system.h: Define __STDC_FORMAT_MACROS before including inttypes.h.
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "params.h"
31 #include "expr.h"
32 #include "hash-table.h"
33 #include "recog.h"
34 #include "target.h"
35 #include "dumpfile.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx orig_var; /* The variable (register) for the IV before split. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
82 unsigned n_loc;
83 unsigned loc[3]; /* Location where the definition of the induction
84 variable occurs in the insn. For example if
85 N_LOC is 2, the expression is located at
86 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 };
88
89 /* Information about accumulators to expand. */
90
91 struct var_to_expand
92 {
93 rtx insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
104 };
105
106 /* Hashtable helper for iv_to_split. */
107
108 struct iv_split_hasher : typed_free_remove <iv_to_split>
109 {
110 typedef iv_to_split value_type;
111 typedef iv_to_split compare_type;
112 static inline hashval_t hash (const value_type *);
113 static inline bool equal (const value_type *, const compare_type *);
114 };
115
116
117 /* A hash function for information about insns to split. */
118
119 inline hashval_t
120 iv_split_hasher::hash (const value_type *ivts)
121 {
122 return (hashval_t) INSN_UID (ivts->insn);
123 }
124
125 /* An equality functions for information about insns to split. */
126
127 inline bool
128 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
129 {
130 return i1->insn == i2->insn;
131 }
132
133 /* Hashtable helper for iv_to_split. */
134
135 struct var_expand_hasher : typed_free_remove <var_to_expand>
136 {
137 typedef var_to_expand value_type;
138 typedef var_to_expand compare_type;
139 static inline hashval_t hash (const value_type *);
140 static inline bool equal (const value_type *, const compare_type *);
141 };
142
143 /* Return a hash for VES. */
144
145 inline hashval_t
146 var_expand_hasher::hash (const value_type *ves)
147 {
148 return (hashval_t) INSN_UID (ves->insn);
149 }
150
151 /* Return true if I1 and I2 refer to the same instruction. */
152
153 inline bool
154 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
155 {
156 return i1->insn == i2->insn;
157 }
158
159 /* Information about optimization applied in
160 the unrolled loop. */
161
162 struct opt_info
163 {
164 hash_table <iv_split_hasher> insns_to_split; /* A hashtable of insns to
165 split. */
166 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
167 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
168 hash_table <var_expand_hasher> insns_with_var_to_expand; /* A hashtable of
169 insns with accumulators to expand. */
170 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
171 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
172 unsigned first_new_block; /* The first basic block that was
173 duplicated. */
174 basic_block loop_exit; /* The loop exit basic block. */
175 basic_block loop_preheader; /* The loop preheader basic block. */
176 };
177
178 static void decide_unrolling_and_peeling (int);
179 static void peel_loops_completely (int);
180 static void decide_peel_simple (struct loop *, int);
181 static void decide_peel_once_rolling (struct loop *, int);
182 static void decide_peel_completely (struct loop *, int);
183 static void decide_unroll_stupid (struct loop *, int);
184 static void decide_unroll_constant_iterations (struct loop *, int);
185 static void decide_unroll_runtime_iterations (struct loop *, int);
186 static void peel_loop_simple (struct loop *);
187 static void peel_loop_completely (struct loop *);
188 static void unroll_loop_stupid (struct loop *);
189 static void unroll_loop_constant_iterations (struct loop *);
190 static void unroll_loop_runtime_iterations (struct loop *);
191 static struct opt_info *analyze_insns_in_loop (struct loop *);
192 static void opt_info_start_duplication (struct opt_info *);
193 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
194 static void free_opt_info (struct opt_info *);
195 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
196 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
197 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
198 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
199 static void insert_var_expansion_initialization (struct var_to_expand *,
200 basic_block);
201 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
202 basic_block);
203 static rtx get_expansion (struct var_to_expand *);
204
205 /* Emit a message summarizing the unroll or peel that will be
206 performed for LOOP, along with the loop's location LOCUS, if
207 appropriate given the dump or -fopt-info settings. */
208
209 static void
210 report_unroll_peel (struct loop *loop, location_t locus)
211 {
212 struct niter_desc *desc;
213 int niters = 0;
214 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
215
216 if (loop->lpt_decision.decision == LPT_NONE)
217 return;
218
219 if (!dump_enabled_p ())
220 return;
221
222 /* In the special case where the loop never iterated, emit
223 a different message so that we don't report an unroll by 0.
224 This matches the equivalent message emitted during tree unrolling. */
225 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
226 && !loop->lpt_decision.times)
227 {
228 dump_printf_loc (report_flags, locus,
229 "loop turned into non-loop; it never loops.\n");
230 return;
231 }
232
233 desc = get_simple_loop_desc (loop);
234
235 if (desc->const_iter)
236 niters = desc->niter;
237 else if (loop->header->count)
238 niters = expected_loop_iterations (loop);
239
240 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
241 dump_printf_loc (report_flags, locus,
242 "loop with %d iterations completely unrolled",
243 loop->lpt_decision.times + 1);
244 else
245 dump_printf_loc (report_flags, locus,
246 "loop %s %d times",
247 (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
248 ? "peeled" : "unrolled"),
249 loop->lpt_decision.times);
250 if (profile_info)
251 dump_printf (report_flags,
252 " (header execution count %d",
253 (int)loop->header->count);
254 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
255 dump_printf (report_flags,
256 "%s%s iterations %d)",
257 profile_info ? ", " : " (",
258 desc->const_iter ? "const" : "average",
259 niters);
260 else if (profile_info)
261 dump_printf (report_flags, ")");
262
263 dump_printf (report_flags, "\n");
264 }
265
266 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
267 void
268 unroll_and_peel_loops (int flags)
269 {
270 struct loop *loop;
271 bool changed = false;
272
273 /* First perform complete loop peeling (it is almost surely a win,
274 and affects parameters for further decision a lot). */
275 peel_loops_completely (flags);
276
277 /* Now decide rest of unrolling and peeling. */
278 decide_unrolling_and_peeling (flags);
279
280 /* Scan the loops, inner ones first. */
281 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
282 {
283 /* And perform the appropriate transformations. */
284 switch (loop->lpt_decision.decision)
285 {
286 case LPT_PEEL_COMPLETELY:
287 /* Already done. */
288 gcc_unreachable ();
289 case LPT_PEEL_SIMPLE:
290 peel_loop_simple (loop);
291 changed = true;
292 break;
293 case LPT_UNROLL_CONSTANT:
294 unroll_loop_constant_iterations (loop);
295 changed = true;
296 break;
297 case LPT_UNROLL_RUNTIME:
298 unroll_loop_runtime_iterations (loop);
299 changed = true;
300 break;
301 case LPT_UNROLL_STUPID:
302 unroll_loop_stupid (loop);
303 changed = true;
304 break;
305 case LPT_NONE:
306 break;
307 default:
308 gcc_unreachable ();
309 }
310 }
311
312 if (changed)
313 {
314 calculate_dominance_info (CDI_DOMINATORS);
315 fix_loop_structure (NULL);
316 }
317
318 iv_analysis_done ();
319 }
320
321 /* Check whether exit of the LOOP is at the end of loop body. */
322
323 static bool
324 loop_exit_at_end_p (struct loop *loop)
325 {
326 struct niter_desc *desc = get_simple_loop_desc (loop);
327 rtx insn;
328
329 if (desc->in_edge->dest != loop->latch)
330 return false;
331
332 /* Check that the latch is empty. */
333 FOR_BB_INSNS (loop->latch, insn)
334 {
335 if (NONDEBUG_INSN_P (insn))
336 return false;
337 }
338
339 return true;
340 }
341
342 /* Depending on FLAGS, check whether to peel loops completely and do so. */
343 static void
344 peel_loops_completely (int flags)
345 {
346 struct loop *loop;
347 bool changed = false;
348
349 /* Scan the loops, the inner ones first. */
350 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
351 {
352 loop->lpt_decision.decision = LPT_NONE;
353 location_t locus = get_loop_location (loop);
