output.h (__gcc_host_wide_int__): Move to hwint.h.
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "expr.h"
33 #include "hashtab.h"
34 #include "recog.h"
35 #include "target.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 struct iv_to_split *next; /* Next entry in walking order. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
86 };
87
88 /* Information about accumulators to expand. */
89
90 struct var_to_expand
91 {
92 rtx insn; /* The insn in that the variable expansion occurs. */
93 rtx reg; /* The accumulator which is expanded. */
94 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
95 struct var_to_expand *next; /* Next entry in walking order. */
96 enum rtx_code op; /* The type of the accumulation - addition, subtraction
97 or multiplication. */
98 int expansion_count; /* Count the number of expansions generated so far. */
99 int reuse_expansion; /* The expansion we intend to reuse to expand
100 the accumulator. If REUSE_EXPANSION is 0 reuse
101 the original accumulator. Else use
102 var_expansions[REUSE_EXPANSION - 1]. */
103 unsigned accum_pos; /* The position in which the accumulator is placed in
104 the insn src. For example in x = x + something
105 accum_pos is 0 while in x = something + x accum_pos
106 is 1. */
107 };
108
109 /* Information about optimization applied in
110 the unrolled loop. */
111
112 struct opt_info
113 {
114 htab_t insns_to_split; /* A hashtable of insns to split. */
115 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
116 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
117 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
118 to expand. */
119 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
120 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
121 unsigned first_new_block; /* The first basic block that was
122 duplicated. */
123 basic_block loop_exit; /* The loop exit basic block. */
124 basic_block loop_preheader; /* The loop preheader basic block. */
125 };
126
127 static void decide_unrolling_and_peeling (int);
128 static void peel_loops_completely (int);
129 static void decide_peel_simple (struct loop *, int);
130 static void decide_peel_once_rolling (struct loop *, int);
131 static void decide_peel_completely (struct loop *, int);
132 static void decide_unroll_stupid (struct loop *, int);
133 static void decide_unroll_constant_iterations (struct loop *, int);
134 static void decide_unroll_runtime_iterations (struct loop *, int);
135 static void peel_loop_simple (struct loop *);
136 static void peel_loop_completely (struct loop *);
137 static void unroll_loop_stupid (struct loop *);
138 static void unroll_loop_constant_iterations (struct loop *);
139 static void unroll_loop_runtime_iterations (struct loop *);
140 static struct opt_info *analyze_insns_in_loop (struct loop *);
141 static void opt_info_start_duplication (struct opt_info *);
142 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
143 static void free_opt_info (struct opt_info *);
144 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
145 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
146 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
147 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
148 static void insert_var_expansion_initialization (struct var_to_expand *,
149 basic_block);
150 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
151 basic_block);
152 static rtx get_expansion (struct var_to_expand *);
153
154 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
155 void
156 unroll_and_peel_loops (int flags)
157 {
158 struct loop *loop;
159 bool check;
160 loop_iterator li;
161
162 /* First perform complete loop peeling (it is almost surely a win,
163 and affects parameters for further decision a lot). */
164 peel_loops_completely (flags);
165
166 /* Now decide rest of unrolling and peeling. */
167 decide_unrolling_and_peeling (flags);
168
169 /* Scan the loops, inner ones first. */
170 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
171 {
172 check = true;
173 /* And perform the appropriate transformations. */
174 switch (loop->lpt_decision.decision)
175 {
176 case LPT_PEEL_COMPLETELY:
177 /* Already done. */
178 gcc_unreachable ();
