cfgloop.h, [...]: Update copyright.
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36 #include "varray.h"
37
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
45
46 What we do:
47
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
64
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
67
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
71 */
72
73 /* Information about induction variables to split. */
74
75 struct iv_to_split
76 {
77 rtx insn; /* The insn in that the induction variable occurs. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
86 };
87
88 /* Information about accumulators to expand. */
89
90 struct var_to_expand
91 {
92 rtx insn; /* The insn in that the variable expansion occurs. */
93 rtx reg; /* The accumulator which is expanded. */
94 varray_type var_expansions; /* The copies of the accumulator which is expanded. */
95 enum rtx_code op; /* The type of the accumulation - addition, subtraction
96 or multiplication. */
97 int expansion_count; /* Count the number of expansions generated so far. */
98 int reuse_expansion; /* The expansion we intend to reuse to expand
99 the accumulator. If REUSE_EXPANSION is 0 reuse
100 the original accumulator. Else use
101 var_expansions[REUSE_EXPANSION - 1]. */
102 };
103
104 /* Information about optimization applied in
105 the unrolled loop. */
106
107 struct opt_info
108 {
109 htab_t insns_to_split; /* A hashtable of insns to split. */
110 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
111 to expand. */
112 unsigned first_new_block; /* The first basic block that was
113 duplicated. */
114 basic_block loop_exit; /* The loop exit basic block. */
115 basic_block loop_preheader; /* The loop preheader basic block. */
116 };
117
118 static void decide_unrolling_and_peeling (struct loops *, int);
119 static void peel_loops_completely (struct loops *, int);
120 static void decide_peel_simple (struct loop *, int);
121 static void decide_peel_once_rolling (struct loop *, int);
122 static void decide_peel_completely (struct loop *, int);
123 static void decide_unroll_stupid (struct loop *, int);
124 static void decide_unroll_constant_iterations (struct loop *, int);
125 static void decide_unroll_runtime_iterations (struct loop *, int);
126 static void peel_loop_simple (struct loops *, struct loop *);
127 static void peel_loop_completely (struct loops *, struct loop *);
128 static void unroll_loop_stupid (struct loops *, struct loop *);
129 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
130 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
131 static struct opt_info *analyze_insns_in_loop (struct loop *);
132 static void opt_info_start_duplication (struct opt_info *);
133 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
134 static void free_opt_info (struct opt_info *);
135 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
136 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
137 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
138 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
139 static int insert_var_expansion_initialization (void **, void *);
140 static int combine_var_copies_in_loop_exit (void **, void *);
141 static int release_var_copies (void **, void *);
142 static rtx get_expansion (struct var_to_expand *);
143
144 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
145 void
146 unroll_and_peel_loops (struct loops *loops, int flags)
147 {
148 struct loop *loop, *next;
149 bool check;
150
151 /* First perform complete loop peeling (it is almost surely a win,
152 and affects parameters for further decision a lot). */
153 peel_loops_completely (loops, flags);
154
155 /* Now decide rest of unrolling and peeling. */
156 decide_unrolling_and_peeling (loops, flags);
157
158 loop = loops->tree_root;
159 while (loop->inner)
160 loop = loop->inner;
161
162 /* Scan the loops, inner ones first. */
163 while (loop != loops->tree_root)
164 {
165 if (loop->next)
166 {
167 next = loop->next;
168 while (next->inner)
169 next = next->inner;
170 }
171 else
172 next = loop->outer;
173
174 check = true;
175 /* And perform the appropriate transformations. */
176 switch (loop->lpt_decision.decision)
177 {
178 case LPT_PEEL_COMPLETELY:
179 /* Already done. */
180 gcc_unreachable ();
181 case LPT_PEEL_SIMPLE:
182 peel_loop_simple (loops, loop);
183 break;
184 case LPT_UNROLL_CONSTANT:
185 unroll_loop_constant_iterations (loops, loop);
186 break;
187 case LPT_UNROLL_RUNTIME:
188 unroll_loop_runtime_iterations (loops, loop);
189 break;
190 case LPT_UNROLL_STUPID:
191 unroll_loop_stupid (loops, loop);
192 break;
193 case LPT_NONE:
194 check = false;
195 break;
196 default:
197 gcc_unreachable ();
198 }
199 if (check)
200 {
201 #ifdef ENABLE_CHECKING
202 verify_dominators (CDI_DOMINATORS);
203 verify_loop_structure (loops);
204 #endif
205 }
206 loop = next;
207 }
208
209 iv_analysis_done ();
210 }
211
212 /* Check whether exit of the LOOP is at the end of loop body. */
213
214 static bool
215 loop_exit_at_end_p (struct loop *loop)
216 {
217 struct niter_desc *desc = get_simple_loop_desc (loop);
218 rtx insn;
219
220 if (desc->in_edge->dest != loop->latch)
221 return false;
222
223 /* Check that the latch is empty. */
224 FOR_BB_INSNS (loop->latch, insn)
225 {
226 if (INSN_P (insn))
227 return false;
228 }
229
230 return true;
231 }
232
233 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
234 static void
235 peel_loops_completely (struct loops *loops, int flags)
236 {
237 struct loop *loop, *next;
238
239 loop = loops->tree_root;
240 while (loop->inner)
241 loop = loop->inner;
242
243 while (loop != loops->tree_root)
244 {
245 if (loop->next)
246 {
247 next = loop->next;
248 while (next->inner)
249 next = next->inner;
250 }
251 else
252 next = loop->outer;
253
254 loop->lpt_decision.decision = LPT_NONE;
255
256 if (dump_file)
257 fprintf (dump_file,
258 "\n;; *** Considering loop %d for complete peeling ***\n",
259 loop->num);
260
261 loop->ninsns = num_loop_insns (loop);
262
263 decide_peel_once_rolling (loop, flags);
264 if (loop->lpt_decision.decision == LPT_NONE)
265 decide_peel_completely (loop, flags);
266
267 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
268 {
269 peel_loop_completely (loops, loop);
270 #ifdef ENABLE_CHECKING
271 verify_dominators (CDI_DOMINATORS);
272 verify_loop_structure (loops);
273 #endif
274 }
275 loop = next;
276 }
277 }
278
279 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
280 static void
281 decide_unrolling_and_peeling (struct loops *loops, int flags)
282 {
283 struct loop *loop = loops->tree_root, *next;
284
285 while (loop->inner)
286 loop = loop->inner;
287
288 /* Scan the loops, inner ones first. */
289 while (loop != loops->tree_root)
290 {
291 if (loop->next)
292 {
293 next = loop->next;
294 while (next->inner)
295 next = next->inner;
296 }
297 else
298 next = loop->outer;
299
300 loop->lpt_decision.decision = LPT_NONE;
301
302 if (dump_file)
303 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
304
305 /* Do not peel cold areas. */
306 if (!maybe_hot_bb_p (loop->header))
307 {
308 if (dump_file)
309 fprintf (dump_file, ";; Not considering loop, cold area\n");