354
355 if (dump_enabled_p ())
356 dump_printf_loc (TDF_RTL, locus,
357 ";; *** Considering loop %d at BB %d for "
358 "complete peeling ***\n",
359 loop->num, loop->header->index);
360
361 loop->ninsns = num_loop_insns (loop);
362
363 decide_peel_once_rolling (loop, flags);
364 if (loop->lpt_decision.decision == LPT_NONE)
365 decide_peel_completely (loop, flags);
366
367 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
368 {
369 report_unroll_peel (loop, locus);
370 peel_loop_completely (loop);
371 changed = true;
372 }
373 }
374
375 if (changed)
376 {
377 calculate_dominance_info (CDI_DOMINATORS);
378 fix_loop_structure (NULL);
379 }
380 }
381
382 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
383 static void
384 decide_unrolling_and_peeling (int flags)
385 {
386 struct loop *loop;
387
388 /* Scan the loops, inner ones first. */
389 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
390 {
391 loop->lpt_decision.decision = LPT_NONE;
392 location_t locus = get_loop_location (loop);
393
394 if (dump_enabled_p ())
395 dump_printf_loc (TDF_RTL, locus,
396 ";; *** Considering loop %d at BB %d for "
397 "unrolling and peeling ***\n",
398 loop->num, loop->header->index);
399
400 /* Do not peel cold areas. */
401 if (optimize_loop_for_size_p (loop))
402 {
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, cold area\n");
405 continue;
406 }
407
408 /* Can the loop be manipulated? */
409 if (!can_duplicate_loop_p (loop))
410 {
411 if (dump_file)
412 fprintf (dump_file,
413 ";; Not considering loop, cannot duplicate\n");
414 continue;
415 }
416
417 /* Skip non-innermost loops. */
418 if (loop->inner)
419 {
420 if (dump_file)
421 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
422 continue;
423 }
424
425 loop->ninsns = num_loop_insns (loop);
426 loop->av_ninsns = average_num_loop_insns (loop);
427
428 /* Try transformations one by one in decreasing order of
429 priority. */
430
431 decide_unroll_constant_iterations (loop, flags);
432 if (loop->lpt_decision.decision == LPT_NONE)
433 decide_unroll_runtime_iterations (loop, flags);
434 if (loop->lpt_decision.decision == LPT_NONE)
435 decide_unroll_stupid (loop, flags);
436 if (loop->lpt_decision.decision == LPT_NONE)
437 decide_peel_simple (loop, flags);
438
439 report_unroll_peel (loop, locus);
440 }
441 }
442
443 /* Decide whether the LOOP is once rolling and suitable for complete
444 peeling. */
445 static void
446 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
447 {
448 struct niter_desc *desc;
449
450 if (dump_file)
451 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
452
453 /* Is the loop small enough? */
454 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
455 {
456 if (dump_file)
457 fprintf (dump_file, ";; Not considering loop, is too big\n");
458 return;
459 }
460
461 /* Check for simple loops. */
462 desc = get_simple_loop_desc (loop);
463
464 /* Check number of iterations. */
465 if (!desc->simple_p
466 || desc->assumptions
467 || desc->infinite
468 || !desc->const_iter
469 || (desc->niter != 0
470 && get_max_loop_iterations_int (loop) != 0))
471 {
472 if (dump_file)
473 fprintf (dump_file,
474 ";; Unable to prove that the loop rolls exactly once\n");
475 return;
476 }
477
478 /* Success. */
479 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
480 }
481
482 /* Decide whether the LOOP is suitable for complete peeling. */
483 static void
484 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
485 {
486 unsigned npeel;
487 struct niter_desc *desc;
488
489 if (dump_file)
490 fprintf (dump_file, "\n;; Considering peeling completely\n");
491
492 /* Skip non-innermost loops. */
493 if (loop->inner)
494 {
495 if (dump_file)
496 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
497 return;
498 }
499
500 /* Do not peel cold areas. */
501 if (optimize_loop_for_size_p (loop))
502 {
503 if (dump_file)
504 fprintf (dump_file, ";; Not considering loop, cold area\n");
505 return;
506 }
507
508 /* Can the loop be manipulated? */
509 if (!can_duplicate_loop_p (loop))
510 {
511 if (dump_file)
512 fprintf (dump_file,
513 ";; Not considering loop, cannot duplicate\n");
514 return;
515 }
516
517 /* npeel = number of iterations to peel. */
518 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
519 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
520 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
521
522 /* Is the loop small enough? */
523 if (!npeel)
524 {
525 if (dump_file)
526 fprintf (dump_file, ";; Not considering loop, is too big\n");
527 return;
528 }
529
530 /* Check for simple loops. */
531 desc = get_simple_loop_desc (loop);
532
533 /* Check number of iterations. */
534 if (!desc->simple_p
535 || desc->assumptions
536 || !desc->const_iter
537 || desc->infinite)
538 {
539 if (dump_file)
540 fprintf (dump_file,
541 ";; Unable to prove that the loop iterates constant times\n");
542 return;
543 }
544
545 if (desc->niter > npeel - 1)
546 {
547 if (dump_file)
548 {
549 fprintf (dump_file,
550 ";; Not peeling loop completely, rolls too much (");
551 fprintf (dump_file, "%"PRId64, desc->niter);
552 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
553 }
554 return;
555 }
556
557 /* Success. */
558 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
559 }
560
561 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
562 completely. The transformation done:
563
564 for (i = 0; i < 4; i++)
565 body;
566
567 ==>
568
569 i = 0;
570 body; i++;
571 body; i++;
572 body; i++;
573 body; i++;
574 */
575 static void
576 peel_loop_completely (struct loop *loop)
577 {
578 sbitmap wont_exit;
579 unsigned HOST_WIDE_INT npeel;
580 unsigned i;
581 edge ein;
582 struct niter_desc *desc = get_simple_loop_desc (loop);
583 struct opt_info *opt_info = NULL;
584
585 npeel = desc->niter;
586
587 if (npeel)
588 {
589 bool ok;
590
591 wont_exit = sbitmap_alloc (npeel + 1);
592 bitmap_ones (wont_exit);
593 bitmap_clear_bit (wont_exit, 0);
594 if (desc->noloop_assumptions)
595 bitmap_clear_bit (wont_exit, 1);
596
597 auto_vec<edge> remove_edges;
598 if (flag_split_ivs_in_unroller)
599 opt_info = analyze_insns_in_loop (loop);
600
601 opt_info_start_duplication (opt_info);
602 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
603 npeel,
604 wont_exit, desc->out_edge,
605 &remove_edges,
606 DLTHE_FLAG_UPDATE_FREQ
607 | DLTHE_FLAG_COMPLETTE_PEEL
608 | (opt_info
609 ? DLTHE_RECORD_COPY_NUMBER : 0));
610 gcc_assert (ok);
611
612 free (wont_exit);
613
614 if (opt_info)
615 {
616 apply_opt_in_copies (opt_info, npeel, false, true);
617 free_opt_info (opt_info);
618 }
619
620 /* Remove the exit edges. */
621 FOR_EACH_VEC_ELT (remove_edges, i, ein)
622 remove_path (ein);
623 }
624
625 ein = desc->in_edge;
626 free_simple_loop_desc (loop);
627
628 /* Now remove the unreachable part of the last iteration and cancel
629 the loop. */
630 remove_path (ein);
631
632 if (dump_file)
633 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
634 }
635
636 /* Decide whether to unroll LOOP iterating constant number of times
637 and how much. */
638
639 static void
640 decide_unroll_constant_iterations (struct loop *loop, int flags)
641 {
642 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
643 struct niter_desc *desc;
644 widest_int iterations;
645
646 if (!(flags & UAP_UNROLL))
647 {
648 /* We were not asked to, just return back silently. */
649 return;
650 }
651
652 if (dump_file)
653 fprintf (dump_file,
654 "\n;; Considering unrolling loop with constant "
655 "number of iterations\n");
656
657 /* nunroll = total number of copies of the original loop body in
658 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
659 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
660 nunroll_by_av
661 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
662 if (nunroll > nunroll_by_av)
663 nunroll = nunroll_by_av;
664 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
665 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
666
667 if (targetm.loop_unroll_adjust)
668 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
669
670 /* Skip big loops. */
671 if (nunroll <= 1)
672 {
673 if (dump_file)
674 fprintf (dump_file, ";; Not considering loop, is too big\n");
675 return;
676 }
677
678 /* Check for simple loops. */
679 desc = get_simple_loop_desc (loop);
680
681 /* Check number of iterations. */
682 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
683 {
684 if (dump_file)
685 fprintf (dump_file,
686 ";; Unable to prove that the loop iterates constant times\n");
687 return;
688 }
689
690 /* Check whether the loop rolls enough to consider.
