8fb69b85ce7c762c6a164051629d615887d02bab
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
85 };
86
87 /* Information about accumulators to expand. */
88
89 struct var_to_expand
90 {
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
101 };
102
103 /* Information about optimization applied in
104 the unrolled loop. */
105
106 struct opt_info
107 {
108 htab_t insns_to_split; /* A hashtable of insns to split. */
109 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
110 to expand. */
111 unsigned first_new_block; /* The first basic block that was
112 duplicated. */
113 basic_block loop_exit; /* The loop exit basic block. */
114 basic_block loop_preheader; /* The loop preheader basic block. */
115 };
116
117 static void decide_unrolling_and_peeling (int);
118 static void peel_loops_completely (int);
119 static void decide_peel_simple (struct loop *, int);
120 static void decide_peel_once_rolling (struct loop *, int);
121 static void decide_peel_completely (struct loop *, int);
122 static void decide_unroll_stupid (struct loop *, int);
123 static void decide_unroll_constant_iterations (struct loop *, int);
124 static void decide_unroll_runtime_iterations (struct loop *, int);
125 static void peel_loop_simple (struct loop *);
126 static void peel_loop_completely (struct loop *);
127 static void unroll_loop_stupid (struct loop *);
128 static void unroll_loop_constant_iterations (struct loop *);
129 static void unroll_loop_runtime_iterations (struct loop *);
130 static struct opt_info *analyze_insns_in_loop (struct loop *);
131 static void opt_info_start_duplication (struct opt_info *);
132 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
133 static void free_opt_info (struct opt_info *);
134 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
135 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
136 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
137 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
138 static int insert_var_expansion_initialization (void **, void *);
139 static int combine_var_copies_in_loop_exit (void **, void *);
140 static int release_var_copies (void **, void *);
141 static rtx get_expansion (struct var_to_expand *);
142
143 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
144 void
145 unroll_and_peel_loops (int flags)
146 {
147 struct loop *loop;
148 bool check;
149 loop_iterator li;
150
151 /* First perform complete loop peeling (it is almost surely a win,
152 and affects parameters for further decision a lot). */
153 peel_loops_completely (flags);
154
155 /* Now decide rest of unrolling and peeling. */
156 decide_unrolling_and_peeling (flags);
157
158 /* Scan the loops, inner ones first. */
159 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
160 {
161 check = true;
162 /* And perform the appropriate transformations. */
163 switch (loop->lpt_decision.decision)
164 {
165 case LPT_PEEL_COMPLETELY:
166 /* Already done. */
167 gcc_unreachable ();
168 case LPT_PEEL_SIMPLE:
169 peel_loop_simple (loop);
170 break;
171 case LPT_UNROLL_CONSTANT:
172 unroll_loop_constant_iterations (loop);
173 break;
174 case LPT_UNROLL_RUNTIME:
175 unroll_loop_runtime_iterations (loop);
176 break;
177 case LPT_UNROLL_STUPID:
178 unroll_loop_stupid (loop);
179 break;
180 case LPT_NONE:
181 check = false;
182 break;
183 default:
184 gcc_unreachable ();
185 }
186 if (check)
187 {
188 #ifdef ENABLE_CHECKING
189 verify_dominators (CDI_DOMINATORS);
190 verify_loop_structure ();
191 #endif
192 }
193 }
194
195 iv_analysis_done ();
196 }
197
198 /* Check whether exit of the LOOP is at the end of loop body. */
199
200 static bool
201 loop_exit_at_end_p (struct loop *loop)
202 {
203 struct niter_desc *desc = get_simple_loop_desc (loop);
204 rtx insn;
205
206 if (desc->in_edge->dest != loop->latch)
207 return false;
208
209 /* Check that the latch is empty. */
210 FOR_BB_INSNS (loop->latch, insn)
211 {
212 if (INSN_P (insn))
213 return false;
214 }
215
216 return true;
217 }
218
219 /* Depending on FLAGS, check whether to peel loops completely and do so. */
220 static void
221 peel_loops_completely (int flags)
222 {
223 struct loop *loop;
224 loop_iterator li;
225
226 /* Scan the loops, the inner ones first. */
227 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
228 {
229 loop->lpt_decision.decision = LPT_NONE;
230
231 if (dump_file)
232 fprintf (dump_file,
233 "\n;; *** Considering loop %d for complete peeling ***\n",
234 loop->num);
235
236 loop->ninsns = num_loop_insns (loop);
237
238 decide_peel_once_rolling (loop, flags);
239 if (loop->lpt_decision.decision == LPT_NONE)
240 decide_peel_completely (loop, flags);
241
242 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
243 {
244 peel_loop_completely (loop);
245 #ifdef ENABLE_CHECKING
246 verify_dominators (CDI_DOMINATORS);
247 verify_loop_structure ();
248 #endif
249 }
250 }
251 }
252
253 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
254 static void
255 decide_unrolling_and_peeling (int flags)
256 {
257 struct loop *loop;
258 loop_iterator li;
259
260 /* Scan the loops, inner ones first. */
261 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
262 {
263 loop->lpt_decision.decision = LPT_NONE;
264
265 if (dump_file)
266 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
267
268 /* Do not peel cold areas. */
269 if (!maybe_hot_bb_p (loop->header))
270 {
271 if (dump_file)
272 fprintf (dump_file, ";; Not considering loop, cold area\n");
273 continue;
274 }
275
276 /* Can the loop be manipulated? */
277 if (!can_duplicate_loop_p (loop))
278 {
279 if (dump_file)
280 fprintf (dump_file,
281 ";; Not considering loop, cannot duplicate\n");
282 continue;
283 }
284
285 /* Skip non-innermost loops. */
286 if (loop->inner)
287 {
288 if (dump_file)
289 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
290 continue;
291 }
292
293 loop->ninsns = num_loop_insns (loop);
294 loop->av_ninsns = average_num_loop_insns (loop);
295
296 /* Try transformations one by one in decreasing order of
297 priority. */
298
299 decide_unroll_constant_iterations (loop, flags);
300 if (loop->lpt_decision.decision == LPT_NONE)
301 decide_unroll_runtime_iterations (loop, flags);
302 if (loop->lpt_decision.decision == LPT_NONE)
303 decide_unroll_stupid (loop, flags);
304 if (loop->lpt_decision.decision == LPT_NONE)
305 decide_peel_simple (loop, flags);
306 }
307 }
308
309 /* Decide whether the LOOP is once rolling and suitable for complete
310 peeling. */
311 static void
312 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
313 {
314 struct niter_desc *desc;
315
316 if (dump_file)
317 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
318
319 /* Is the loop small enough? */
320 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
321 {
322 if (dump_file)
323 fprintf (dump_file, ";; Not considering loop, is too big\n");
324 return;
325 }
326
327 /* Check for simple loops. */
328 desc = get_simple_loop_desc (loop);
329
330 /* Check number of iterations. */
331 if (!desc->simple_p
332 || desc->assumptions
333 || desc->infinite
334 || !desc->const_iter
335 || desc->niter != 0)
336 {
337 if (dump_file)
338 fprintf (dump_file,
339 ";; Unable to prove that the loop rolls exactly once\n");
340 return;
341 }
342