179 case LPT_PEEL_SIMPLE:
180 peel_loop_simple (loop);
181 break;
182 case LPT_UNROLL_CONSTANT:
183 unroll_loop_constant_iterations (loop);
184 break;
185 case LPT_UNROLL_RUNTIME:
186 unroll_loop_runtime_iterations (loop);
187 break;
188 case LPT_UNROLL_STUPID:
189 unroll_loop_stupid (loop);
190 break;
191 case LPT_NONE:
192 check = false;
193 break;
194 default:
195 gcc_unreachable ();
196 }
197 if (check)
198 {
199 #ifdef ENABLE_CHECKING
200 verify_loop_structure ();
201 #endif
202 }
203 }
204
205 iv_analysis_done ();
206 }
207
208 /* Check whether exit of the LOOP is at the end of loop body. */
209
210 static bool
211 loop_exit_at_end_p (struct loop *loop)
212 {
213 struct niter_desc *desc = get_simple_loop_desc (loop);
214 rtx insn;
215
216 if (desc->in_edge->dest != loop->latch)
217 return false;
218
219 /* Check that the latch is empty. */
220 FOR_BB_INSNS (loop->latch, insn)
221 {
222 if (INSN_P (insn))
223 return false;
224 }
225
226 return true;
227 }
228
229 /* Depending on FLAGS, check whether to peel loops completely and do so. */
230 static void
231 peel_loops_completely (int flags)
232 {
233 struct loop *loop;
234 loop_iterator li;
235
236 /* Scan the loops, the inner ones first. */
237 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
238 {
239 loop->lpt_decision.decision = LPT_NONE;
240
241 if (dump_file)
242 fprintf (dump_file,
243 "\n;; *** Considering loop %d for complete peeling ***\n",
244 loop->num);
245
246 loop->ninsns = num_loop_insns (loop);
247
248 decide_peel_once_rolling (loop, flags);
249 if (loop->lpt_decision.decision == LPT_NONE)
250 decide_peel_completely (loop, flags);
251
252 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
253 {
254 peel_loop_completely (loop);
255 #ifdef ENABLE_CHECKING
256 verify_loop_structure ();
257 #endif
258 }
259 }
260 }
261
262 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
263 static void
264 decide_unrolling_and_peeling (int flags)
265 {
266 struct loop *loop;
267 loop_iterator li;
268
269 /* Scan the loops, inner ones first. */
270 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
271 {
272 loop->lpt_decision.decision = LPT_NONE;
273
274 if (dump_file)
275 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
276
277 /* Do not peel cold areas. */
278 if (optimize_loop_for_size_p (loop))
279 {
280 if (dump_file)
281 fprintf (dump_file, ";; Not considering loop, cold area\n");
282 continue;
283 }
284
285 /* Can the loop be manipulated? */
286 if (!can_duplicate_loop_p (loop))
287 {
288 if (dump_file)
289 fprintf (dump_file,
290 ";; Not considering loop, cannot duplicate\n");
291 continue;
292 }
293
294 /* Skip non-innermost loops. */
295 if (loop->inner)
296 {
297 if (dump_file)
298 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
299 continue;
300 }
301
302 loop->ninsns = num_loop_insns (loop);
303 loop->av_ninsns = average_num_loop_insns (loop);
304
305 /* Try transformations one by one in decreasing order of
306 priority. */
307
308 decide_unroll_constant_iterations (loop, flags);
309 if (loop->lpt_decision.decision == LPT_NONE)
310 decide_unroll_runtime_iterations (loop, flags);
311 if (loop->lpt_decision.decision == LPT_NONE)
312 decide_unroll_stupid (loop, flags);
313 if (loop->lpt_decision.decision == LPT_NONE)
314 decide_peel_simple (loop, flags);
315 }
316 }
317
318 /* Decide whether the LOOP is once rolling and suitable for complete
319 peeling. */
320 static void
321 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
322 {
323 struct niter_desc *desc;
324
325 if (dump_file)
326 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
327
328 /* Is the loop small enough? */
329 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
330 {
331 if (dump_file)
332 fprintf (dump_file, ";; Not considering loop, is too big\n");
333 return;
334 }
335
336 /* Check for simple loops. */
337 desc = get_simple_loop_desc (loop);
338
339 /* Check number of iterations. */
340 if (!desc->simple_p
341 || desc->assumptions
342 || desc->infinite
343 || !desc->const_iter
344 || desc->niter != 0)
345 {
346 if (dump_file)
347 fprintf (dump_file,
348 ";; Unable to prove that the loop rolls exactly once\n");
349 return;
350 }
351
352 /* Success. */
353 if (dump_file)
