c5653b2c0515a5721890790921ebcfcaafd0e0de
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
85 };
86
87 /* Information about accumulators to expand. */
88
89 struct var_to_expand
90 {
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
101 unsigned accum_pos; /* The position in which the accumulator is placed in
102 the insn src. For example in x = x + something
103 accum_pos is 0 while in x = something + x accum_pos
104 is 1. */
105 };
106
107 /* Information about optimization applied in
108 the unrolled loop. */
109
110 struct opt_info
111 {
112 htab_t insns_to_split; /* A hashtable of insns to split. */
113 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
114 to expand. */
115 unsigned first_new_block; /* The first basic block that was
116 duplicated. */
117 basic_block loop_exit; /* The loop exit basic block. */
118 basic_block loop_preheader; /* The loop preheader basic block. */
119 };
120
121 static void decide_unrolling_and_peeling (int);
122 static void peel_loops_completely (int);
123 static void decide_peel_simple (struct loop *, int);
124 static void decide_peel_once_rolling (struct loop *, int);
125 static void decide_peel_completely (struct loop *, int);
126 static void decide_unroll_stupid (struct loop *, int);
127 static void decide_unroll_constant_iterations (struct loop *, int);
128 static void decide_unroll_runtime_iterations (struct loop *, int);
129 static void peel_loop_simple (struct loop *);
130 static void peel_loop_completely (struct loop *);
131 static void unroll_loop_stupid (struct loop *);
132 static void unroll_loop_constant_iterations (struct loop *);
133 static void unroll_loop_runtime_iterations (struct loop *);
134 static struct opt_info *analyze_insns_in_loop (struct loop *);
135 static void opt_info_start_duplication (struct opt_info *);
136 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
137 static void free_opt_info (struct opt_info *);
138 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
139 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
140 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
141 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
142 static int insert_var_expansion_initialization (void **, void *);
143 static int combine_var_copies_in_loop_exit (void **, void *);
144 static int release_var_copies (void **, void *);
145 static rtx get_expansion (struct var_to_expand *);
146
147 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
148 void
149 unroll_and_peel_loops (int flags)
150 {
151 struct loop *loop;
152 bool check;
153 loop_iterator li;
154
155 /* First perform complete loop peeling (it is almost surely a win,
156 and affects parameters for further decision a lot). */
157 peel_loops_completely (flags);
158
159 /* Now decide rest of unrolling and peeling. */
160 decide_unrolling_and_peeling (flags);
161
162 /* Scan the loops, inner ones first. */
163 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
164 {
165 check = true;
166 /* And perform the appropriate transformations. */
167 switch (loop->lpt_decision.decision)
168 {
169 case LPT_PEEL_COMPLETELY:
170 /* Already done. */
171 gcc_unreachable ();
172 case LPT_PEEL_SIMPLE:
173 peel_loop_simple (loop);
174 break;
175 case LPT_UNROLL_CONSTANT:
176 unroll_loop_constant_iterations (loop);
177 break;
178 case LPT_UNROLL_RUNTIME:
179 unroll_loop_runtime_iterations (loop);
180 break;
181 case LPT_UNROLL_STUPID:
182 unroll_loop_stupid (loop);
183 break;
184 case LPT_NONE:
185 check = false;
186 break;
187 default:
188 gcc_unreachable ();
189 }
190 if (check)
191 {
192 #ifdef ENABLE_CHECKING
193 verify_dominators (CDI_DOMINATORS);
194 verify_loop_structure ();
195 #endif
196 }
197 }
198
199 iv_analysis_done ();
200 }
201
202 /* Check whether exit of the LOOP is at the end of loop body. */
203
204 static bool
205 loop_exit_at_end_p (struct loop *loop)
206 {
207 struct niter_desc *desc = get_simple_loop_desc (loop);
208 rtx insn;
209
210 if (desc->in_edge->dest != loop->latch)
211 return false;
212
213 /* Check that the latch is empty. */
214 FOR_BB_INSNS (loop->latch, insn)
215 {
216 if (INSN_P (insn))
217 return false;
218 }
219
220 return true;
221 }
222
223 /* Depending on FLAGS, check whether to peel loops completely and do so. */
224 static void
225 peel_loops_completely (int flags)
226 {
227 struct loop *loop;
228 loop_iterator li;
229
230 /* Scan the loops, the inner ones first. */
231 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
232 {
233 loop->lpt_decision.decision = LPT_NONE;
234
235 if (dump_file)
236 fprintf (dump_file,
237 "\n;; *** Considering loop %d for complete peeling ***\n",
238 loop->num);
239
240 loop->ninsns = num_loop_insns (loop);
241
242 decide_peel_once_rolling (loop, flags);
243 if (loop->lpt_decision.decision == LPT_NONE)
244 decide_peel_completely (loop, flags);
245
246 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
247 {
248 peel_loop_completely (loop);
249 #ifdef ENABLE_CHECKING
250 verify_dominators (CDI_DOMINATORS);
251 verify_loop_structure ();
252 #endif
253 }
254 }
255 }
256
257 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
258 static void
259 decide_unrolling_and_peeling (int flags)
260 {
261 struct loop *loop;
262 loop_iterator li;
263
264 /* Scan the loops, inner ones first. */
265 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
266 {
267 loop->lpt_decision.decision = LPT_NONE;
268
269 if (dump_file)
270 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
271
272 /* Do not peel cold areas. */
273 if (!maybe_hot_bb_p (loop->header))
274 {
275 if (dump_file)
276 fprintf (dump_file, ";; Not considering loop, cold area\n");
277 continue;
278 }
279
280 /* Can the loop be manipulated? */
281 if (!can_duplicate_loop_p (loop))
282 {
283 if (dump_file)
284 fprintf (dump_file,
285 ";; Not considering loop, cannot duplicate\n");
286 continue;
287 }
288
289 /* Skip non-innermost loops. */
290 if (loop->inner)
291 {
292 if (dump_file)
293 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
294 continue;
295 }
296
297 loop->ninsns = num_loop_insns (loop);
298 loop->av_ninsns = average_num_loop_insns (loop);
299
300 /* Try transformations one by one in decreasing order of
301 priority. */
302
303 decide_unroll_constant_iterations (loop, flags);
304 if (loop->lpt_decision.decision == LPT_NONE)
305 decide_unroll_runtime_iterations (loop, flags);
306 if (loop->lpt_decision.decision == LPT_NONE)
307 decide_unroll_stupid (loop, flags);
308 if (loop->lpt_decision.decision == LPT_NONE)
309 decide_peel_simple (loop, flags);
310 }
311 }
312
313 /* Decide whether the LOOP is once rolling and suitable for complete
314 peeling. */
315 static void
316 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
317 {
318 struct niter_desc *desc;
319
320 if (dump_file)
321 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
322
323 /* Is the loop small enough? */
324 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
325 {
326 if (dump_file)
327 fprintf (dump_file, ";; Not considering loop, is too big\n");
328 return;
329 }
330
331 /* Check for simple loops. */
332 desc = get_simple_loop_desc (loop);
333
334 /* Check number of iterations. */
335 if (!desc->simple_p
336 || desc->assumptions
337 || desc->infinite
338 || !desc->const_iter
339 || desc->niter != 0)
340 {
341 if (dump_file)
342 fprintf (dump_file,
343 ";; Unable to prove that the loop rolls exactly once\n");
344 return;
345 }
346
347 /* Success. */
348 if (dump_file)
349 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
350 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
351 }
352
353 /* Decide whether the LOOP is suitable for complete peeling. */