343 /* Success. */
344 if (dump_file)
345 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
346 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
347 }
348
349 /* Decide whether the LOOP is suitable for complete peeling. */
350 static void
351 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
352 {
353 unsigned npeel;
354 struct niter_desc *desc;
355
356 if (dump_file)
357 fprintf (dump_file, "\n;; Considering peeling completely\n");
358
359 /* Skip non-innermost loops. */
360 if (loop->inner)
361 {
362 if (dump_file)
363 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
364 return;
365 }
366
367 /* Do not peel cold areas. */
368 if (!maybe_hot_bb_p (loop->header))
369 {
370 if (dump_file)
371 fprintf (dump_file, ";; Not considering loop, cold area\n");
372 return;
373 }
374
375 /* Can the loop be manipulated? */
376 if (!can_duplicate_loop_p (loop))
377 {
378 if (dump_file)
379 fprintf (dump_file,
380 ";; Not considering loop, cannot duplicate\n");
381 return;
382 }
383
384 /* npeel = number of iterations to peel. */
385 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
386 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
387 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
388
389 /* Is the loop small enough? */
390 if (!npeel)
391 {
392 if (dump_file)
393 fprintf (dump_file, ";; Not considering loop, is too big\n");
394 return;
395 }
396
397 /* Check for simple loops. */
398 desc = get_simple_loop_desc (loop);
399
400 /* Check number of iterations. */
401 if (!desc->simple_p
402 || desc->assumptions
403 || !desc->const_iter
404 || desc->infinite)
405 {
406 if (dump_file)
407 fprintf (dump_file,
408 ";; Unable to prove that the loop iterates constant times\n");
409 return;
410 }
411
412 if (desc->niter > npeel - 1)
413 {
414 if (dump_file)
415 {
416 fprintf (dump_file,
417 ";; Not peeling loop completely, rolls too much (");
418 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
419 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
420 }
421 return;
422 }
423
424 /* Success. */
425 if (dump_file)
426 fprintf (dump_file, ";; Decided to peel loop completely\n");
427 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
428 }
429
430 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
431 completely. The transformation done:
432
433 for (i = 0; i < 4; i++)
434 body;
435
436 ==>
437
438 i = 0;
439 body; i++;
440 body; i++;
441 body; i++;
442 body; i++;
443 */
444 static void
445 peel_loop_completely (struct loop *loop)
446 {
447 sbitmap wont_exit;
448 unsigned HOST_WIDE_INT npeel;
449 unsigned i;
450 VEC (edge, heap) *remove_edges;
451 edge ein;
452 struct niter_desc *desc = get_simple_loop_desc (loop);
453 struct opt_info *opt_info = NULL;
454
455 npeel = desc->niter;
456
457 if (npeel)
458 {
459 bool ok;
460
461 wont_exit = sbitmap_alloc (npeel + 1);
462 sbitmap_ones (wont_exit);
463 RESET_BIT (wont_exit, 0);
464 if (desc->noloop_assumptions)
465 RESET_BIT (wont_exit, 1);
466
467 remove_edges = NULL;
468
469 if (flag_split_ivs_in_unroller)
470 opt_info = analyze_insns_in_loop (loop);
471
472 opt_info_start_duplication (opt_info);
473 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
474 npeel,
475 wont_exit, desc->out_edge,
476 &remove_edges,
477 DLTHE_FLAG_UPDATE_FREQ
478 | DLTHE_FLAG_COMPLETTE_PEEL
479 | (opt_info
480 ? DLTHE_RECORD_COPY_NUMBER : 0));
481 gcc_assert (ok);
482
483 free (wont_exit);
484
485 if (opt_info)
486 {
487 apply_opt_in_copies (opt_info, npeel, false, true);
488 free_opt_info (opt_info);
489 }
490
491 /* Remove the exit edges. */
492 for (i = 0; VEC_iterate (edge, remove_edges, i, ein); i++)
493 remove_path (ein);
494 VEC_free (edge, heap, remove_edges);
495 }
496
497 ein = desc->in_edge;
498 free_simple_loop_desc (loop);
499
500 /* Now remove the unreachable part of the last iteration and cancel
501 the loop. */
502 remove_path (ein);
503
504 if (dump_file)
505 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
506 }
507
508 /* Decide whether to unroll LOOP iterating constant number of times
509 and how much. */
510
511 static void
512 decide_unroll_constant_iterations (struct loop *loop, int flags)
513 {
514 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
515 struct niter_desc *desc;
516
517 if (!(flags & UAP_UNROLL))
518 {
519 /* We were not asked to, just return back silently. */
520 return;
521 }
522
523 if (dump_file)
524 fprintf (dump_file,
525 "\n;; Considering unrolling loop with constant "
526 "number of iterations\n");
527
528 /* nunroll = total number of copies of the original loop body in
529 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
530 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
531 nunroll_by_av
532 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
533 if (nunroll > nunroll_by_av)
534 nunroll = nunroll_by_av;
535 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
536 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
537
538 /* Skip big loops. */
539 if (nunroll <= 1)
540 {
541 if (dump_file)
542 fprintf (dump_file, ";; Not considering loop, is too big\n");
543 return;
544 }
545
546 /* Check for simple loops. */
547 desc = get_simple_loop_desc (loop);
548
549 /* Check number of iterations. */
550 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
551 {
552 if (dump_file)
553 fprintf (dump_file,
554 ";; Unable to prove that the loop iterates constant times\n");
555 return;
556 }
557
558 /* Check whether the loop rolls enough to consider. */
559 if (desc->niter < 2 * nunroll)
560 {
561 if (dump_file)
562 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
563 return;
564 }
565
566 /* Success; now compute number of iterations to unroll. We alter
567 nunroll so that as few as possible copies of loop body are
568 necessary, while still not decreasing the number of unrollings
569 too much (at most by 1). */
570 best_copies = 2 * nunroll + 10;
571
572 i = 2 * nunroll + 2;
573 if (i - 1 >= desc->niter)
574 i = desc->niter - 2;
575
576 for (; i >= nunroll - 1; i--)
577 {
578 unsigned exit_mod = desc->niter % (i + 1);
579
580 if (!loop_exit_at_end_p (loop))
581 n_copies = exit_mod + i + 1;
582 else if (exit_mod != (unsigned) i
583 || desc->noloop_assumptions != NULL_RTX)
584 n_copies = exit_mod + i + 2;
585 else
586 n_copies = i + 1;
587
588 if (n_copies < best_copies)
589 {
590 best_copies = n_copies;
591 best_unroll = i;
592 }
593 }
594
595 if (dump_file)
596 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
597 best_unroll + 1, best_copies, nunroll);
598
599 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
600 loop->lpt_decision.times = best_unroll;
601
602 if (dump_file)
603 fprintf (dump_file,
604 ";; Decided to unroll the constant times rolling loop, %d times.\n",
605 loop->lpt_decision.times);
606 }
607
608 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
609 times. The transformation does this:
610
611 for (i = 0; i < 102; i++)
612 body;
613
614 ==>
615
616 i = 0;
617 body; i++;
618 body; i++;
619 while (i < 102)
620 {
621 body; i++;
622 body; i++;
623 body; i++;
624 body; i++;
625 }
626 */
627 static void
628 unroll_loop_constant_iterations (struct loop *loop)
629 {
630 unsigned HOST_WIDE_INT niter;
631 unsigned exit_mod;