354 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
355 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
356 }
357
358 /* Decide whether the LOOP is suitable for complete peeling. */
359 static void
360 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
361 {
362 unsigned npeel;
363 struct niter_desc *desc;
364
365 if (dump_file)
366 fprintf (dump_file, "\n;; Considering peeling completely\n");
367
368 /* Skip non-innermost loops. */
369 if (loop->inner)
370 {
371 if (dump_file)
372 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
373 return;
374 }
375
376 /* Do not peel cold areas. */
377 if (optimize_loop_for_size_p (loop))
378 {
379 if (dump_file)
380 fprintf (dump_file, ";; Not considering loop, cold area\n");
381 return;
382 }
383
384 /* Can the loop be manipulated? */
385 if (!can_duplicate_loop_p (loop))
386 {
387 if (dump_file)
388 fprintf (dump_file,
389 ";; Not considering loop, cannot duplicate\n");
390 return;
391 }
392
393 /* npeel = number of iterations to peel. */
394 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
395 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
396 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
397
398 /* Is the loop small enough? */
399 if (!npeel)
400 {
401 if (dump_file)
402 fprintf (dump_file, ";; Not considering loop, is too big\n");
403 return;
404 }
405
406 /* Check for simple loops. */
407 desc = get_simple_loop_desc (loop);
408
409 /* Check number of iterations. */
410 if (!desc->simple_p
411 || desc->assumptions
412 || !desc->const_iter
413 || desc->infinite)
414 {
415 if (dump_file)
416 fprintf (dump_file,
417 ";; Unable to prove that the loop iterates constant times\n");
418 return;
419 }
420
421 if (desc->niter > npeel - 1)
422 {
423 if (dump_file)
424 {
425 fprintf (dump_file,
426 ";; Not peeling loop completely, rolls too much (");
427 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
428 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
429 }
430 return;
431 }
432
433 /* Success. */
434 if (dump_file)
435 fprintf (dump_file, ";; Decided to peel loop completely\n");
436 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
437 }
438
439 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
440 completely. The transformation done:
441
442 for (i = 0; i < 4; i++)
443 body;
444
445 ==>
446
447 i = 0;
448 body; i++;
449 body; i++;
450 body; i++;
451 body; i++;
452 */
453 static void
454 peel_loop_completely (struct loop *loop)
455 {
456 sbitmap wont_exit;
457 unsigned HOST_WIDE_INT npeel;
458 unsigned i;
459 VEC (edge, heap) *remove_edges;
460 edge ein;
461 struct niter_desc *desc = get_simple_loop_desc (loop);
462 struct opt_info *opt_info = NULL;
463
464 npeel = desc->niter;
465
466 if (npeel)
467 {
468 bool ok;
469
470 wont_exit = sbitmap_alloc (npeel + 1);
471 sbitmap_ones (wont_exit);
472 RESET_BIT (wont_exit, 0);
473 if (desc->noloop_assumptions)
474 RESET_BIT (wont_exit, 1);
475
476 remove_edges = NULL;
477
478 if (flag_split_ivs_in_unroller)
479 opt_info = analyze_insns_in_loop (loop);
480
481 opt_info_start_duplication (opt_info);
482 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
483 npeel,
484 wont_exit, desc->out_edge,
485 &remove_edges,
486 DLTHE_FLAG_UPDATE_FREQ
487 | DLTHE_FLAG_COMPLETTE_PEEL
488 | (opt_info
489 ? DLTHE_RECORD_COPY_NUMBER : 0));
490 gcc_assert (ok);
491
492 free (wont_exit);
493
494 if (opt_info)
495 {
496 apply_opt_in_copies (opt_info, npeel, false, true);
497 free_opt_info (opt_info);
498 }
499
500 /* Remove the exit edges. */
501 FOR_EACH_VEC_ELT (edge, remove_edges, i, ein)
502 remove_path (ein);
503 VEC_free (edge, heap, remove_edges);
504 }
505
506 ein = desc->in_edge;
507 free_simple_loop_desc (loop);
508
509 /* Now remove the unreachable part of the last iteration and cancel
510 the loop. */
511 remove_path (ein);
512
513 if (dump_file)
514 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
515 }
516
517 /* Decide whether to unroll LOOP iterating constant number of times
518 and how much. */
519
520 static void
521 decide_unroll_constant_iterations (struct loop *loop, int flags)
522 {
523 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
524 struct niter_desc *desc;
525