310 loop = next;
311 continue;
312 }
313
314 /* Can the loop be manipulated? */
315 if (!can_duplicate_loop_p (loop))
316 {
317 if (dump_file)
318 fprintf (dump_file,
319 ";; Not considering loop, cannot duplicate\n");
320 loop = next;
321 continue;
322 }
323
324 /* Skip non-innermost loops. */
325 if (loop->inner)
326 {
327 if (dump_file)
328 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
329 loop = next;
330 continue;
331 }
332
333 loop->ninsns = num_loop_insns (loop);
334 loop->av_ninsns = average_num_loop_insns (loop);
335
336 /* Try transformations one by one in decreasing order of
337 priority. */
338
339 decide_unroll_constant_iterations (loop, flags);
340 if (loop->lpt_decision.decision == LPT_NONE)
341 decide_unroll_runtime_iterations (loop, flags);
342 if (loop->lpt_decision.decision == LPT_NONE)
343 decide_unroll_stupid (loop, flags);
344 if (loop->lpt_decision.decision == LPT_NONE)
345 decide_peel_simple (loop, flags);
346
347 loop = next;
348 }
349 }
350
351 /* Decide whether the LOOP is once rolling and suitable for complete
352 peeling. */
353 static void
354 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
355 {
356 struct niter_desc *desc;
357
358 if (dump_file)
359 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
360
361 /* Is the loop small enough? */
362 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
363 {
364 if (dump_file)
365 fprintf (dump_file, ";; Not considering loop, is too big\n");
366 return;
367 }
368
369 /* Check for simple loops. */
370 desc = get_simple_loop_desc (loop);
371
372 /* Check number of iterations. */
373 if (!desc->simple_p
374 || desc->assumptions
375 || !desc->const_iter
376 || desc->niter != 0)
377 {
378 if (dump_file)
379 fprintf (dump_file,
380 ";; Unable to prove that the loop rolls exactly once\n");
381 return;
382 }
383
384 /* Success. */
385 if (dump_file)
386 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
387 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
388 }
389
390 /* Decide whether the LOOP is suitable for complete peeling. */
391 static void
392 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
393 {
394 unsigned npeel;
395 struct niter_desc *desc;
396
397 if (dump_file)
398 fprintf (dump_file, "\n;; Considering peeling completely\n");
399
400 /* Skip non-innermost loops. */
401 if (loop->inner)
402 {
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
405 return;
406 }
407
408 /* Do not peel cold areas. */
409 if (!maybe_hot_bb_p (loop->header))
410 {
411 if (dump_file)
412 fprintf (dump_file, ";; Not considering loop, cold area\n");
413 return;
414 }
415
416 /* Can the loop be manipulated? */
417 if (!can_duplicate_loop_p (loop))
418 {
419 if (dump_file)
420 fprintf (dump_file,
421 ";; Not considering loop, cannot duplicate\n");
422 return;
423 }
424
425 /* npeel = number of iterations to peel. */
426 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
427 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
428 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
429
430 /* Is the loop small enough? */
431 if (!npeel)
432 {
433 if (dump_file)
434 fprintf (dump_file, ";; Not considering loop, is too big\n");
435 return;
436 }
437
438 /* Check for simple loops. */
439 desc = get_simple_loop_desc (loop);
440
441 /* Check number of iterations. */
442 if (!desc->simple_p
443 || desc->assumptions
444 || !desc->const_iter)
445 {
446 if (dump_file)
447 fprintf (dump_file,
448 ";; Unable to prove that the loop iterates constant times\n");
449 return;
450 }
451
452 if (desc->niter > npeel - 1)
453 {
454 if (dump_file)
455 {
456 fprintf (dump_file,
457 ";; Not peeling loop completely, rolls too much (");
458 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
459 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
460 }
461 return;
462 }
463
464 /* Success. */
465 if (dump_file)
466 fprintf (dump_file, ";; Decided to peel loop completely\n");
467 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
468 }
469
470 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
471 completely. The transformation done:
472
473 for (i = 0; i < 4; i++)
474 body;
475
476 ==>
477
478 i = 0;
479 body; i++;
480 body; i++;
481 body; i++;
482 body; i++;
483 */
484 static void
485 peel_loop_completely (struct loops *loops, struct loop *loop)
486 {
487 sbitmap wont_exit;
488 unsigned HOST_WIDE_INT npeel;
489 unsigned n_remove_edges, i;
490 edge *remove_edges, ein;
491 struct niter_desc *desc = get_simple_loop_desc (loop);
492 struct opt_info *opt_info = NULL;
493
494 npeel = desc->niter;
495
496 if (npeel)
497 {
498 wont_exit = sbitmap_alloc (npeel + 1);
499 sbitmap_ones (wont_exit);
500 RESET_BIT (wont_exit, 0);
501 if (desc->noloop_assumptions)
502 RESET_BIT (wont_exit, 1);
503
504 remove_edges = xcalloc (npeel, sizeof (edge));
505 n_remove_edges = 0;
506
507 if (flag_split_ivs_in_unroller)
508 opt_info = analyze_insns_in_loop (loop);
509
510 opt_info_start_duplication (opt_info);
511 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
512 loops, npeel,
513 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
514 DLTHE_FLAG_UPDATE_FREQ))
515 abort ();
516
517 free (wont_exit);
518
519 if (opt_info)
520 {
521 apply_opt_in_copies (opt_info, npeel, false, true);
522 free_opt_info (opt_info);
523 }
524
525 /* Remove the exit edges. */
526 for (i = 0; i < n_remove_edges; i++)
527 remove_path (loops, remove_edges[i]);
528 free (remove_edges);
529 }
530
531 ein = desc->in_edge;
532 free_simple_loop_desc (loop);
533
534 /* Now remove the unreachable part of the last iteration and cancel
535 the loop. */
536 remove_path (loops, ein);
537
538 if (dump_file)
539 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
540 }
541
542 /* Decide whether to unroll LOOP iterating constant number of times
543 and how much. */
544
545 static void
546 decide_unroll_constant_iterations (struct loop *loop, int flags)
547 {
548 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
549 struct niter_desc *desc;
550
551 if (!(flags & UAP_UNROLL))
552 {
553 /* We were not asked to, just return back silently. */
554 return;
555 }
556
557 if (dump_file)
558 fprintf (dump_file,
559 "\n;; Considering unrolling loop with constant "
560 "number of iterations\n");
561
562 /* nunroll = total number of copies of the original loop body in
563 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
564 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
565 nunroll_by_av
566 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
567 if (nunroll > nunroll_by_av)
568 nunroll = nunroll_by_av;
569 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
570 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
571
572 /* Skip big loops. */
573 if (nunroll <= 1)
574 {
575 if (dump_file)
576 fprintf (dump_file, ";; Not considering loop, is too big\n");
577 return;
578 }
579
580 /* Check for simple loops. */
581 desc = get_simple_loop_desc (loop);
582
583 /* Check number of iterations. */
584 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
585 {
586 if (dump_file)
587 fprintf (dump_file,
588 ";; Unable to prove that the loop iterates constant times\n");