354 static void
355 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
356 {
357 unsigned npeel;
358 struct niter_desc *desc;
359
360 if (dump_file)
361 fprintf (dump_file, "\n;; Considering peeling completely\n");
362
363 /* Skip non-innermost loops. */
364 if (loop->inner)
365 {
366 if (dump_file)
367 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
368 return;
369 }
370
371 /* Do not peel cold areas. */
372 if (!maybe_hot_bb_p (loop->header))
373 {
374 if (dump_file)
375 fprintf (dump_file, ";; Not considering loop, cold area\n");
376 return;
377 }
378
379 /* Can the loop be manipulated? */
380 if (!can_duplicate_loop_p (loop))
381 {
382 if (dump_file)
383 fprintf (dump_file,
384 ";; Not considering loop, cannot duplicate\n");
385 return;
386 }
387
388 /* npeel = number of iterations to peel. */
389 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
390 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
391 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
392
393 /* Is the loop small enough? */
394 if (!npeel)
395 {
396 if (dump_file)
397 fprintf (dump_file, ";; Not considering loop, is too big\n");
398 return;
399 }
400
401 /* Check for simple loops. */
402 desc = get_simple_loop_desc (loop);
403
404 /* Check number of iterations. */
405 if (!desc->simple_p
406 || desc->assumptions
407 || !desc->const_iter
408 || desc->infinite)
409 {
410 if (dump_file)
411 fprintf (dump_file,
412 ";; Unable to prove that the loop iterates constant times\n");
413 return;
414 }
415
416 if (desc->niter > npeel - 1)
417 {
418 if (dump_file)
419 {
420 fprintf (dump_file,
421 ";; Not peeling loop completely, rolls too much (");
422 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
423 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
424 }
425 return;
426 }
427
428 /* Success. */
429 if (dump_file)
430 fprintf (dump_file, ";; Decided to peel loop completely\n");
431 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
432 }
433
434 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
435 completely. The transformation done:
436
437 for (i = 0; i < 4; i++)
438 body;
439
440 ==>
441
442 i = 0;
443 body; i++;
444 body; i++;
445 body; i++;
446 body; i++;
447 */
448 static void
449 peel_loop_completely (struct loop *loop)
450 {
451 sbitmap wont_exit;
452 unsigned HOST_WIDE_INT npeel;
453 unsigned i;
454 VEC (edge, heap) *remove_edges;
455 edge ein;
456 struct niter_desc *desc = get_simple_loop_desc (loop);
457 struct opt_info *opt_info = NULL;
458
459 npeel = desc->niter;
460
461 if (npeel)
462 {
463 bool ok;
464
465 wont_exit = sbitmap_alloc (npeel + 1);
466 sbitmap_ones (wont_exit);
467 RESET_BIT (wont_exit, 0);
468 if (desc->noloop_assumptions)
469 RESET_BIT (wont_exit, 1);
470
471 remove_edges = NULL;
472
473 if (flag_split_ivs_in_unroller)
474 opt_info = analyze_insns_in_loop (loop);
475
476 opt_info_start_duplication (opt_info);
477 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
478 npeel,
479 wont_exit, desc->out_edge,
480 &remove_edges,
481 DLTHE_FLAG_UPDATE_FREQ
482 | DLTHE_FLAG_COMPLETTE_PEEL
483 | (opt_info
484 ? DLTHE_RECORD_COPY_NUMBER : 0));
485 gcc_assert (ok);
486
487 free (wont_exit);
488
489 if (opt_info)
490 {
491 apply_opt_in_copies (opt_info, npeel, false, true);
492 free_opt_info (opt_info);
493 }
494
495 /* Remove the exit edges. */
496 for (i = 0; VEC_iterate (edge, remove_edges, i, ein); i++)
497 remove_path (ein);
498 VEC_free (edge, heap, remove_edges);
499 }
500
501 ein = desc->in_edge;
502 free_simple_loop_desc (loop);
503
504 /* Now remove the unreachable part of the last iteration and cancel
505 the loop. */
506 remove_path (ein);
507
508 if (dump_file)
509 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
510 }
511
512 /* Decide whether to unroll LOOP iterating constant number of times
513 and how much. */
514
515 static void
516 decide_unroll_constant_iterations (struct loop *loop, int flags)
517 {
518 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
519 struct niter_desc *desc;
520
521 if (!(flags & UAP_UNROLL))
522 {
523 /* We were not asked to, just return back silently. */
524 return;
525 }
526
527 if (dump_file)
528 fprintf (dump_file,
529 "\n;; Considering unrolling loop with constant "
530 "number of iterations\n");
531
532 /* nunroll = total number of copies of the original loop body in
533 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
534 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
535 nunroll_by_av
536 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
537 if (nunroll > nunroll_by_av)
538 nunroll = nunroll_by_av;
539 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
540 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
541
542 /* Skip big loops. */
543 if (nunroll <= 1)
544 {
545 if (dump_file)
546 fprintf (dump_file, ";; Not considering loop, is too big\n");
547 return;
548 }
549
550 /* Check for simple loops. */
551 desc = get_simple_loop_desc (loop);
552
553 /* Check number of iterations. */
554 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
555 {
556 if (dump_file)
557 fprintf (dump_file,
558 ";; Unable to prove that the loop iterates constant times\n");
559 return;
560 }
561
562 /* Check whether the loop rolls enough to consider. */
563 if (desc->niter < 2 * nunroll)
564 {
565 if (dump_file)
566 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
567 return;
568 }
569
570 /* Success; now compute number of iterations to unroll. We alter
571 nunroll so that as few as possible copies of loop body are
572 necessary, while still not decreasing the number of unrollings
573 too much (at most by 1). */
574 best_copies = 2 * nunroll + 10;
575
576 i = 2 * nunroll + 2;
577 if (i - 1 >= desc->niter)
578 i = desc->niter - 2;
579
580 for (; i >= nunroll - 1; i--)
581 {
582 unsigned exit_mod = desc->niter % (i + 1);
583
584 if (!loop_exit_at_end_p (loop))
585 n_copies = exit_mod + i + 1;
586 else if (exit_mod != (unsigned) i
587 || desc->noloop_assumptions != NULL_RTX)
588 n_copies = exit_mod + i + 2;
589 else
590 n_copies = i + 1;
591
592 if (n_copies < best_copies)
593 {
594 best_copies = n_copies;
595 best_unroll = i;
596 }
597 }
598
599 if (dump_file)
600 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
601 best_unroll + 1, best_copies, nunroll);
602
603 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
604 loop->lpt_decision.times = best_unroll;
605
606 if (dump_file)
607 fprintf (dump_file,
608 ";; Decided to unroll the constant times rolling loop, %d times.\n",
609 loop->lpt_decision.times);
610 }
611
612 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
613 times. The transformation does this:
614
615 for (i = 0; i < 102; i++)
616 body;
617
618 ==>
619
620 i = 0;
621 body; i++;
622 body; i++;
623 while (i < 102)
624 {
625 body; i++;
626 body; i++;
627 body; i++;
628 body; i++;
629 }
630 */
631 static void
632 unroll_loop_constant_iterations (struct loop *loop)
633 {
634 unsigned HOST_WIDE_INT niter;
635 unsigned exit_mod;
636 sbitmap wont_exit;
637 unsigned i;
638 VEC (edge, heap) *remove_edges;
639 edge e;
640 unsigned max_unroll = loop->lpt_decision.times;
641 struct niter_desc *desc = get_simple_loop_desc (loop);
642 bool exit_at_end = loop_exit_at_end_p (loop);
643 struct opt_info *opt_info = NULL;
644 bool ok;
645
646 niter = desc->niter;
647
648 /* Should not get here (such loop should be peeled instead). */
649 gcc_assert (niter > max_unroll + 1);
650
651 exit_mod = niter % (max_unroll + 1);
652
653 wont_exit = sbitmap_alloc (max_unroll + 1);
654 sbitmap_ones (wont_exit);
655
656 remove_edges = NULL;
657 if (flag_split_ivs_in_unroller
658 || flag_variable_expansion_in_unroller)