691 Consult also loop bounds and profile; in the case the loop has more
692 than one exit it may well loop less than determined maximal number
693 of iterations. */
694 if (desc->niter < 2 * nunroll
695 || ((get_estimated_loop_iterations (loop, &iterations)
696 || get_max_loop_iterations (loop, &iterations))
697 && wi::ltu_p (iterations, 2 * nunroll)))
698 {
699 if (dump_file)
700 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
701 return;
702 }
703
704 /* Success; now compute number of iterations to unroll. We alter
705 nunroll so that as few as possible copies of loop body are
706 necessary, while still not decreasing the number of unrollings
707 too much (at most by 1). */
708 best_copies = 2 * nunroll + 10;
709
710 i = 2 * nunroll + 2;
711 if (i - 1 >= desc->niter)
712 i = desc->niter - 2;
713
714 for (; i >= nunroll - 1; i--)
715 {
716 unsigned exit_mod = desc->niter % (i + 1);
717
718 if (!loop_exit_at_end_p (loop))
719 n_copies = exit_mod + i + 1;
720 else if (exit_mod != (unsigned) i
721 || desc->noloop_assumptions != NULL_RTX)
722 n_copies = exit_mod + i + 2;
723 else
724 n_copies = i + 1;
725
726 if (n_copies < best_copies)
727 {
728 best_copies = n_copies;
729 best_unroll = i;
730 }
731 }
732
733 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
734 loop->lpt_decision.times = best_unroll;
735 }
736
737 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
738 The transformation does this:
739
740 for (i = 0; i < 102; i++)
741 body;
742
743 ==> (LOOP->LPT_DECISION.TIMES == 3)
744
745 i = 0;
746 body; i++;
747 body; i++;
748 while (i < 102)
749 {
750 body; i++;
751 body; i++;
752 body; i++;
753 body; i++;
754 }
755 */
756 static void
757 unroll_loop_constant_iterations (struct loop *loop)
758 {
759 unsigned HOST_WIDE_INT niter;
760 unsigned exit_mod;
761 sbitmap wont_exit;
762 unsigned i;
763 edge e;
764 unsigned max_unroll = loop->lpt_decision.times;
765 struct niter_desc *desc = get_simple_loop_desc (loop);
766 bool exit_at_end = loop_exit_at_end_p (loop);
767 struct opt_info *opt_info = NULL;
768 bool ok;
769
770 niter = desc->niter;
771
772 /* Should not get here (such loop should be peeled instead). */
773 gcc_assert (niter > max_unroll + 1);
774
775 exit_mod = niter % (max_unroll + 1);
776
777 wont_exit = sbitmap_alloc (max_unroll + 1);
778 bitmap_ones (wont_exit);
779
780 auto_vec<edge> remove_edges;
781 if (flag_split_ivs_in_unroller
782 || flag_variable_expansion_in_unroller)
783 opt_info = analyze_insns_in_loop (loop);
784
785 if (!exit_at_end)
786 {
787 /* The exit is not at the end of the loop; leave exit test
788 in the first copy, so that the loops that start with test
789 of exit condition have continuous body after unrolling. */
790
791 if (dump_file)
792 fprintf (dump_file, ";; Condition at beginning of loop.\n");
793
794 /* Peel exit_mod iterations. */
795 bitmap_clear_bit (wont_exit, 0);
796 if (desc->noloop_assumptions)
797 bitmap_clear_bit (wont_exit, 1);
798
799 if (exit_mod)
800 {
801 opt_info_start_duplication (opt_info);
802 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
803 exit_mod,
804 wont_exit, desc->out_edge,
805 &remove_edges,
806 DLTHE_FLAG_UPDATE_FREQ
807 | (opt_info && exit_mod > 1
808 ? DLTHE_RECORD_COPY_NUMBER
809 : 0));
810 gcc_assert (ok);
811
812 if (opt_info && exit_mod > 1)
813 apply_opt_in_copies (opt_info, exit_mod, false, false);
814
815 desc->noloop_assumptions = NULL_RTX;
816 desc->niter -= exit_mod;
817 loop->nb_iterations_upper_bound -= exit_mod;
818 if (loop->any_estimate
819 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
820 loop->nb_iterations_estimate -= exit_mod;
821 else
822 loop->any_estimate = false;
823 }
824
825 bitmap_set_bit (wont_exit, 1);
826 }
827 else
828 {
829 /* Leave exit test in last copy, for the same reason as above if
830 the loop tests the condition at the end of loop body. */
831
832 if (dump_file)
833 fprintf (dump_file, ";; Condition at end of loop.\n");
834
835 /* We know that niter >= max_unroll + 2; so we do not need to care of
836 case when we would exit before reaching the loop. So just peel
837 exit_mod + 1 iterations. */
838 if (exit_mod != max_unroll
839 || desc->noloop_assumptions)
840 {
841 bitmap_clear_bit (wont_exit, 0);
842 if (desc->noloop_assumptions)
843 bitmap_clear_bit (wont_exit, 1);
844
845 opt_info_start_duplication (opt_info);
846 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
847 exit_mod + 1,
848 wont_exit, desc->out_edge,
849 &remove_edges,
850 DLTHE_FLAG_UPDATE_FREQ
851 | (opt_info && exit_mod > 0
852 ? DLTHE_RECORD_COPY_NUMBER
853 : 0));
854 gcc_assert (ok);
855
856 if (opt_info && exit_mod > 0)
857 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
858
859 desc->niter -= exit_mod + 1;
860 loop->nb_iterations_upper_bound -= exit_mod + 1;
861 if (loop->any_estimate
862 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
863 loop->nb_iterations_estimate -= exit_mod + 1;
864 else
865 loop->any_estimate = false;
866 desc->noloop_assumptions = NULL_RTX;
867
868 bitmap_set_bit (wont_exit, 0);
869 bitmap_set_bit (wont_exit, 1);
870 }
871
872 bitmap_clear_bit (wont_exit, max_unroll);
873 }
874
875 /* Now unroll the loop. */
876
877 opt_info_start_duplication (opt_info);
878 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
879 max_unroll,
880 wont_exit, desc->out_edge,
881 &remove_edges,
882 DLTHE_FLAG_UPDATE_FREQ
883 | (opt_info
884 ? DLTHE_RECORD_COPY_NUMBER
885 : 0));
886 gcc_assert (ok);
887
888 if (opt_info)
889 {
890 apply_opt_in_copies (opt_info, max_unroll, true, true);
891 free_opt_info (opt_info);
892 }
893
894 free (wont_exit);
895
896 if (exit_at_end)
897 {
898 basic_block exit_block = get_bb_copy (desc->in_edge->src);
899 /* Find a new in and out edge; they are in the last copy we have made. */
900
901 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
902 {
903 desc->out_edge = EDGE_SUCC (exit_block, 0);
904 desc->in_edge = EDGE_SUCC (exit_block, 1);
905 }
906 else
907 {
908 desc->out_edge = EDGE_SUCC (exit_block, 1);
909 desc->in_edge = EDGE_SUCC (exit_block, 0);
910 }
911 }
912
913 desc->niter /= max_unroll + 1;
914 loop->nb_iterations_upper_bound
915 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
916 if (loop->any_estimate)
917 loop->nb_iterations_estimate
918 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
919 desc->niter_expr = GEN_INT (desc->niter);
920
921 /* Remove the edges. */
922 FOR_EACH_VEC_ELT (remove_edges, i, e)
923 remove_path (e);
924
925 if (dump_file)
926 fprintf (dump_file,
927 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
928 max_unroll, num_loop_insns (loop));
929 }
930
931 /* Decide whether to unroll LOOP iterating runtime computable number of times
932 and how much. */
933 static void
934 decide_unroll_runtime_iterations (struct loop *loop, int flags)
935 {
936 unsigned nunroll, nunroll_by_av, i;
937 struct niter_desc *desc;
938 widest_int iterations;
939
940 if (!(flags & UAP_UNROLL))
941 {
942 /* We were not asked to, just return back silently. */
943 return;
944 }
945
946 if (dump_file)
947 fprintf (dump_file,
948 "\n;; Considering unrolling loop with runtime "
949 "computable number of iterations\n");
950
951 /* nunroll = total number of copies of the original loop body in
952 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
953 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
954 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
955 if (nunroll > nunroll_by_av)
956 nunroll = nunroll_by_av;
957 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
958 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
959
960 if (targetm.loop_unroll_adjust)
961 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
962
963 /* Skip big loops. */
964 if (nunroll <= 1)
965 {
966 if (dump_file)
967 fprintf (dump_file, ";; Not considering loop, is too big\n");
968 return;
969 }
970
971 /* Check for simple loops. */
972 desc = get_simple_loop_desc (loop);
973
974 /* Check simpleness. */
975 if (!desc->simple_p || desc->assumptions)
976 {
977 if (dump_file)
978 fprintf (dump_file,
979 ";; Unable to prove that the number of iterations "
980 "can be counted in runtime\n");
981 return;
982 }
983
984 if (desc->const_iter)
985 {
986 if (dump_file)
987 fprintf (dump_file, ";; Loop iterates constant times\n");
988 return;
989 }
990
991 /* Check whether the loop rolls. */
992 if ((get_estimated_loop_iterations (loop, &iterations)
993 || get_max_loop_iterations (loop, &iterations))
994 && wi::ltu_p (iterations, 2 * nunroll))
995 {
996 if (dump_file)
997 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
998 return;
999 }
1000
1001 /* Success; now force nunroll to be power of 2, as we are unable to
1002 cope with overflows in computation of number of iterations. */
1003 for (i = 1; 2 * i <= nunroll; i *= 2)
1004 continue;
1005
1006 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
1007 loop->lpt_decision.times = i - 1;
1008 }
1009
1010 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
1011 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
1012 and NULL is returned instead. */
1013
1014 basic_block
1015 split_edge_and_insert (edge e, rtx insns)
1016 {
1017 basic_block bb;
1018
1019 if (!insns)
1020 return NULL;
1021 bb = split_edge (e);
1022 emit_insn_after (insns, BB_END (bb));
1023
1024 /* ??? We used to assume that INSNS can contain control flow insns, and
1025 that we had to try to find sub basic blocks in BB to maintain a valid
1026 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
1027 and call break_superblocks when going out of cfglayout mode. But it
1028 turns out that this never happens; and that if it does ever happen,
1029 the verify_flow_info at the end of the RTL loop passes would fail.
1030
1031 There are two reasons why we expected we could have control flow insns
1032 in INSNS. The first is when a comparison has to be done in parts, and
1033 the second is when the number of iterations is computed for loops with
1034 the number of iterations known at runtime. In both cases, test cases
1035 to get control flow in INSNS appear to be impossible to construct:
1036
1037 * If do_compare_rtx_and_jump needs several branches to do comparison
1038 in a mode that needs comparison by parts, we cannot analyze the
1039 number of iterations of the loop, and we never get to unrolling it.
