loop-unroll.c (analyze_insn_to_expand_var): Accept
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36 #include "target.h"
37
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
45
46 What we do:
47
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
64
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
67
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
71 */
72
73 /* Information about induction variables to split. */
74
75 struct iv_to_split
76 {
77 rtx insn; /* The insn in that the induction variable occurs. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
82 unsigned n_loc;
83 unsigned loc[3]; /* Location where the definition of the induction
84 variable occurs in the insn. For example if
85 N_LOC is 2, the expression is located at
86 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 };
88
89 /* Information about accumulators to expand. */
90
91 struct var_to_expand
92 {
93 rtx insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
104 unsigned accum_pos; /* The position in which the accumulator is placed in
105 the insn src. For example in x = x + something
106 accum_pos is 0 while in x = something + x accum_pos
107 is 1. */
108 };
109
110 /* Information about optimization applied in
111 the unrolled loop. */
112
113 struct opt_info
114 {
115 htab_t insns_to_split; /* A hashtable of insns to split. */
116 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
117 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
118 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
119 to expand. */
120 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
121 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
122 unsigned first_new_block; /* The first basic block that was
123 duplicated. */
124 basic_block loop_exit; /* The loop exit basic block. */
125 basic_block loop_preheader; /* The loop preheader basic block. */
126 };
127
128 static void decide_unrolling_and_peeling (int);
129 static void peel_loops_completely (int);
130 static void decide_peel_simple (struct loop *, int);
131 static void decide_peel_once_rolling (struct loop *, int);
132 static void decide_peel_completely (struct loop *, int);
133 static void decide_unroll_stupid (struct loop *, int);
134 static void decide_unroll_constant_iterations (struct loop *, int);
135 static void decide_unroll_runtime_iterations (struct loop *, int);
136 static void peel_loop_simple (struct loop *);
137 static void peel_loop_completely (struct loop *);
138 static void unroll_loop_stupid (struct loop *);
139 static void unroll_loop_constant_iterations (struct loop *);
140 static void unroll_loop_runtime_iterations (struct loop *);
141 static struct opt_info *analyze_insns_in_loop (struct loop *);
142 static void opt_info_start_duplication (struct opt_info *);
143 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
144 static void free_opt_info (struct opt_info *);
145 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
146 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
147 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
148 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
149 static void insert_var_expansion_initialization (struct var_to_expand *,
150 basic_block);
151 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
152 basic_block);
153 static rtx get_expansion (struct var_to_expand *);
154
155 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
156 void
157 unroll_and_peel_loops (int flags)
158 {
159 struct loop *loop;
160 bool check;
161 loop_iterator li;
162
163 /* First perform complete loop peeling (it is almost surely a win,
164 and affects parameters for further decision a lot). */
165 peel_loops_completely (flags);
166
167 /* Now decide rest of unrolling and peeling. */
168 decide_unrolling_and_peeling (flags);
169
170 /* Scan the loops, inner ones first. */
171 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
172 {
173 check = true;
174 /* And perform the appropriate transformations. */
175 switch (loop->lpt_decision.decision)
176 {
177 case LPT_PEEL_COMPLETELY:
178 /* Already done. */
179 gcc_unreachable ();
180 case LPT_PEEL_SIMPLE:
181 peel_loop_simple (loop);
182 break;
183 case LPT_UNROLL_CONSTANT:
184 unroll_loop_constant_iterations (loop);
185 break;
186 case LPT_UNROLL_RUNTIME:
187 unroll_loop_runtime_iterations (loop);
188 break;
189 case LPT_UNROLL_STUPID:
190 unroll_loop_stupid (loop);
191 break;
192 case LPT_NONE:
193 check = false;
194 break;
195 default:
196 gcc_unreachable ();
197 }
198 if (check)
199 {
200 #ifdef ENABLE_CHECKING
201 verify_dominators (CDI_DOMINATORS);
202 verify_loop_structure ();
203 #endif
204 }
205 }
206
207 iv_analysis_done ();
208 }
209
210 /* Check whether exit of the LOOP is at the end of loop body. */
211
212 static bool
213 loop_exit_at_end_p (struct loop *loop)
214 {
215 struct niter_desc *desc = get_simple_loop_desc (loop);
216 rtx insn;
217
218 if (desc->in_edge->dest != loop->latch)
219 return false;
220
221 /* Check that the latch is empty. */
222 FOR_BB_INSNS (loop->latch, insn)
223 {
224 if (INSN_P (insn))
225 return false;
226 }
227
228 return true;
229 }
230
231 /* Depending on FLAGS, check whether to peel loops completely and do so. */
232 static void
233 peel_loops_completely (int flags)
234 {
235 struct loop *loop;
236 loop_iterator li;
237
238 /* Scan the loops, the inner ones first. */
239 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
240 {
241 loop->lpt_decision.decision = LPT_NONE;
242
243 if (dump_file)
244 fprintf (dump_file,
245 "\n;; *** Considering loop %d for complete peeling ***\n",
246 loop->num);
247
248 loop->ninsns = num_loop_insns (loop);
249
250 decide_peel_once_rolling (loop, flags);
251 if (loop->lpt_decision.decision == LPT_NONE)
252 decide_peel_completely (loop, flags);
253
254 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
255 {
256 peel_loop_completely (loop);
257 #ifdef ENABLE_CHECKING
258 verify_dominators (CDI_DOMINATORS);
259 verify_loop_structure ();
260 #endif
261 }
262 }
263 }
264
265 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
266 static void
267 decide_unrolling_and_peeling (int flags)
268 {
269 struct loop *loop;
270 loop_iterator li;
271
272 /* Scan the loops, inner ones first. */
273 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
274 {
275 loop->lpt_decision.decision = LPT_NONE;
276
277 if (dump_file)
278 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
279
280 /* Do not peel cold areas. */
281 if (optimize_loop_for_size_p (loop))
282 {
283 if (dump_file)
284 fprintf (dump_file, ";; Not considering loop, cold area\n");
285 continue;
286 }
287
288 /* Can the loop be manipulated? */
289 if (!can_duplicate_loop_p (loop))
290 {
291 if (dump_file)
292 fprintf (dump_file,
293 ";; Not considering loop, cannot duplicate\n");
294 continue;
295 }
296
297 /* Skip non-innermost loops. */
298 if (loop->inner)
299 {
300 if (dump_file)
301 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
302 continue;
303 }
304
305 loop->ninsns = num_loop_insns (loop);
306 loop->av_ninsns = average_num_loop_insns (loop);
307
308 /* Try transformations one by one in decreasing order of
309 priority. */
310
311 decide_unroll_constant_iterations (loop, flags);
312 if (loop->lpt_decision.decision == LPT_NONE)
313 decide_unroll_runtime_iterations (loop, flags);
314 if (loop->lpt_decision.decision == LPT_NONE)
315 decide_unroll_stupid (loop, flags);
316 if (loop->lpt_decision.decision == LPT_NONE)
317 decide_peel_simple (loop, flags);
318 }
319 }
320
321 /* Decide whether the LOOP is once rolling and suitable for complete
322 peeling. */
323 static void
324 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
325 {
326 struct niter_desc *desc;
327
328 if (dump_file)
329 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
330
331 /* Is the loop small enough? */
332 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
333 {
334 if (dump_file)
335 fprintf (dump_file, ";; Not considering loop, is too big\n");
336 return;