632 sbitmap wont_exit;
633 unsigned i;
634 VEC (edge, heap) *remove_edges;
635 edge e;
636 unsigned max_unroll = loop->lpt_decision.times;
637 struct niter_desc *desc = get_simple_loop_desc (loop);
638 bool exit_at_end = loop_exit_at_end_p (loop);
639 struct opt_info *opt_info = NULL;
640 bool ok;
641
642 niter = desc->niter;
643
644 /* Should not get here (such loop should be peeled instead). */
645 gcc_assert (niter > max_unroll + 1);
646
647 exit_mod = niter % (max_unroll + 1);
648
649 wont_exit = sbitmap_alloc (max_unroll + 1);
650 sbitmap_ones (wont_exit);
651
652 remove_edges = NULL;
653 if (flag_split_ivs_in_unroller
654 || flag_variable_expansion_in_unroller)
655 opt_info = analyze_insns_in_loop (loop);
656
657 if (!exit_at_end)
658 {
659 /* The exit is not at the end of the loop; leave exit test
660 in the first copy, so that the loops that start with test
661 of exit condition have continuous body after unrolling. */
662
663 if (dump_file)
664 fprintf (dump_file, ";; Condition on beginning of loop.\n");
665
666 /* Peel exit_mod iterations. */
667 RESET_BIT (wont_exit, 0);
668 if (desc->noloop_assumptions)
669 RESET_BIT (wont_exit, 1);
670
671 if (exit_mod)
672 {
673 opt_info_start_duplication (opt_info);
674 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
675 exit_mod,
676 wont_exit, desc->out_edge,
677 &remove_edges,
678 DLTHE_FLAG_UPDATE_FREQ
679 | (opt_info && exit_mod > 1
680 ? DLTHE_RECORD_COPY_NUMBER
681 : 0));
682 gcc_assert (ok);
683
684 if (opt_info && exit_mod > 1)
685 apply_opt_in_copies (opt_info, exit_mod, false, false);
686
687 desc->noloop_assumptions = NULL_RTX;
688 desc->niter -= exit_mod;
689 desc->niter_max -= exit_mod;
690 }
691
692 SET_BIT (wont_exit, 1);
693 }
694 else
695 {
696 /* Leave exit test in last copy, for the same reason as above if
697 the loop tests the condition at the end of loop body. */
698
699 if (dump_file)
700 fprintf (dump_file, ";; Condition on end of loop.\n");
701
702 /* We know that niter >= max_unroll + 2; so we do not need to care of
703 case when we would exit before reaching the loop. So just peel
704 exit_mod + 1 iterations. */
705 if (exit_mod != max_unroll
706 || desc->noloop_assumptions)
707 {
708 RESET_BIT (wont_exit, 0);
709 if (desc->noloop_assumptions)
710 RESET_BIT (wont_exit, 1);
711
712 opt_info_start_duplication (opt_info);
713 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
714 exit_mod + 1,
715 wont_exit, desc->out_edge,
716 &remove_edges,
717 DLTHE_FLAG_UPDATE_FREQ
718 | (opt_info && exit_mod > 0
719 ? DLTHE_RECORD_COPY_NUMBER
720 : 0));
721 gcc_assert (ok);
722
723 if (opt_info && exit_mod > 0)
724 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
725
726 desc->niter -= exit_mod + 1;
727 desc->niter_max -= exit_mod + 1;
728 desc->noloop_assumptions = NULL_RTX;
729
730 SET_BIT (wont_exit, 0);
731 SET_BIT (wont_exit, 1);
732 }
733
734 RESET_BIT (wont_exit, max_unroll);
735 }
736
737 /* Now unroll the loop. */
738
739 opt_info_start_duplication (opt_info);
740 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
741 max_unroll,
742 wont_exit, desc->out_edge,
743 &remove_edges,
744 DLTHE_FLAG_UPDATE_FREQ
745 | (opt_info
746 ? DLTHE_RECORD_COPY_NUMBER
747 : 0));
748 gcc_assert (ok);
749
750 if (opt_info)
751 {
752 apply_opt_in_copies (opt_info, max_unroll, true, true);
753 free_opt_info (opt_info);
754 }
755
756 free (wont_exit);
757
758 if (exit_at_end)
759 {
760 basic_block exit_block = get_bb_copy (desc->in_edge->src);
761 /* Find a new in and out edge; they are in the last copy we have made. */
762
763 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
764 {
765 desc->out_edge = EDGE_SUCC (exit_block, 0);
766 desc->in_edge = EDGE_SUCC (exit_block, 1);
767 }
768 else
769 {
770 desc->out_edge = EDGE_SUCC (exit_block, 1);
771 desc->in_edge = EDGE_SUCC (exit_block, 0);
772 }
773 }
774
775 desc->niter /= max_unroll + 1;
776 desc->niter_max /= max_unroll + 1;
777 desc->niter_expr = GEN_INT (desc->niter);
778
779 /* Remove the edges. */
780 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
781 remove_path (e);
782 VEC_free (edge, heap, remove_edges);
783
784 if (dump_file)
785 fprintf (dump_file,
786 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
787 max_unroll, num_loop_insns (loop));
788 }
789
790 /* Decide whether to unroll LOOP iterating runtime computable number of times
791 and how much. */
792 static void
793 decide_unroll_runtime_iterations (struct loop *loop, int flags)
794 {
795 unsigned nunroll, nunroll_by_av, i;
796 struct niter_desc *desc;
797
798 if (!(flags & UAP_UNROLL))
799 {
800 /* We were not asked to, just return back silently. */
801 return;
802 }
803
804 if (dump_file)
805 fprintf (dump_file,
806 "\n;; Considering unrolling loop with runtime "
807 "computable number of iterations\n");
808
809 /* nunroll = total number of copies of the original loop body in
810 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
811 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
812 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
813 if (nunroll > nunroll_by_av)
814 nunroll = nunroll_by_av;
815 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
816 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
817
818 /* Skip big loops. */
819 if (nunroll <= 1)
820 {
821 if (dump_file)
822 fprintf (dump_file, ";; Not considering loop, is too big\n");
823 return;
824 }
825
826 /* Check for simple loops. */
827 desc = get_simple_loop_desc (loop);
828
829 /* Check simpleness. */
830 if (!desc->simple_p || desc->assumptions)
831 {
832 if (dump_file)
833 fprintf (dump_file,
834 ";; Unable to prove that the number of iterations "
835 "can be counted in runtime\n");
836 return;
837 }
838
839 if (desc->const_iter)
840 {
841 if (dump_file)
842 fprintf (dump_file, ";; Loop iterates constant times\n");
843 return;
844 }
845
846 /* If we have profile feedback, check whether the loop rolls. */
847 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
848 {
849 if (dump_file)
850 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
851 return;
852 }
853
854 /* Success; now force nunroll to be power of 2, as we are unable to
855 cope with overflows in computation of number of iterations. */
856 for (i = 1; 2 * i <= nunroll; i *= 2)
857 continue;
858
859 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
860 loop->lpt_decision.times = i - 1;
861
862 if (dump_file)
863 fprintf (dump_file,
864 ";; Decided to unroll the runtime computable "
865 "times rolling loop, %d times.\n",
866 loop->lpt_decision.times);
867 }
868
869 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
870 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
871 and NULL is returned instead. */
872
873 basic_block
874 split_edge_and_insert (edge e, rtx insns)
875 {
876 basic_block bb;
877
878 if (!insns)
879 return NULL;
880 bb = split_edge (e);
881 emit_insn_after (insns, BB_END (bb));
882 bb->flags |= BB_SUPERBLOCK;
883 return bb;
884 }
885
886 /* Unroll LOOP for that we are able to count number of iterations in runtime
887 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
888 extra care for case n < 0):
889
890 for (i = 0; i < n; i++)
891 body;
892
893 ==>
894
895 i = 0;
896 mod = n % 4;
897
898 switch (mod)