1040
1041 * The code in expand_divmod that was suspected to cause creation of
1042 branching code seems to be only accessed for signed division. The
1043 divisions used by # of iterations analysis are always unsigned.
1044 Problems might arise on architectures that emits branching code
1045 for some operations that may appear in the unroller (especially
1046 for division), but we have no such architectures.
1047
1048 Considering all this, it was decided that we should for now assume
1049 that INSNS can in theory contain control flow insns, but in practice
1050 it never does. So we don't handle the theoretical case, and should
1051 a real failure ever show up, we have a pretty good clue for how to
1052 fix it. */
1053
1054 return bb;
1055 }
1056
1057 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
1058 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
1059 in order to create a jump. */
1060
1061 static rtx
1062 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
1063 rtx cinsn)
1064 {
1065 rtx seq, jump, cond;
1066 enum machine_mode mode;
1067
1068 mode = GET_MODE (op0);
1069 if (mode == VOIDmode)
1070 mode = GET_MODE (op1);
1071
1072 start_sequence ();
1073 if (GET_MODE_CLASS (mode) == MODE_CC)
1074 {
1075 /* A hack -- there seems to be no easy generic way how to make a
1076 conditional jump from a ccmode comparison. */
1077 gcc_assert (cinsn);
1078 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
1079 gcc_assert (GET_CODE (cond) == comp);
1080 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
1081 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
1082 emit_jump_insn (copy_insn (PATTERN (cinsn)));
1083 jump = get_last_insn ();
1084 gcc_assert (JUMP_P (jump));
1085 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
1086 LABEL_NUSES (JUMP_LABEL (jump))++;
1087 redirect_jump (jump, label, 0);
1088 }
1089 else
1090 {
1091 gcc_assert (!cinsn);
1092
1093 op0 = force_operand (op0, NULL_RTX);
1094 op1 = force_operand (op1, NULL_RTX);
1095 do_compare_rtx_and_jump (op0, op1, comp, 0,
1096 mode, NULL_RTX, NULL_RTX, label, -1);
1097 jump = get_last_insn ();
1098 gcc_assert (JUMP_P (jump));
1099 JUMP_LABEL (jump) = label;
1100 LABEL_NUSES (label)++;
1101 }
1102 add_int_reg_note (jump, REG_BR_PROB, prob);
1103
1104 seq = get_insns ();
1105 end_sequence ();
1106
1107 return seq;
1108 }
1109
1110 /* Unroll LOOP for which we are able to count number of iterations in runtime
1111 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1112 extra care for case n < 0):
1113
1114 for (i = 0; i < n; i++)
1115 body;
1116
1117 ==> (LOOP->LPT_DECISION.TIMES == 3)
1118
1119 i = 0;
1120 mod = n % 4;
1121
1122 switch (mod)
1123 {
1124 case 3:
1125 body; i++;
1126 case 2:
1127 body; i++;
1128 case 1:
1129 body; i++;
1130 case 0: ;
1131 }
1132
1133 while (i < n)
1134 {
1135 body; i++;
1136 body; i++;
1137 body; i++;
1138 body; i++;
1139 }
1140 */
1141 static void
1142 unroll_loop_runtime_iterations (struct loop *loop)
1143 {
1144 rtx old_niter, niter, init_code, branch_code, tmp;
1145 unsigned i, j, p;
1146 basic_block preheader, *body, swtch, ezc_swtch;
1147 sbitmap wont_exit;
1148 int may_exit_copy;
1149 unsigned n_peel;
1150 edge e;
1151 bool extra_zero_check, last_may_exit;
1152 unsigned max_unroll = loop->lpt_decision.times;
1153 struct niter_desc *desc = get_simple_loop_desc (loop);
1154 bool exit_at_end = loop_exit_at_end_p (loop);
1155 struct opt_info *opt_info = NULL;
1156 bool ok;
1157
1158 if (flag_split_ivs_in_unroller
1159 || flag_variable_expansion_in_unroller)
1160 opt_info = analyze_insns_in_loop (loop);
1161
1162 /* Remember blocks whose dominators will have to be updated. */
1163 auto_vec<basic_block> dom_bbs;
1164
1165 body = get_loop_body (loop);
1166 for (i = 0; i < loop->num_nodes; i++)
1167 {
1168 vec<basic_block> ldom;
1169 basic_block bb;
1170
1171 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1172 FOR_EACH_VEC_ELT (ldom, j, bb)
1173 if (!flow_bb_inside_loop_p (loop, bb))
1174 dom_bbs.safe_push (bb);
1175
1176 ldom.release ();
1177 }
1178 free (body);
1179
1180 if (!exit_at_end)
1181 {
1182 /* Leave exit in first copy (for explanation why see comment in
1183 unroll_loop_constant_iterations). */
1184 may_exit_copy = 0;
1185 n_peel = max_unroll - 1;
1186 extra_zero_check = true;
1187 last_may_exit = false;
1188 }
1189 else
1190 {
1191 /* Leave exit in last copy (for explanation why see comment in
1192 unroll_loop_constant_iterations). */
1193 may_exit_copy = max_unroll;
1194 n_peel = max_unroll;
1195 extra_zero_check = false;
1196 last_may_exit = true;
1197 }
1198
1199 /* Get expression for number of iterations. */
1200 start_sequence ();
1201 old_niter = niter = gen_reg_rtx (desc->mode);
1202 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1203 if (tmp != niter)
1204 emit_move_insn (niter, tmp);
1205
1206 /* Count modulo by ANDing it with max_unroll; we use the fact that
1207 the number of unrollings is a power of two, and thus this is correct
1208 even if there is overflow in the computation. */
1209 niter = expand_simple_binop (desc->mode, AND,
1210 niter, gen_int_mode (max_unroll, desc->mode),
1211 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1212
1213 init_code = get_insns ();
1214 end_sequence ();
1215 unshare_all_rtl_in_chain (init_code);
1216
1217 /* Precondition the loop. */
1218 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1219
1220 auto_vec<edge> remove_edges;
1221
1222 wont_exit = sbitmap_alloc (max_unroll + 2);
1223
1224 /* Peel the first copy of loop body (almost always we must leave exit test
1225 here; the only exception is when we have extra zero check and the number
1226 of iterations is reliable. Also record the place of (possible) extra
1227 zero check. */
1228 bitmap_clear (wont_exit);
1229 if (extra_zero_check
1230 && !desc->noloop_assumptions)
1231 bitmap_set_bit (wont_exit, 1);
1232 ezc_swtch = loop_preheader_edge (loop)->src;
1233 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1234 1, wont_exit, desc->out_edge,
1235 &remove_edges,
1236 DLTHE_FLAG_UPDATE_FREQ);
1237 gcc_assert (ok);
1238
1239 /* Record the place where switch will be built for preconditioning. */
1240 swtch = split_edge (loop_preheader_edge (loop));
1241
1242 for (i = 0; i < n_peel; i++)
1243 {
1244 /* Peel the copy. */
1245 bitmap_clear (wont_exit);
1246 if (i != n_peel - 1 || !last_may_exit)
1247 bitmap_set_bit (wont_exit, 1);
1248 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1249 1, wont_exit, desc->out_edge,
1250 &remove_edges,
1251 DLTHE_FLAG_UPDATE_FREQ);
1252 gcc_assert (ok);
1253
1254 /* Create item for switch. */
1255 j = n_peel - i - (extra_zero_check ? 0 : 1);
1256 p = REG_BR_PROB_BASE / (i + 2);
1257
1258 preheader = split_edge (loop_preheader_edge (loop));
1259 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1260 block_label (preheader), p,
1261 NULL_RTX);
1262
1263 /* We rely on the fact that the compare and jump cannot be optimized out,
1264 and hence the cfg we create is correct. */
1265 gcc_assert (branch_code != NULL_RTX);
1266
1267 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1268 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1269 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1270 e = make_edge (swtch, preheader,
1271 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1272 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1273 e->probability = p;
1274 }
1275
1276 if (extra_zero_check)
1277 {
1278 /* Add branch for zero iterations. */
1279 p = REG_BR_PROB_BASE / (max_unroll + 1);
1280 swtch = ezc_swtch;
1281 preheader = split_edge (loop_preheader_edge (loop));
1282 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1283 block_label (preheader), p,
1284 NULL_RTX);
1285 gcc_assert (branch_code != NULL_RTX);
1286
1287 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1288 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1289 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1290 e = make_edge (swtch, preheader,
1291 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1292 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1293 e->probability = p;
1294 }
1295
1296 /* Recount dominators for outer blocks. */
1297 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1298
1299 /* And unroll loop. */
1300
1301 bitmap_ones (wont_exit);
1302 bitmap_clear_bit (wont_exit, may_exit_copy);
1303 opt_info_start_duplication (opt_info);
1304
1305 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1306 max_unroll,
1307 wont_exit, desc->out_edge,
1308 &remove_edges,
1309 DLTHE_FLAG_UPDATE_FREQ
1310 | (opt_info
1311 ? DLTHE_RECORD_COPY_NUMBER
1312 : 0));
1313 gcc_assert (ok);
1314
1315 if (opt_info)
1316 {
1317 apply_opt_in_copies (opt_info, max_unroll, true, true);
1318 free_opt_info (opt_info);
1319 }
1320
1321 free (wont_exit);
1322
1323 if (exit_at_end)
1324 {
1325 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1326 /* Find a new in and out edge; they are in the last copy we have
1327 made. */
1328
1329 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1330 {
1331 desc->out_edge = EDGE_SUCC (exit_block, 0);
1332 desc->in_edge = EDGE_SUCC (exit_block, 1);
1333 }
1334 else
1335 {
1336 desc->out_edge = EDGE_SUCC (exit_block, 1);
1337 desc->in_edge = EDGE_SUCC (exit_block, 0);
1338 }
1339 }
1340
1341 /* Remove the edges. */
1342 FOR_EACH_VEC_ELT (remove_edges, i, e)
1343 remove_path (e);
1344
1345 /* We must be careful when updating the number of iterations due to
1346 preconditioning and the fact that the value must be valid at entry
1347 of the loop. After passing through the above code, we see that
1348 the correct new number of iterations is this: */
1349 gcc_assert (!desc->const_iter);
1350 desc->niter_expr =
1351 simplify_gen_binary (UDIV, desc->mode, old_niter,
1352 gen_int_mode (max_unroll + 1, desc->mode));
1353 loop->nb_iterations_upper_bound
1354 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1355 if (loop->any_estimate)
1356 loop->nb_iterations_estimate
1357 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1358 if (exit_at_end)
1359 {
1360 desc->niter_expr =
1361 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1362 desc->noloop_assumptions = NULL_RTX;
1363 --loop->nb_iterations_upper_bound;
1364 if (loop->any_estimate
1365 && loop->nb_iterations_estimate != 0)
1366 --loop->nb_iterations_estimate;
1367 else
1368 loop->any_estimate = false;
1369 }
1370
1371 if (dump_file)
1372 fprintf (dump_file,
1373 ";; Unrolled loop %d times, counting # of iterations "
1374 "in runtime, %i insns\n",
1375 max_unroll, num_loop_insns (loop));
1376 }
1377
1378 /* Decide whether to simply peel LOOP and how much. */
1379 static void
1380 decide_peel_simple (struct loop *loop, int flags)
1381 {
1382 unsigned npeel;
1383 widest_int iterations;
1384
1385 if (!(flags & UAP_PEEL))
1386 {
1387 /* We were not asked to, just return back silently. */
1388 return;
1389 }
1390
1391 if (dump_file)
1392 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1393
1394 /* npeel = number of iterations to peel. */
1395 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1396 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1397 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1398
1399 /* Skip big loops. */
1400 if (!npeel)
1401 {
1402 if (dump_file)
1403 fprintf (dump_file, ";; Not considering loop, is too big\n");
1404 return;
1405 }
1406
1407 /* Do not simply peel loops with branches inside -- it increases number
1408 of mispredicts.