589 return;
590 }
591
592 /* Check whether the loop rolls enough to consider. */
593 if (desc->niter < 2 * nunroll)
594 {
595 if (dump_file)
596 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
597 return;
598 }
599
600 /* Success; now compute number of iterations to unroll. We alter
601 nunroll so that as few as possible copies of loop body are
602 necessary, while still not decreasing the number of unrollings
603 too much (at most by 1). */
604 best_copies = 2 * nunroll + 10;
605
606 i = 2 * nunroll + 2;
607 if (i - 1 >= desc->niter)
608 i = desc->niter - 2;
609
610 for (; i >= nunroll - 1; i--)
611 {
612 unsigned exit_mod = desc->niter % (i + 1);
613
614 if (!loop_exit_at_end_p (loop))
615 n_copies = exit_mod + i + 1;
616 else if (exit_mod != (unsigned) i
617 || desc->noloop_assumptions != NULL_RTX)
618 n_copies = exit_mod + i + 2;
619 else
620 n_copies = i + 1;
621
622 if (n_copies < best_copies)
623 {
624 best_copies = n_copies;
625 best_unroll = i;
626 }
627 }
628
629 if (dump_file)
630 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
631 best_unroll + 1, best_copies, nunroll);
632
633 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
634 loop->lpt_decision.times = best_unroll;
635
636 if (dump_file)
637 fprintf (dump_file,
638 ";; Decided to unroll the constant times rolling loop, %d times.\n",
639 loop->lpt_decision.times);
640 }
641
642 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
643 times. The transformation does this:
644
645 for (i = 0; i < 102; i++)
646 body;
647
648 ==>
649
650 i = 0;
651 body; i++;
652 body; i++;
653 while (i < 102)
654 {
655 body; i++;
656 body; i++;
657 body; i++;
658 body; i++;
659 }
660 */
661 static void
662 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
663 {
664 unsigned HOST_WIDE_INT niter;
665 unsigned exit_mod;
666 sbitmap wont_exit;
667 unsigned n_remove_edges, i;
668 edge *remove_edges;
669 unsigned max_unroll = loop->lpt_decision.times;
670 struct niter_desc *desc = get_simple_loop_desc (loop);
671 bool exit_at_end = loop_exit_at_end_p (loop);
672 struct opt_info *opt_info = NULL;
673
674 niter = desc->niter;
675
676 /* Should not get here (such loop should be peeled instead). */
677 gcc_assert (niter > max_unroll + 1);
678
679 exit_mod = niter % (max_unroll + 1);
680
681 wont_exit = sbitmap_alloc (max_unroll + 1);
682 sbitmap_ones (wont_exit);
683
684 remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
685 n_remove_edges = 0;
686 if (flag_split_ivs_in_unroller
687 || flag_variable_expansion_in_unroller)
688 opt_info = analyze_insns_in_loop (loop);
689
690 if (!exit_at_end)
691 {
692 /* The exit is not at the end of the loop; leave exit test
693 in the first copy, so that the loops that start with test
694 of exit condition have continuous body after unrolling. */
695
696 if (dump_file)
697 fprintf (dump_file, ";; Condition on beginning of loop.\n");
698
699 /* Peel exit_mod iterations. */
700 RESET_BIT (wont_exit, 0);
701 if (desc->noloop_assumptions)
702 RESET_BIT (wont_exit, 1);
703
704 if (exit_mod)
705 {
706 opt_info_start_duplication (opt_info);
707 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
708 loops, exit_mod,
709 wont_exit, desc->out_edge,
710 remove_edges, &n_remove_edges,
711 DLTHE_FLAG_UPDATE_FREQ))
712 abort ();
713
714 if (opt_info && exit_mod > 1)
715 apply_opt_in_copies (opt_info, exit_mod, false, false);
716
717 desc->noloop_assumptions = NULL_RTX;
718 desc->niter -= exit_mod;
719 desc->niter_max -= exit_mod;
720 }
721
722 SET_BIT (wont_exit, 1);
723 }
724 else
725 {
726 /* Leave exit test in last copy, for the same reason as above if
727 the loop tests the condition at the end of loop body. */
728
729 if (dump_file)
730 fprintf (dump_file, ";; Condition on end of loop.\n");
731
732 /* We know that niter >= max_unroll + 2; so we do not need to care of
733 case when we would exit before reaching the loop. So just peel
734 exit_mod + 1 iterations. */
735 if (exit_mod != max_unroll
736 || desc->noloop_assumptions)
737 {
738 RESET_BIT (wont_exit, 0);
739 if (desc->noloop_assumptions)
740 RESET_BIT (wont_exit, 1);
741
742 opt_info_start_duplication (opt_info);
743 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
744 loops, exit_mod + 1,
745 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
746 DLTHE_FLAG_UPDATE_FREQ))
747 abort ();
748
749 if (opt_info && exit_mod > 0)
750 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
751
752 desc->niter -= exit_mod + 1;
753 desc->niter_max -= exit_mod + 1;
754 desc->noloop_assumptions = NULL_RTX;
755
756 SET_BIT (wont_exit, 0);
757 SET_BIT (wont_exit, 1);
758 }
759
760 RESET_BIT (wont_exit, max_unroll);
761 }
762
763 /* Now unroll the loop. */
764
765 opt_info_start_duplication (opt_info);
766 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
767 loops, max_unroll,
768 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
769 DLTHE_FLAG_UPDATE_FREQ))
770 abort ();
771
772 if (opt_info)
773 {
774 apply_opt_in_copies (opt_info, max_unroll, true, true);
775 free_opt_info (opt_info);
776 }
777
778 free (wont_exit);
779
780 if (exit_at_end)
781 {
782 basic_block exit_block = desc->in_edge->src->rbi->copy;
783 /* Find a new in and out edge; they are in the last copy we have made. */
784
785 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
786 {
787 desc->out_edge = EDGE_SUCC (exit_block, 0);
788 desc->in_edge = EDGE_SUCC (exit_block, 1);
789 }
790 else
791 {
792 desc->out_edge = EDGE_SUCC (exit_block, 1);
793 desc->in_edge = EDGE_SUCC (exit_block, 0);
794 }
795 }
796
797 desc->niter /= max_unroll + 1;
798 desc->niter_max /= max_unroll + 1;
799 desc->niter_expr = GEN_INT (desc->niter);
800
801 /* Remove the edges. */
802 for (i = 0; i < n_remove_edges; i++)
803 remove_path (loops, remove_edges[i]);
804 free (remove_edges);
805
806 if (dump_file)
807 fprintf (dump_file,
808 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
809 max_unroll, num_loop_insns (loop));
810 }
811
812 /* Decide whether to unroll LOOP iterating runtime computable number of times
813 and how much. */
814 static void
815 decide_unroll_runtime_iterations (struct loop *loop, int flags)
816 {
817 unsigned nunroll, nunroll_by_av, i;
818 struct niter_desc *desc;
819
820 if (!(flags & UAP_UNROLL))
821 {
822 /* We were not asked to, just return back silently. */
823 return;
824 }
825
826 if (dump_file)
827 fprintf (dump_file,
828 "\n;; Considering unrolling loop with runtime "
829 "computable number of iterations\n");
830
831 /* nunroll = total number of copies of the original loop body in
832 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
833 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
834 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
835 if (nunroll > nunroll_by_av)
836 nunroll = nunroll_by_av;
837 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
838 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
839
840 /* Skip big loops. */
841 if (nunroll <= 1)
842 {
843 if (dump_file)
844 fprintf (dump_file, ";; Not considering loop, is too big\n");
845 return;
846 }
847
848 /* Check for simple loops. */
849 desc = get_simple_loop_desc (loop);