337 }
338
339 /* Check for simple loops. */
340 desc = get_simple_loop_desc (loop);
341
342 /* Check number of iterations. */
343 if (!desc->simple_p
344 || desc->assumptions
345 || desc->infinite
346 || !desc->const_iter
347 || desc->niter != 0)
348 {
349 if (dump_file)
350 fprintf (dump_file,
351 ";; Unable to prove that the loop rolls exactly once\n");
352 return;
353 }
354
355 /* Success. */
356 if (dump_file)
357 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
358 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
359 }
360
361 /* Decide whether the LOOP is suitable for complete peeling. */
362 static void
363 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
364 {
365 unsigned npeel;
366 struct niter_desc *desc;
367
368 if (dump_file)
369 fprintf (dump_file, "\n;; Considering peeling completely\n");
370
371 /* Skip non-innermost loops. */
372 if (loop->inner)
373 {
374 if (dump_file)
375 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
376 return;
377 }
378
379 /* Do not peel cold areas. */
380 if (optimize_loop_for_size_p (loop))
381 {
382 if (dump_file)
383 fprintf (dump_file, ";; Not considering loop, cold area\n");
384 return;
385 }
386
387 /* Can the loop be manipulated? */
388 if (!can_duplicate_loop_p (loop))
389 {
390 if (dump_file)
391 fprintf (dump_file,
392 ";; Not considering loop, cannot duplicate\n");
393 return;
394 }
395
396 /* npeel = number of iterations to peel. */
397 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
398 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
399 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
400
401 /* Is the loop small enough? */
402 if (!npeel)
403 {
404 if (dump_file)
405 fprintf (dump_file, ";; Not considering loop, is too big\n");
406 return;
407 }
408
409 /* Check for simple loops. */
410 desc = get_simple_loop_desc (loop);
411
412 /* Check number of iterations. */
413 if (!desc->simple_p
414 || desc->assumptions
415 || !desc->const_iter
416 || desc->infinite)
417 {
418 if (dump_file)
419 fprintf (dump_file,
420 ";; Unable to prove that the loop iterates constant times\n");
421 return;
422 }
423
424 if (desc->niter > npeel - 1)
425 {
426 if (dump_file)
427 {
428 fprintf (dump_file,
429 ";; Not peeling loop completely, rolls too much (");
430 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
431 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
432 }
433 return;
434 }
435
436 /* Success. */
437 if (dump_file)
438 fprintf (dump_file, ";; Decided to peel loop completely\n");
439 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
440 }
441
442 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
443 completely. The transformation done:
444
445 for (i = 0; i < 4; i++)
446 body;
447
448 ==>
449
450 i = 0;
451 body; i++;
452 body; i++;
453 body; i++;
454 body; i++;
455 */
456 static void
457 peel_loop_completely (struct loop *loop)
458 {
459 sbitmap wont_exit;
460 unsigned HOST_WIDE_INT npeel;
461 unsigned i;
462 VEC (edge, heap) *remove_edges;
463 edge ein;
464 struct niter_desc *desc = get_simple_loop_desc (loop);
465 struct opt_info *opt_info = NULL;
466
467 npeel = desc->niter;
468
469 if (npeel)
470 {
471 bool ok;
472
473 wont_exit = sbitmap_alloc (npeel + 1);
474 sbitmap_ones (wont_exit);
475 RESET_BIT (wont_exit, 0);
476 if (desc->noloop_assumptions)
477 RESET_BIT (wont_exit, 1);
478
479 remove_edges = NULL;
480
481 if (flag_split_ivs_in_unroller)
482 opt_info = analyze_insns_in_loop (loop);
483
484 opt_info_start_duplication (opt_info);
485 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
486 npeel,
487 wont_exit, desc->out_edge,
488 &remove_edges,
489 DLTHE_FLAG_UPDATE_FREQ
490 | DLTHE_FLAG_COMPLETTE_PEEL
491 | (opt_info
492 ? DLTHE_RECORD_COPY_NUMBER : 0));
493 gcc_assert (ok);
494
495 free (wont_exit);
496
497 if (opt_info)
498 {
499 apply_opt_in_copies (opt_info, npeel, false, true);
500 free_opt_info (opt_info);
501 }
502
503 /* Remove the exit edges. */
504 FOR_EACH_VEC_ELT (edge, remove_edges, i, ein)
505 remove_path (ein);
506 VEC_free (edge, heap, remove_edges);
507 }
508
509 ein = desc->in_edge;
510 free_simple_loop_desc (loop);
511
512 /* Now remove the unreachable part of the last iteration and cancel
513 the loop. */
514 remove_path (ein);
515
516 if (dump_file)
517 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
518 }
519
520 /* Decide whether to unroll LOOP iterating constant number of times
521 and how much. */
522
523 static void
524 decide_unroll_constant_iterations (struct loop *loop, int flags)
525 {
526 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
527 struct niter_desc *desc;
528
529 if (!(flags & UAP_UNROLL))
530 {
531 /* We were not asked to, just return back silently. */
532 return;
533 }
534
535 if (dump_file)
536 fprintf (dump_file,
537 "\n;; Considering unrolling loop with constant "
538 "number of iterations\n");
539
540 /* nunroll = total number of copies of the original loop body in
541 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
542 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
543 nunroll_by_av
544 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
545 if (nunroll > nunroll_by_av)
546 nunroll = nunroll_by_av;
547 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
548 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
549
550 /* Skip big loops. */
551 if (nunroll <= 1)
552 {
553 if (dump_file)
554 fprintf (dump_file, ";; Not considering loop, is too big\n");
555 return;
556 }
557
558 /* Check for simple loops. */
559 desc = get_simple_loop_desc (loop);
560
561 /* Check number of iterations. */
562 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
563 {
564 if (dump_file)
565 fprintf (dump_file,
566 ";; Unable to prove that the loop iterates constant times\n");
567 return;
568 }
569
570 /* Check whether the loop rolls enough to consider. */
571 if (desc->niter < 2 * nunroll)
572 {
573 if (dump_file)
574 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
575 return;
576 }
577
578 /* Success; now compute number of iterations to unroll. We alter
579 nunroll so that as few as possible copies of loop body are
580 necessary, while still not decreasing the number of unrollings
581 too much (at most by 1). */
582 best_copies = 2 * nunroll + 10;
583
584 i = 2 * nunroll + 2;
585 if (i - 1 >= desc->niter)
586 i = desc->niter - 2;
587
588 for (; i >= nunroll - 1; i--)
589 {
590 unsigned exit_mod = desc->niter % (i + 1);
591
592 if (!loop_exit_at_end_p (loop))
593 n_copies = exit_mod + i + 1;
594 else if (exit_mod != (unsigned) i
595 || desc->noloop_assumptions != NULL_RTX)
596 n_copies = exit_mod + i + 2;
597 else
598 n_copies = i + 1;
599
600 if (n_copies < best_copies)
601 {
602 best_copies = n_copies;
603 best_unroll = i;
604 }
605 }
606
607 if (dump_file)
608 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
609 best_unroll + 1, best_copies, nunroll);
610
611 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
612 loop->lpt_decision.times = best_unroll;
613
614 if (dump_file)
615 fprintf (dump_file,
616 ";; Decided to unroll the constant times rolling loop, %d times.\n",
617 loop->lpt_decision.times);
618 }
619
620 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
621 times. The transformation does this:
622
623 for (i = 0; i < 102; i++)
624 body;
625
626 ==>
627
628 i = 0;
629 body; i++;
630 body; i++;
631 while (i < 102)
632 {
633 body; i++;
634 body; i++;
635 body; i++;
636 body; i++;
637 }
638 */
639 static void
640 unroll_loop_constant_iterations (struct loop *loop)
641 {
642 unsigned HOST_WIDE_INT niter;
643 unsigned exit_mod;
644 sbitmap wont_exit;
645 unsigned i;
646 VEC (edge, heap) *remove_edges;
647 edge e;
648 unsigned max_unroll = loop->lpt_decision.times;
649 struct niter_desc *desc = get_simple_loop_desc (loop);
650 bool exit_at_end = loop_exit_at_end_p (loop);
651 struct opt_info *opt_info = NULL;
652 bool ok;
653
654 niter = desc->niter;
655
656 /* Should not get here (such loop should be peeled instead). */