899 {
900 case 3:
901 body; i++;
902 case 2:
903 body; i++;
904 case 1:
905 body; i++;
906 case 0: ;
907 }
908
909 while (i < n)
910 {
911 body; i++;
912 body; i++;
913 body; i++;
914 body; i++;
915 }
916 */
917 static void
918 unroll_loop_runtime_iterations (struct loop *loop)
919 {
920 rtx old_niter, niter, init_code, branch_code, tmp;
921 unsigned i, j, p;
922 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
923 unsigned n_dom_bbs;
924 sbitmap wont_exit;
925 int may_exit_copy;
926 unsigned n_peel;
927 VEC (edge, heap) *remove_edges;
928 edge e;
929 bool extra_zero_check, last_may_exit;
930 unsigned max_unroll = loop->lpt_decision.times;
931 struct niter_desc *desc = get_simple_loop_desc (loop);
932 bool exit_at_end = loop_exit_at_end_p (loop);
933 struct opt_info *opt_info = NULL;
934 bool ok;
935
936 if (flag_split_ivs_in_unroller
937 || flag_variable_expansion_in_unroller)
938 opt_info = analyze_insns_in_loop (loop);
939
940 /* Remember blocks whose dominators will have to be updated. */
941 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
942 n_dom_bbs = 0;
943
944 body = get_loop_body (loop);
945 for (i = 0; i < loop->num_nodes; i++)
946 {
947 unsigned nldom;
948 basic_block *ldom;
949
950 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
951 for (j = 0; j < nldom; j++)
952 if (!flow_bb_inside_loop_p (loop, ldom[j]))
953 dom_bbs[n_dom_bbs++] = ldom[j];
954
955 free (ldom);
956 }
957 free (body);
958
959 if (!exit_at_end)
960 {
961 /* Leave exit in first copy (for explanation why see comment in
962 unroll_loop_constant_iterations). */
963 may_exit_copy = 0;
964 n_peel = max_unroll - 1;
965 extra_zero_check = true;
966 last_may_exit = false;
967 }
968 else
969 {
970 /* Leave exit in last copy (for explanation why see comment in
971 unroll_loop_constant_iterations). */
972 may_exit_copy = max_unroll;
973 n_peel = max_unroll;
974 extra_zero_check = false;
975 last_may_exit = true;
976 }
977
978 /* Get expression for number of iterations. */
979 start_sequence ();
980 old_niter = niter = gen_reg_rtx (desc->mode);
981 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
982 if (tmp != niter)
983 emit_move_insn (niter, tmp);
984
985 /* Count modulo by ANDing it with max_unroll; we use the fact that
986 the number of unrollings is a power of two, and thus this is correct
987 even if there is overflow in the computation. */
988 niter = expand_simple_binop (desc->mode, AND,
989 niter,
990 GEN_INT (max_unroll),
991 NULL_RTX, 0, OPTAB_LIB_WIDEN);
992
993 init_code = get_insns ();
994 end_sequence ();
995
996 /* Precondition the loop. */
997 split_edge_and_insert (loop_preheader_edge (loop), init_code);
998
999 remove_edges = NULL;
1000
1001 wont_exit = sbitmap_alloc (max_unroll + 2);
1002
1003 /* Peel the first copy of loop body (almost always we must leave exit test
1004 here; the only exception is when we have extra zero check and the number
1005 of iterations is reliable. Also record the place of (possible) extra
1006 zero check. */
1007 sbitmap_zero (wont_exit);
1008 if (extra_zero_check
1009 && !desc->noloop_assumptions)
1010 SET_BIT (wont_exit, 1);
1011 ezc_swtch = loop_preheader_edge (loop)->src;
1012 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1013 1, wont_exit, desc->out_edge,
1014 &remove_edges,
1015 DLTHE_FLAG_UPDATE_FREQ);
1016 gcc_assert (ok);
1017
1018 /* Record the place where switch will be built for preconditioning. */
1019 swtch = split_edge (loop_preheader_edge (loop));
1020
1021 for (i = 0; i < n_peel; i++)
1022 {
1023 /* Peel the copy. */
1024 sbitmap_zero (wont_exit);
1025 if (i != n_peel - 1 || !last_may_exit)
1026 SET_BIT (wont_exit, 1);
1027 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1028 1, wont_exit, desc->out_edge,
1029 &remove_edges,
1030 DLTHE_FLAG_UPDATE_FREQ);
1031 gcc_assert (ok);
1032
1033 /* Create item for switch. */
1034 j = n_peel - i - (extra_zero_check ? 0 : 1);
1035 p = REG_BR_PROB_BASE / (i + 2);
1036
1037 preheader = split_edge (loop_preheader_edge (loop));
1038 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1039 block_label (preheader), p,
1040 NULL_RTX);
1041
1042 /* We rely on the fact that the compare and jump cannot be optimized out,
1043 and hence the cfg we create is correct. */
1044 gcc_assert (branch_code != NULL_RTX);
1045
1046 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1047 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1048 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1049 e = make_edge (swtch, preheader,
1050 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1051 e->probability = p;
1052 }
1053
1054 if (extra_zero_check)
1055 {
1056 /* Add branch for zero iterations. */
1057 p = REG_BR_PROB_BASE / (max_unroll + 1);
1058 swtch = ezc_swtch;
1059 preheader = split_edge (loop_preheader_edge (loop));
1060 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1061 block_label (preheader), p,
1062 NULL_RTX);
1063 gcc_assert (branch_code != NULL_RTX);
1064
1065 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1066 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1067 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1068 e = make_edge (swtch, preheader,
1069 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1070 e->probability = p;
1071 }
1072
1073 /* Recount dominators for outer blocks. */
1074 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1075
1076 /* And unroll loop. */
1077
1078 sbitmap_ones (wont_exit);
1079 RESET_BIT (wont_exit, may_exit_copy);
1080 opt_info_start_duplication (opt_info);
1081
1082 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1083 max_unroll,
1084 wont_exit, desc->out_edge,
1085 &remove_edges,
1086 DLTHE_FLAG_UPDATE_FREQ
1087 | (opt_info
1088 ? DLTHE_RECORD_COPY_NUMBER
1089 : 0));
1090 gcc_assert (ok);
1091
1092 if (opt_info)
1093 {
1094 apply_opt_in_copies (opt_info, max_unroll, true, true);
1095 free_opt_info (opt_info);
1096 }
1097
1098 free (wont_exit);
1099
1100 if (exit_at_end)
1101 {
1102 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1103 /* Find a new in and out edge; they are in the last copy we have
1104 made. */
1105
1106 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1107 {
1108 desc->out_edge = EDGE_SUCC (exit_block, 0);
1109 desc->in_edge = EDGE_SUCC (exit_block, 1);
1110 }
1111 else
1112 {
1113 desc->out_edge = EDGE_SUCC (exit_block, 1);
1114 desc->in_edge = EDGE_SUCC (exit_block, 0);
1115 }
1116 }
1117
1118 /* Remove the edges. */
1119 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
1120 remove_path (e);
1121 VEC_free (edge, heap, remove_edges);
1122
1123 /* We must be careful when updating the number of iterations due to
1124 preconditioning and the fact that the value must be valid at entry
1125 of the loop. After passing through the above code, we see that
1126 the correct new number of iterations is this: */
1127 gcc_assert (!desc->const_iter);
1128 desc->niter_expr =
1129 simplify_gen_binary (UDIV, desc->mode, old_niter,
1130 GEN_INT (max_unroll + 1));
1131 desc->niter_max /= max_unroll + 1;
1132 if (exit_at_end)
1133 {
1134 desc->niter_expr =
1135 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1136 desc->noloop_assumptions = NULL_RTX;
1137 desc->niter_max--;
1138 }
1139