659 opt_info = analyze_insns_in_loop (loop);
660
661 if (!exit_at_end)
662 {
663 /* The exit is not at the end of the loop; leave exit test
664 in the first copy, so that the loops that start with test
665 of exit condition have continuous body after unrolling. */
666
667 if (dump_file)
668 fprintf (dump_file, ";; Condition on beginning of loop.\n");
669
670 /* Peel exit_mod iterations. */
671 RESET_BIT (wont_exit, 0);
672 if (desc->noloop_assumptions)
673 RESET_BIT (wont_exit, 1);
674
675 if (exit_mod)
676 {
677 opt_info_start_duplication (opt_info);
678 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
679 exit_mod,
680 wont_exit, desc->out_edge,
681 &remove_edges,
682 DLTHE_FLAG_UPDATE_FREQ
683 | (opt_info && exit_mod > 1
684 ? DLTHE_RECORD_COPY_NUMBER
685 : 0));
686 gcc_assert (ok);
687
688 if (opt_info && exit_mod > 1)
689 apply_opt_in_copies (opt_info, exit_mod, false, false);
690
691 desc->noloop_assumptions = NULL_RTX;
692 desc->niter -= exit_mod;
693 desc->niter_max -= exit_mod;
694 }
695
696 SET_BIT (wont_exit, 1);
697 }
698 else
699 {
700 /* Leave exit test in last copy, for the same reason as above if
701 the loop tests the condition at the end of loop body. */
702
703 if (dump_file)
704 fprintf (dump_file, ";; Condition on end of loop.\n");
705
706 /* We know that niter >= max_unroll + 2; so we do not need to care of
707 case when we would exit before reaching the loop. So just peel
708 exit_mod + 1 iterations. */
709 if (exit_mod != max_unroll
710 || desc->noloop_assumptions)
711 {
712 RESET_BIT (wont_exit, 0);
713 if (desc->noloop_assumptions)
714 RESET_BIT (wont_exit, 1);
715
716 opt_info_start_duplication (opt_info);
717 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
718 exit_mod + 1,
719 wont_exit, desc->out_edge,
720 &remove_edges,
721 DLTHE_FLAG_UPDATE_FREQ
722 | (opt_info && exit_mod > 0
723 ? DLTHE_RECORD_COPY_NUMBER
724 : 0));
725 gcc_assert (ok);
726
727 if (opt_info && exit_mod > 0)
728 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
729
730 desc->niter -= exit_mod + 1;
731 desc->niter_max -= exit_mod + 1;
732 desc->noloop_assumptions = NULL_RTX;
733
734 SET_BIT (wont_exit, 0);
735 SET_BIT (wont_exit, 1);
736 }
737
738 RESET_BIT (wont_exit, max_unroll);
739 }
740
741 /* Now unroll the loop. */
742
743 opt_info_start_duplication (opt_info);
744 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
745 max_unroll,
746 wont_exit, desc->out_edge,
747 &remove_edges,
748 DLTHE_FLAG_UPDATE_FREQ
749 | (opt_info
750 ? DLTHE_RECORD_COPY_NUMBER
751 : 0));
752 gcc_assert (ok);
753
754 if (opt_info)
755 {
756 apply_opt_in_copies (opt_info, max_unroll, true, true);
757 free_opt_info (opt_info);
758 }
759
760 free (wont_exit);
761
762 if (exit_at_end)
763 {
764 basic_block exit_block = get_bb_copy (desc->in_edge->src);
765 /* Find a new in and out edge; they are in the last copy we have made. */
766
767 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
768 {
769 desc->out_edge = EDGE_SUCC (exit_block, 0);
770 desc->in_edge = EDGE_SUCC (exit_block, 1);
771 }
772 else
773 {
774 desc->out_edge = EDGE_SUCC (exit_block, 1);
775 desc->in_edge = EDGE_SUCC (exit_block, 0);
776 }
777 }
778
779 desc->niter /= max_unroll + 1;
780 desc->niter_max /= max_unroll + 1;
781 desc->niter_expr = GEN_INT (desc->niter);
782
783 /* Remove the edges. */
784 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
785 remove_path (e);
786 VEC_free (edge, heap, remove_edges);
787
788 if (dump_file)
789 fprintf (dump_file,
790 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
791 max_unroll, num_loop_insns (loop));
792 }
793
794 /* Decide whether to unroll LOOP iterating runtime computable number of times
795 and how much. */
796 static void
797 decide_unroll_runtime_iterations (struct loop *loop, int flags)
798 {
799 unsigned nunroll, nunroll_by_av, i;
800 struct niter_desc *desc;
801
802 if (!(flags & UAP_UNROLL))
803 {
804 /* We were not asked to, just return back silently. */
805 return;
806 }
807
808 if (dump_file)
809 fprintf (dump_file,
810 "\n;; Considering unrolling loop with runtime "
811 "computable number of iterations\n");
812
813 /* nunroll = total number of copies of the original loop body in
814 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
815 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
816 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
817 if (nunroll > nunroll_by_av)
818 nunroll = nunroll_by_av;
819 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
820 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
821
822 /* Skip big loops. */
823 if (nunroll <= 1)
824 {
825 if (dump_file)
826 fprintf (dump_file, ";; Not considering loop, is too big\n");
827 return;
828 }
829
830 /* Check for simple loops. */
831 desc = get_simple_loop_desc (loop);
832
833 /* Check simpleness. */
834 if (!desc->simple_p || desc->assumptions)
835 {
836 if (dump_file)
837 fprintf (dump_file,
838 ";; Unable to prove that the number of iterations "
839 "can be counted in runtime\n");
840 return;
841 }
842
843 if (desc->const_iter)
844 {
845 if (dump_file)
846 fprintf (dump_file, ";; Loop iterates constant times\n");
847 return;
848 }
849
850 /* If we have profile feedback, check whether the loop rolls. */
851 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
852 {
853 if (dump_file)
854 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
855 return;
856 }
857
858 /* Success; now force nunroll to be power of 2, as we are unable to
859 cope with overflows in computation of number of iterations. */
860 for (i = 1; 2 * i <= nunroll; i *= 2)
861 continue;
862
863 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
864 loop->lpt_decision.times = i - 1;
865
866 if (dump_file)
867 fprintf (dump_file,
868 ";; Decided to unroll the runtime computable "
869 "times rolling loop, %d times.\n",
870 loop->lpt_decision.times);
871 }
872
873 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
874 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
875 and NULL is returned instead. */
876
877 basic_block
878 split_edge_and_insert (edge e, rtx insns)
879 {
880 basic_block bb;
881
882 if (!insns)
883 return NULL;
884 bb = split_edge (e);
885 emit_insn_after (insns, BB_END (bb));
886
887 /* ??? We used to assume that INSNS can contain control flow insns, and
888 that we had to try to find sub basic blocks in BB to maintain a valid
889 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
890 and call break_superblocks when going out of cfglayout mode. But it
891 turns out that this never happens; and that if it does ever happen,
892 the verify_flow_info call in loop_optimizer_finalize would fail.
893
894 There are two reasons why we expected we could have control flow insns
895 in INSNS. The first is when a comparison has to be done in parts, and
896 the second is when the number of iterations is computed for loops with
897 the number of iterations known at runtime. In both cases, test cases
898 to get control flow in INSNS appear to be impossible to construct:
899
900 * If do_compare_rtx_and_jump needs several branches to do comparison
901 in a mode that needs comparison by parts, we cannot analyze the
902 number of iterations of the loop, and we never get to unrolling it.
903
904 * The code in expand_divmod that was suspected to cause creation of
905 branching code seems to be only accessed for signed division. The
906 divisions used by # of iterations analysis are always unsigned.
907 Problems might arise on architectures that emits branching code
908 for some operations that may appear in the unroller (especially
909 for division), but we have no such architectures.