1409 Exception is when we do have profile and we however have good chance
1410 to peel proper number of iterations loop will iterate in practice.
1411 TODO: this heuristic needs tunning; while for complette unrolling
1412 the branch inside loop mostly eliminates any improvements, for
1413 peeling it is not the case. Also a function call inside loop is
1414 also branch from branch prediction POV (and probably better reason
1415 to not unroll/peel). */
1416 if (num_loop_branches (loop) > 1
1417 && profile_status_for_fn (cfun) != PROFILE_READ)
1418 {
1419 if (dump_file)
1420 fprintf (dump_file, ";; Not peeling, contains branches\n");
1421 return;
1422 }
1423
1424 /* If we have realistic estimate on number of iterations, use it. */
1425 if (get_estimated_loop_iterations (loop, &iterations))
1426 {
1427 if (wi::leu_p (npeel, iterations))
1428 {
1429 if (dump_file)
1430 {
1431 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1432 fprintf (dump_file, "%"PRId64,
1433 (int64_t) (iterations.to_shwi () + 1));
1434 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1435 npeel);
1436 }
1437 return;
1438 }
1439 npeel = iterations.to_shwi () + 1;
1440 }
1441 /* If we have small enough bound on iterations, we can still peel (completely
1442 unroll). */
1443 else if (get_max_loop_iterations (loop, &iterations)
1444 && wi::ltu_p (iterations, npeel))
1445 npeel = iterations.to_shwi () + 1;
1446 else
1447 {
1448 /* For now we have no good heuristics to decide whether loop peeling
1449 will be effective, so disable it. */
1450 if (dump_file)
1451 fprintf (dump_file,
1452 ";; Not peeling loop, no evidence it will be profitable\n");
1453 return;
1454 }
1455
1456 /* Success. */
1457 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1458 loop->lpt_decision.times = npeel;
1459 }
1460
1461 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1462
1463 while (cond)
1464 body;
1465
1466 ==> (LOOP->LPT_DECISION.TIMES == 3)
1467
1468 if (!cond) goto end;
1469 body;
1470 if (!cond) goto end;
1471 body;
1472 if (!cond) goto end;
1473 body;
1474 while (cond)
1475 body;
1476 end: ;
1477 */
1478 static void
1479 peel_loop_simple (struct loop *loop)
1480 {
1481 sbitmap wont_exit;
1482 unsigned npeel = loop->lpt_decision.times;
1483 struct niter_desc *desc = get_simple_loop_desc (loop);
1484 struct opt_info *opt_info = NULL;
1485 bool ok;
1486
1487 if (flag_split_ivs_in_unroller && npeel > 1)
1488 opt_info = analyze_insns_in_loop (loop);
1489
1490 wont_exit = sbitmap_alloc (npeel + 1);
1491 bitmap_clear (wont_exit);
1492
1493 opt_info_start_duplication (opt_info);
1494
1495 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1496 npeel, wont_exit, NULL,
1497 NULL, DLTHE_FLAG_UPDATE_FREQ
1498 | (opt_info
1499 ? DLTHE_RECORD_COPY_NUMBER
1500 : 0));
1501 gcc_assert (ok);
1502
1503 free (wont_exit);
1504
1505 if (opt_info)
1506 {
1507 apply_opt_in_copies (opt_info, npeel, false, false);
1508 free_opt_info (opt_info);
1509 }
1510
1511 if (desc->simple_p)
1512 {
1513 if (desc->const_iter)
1514 {
1515 desc->niter -= npeel;
1516 desc->niter_expr = GEN_INT (desc->niter);
1517 desc->noloop_assumptions = NULL_RTX;
1518 }
1519 else
1520 {
1521 /* We cannot just update niter_expr, as its value might be clobbered
1522 inside loop. We could handle this by counting the number into
1523 temporary just like we do in runtime unrolling, but it does not
1524 seem worthwhile. */
1525 free_simple_loop_desc (loop);
1526 }
1527 }
1528 if (dump_file)
1529 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1530 }
1531
1532 /* Decide whether to unroll LOOP stupidly and how much. */
1533 static void
1534 decide_unroll_stupid (struct loop *loop, int flags)
1535 {
1536 unsigned nunroll, nunroll_by_av, i;
1537 struct niter_desc *desc;
1538 widest_int iterations;
1539
1540 if (!(flags & UAP_UNROLL_ALL))
1541 {
1542 /* We were not asked to, just return back silently. */
1543 return;
1544 }
1545
1546 if (dump_file)
1547 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1548
1549 /* nunroll = total number of copies of the original loop body in
1550 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1551 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1552 nunroll_by_av
1553 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1554 if (nunroll > nunroll_by_av)
1555 nunroll = nunroll_by_av;
1556 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1557 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1558
1559 if (targetm.loop_unroll_adjust)
1560 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1561
1562 /* Skip big loops. */
1563 if (nunroll <= 1)
1564 {
1565 if (dump_file)
1566 fprintf (dump_file, ";; Not considering loop, is too big\n");
1567 return;
1568 }
1569
1570 /* Check for simple loops. */
1571 desc = get_simple_loop_desc (loop);
1572
1573 /* Check simpleness. */
1574 if (desc->simple_p && !desc->assumptions)
1575 {
1576 if (dump_file)
1577 fprintf (dump_file, ";; The loop is simple\n");
1578 return;
1579 }
1580
1581 /* Do not unroll loops with branches inside -- it increases number
1582 of mispredicts.