850
851 /* Check simpleness. */
852 if (!desc->simple_p || desc->assumptions)
853 {
854 if (dump_file)
855 fprintf (dump_file,
856 ";; Unable to prove that the number of iterations "
857 "can be counted in runtime\n");
858 return;
859 }
860
861 if (desc->const_iter)
862 {
863 if (dump_file)
864 fprintf (dump_file, ";; Loop iterates constant times\n");
865 return;
866 }
867
868 /* If we have profile feedback, check whether the loop rolls. */
869 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
870 {
871 if (dump_file)
872 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
873 return;
874 }
875
876 /* Success; now force nunroll to be power of 2, as we are unable to
877 cope with overflows in computation of number of iterations. */
878 for (i = 1; 2 * i <= nunroll; i *= 2)
879 continue;
880
881 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
882 loop->lpt_decision.times = i - 1;
883
884 if (dump_file)
885 fprintf (dump_file,
886 ";; Decided to unroll the runtime computable "
887 "times rolling loop, %d times.\n",
888 loop->lpt_decision.times);
889 }
890
891 /* Unroll LOOP for that we are able to count number of iterations in runtime
892 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
893 extra care for case n < 0):
894
895 for (i = 0; i < n; i++)
896 body;
897
898 ==>
899
900 i = 0;
901 mod = n % 4;
902
903 switch (mod)
904 {
905 case 3:
906 body; i++;
907 case 2:
908 body; i++;
909 case 1:
910 body; i++;
911 case 0: ;
912 }
913
914 while (i < n)
915 {
916 body; i++;
917 body; i++;
918 body; i++;
919 body; i++;
920 }
921 */
922 static void
923 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
924 {
925 rtx old_niter, niter, init_code, branch_code, tmp;
926 unsigned i, j, p;
927 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
928 unsigned n_dom_bbs;
929 sbitmap wont_exit;
930 int may_exit_copy;
931 unsigned n_peel, n_remove_edges;
932 edge *remove_edges, e;
933 bool extra_zero_check, last_may_exit;
934 unsigned max_unroll = loop->lpt_decision.times;
935 struct niter_desc *desc = get_simple_loop_desc (loop);
936 bool exit_at_end = loop_exit_at_end_p (loop);
937 struct opt_info *opt_info = NULL;
938
939 if (flag_split_ivs_in_unroller
940 || flag_variable_expansion_in_unroller)
941 opt_info = analyze_insns_in_loop (loop);
942
943 /* Remember blocks whose dominators will have to be updated. */
944 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
945 n_dom_bbs = 0;
946
947 body = get_loop_body (loop);
948 for (i = 0; i < loop->num_nodes; i++)
949 {
950 unsigned nldom;
951 basic_block *ldom;
952
953 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
954 for (j = 0; j < nldom; j++)
955 if (!flow_bb_inside_loop_p (loop, ldom[j]))
956 dom_bbs[n_dom_bbs++] = ldom[j];
957
958 free (ldom);
959 }
960 free (body);
961
962 if (!exit_at_end)
963 {
964 /* Leave exit in first copy (for explanation why see comment in
965 unroll_loop_constant_iterations). */
966 may_exit_copy = 0;
967 n_peel = max_unroll - 1;
968 extra_zero_check = true;
969 last_may_exit = false;
970 }
971 else
972 {
973 /* Leave exit in last copy (for explanation why see comment in
974 unroll_loop_constant_iterations). */
975 may_exit_copy = max_unroll;
976 n_peel = max_unroll;
977 extra_zero_check = false;
978 last_may_exit = true;
979 }
980
981 /* Get expression for number of iterations. */
982 start_sequence ();
983 old_niter = niter = gen_reg_rtx (desc->mode);
984 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
985 if (tmp != niter)
986 emit_move_insn (niter, tmp);
987
988 /* Count modulo by ANDing it with max_unroll; we use the fact that
989 the number of unrollings is a power of two, and thus this is correct
990 even if there is overflow in the computation. */
991 niter = expand_simple_binop (desc->mode, AND,
992 niter,
993 GEN_INT (max_unroll),
994 NULL_RTX, 0, OPTAB_LIB_WIDEN);
995
996 init_code = get_insns ();
997 end_sequence ();
998
999 /* Precondition the loop. */
1000 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1001
1002 remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
1003 n_remove_edges = 0;
1004
1005 wont_exit = sbitmap_alloc (max_unroll + 2);
1006
1007 /* Peel the first copy of loop body (almost always we must leave exit test
1008 here; the only exception is when we have extra zero check and the number
1009 of iterations is reliable. Also record the place of (possible) extra
1010 zero check. */
1011 sbitmap_zero (wont_exit);
1012 if (extra_zero_check
1013 && !desc->noloop_assumptions)
1014 SET_BIT (wont_exit, 1);
1015 ezc_swtch = loop_preheader_edge (loop)->src;
1016 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1017 loops, 1,
1018 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1019 DLTHE_FLAG_UPDATE_FREQ))
1020 abort ();
1021
1022 /* Record the place where switch will be built for preconditioning. */
1023 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1024 NULL_RTX);
1025
1026 for (i = 0; i < n_peel; i++)
1027 {
1028 /* Peel the copy. */
1029 sbitmap_zero (wont_exit);
1030 if (i != n_peel - 1 || !last_may_exit)
1031 SET_BIT (wont_exit, 1);
1032 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1033 loops, 1,
1034 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1035 DLTHE_FLAG_UPDATE_FREQ))
1036 abort ();
1037
1038 /* Create item for switch. */
1039 j = n_peel - i - (extra_zero_check ? 0 : 1);
1040 p = REG_BR_PROB_BASE / (i + 2);
1041
1042 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1043 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1044 block_label (preheader), p, NULL_RTX);
1045
1046 swtch = loop_split_edge_with (EDGE_PRED (swtch, 0), branch_code);
1047 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1048 EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
1049 e = make_edge (swtch, preheader,
1050 EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
1051 e->probability = p;
1052 }
1053
1054 if (extra_zero_check)
1055 {
1056 /* Add branch for zero iterations. */
1057 p = REG_BR_PROB_BASE / (max_unroll + 1);
1058 swtch = ezc_swtch;
1059 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1060 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1061 block_label (preheader), p, NULL_RTX);
1062
1063 swtch = loop_split_edge_with (EDGE_SUCC (swtch, 0), branch_code);
1064 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1065 EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
1066 e = make_edge (swtch, preheader,
1067 EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
1068 e->probability = p;
1069 }
1070
1071 /* Recount dominators for outer blocks. */
1072 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1073
1074 /* And unroll loop. */
1075
1076 sbitmap_ones (wont_exit);
1077 RESET_BIT (wont_exit, may_exit_copy);
1078 opt_info_start_duplication (opt_info);
1079
1080 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1081 loops, max_unroll,
1082 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1083 DLTHE_FLAG_UPDATE_FREQ))
1084 abort ();
1085
1086 if (opt_info)
1087 {
1088 apply_opt_in_copies (opt_info, max_unroll, true, true);
1089 free_opt_info (opt_info);
1090 }
1091
1092 free (wont_exit);
1093