910
911 Considering all this, it was decided that we should for now assume
912 that INSNS can in theory contain control flow insns, but in practice
913 it never does. So we don't handle the theoretical case, and should
914 a real failure ever show up, we have a pretty good clue for how to
915 fix it. */
916
917 return bb;
918 }
919
920 /* Unroll LOOP for that we are able to count number of iterations in runtime
921 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
922 extra care for case n < 0):
923
924 for (i = 0; i < n; i++)
925 body;
926
927 ==>
928
929 i = 0;
930 mod = n % 4;
931
932 switch (mod)
933 {
934 case 3:
935 body; i++;
936 case 2:
937 body; i++;
938 case 1:
939 body; i++;
940 case 0: ;
941 }
942
943 while (i < n)
944 {
945 body; i++;
946 body; i++;
947 body; i++;
948 body; i++;
949 }
950 */
951 static void
952 unroll_loop_runtime_iterations (struct loop *loop)
953 {
954 rtx old_niter, niter, init_code, branch_code, tmp;
955 unsigned i, j, p;
956 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
957 unsigned n_dom_bbs;
958 sbitmap wont_exit;
959 int may_exit_copy;
960 unsigned n_peel;
961 VEC (edge, heap) *remove_edges;
962 edge e;
963 bool extra_zero_check, last_may_exit;
964 unsigned max_unroll = loop->lpt_decision.times;
965 struct niter_desc *desc = get_simple_loop_desc (loop);
966 bool exit_at_end = loop_exit_at_end_p (loop);
967 struct opt_info *opt_info = NULL;
968 bool ok;
969
970 if (flag_split_ivs_in_unroller
971 || flag_variable_expansion_in_unroller)
972 opt_info = analyze_insns_in_loop (loop);
973
974 /* Remember blocks whose dominators will have to be updated. */
975 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
976 n_dom_bbs = 0;
977
978 body = get_loop_body (loop);
979 for (i = 0; i < loop->num_nodes; i++)
980 {
981 unsigned nldom;
982 basic_block *ldom;
983
984 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
985 for (j = 0; j < nldom; j++)
986 if (!flow_bb_inside_loop_p (loop, ldom[j]))
987 dom_bbs[n_dom_bbs++] = ldom[j];
988
989 free (ldom);
990 }
991 free (body);
992
993 if (!exit_at_end)
994 {
995 /* Leave exit in first copy (for explanation why see comment in
996 unroll_loop_constant_iterations). */
997 may_exit_copy = 0;
998 n_peel = max_unroll - 1;
999 extra_zero_check = true;
1000 last_may_exit = false;
1001 }
1002 else
1003 {
1004 /* Leave exit in last copy (for explanation why see comment in
1005 unroll_loop_constant_iterations). */
1006 may_exit_copy = max_unroll;
1007 n_peel = max_unroll;
1008 extra_zero_check = false;
1009 last_may_exit = true;
1010 }
1011
1012 /* Get expression for number of iterations. */
1013 start_sequence ();
1014 old_niter = niter = gen_reg_rtx (desc->mode);
1015 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1016 if (tmp != niter)
1017 emit_move_insn (niter, tmp);
1018
1019 /* Count modulo by ANDing it with max_unroll; we use the fact that
1020 the number of unrollings is a power of two, and thus this is correct
1021 even if there is overflow in the computation. */
1022 niter = expand_simple_binop (desc->mode, AND,
1023 niter,
1024 GEN_INT (max_unroll),
1025 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1026
1027 init_code = get_insns ();
1028 end_sequence ();
1029
1030 /* Precondition the loop. */
1031 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1032
1033 remove_edges = NULL;
1034
1035 wont_exit = sbitmap_alloc (max_unroll + 2);
1036
1037 /* Peel the first copy of loop body (almost always we must leave exit test
1038 here; the only exception is when we have extra zero check and the number
1039 of iterations is reliable. Also record the place of (possible) extra
1040 zero check. */
1041 sbitmap_zero (wont_exit);
1042 if (extra_zero_check
1043 && !desc->noloop_assumptions)
1044 SET_BIT (wont_exit, 1);
1045 ezc_swtch = loop_preheader_edge (loop)->src;
1046 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1047 1, wont_exit, desc->out_edge,
1048 &remove_edges,
1049 DLTHE_FLAG_UPDATE_FREQ);
1050 gcc_assert (ok);
1051
1052 /* Record the place where switch will be built for preconditioning. */
1053 swtch = split_edge (loop_preheader_edge (loop));
1054
1055 for (i = 0; i < n_peel; i++)
1056 {
1057 /* Peel the copy. */
1058 sbitmap_zero (wont_exit);
1059 if (i != n_peel - 1 || !last_may_exit)
1060 SET_BIT (wont_exit, 1);
1061 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1062 1, wont_exit, desc->out_edge,
1063 &remove_edges,
1064 DLTHE_FLAG_UPDATE_FREQ);
1065 gcc_assert (ok);
1066
1067 /* Create item for switch. */
1068 j = n_peel - i - (extra_zero_check ? 0 : 1);
1069 p = REG_BR_PROB_BASE / (i + 2);
1070
1071 preheader = split_edge (loop_preheader_edge (loop));
1072 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1073 block_label (preheader), p,
1074 NULL_RTX);
1075
1076 /* We rely on the fact that the compare and jump cannot be optimized out,
1077 and hence the cfg we create is correct. */
1078 gcc_assert (branch_code != NULL_RTX);
1079
1080 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1081 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1082 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1083 e = make_edge (swtch, preheader,
1084 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1085 e->probability = p;
1086 }
1087
1088 if (extra_zero_check)
1089 {
1090 /* Add branch for zero iterations. */
1091 p = REG_BR_PROB_BASE / (max_unroll + 1);
1092 swtch = ezc_swtch;
1093 preheader = split_edge (loop_preheader_edge (loop));
1094 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1095 block_label (preheader), p,
1096 NULL_RTX);
1097 gcc_assert (branch_code != NULL_RTX);
1098
1099 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1100 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1101 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1102 e = make_edge (swtch, preheader,
1103 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1104 e->probability = p;
1105 }
1106
1107 /* Recount dominators for outer blocks. */
1108 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1109
1110 /* And unroll loop. */
1111
1112 sbitmap_ones (wont_exit);
1113 RESET_BIT (wont_exit, may_exit_copy);
1114 opt_info_start_duplication (opt_info);
1115
1116 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1117 max_unroll,
1118 wont_exit, desc->out_edge,
1119 &remove_edges,
1120 DLTHE_FLAG_UPDATE_FREQ
1121 | (opt_info
1122 ? DLTHE_RECORD_COPY_NUMBER
1123 : 0));
1124 gcc_assert (ok);
1125
1126 if (opt_info)
1127 {
1128 apply_opt_in_copies (opt_info, max_unroll, true, true);
1129 free_opt_info (opt_info);
1130 }
1131
1132 free (wont_exit);
1133
1134 if (exit_at_end)
1135 {
1136 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1137 /* Find a new in and out edge; they are in the last copy we have
1138 made. */
1139
1140 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1141 {
1142 desc->out_edge = EDGE_SUCC (exit_block, 0);
1143 desc->in_edge = EDGE_SUCC (exit_block, 1);
1144 }
1145 else
1146 {
1147 desc->out_edge = EDGE_SUCC (exit_block, 1);
1148 desc->in_edge = EDGE_SUCC (exit_block, 0);
1149 }
1150 }
1151
1152 /* Remove the edges. */
1153 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
1154 remove_path (e);
1155 VEC_free (edge, heap, remove_edges);
1156
1157 /* We must be careful when updating the number of iterations due to
1158 preconditioning and the fact that the value must be valid at entry
1159 of the loop. After passing through the above code, we see that
1160 the correct new number of iterations is this: */
1161 gcc_assert (!desc->const_iter);
1162 desc->niter_expr =
1163 simplify_gen_binary (UDIV, desc->mode, old_niter,
1164 GEN_INT (max_unroll + 1));
1165 desc->niter_max /= max_unroll + 1;
1166 if (exit_at_end)
1167 {
1168 desc->niter_expr =
1169 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1170 desc->noloop_assumptions = NULL_RTX;
1171 desc->niter_max--;
1172 }
1173
1174 if (dump_file)
1175 fprintf (dump_file,
1176 ";; Unrolled loop %d times, counting # of iterations "
1177 "in runtime, %i insns\n",
1178 max_unroll, num_loop_insns (loop));
1179
1180 if (dom_bbs)
1181 free (dom_bbs);
1182 }
1183
1184 /* Decide whether to simply peel LOOP and how much. */
1185 static void
1186 decide_peel_simple (struct loop *loop, int flags)
1187 {
1188 unsigned npeel;
1189 struct niter_desc *desc;
1190
1191 if (!(flags & UAP_PEEL))
1192 {
1193 /* We were not asked to, just return back silently. */
1194 return;
1195 }
1196
1197 if (dump_file)
1198 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1199
1200 /* npeel = number of iterations to peel. */
1201 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1202 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1203 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1204
1205 /* Skip big loops. */
1206 if (!npeel)
1207 {
1208 if (dump_file)
1209 fprintf (dump_file, ";; Not considering loop, is too big\n");
1210 return;
1211 }
1212
1213 /* Check for simple loops. */