526 if (!(flags & UAP_UNROLL))
527 {
528 /* We were not asked to, just return back silently. */
529 return;
530 }
531
532 if (dump_file)
533 fprintf (dump_file,
534 "\n;; Considering unrolling loop with constant "
535 "number of iterations\n");
536
537 /* nunroll = total number of copies of the original loop body in
538 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
539 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
540 nunroll_by_av
541 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
542 if (nunroll > nunroll_by_av)
543 nunroll = nunroll_by_av;
544 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
545 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
546
547 /* Skip big loops. */
548 if (nunroll <= 1)
549 {
550 if (dump_file)
551 fprintf (dump_file, ";; Not considering loop, is too big\n");
552 return;
553 }
554
555 /* Check for simple loops. */
556 desc = get_simple_loop_desc (loop);
557
558 /* Check number of iterations. */
559 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
560 {
561 if (dump_file)
562 fprintf (dump_file,
563 ";; Unable to prove that the loop iterates constant times\n");
564 return;
565 }
566
567 /* Check whether the loop rolls enough to consider. */
568 if (desc->niter < 2 * nunroll)
569 {
570 if (dump_file)
571 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
572 return;
573 }
574
575 /* Success; now compute number of iterations to unroll. We alter
576 nunroll so that as few as possible copies of loop body are
577 necessary, while still not decreasing the number of unrollings
578 too much (at most by 1). */
579 best_copies = 2 * nunroll + 10;
580
581 i = 2 * nunroll + 2;
582 if (i - 1 >= desc->niter)
583 i = desc->niter - 2;
584
585 for (; i >= nunroll - 1; i--)
586 {
587 unsigned exit_mod = desc->niter % (i + 1);
588
589 if (!loop_exit_at_end_p (loop))
590 n_copies = exit_mod + i + 1;
591 else if (exit_mod != (unsigned) i
592 || desc->noloop_assumptions != NULL_RTX)
593 n_copies = exit_mod + i + 2;
594 else
595 n_copies = i + 1;
596
597 if (n_copies < best_copies)
598 {
599 best_copies = n_copies;
600 best_unroll = i;
601 }
602 }
603
604 if (dump_file)
605 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
606 best_unroll + 1, best_copies, nunroll);
607
608 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
609 loop->lpt_decision.times = best_unroll;
610
611 if (dump_file)
612 fprintf (dump_file,
613 ";; Decided to unroll the constant times rolling loop, %d times.\n",
614 loop->lpt_decision.times);
615 }
616
617 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
618 times. The transformation does this:
619
620 for (i = 0; i < 102; i++)
621 body;
622
623 ==>
624
625 i = 0;
626 body; i++;
627 body; i++;
628 while (i < 102)
629 {
630 body; i++;
631 body; i++;
632 body; i++;
633 body; i++;
634 }
635 */
636 static void
637 unroll_loop_constant_iterations (struct loop *loop)
638 {
639 unsigned HOST_WIDE_INT niter;
640 unsigned exit_mod;
641 sbitmap wont_exit;
642 unsigned i;
643 VEC (edge, heap) *remove_edges;
644 edge e;
645 unsigned max_unroll = loop->lpt_decision.times;
646 struct niter_desc *desc = get_simple_loop_desc (loop);
647 bool exit_at_end = loop_exit_at_end_p (loop);
648 struct opt_info *opt_info = NULL;
649 bool ok;
650
651 niter = desc->niter;
652
653 /* Should not get here (such loop should be peeled instead). */
654 gcc_assert (niter > max_unroll + 1);
655
656 exit_mod = niter % (max_unroll + 1);
657
658 wont_exit = sbitmap_alloc (max_unroll + 1);
659 sbitmap_ones (wont_exit);
660
661 remove_edges = NULL;
662 if (flag_split_ivs_in_unroller
663 || flag_variable_expansion_in_unroller)
664 opt_info = analyze_insns_in_loop (loop);
665
666 if (!exit_at_end)
667 {
668 /* The exit is not at the end of the loop; leave exit test
669 in the first copy, so that the loops that start with test
670 of exit condition have continuous body after unrolling. */
671
672 if (dump_file)
673 fprintf (dump_file, ";; Condition on beginning of loop.\n");
674
675 /* Peel exit_mod iterations. */
676 RESET_BIT (wont_exit, 0);
677 if (desc->noloop_assumptions)
678 RESET_BIT (wont_exit, 1);
679
680 if (exit_mod)
681 {
682 opt_info_start_duplication (opt_info);