1094 if (exit_at_end)
1095 {
1096 basic_block exit_block = desc->in_edge->src->rbi->copy;
1097 /* Find a new in and out edge; they are in the last copy we have made. */
1098
1099 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1100 {
1101 desc->out_edge = EDGE_SUCC (exit_block, 0);
1102 desc->in_edge = EDGE_SUCC (exit_block, 1);
1103 }
1104 else
1105 {
1106 desc->out_edge = EDGE_SUCC (exit_block, 1);
1107 desc->in_edge = EDGE_SUCC (exit_block, 0);
1108 }
1109 }
1110
1111 /* Remove the edges. */
1112 for (i = 0; i < n_remove_edges; i++)
1113 remove_path (loops, remove_edges[i]);
1114 free (remove_edges);
1115
1116 /* We must be careful when updating the number of iterations due to
1117 preconditioning and the fact that the value must be valid at entry
1118 of the loop. After passing through the above code, we see that
1119 the correct new number of iterations is this: */
1120 gcc_assert (!desc->const_iter);
1121 desc->niter_expr =
1122 simplify_gen_binary (UDIV, desc->mode, old_niter, GEN_INT (max_unroll + 1));
1123 desc->niter_max /= max_unroll + 1;
1124 if (exit_at_end)
1125 {
1126 desc->niter_expr =
1127 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1128 desc->noloop_assumptions = NULL_RTX;
1129 desc->niter_max--;
1130 }
1131
1132 if (dump_file)
1133 fprintf (dump_file,
1134 ";; Unrolled loop %d times, counting # of iterations "
1135 "in runtime, %i insns\n",
1136 max_unroll, num_loop_insns (loop));
1137 }
1138
1139 /* Decide whether to simply peel LOOP and how much. */
1140 static void
1141 decide_peel_simple (struct loop *loop, int flags)
1142 {
1143 unsigned npeel;
1144 struct niter_desc *desc;
1145
1146 if (!(flags & UAP_PEEL))
1147 {
1148 /* We were not asked to, just return back silently. */
1149 return;
1150 }
1151
1152 if (dump_file)
1153 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1154
1155 /* npeel = number of iterations to peel. */
1156 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1157 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1158 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1159
1160 /* Skip big loops. */
1161 if (!npeel)
1162 {
1163 if (dump_file)
1164 fprintf (dump_file, ";; Not considering loop, is too big\n");
1165 return;
1166 }
1167
1168 /* Check for simple loops. */
1169 desc = get_simple_loop_desc (loop);
1170
1171 /* Check number of iterations. */
1172 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1173 {
1174 if (dump_file)
1175 fprintf (dump_file, ";; Loop iterates constant times\n");
1176 return;
1177 }
1178
1179 /* Do not simply peel loops with branches inside -- it increases number
1180 of mispredicts. */
1181 if (num_loop_branches (loop) > 1)
1182 {
1183 if (dump_file)
1184 fprintf (dump_file, ";; Not peeling, contains branches\n");
1185 return;
1186 }
1187
1188 if (loop->header->count)
1189 {
1190 unsigned niter = expected_loop_iterations (loop);
1191 if (niter + 1 > npeel)
1192 {
1193 if (dump_file)
1194 {
1195 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1196 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1197 (HOST_WIDEST_INT) (niter + 1));
1198 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1199 npeel);
1200 }
1201 return;
1202 }
1203 npeel = niter + 1;
1204 }
1205 else
1206 {
1207 /* For now we have no good heuristics to decide whether loop peeling
1208 will be effective, so disable it. */
1209 if (dump_file)
1210 fprintf (dump_file,
1211 ";; Not peeling loop, no evidence it will be profitable\n");
1212 return;
1213 }
1214
1215 /* Success. */
1216 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1217 loop->lpt_decision.times = npeel;
1218
1219 if (dump_file)
1220 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1221 loop->lpt_decision.times);
1222 }
1223
1224 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1225 while (cond)
1226 body;
1227
1228 ==>
1229
1230 if (!cond) goto end;
1231 body;
1232 if (!cond) goto end;
1233 body;
1234 while (cond)
1235 body;
1236 end: ;
1237 */
1238 static void
1239 peel_loop_simple (struct loops *loops, struct loop *loop)
1240 {
1241 sbitmap wont_exit;
1242 unsigned npeel = loop->lpt_decision.times;
1243 struct niter_desc *desc = get_simple_loop_desc (loop);
1244 struct opt_info *opt_info = NULL;
1245
1246 if (flag_split_ivs_in_unroller && npeel > 1)
1247 opt_info = analyze_insns_in_loop (loop);
1248
1249 wont_exit = sbitmap_alloc (npeel + 1);
1250 sbitmap_zero (wont_exit);
1251
1252 opt_info_start_duplication (opt_info);
1253
1254 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1255 loops, npeel, wont_exit, NULL, NULL, NULL,
1256 DLTHE_FLAG_UPDATE_FREQ))
1257 abort ();
1258
1259 free (wont_exit);
1260
1261 if (opt_info)
1262 {
1263 apply_opt_in_copies (opt_info, npeel, false, false);
1264 free_opt_info (opt_info);
1265 }
1266
1267 if (desc->simple_p)
1268 {
1269 if (desc->const_iter)
1270 {
1271 desc->niter -= npeel;
1272 desc->niter_expr = GEN_INT (desc->niter);
1273 desc->noloop_assumptions = NULL_RTX;
1274 }
1275 else
1276 {
1277 /* We cannot just update niter_expr, as its value might be clobbered
1278 inside loop. We could handle this by counting the number into
1279 temporary just like we do in runtime unrolling, but it does not
1280 seem worthwhile. */
1281 free_simple_loop_desc (loop);
1282 }
1283 }
1284 if (dump_file)
1285 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1286 }
1287
1288 /* Decide whether to unroll LOOP stupidly and how much. */
1289 static void
1290 decide_unroll_stupid (struct loop *loop, int flags)
1291 {
1292 unsigned nunroll, nunroll_by_av, i;
1293 struct niter_desc *desc;
1294
1295 if (!(flags & UAP_UNROLL_ALL))
1296 {
1297 /* We were not asked to, just return back silently. */
1298 return;
1299 }
1300
1301 if (dump_file)
1302 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1303
1304 /* nunroll = total number of copies of the original loop body in
1305 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1306 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1307 nunroll_by_av
1308 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1309 if (nunroll > nunroll_by_av)
1310 nunroll = nunroll_by_av;
1311 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1312 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1313
1314 /* Skip big loops. */
1315 if (nunroll <= 1)
1316 {
1317 if (dump_file)
1318 fprintf (dump_file, ";; Not considering loop, is too big\n");
1319 return;
1320 }
1321
1322 /* Check for simple loops. */
1323 desc = get_simple_loop_desc (loop);
1324
1325 /* Check simpleness. */
1326 if (desc->simple_p && !desc->assumptions)
1327 {
1328 if (dump_file)
1329 fprintf (dump_file, ";; The loop is simple\n");
1330 return;
1331 }
1332
1333 /* Do not unroll loops with branches inside -- it increases number
1334 of mispredicts. */
1335 if (num_loop_branches (loop) > 1)
1336 {
1337 if (dump_file)
1338 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1339 return;
1340 }
1341
1342 /* If we have profile feedback, check whether the loop rolls. */
1343 if (loop->header->count
1344 && expected_loop_iterations (loop) < 2 * nunroll)
1345 {
1346 if (dump_file)
1347 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1348 return;