1140 if (dump_file)
1141 fprintf (dump_file,
1142 ";; Unrolled loop %d times, counting # of iterations "
1143 "in runtime, %i insns\n",
1144 max_unroll, num_loop_insns (loop));
1145
1146 if (dom_bbs)
1147 free (dom_bbs);
1148 }
1149
1150 /* Decide whether to simply peel LOOP and how much. */
1151 static void
1152 decide_peel_simple (struct loop *loop, int flags)
1153 {
1154 unsigned npeel;
1155 struct niter_desc *desc;
1156
1157 if (!(flags & UAP_PEEL))
1158 {
1159 /* We were not asked to, just return back silently. */
1160 return;
1161 }
1162
1163 if (dump_file)
1164 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1165
1166 /* npeel = number of iterations to peel. */
1167 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1168 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1169 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1170
1171 /* Skip big loops. */
1172 if (!npeel)
1173 {
1174 if (dump_file)
1175 fprintf (dump_file, ";; Not considering loop, is too big\n");
1176 return;
1177 }
1178
1179 /* Check for simple loops. */
1180 desc = get_simple_loop_desc (loop);
1181
1182 /* Check number of iterations. */
1183 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1184 {
1185 if (dump_file)
1186 fprintf (dump_file, ";; Loop iterates constant times\n");
1187 return;
1188 }
1189
1190 /* Do not simply peel loops with branches inside -- it increases number
1191 of mispredicts. */
1192 if (num_loop_branches (loop) > 1)
1193 {
1194 if (dump_file)
1195 fprintf (dump_file, ";; Not peeling, contains branches\n");
1196 return;
1197 }
1198
1199 if (loop->header->count)
1200 {
1201 unsigned niter = expected_loop_iterations (loop);
1202 if (niter + 1 > npeel)
1203 {
1204 if (dump_file)
1205 {
1206 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1207 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1208 (HOST_WIDEST_INT) (niter + 1));
1209 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1210 npeel);
1211 }
1212 return;
1213 }
1214 npeel = niter + 1;
1215 }
1216 else
1217 {
1218 /* For now we have no good heuristics to decide whether loop peeling
1219 will be effective, so disable it. */
1220 if (dump_file)
1221 fprintf (dump_file,
1222 ";; Not peeling loop, no evidence it will be profitable\n");
1223 return;
1224 }
1225
1226 /* Success. */
1227 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1228 loop->lpt_decision.times = npeel;
1229
1230 if (dump_file)
1231 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1232 loop->lpt_decision.times);
1233 }
1234
1235 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1236 while (cond)
1237 body;
1238
1239 ==>
1240
1241 if (!cond) goto end;
1242 body;
1243 if (!cond) goto end;
1244 body;
1245 while (cond)
1246 body;
1247 end: ;
1248 */
1249 static void
1250 peel_loop_simple (struct loop *loop)
1251 {
1252 sbitmap wont_exit;
1253 unsigned npeel = loop->lpt_decision.times;
1254 struct niter_desc *desc = get_simple_loop_desc (loop);
1255 struct opt_info *opt_info = NULL;
1256 bool ok;
1257
1258 if (flag_split_ivs_in_unroller && npeel > 1)
1259 opt_info = analyze_insns_in_loop (loop);
1260
1261 wont_exit = sbitmap_alloc (npeel + 1);
1262 sbitmap_zero (wont_exit);
1263
1264 opt_info_start_duplication (opt_info);
1265
1266 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1267 npeel, wont_exit, NULL,
1268 NULL, DLTHE_FLAG_UPDATE_FREQ
1269 | (opt_info
1270 ? DLTHE_RECORD_COPY_NUMBER
1271 : 0));
1272 gcc_assert (ok);
1273
1274 free (wont_exit);
1275
1276 if (opt_info)
1277 {
1278 apply_opt_in_copies (opt_info, npeel, false, false);
1279 free_opt_info (opt_info);
1280 }
1281
1282 if (desc->simple_p)
1283 {
1284 if (desc->const_iter)
1285 {
1286 desc->niter -= npeel;
1287 desc->niter_expr = GEN_INT (desc->niter);
1288 desc->noloop_assumptions = NULL_RTX;
1289 }
1290 else
1291 {
1292 /* We cannot just update niter_expr, as its value might be clobbered
1293 inside loop. We could handle this by counting the number into
1294 temporary just like we do in runtime unrolling, but it does not
1295 seem worthwhile. */
1296 free_simple_loop_desc (loop);
1297 }
1298 }
1299 if (dump_file)
1300 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1301 }
1302
1303 /* Decide whether to unroll LOOP stupidly and how much. */
1304 static void
1305 decide_unroll_stupid (struct loop *loop, int flags)
1306 {
1307 unsigned nunroll, nunroll_by_av, i;
1308 struct niter_desc *desc;
1309
1310 if (!(flags & UAP_UNROLL_ALL))
1311 {
1312 /* We were not asked to, just return back silently. */
1313 return;
1314 }
1315
1316 if (dump_file)
1317 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1318
1319 /* nunroll = total number of copies of the original loop body in
1320 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1321 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1322 nunroll_by_av
1323 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1324 if (nunroll > nunroll_by_av)
1325 nunroll = nunroll_by_av;
1326 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1327 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1328
1329 /* Skip big loops. */
1330 if (nunroll <= 1)
1331 {
1332 if (dump_file)
1333 fprintf (dump_file, ";; Not considering loop, is too big\n");
1334 return;
1335 }
1336
1337 /* Check for simple loops. */
1338 desc = get_simple_loop_desc (loop);
1339
1340 /* Check simpleness. */
1341 if (desc->simple_p && !desc->assumptions)
1342 {
1343 if (dump_file)
1344 fprintf (dump_file, ";; The loop is simple\n");
1345 return;
1346 }
1347
1348 /* Do not unroll loops with branches inside -- it increases number
1349 of mispredicts. */
1350 if (num_loop_branches (loop) > 1)
1351 {
1352 if (dump_file)
1353 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1354 return;
1355 }
1356
1357 /* If we have profile feedback, check whether the loop rolls. */
1358 if (loop->header->count
1359 && expected_loop_iterations (loop) < 2 * nunroll)
1360 {
1361 if (dump_file)
1362 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1363 return;
1364 }
1365
1366 /* Success. Now force nunroll to be power of 2, as it seems that this
1367 improves results (partially because of better alignments, partially
1368 because of some dark magic). */
1369 for (i = 1; 2 * i <= nunroll; i *= 2)
1370 continue;
1371
1372 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1373 loop->lpt_decision.times = i - 1;
1374
1375 if (dump_file)
1376 fprintf (dump_file,
1377 ";; Decided to unroll the loop stupidly, %d times.\n",
1378 loop->lpt_decision.times);
1379 }
1380
1381 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1382 while (cond)
1383 body;
1384
1385 ==>
1386
1387 while (cond)
1388 {
1389 body;
1390 if (!cond) break;
1391 body;
1392 if (!cond) break;
1393 body;
1394 if (!cond) break;
1395 body;
1396 }
1397 */
1398 static void
1399 unroll_loop_stupid (struct loop *loop)
1400 {
1401 sbitmap wont_exit;
1402 unsigned nunroll = loop->lpt_decision.times;
1403 struct niter_desc *desc = get_simple_loop_desc (loop);
1404 struct opt_info *opt_info = NULL;
1405 bool ok;
1406
1407 if (flag_split_ivs_in_unroller
1408 || flag_variable_expansion_in_unroller)
1409 opt_info = analyze_insns_in_loop (loop);
1410
1411
1412 wont_exit = sbitmap_alloc (nunroll + 1);