1583 TODO: this heuristic needs tunning; call inside the loop body
1584 is also relatively good reason to not unroll. */
1585 if (num_loop_branches (loop) > 1)
1586 {
1587 if (dump_file)
1588 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1589 return;
1590 }
1591
1592 /* Check whether the loop rolls. */
1593 if ((get_estimated_loop_iterations (loop, &iterations)
1594 || get_max_loop_iterations (loop, &iterations))
1595 && wi::ltu_p (iterations, 2 * nunroll))
1596 {
1597 if (dump_file)
1598 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1599 return;
1600 }
1601
1602 /* Success. Now force nunroll to be power of 2, as it seems that this
1603 improves results (partially because of better alignments, partially
1604 because of some dark magic). */
1605 for (i = 1; 2 * i <= nunroll; i *= 2)
1606 continue;
1607
1608 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1609 loop->lpt_decision.times = i - 1;
1610 }
1611
1612 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1613
1614 while (cond)
1615 body;
1616
1617 ==> (LOOP->LPT_DECISION.TIMES == 3)
1618
1619 while (cond)
1620 {
1621 body;
1622 if (!cond) break;
1623 body;
1624 if (!cond) break;
1625 body;
1626 if (!cond) break;
1627 body;
1628 }
1629 */
1630 static void
1631 unroll_loop_stupid (struct loop *loop)
1632 {
1633 sbitmap wont_exit;
1634 unsigned nunroll = loop->lpt_decision.times;
1635 struct niter_desc *desc = get_simple_loop_desc (loop);
1636 struct opt_info *opt_info = NULL;
1637 bool ok;
1638
1639 if (flag_split_ivs_in_unroller
1640 || flag_variable_expansion_in_unroller)
1641 opt_info = analyze_insns_in_loop (loop);
1642
1643
1644 wont_exit = sbitmap_alloc (nunroll + 1);
1645 bitmap_clear (wont_exit);
1646 opt_info_start_duplication (opt_info);
1647
1648 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1649 nunroll, wont_exit,
1650 NULL, NULL,
1651 DLTHE_FLAG_UPDATE_FREQ
1652 | (opt_info
1653 ? DLTHE_RECORD_COPY_NUMBER
1654 : 0));
1655 gcc_assert (ok);
1656
1657 if (opt_info)
1658 {
1659 apply_opt_in_copies (opt_info, nunroll, true, true);
1660 free_opt_info (opt_info);
1661 }
1662
1663 free (wont_exit);
1664
1665 if (desc->simple_p)
1666 {
1667 /* We indeed may get here provided that there are nontrivial assumptions
1668 for a loop to be really simple. We could update the counts, but the
1669 problem is that we are unable to decide which exit will be taken
1670 (not really true in case the number of iterations is constant,
1671 but no one will do anything with this information, so we do not
1672 worry about it). */
1673 desc->simple_p = false;
1674 }
1675
1676 if (dump_file)
1677 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1678 nunroll, num_loop_insns (loop));
1679 }
1680
1681 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1682 Set *DEBUG_USES to the number of debug insns that reference the
1683 variable. */
1684
1685 bool
1686 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1687 int *debug_uses)
1688 {
1689 basic_block *body, bb;
1690 unsigned i;
1691 int count_ref = 0;
1692 rtx insn;
1693
1694 body = get_loop_body (loop);
1695 for (i = 0; i < loop->num_nodes; i++)
1696 {
1697 bb = body[i];
1698
1699 FOR_BB_INSNS (bb, insn)
1700 if (!rtx_referenced_p (reg, insn))
1701 continue;
1702 else if (DEBUG_INSN_P (insn))
1703 ++*debug_uses;
1704 else if (++count_ref > 1)
1705 break;
1706 }
1707 free (body);
1708 return (count_ref == 1);
1709 }
1710
1711 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1712
1713 static void
1714 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1715 {
1716 basic_block *body, bb;
1717 unsigned i;
1718 rtx insn;
1719
1720 body = get_loop_body (loop);
1721 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1722 {
1723 bb = body[i];
1724
1725 FOR_BB_INSNS (bb, insn)
1726 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1727 continue;
1728 else
1729 {
1730 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1731 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1732 if (!--debug_uses)
1733 break;
1734 }
1735 }
1736 free (body);
1737 }
1738
1739 /* Determine whether INSN contains an accumulator
1740 which can be expanded into separate copies,
1741 one for each copy of the LOOP body.
1742
1743 for (i = 0 ; i < n; i++)
1744 sum += a[i];
1745
1746 ==>
1747
1748 sum += a[i]
1749 ....
1750 i = i+1;
1751 sum1 += a[i]
1752 ....
1753 i = i+1
1754 sum2 += a[i];
1755 ....
1756
1757 Return NULL if INSN contains no opportunity for expansion of accumulator.
1758 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1759 information and return a pointer to it.
1760 */
1761
1762 static struct var_to_expand *
1763 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1764 {
1765 rtx set, dest, src;
1766 struct var_to_expand *ves;
1767 unsigned accum_pos;
1768 enum rtx_code code;
1769 int debug_uses = 0;
1770
1771 set = single_set (insn);
1772 if (!set)
1773 return NULL;
1774
1775 dest = SET_DEST (set);
1776 src = SET_SRC (set);
1777 code = GET_CODE (src);
1778
1779 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1780 return NULL;
1781
1782 if (FLOAT_MODE_P (GET_MODE (dest)))
1783 {
1784 if (!flag_associative_math)
1785 return NULL;
1786 /* In the case of FMA, we're also changing the rounding. */
1787 if (code == FMA && !flag_unsafe_math_optimizations)
1788 return NULL;
1789 }
1790
1791 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1792 in MD. But if there is no optab to generate the insn, we can not
1793 perform the variable expansion. This can happen if an MD provides
1794 an insn but not a named pattern to generate it, for example to avoid
1795 producing code that needs additional mode switches like for x87/mmx.
1796
1797 So we check have_insn_for which looks for an optab for the operation
1798 in SRC. If it doesn't exist, we can't perform the expansion even
1799 though INSN is valid. */
1800 if (!have_insn_for (code, GET_MODE (src)))
1801 return NULL;
1802
1803 if (!REG_P (dest)
1804 && !(GET_CODE (dest) == SUBREG
1805 && REG_P (SUBREG_REG (dest))))
1806 return NULL;
1807
1808 /* Find the accumulator use within the operation. */
1809 if (code == FMA)
1810 {
1811 /* We only support accumulation via FMA in the ADD position. */
1812 if (!rtx_equal_p (dest, XEXP (src, 2)))
1813 return NULL;
1814 accum_pos = 2;
1815 }
1816 else if (rtx_equal_p (dest, XEXP (src, 0)))
1817 accum_pos = 0;
1818 else if (rtx_equal_p (dest, XEXP (src, 1)))
1819 {
1820 /* The method of expansion that we are using; which includes the
1821 initialization of the expansions with zero and the summation of
1822 the expansions at the end of the computation will yield wrong
1823 results for (x = something - x) thus avoid using it in that case. */
1824 if (code == MINUS)
1825 return NULL;
1826 accum_pos = 1;
1827 }
1828 else
1829 return NULL;
1830
1831 /* It must not otherwise be used. */
1832 if (code == FMA)
1833 {
1834 if (rtx_referenced_p (dest, XEXP (src, 0))
1835 || rtx_referenced_p (dest, XEXP (src, 1)))
1836 return NULL;
1837 }
1838 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1839 return NULL;
1840
1841 /* It must be used in exactly one insn. */
1842 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1843 return NULL;
1844
1845 if (dump_file)
1846 {
1847 fprintf (dump_file, "\n;; Expanding Accumulator ");
1848 print_rtl (dump_file, dest);
1849 fprintf (dump_file, "\n");
1850 }
1851
1852 if (debug_uses)
1853 /* Instead of resetting the debug insns, we could replace each
1854 debug use in the loop with the sum or product of all expanded
1855 accummulators. Since we'll only know of all expansions at the
1856 end, we'd have to keep track of which vars_to_expand a debug
1857 insn in the loop references, take note of each copy of the
1858 debug insn during unrolling, and when it's all done, compute
1859 the sum or product of each variable and adjust the original
1860 debug insn and each copy thereof. What a pain! */
1861 reset_debug_uses_in_loop (loop, dest, debug_uses);
1862
1863 /* Record the accumulator to expand. */
1864 ves = XNEW (struct var_to_expand);
1865 ves->insn = insn;
1866 ves->reg = copy_rtx (dest);
1867 ves->var_expansions.create (1);
1868 ves->next = NULL;
1869 ves->op = GET_CODE (src);
1870 ves->expansion_count = 0;
1871 ves->reuse_expansion = 0;
1872 return ves;
1873 }
1874
1875 /* Determine whether there is an induction variable in INSN that
1876 we would like to split during unrolling.
1877
1878 I.e. replace
1879
1880 i = i + 1;
1881 ...
1882 i = i + 1;
1883 ...
1884 i = i + 1;
1885 ...
1886
1887 type chains by
1888
1889 i0 = i + 1
1890 ...
1891 i = i0 + 1
1892 ...
1893 i = i0 + 2
1894 ...
1895
1896 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1897 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1898 pointer to it. */
1899
1900 static struct iv_to_split *
1901 analyze_iv_to_split_insn (rtx insn)
1902 {
1903 rtx set, dest;
1904 struct rtx_iv iv;
1905 struct iv_to_split *ivts;
1906 bool ok;
1907
1908 /* For now we just split the basic induction variables. Later this may be
1909 extended for example by selecting also addresses of memory references. */
1910 set = single_set (insn);
1911 if (!set)
1912 return NULL;
1913
1914 dest = SET_DEST (set);
1915 if (!REG_P (dest))
1916 return NULL;
1917
1918 if (!biv_p (insn, dest))
1919 return NULL;
1920
1921 ok = iv_analyze_result (insn, dest, &iv);
1922
1923 /* This used to be an assert under the assumption that if biv_p returns
1924 true that iv_analyze_result must also return true. However, that
1925 assumption is not strictly correct as evidenced by pr25569.