1349 }
1350
1351 /* Success. Now force nunroll to be power of 2, as it seems that this
1352 improves results (partially because of better alignments, partially
1353 because of some dark magic). */
1354 for (i = 1; 2 * i <= nunroll; i *= 2)
1355 continue;
1356
1357 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1358 loop->lpt_decision.times = i - 1;
1359
1360 if (dump_file)
1361 fprintf (dump_file,
1362 ";; Decided to unroll the loop stupidly, %d times.\n",
1363 loop->lpt_decision.times);
1364 }
1365
1366 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1367 while (cond)
1368 body;
1369
1370 ==>
1371
1372 while (cond)
1373 {
1374 body;
1375 if (!cond) break;
1376 body;
1377 if (!cond) break;
1378 body;
1379 if (!cond) break;
1380 body;
1381 }
1382 */
1383 static void
1384 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1385 {
1386 sbitmap wont_exit;
1387 unsigned nunroll = loop->lpt_decision.times;
1388 struct niter_desc *desc = get_simple_loop_desc (loop);
1389 struct opt_info *opt_info = NULL;
1390
1391 if (flag_split_ivs_in_unroller
1392 || flag_variable_expansion_in_unroller)
1393 opt_info = analyze_insns_in_loop (loop);
1394
1395
1396 wont_exit = sbitmap_alloc (nunroll + 1);
1397 sbitmap_zero (wont_exit);
1398 opt_info_start_duplication (opt_info);
1399
1400 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1401 loops, nunroll, wont_exit, NULL, NULL, NULL,
1402 DLTHE_FLAG_UPDATE_FREQ))
1403 abort ();
1404
1405 if (opt_info)
1406 {
1407 apply_opt_in_copies (opt_info, nunroll, true, true);
1408 free_opt_info (opt_info);
1409 }
1410
1411 free (wont_exit);
1412
1413 if (desc->simple_p)
1414 {
1415 /* We indeed may get here provided that there are nontrivial assumptions
1416 for a loop to be really simple. We could update the counts, but the
1417 problem is that we are unable to decide which exit will be taken
1418 (not really true in case the number of iterations is constant,
1419 but noone will do anything with this information, so we do not
1420 worry about it). */
1421 desc->simple_p = false;
1422 }
1423
1424 if (dump_file)
1425 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1426 nunroll, num_loop_insns (loop));
1427 }
1428
1429 /* A hash function for information about insns to split. */
1430
1431 static hashval_t
1432 si_info_hash (const void *ivts)
1433 {
1434 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1435 }
1436
1437 /* An equality functions for information about insns to split. */
1438
1439 static int
1440 si_info_eq (const void *ivts1, const void *ivts2)
1441 {
1442 const struct iv_to_split *i1 = ivts1;
1443 const struct iv_to_split *i2 = ivts2;
1444
1445 return i1->insn == i2->insn;
1446 }
1447
1448 /* Return a hash for VES, which is really a "var_to_expand *". */
1449
1450 static hashval_t
1451 ve_info_hash (const void *ves)
1452 {
1453 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1454 }
1455
1456 /* Return true if IVTS1 and IVTS2 (which are really both of type
1457 "var_to_expand *") refer to the same instruction. */
1458
1459 static int
1460 ve_info_eq (const void *ivts1, const void *ivts2)
1461 {
1462 const struct var_to_expand *i1 = ivts1;
1463 const struct var_to_expand *i2 = ivts2;
1464
1465 return i1->insn == i2->insn;
1466 }
1467
1468 /* Returns true if REG is referenced in one insn in LOOP. */
1469
1470 bool
1471 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1472 {
1473 basic_block *body, bb;
1474 unsigned i;
1475 int count_ref = 0;
1476 rtx insn;
1477
1478 body = get_loop_body (loop);
1479 for (i = 0; i < loop->num_nodes; i++)
1480 {
1481 bb = body[i];
1482
1483 FOR_BB_INSNS (bb, insn)
1484 {
1485 if (rtx_referenced_p (reg, insn))
1486 count_ref++;
1487 }
1488 }
1489 return (count_ref == 1);
1490 }
1491
1492 /* Determine whether INSN contains an accumulator
1493 which can be expanded into separate copies,
1494 one for each copy of the LOOP body.
1495
1496 for (i = 0 ; i < n; i++)
1497 sum += a[i];
1498
1499 ==>
1500
1501 sum += a[i]
1502 ....
1503 i = i+1;
1504 sum1 += a[i]
1505 ....
1506 i = i+1
1507 sum2 += a[i];
1508 ....
1509
1510 Return NULL if INSN contains no opportunity for expansion of accumulator.
1511 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1512 information and return a pointer to it.
1513 */
1514
1515 static struct var_to_expand *
1516 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1517 {
1518 rtx set, dest, src, op1;
1519 struct var_to_expand *ves;
1520 enum machine_mode mode1, mode2;
1521
1522 set = single_set (insn);
1523 if (!set)
1524 return NULL;
1525
1526 dest = SET_DEST (set);
1527 src = SET_SRC (set);
1528
1529 if (GET_CODE (src) != PLUS
1530 && GET_CODE (src) != MINUS
1531 && GET_CODE (src) != MULT)
1532 return NULL;
1533
1534 if (!XEXP (src, 0))
1535 return NULL;
1536
1537 op1 = XEXP (src, 0);
1538
1539 if (!REG_P (dest)
1540 && !(GET_CODE (dest) == SUBREG
1541 && REG_P (SUBREG_REG (dest))))
1542 return NULL;
1543
1544 if (!rtx_equal_p (dest, op1))
1545 return NULL;
1546
1547 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1548 return NULL;
1549
1550 if (rtx_referenced_p (dest, XEXP (src, 1)))
1551 return NULL;
1552
1553 mode1 = GET_MODE (dest);
1554 mode2 = GET_MODE (XEXP (src, 1));
1555 if ((FLOAT_MODE_P (mode1)
1556 || FLOAT_MODE_P (mode2))
1557 && !flag_unsafe_math_optimizations)
1558 return NULL;
1559
1560 /* Record the accumulator to expand. */
1561 ves = xmalloc (sizeof (struct var_to_expand));
1562 ves->insn = insn;
1563 VARRAY_RTX_INIT (ves->var_expansions, 1, "var_expansions");
1564 ves->reg = copy_rtx (dest);
1565 ves->op = GET_CODE (src);
1566 ves->expansion_count = 0;
1567 ves->reuse_expansion = 0;
1568 return ves;
1569 }
1570
1571 /* Determine whether there is an induction variable in INSN that
1572 we would like to split during unrolling.
1573
1574 I.e. replace
1575
1576 i = i + 1;
1577 ...
1578 i = i + 1;
1579 ...
1580 i = i + 1;
1581 ...
1582
1583 type chains by
1584
1585 i0 = i + 1
1586 ...
1587 i = i0 + 1
1588 ...
1589 i = i0 + 2
1590 ...
1591
1592 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1593 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1594 pointer to it. */
1595
1596 static struct iv_to_split *
1597 analyze_iv_to_split_insn (rtx insn)
1598 {
1599 rtx set, dest;
1600 struct rtx_iv iv;
1601 struct iv_to_split *ivts;
1602
1603 /* For now we just split the basic induction variables. Later this may be
1604 extended for example by selecting also addresses of memory references. */
1605 set = single_set (insn);
1606 if (!set)
1607 return NULL;
1608
1609 dest = SET_DEST (set);
1610 if (!REG_P (dest))
1611 return NULL;
1612
1613 if (!biv_p (insn, dest))
1614 return NULL;
1615
1616 if (!iv_analyze (insn, dest, &iv))
1617 abort ();
1618
1619 if (iv.step == const0_rtx
1620 || iv.mode != iv.extend_mode)
1621 return NULL;
1622
1623 /* Record the insn to split. */
1624 ivts = xmalloc (sizeof (struct iv_to_split));
1625 ivts->insn = insn;
1626 ivts->base_var = NULL_RTX;
1627 ivts->step = iv.step;
1628 ivts->n_loc = 1;
1629 ivts->loc[0] = 1;
1630
1631 return ivts;
1632 }
1633
1634 /* Determines which of insns in LOOP can be optimized.