1214 desc = get_simple_loop_desc (loop);
1215
1216 /* Check number of iterations. */
1217 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1218 {
1219 if (dump_file)
1220 fprintf (dump_file, ";; Loop iterates constant times\n");
1221 return;
1222 }
1223
1224 /* Do not simply peel loops with branches inside -- it increases number
1225 of mispredicts. */
1226 if (num_loop_branches (loop) > 1)
1227 {
1228 if (dump_file)
1229 fprintf (dump_file, ";; Not peeling, contains branches\n");
1230 return;
1231 }
1232
1233 if (loop->header->count)
1234 {
1235 unsigned niter = expected_loop_iterations (loop);
1236 if (niter + 1 > npeel)
1237 {
1238 if (dump_file)
1239 {
1240 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1241 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1242 (HOST_WIDEST_INT) (niter + 1));
1243 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1244 npeel);
1245 }
1246 return;
1247 }
1248 npeel = niter + 1;
1249 }
1250 else
1251 {
1252 /* For now we have no good heuristics to decide whether loop peeling
1253 will be effective, so disable it. */
1254 if (dump_file)
1255 fprintf (dump_file,
1256 ";; Not peeling loop, no evidence it will be profitable\n");
1257 return;
1258 }
1259
1260 /* Success. */
1261 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1262 loop->lpt_decision.times = npeel;
1263
1264 if (dump_file)
1265 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1266 loop->lpt_decision.times);
1267 }
1268
1269 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1270 while (cond)
1271 body;
1272
1273 ==>
1274
1275 if (!cond) goto end;
1276 body;
1277 if (!cond) goto end;
1278 body;
1279 while (cond)
1280 body;
1281 end: ;
1282 */
1283 static void
1284 peel_loop_simple (struct loop *loop)
1285 {
1286 sbitmap wont_exit;
1287 unsigned npeel = loop->lpt_decision.times;
1288 struct niter_desc *desc = get_simple_loop_desc (loop);
1289 struct opt_info *opt_info = NULL;
1290 bool ok;
1291
1292 if (flag_split_ivs_in_unroller && npeel > 1)
1293 opt_info = analyze_insns_in_loop (loop);
1294
1295 wont_exit = sbitmap_alloc (npeel + 1);
1296 sbitmap_zero (wont_exit);
1297
1298 opt_info_start_duplication (opt_info);
1299
1300 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1301 npeel, wont_exit, NULL,
1302 NULL, DLTHE_FLAG_UPDATE_FREQ
1303 | (opt_info
1304 ? DLTHE_RECORD_COPY_NUMBER
1305 : 0));
1306 gcc_assert (ok);
1307
1308 free (wont_exit);
1309
1310 if (opt_info)
1311 {
1312 apply_opt_in_copies (opt_info, npeel, false, false);
1313 free_opt_info (opt_info);
1314 }
1315
1316 if (desc->simple_p)
1317 {
1318 if (desc->const_iter)
1319 {
1320 desc->niter -= npeel;
1321 desc->niter_expr = GEN_INT (desc->niter);
1322 desc->noloop_assumptions = NULL_RTX;
1323 }
1324 else
1325 {
1326 /* We cannot just update niter_expr, as its value might be clobbered
1327 inside loop. We could handle this by counting the number into
1328 temporary just like we do in runtime unrolling, but it does not
1329 seem worthwhile. */
1330 free_simple_loop_desc (loop);
1331 }
1332 }
1333 if (dump_file)
1334 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1335 }
1336
1337 /* Decide whether to unroll LOOP stupidly and how much. */
1338 static void
1339 decide_unroll_stupid (struct loop *loop, int flags)
1340 {
1341 unsigned nunroll, nunroll_by_av, i;
1342 struct niter_desc *desc;
1343
1344 if (!(flags & UAP_UNROLL_ALL))
1345 {
1346 /* We were not asked to, just return back silently. */
1347 return;
1348 }
1349
1350 if (dump_file)
1351 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1352
1353 /* nunroll = total number of copies of the original loop body in
1354 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1355 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1356 nunroll_by_av
1357 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1358 if (nunroll > nunroll_by_av)
1359 nunroll = nunroll_by_av;
1360 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1361 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1362
1363 /* Skip big loops. */
1364 if (nunroll <= 1)
1365 {
1366 if (dump_file)
1367 fprintf (dump_file, ";; Not considering loop, is too big\n");
1368 return;
1369 }
1370
1371 /* Check for simple loops. */
1372 desc = get_simple_loop_desc (loop);
1373
1374 /* Check simpleness. */
1375 if (desc->simple_p && !desc->assumptions)
1376 {
1377 if (dump_file)
1378 fprintf (dump_file, ";; The loop is simple\n");
1379 return;
1380 }
1381
1382 /* Do not unroll loops with branches inside -- it increases number
1383 of mispredicts. */
1384 if (num_loop_branches (loop) > 1)
1385 {
1386 if (dump_file)
1387 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1388 return;
1389 }
1390
1391 /* If we have profile feedback, check whether the loop rolls. */
1392 if (loop->header->count
1393 && expected_loop_iterations (loop) < 2 * nunroll)
1394 {
1395 if (dump_file)
1396 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1397 return;
1398 }
1399
1400 /* Success. Now force nunroll to be power of 2, as it seems that this
1401 improves results (partially because of better alignments, partially
1402 because of some dark magic). */
1403 for (i = 1; 2 * i <= nunroll; i *= 2)
1404 continue;
1405
1406 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1407 loop->lpt_decision.times = i - 1;
1408
1409 if (dump_file)
1410 fprintf (dump_file,
1411 ";; Decided to unroll the loop stupidly, %d times.\n",
1412 loop->lpt_decision.times);
1413 }
1414
1415 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1416 while (cond)
1417 body;
1418
1419 ==>
1420
1421 while (cond)
1422 {
1423 body;
1424 if (!cond) break;
1425 body;
1426 if (!cond) break;
1427 body;
1428 if (!cond) break;
1429 body;
1430 }
1431 */
1432 static void
1433 unroll_loop_stupid (struct loop *loop)
1434 {
1435 sbitmap wont_exit;
1436 unsigned nunroll = loop->lpt_decision.times;
1437 struct niter_desc *desc = get_simple_loop_desc (loop);
1438 struct opt_info *opt_info = NULL;
1439 bool ok;
1440
1441 if (flag_split_ivs_in_unroller
1442 || flag_variable_expansion_in_unroller)
1443 opt_info = analyze_insns_in_loop (loop);
1444
1445
1446 wont_exit = sbitmap_alloc (nunroll + 1);
1447 sbitmap_zero (wont_exit);
1448 opt_info_start_duplication (opt_info);
1449
1450 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1451 nunroll, wont_exit,
1452 NULL, NULL,
1453 DLTHE_FLAG_UPDATE_FREQ
1454 | (opt_info
1455 ? DLTHE_RECORD_COPY_NUMBER
1456 : 0));
1457 gcc_assert (ok);
1458
1459 if (opt_info)
1460 {
1461 apply_opt_in_copies (opt_info, nunroll, true, true);
1462 free_opt_info (opt_info);
1463 }
1464
1465 free (wont_exit);
1466
1467 if (desc->simple_p)
1468 {
1469 /* We indeed may get here provided that there are nontrivial assumptions
1470 for a loop to be really simple. We could update the counts, but the
1471 problem is that we are unable to decide which exit will be taken
1472 (not really true in case the number of iterations is constant,
1473 but noone will do anything with this information, so we do not
1474 worry about it). */
1475 desc->simple_p = false;
1476 }
1477
1478 if (dump_file)
1479 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1480 nunroll, num_loop_insns (loop));
1481 }
1482
1483 /* A hash function for information about insns to split. */
1484
1485 static hashval_t
1486 si_info_hash (const void *ivts)
1487 {
1488 return (hashval_t) INSN_UID (((struct iv_to_split *) ivts)->insn);
1489 }
1490
1491 /* An equality functions for information about insns to split. */
1492
1493 static int
1494 si_info_eq (const void *ivts1, const void *ivts2)
1495 {
1496 const struct iv_to_split *i1 = ivts1;
1497 const struct iv_to_split *i2 = ivts2;
1498
1499 return i1->insn == i2->insn;
1500 }
1501
1502 /* Return a hash for VES, which is really a "var_to_expand *". */
1503
1504 static hashval_t
1505 ve_info_hash (const void *ves)
1506 {
1507 return (hashval_t) INSN_UID (((struct var_to_expand *) ves)->insn);
1508 }
1509
1510 /* Return true if IVTS1 and IVTS2 (which are really both of type
1511 "var_to_expand *") refer to the same instruction. */
1512
1513 static int
1514 ve_info_eq (const void *ivts1, const void *ivts2)
1515 {
1516 const struct var_to_expand *i1 = ivts1;
1517 const struct var_to_expand *i2 = ivts2;
1518
1519 return i1->insn == i2->insn;
1520 }
1521
1522 /* Returns true if REG is referenced in one insn in LOOP. */
1523
1524 bool
1525 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1526 {
1527 basic_block *body, bb;
1528 unsigned i;
1529 int count_ref = 0;
1530 rtx insn;
1531
1532 body = get_loop_body (loop);
1533 for (i = 0; i < loop->num_nodes; i++)
1534 {
1535 bb = body[i];
1536
1537 FOR_BB_INSNS (bb, insn)
1538 {
1539 if (rtx_referenced_p (reg, insn))
1540 count_ref++;
1541 }
1542 }
1543 return (count_ref == 1);
1544 }
1545
1546 /* Determine whether INSN contains an accumulator
1547 which can be expanded into separate copies,
1548 one for each copy of the LOOP body.