1413 sbitmap_zero (wont_exit);
1414 opt_info_start_duplication (opt_info);
1415
1416 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1417 nunroll, wont_exit,
1418 NULL, NULL,
1419 DLTHE_FLAG_UPDATE_FREQ
1420 | (opt_info
1421 ? DLTHE_RECORD_COPY_NUMBER
1422 : 0));
1423 gcc_assert (ok);
1424
1425 if (opt_info)
1426 {
1427 apply_opt_in_copies (opt_info, nunroll, true, true);
1428 free_opt_info (opt_info);
1429 }
1430
1431 free (wont_exit);
1432
1433 if (desc->simple_p)
1434 {
1435 /* We indeed may get here provided that there are nontrivial assumptions
1436 for a loop to be really simple. We could update the counts, but the
1437 problem is that we are unable to decide which exit will be taken
1438 (not really true in case the number of iterations is constant,
1439 but noone will do anything with this information, so we do not
1440 worry about it). */
1441 desc->simple_p = false;
1442 }
1443
1444 if (dump_file)
1445 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1446 nunroll, num_loop_insns (loop));
1447 }
1448
1449 /* A hash function for information about insns to split. */
1450
1451 static hashval_t
1452 si_info_hash (const void *ivts)
1453 {
1454 return (hashval_t) INSN_UID (((struct iv_to_split *) ivts)->insn);
1455 }
1456
1457 /* An equality functions for information about insns to split. */
1458
1459 static int
1460 si_info_eq (const void *ivts1, const void *ivts2)
1461 {
1462 const struct iv_to_split *i1 = ivts1;
1463 const struct iv_to_split *i2 = ivts2;
1464
1465 return i1->insn == i2->insn;
1466 }
1467
1468 /* Return a hash for VES, which is really a "var_to_expand *". */
1469
1470 static hashval_t
1471 ve_info_hash (const void *ves)
1472 {
1473 return (hashval_t) INSN_UID (((struct var_to_expand *) ves)->insn);
1474 }
1475
1476 /* Return true if IVTS1 and IVTS2 (which are really both of type
1477 "var_to_expand *") refer to the same instruction. */
1478
1479 static int
1480 ve_info_eq (const void *ivts1, const void *ivts2)
1481 {
1482 const struct var_to_expand *i1 = ivts1;
1483 const struct var_to_expand *i2 = ivts2;
1484
1485 return i1->insn == i2->insn;
1486 }
1487
1488 /* Returns true if REG is referenced in one insn in LOOP. */
1489
1490 bool
1491 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1492 {
1493 basic_block *body, bb;
1494 unsigned i;
1495 int count_ref = 0;
1496 rtx insn;
1497
1498 body = get_loop_body (loop);
1499 for (i = 0; i < loop->num_nodes; i++)
1500 {
1501 bb = body[i];
1502
1503 FOR_BB_INSNS (bb, insn)
1504 {
1505 if (rtx_referenced_p (reg, insn))
1506 count_ref++;
1507 }
1508 }
1509 return (count_ref == 1);
1510 }
1511
1512 /* Determine whether INSN contains an accumulator
1513 which can be expanded into separate copies,
1514 one for each copy of the LOOP body.
1515
1516 for (i = 0 ; i < n; i++)
1517 sum += a[i];
1518
1519 ==>
1520
1521 sum += a[i]
1522 ....
1523 i = i+1;
1524 sum1 += a[i]
1525 ....
1526 i = i+1
1527 sum2 += a[i];
1528 ....
1529
1530 Return NULL if INSN contains no opportunity for expansion of accumulator.
1531 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1532 information and return a pointer to it.
1533 */
1534
1535 static struct var_to_expand *
1536 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1537 {
1538 rtx set, dest, src, op1;
1539 struct var_to_expand *ves;
1540 enum machine_mode mode1, mode2;
1541
1542 set = single_set (insn);
1543 if (!set)
1544 return NULL;
1545
1546 dest = SET_DEST (set);
1547 src = SET_SRC (set);
1548
1549 if (GET_CODE (src) != PLUS
1550 && GET_CODE (src) != MINUS
1551 && GET_CODE (src) != MULT)
1552 return NULL;
1553
1554 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1555 in MD. But if there is no optab to generate the insn, we can not
1556 perform the variable expansion. This can happen if an MD provides
1557 an insn but not a named pattern to generate it, for example to avoid
1558 producing code that needs additional mode switches like for x87/mmx.
1559
1560 So we check have_insn_for which looks for an optab for the operation
1561 in SRC. If it doesn't exist, we can't perform the expansion even
1562 though INSN is valid. */
1563 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1564 return NULL;
1565
1566 if (!XEXP (src, 0))
1567 return NULL;
1568
1569 op1 = XEXP (src, 0);
1570
1571 if (!REG_P (dest)
1572 && !(GET_CODE (dest) == SUBREG
1573 && REG_P (SUBREG_REG (dest))))
1574 return NULL;
1575
1576 if (!rtx_equal_p (dest, op1))
1577 return NULL;
1578
1579 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1580 return NULL;
1581
1582 if (rtx_referenced_p (dest, XEXP (src, 1)))
1583 return NULL;
1584
1585 mode1 = GET_MODE (dest);
1586 mode2 = GET_MODE (XEXP (src, 1));
1587 if ((FLOAT_MODE_P (mode1)
1588 || FLOAT_MODE_P (mode2))
1589 && !flag_unsafe_math_optimizations)
1590 return NULL;
1591
1592 if (dump_file)
1593 {
1594 fprintf (dump_file,
1595 "\n;; Expanding Accumulator ");
1596 print_rtl (dump_file, dest);
1597 fprintf (dump_file, "\n");
1598 }
1599
1600 /* Record the accumulator to expand. */
1601 ves = XNEW (struct var_to_expand);
1602 ves->insn = insn;
1603 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1604 ves->reg = copy_rtx (dest);
1605 ves->op = GET_CODE (src);
1606 ves->expansion_count = 0;
1607 ves->reuse_expansion = 0;
1608 return ves;
1609 }
1610
1611 /* Determine whether there is an induction variable in INSN that
1612 we would like to split during unrolling.
1613
1614 I.e. replace
1615
1616 i = i + 1;
1617 ...
1618 i = i + 1;
1619 ...
1620 i = i + 1;
1621 ...
1622
1623 type chains by
1624
1625 i0 = i + 1
1626 ...
1627 i = i0 + 1
1628 ...
1629 i = i0 + 2
1630 ...
1631
1632 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1633 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1634 pointer to it. */
1635
1636 static struct iv_to_split *
1637 analyze_iv_to_split_insn (rtx insn)
1638 {
1639 rtx set, dest;
1640 struct rtx_iv iv;
1641 struct iv_to_split *ivts;
1642 bool ok;
1643
1644 /* For now we just split the basic induction variables. Later this may be
1645 extended for example by selecting also addresses of memory references. */
1646 set = single_set (insn);
1647 if (!set)
1648 return NULL;
1649
1650 dest = SET_DEST (set);
1651 if (!REG_P (dest))
1652 return NULL;
1653
1654 if (!biv_p (insn, dest))
1655 return NULL;
1656
1657 ok = iv_analyze_result (insn, dest, &iv);
1658
1659 /* This used to be an assert under the assumption that if biv_p returns
1660 true that iv_analyze_result must also return true. However, that
1661 assumption is not strictly correct as evidenced by pr25569.
1662
1663 Returning NULL when iv_analyze_result returns false is safe and
1664 avoids the problems in pr25569 until the iv_analyze_* routines
1665 can be fixed, which is apparently hard and time consuming
1666 according to their author. */
1667 if (! ok)
1668 return NULL;
1669
1670 if (iv.step == const0_rtx
1671 || iv.mode != iv.extend_mode)
1672 return NULL;
1673
1674 /* Record the insn to split. */
1675 ivts = XNEW (struct iv_to_split);
1676 ivts->insn = insn;
1677 ivts->base_var = NULL_RTX;
1678 ivts->step = iv.step;
1679 ivts->n_loc = 1;
1680 ivts->loc[0] = 1;
1681
1682 return ivts;
1683 }
1684
1685 /* Determines which of insns in LOOP can be optimized.