657 gcc_assert (niter > max_unroll + 1);
658
659 exit_mod = niter % (max_unroll + 1);
660
661 wont_exit = sbitmap_alloc (max_unroll + 1);
662 sbitmap_ones (wont_exit);
663
664 remove_edges = NULL;
665 if (flag_split_ivs_in_unroller
666 || flag_variable_expansion_in_unroller)
667 opt_info = analyze_insns_in_loop (loop);
668
669 if (!exit_at_end)
670 {
671 /* The exit is not at the end of the loop; leave exit test
672 in the first copy, so that the loops that start with test
673 of exit condition have continuous body after unrolling. */
674
675 if (dump_file)
676 fprintf (dump_file, ";; Condition on beginning of loop.\n");
677
678 /* Peel exit_mod iterations. */
679 RESET_BIT (wont_exit, 0);
680 if (desc->noloop_assumptions)
681 RESET_BIT (wont_exit, 1);
682
683 if (exit_mod)
684 {
685 opt_info_start_duplication (opt_info);
686 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
687 exit_mod,
688 wont_exit, desc->out_edge,
689 &remove_edges,
690 DLTHE_FLAG_UPDATE_FREQ
691 | (opt_info && exit_mod > 1
692 ? DLTHE_RECORD_COPY_NUMBER
693 : 0));
694 gcc_assert (ok);
695
696 if (opt_info && exit_mod > 1)
697 apply_opt_in_copies (opt_info, exit_mod, false, false);
698
699 desc->noloop_assumptions = NULL_RTX;
700 desc->niter -= exit_mod;
701 desc->niter_max -= exit_mod;
702 }
703
704 SET_BIT (wont_exit, 1);
705 }
706 else
707 {
708 /* Leave exit test in last copy, for the same reason as above if
709 the loop tests the condition at the end of loop body. */
710
711 if (dump_file)
712 fprintf (dump_file, ";; Condition on end of loop.\n");
713
714 /* We know that niter >= max_unroll + 2; so we do not need to care of
715 case when we would exit before reaching the loop. So just peel
716 exit_mod + 1 iterations. */
717 if (exit_mod != max_unroll
718 || desc->noloop_assumptions)
719 {
720 RESET_BIT (wont_exit, 0);
721 if (desc->noloop_assumptions)
722 RESET_BIT (wont_exit, 1);
723
724 opt_info_start_duplication (opt_info);
725 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
726 exit_mod + 1,
727 wont_exit, desc->out_edge,
728 &remove_edges,
729 DLTHE_FLAG_UPDATE_FREQ
730 | (opt_info && exit_mod > 0
731 ? DLTHE_RECORD_COPY_NUMBER
732 : 0));
733 gcc_assert (ok);
734
735 if (opt_info && exit_mod > 0)
736 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
737
738 desc->niter -= exit_mod + 1;
739 desc->niter_max -= exit_mod + 1;
740 desc->noloop_assumptions = NULL_RTX;
741
742 SET_BIT (wont_exit, 0);
743 SET_BIT (wont_exit, 1);
744 }
745
746 RESET_BIT (wont_exit, max_unroll);
747 }
748
749 /* Now unroll the loop. */
750
751 opt_info_start_duplication (opt_info);
752 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
753 max_unroll,
754 wont_exit, desc->out_edge,
755 &remove_edges,
756 DLTHE_FLAG_UPDATE_FREQ
757 | (opt_info
758 ? DLTHE_RECORD_COPY_NUMBER
759 : 0));
760 gcc_assert (ok);
761
762 if (opt_info)
763 {
764 apply_opt_in_copies (opt_info, max_unroll, true, true);
765 free_opt_info (opt_info);
766 }
767
768 free (wont_exit);
769
770 if (exit_at_end)
771 {
772 basic_block exit_block = get_bb_copy (desc->in_edge->src);
773 /* Find a new in and out edge; they are in the last copy we have made. */
774
775 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
776 {
777 desc->out_edge = EDGE_SUCC (exit_block, 0);
778 desc->in_edge = EDGE_SUCC (exit_block, 1);
779 }
780 else
781 {
782 desc->out_edge = EDGE_SUCC (exit_block, 1);
783 desc->in_edge = EDGE_SUCC (exit_block, 0);
784 }
785 }
786
787 desc->niter /= max_unroll + 1;
788 desc->niter_max /= max_unroll + 1;
789 desc->niter_expr = GEN_INT (desc->niter);
790
791 /* Remove the edges. */
792 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
793 remove_path (e);
794 VEC_free (edge, heap, remove_edges);
795
796 if (dump_file)
797 fprintf (dump_file,
798 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
799 max_unroll, num_loop_insns (loop));
800 }
801
802 /* Decide whether to unroll LOOP iterating runtime computable number of times
803 and how much. */
804 static void
805 decide_unroll_runtime_iterations (struct loop *loop, int flags)
806 {
807 unsigned nunroll, nunroll_by_av, i;
808 struct niter_desc *desc;
809
810 if (!(flags & UAP_UNROLL))
811 {
812 /* We were not asked to, just return back silently. */
813 return;
814 }
815
816 if (dump_file)
817 fprintf (dump_file,
818 "\n;; Considering unrolling loop with runtime "
819 "computable number of iterations\n");
820
821 /* nunroll = total number of copies of the original loop body in
822 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
823 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
824 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
825 if (nunroll > nunroll_by_av)
826 nunroll = nunroll_by_av;
827 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
828 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
829
830 if (targetm.loop_unroll_adjust)
831 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
832
833 /* Skip big loops. */
834 if (nunroll <= 1)
835 {
836 if (dump_file)
837 fprintf (dump_file, ";; Not considering loop, is too big\n");
838 return;
839 }
840
841 /* Check for simple loops. */
842 desc = get_simple_loop_desc (loop);
843
844 /* Check simpleness. */
845 if (!desc->simple_p || desc->assumptions)
846 {
847 if (dump_file)
848 fprintf (dump_file,
849 ";; Unable to prove that the number of iterations "
850 "can be counted in runtime\n");
851 return;
852 }
853
854 if (desc->const_iter)
855 {
856 if (dump_file)
857 fprintf (dump_file, ";; Loop iterates constant times\n");
858 return;
859 }
860
861 /* If we have profile feedback, check whether the loop rolls. */
862 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
863 {
864 if (dump_file)
865 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
866 return;
867 }
868
869 /* Success; now force nunroll to be power of 2, as we are unable to
870 cope with overflows in computation of number of iterations. */
871 for (i = 1; 2 * i <= nunroll; i *= 2)
872 continue;
873
874 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
875 loop->lpt_decision.times = i - 1;
876
877 if (dump_file)
878 fprintf (dump_file,
879 ";; Decided to unroll the runtime computable "
880 "times rolling loop, %d times.\n",
881 loop->lpt_decision.times);
882 }
883
884 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
885 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
886 and NULL is returned instead. */
887
888 basic_block
889 split_edge_and_insert (edge e, rtx insns)
890 {
891 basic_block bb;
892
893 if (!insns)
894 return NULL;
895 bb = split_edge (e);
896 emit_insn_after (insns, BB_END (bb));
897
898 /* ??? We used to assume that INSNS can contain control flow insns, and
899 that we had to try to find sub basic blocks in BB to maintain a valid
900 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
901 and call break_superblocks when going out of cfglayout mode. But it
902 turns out that this never happens; and that if it does ever happen,
903 the verify_flow_info call in loop_optimizer_finalize would fail.
904
905 There are two reasons why we expected we could have control flow insns
906 in INSNS. The first is when a comparison has to be done in parts, and
907 the second is when the number of iterations is computed for loops with
908 the number of iterations known at runtime. In both cases, test cases
909 to get control flow in INSNS appear to be impossible to construct:
910
911 * If do_compare_rtx_and_jump needs several branches to do comparison
912 in a mode that needs comparison by parts, we cannot analyze the
913 number of iterations of the loop, and we never get to unrolling it.
914
915 * The code in expand_divmod that was suspected to cause creation of
916 branching code seems to be only accessed for signed division. The
917 divisions used by # of iterations analysis are always unsigned.
918 Problems might arise on architectures that emits branching code
919 for some operations that may appear in the unroller (especially
920 for division), but we have no such architectures.