1926
1927 Returning NULL when iv_analyze_result returns false is safe and
1928 avoids the problems in pr25569 until the iv_analyze_* routines
1929 can be fixed, which is apparently hard and time consuming
1930 according to their author. */
1931 if (! ok)
1932 return NULL;
1933
1934 if (iv.step == const0_rtx
1935 || iv.mode != iv.extend_mode)
1936 return NULL;
1937
1938 /* Record the insn to split. */
1939 ivts = XNEW (struct iv_to_split);
1940 ivts->insn = insn;
1941 ivts->orig_var = dest;
1942 ivts->base_var = NULL_RTX;
1943 ivts->step = iv.step;
1944 ivts->next = NULL;
1945 ivts->n_loc = 1;
1946 ivts->loc[0] = 1;
1947
1948 return ivts;
1949 }
1950
1951 /* Determines which of insns in LOOP can be optimized.
1952 Return a OPT_INFO struct with the relevant hash tables filled
1953 with all insns to be optimized. The FIRST_NEW_BLOCK field
1954 is undefined for the return value. */
1955
1956 static struct opt_info *
1957 analyze_insns_in_loop (struct loop *loop)
1958 {
1959 basic_block *body, bb;
1960 unsigned i;
1961 struct opt_info *opt_info = XCNEW (struct opt_info);
1962 rtx insn;
1963 struct iv_to_split *ivts = NULL;
1964 struct var_to_expand *ves = NULL;
1965 iv_to_split **slot1;
1966 var_to_expand **slot2;
1967 vec<edge> edges = get_loop_exit_edges (loop);
1968 edge exit;
1969 bool can_apply = false;
1970
1971 iv_analysis_loop_init (loop);
1972
1973 body = get_loop_body (loop);
1974
1975 if (flag_split_ivs_in_unroller)
1976 {
1977 opt_info->insns_to_split.create (5 * loop->num_nodes);
1978 opt_info->iv_to_split_head = NULL;
1979 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1980 }
1981
1982 /* Record the loop exit bb and loop preheader before the unrolling. */
1983 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1984
1985 if (edges.length () == 1)
1986 {
1987 exit = edges[0];
1988 if (!(exit->flags & EDGE_COMPLEX))
1989 {
1990 opt_info->loop_exit = split_edge (exit);
1991 can_apply = true;
1992 }
1993 }
1994
1995 if (flag_variable_expansion_in_unroller
1996 && can_apply)
1997 {
1998 opt_info->insns_with_var_to_expand.create (5 * loop->num_nodes);
1999 opt_info->var_to_expand_head = NULL;
2000 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
2001 }
2002
2003 for (i = 0; i < loop->num_nodes; i++)
2004 {
2005 bb = body[i];
2006 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2007 continue;
2008
2009 FOR_BB_INSNS (bb, insn)
2010 {
2011 if (!INSN_P (insn))
2012 continue;
2013
2014 if (opt_info->insns_to_split.is_created ())
2015 ivts = analyze_iv_to_split_insn (insn);
2016
2017 if (ivts)
2018 {
2019 slot1 = opt_info->insns_to_split.find_slot (ivts, INSERT);
2020 gcc_assert (*slot1 == NULL);
2021 *slot1 = ivts;
2022 *opt_info->iv_to_split_tail = ivts;
2023 opt_info->iv_to_split_tail = &ivts->next;
2024 continue;
2025 }
2026
2027 if (opt_info->insns_with_var_to_expand.is_created ())
2028 ves = analyze_insn_to_expand_var (loop, insn);
2029
2030 if (ves)
2031 {
2032 slot2 = opt_info->insns_with_var_to_expand.find_slot (ves, INSERT);
2033 gcc_assert (*slot2 == NULL);
2034 *slot2 = ves;
2035 *opt_info->var_to_expand_tail = ves;
2036 opt_info->var_to_expand_tail = &ves->next;
2037 }
2038 }
2039 }
2040
2041 edges.release ();
2042 free (body);
2043 return opt_info;
2044 }
2045
2046 /* Called just before loop duplication. Records start of duplicated area
2047 to OPT_INFO. */
2048
2049 static void
2050 opt_info_start_duplication (struct opt_info *opt_info)
2051 {
2052 if (opt_info)
2053 opt_info->first_new_block = last_basic_block_for_fn (cfun);
2054 }
2055
2056 /* Determine the number of iterations between initialization of the base
2057 variable and the current copy (N_COPY). N_COPIES is the total number
2058 of newly created copies. UNROLLING is true if we are unrolling
2059 (not peeling) the loop. */
2060
2061 static unsigned
2062 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2063 {
2064 if (unrolling)
2065 {
2066 /* If we are unrolling, initialization is done in the original loop
2067 body (number 0). */
2068 return n_copy;
2069 }
2070 else
2071 {
2072 /* If we are peeling, the copy in that the initialization occurs has
2073 number 1. The original loop (number 0) is the last. */
2074 if (n_copy)
2075 return n_copy - 1;
2076 else
2077 return n_copies;
2078 }
2079 }
2080
2081 /* Locate in EXPR the expression corresponding to the location recorded
2082 in IVTS, and return a pointer to the RTX for this location. */
2083
2084 static rtx *
2085 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
2086 {
2087 unsigned i;
2088 rtx *ret = &expr;
2089
2090 for (i = 0; i < ivts->n_loc; i++)
2091 ret = &XEXP (*ret, ivts->loc[i]);
2092
2093 return ret;
2094 }
2095
2096 /* Allocate basic variable for the induction variable chain. */
2097
2098 static void
2099 allocate_basic_variable (struct iv_to_split *ivts)
2100 {
2101 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
2102
2103 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2104 }
2105
2106 /* Insert initialization of basic variable of IVTS before INSN, taking
2107 the initial value from INSN. */
2108
2109 static void
2110 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
2111 {
2112 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
2113 rtx seq;
2114
2115 start_sequence ();
2116 expr = force_operand (expr, ivts->base_var);
2117 if (expr != ivts->base_var)
2118 emit_move_insn (ivts->base_var, expr);
2119 seq = get_insns ();
2120 end_sequence ();
2121
2122 emit_insn_before (seq, insn);
2123 }
2124
2125 /* Replace the use of induction variable described in IVTS in INSN
2126 by base variable + DELTA * step. */
2127
2128 static void
2129 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
2130 {
2131 rtx expr, *loc, seq, incr, var;
2132 enum machine_mode mode = GET_MODE (ivts->base_var);
2133 rtx src, dest, set;
2134
2135 /* Construct base + DELTA * step. */
2136 if (!delta)
2137 expr = ivts->base_var;
2138 else
2139 {
2140 incr = simplify_gen_binary (MULT, mode,
2141 ivts->step, gen_int_mode (delta, mode));
2142 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2143 ivts->base_var, incr);
2144 }
2145
2146 /* Figure out where to do the replacement. */
2147 loc = get_ivts_expr (single_set (insn), ivts);
2148
2149 /* If we can make the replacement right away, we're done. */
2150 if (validate_change (insn, loc, expr, 0))
2151 return;
2152
2153 /* Otherwise, force EXPR into a register and try again. */
2154 start_sequence ();
2155 var = gen_reg_rtx (mode);
2156 expr = force_operand (expr, var);
2157 if (expr != var)
2158 emit_move_insn (var, expr);
2159 seq = get_insns ();
2160 end_sequence ();
2161 emit_insn_before (seq, insn);
2162
2163 if (validate_change (insn, loc, var, 0))
2164 return;
2165
2166 /* The last chance. Try recreating the assignment in insn
2167 completely from scratch. */
2168 set = single_set (insn);
2169 gcc_assert (set);
2170
2171 start_sequence ();
2172 *loc = var;
2173 src = copy_rtx (SET_SRC (set));
2174 dest = copy_rtx (SET_DEST (set));
2175 src = force_operand (src, dest);
2176 if (src != dest)
2177 emit_move_insn (dest, src);
2178 seq = get_insns ();
2179 end_sequence ();
2180
2181 emit_insn_before (seq, insn);
2182 delete_insn (insn);
2183 }
2184
2185
2186 /* Return one expansion of the accumulator recorded in struct VE. */
2187
2188 static rtx
2189 get_expansion (struct var_to_expand *ve)
2190 {
2191 rtx reg;
2192
2193 if (ve->reuse_expansion == 0)
2194 reg = ve->reg;
2195 else
2196 reg = ve->var_expansions[ve->reuse_expansion - 1];
2197
2198 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2199 ve->reuse_expansion = 0;
2200 else
2201 ve->reuse_expansion++;
2202
2203 return reg;
2204 }
2205
2206
2207 /* Given INSN replace the uses of the accumulator recorded in VE
2208 with a new register. */
2209
2210 static void
2211 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2212 {
2213 rtx new_reg, set;
2214 bool really_new_expansion = false;
2215
2216 set = single_set (insn);
2217 gcc_assert (set);
2218
2219 /* Generate a new register only if the expansion limit has not been
2220 reached. Else reuse an already existing expansion. */
2221 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2222 {
2223 really_new_expansion = true;
2224 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2225 }
2226 else
2227 new_reg = get_expansion (ve);
2228
2229 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2230 if (apply_change_group ())
2231 if (really_new_expansion)
2232 {
2233 ve->var_expansions.safe_push (new_reg);
2234 ve->expansion_count++;
2235 }
2236 }
2237
2238 /* Initialize the variable expansions in loop preheader. PLACE is the
2239 loop-preheader basic block where the initialization of the
2240 expansions should take place. The expansions are initialized with
2241 (-0) when the operation is plus or minus to honor sign zero. This
2242 way we can prevent cases where the sign of the final result is
2243 effected by the sign of the expansion. Here is an example to
2244 demonstrate this:
2245
2246 for (i = 0 ; i < n; i++)
2247 sum += something;
2248
2249 ==>
2250
2251 sum += something
2252 ....