1635 Return a OPT_INFO struct with the relevant hash tables filled
1636 with all insns to be optimized. The FIRST_NEW_BLOCK field
1637 is undefined for the return value. */
1638
1639 static struct opt_info *
1640 analyze_insns_in_loop (struct loop *loop)
1641 {
1642 basic_block *body, bb;
1643 unsigned i, n_edges = 0;
1644 struct opt_info *opt_info = xcalloc (1, sizeof (struct opt_info));
1645 rtx insn;
1646 struct iv_to_split *ivts = NULL;
1647 struct var_to_expand *ves = NULL;
1648 PTR *slot1;
1649 PTR *slot2;
1650 edge *edges = get_loop_exit_edges (loop, &n_edges);
1651 basic_block preheader;
1652 bool can_apply = false;
1653
1654 iv_analysis_loop_init (loop);
1655
1656 body = get_loop_body (loop);
1657
1658 if (flag_split_ivs_in_unroller)
1659 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1660 si_info_hash, si_info_eq, free);
1661
1662 /* Record the loop exit bb and loop preheader before the unrolling. */
1663 if (!loop_preheader_edge (loop)->src)
1664 {
1665 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1666 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1667 }
1668 else
1669 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1670
1671 if (n_edges == 1
1672 && !(edges[0]->flags & EDGE_COMPLEX))
1673 {
1674 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1675 can_apply = true;
1676 }
1677
1678 if (flag_variable_expansion_in_unroller
1679 && can_apply)
1680 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1681 ve_info_hash, ve_info_eq, free);
1682
1683 for (i = 0; i < loop->num_nodes; i++)
1684 {
1685 bb = body[i];
1686 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1687 continue;
1688
1689 FOR_BB_INSNS (bb, insn)
1690 {
1691 if (!INSN_P (insn))
1692 continue;
1693
1694 if (opt_info->insns_to_split)
1695 ivts = analyze_iv_to_split_insn (insn);
1696
1697 if (ivts)
1698 {
1699 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1700 *slot1 = ivts;
1701 continue;
1702 }
1703
1704 if (opt_info->insns_with_var_to_expand)
1705 ves = analyze_insn_to_expand_var (loop, insn);
1706
1707 if (ves)
1708 {
1709 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1710 *slot2 = ves;
1711 }
1712 }
1713 }
1714
1715 free (edges);
1716 free (body);
1717 return opt_info;
1718 }
1719
1720 /* Called just before loop duplication. Records start of duplicated area
1721 to OPT_INFO. */
1722
1723 static void
1724 opt_info_start_duplication (struct opt_info *opt_info)
1725 {
1726 if (opt_info)
1727 opt_info->first_new_block = last_basic_block;
1728 }
1729
1730 /* Determine the number of iterations between initialization of the base
1731 variable and the current copy (N_COPY). N_COPIES is the total number
1732 of newly created copies. UNROLLING is true if we are unrolling
1733 (not peeling) the loop. */
1734
1735 static unsigned
1736 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1737 {
1738 if (unrolling)
1739 {
1740 /* If we are unrolling, initialization is done in the original loop
1741 body (number 0). */
1742 return n_copy;
1743 }
1744 else
1745 {
1746 /* If we are peeling, the copy in that the initialization occurs has
1747 number 1. The original loop (number 0) is the last. */
1748 if (n_copy)
1749 return n_copy - 1;
1750 else
1751 return n_copies;
1752 }
1753 }
1754
1755 /* Locate in EXPR the expression corresponding to the location recorded
1756 in IVTS, and return a pointer to the RTX for this location. */
1757
1758 static rtx *
1759 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1760 {
1761 unsigned i;
1762 rtx *ret = &expr;
1763
1764 for (i = 0; i < ivts->n_loc; i++)
1765 ret = &XEXP (*ret, ivts->loc[i]);
1766
1767 return ret;
1768 }
1769
1770 /* Allocate basic variable for the induction variable chain. Callback for
1771 htab_traverse. */
1772
1773 static int
1774 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1775 {
1776 struct iv_to_split *ivts = *slot;
1777 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1778
1779 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1780
1781 return 1;
1782 }
1783
1784 /* Insert initialization of basic variable of IVTS before INSN, taking
1785 the initial value from INSN. */
1786
1787 static void
1788 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1789 {
1790 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1791 rtx seq;
1792
1793 start_sequence ();
1794 expr = force_operand (expr, ivts->base_var);
1795 if (expr != ivts->base_var)
1796 emit_move_insn (ivts->base_var, expr);
1797 seq = get_insns ();
1798 end_sequence ();
1799
1800 emit_insn_before (seq, insn);
1801 }
1802
1803 /* Replace the use of induction variable described in IVTS in INSN
1804 by base variable + DELTA * step. */
1805
1806 static void
1807 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1808 {
1809 rtx expr, *loc, seq, incr, var;
1810 enum machine_mode mode = GET_MODE (ivts->base_var);
1811 rtx src, dest, set;
1812
1813 /* Construct base + DELTA * step. */
1814 if (!delta)
1815 expr = ivts->base_var;
1816 else
1817 {
1818 incr = simplify_gen_binary (MULT, mode,
1819 ivts->step, gen_int_mode (delta, mode));
1820 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1821 ivts->base_var, incr);
1822 }
1823
1824 /* Figure out where to do the replacement. */
1825 loc = get_ivts_expr (single_set (insn), ivts);
1826
1827 /* If we can make the replacement right away, we're done. */
1828 if (validate_change (insn, loc, expr, 0))
1829 return;
1830
1831 /* Otherwise, force EXPR into a register and try again. */
1832 start_sequence ();
1833 var = gen_reg_rtx (mode);
1834 expr = force_operand (expr, var);
1835 if (expr != var)
1836 emit_move_insn (var, expr);
1837 seq = get_insns ();
1838 end_sequence ();
1839 emit_insn_before (seq, insn);
1840
1841 if (validate_change (insn, loc, var, 0))
1842 return;
1843
1844 /* The last chance. Try recreating the assignment in insn
1845 completely from scratch. */
1846 set = single_set (insn);
1847 gcc_assert (set);
1848
1849 start_sequence ();
1850 *loc = var;
1851 src = copy_rtx (SET_SRC (set));
1852 dest = copy_rtx (SET_DEST (set));
1853 src = force_operand (src, dest);
1854 if (src != dest)
1855 emit_move_insn (dest, src);
1856 seq = get_insns ();
1857 end_sequence ();
1858
1859 emit_insn_before (seq, insn);
1860 delete_insn (insn);
1861 }
1862
1863
1864 /* Return one expansion of the accumulator recorded in struct VE. */
1865
1866 static rtx
1867 get_expansion (struct var_to_expand *ve)
1868 {
1869 rtx reg;
1870
1871 if (ve->reuse_expansion == 0)
1872 reg = ve->reg;
1873 else
1874 reg = VARRAY_RTX (ve->var_expansions, ve->reuse_expansion - 1);
1875
1876 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == (unsigned) ve->reuse_expansion)
1877 ve->reuse_expansion = 0;
1878 else
1879 ve->reuse_expansion++;
1880
1881 return reg;
1882 }
1883
1884
1885 /* Given INSN replace the uses of the accumulator recorded in VE
1886 with a new register. */
1887
1888 static void
1889 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1890 {
1891 rtx new_reg, set;
1892 bool really_new_expansion = false;
1893
1894 set = single_set (insn);
1895 if (!set)
1896 abort ();
1897
1898 /* Generate a new register only if the expansion limit has not been
1899 reached. Else reuse an already existing expansion. */
1900 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1901 {
1902 really_new_expansion = true;
1903 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1904 }
1905 else
1906 new_reg = get_expansion (ve);
1907
1908 validate_change (insn, &SET_DEST (set), new_reg, 1);
1909 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1910
1911 if (apply_change_group ())
1912 if (really_new_expansion)
1913 {
1914 VARRAY_PUSH_RTX (ve->var_expansions, new_reg);
1915 ve->expansion_count++;
1916 }
1917 }
1918
1919 /* Initialize the variable expansions in loop preheader.