921
922 Considering all this, it was decided that we should for now assume
923 that INSNS can in theory contain control flow insns, but in practice
924 it never does. So we don't handle the theoretical case, and should
925 a real failure ever show up, we have a pretty good clue for how to
926 fix it. */
927
928 return bb;
929 }
930
931 /* Unroll LOOP for that we are able to count number of iterations in runtime
932 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
933 extra care for case n < 0):
934
935 for (i = 0; i < n; i++)
936 body;
937
938 ==>
939
940 i = 0;
941 mod = n % 4;
942
943 switch (mod)
944 {
945 case 3:
946 body; i++;
947 case 2:
948 body; i++;
949 case 1:
950 body; i++;
951 case 0: ;
952 }
953
954 while (i < n)
955 {
956 body; i++;
957 body; i++;
958 body; i++;
959 body; i++;
960 }
961 */
962 static void
963 unroll_loop_runtime_iterations (struct loop *loop)
964 {
965 rtx old_niter, niter, init_code, branch_code, tmp;
966 unsigned i, j, p;
967 basic_block preheader, *body, swtch, ezc_swtch;
968 VEC (basic_block, heap) *dom_bbs;
969 sbitmap wont_exit;
970 int may_exit_copy;
971 unsigned n_peel;
972 VEC (edge, heap) *remove_edges;
973 edge e;
974 bool extra_zero_check, last_may_exit;
975 unsigned max_unroll = loop->lpt_decision.times;
976 struct niter_desc *desc = get_simple_loop_desc (loop);
977 bool exit_at_end = loop_exit_at_end_p (loop);
978 struct opt_info *opt_info = NULL;
979 bool ok;
980
981 if (flag_split_ivs_in_unroller
982 || flag_variable_expansion_in_unroller)
983 opt_info = analyze_insns_in_loop (loop);
984
985 /* Remember blocks whose dominators will have to be updated. */
986 dom_bbs = NULL;
987
988 body = get_loop_body (loop);
989 for (i = 0; i < loop->num_nodes; i++)
990 {
991 VEC (basic_block, heap) *ldom;
992 basic_block bb;
993
994 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
995 FOR_EACH_VEC_ELT (basic_block, ldom, j, bb)
996 if (!flow_bb_inside_loop_p (loop, bb))
997 VEC_safe_push (basic_block, heap, dom_bbs, bb);
998
999 VEC_free (basic_block, heap, ldom);
1000 }
1001 free (body);
1002
1003 if (!exit_at_end)
1004 {
1005 /* Leave exit in first copy (for explanation why see comment in
1006 unroll_loop_constant_iterations). */
1007 may_exit_copy = 0;
1008 n_peel = max_unroll - 1;
1009 extra_zero_check = true;
1010 last_may_exit = false;
1011 }
1012 else
1013 {
1014 /* Leave exit in last copy (for explanation why see comment in
1015 unroll_loop_constant_iterations). */
1016 may_exit_copy = max_unroll;
1017 n_peel = max_unroll;
1018 extra_zero_check = false;
1019 last_may_exit = true;
1020 }
1021
1022 /* Get expression for number of iterations. */
1023 start_sequence ();
1024 old_niter = niter = gen_reg_rtx (desc->mode);
1025 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1026 if (tmp != niter)
1027 emit_move_insn (niter, tmp);
1028
1029 /* Count modulo by ANDing it with max_unroll; we use the fact that
1030 the number of unrollings is a power of two, and thus this is correct
1031 even if there is overflow in the computation. */
1032 niter = expand_simple_binop (desc->mode, AND,
1033 niter,
1034 GEN_INT (max_unroll),
1035 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1036
1037 init_code = get_insns ();
1038 end_sequence ();
1039 unshare_all_rtl_in_chain (init_code);
1040
1041 /* Precondition the loop. */
1042 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1043
1044 remove_edges = NULL;
1045
1046 wont_exit = sbitmap_alloc (max_unroll + 2);
1047
1048 /* Peel the first copy of loop body (almost always we must leave exit test
1049 here; the only exception is when we have extra zero check and the number
1050 of iterations is reliable. Also record the place of (possible) extra
1051 zero check. */
1052 sbitmap_zero (wont_exit);
1053 if (extra_zero_check
1054 && !desc->noloop_assumptions)
1055 SET_BIT (wont_exit, 1);
1056 ezc_swtch = loop_preheader_edge (loop)->src;
1057 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1058 1, wont_exit, desc->out_edge,
1059 &remove_edges,
1060 DLTHE_FLAG_UPDATE_FREQ);
1061 gcc_assert (ok);
1062
1063 /* Record the place where switch will be built for preconditioning. */
1064 swtch = split_edge (loop_preheader_edge (loop));
1065
1066 for (i = 0; i < n_peel; i++)
1067 {
1068 /* Peel the copy. */
1069 sbitmap_zero (wont_exit);
1070 if (i != n_peel - 1 || !last_may_exit)
1071 SET_BIT (wont_exit, 1);
1072 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1073 1, wont_exit, desc->out_edge,
1074 &remove_edges,
1075 DLTHE_FLAG_UPDATE_FREQ);
1076 gcc_assert (ok);
1077
1078 /* Create item for switch. */
1079 j = n_peel - i - (extra_zero_check ? 0 : 1);
1080 p = REG_BR_PROB_BASE / (i + 2);
1081
1082 preheader = split_edge (loop_preheader_edge (loop));
1083 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1084 block_label (preheader), p,
1085 NULL_RTX);
1086
1087 /* We rely on the fact that the compare and jump cannot be optimized out,
1088 and hence the cfg we create is correct. */
1089 gcc_assert (branch_code != NULL_RTX);
1090
1091 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1092 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1093 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1094 e = make_edge (swtch, preheader,
1095 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1096 e->probability = p;
1097 }
1098
1099 if (extra_zero_check)
1100 {
1101 /* Add branch for zero iterations. */
1102 p = REG_BR_PROB_BASE / (max_unroll + 1);
1103 swtch = ezc_swtch;
1104 preheader = split_edge (loop_preheader_edge (loop));
1105 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1106 block_label (preheader), p,
1107 NULL_RTX);
1108 gcc_assert (branch_code != NULL_RTX);
1109
1110 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1111 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1112 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1113 e = make_edge (swtch, preheader,
1114 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1115 e->probability = p;
1116 }
1117
1118 /* Recount dominators for outer blocks. */
1119 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1120
1121 /* And unroll loop. */
1122
1123 sbitmap_ones (wont_exit);
1124 RESET_BIT (wont_exit, may_exit_copy);
1125 opt_info_start_duplication (opt_info);
1126
1127 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1128 max_unroll,
1129 wont_exit, desc->out_edge,
1130 &remove_edges,
1131 DLTHE_FLAG_UPDATE_FREQ
1132 | (opt_info
1133 ? DLTHE_RECORD_COPY_NUMBER
1134 : 0));
1135 gcc_assert (ok);
1136
1137 if (opt_info)
1138 {
1139 apply_opt_in_copies (opt_info, max_unroll, true, true);
1140 free_opt_info (opt_info);
1141 }
1142
1143 free (wont_exit);
1144
1145 if (exit_at_end)
1146 {
1147 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1148 /* Find a new in and out edge; they are in the last copy we have
1149 made. */
1150
1151 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1152 {
1153 desc->out_edge = EDGE_SUCC (exit_block, 0);
1154 desc->in_edge = EDGE_SUCC (exit_block, 1);
1155 }
1156 else
1157 {
1158 desc->out_edge = EDGE_SUCC (exit_block, 1);
1159 desc->in_edge = EDGE_SUCC (exit_block, 0);
1160 }
1161 }
1162
1163 /* Remove the edges. */
1164 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
1165 remove_path (e);
1166 VEC_free (edge, heap, remove_edges);
1167
1168 /* We must be careful when updating the number of iterations due to
1169 preconditioning and the fact that the value must be valid at entry
1170 of the loop. After passing through the above code, we see that
1171 the correct new number of iterations is this: */
1172 gcc_assert (!desc->const_iter);
1173 desc->niter_expr =
1174 simplify_gen_binary (UDIV, desc->mode, old_niter,
1175 GEN_INT (max_unroll + 1));
1176 desc->niter_max /= max_unroll + 1;
1177 if (exit_at_end)
1178 {
1179 desc->niter_expr =
1180 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1181 desc->noloop_assumptions = NULL_RTX;
1182 desc->niter_max--;
1183 }
1184
1185 if (dump_file)
1186 fprintf (dump_file,
1187 ";; Unrolled loop %d times, counting # of iterations "
1188 "in runtime, %i insns\n",
1189 max_unroll, num_loop_insns (loop));
1190
1191 VEC_free (basic_block, heap, dom_bbs);
1192 }
1193
1194 /* Decide whether to simply peel LOOP and how much. */
1195 static void
1196 decide_peel_simple (struct loop *loop, int flags)
1197 {
1198 unsigned npeel;
1199 struct niter_desc *desc;
1200
1201 if (!(flags & UAP_PEEL))
1202 {
1203 /* We were not asked to, just return back silently. */
1204 return;
1205 }
1206
1207 if (dump_file)
1208 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1209
1210 /* npeel = number of iterations to peel. */
1211 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1212 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1213 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1214
1215 /* Skip big loops. */
1216 if (!npeel)
1217 {
1218 if (dump_file)
1219 fprintf (dump_file, ";; Not considering loop, is too big\n");
1220 return;
1221 }
1222
1223 /* Check for simple loops. */
1224 desc = get_simple_loop_desc (loop);
1225
1226 /* Check number of iterations. */
1227 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1228 {
1229 if (dump_file)
1230 fprintf (dump_file, ";; Loop iterates constant times\n");
1231 return;
1232 }
1233
1234 /* Do not simply peel loops with branches inside -- it increases number
1235 of mispredicts. */
1236 if (num_loop_branches (loop) > 1)
1237 {
1238 if (dump_file)
1239 fprintf (dump_file, ";; Not peeling, contains branches\n");
1240 return;