2253 i = i+1;
2254 sum1 += something
2255 ....
2256 i = i+1
2257 sum2 += something;
2258 ....
2259
2260 When SUM is initialized with -zero and SOMETHING is also -zero; the
2261 final result of sum should be -zero thus the expansions sum1 and sum2
2262 should be initialized with -zero as well (otherwise we will get +zero
2263 as the final result). */
2264
2265 static void
2266 insert_var_expansion_initialization (struct var_to_expand *ve,
2267 basic_block place)
2268 {
2269 rtx seq, var, zero_init;
2270 unsigned i;
2271 enum machine_mode mode = GET_MODE (ve->reg);
2272 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2273
2274 if (ve->var_expansions.length () == 0)
2275 return;
2276
2277 start_sequence ();
2278 switch (ve->op)
2279 {
2280 case FMA:
2281 /* Note that we only accumulate FMA via the ADD operand. */
2282 case PLUS:
2283 case MINUS:
2284 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2285 {
2286 if (honor_signed_zero_p)
2287 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2288 else
2289 zero_init = CONST0_RTX (mode);
2290 emit_move_insn (var, zero_init);
2291 }
2292 break;
2293
2294 case MULT:
2295 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2296 {
2297 zero_init = CONST1_RTX (GET_MODE (var));
2298 emit_move_insn (var, zero_init);
2299 }
2300 break;
2301
2302 default:
2303 gcc_unreachable ();
2304 }
2305
2306 seq = get_insns ();
2307 end_sequence ();
2308
2309 emit_insn_after (seq, BB_END (place));
2310 }
2311
2312 /* Combine the variable expansions at the loop exit. PLACE is the
2313 loop exit basic block where the summation of the expansions should
2314 take place. */
2315
2316 static void
2317 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2318 {
2319 rtx sum = ve->reg;
2320 rtx expr, seq, var, insn;
2321 unsigned i;
2322
2323 if (ve->var_expansions.length () == 0)
2324 return;
2325
2326 start_sequence ();
2327 switch (ve->op)
2328 {
2329 case FMA:
2330 /* Note that we only accumulate FMA via the ADD operand. */
2331 case PLUS:
2332 case MINUS:
2333 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2334 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2335 break;
2336
2337 case MULT:
2338 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2339 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2340 break;
2341
2342 default:
2343 gcc_unreachable ();
2344 }
2345
2346 expr = force_operand (sum, ve->reg);
2347 if (expr != ve->reg)
2348 emit_move_insn (ve->reg, expr);
2349 seq = get_insns ();
2350 end_sequence ();
2351
2352 insn = BB_HEAD (place);
2353 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2354 insn = NEXT_INSN (insn);
2355
2356 emit_insn_after (seq, insn);
2357 }
2358
2359 /* Strip away REG_EQUAL notes for IVs we're splitting.
2360
2361 Updating REG_EQUAL notes for IVs we split is tricky: We
2362 cannot tell until after unrolling, DF-rescanning, and liveness
2363 updating, whether an EQ_USE is reached by the split IV while
2364 the IV reg is still live. See PR55006.
2365
2366 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2367 because RTL loop-iv requires us to defer rescanning insns and
2368 any notes attached to them. So resort to old techniques... */
2369
2370 static void
2371 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx insn)
2372 {
2373 struct iv_to_split *ivts;
2374 rtx note = find_reg_equal_equiv_note (insn);
2375 if (! note)
2376 return;
2377 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2378 if (reg_mentioned_p (ivts->orig_var, note))
2379 {
2380 remove_note (insn, note);
2381 return;
2382 }
2383 }
2384
2385 /* Apply loop optimizations in loop copies using the
2386 data which gathered during the unrolling. Structure
2387 OPT_INFO record that data.
2388
2389 UNROLLING is true if we unrolled (not peeled) the loop.
2390 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2391 the loop (as it should happen in complete unrolling, but not in ordinary
2392 peeling of the loop). */
2393
2394 static void
2395 apply_opt_in_copies (struct opt_info *opt_info,
2396 unsigned n_copies, bool unrolling,
2397 bool rewrite_original_loop)
2398 {
2399 unsigned i, delta;
2400 basic_block bb, orig_bb;
2401 rtx insn, orig_insn, next;
2402 struct iv_to_split ivts_templ, *ivts;
2403 struct var_to_expand ve_templ, *ves;
2404
2405 /* Sanity check -- we need to put initialization in the original loop
2406 body. */
2407 gcc_assert (!unrolling || rewrite_original_loop);
2408
2409 /* Allocate the basic variables (i0). */
2410 if (opt_info->insns_to_split.is_created ())
2411 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2412 allocate_basic_variable (ivts);
2413
2414 for (i = opt_info->first_new_block;
2415 i < (unsigned) last_basic_block_for_fn (cfun);
2416 i++)
2417 {
2418 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2419 orig_bb = get_bb_original (bb);
2420
2421 /* bb->aux holds position in copy sequence initialized by
2422 duplicate_loop_to_header_edge. */
2423 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2424 unrolling);
2425 bb->aux = 0;
2426 orig_insn = BB_HEAD (orig_bb);
2427 FOR_BB_INSNS_SAFE (bb, insn, next)
2428 {
2429 if (!INSN_P (insn)
2430 || (DEBUG_INSN_P (insn)
2431 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2432 continue;
2433
2434 while (!INSN_P (orig_insn)
2435 || (DEBUG_INSN_P (orig_insn)
2436 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2437 == LABEL_DECL)))
2438 orig_insn = NEXT_INSN (orig_insn);
2439
2440 ivts_templ.insn = orig_insn;
2441 ve_templ.insn = orig_insn;
2442
2443 /* Apply splitting iv optimization. */
2444 if (opt_info->insns_to_split.is_created ())
2445 {
2446 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2447
2448 ivts = opt_info->insns_to_split.find (&ivts_templ);
2449
2450 if (ivts)
2451 {
2452 gcc_assert (GET_CODE (PATTERN (insn))
2453 == GET_CODE (PATTERN (orig_insn)));
2454
2455 if (!delta)
2456 insert_base_initialization (ivts, insn);
2457 split_iv (ivts, insn, delta);
2458 }
2459 }
2460 /* Apply variable expansion optimization. */
2461 if (unrolling && opt_info->insns_with_var_to_expand.is_created ())
2462 {
2463 ves = (struct var_to_expand *)
2464 opt_info->insns_with_var_to_expand.find (&ve_templ);
2465 if (ves)
2466 {
2467 gcc_assert (GET_CODE (PATTERN (insn))
2468 == GET_CODE (PATTERN (orig_insn)));
2469 expand_var_during_unrolling (ves, insn);
2470 }
2471 }
2472 orig_insn = NEXT_INSN (orig_insn);
2473 }
2474 }
2475
2476 if (!rewrite_original_loop)
2477 return;
2478
2479 /* Initialize the variable expansions in the loop preheader
2480 and take care of combining them at the loop exit. */
2481 if (opt_info->insns_with_var_to_expand.is_created ())
2482 {
2483 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2484 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2485 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2486 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2487 }
2488
2489 /* Rewrite also the original loop body. Find them as originals of the blocks
2490 in the last copied iteration, i.e. those that have
2491 get_bb_copy (get_bb_original (bb)) == bb. */
2492 for (i = opt_info->first_new_block;
2493 i < (unsigned) last_basic_block_for_fn (cfun);
2494 i++)
2495 {
2496 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2497 orig_bb = get_bb_original (bb);
2498 if (get_bb_copy (orig_bb) != bb)
2499 continue;
2500
2501 delta = determine_split_iv_delta (0, n_copies, unrolling);
2502 for (orig_insn = BB_HEAD (orig_bb);
2503 orig_insn != NEXT_INSN (BB_END (bb));
2504 orig_insn = next)
2505 {
2506 next = NEXT_INSN (orig_insn);
2507
2508 if (!INSN_P (orig_insn))
2509 continue;
2510
2511 ivts_templ.insn = orig_insn;
2512 if (opt_info->insns_to_split.is_created ())
2513 {
2514 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2515
2516 ivts = (struct iv_to_split *)
2517 opt_info->insns_to_split.find (&ivts_templ);
2518 if (ivts)
2519 {
2520 if (!delta)
2521 insert_base_initialization (ivts, orig_insn);
2522 split_iv (ivts, orig_insn, delta);
2523 continue;
2524 }
2525 }
2526
2527 }
2528 }
2529 }
2530
2531 /* Release OPT_INFO. */
2532
2533 static void
2534 free_opt_info (struct opt_info *opt_info)
2535 {
2536 if (opt_info->insns_to_split.is_created ())
2537 opt_info->insns_to_split.dispose ();
2538 if (opt_info->insns_with_var_to_expand.is_created ())
2539 {
2540 struct var_to_expand *ves;
2541
2542 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2543 ves->var_expansions.release ();
2544 opt_info->insns_with_var_to_expand.dispose ();
2545 }
2546 free (opt_info);
2547 }