1920 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1921 basic block where the initialization of the expansions
1922 should take place. */
1923
1924 static int
1925 insert_var_expansion_initialization (void **slot, void *place_p)
1926 {
1927 struct var_to_expand *ve = *slot;
1928 basic_block place = (basic_block)place_p;
1929 rtx seq, var, zero_init, insn;
1930 unsigned i;
1931
1932 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == 0)
1933 return 1;
1934
1935 start_sequence ();
1936 if (ve->op == PLUS || ve->op == MINUS)
1937 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1938 {
1939 var = VARRAY_RTX (ve->var_expansions, i);
1940 zero_init = CONST0_RTX (GET_MODE (var));
1941 emit_move_insn (var, zero_init);
1942 }
1943 else if (ve->op == MULT)
1944 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1945 {
1946 var = VARRAY_RTX (ve->var_expansions, i);
1947 zero_init = CONST1_RTX (GET_MODE (var));
1948 emit_move_insn (var, zero_init);
1949 }
1950
1951 seq = get_insns ();
1952 end_sequence ();
1953
1954 insn = BB_HEAD (place);
1955 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1956 insn = NEXT_INSN (insn);
1957
1958 emit_insn_after (seq, insn);
1959 /* Continue traversing the hash table. */
1960 return 1;
1961 }
1962
1963 /* Combine the variable expansions at the loop exit.
1964 Callbacks for htab_traverse. PLACE_P is the loop exit
1965 basic block where the summation of the expansions should
1966 take place. */
1967
1968 static int
1969 combine_var_copies_in_loop_exit (void **slot, void *place_p)
1970 {
1971 struct var_to_expand *ve = *slot;
1972 basic_block place = (basic_block)place_p;
1973 rtx sum = ve->reg;
1974 rtx expr, seq, var, insn;
1975 unsigned i;
1976
1977 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == 0)
1978 return 1;
1979
1980 start_sequence ();
1981 if (ve->op == PLUS || ve->op == MINUS)
1982 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1983 {
1984 var = VARRAY_RTX (ve->var_expansions, i);
1985 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
1986 var, sum);
1987 }
1988 else if (ve->op == MULT)
1989 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1990 {
1991 var = VARRAY_RTX (ve->var_expansions, i);
1992 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
1993 var, sum);
1994 }
1995
1996 expr = force_operand (sum, ve->reg);
1997 if (expr != ve->reg)
1998 emit_move_insn (ve->reg, expr);
1999 seq = get_insns ();
2000 end_sequence ();
2001
2002 insn = BB_HEAD (place);
2003 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2004 insn = NEXT_INSN (insn);
2005
2006 emit_insn_after (seq, insn);
2007
2008 /* Continue traversing the hash table. */
2009 return 1;
2010 }
2011
2012 /* Apply loop optimizations in loop copies using the
2013 data which gathered during the unrolling. Structure
2014 OPT_INFO record that data.
2015
2016 UNROLLING is true if we unrolled (not peeled) the loop.
2017 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2018 the loop (as it should happen in complete unrolling, but not in ordinary
2019 peeling of the loop). */
2020
2021 static void
2022 apply_opt_in_copies (struct opt_info *opt_info,
2023 unsigned n_copies, bool unrolling,
2024 bool rewrite_original_loop)
2025 {
2026 unsigned i, delta;
2027 basic_block bb, orig_bb;
2028 rtx insn, orig_insn, next;
2029 struct iv_to_split ivts_templ, *ivts;
2030 struct var_to_expand ve_templ, *ves;
2031
2032 /* Sanity check -- we need to put initialization in the original loop
2033 body. */
2034 gcc_assert (!unrolling || rewrite_original_loop);
2035
2036 /* Allocate the basic variables (i0). */
2037 if (opt_info->insns_to_split)
2038 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2039
2040 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2041 {
2042 bb = BASIC_BLOCK (i);
2043 orig_bb = bb->rbi->original;
2044
2045 delta = determine_split_iv_delta (bb->rbi->copy_number, n_copies,
2046 unrolling);
2047 orig_insn = BB_HEAD (orig_bb);
2048 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2049 {
2050 next = NEXT_INSN (insn);
2051 if (!INSN_P (insn))
2052 continue;
2053
2054 while (!INSN_P (orig_insn))
2055 orig_insn = NEXT_INSN (orig_insn);
2056
2057 ivts_templ.insn = orig_insn;
2058 ve_templ.insn = orig_insn;
2059
2060 /* Apply splitting iv optimization. */
2061 if (opt_info->insns_to_split)
2062 {
2063 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2064
2065 if (ivts)
2066 {
2067 #ifdef ENABLE_CHECKING
2068 gcc_assert (rtx_equal_p (PATTERN (insn), PATTERN (orig_insn)));
2069 #endif
2070
2071 if (!delta)
2072 insert_base_initialization (ivts, insn);
2073 split_iv (ivts, insn, delta);
2074 }
2075 }
2076 /* Apply variable expansion optimization. */
2077 if (unrolling && opt_info->insns_with_var_to_expand)
2078 {
2079 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2080 if (ves)
2081 {
2082 #ifdef ENABLE_CHECKING
2083 gcc_assert (rtx_equal_p (PATTERN (insn), PATTERN (orig_insn)));
2084 #endif
2085 expand_var_during_unrolling (ves, insn);
2086 }
2087 }
2088 orig_insn = NEXT_INSN (orig_insn);
2089 }
2090 }
2091
2092 if (!rewrite_original_loop)
2093 return;
2094
2095 /* Initialize the variable expansions in the loop preheader
2096 and take care of combining them at the loop exit. */
2097 if (opt_info->insns_with_var_to_expand)
2098 {
2099 htab_traverse (opt_info->insns_with_var_to_expand,
2100 insert_var_expansion_initialization,
2101 opt_info->loop_preheader);
2102 htab_traverse (opt_info->insns_with_var_to_expand,
2103 combine_var_copies_in_loop_exit,
2104 opt_info->loop_exit);
2105 }
2106
2107 /* Rewrite also the original loop body. Find them as originals of the blocks
2108 in the last copied iteration, i.e. those that have
2109 bb->rbi->original->copy == bb. */
2110 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2111 {
2112 bb = BASIC_BLOCK (i);
2113 orig_bb = bb->rbi->original;
2114 if (orig_bb->rbi->copy != bb)
2115 continue;
2116
2117 delta = determine_split_iv_delta (0, n_copies, unrolling);
2118 for (orig_insn = BB_HEAD (orig_bb);
2119 orig_insn != NEXT_INSN (BB_END (bb));
2120 orig_insn = next)
2121 {
2122 next = NEXT_INSN (orig_insn);
2123
2124 if (!INSN_P (orig_insn))
2125 continue;
2126
2127 ivts_templ.insn = orig_insn;
2128 if (opt_info->insns_to_split)
2129 {
2130 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2131 if (ivts)
2132 {
2133 if (!delta)
2134 insert_base_initialization (ivts, orig_insn);
2135 split_iv (ivts, orig_insn, delta);
2136 continue;
2137 }
2138 }
2139
2140 }
2141 }
2142 }
2143
2144 /* Release the data structures used for the variable expansion
2145 optimization. Callbacks for htab_traverse. */
2146
2147 static int
2148 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2149 {
2150 struct var_to_expand *ve = *slot;
2151
2152 VARRAY_CLEAR (ve->var_expansions);
2153
2154 /* Continue traversing the hash table. */
2155 return 1;
2156 }
2157
2158 /* Release OPT_INFO. */
2159
2160 static void
2161 free_opt_info (struct opt_info *opt_info)
2162 {
2163 if (opt_info->insns_to_split)
2164 htab_delete (opt_info->insns_to_split);
2165 if (opt_info->insns_with_var_to_expand)
2166 {
2167 htab_traverse (opt_info->insns_with_var_to_expand,
2168 release_var_copies, NULL);
2169 htab_delete (opt_info->insns_with_var_to_expand);
2170 }
2171 free (opt_info);
2172 }