683 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
684 exit_mod,
685 wont_exit, desc->out_edge,
686 &remove_edges,
687 DLTHE_FLAG_UPDATE_FREQ
688 | (opt_info && exit_mod > 1
689 ? DLTHE_RECORD_COPY_NUMBER
690 : 0));
691 gcc_assert (ok);
692
693 if (opt_info && exit_mod > 1)
694 apply_opt_in_copies (opt_info, exit_mod, false, false);
695
696 desc->noloop_assumptions = NULL_RTX;
697 desc->niter -= exit_mod;
698 desc->niter_max -= exit_mod;
699 }
700
701 SET_BIT (wont_exit, 1);
702 }
703 else
704 {
705 /* Leave exit test in last copy, for the same reason as above if
706 the loop tests the condition at the end of loop body. */
707
708 if (dump_file)
709 fprintf (dump_file, ";; Condition on end of loop.\n");
710
711 /* We know that niter >= max_unroll + 2; so we do not need to care of
712 case when we would exit before reaching the loop. So just peel
713 exit_mod + 1 iterations. */
714 if (exit_mod != max_unroll
715 || desc->noloop_assumptions)
716 {
717 RESET_BIT (wont_exit, 0);
718 if (desc->noloop_assumptions)
719 RESET_BIT (wont_exit, 1);
720
721 opt_info_start_duplication (opt_info);
722 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
723 exit_mod + 1,
724 wont_exit, desc->out_edge,
725 &remove_edges,
726 DLTHE_FLAG_UPDATE_FREQ
727 | (opt_info && exit_mod > 0
728 ? DLTHE_RECORD_COPY_NUMBER
729 : 0));
730 gcc_assert (ok);
731
732 if (opt_info && exit_mod > 0)
733 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
734
735 desc->niter -= exit_mod + 1;
736 desc->niter_max -= exit_mod + 1;
737 desc->noloop_assumptions = NULL_RTX;
738
739 SET_BIT (wont_exit, 0);
740 SET_BIT (wont_exit, 1);
741 }
742
743 RESET_BIT (wont_exit, max_unroll);
744 }
745
746 /* Now unroll the loop. */
747
748 opt_info_start_duplication (opt_info);
749 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
750 max_unroll,
751 wont_exit, desc->out_edge,
752 &remove_edges,
753 DLTHE_FLAG_UPDATE_FREQ
754 | (opt_info
755 ? DLTHE_RECORD_COPY_NUMBER
756 : 0));
757 gcc_assert (ok);
758
759 if (opt_info)
760 {
761 apply_opt_in_copies (opt_info, max_unroll, true, true);
762 free_opt_info (opt_info);
763 }
764
765 free (wont_exit);
766
767 if (exit_at_end)
768 {
769 basic_block exit_block = get_bb_copy (desc->in_edge->src);
770 /* Find a new in and out edge; they are in the last copy we have made. */
771
772 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
773 {
774 desc->out_edge = EDGE_SUCC (exit_block, 0);
775 desc->in_edge = EDGE_SUCC (exit_block, 1);
776 }
777 else
778 {
779 desc->out_edge = EDGE_SUCC (exit_block, 1);
780 desc->in_edge = EDGE_SUCC (exit_block, 0);
781 }
782 }
783
784 desc->niter /= max_unroll + 1;
785 desc->niter_max /= max_unroll + 1;
786 desc->niter_expr = GEN_INT (desc->niter);
787
788 /* Remove the edges. */
789 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
790 remove_path (e);
791 VEC_free (edge, heap, remove_edges);
792
793 if (dump_file)
794 fprintf (dump_file,
795 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
796 max_unroll, num_loop_insns (loop));
797 }
798
799 /* Decide whether to unroll LOOP iterating runtime computable number of times
800 and how much. */
801 static void
802 decide_unroll_runtime_iterations (struct loop *loop, int flags)
803 {
804 unsigned nunroll, nunroll_by_av, i;
805 struct niter_desc *desc;
806
807 if (!(flags & UAP_UNROLL))
808 {
809 /* We were not asked to, just return back silently. */
810 return;
811 }
812
813 if (dump_file)
814 fprintf (dump_file,
815 "\n;; Considering unrolling loop with runtime "
816 "computable number of iterations\n");
817
818 /* nunroll = total number of copies of the original loop body in
819 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
820 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
821 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
822 if (nunroll > nunroll_by_av)
823 nunroll = nunroll_by_av;
824 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
825 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
826
827 if (targetm.loop_unroll_adjust)
828 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
829
830 /* Skip big loops. */
831 if (nunroll <= 1)
832 {
833 if (dump_file)
834 fprintf (dump_file, ";; Not considering loop, is too big\n");