1686 Return a OPT_INFO struct with the relevant hash tables filled
1687 with all insns to be optimized. The FIRST_NEW_BLOCK field
1688 is undefined for the return value. */
1689
1690 static struct opt_info *
1691 analyze_insns_in_loop (struct loop *loop)
1692 {
1693 basic_block *body, bb;
1694 unsigned i;
1695 struct opt_info *opt_info = XCNEW (struct opt_info);
1696 rtx insn;
1697 struct iv_to_split *ivts = NULL;
1698 struct var_to_expand *ves = NULL;
1699 PTR *slot1;
1700 PTR *slot2;
1701 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1702 edge exit;
1703 bool can_apply = false;
1704
1705 iv_analysis_loop_init (loop);
1706
1707 body = get_loop_body (loop);
1708
1709 if (flag_split_ivs_in_unroller)
1710 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1711 si_info_hash, si_info_eq, free);
1712
1713 /* Record the loop exit bb and loop preheader before the unrolling. */
1714 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1715
1716 if (VEC_length (edge, edges) == 1)
1717 {
1718 exit = VEC_index (edge, edges, 0);
1719 if (!(exit->flags & EDGE_COMPLEX))
1720 {
1721 opt_info->loop_exit = split_edge (exit);
1722 can_apply = true;
1723 }
1724 }
1725
1726 if (flag_variable_expansion_in_unroller
1727 && can_apply)
1728 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1729 ve_info_hash, ve_info_eq, free);
1730
1731 for (i = 0; i < loop->num_nodes; i++)
1732 {
1733 bb = body[i];
1734 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1735 continue;
1736
1737 FOR_BB_INSNS (bb, insn)
1738 {
1739 if (!INSN_P (insn))
1740 continue;
1741
1742 if (opt_info->insns_to_split)
1743 ivts = analyze_iv_to_split_insn (insn);
1744
1745 if (ivts)
1746 {
1747 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1748 *slot1 = ivts;
1749 continue;
1750 }
1751
1752 if (opt_info->insns_with_var_to_expand)
1753 ves = analyze_insn_to_expand_var (loop, insn);
1754
1755 if (ves)
1756 {
1757 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1758 *slot2 = ves;
1759 }
1760 }
1761 }
1762
1763 VEC_free (edge, heap, edges);
1764 free (body);
1765 return opt_info;
1766 }
1767
1768 /* Called just before loop duplication. Records start of duplicated area
1769 to OPT_INFO. */
1770
1771 static void
1772 opt_info_start_duplication (struct opt_info *opt_info)
1773 {
1774 if (opt_info)
1775 opt_info->first_new_block = last_basic_block;
1776 }
1777
1778 /* Determine the number of iterations between initialization of the base
1779 variable and the current copy (N_COPY). N_COPIES is the total number
1780 of newly created copies. UNROLLING is true if we are unrolling
1781 (not peeling) the loop. */
1782
1783 static unsigned
1784 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1785 {
1786 if (unrolling)
1787 {
1788 /* If we are unrolling, initialization is done in the original loop
1789 body (number 0). */
1790 return n_copy;
1791 }
1792 else
1793 {
1794 /* If we are peeling, the copy in that the initialization occurs has
1795 number 1. The original loop (number 0) is the last. */
1796 if (n_copy)
1797 return n_copy - 1;
1798 else
1799 return n_copies;
1800 }
1801 }
1802
1803 /* Locate in EXPR the expression corresponding to the location recorded
1804 in IVTS, and return a pointer to the RTX for this location. */
1805
1806 static rtx *
1807 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1808 {
1809 unsigned i;
1810 rtx *ret = &expr;
1811
1812 for (i = 0; i < ivts->n_loc; i++)
1813 ret = &XEXP (*ret, ivts->loc[i]);
1814
1815 return ret;
1816 }
1817
1818 /* Allocate basic variable for the induction variable chain. Callback for
1819 htab_traverse. */
1820
1821 static int
1822 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1823 {
1824 struct iv_to_split *ivts = *slot;
1825 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1826
1827 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1828
1829 return 1;
1830 }
1831
1832 /* Insert initialization of basic variable of IVTS before INSN, taking
1833 the initial value from INSN. */
1834
1835 static void
1836 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1837 {
1838 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1839 rtx seq;
1840
1841 start_sequence ();
1842 expr = force_operand (expr, ivts->base_var);
1843 if (expr != ivts->base_var)
1844 emit_move_insn (ivts->base_var, expr);
1845 seq = get_insns ();
1846 end_sequence ();
1847
1848 emit_insn_before (seq, insn);
1849 }
1850
1851 /* Replace the use of induction variable described in IVTS in INSN
1852 by base variable + DELTA * step. */
1853
1854 static void
1855 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1856 {
1857 rtx expr, *loc, seq, incr, var;
1858 enum machine_mode mode = GET_MODE (ivts->base_var);
1859 rtx src, dest, set;
1860
1861 /* Construct base + DELTA * step. */
1862 if (!delta)
1863 expr = ivts->base_var;
1864 else
1865 {
1866 incr = simplify_gen_binary (MULT, mode,
1867 ivts->step, gen_int_mode (delta, mode));
1868 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1869 ivts->base_var, incr);
1870 }
1871
1872 /* Figure out where to do the replacement. */
1873 loc = get_ivts_expr (single_set (insn), ivts);
1874
1875 /* If we can make the replacement right away, we're done. */
1876 if (validate_change (insn, loc, expr, 0))
1877 return;
1878
1879 /* Otherwise, force EXPR into a register and try again. */
1880 start_sequence ();
1881 var = gen_reg_rtx (mode);
1882 expr = force_operand (expr, var);
1883 if (expr != var)
1884 emit_move_insn (var, expr);
1885 seq = get_insns ();
1886 end_sequence ();
1887 emit_insn_before (seq, insn);
1888
1889 if (validate_change (insn, loc, var, 0))
1890 return;
1891
1892 /* The last chance. Try recreating the assignment in insn
1893 completely from scratch. */
1894 set = single_set (insn);
1895 gcc_assert (set);
1896
1897 start_sequence ();
1898 *loc = var;
1899 src = copy_rtx (SET_SRC (set));
1900 dest = copy_rtx (SET_DEST (set));
1901 src = force_operand (src, dest);
1902 if (src != dest)
1903 emit_move_insn (dest, src);
1904 seq = get_insns ();
1905 end_sequence ();
1906
1907 emit_insn_before (seq, insn);
1908 delete_insn (insn);
1909 }
1910
1911
1912 /* Return one expansion of the accumulator recorded in struct VE. */
1913
1914 static rtx
1915 get_expansion (struct var_to_expand *ve)
1916 {
1917 rtx reg;
1918
1919 if (ve->reuse_expansion == 0)
1920 reg = ve->reg;
1921 else
1922 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1923
1924 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1925 ve->reuse_expansion = 0;
1926 else
1927 ve->reuse_expansion++;
1928
1929 return reg;
1930 }
1931
1932
1933 /* Given INSN replace the uses of the accumulator recorded in VE
1934 with a new register. */
1935
1936 static void
1937 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1938 {
1939 rtx new_reg, set;
1940 bool really_new_expansion = false;
1941
1942 set = single_set (insn);
1943 gcc_assert (set);
1944
1945 /* Generate a new register only if the expansion limit has not been
1946 reached. Else reuse an already existing expansion. */
1947 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1948 {
1949 really_new_expansion = true;
1950 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1951 }
1952 else
1953 new_reg = get_expansion (ve);
1954
1955 validate_change (insn, &SET_DEST (set), new_reg, 1);
1956 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1957
1958 if (apply_change_group ())
1959 if (really_new_expansion)
1960 {
1961 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1962 ve->expansion_count++;
1963 }
1964 }
1965
1966 /* Initialize the variable expansions in loop preheader.