1549
1550 for (i = 0 ; i < n; i++)
1551 sum += a[i];
1552
1553 ==>
1554
1555 sum += a[i]
1556 ....
1557 i = i+1;
1558 sum1 += a[i]
1559 ....
1560 i = i+1
1561 sum2 += a[i];
1562 ....
1563
1564 Return NULL if INSN contains no opportunity for expansion of accumulator.
1565 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1566 information and return a pointer to it.
1567 */
1568
1569 static struct var_to_expand *
1570 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1571 {
1572 rtx set, dest, src, op1, op2, something;
1573 struct var_to_expand *ves;
1574 enum machine_mode mode1, mode2;
1575 unsigned accum_pos;
1576
1577 set = single_set (insn);
1578 if (!set)
1579 return NULL;
1580
1581 dest = SET_DEST (set);
1582 src = SET_SRC (set);
1583
1584 if (GET_CODE (src) != PLUS
1585 && GET_CODE (src) != MINUS
1586 && GET_CODE (src) != MULT)
1587 return NULL;
1588
1589 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1590 in MD. But if there is no optab to generate the insn, we can not
1591 perform the variable expansion. This can happen if an MD provides
1592 an insn but not a named pattern to generate it, for example to avoid
1593 producing code that needs additional mode switches like for x87/mmx.
1594
1595 So we check have_insn_for which looks for an optab for the operation
1596 in SRC. If it doesn't exist, we can't perform the expansion even
1597 though INSN is valid. */
1598 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1599 return NULL;
1600
1601 op1 = XEXP (src, 0);
1602 op2 = XEXP (src, 1);
1603
1604 if (!REG_P (dest)
1605 && !(GET_CODE (dest) == SUBREG
1606 && REG_P (SUBREG_REG (dest))))
1607 return NULL;
1608
1609 if (rtx_equal_p (dest, op1))
1610 accum_pos = 0;
1611 else if (rtx_equal_p (dest, op2))
1612 accum_pos = 1;
1613 else
1614 return NULL;
1615
1616 /* The method of expansion that we are using; which includes
1617 the initialization of the expansions with zero and the summation of
1618 the expansions at the end of the computation will yield wrong results
1619 for (x = something - x) thus avoid using it in that case. */
1620 if (accum_pos == 1
1621 && GET_CODE (src) == MINUS)
1622 return NULL;
1623
1624 something = (accum_pos == 0)? op2 : op1;
1625
1626 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1627 return NULL;
1628
1629 if (rtx_referenced_p (dest, something))
1630 return NULL;
1631
1632 mode1 = GET_MODE (dest);
1633 mode2 = GET_MODE (something);
1634 if ((FLOAT_MODE_P (mode1)
1635 || FLOAT_MODE_P (mode2))
1636 && !flag_unsafe_math_optimizations)
1637 return NULL;
1638
1639 if (dump_file)
1640 {
1641 fprintf (dump_file,
1642 "\n;; Expanding Accumulator ");
1643 print_rtl (dump_file, dest);
1644 fprintf (dump_file, "\n");
1645 }
1646
1647 /* Record the accumulator to expand. */
1648 ves = XNEW (struct var_to_expand);
1649 ves->insn = insn;
1650 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1651 ves->reg = copy_rtx (dest);
1652 ves->op = GET_CODE (src);
1653 ves->expansion_count = 0;
1654 ves->reuse_expansion = 0;
1655 ves->accum_pos = accum_pos;
1656 return ves;
1657 }
1658
1659 /* Determine whether there is an induction variable in INSN that
1660 we would like to split during unrolling.
1661
1662 I.e. replace
1663
1664 i = i + 1;
1665 ...
1666 i = i + 1;
1667 ...
1668 i = i + 1;
1669 ...
1670
1671 type chains by
1672
1673 i0 = i + 1
1674 ...
1675 i = i0 + 1
1676 ...
1677 i = i0 + 2
1678 ...
1679
1680 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1681 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1682 pointer to it. */
1683
1684 static struct iv_to_split *
1685 analyze_iv_to_split_insn (rtx insn)
1686 {
1687 rtx set, dest;
1688 struct rtx_iv iv;
1689 struct iv_to_split *ivts;
1690 bool ok;
1691
1692 /* For now we just split the basic induction variables. Later this may be
1693 extended for example by selecting also addresses of memory references. */
1694 set = single_set (insn);
1695 if (!set)
1696 return NULL;
1697
1698 dest = SET_DEST (set);
1699 if (!REG_P (dest))
1700 return NULL;
1701
1702 if (!biv_p (insn, dest))
1703 return NULL;
1704
1705 ok = iv_analyze_result (insn, dest, &iv);
1706
1707 /* This used to be an assert under the assumption that if biv_p returns
1708 true that iv_analyze_result must also return true. However, that
1709 assumption is not strictly correct as evidenced by pr25569.
1710
1711 Returning NULL when iv_analyze_result returns false is safe and
1712 avoids the problems in pr25569 until the iv_analyze_* routines
1713 can be fixed, which is apparently hard and time consuming
1714 according to their author. */
1715 if (! ok)
1716 return NULL;
1717
1718 if (iv.step == const0_rtx
1719 || iv.mode != iv.extend_mode)
1720 return NULL;
1721
1722 /* Record the insn to split. */
1723 ivts = XNEW (struct iv_to_split);
1724 ivts->insn = insn;
1725 ivts->base_var = NULL_RTX;
1726 ivts->step = iv.step;
1727 ivts->n_loc = 1;
1728 ivts->loc[0] = 1;
1729
1730 return ivts;
1731 }
1732
1733 /* Determines which of insns in LOOP can be optimized.