1241 }
1242
1243 if (loop->header->count)
1244 {
1245 unsigned niter = expected_loop_iterations (loop);
1246 if (niter + 1 > npeel)
1247 {
1248 if (dump_file)
1249 {
1250 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1251 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1252 (HOST_WIDEST_INT) (niter + 1));
1253 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1254 npeel);
1255 }
1256 return;
1257 }
1258 npeel = niter + 1;
1259 }
1260 else
1261 {
1262 /* For now we have no good heuristics to decide whether loop peeling
1263 will be effective, so disable it. */
1264 if (dump_file)
1265 fprintf (dump_file,
1266 ";; Not peeling loop, no evidence it will be profitable\n");
1267 return;
1268 }
1269
1270 /* Success. */
1271 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1272 loop->lpt_decision.times = npeel;
1273
1274 if (dump_file)
1275 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1276 loop->lpt_decision.times);
1277 }
1278
1279 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1280 while (cond)
1281 body;
1282
1283 ==>
1284
1285 if (!cond) goto end;
1286 body;
1287 if (!cond) goto end;
1288 body;
1289 while (cond)
1290 body;
1291 end: ;
1292 */
1293 static void
1294 peel_loop_simple (struct loop *loop)
1295 {
1296 sbitmap wont_exit;
1297 unsigned npeel = loop->lpt_decision.times;
1298 struct niter_desc *desc = get_simple_loop_desc (loop);
1299 struct opt_info *opt_info = NULL;
1300 bool ok;
1301
1302 if (flag_split_ivs_in_unroller && npeel > 1)
1303 opt_info = analyze_insns_in_loop (loop);
1304
1305 wont_exit = sbitmap_alloc (npeel + 1);
1306 sbitmap_zero (wont_exit);
1307
1308 opt_info_start_duplication (opt_info);
1309
1310 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1311 npeel, wont_exit, NULL,
1312 NULL, DLTHE_FLAG_UPDATE_FREQ
1313 | (opt_info
1314 ? DLTHE_RECORD_COPY_NUMBER
1315 : 0));
1316 gcc_assert (ok);
1317
1318 free (wont_exit);
1319
1320 if (opt_info)
1321 {
1322 apply_opt_in_copies (opt_info, npeel, false, false);
1323 free_opt_info (opt_info);
1324 }
1325
1326 if (desc->simple_p)
1327 {
1328 if (desc->const_iter)
1329 {
1330 desc->niter -= npeel;
1331 desc->niter_expr = GEN_INT (desc->niter);
1332 desc->noloop_assumptions = NULL_RTX;
1333 }
1334 else
1335 {
1336 /* We cannot just update niter_expr, as its value might be clobbered
1337 inside loop. We could handle this by counting the number into
1338 temporary just like we do in runtime unrolling, but it does not
1339 seem worthwhile. */
1340 free_simple_loop_desc (loop);
1341 }
1342 }
1343 if (dump_file)
1344 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1345 }
1346
1347 /* Decide whether to unroll LOOP stupidly and how much. */
1348 static void
1349 decide_unroll_stupid (struct loop *loop, int flags)
1350 {
1351 unsigned nunroll, nunroll_by_av, i;
1352 struct niter_desc *desc;
1353
1354 if (!(flags & UAP_UNROLL_ALL))
1355 {
1356 /* We were not asked to, just return back silently. */
1357 return;
1358 }
1359
1360 if (dump_file)
1361 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1362
1363 /* nunroll = total number of copies of the original loop body in
1364 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1365 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1366 nunroll_by_av
1367 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1368 if (nunroll > nunroll_by_av)
1369 nunroll = nunroll_by_av;
1370 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1371 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1372
1373 if (targetm.loop_unroll_adjust)
1374 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1375
1376 /* Skip big loops. */
1377 if (nunroll <= 1)
1378 {
1379 if (dump_file)
1380 fprintf (dump_file, ";; Not considering loop, is too big\n");
1381 return;
1382 }
1383
1384 /* Check for simple loops. */
1385 desc = get_simple_loop_desc (loop);
1386
1387 /* Check simpleness. */
1388 if (desc->simple_p && !desc->assumptions)
1389 {
1390 if (dump_file)
1391 fprintf (dump_file, ";; The loop is simple\n");
1392 return;
1393 }
1394
1395 /* Do not unroll loops with branches inside -- it increases number
1396 of mispredicts. */
1397 if (num_loop_branches (loop) > 1)
1398 {
1399 if (dump_file)
1400 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1401 return;
1402 }
1403
1404 /* If we have profile feedback, check whether the loop rolls. */
1405 if (loop->header->count
1406 && expected_loop_iterations (loop) < 2 * nunroll)
1407 {
1408 if (dump_file)
1409 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1410 return;
1411 }
1412
1413 /* Success. Now force nunroll to be power of 2, as it seems that this
1414 improves results (partially because of better alignments, partially
1415 because of some dark magic). */
1416 for (i = 1; 2 * i <= nunroll; i *= 2)
1417 continue;
1418
1419 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1420 loop->lpt_decision.times = i - 1;
1421
1422 if (dump_file)
1423 fprintf (dump_file,
1424 ";; Decided to unroll the loop stupidly, %d times.\n",
1425 loop->lpt_decision.times);
1426 }
1427
1428 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1429 while (cond)
1430 body;
1431
1432 ==>
1433
1434 while (cond)
1435 {
1436 body;
1437 if (!cond) break;
1438 body;
1439 if (!cond) break;
1440 body;
1441 if (!cond) break;
1442 body;
1443 }
1444 */
1445 static void
1446 unroll_loop_stupid (struct loop *loop)
1447 {
1448 sbitmap wont_exit;
1449 unsigned nunroll = loop->lpt_decision.times;
1450 struct niter_desc *desc = get_simple_loop_desc (loop);
1451 struct opt_info *opt_info = NULL;
1452 bool ok;
1453
1454 if (flag_split_ivs_in_unroller
1455 || flag_variable_expansion_in_unroller)
1456 opt_info = analyze_insns_in_loop (loop);
1457
1458
1459 wont_exit = sbitmap_alloc (nunroll + 1);
1460 sbitmap_zero (wont_exit);
1461 opt_info_start_duplication (opt_info);
1462
1463 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1464 nunroll, wont_exit,
1465 NULL, NULL,
1466 DLTHE_FLAG_UPDATE_FREQ
1467 | (opt_info
1468 ? DLTHE_RECORD_COPY_NUMBER
1469 : 0));
1470 gcc_assert (ok);
1471
1472 if (opt_info)
1473 {
1474 apply_opt_in_copies (opt_info, nunroll, true, true);
1475 free_opt_info (opt_info);
1476 }
1477
1478 free (wont_exit);
1479
1480 if (desc->simple_p)
1481 {
1482 /* We indeed may get here provided that there are nontrivial assumptions
1483 for a loop to be really simple. We could update the counts, but the
1484 problem is that we are unable to decide which exit will be taken
1485 (not really true in case the number of iterations is constant,
1486 but noone will do anything with this information, so we do not
1487 worry about it). */
1488 desc->simple_p = false;
1489 }
1490
1491 if (dump_file)
1492 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1493 nunroll, num_loop_insns (loop));
1494 }
1495
1496 /* A hash function for information about insns to split. */
1497
1498 static hashval_t
1499 si_info_hash (const void *ivts)
1500 {
1501 return (hashval_t) INSN_UID (((const struct iv_to_split *) ivts)->insn);
1502 }
1503
1504 /* An equality functions for information about insns to split. */
1505
1506 static int
1507 si_info_eq (const void *ivts1, const void *ivts2)
1508 {
1509 const struct iv_to_split *const i1 = (const struct iv_to_split *) ivts1;
1510 const struct iv_to_split *const i2 = (const struct iv_to_split *) ivts2;
1511
1512 return i1->insn == i2->insn;
1513 }
1514
1515 /* Return a hash for VES, which is really a "var_to_expand *". */
1516
1517 static hashval_t
1518 ve_info_hash (const void *ves)
1519 {
1520 return (hashval_t) INSN_UID (((const struct var_to_expand *) ves)->insn);
1521 }
1522
1523 /* Return true if IVTS1 and IVTS2 (which are really both of type
1524 "var_to_expand *") refer to the same instruction. */
1525
1526 static int
1527 ve_info_eq (const void *ivts1, const void *ivts2)
1528 {
1529 const struct var_to_expand *const i1 = (const struct var_to_expand *) ivts1;
1530 const struct var_to_expand *const i2 = (const struct var_to_expand *) ivts2;
1531
1532 return i1->insn == i2->insn;
1533 }
1534
1535 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1536 Set *DEBUG_USES to the number of debug insns that reference the
1537 variable. */
1538
1539 bool
1540 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1541 int *debug_uses)
1542 {
1543 basic_block *body, bb;
1544 unsigned i;
1545 int count_ref = 0;
1546 rtx insn;
1547
1548 body = get_loop_body (loop);
1549 for (i = 0; i < loop->num_nodes; i++)
1550 {
1551 bb = body[i];
1552
1553 FOR_BB_INSNS (bb, insn)
1554 if (!rtx_referenced_p (reg, insn))
1555 continue;
1556 else if (DEBUG_INSN_P (insn))
1557 ++*debug_uses;
1558 else if (++count_ref > 1)
1559 break;
1560 }
1561 free (body);
1562 return (count_ref == 1);
1563 }
1564
1565 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1566
1567 static void
1568 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1569 {
1570 basic_block *body, bb;
1571 unsigned i;
1572 rtx insn;
1573
1574 body = get_loop_body (loop);
1575 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1576 {
1577 bb = body[i];
1578
1579 FOR_BB_INSNS (bb, insn)
1580 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1581 continue;
1582 else
1583 {
1584 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1585 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1586 if (!--debug_uses)
1587 break;
1588 }
1589 }
1590 free (body);
1591 }
1592
1593 /* Determine whether INSN contains an accumulator
1594 which can be expanded into separate copies,
1595 one for each copy of the LOOP body.
