 opt_info->insns_to_split = NULL;
2135 if (opt_info->insns_with_var_to_expand)
2136 {
2137 struct var_to_expand *ves;
2138
2139 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2140 ves->var_expansions.release ();
2141 delete opt_info->insns_with_var_to_expand;
2142 opt_info->insns_with_var_to_expand = NULL;
2143 }
2144 free (opt_info);
2145 }