1734 Return a OPT_INFO struct with the relevant hash tables filled
1735 with all insns to be optimized. The FIRST_NEW_BLOCK field
1736 is undefined for the return value. */
1737
1738 static struct opt_info *
1739 analyze_insns_in_loop (struct loop *loop)
1740 {
1741 basic_block *body, bb;
1742 unsigned i;
1743 struct opt_info *opt_info = XCNEW (struct opt_info);
1744 rtx insn;
1745 struct iv_to_split *ivts = NULL;
1746 struct var_to_expand *ves = NULL;
1747 PTR *slot1;
1748 PTR *slot2;
1749 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1750 edge exit;
1751 bool can_apply = false;
1752
1753 iv_analysis_loop_init (loop);
1754
1755 body = get_loop_body (loop);
1756
1757 if (flag_split_ivs_in_unroller)
1758 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1759 si_info_hash, si_info_eq, free);
1760
1761 /* Record the loop exit bb and loop preheader before the unrolling. */
1762 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1763
1764 if (VEC_length (edge, edges) == 1)
1765 {
1766 exit = VEC_index (edge, edges, 0);
1767 if (!(exit->flags & EDGE_COMPLEX))
1768 {
1769 opt_info->loop_exit = split_edge (exit);
1770 can_apply = true;
1771 }
1772 }
1773
1774 if (flag_variable_expansion_in_unroller
1775 && can_apply)
1776 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1777 ve_info_hash, ve_info_eq, free);
1778
1779 for (i = 0; i < loop->num_nodes; i++)
1780 {
1781 bb = body[i];
1782 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1783 continue;
1784
1785 FOR_BB_INSNS (bb, insn)
1786 {
1787 if (!INSN_P (insn))
1788 continue;
1789
1790 if (opt_info->insns_to_split)
1791 ivts = analyze_iv_to_split_insn (insn);
1792
1793 if (ivts)
1794 {
1795 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1796 *slot1 = ivts;
1797 continue;
1798 }
1799
1800 if (opt_info->insns_with_var_to_expand)
1801 ves = analyze_insn_to_expand_var (loop, insn);
1802
1803 if (ves)
1804 {
1805 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1806 *slot2 = ves;
1807 }
1808 }
1809 }
1810
1811 VEC_free (edge, heap, edges);
1812 free (body);
1813 return opt_info;
1814 }
1815
1816 /* Called just before loop duplication. Records start of duplicated area
1817 to OPT_INFO. */
1818
1819 static void
1820 opt_info_start_duplication (struct opt_info *opt_info)
1821 {
1822 if (opt_info)
1823 opt_info->first_new_block = last_basic_block;
1824 }
1825
1826 /* Determine the number of iterations between initialization of the base
1827 variable and the current copy (N_COPY). N_COPIES is the total number
1828 of newly created copies. UNROLLING is true if we are unrolling
1829 (not peeling) the loop. */
1830
1831 static unsigned
1832 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1833 {
1834 if (unrolling)
1835 {
1836 /* If we are unrolling, initialization is done in the original loop
1837 body (number 0). */
1838 return n_copy;
1839 }
1840 else
1841 {
1842 /* If we are peeling, the copy in that the initialization occurs has
1843 number 1. The original loop (number 0) is the last. */
1844 if (n_copy)
1845 return n_copy - 1;
1846 else
1847 return n_copies;
1848 }
1849 }
1850
1851 /* Locate in EXPR the expression corresponding to the location recorded
1852 in IVTS, and return a pointer to the RTX for this location. */
1853
1854 static rtx *
1855 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1856 {
1857 unsigned i;
1858 rtx *ret = &expr;
1859
1860 for (i = 0; i < ivts->n_loc; i++)
1861 ret = &XEXP (*ret, ivts->loc[i]);
1862
1863 return ret;
1864 }
1865
1866 /* Allocate basic variable for the induction variable chain. Callback for
1867 htab_traverse. */
1868
1869 static int
1870 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1871 {
1872 struct iv_to_split *ivts = *slot;
1873 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1874
1875 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1876
1877 return 1;
1878 }
1879
1880 /* Insert initialization of basic variable of IVTS before INSN, taking
1881 the initial value from INSN. */
1882
1883 static void
1884 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1885 {
1886 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1887 rtx seq;
1888
1889 start_sequence ();
1890 expr = force_operand (expr, ivts->base_var);
1891 if (expr != ivts->base_var)
1892 emit_move_insn (ivts->base_var, expr);
1893 seq = get_insns ();
1894 end_sequence ();
1895
1896 emit_insn_before (seq, insn);
1897 }
1898
1899 /* Replace the use of induction variable described in IVTS in INSN
1900 by base variable + DELTA * step. */
1901
1902 static void
1903 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1904 {
1905 rtx expr, *loc, seq, incr, var;
1906 enum machine_mode mode = GET_MODE (ivts->base_var);
1907 rtx src, dest, set;
1908
1909 /* Construct base + DELTA * step. */
1910 if (!delta)
1911 expr = ivts->base_var;
1912 else
1913 {
1914 incr = simplify_gen_binary (MULT, mode,
1915 ivts->step, gen_int_mode (delta, mode));
1916 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1917 ivts->base_var, incr);
1918 }
1919
1920 /* Figure out where to do the replacement. */
1921 loc = get_ivts_expr (single_set (insn), ivts);
1922
1923 /* If we can make the replacement right away, we're done. */
1924 if (validate_change (insn, loc, expr, 0))
1925 return;
1926
1927 /* Otherwise, force EXPR into a register and try again. */
1928 start_sequence ();
1929 var = gen_reg_rtx (mode);
1930 expr = force_operand (expr, var);
1931 if (expr != var)
1932 emit_move_insn (var, expr);
1933 seq = get_insns ();
1934 end_sequence ();
1935 emit_insn_before (seq, insn);
1936
1937 if (validate_change (insn, loc, var, 0))
1938 return;
1939
1940 /* The last chance. Try recreating the assignment in insn
1941 completely from scratch. */
1942 set = single_set (insn);
1943 gcc_assert (set);
1944
1945 start_sequence ();
1946 *loc = var;
1947 src = copy_rtx (SET_SRC (set));
1948 dest = copy_rtx (SET_DEST (set));
1949 src = force_operand (src, dest);
1950 if (src != dest)
1951 emit_move_insn (dest, src);
1952 seq = get_insns ();
1953 end_sequence ();
1954
1955 emit_insn_before (seq, insn);
1956 delete_insn (insn);
1957 }
1958
1959
1960 /* Return one expansion of the accumulator recorded in struct VE. */
1961
1962 static rtx
1963 get_expansion (struct var_to_expand *ve)
1964 {
1965 rtx reg;
1966
1967 if (ve->reuse_expansion == 0)
1968 reg = ve->reg;
1969 else
1970 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1971
1972 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1973 ve->reuse_expansion = 0;
1974 else
1975 ve->reuse_expansion++;
1976
1977 return reg;
1978 }
1979
1980
1981 /* Given INSN replace the uses of the accumulator recorded in VE
1982 with a new register. */
1983
1984 static void
1985 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1986 {
1987 rtx new_reg, set;
1988 bool really_new_expansion = false;
1989
1990 set = single_set (insn);
1991 gcc_assert (set);
1992
1993 /* Generate a new register only if the expansion limit has not been
1994 reached. Else reuse an already existing expansion. */
1995 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1996 {
1997 really_new_expansion = true;
1998 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1999 }
2000 else
2001 new_reg = get_expansion (ve);
2002
2003 validate_change (insn, &SET_DEST (set), new_reg, 1);
2004 validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
2005
2006 if (apply_change_group ())
2007 if (really_new_expansion)
2008 {
2009 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
2010 ve->expansion_count++;
2011 }
2012 }
2013
2014 /* Initialize the variable expansions in loop preheader.
2015 Callbacks for htab_traverse. PLACE_P is the loop-preheader
2016 basic block where the initialization of the expansions
2017 should take place. The expansions are initialized with (-0)
2018 when the operation is plus or minus to honor sign zero.
2019 This way we can prevent cases where the sign of the final result is
2020 effected by the sign of the expansion.
2021 Here is an example to demonstrate this:
2022
2023 for (i = 0 ; i < n; i++)
2024 sum += something;
2025
2026 ==>
2027
2028 sum += something
2029 ....
2030 i = i+1;
2031 sum1 += something
2032 ....
2033 i = i+1
2034 sum2 += something;
2035 ....