1596
1597 for (i = 0 ; i < n; i++)
1598 sum += a[i];
1599
1600 ==>
1601
1602 sum += a[i]
1603 ....
1604 i = i+1;
1605 sum1 += a[i]
1606 ....
1607 i = i+1
1608 sum2 += a[i];
1609 ....
1610
1611 Return NULL if INSN contains no opportunity for expansion of accumulator.
1612 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1613 information and return a pointer to it.
1614 */
1615
1616 static struct var_to_expand *
1617 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1618 {
1619 rtx set, dest, src;
1620 struct var_to_expand *ves;
1621 unsigned accum_pos;
1622 enum rtx_code code;
1623 int debug_uses = 0;
1624
1625 set = single_set (insn);
1626 if (!set)
1627 return NULL;
1628
1629 dest = SET_DEST (set);
1630 src = SET_SRC (set);
1631 code = GET_CODE (src);
1632
1633 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1634 return NULL;
1635
1636 if (FLOAT_MODE_P (GET_MODE (dest)))
1637 {
1638 if (!flag_associative_math)
1639 return NULL;
1640 /* In the case of FMA, we're also changing the rounding. */
1641 if (code == FMA && !flag_unsafe_math_optimizations)
1642 return NULL;
1643 }
1644
1645 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1646 in MD. But if there is no optab to generate the insn, we can not
1647 perform the variable expansion. This can happen if an MD provides
1648 an insn but not a named pattern to generate it, for example to avoid
1649 producing code that needs additional mode switches like for x87/mmx.
1650
1651 So we check have_insn_for which looks for an optab for the operation
1652 in SRC. If it doesn't exist, we can't perform the expansion even
1653 though INSN is valid. */
1654 if (!have_insn_for (code, GET_MODE (src)))
1655 return NULL;
1656
1657 if (!REG_P (dest)
1658 && !(GET_CODE (dest) == SUBREG
1659 && REG_P (SUBREG_REG (dest))))
1660 return NULL;
1661
1662 /* Find the accumulator use within the operation. */
1663 if (code == FMA)
1664 {
1665 /* We only support accumulation via FMA in the ADD position. */
1666 if (!rtx_equal_p (dest, XEXP (src, 2)))
1667 return NULL;
1668 accum_pos = 2;
1669 }
1670 else if (rtx_equal_p (dest, XEXP (src, 0)))
1671 accum_pos = 0;
1672 else if (rtx_equal_p (dest, XEXP (src, 1)))
1673 {
1674 /* The method of expansion that we are using; which includes the
1675 initialization of the expansions with zero and the summation of
1676 the expansions at the end of the computation will yield wrong
1677 results for (x = something - x) thus avoid using it in that case. */
1678 if (code == MINUS)
1679 return NULL;
1680 accum_pos = 1;
1681 }
1682 else
1683 return NULL;
1684
1685 /* It must not otherwise be used. */
1686 if (code == FMA)
1687 {
1688 if (rtx_referenced_p (dest, XEXP (src, 0))
1689 || rtx_referenced_p (dest, XEXP (src, 1)))
1690 return NULL;
1691 }
1692 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1693 return NULL;
1694
1695 /* It must be used in exactly one insn. */
1696 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1697 return NULL;
1698
1699 if (dump_file)
1700 {
1701 fprintf (dump_file, "\n;; Expanding Accumulator ");
1702 print_rtl (dump_file, dest);
1703 fprintf (dump_file, "\n");
1704 }
1705
1706 if (debug_uses)
1707 /* Instead of resetting the debug insns, we could replace each
1708 debug use in the loop with the sum or product of all expanded
1709 accummulators. Since we'll only know of all expansions at the
1710 end, we'd have to keep track of which vars_to_expand a debug
1711 insn in the loop references, take note of each copy of the
1712 debug insn during unrolling, and when it's all done, compute
1713 the sum or product of each variable and adjust the original
1714 debug insn and each copy thereof. What a pain! */
1715 reset_debug_uses_in_loop (loop, dest, debug_uses);
1716
1717 /* Record the accumulator to expand. */
1718 ves = XNEW (struct var_to_expand);
1719 ves->insn = insn;
1720 ves->reg = copy_rtx (dest);
1721 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1722 ves->next = NULL;
1723 ves->op = GET_CODE (src);
1724 ves->expansion_count = 0;
1725 ves->reuse_expansion = 0;
1726 ves->accum_pos = accum_pos;
1727 return ves;
1728 }
1729
1730 /* Determine whether there is an induction variable in INSN that
1731 we would like to split during unrolling.
1732
1733 I.e. replace
1734
1735 i = i + 1;
1736 ...
1737 i = i + 1;
1738 ...
1739 i = i + 1;
1740 ...
1741
1742 type chains by
1743
1744 i0 = i + 1
1745 ...
1746 i = i0 + 1
1747 ...
1748 i = i0 + 2
1749 ...
1750
1751 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1752 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1753 pointer to it. */
1754
1755 static struct iv_to_split *
1756 analyze_iv_to_split_insn (rtx insn)
1757 {
1758 rtx set, dest;
1759 struct rtx_iv iv;
1760 struct iv_to_split *ivts;
1761 bool ok;
1762
1763 /* For now we just split the basic induction variables. Later this may be
1764 extended for example by selecting also addresses of memory references. */
1765 set = single_set (insn);
1766 if (!set)
1767 return NULL;
1768
1769 dest = SET_DEST (set);
1770 if (!REG_P (dest))
1771 return NULL;
1772
1773 if (!biv_p (insn, dest))
1774 return NULL;
1775
1776 ok = iv_analyze_result (insn, dest, &iv);
1777
1778 /* This used to be an assert under the assumption that if biv_p returns
1779 true that iv_analyze_result must also return true. However, that
1780 assumption is not strictly correct as evidenced by pr25569.
1781
1782 Returning NULL when iv_analyze_result returns false is safe and
1783 avoids the problems in pr25569 until the iv_analyze_* routines
1784 can be fixed, which is apparently hard and time consuming
1785 according to their author. */
1786 if (! ok)
1787 return NULL;
1788
1789 if (iv.step == const0_rtx
1790 || iv.mode != iv.extend_mode)
1791 return NULL;
1792
1793 /* Record the insn to split. */
1794 ivts = XNEW (struct iv_to_split);
1795 ivts->insn = insn;
1796 ivts->base_var = NULL_RTX;
1797 ivts->step = iv.step;
1798 ivts->next = NULL;
1799 ivts->n_loc = 1;
1800 ivts->loc[0] = 1;
1801
1802 return ivts;
1803 }
1804
1805 /* Determines which of insns in LOOP can be optimized.