1967 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1968 basic block where the initialization of the expansions
1969 should take place. */
1970
1971 static int
1972 insert_var_expansion_initialization (void **slot, void *place_p)
1973 {
1974 struct var_to_expand *ve = *slot;
1975 basic_block place = (basic_block)place_p;
1976 rtx seq, var, zero_init, insn;
1977 unsigned i;
1978
1979 if (VEC_length (rtx, ve->var_expansions) == 0)
1980 return 1;
1981
1982 start_sequence ();
1983 if (ve->op == PLUS || ve->op == MINUS)
1984 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1985 {
1986 zero_init = CONST0_RTX (GET_MODE (var));
1987 emit_move_insn (var, zero_init);
1988 }
1989 else if (ve->op == MULT)
1990 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1991 {
1992 zero_init = CONST1_RTX (GET_MODE (var));
1993 emit_move_insn (var, zero_init);
1994 }
1995
1996 seq = get_insns ();
1997 end_sequence ();
1998
1999 insn = BB_HEAD (place);
2000 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2001 insn = NEXT_INSN (insn);
2002
2003 emit_insn_after (seq, insn);
2004 /* Continue traversing the hash table. */
2005 return 1;
2006 }
2007
2008 /* Combine the variable expansions at the loop exit.
2009 Callbacks for htab_traverse. PLACE_P is the loop exit
2010 basic block where the summation of the expansions should
2011 take place. */
2012
2013 static int
2014 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2015 {
2016 struct var_to_expand *ve = *slot;
2017 basic_block place = (basic_block)place_p;
2018 rtx sum = ve->reg;
2019 rtx expr, seq, var, insn;
2020 unsigned i;
2021
2022 if (VEC_length (rtx, ve->var_expansions) == 0)
2023 return 1;
2024
2025 start_sequence ();
2026 if (ve->op == PLUS || ve->op == MINUS)
2027 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2028 {
2029 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2030 var, sum);
2031 }
2032 else if (ve->op == MULT)
2033 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2034 {
2035 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2036 var, sum);
2037 }
2038
2039 expr = force_operand (sum, ve->reg);
2040 if (expr != ve->reg)
2041 emit_move_insn (ve->reg, expr);
2042 seq = get_insns ();
2043 end_sequence ();
2044
2045 insn = BB_HEAD (place);
2046 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2047 insn = NEXT_INSN (insn);
2048
2049 emit_insn_after (seq, insn);
2050
2051 /* Continue traversing the hash table. */
2052 return 1;
2053 }
2054
2055 /* Apply loop optimizations in loop copies using the
2056 data which gathered during the unrolling. Structure
2057 OPT_INFO record that data.
2058
2059 UNROLLING is true if we unrolled (not peeled) the loop.
2060 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2061 the loop (as it should happen in complete unrolling, but not in ordinary
2062 peeling of the loop). */
2063
2064 static void
2065 apply_opt_in_copies (struct opt_info *opt_info,
2066 unsigned n_copies, bool unrolling,
2067 bool rewrite_original_loop)
2068 {
2069 unsigned i, delta;
2070 basic_block bb, orig_bb;
2071 rtx insn, orig_insn, next;
2072 struct iv_to_split ivts_templ, *ivts;
2073 struct var_to_expand ve_templ, *ves;
2074
2075 /* Sanity check -- we need to put initialization in the original loop
2076 body. */
2077 gcc_assert (!unrolling || rewrite_original_loop);
2078
2079 /* Allocate the basic variables (i0). */
2080 if (opt_info->insns_to_split)
2081 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2082
2083 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2084 {
2085 bb = BASIC_BLOCK (i);
2086 orig_bb = get_bb_original (bb);
2087
2088 /* bb->aux holds position in copy sequence initialized by
2089 duplicate_loop_to_header_edge. */
2090 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2091 unrolling);
2092 bb->aux = 0;
2093 orig_insn = BB_HEAD (orig_bb);
2094 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2095 {
2096 next = NEXT_INSN (insn);
2097 if (!INSN_P (insn))
2098 continue;
2099
2100 while (!INSN_P (orig_insn))
2101 orig_insn = NEXT_INSN (orig_insn);
2102
2103 ivts_templ.insn = orig_insn;
2104 ve_templ.insn = orig_insn;
2105
2106 /* Apply splitting iv optimization. */
2107 if (opt_info->insns_to_split)
2108 {
2109 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2110
2111 if (ivts)
2112 {
2113 gcc_assert (GET_CODE (PATTERN (insn))
2114 == GET_CODE (PATTERN (orig_insn)));
2115
2116 if (!delta)
2117 insert_base_initialization (ivts, insn);
2118 split_iv (ivts, insn, delta);
2119 }
2120 }
2121 /* Apply variable expansion optimization. */
2122 if (unrolling && opt_info->insns_with_var_to_expand)
2123 {
2124 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2125 if (ves)
2126 {
2127 gcc_assert (GET_CODE (PATTERN (insn))
2128 == GET_CODE (PATTERN (orig_insn)));
2129 expand_var_during_unrolling (ves, insn);
2130 }
2131 }
2132 orig_insn = NEXT_INSN (orig_insn);
2133 }
2134 }
2135
2136 if (!rewrite_original_loop)
2137 return;
2138
2139 /* Initialize the variable expansions in the loop preheader
2140 and take care of combining them at the loop exit. */
2141 if (opt_info->insns_with_var_to_expand)
2142 {
2143 htab_traverse (opt_info->insns_with_var_to_expand,
2144 insert_var_expansion_initialization,
2145 opt_info->loop_preheader);
2146 htab_traverse (opt_info->insns_with_var_to_expand,
2147 combine_var_copies_in_loop_exit,
2148 opt_info->loop_exit);
2149 }
2150
2151 /* Rewrite also the original loop body. Find them as originals of the blocks
2152 in the last copied iteration, i.e. those that have
2153 get_bb_copy (get_bb_original (bb)) == bb. */
2154 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2155 {
2156 bb = BASIC_BLOCK (i);
2157 orig_bb = get_bb_original (bb);
2158 if (get_bb_copy (orig_bb) != bb)
2159 continue;
2160
2161 delta = determine_split_iv_delta (0, n_copies, unrolling);
2162 for (orig_insn = BB_HEAD (orig_bb);
2163 orig_insn != NEXT_INSN (BB_END (bb));
2164 orig_insn = next)
2165 {
2166 next = NEXT_INSN (orig_insn);
2167
2168 if (!INSN_P (orig_insn))
2169 continue;
2170
2171 ivts_templ.insn = orig_insn;
2172 if (opt_info->insns_to_split)
2173 {
2174 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2175 if (ivts)
2176 {
2177 if (!delta)
2178 insert_base_initialization (ivts, orig_insn);
2179 split_iv (ivts, orig_insn, delta);
2180 continue;
2181 }
2182 }
2183
2184 }
2185 }
2186 }
2187
2188 /* Release the data structures used for the variable expansion
2189 optimization. Callbacks for htab_traverse. */
2190
2191 static int
2192 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2193 {
2194 struct var_to_expand *ve = *slot;
2195
2196 VEC_free (rtx, heap, ve->var_expansions);
2197
2198 /* Continue traversing the hash table. */
2199 return 1;
2200 }
2201
2202 /* Release OPT_INFO. */
2203
2204 static void
2205 free_opt_info (struct opt_info *opt_info)
2206 {
2207 if (opt_info->insns_to_split)
2208 htab_delete (opt_info->insns_to_split);
2209 if (opt_info->insns_with_var_to_expand)
2210 {
2211 htab_traverse (opt_info->insns_with_var_to_expand,
2212 release_var_copies, NULL);
2213 htab_delete (opt_info->insns_with_var_to_expand);
2214 }
2215 free (opt_info);
2216 }