2036
2037 When SUM is initialized with -zero and SOMETHING is also -zero; the
2038 final result of sum should be -zero thus the expansions sum1 and sum2
2039 should be initialized with -zero as well (otherwise we will get +zero
2040 as the final result). */
2041
2042 static int
2043 insert_var_expansion_initialization (void **slot, void *place_p)
2044 {
2045 struct var_to_expand *ve = *slot;
2046 basic_block place = (basic_block)place_p;
2047 rtx seq, var, zero_init, insn;
2048 unsigned i;
2049 enum machine_mode mode = GET_MODE (ve->reg);
2050 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2051
2052 if (VEC_length (rtx, ve->var_expansions) == 0)
2053 return 1;
2054
2055 start_sequence ();
2056 if (ve->op == PLUS || ve->op == MINUS)
2057 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2058 {
2059 if (honor_signed_zero_p)
2060 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2061 else
2062 zero_init = CONST0_RTX (mode);
2063
2064 emit_move_insn (var, zero_init);
2065 }
2066 else if (ve->op == MULT)
2067 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2068 {
2069 zero_init = CONST1_RTX (GET_MODE (var));
2070 emit_move_insn (var, zero_init);
2071 }
2072
2073 seq = get_insns ();
2074 end_sequence ();
2075
2076 insn = BB_HEAD (place);
2077 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2078 insn = NEXT_INSN (insn);
2079
2080 emit_insn_after (seq, insn);
2081 /* Continue traversing the hash table. */
2082 return 1;
2083 }
2084
2085 /* Combine the variable expansions at the loop exit.
2086 Callbacks for htab_traverse. PLACE_P is the loop exit
2087 basic block where the summation of the expansions should
2088 take place. */
2089
2090 static int
2091 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2092 {
2093 struct var_to_expand *ve = *slot;
2094 basic_block place = (basic_block)place_p;
2095 rtx sum = ve->reg;
2096 rtx expr, seq, var, insn;
2097 unsigned i;
2098
2099 if (VEC_length (rtx, ve->var_expansions) == 0)
2100 return 1;
2101
2102 start_sequence ();
2103 if (ve->op == PLUS || ve->op == MINUS)
2104 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2105 {
2106 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2107 var, sum);
2108 }
2109 else if (ve->op == MULT)
2110 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2111 {
2112 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2113 var, sum);
2114 }
2115
2116 expr = force_operand (sum, ve->reg);
2117 if (expr != ve->reg)
2118 emit_move_insn (ve->reg, expr);
2119 seq = get_insns ();
2120 end_sequence ();
2121
2122 insn = BB_HEAD (place);
2123 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2124 insn = NEXT_INSN (insn);
2125
2126 emit_insn_after (seq, insn);
2127
2128 /* Continue traversing the hash table. */
2129 return 1;
2130 }
2131
2132 /* Apply loop optimizations in loop copies using the
2133 data which gathered during the unrolling. Structure
2134 OPT_INFO record that data.
2135
2136 UNROLLING is true if we unrolled (not peeled) the loop.
2137 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2138 the loop (as it should happen in complete unrolling, but not in ordinary
2139 peeling of the loop). */
2140
2141 static void
2142 apply_opt_in_copies (struct opt_info *opt_info,
2143 unsigned n_copies, bool unrolling,
2144 bool rewrite_original_loop)
2145 {
2146 unsigned i, delta;
2147 basic_block bb, orig_bb;
2148 rtx insn, orig_insn, next;
2149 struct iv_to_split ivts_templ, *ivts;
2150 struct var_to_expand ve_templ, *ves;
2151
2152 /* Sanity check -- we need to put initialization in the original loop
2153 body. */
2154 gcc_assert (!unrolling || rewrite_original_loop);
2155
2156 /* Allocate the basic variables (i0). */
2157 if (opt_info->insns_to_split)
2158 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2159
2160 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2161 {
2162 bb = BASIC_BLOCK (i);
2163 orig_bb = get_bb_original (bb);
2164
2165 /* bb->aux holds position in copy sequence initialized by
2166 duplicate_loop_to_header_edge. */
2167 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2168 unrolling);
2169 bb->aux = 0;
2170 orig_insn = BB_HEAD (orig_bb);
2171 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2172 {
2173 next = NEXT_INSN (insn);
2174 if (!INSN_P (insn))
2175 continue;
2176
2177 while (!INSN_P (orig_insn))
2178 orig_insn = NEXT_INSN (orig_insn);
2179
2180 ivts_templ.insn = orig_insn;
2181 ve_templ.insn = orig_insn;
2182
2183 /* Apply splitting iv optimization. */
2184 if (opt_info->insns_to_split)
2185 {
2186 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2187
2188 if (ivts)
2189 {
2190 gcc_assert (GET_CODE (PATTERN (insn))
2191 == GET_CODE (PATTERN (orig_insn)));
2192
2193 if (!delta)
2194 insert_base_initialization (ivts, insn);
2195 split_iv (ivts, insn, delta);
2196 }
2197 }
2198 /* Apply variable expansion optimization. */
2199 if (unrolling && opt_info->insns_with_var_to_expand)
2200 {
2201 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2202 if (ves)
2203 {
2204 gcc_assert (GET_CODE (PATTERN (insn))
2205 == GET_CODE (PATTERN (orig_insn)));
2206 expand_var_during_unrolling (ves, insn);
2207 }
2208 }
2209 orig_insn = NEXT_INSN (orig_insn);
2210 }
2211 }
2212
2213 if (!rewrite_original_loop)
2214 return;
2215
2216 /* Initialize the variable expansions in the loop preheader
2217 and take care of combining them at the loop exit. */
2218 if (opt_info->insns_with_var_to_expand)
2219 {
2220 htab_traverse (opt_info->insns_with_var_to_expand,
2221 insert_var_expansion_initialization,
2222 opt_info->loop_preheader);
2223 htab_traverse (opt_info->insns_with_var_to_expand,
2224 combine_var_copies_in_loop_exit,
2225 opt_info->loop_exit);
2226 }
2227
2228 /* Rewrite also the original loop body. Find them as originals of the blocks
2229 in the last copied iteration, i.e. those that have
2230 get_bb_copy (get_bb_original (bb)) == bb. */
2231 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2232 {
2233 bb = BASIC_BLOCK (i);
2234 orig_bb = get_bb_original (bb);
2235 if (get_bb_copy (orig_bb) != bb)
2236 continue;
2237
2238 delta = determine_split_iv_delta (0, n_copies, unrolling);
2239 for (orig_insn = BB_HEAD (orig_bb);
2240 orig_insn != NEXT_INSN (BB_END (bb));
2241 orig_insn = next)
2242 {
2243 next = NEXT_INSN (orig_insn);
2244
2245 if (!INSN_P (orig_insn))
2246 continue;
2247
2248 ivts_templ.insn = orig_insn;
2249 if (opt_info->insns_to_split)
2250 {
2251 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2252 if (ivts)
2253 {
2254 if (!delta)
2255 insert_base_initialization (ivts, orig_insn);
2256 split_iv (ivts, orig_insn, delta);
2257 continue;
2258 }
2259 }
2260
2261 }
2262 }
2263 }
2264
2265 /* Release the data structures used for the variable expansion
2266 optimization. Callbacks for htab_traverse. */
2267
2268 static int
2269 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2270 {
2271 struct var_to_expand *ve = *slot;
2272
2273 VEC_free (rtx, heap, ve->var_expansions);
2274
2275 /* Continue traversing the hash table. */
2276 return 1;
2277 }
2278
2279 /* Release OPT_INFO. */
2280
2281 static void
2282 free_opt_info (struct opt_info *opt_info)
2283 {
2284 if (opt_info->insns_to_split)
2285 htab_delete (opt_info->insns_to_split);
2286 if (opt_info->insns_with_var_to_expand)
2287 {
2288 htab_traverse (opt_info->insns_with_var_to_expand,
2289 release_var_copies, NULL);
2290 htab_delete (opt_info->insns_with_var_to_expand);
2291 }
2292 free (opt_info);
2293 }