1806 Return a OPT_INFO struct with the relevant hash tables filled
1807 with all insns to be optimized. The FIRST_NEW_BLOCK field
1808 is undefined for the return value. */
1809
1810 static struct opt_info *
1811 analyze_insns_in_loop (struct loop *loop)
1812 {
1813 basic_block *body, bb;
1814 unsigned i;
1815 struct opt_info *opt_info = XCNEW (struct opt_info);
1816 rtx insn;
1817 struct iv_to_split *ivts = NULL;
1818 struct var_to_expand *ves = NULL;
1819 PTR *slot1;
1820 PTR *slot2;
1821 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1822 edge exit;
1823 bool can_apply = false;
1824
1825 iv_analysis_loop_init (loop);
1826
1827 body = get_loop_body (loop);
1828
1829 if (flag_split_ivs_in_unroller)
1830 {
1831 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1832 si_info_hash, si_info_eq, free);
1833 opt_info->iv_to_split_head = NULL;
1834 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1835 }
1836
1837 /* Record the loop exit bb and loop preheader before the unrolling. */
1838 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1839
1840 if (VEC_length (edge, edges) == 1)
1841 {
1842 exit = VEC_index (edge, edges, 0);
1843 if (!(exit->flags & EDGE_COMPLEX))
1844 {
1845 opt_info->loop_exit = split_edge (exit);
1846 can_apply = true;
1847 }
1848 }
1849
1850 if (flag_variable_expansion_in_unroller
1851 && can_apply)
1852 {
1853 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1854 ve_info_hash,
1855 ve_info_eq, free);
1856 opt_info->var_to_expand_head = NULL;
1857 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1858 }
1859
1860 for (i = 0; i < loop->num_nodes; i++)
1861 {
1862 bb = body[i];
1863 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1864 continue;
1865
1866 FOR_BB_INSNS (bb, insn)
1867 {
1868 if (!INSN_P (insn))
1869 continue;
1870
1871 if (opt_info->insns_to_split)
1872 ivts = analyze_iv_to_split_insn (insn);
1873
1874 if (ivts)
1875 {
1876 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1877 gcc_assert (*slot1 == NULL);
1878 *slot1 = ivts;
1879 *opt_info->iv_to_split_tail = ivts;
1880 opt_info->iv_to_split_tail = &ivts->next;
1881 continue;
1882 }
1883
1884 if (opt_info->insns_with_var_to_expand)
1885 ves = analyze_insn_to_expand_var (loop, insn);
1886
1887 if (ves)
1888 {
1889 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1890 gcc_assert (*slot2 == NULL);
1891 *slot2 = ves;
1892 *opt_info->var_to_expand_tail = ves;
1893 opt_info->var_to_expand_tail = &ves->next;
1894 }
1895 }
1896 }
1897
1898 VEC_free (edge, heap, edges);
1899 free (body);
1900 return opt_info;
1901 }
1902
1903 /* Called just before loop duplication. Records start of duplicated area
1904 to OPT_INFO. */
1905
1906 static void
1907 opt_info_start_duplication (struct opt_info *opt_info)
1908 {
1909 if (opt_info)
1910 opt_info->first_new_block = last_basic_block;
1911 }
1912
1913 /* Determine the number of iterations between initialization of the base
1914 variable and the current copy (N_COPY). N_COPIES is the total number
1915 of newly created copies. UNROLLING is true if we are unrolling
1916 (not peeling) the loop. */
1917
1918 static unsigned
1919 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1920 {
1921 if (unrolling)
1922 {
1923 /* If we are unrolling, initialization is done in the original loop
1924 body (number 0). */
1925 return n_copy;
1926 }
1927 else
1928 {
1929 /* If we are peeling, the copy in that the initialization occurs has
1930 number 1. The original loop (number 0) is the last. */
1931 if (n_copy)
1932 return n_copy - 1;
1933 else
1934 return n_copies;
1935 }
1936 }
1937
1938 /* Locate in EXPR the expression corresponding to the location recorded
1939 in IVTS, and return a pointer to the RTX for this location. */
1940
1941 static rtx *
1942 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1943 {
1944 unsigned i;
1945 rtx *ret = &expr;
1946
1947 for (i = 0; i < ivts->n_loc; i++)
1948 ret = &XEXP (*ret, ivts->loc[i]);
1949
1950 return ret;
1951 }
1952
1953 /* Allocate basic variable for the induction variable chain. */
1954
1955 static void
1956 allocate_basic_variable (struct iv_to_split *ivts)
1957 {
1958 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1959
1960 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1961 }
1962
1963 /* Insert initialization of basic variable of IVTS before INSN, taking
1964 the initial value from INSN. */
1965
1966 static void
1967 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1968 {
1969 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1970 rtx seq;
1971
1972 start_sequence ();
1973 expr = force_operand (expr, ivts->base_var);
1974 if (expr != ivts->base_var)
1975 emit_move_insn (ivts->base_var, expr);
1976 seq = get_insns ();
1977 end_sequence ();
1978
1979 emit_insn_before (seq, insn);
1980 }
1981
1982 /* Replace the use of induction variable described in IVTS in INSN
1983 by base variable + DELTA * step. */
1984
1985 static void
1986 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1987 {
1988 rtx expr, *loc, seq, incr, var;
1989 enum machine_mode mode = GET_MODE (ivts->base_var);
1990 rtx src, dest, set;
1991
1992 /* Construct base + DELTA * step. */
1993 if (!delta)
1994 expr = ivts->base_var;
1995 else
1996 {
1997 incr = simplify_gen_binary (MULT, mode,
1998 ivts->step, gen_int_mode (delta, mode));
1999 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2000 ivts->base_var, incr);
2001 }
2002
2003 /* Figure out where to do the replacement. */
2004 loc = get_ivts_expr (single_set (insn), ivts);
2005
2006 /* If we can make the replacement right away, we're done. */
2007 if (validate_change (insn, loc, expr, 0))
2008 return;
2009
2010 /* Otherwise, force EXPR into a register and try again. */
2011 start_sequence ();
2012 var = gen_reg_rtx (mode);
2013 expr = force_operand (expr, var);
2014 if (expr != var)
2015 emit_move_insn (var, expr);
2016 seq = get_insns ();
2017 end_sequence ();
2018 emit_insn_before (seq, insn);
2019
2020 if (validate_change (insn, loc, var, 0))
2021 return;
2022
2023 /* The last chance. Try recreating the assignment in insn
2024 completely from scratch. */
2025 set = single_set (insn);
2026 gcc_assert (set);
2027
2028 start_sequence ();
2029 *loc = var;
2030 src = copy_rtx (SET_SRC (set));
2031 dest = copy_rtx (SET_DEST (set));
2032 src = force_operand (src, dest);
2033 if (src != dest)
2034 emit_move_insn (dest, src);
2035 seq = get_insns ();
2036 end_sequence ();
2037
2038 emit_insn_before (seq, insn);
2039 delete_insn (insn);
2040 }
2041
2042
2043 /* Return one expansion of the accumulator recorded in struct VE. */
2044
2045 static rtx
2046 get_expansion (struct var_to_expand *ve)
2047 {
2048 rtx reg;
2049
2050 if (ve->reuse_expansion == 0)
2051 reg = ve->reg;
2052 else
2053 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
2054
2055 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
2056 ve->reuse_expansion = 0;
2057 else
2058 ve->reuse_expansion++;
2059
2060 return reg;
2061 }
2062
2063
2064 /* Given INSN replace the uses of the accumulator recorded in VE
2065 with a new register. */
2066
2067 static void
2068 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2069 {
2070 rtx new_reg, set;
2071 bool really_new_expansion = false;
2072
2073 set = single_set (insn);
2074 gcc_assert (set);
2075
2076 /* Generate a new register only if the expansion limit has not been
2077 reached. Else reuse an already existing expansion. */
2078 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2079 {
2080 really_new_expansion = true;
2081 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2082 }
2083 else
2084 new_reg = get_expansion (ve);
2085
2086 validate_change (insn, &SET_DEST (set), new_reg, 1);
2087 validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
2088
2089 if (apply_change_group ())
2090 if (really_new_expansion)
2091 {
2092 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
2093 ve->expansion_count++;
2094 }
2095 }
2096
2097 /* Initialize the variable expansions in loop preheader. PLACE is the
2098 loop-preheader basic block where the initialization of the
2099 expansions should take place. The expansions are initialized with
2100 (-0) when the operation is plus or minus to honor sign zero. This
2101 way we can prevent cases where the sign of the final result is
2102 effected by the sign of the expansion. Here is an example to
2103 demonstrate this:
2104
2105 for (i = 0 ; i < n; i++)
2106 sum += something;
2107
2108 ==>
2109
2110 sum += something
2111 ....
2112 i = i+1;
2113 sum1 += something
2114 ....
2115 i = i+1
2116 sum2 += something;
2117 ....
2118
2119 When SUM is initialized with -zero and SOMETHING is also -zero; the
2120 final result of sum should be -zero thus the expansions sum1 and sum2
2121 should be initialized with -zero as well (otherwise we will get +zero
2122 as the final result). */
2123
2124 static void
2125 insert_var_expansion_initialization (struct var_to_expand *ve,
2126 basic_block place)
2127 {
2128 rtx seq, var, zero_init, insn;
2129 unsigned i;
2130 enum machine_mode mode = GET_MODE (ve->reg);
2131 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2132
2133 if (VEC_length (rtx, ve->var_expansions) == 0)
2134 return;
2135
2136 start_sequence ();
2137 switch (ve->op)
2138 {
2139 case FMA:
2140 /* Note that we only accumulate FMA via the ADD operand. */
2141 case PLUS:
2142 case MINUS:
2143 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2144 {
2145 if (honor_signed_zero_p)
2146 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2147 else
2148 zero_init = CONST0_RTX (mode);
2149 emit_move_insn (var, zero_init);
2150 }
2151 break;
2152
2153 case MULT:
2154 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2155 {
2156 zero_init = CONST1_RTX (GET_MODE (var));
2157 emit_move_insn (var, zero_init);
2158 }
2159 break;
2160
2161 default:
2162 gcc_unreachable ();
2163 }
2164
2165 seq = get_insns ();
2166 end_sequence ();
2167
2168 insn = BB_HEAD (place);
2169 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2170 insn = NEXT_INSN (insn);
2171
2172 emit_insn_after (seq, insn);
2173 }
2174
2175 /* Combine the variable expansions at the loop exit. PLACE is the
2176 loop exit basic block where the summation of the expansions should
2177 take place. */
2178
2179 static void
2180 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2181 {
2182 rtx sum = ve->reg;
2183 rtx expr, seq, var, insn;
2184 unsigned i;
2185
2186 if (VEC_length (rtx, ve->var_expansions) == 0)
2187 return;
2188
2189 start_sequence ();
2190 switch (ve->op)
2191 {
2192 case FMA:
2193 /* Note that we only accumulate FMA via the ADD operand. */
2194 case PLUS:
2195 case MINUS:
2196 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2197 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2198 break;
2199
2200 case MULT:
2201 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2202 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2203 break;
2204
2205 default:
2206 gcc_unreachable ();
2207 }
2208
2209 expr = force_operand (sum, ve->reg);
2210 if (expr != ve->reg)
2211 emit_move_insn (ve->reg, expr);
2212 seq = get_insns ();
2213 end_sequence ();
2214
2215 insn = BB_HEAD (place);
2216 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2217 insn = NEXT_INSN (insn);
2218
2219 emit_insn_after (seq, insn);
2220 }
2221
2222 /* Apply loop optimizations in loop copies using the
2223 data which gathered during the unrolling. Structure
2224 OPT_INFO record that data.
2225
2226 UNROLLING is true if we unrolled (not peeled) the loop.
2227 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2228 the loop (as it should happen in complete unrolling, but not in ordinary
2229 peeling of the loop). */
2230
2231 static void
2232 apply_opt_in_copies (struct opt_info *opt_info,
2233 unsigned n_copies, bool unrolling,
2234 bool rewrite_original_loop)
2235 {
2236 unsigned i, delta;
2237 basic_block bb, orig_bb;
2238 rtx insn, orig_insn, next;
2239 struct iv_to_split ivts_templ, *ivts;
2240 struct var_to_expand ve_templ, *ves;
2241
2242 /* Sanity check -- we need to put initialization in the original loop
2243 body. */
2244 gcc_assert (!unrolling || rewrite_original_loop);
2245
2246 /* Allocate the basic variables (i0). */
2247 if (opt_info->insns_to_split)
2248 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2249 allocate_basic_variable (ivts);
2250
2251 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2252 {
2253 bb = BASIC_BLOCK (i);
2254 orig_bb = get_bb_original (bb);
2255
2256 /* bb->aux holds position in copy sequence initialized by
2257 duplicate_loop_to_header_edge. */
2258 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2259 unrolling);
2260 bb->aux = 0;
2261 orig_insn = BB_HEAD (orig_bb);
2262 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2263 {
2264 next = NEXT_INSN (insn);
2265 if (!INSN_P (insn))
2266 continue;
2267
2268 while (!INSN_P (orig_insn))
2269 orig_insn = NEXT_INSN (orig_insn);
2270
2271 ivts_templ.insn = orig_insn;
2272 ve_templ.insn = orig_insn;
2273
2274 /* Apply splitting iv optimization. */
2275 if (opt_info->insns_to_split)
2276 {
2277 ivts = (struct iv_to_split *)
2278 htab_find (opt_info->insns_to_split, &ivts_templ);
2279
2280 if (ivts)
2281 {
2282 gcc_assert (GET_CODE (PATTERN (insn))
2283 == GET_CODE (PATTERN (orig_insn)));
2284
2285 if (!delta)
2286 insert_base_initialization (ivts, insn);
2287 split_iv (ivts, insn, delta);
2288 }
2289 }
2290 /* Apply variable expansion optimization. */
2291 if (unrolling && opt_info->insns_with_var_to_expand)
2292 {
2293 ves = (struct var_to_expand *)
2294 htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2295 if (ves)
2296 {
2297 gcc_assert (GET_CODE (PATTERN (insn))
2298 == GET_CODE (PATTERN (orig_insn)));
2299 expand_var_during_unrolling (ves, insn);
2300 }
2301 }
2302 orig_insn = NEXT_INSN (orig_insn);
2303 }
2304 }
2305
2306 if (!rewrite_original_loop)
2307 return;
2308
2309 /* Initialize the variable expansions in the loop preheader
2310 and take care of combining them at the loop exit. */
2311 if (opt_info->insns_with_var_to_expand)
2312 {
2313 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2314 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2315 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2316 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2317 }
2318
2319 /* Rewrite also the original loop body. Find them as originals of the blocks
2320 in the last copied iteration, i.e. those that have
2321 get_bb_copy (get_bb_original (bb)) == bb. */
2322 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2323 {
2324 bb = BASIC_BLOCK (i);
2325 orig_bb = get_bb_original (bb);
2326 if (get_bb_copy (orig_bb) != bb)
2327 continue;
2328
2329 delta = determine_split_iv_delta (0, n_copies, unrolling);
2330 for (orig_insn = BB_HEAD (orig_bb);
2331 orig_insn != NEXT_INSN (BB_END (bb));
2332 orig_insn = next)
2333 {
2334 next = NEXT_INSN (orig_insn);
2335
2336 if (!INSN_P (orig_insn))
2337 continue;
2338
2339 ivts_templ.insn = orig_insn;
2340 if (opt_info->insns_to_split)
2341 {
2342 ivts = (struct iv_to_split *)
2343 htab_find (opt_info->insns_to_split, &ivts_templ);
2344 if (ivts)
2345 {
2346 if (!delta)
2347 insert_base_initialization (ivts, orig_insn);
2348 split_iv (ivts, orig_insn, delta);
2349 continue;
2350 }
2351 }
2352
2353 }
2354 }
2355 }
2356
2357 /* Release OPT_INFO. */
2358
2359 static void
2360 free_opt_info (struct opt_info *opt_info)
2361 {
2362 if (opt_info->insns_to_split)
2363 htab_delete (opt_info->insns_to_split);
2364 if (opt_info->insns_with_var_to_expand)
2365 {
2366 struct var_to_expand *ves;
2367
2368 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2369 VEC_free (rtx, heap, ves->var_expansions);
2370 htab_delete (opt_info->insns_with_var_to_expand);
2371 }
2372 free (opt_info);
2373 }