835 return;
836 }
837
838 /* Check for simple loops. */
839 desc = get_simple_loop_desc (loop);
840
841 /* Check simpleness. */
842 if (!desc->simple_p || desc->assumptions)
843 {
844 if (dump_file)
845 fprintf (dump_file,
846 ";; Unable to prove that the number of iterations "
847 "can be counted in runtime\n");
848 return;
849 }
850
851 if (desc->const_iter)
852 {
853 if (dump_file)
854 fprintf (dump_file, ";; Loop iterates constant times\n");
855 return;
856 }
857
858 /* If we have profile feedback, check whether the loop rolls. */
859 if ((loop->header->count
860 && expected_loop_iterations (loop) < 2 * nunroll)
861 || desc->niter_max < 2 * nunroll)
862 {
863 if (dump_file)
864 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
865 return;
866 }
867
868 /* Success; now force nunroll to be power of 2, as we are unable to
869 cope with overflows in computation of number of iterations. */
870 for (i = 1; 2 * i <= nunroll; i *= 2)
871 continue;
872
873 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
874 loop->lpt_decision.times = i - 1;
875
876 if (dump_file)
877 fprintf (dump_file,
878 ";; Decided to unroll the runtime computable "
879 "times rolling loop, %d times.\n",
880 loop->lpt_decision.times);
881 }
882
883 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
884 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
885 and NULL is returned instead. */
886
887 basic_block
888 split_edge_and_insert (edge e, rtx insns)
889 {
890 basic_block bb;
891
892 if (!insns)
893 return NULL;
894 bb = split_edge (e);
895 emit_insn_after (insns, BB_END (bb));
896
897 /* ??? We used to assume that INSNS can contain control flow insns, and
898 that we had to try to find sub basic blocks in BB to maintain a valid
899 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
900 and call break_superblocks when going out of cfglayout mode. But it
901 turns out that this never happens; and that if it does ever happen,
902 the TODO_verify_flow at the end of the RTL loop passes would fail.
903
904 There are two reasons why we expected we could have control flow insns
905 in INSNS. The first is when a comparison has to be done in parts, and
906 the second is when the number of iterations is computed for loops with
907 the number of iterations known at runtime. In both cases, test cases
908 to get control flow in INSNS appear to be impossible to construct:
909
910 * If do_compare_rtx_and_jump needs several branches to do comparison
911 in a mode that needs comparison by parts, we cannot analyze the
912 number of iterations of the loop, and we never get to unrolling it.
913
914 * The code in expand_divmod that was suspected to cause creation of
915 branching code seems to be only accessed for signed division. The
916 divisions used by # of iterations analysis are always unsigned.
917 Problems might arise on architectures that emits branching code
918 for some operations that may appear in the unroller (especially
919 for division), but we have no such architectures.
920
921 Considering all this, it was decided that we should for now assume
922 that INSNS can in theory contain control flow insns, but in practice
923 it never does. So we don't handle the theoretical case, and should
924 a real failure ever show up, we have a pretty good clue for how to
925 fix it. */
926
927 return bb;
928 }
929
930 /* Unroll LOOP for that we are able to count number of iterations in runtime
931 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
932 extra care for case n < 0):
933
934 for (i = 0; i < n; i++)
935 body;
936
937 ==>
938
939 i = 0;
940 mod = n % 4;
941
942 switch (mod)
943 {
944 case 3:
945 body; i++;
946 case 2:
947 body; i++;
948 case 1:
949 body; i++;
950 case 0: ;
951 }
952
953 while (i < n)
954 {
955 body; i++;
956 body; i++;
957 body; i++;
958 body; i++;
959 }
960 */
961 static void
962 unroll_loop_runtime_iterations (struct loop *loop)
963 {
964 rtx old_niter, niter, init_code, branch_code, tmp;
965 unsigned i, j, p;
966 basic_block preheader, *body, swtch, ezc_swtch;
967 VEC (basic_block, heap) *dom_bbs;
968 sbitmap wont_exit;
969 int may_exit_copy;
970 unsigned n_peel;
971 VEC (edge, heap) *remove_edges;
972 edge e;
973 bool extra_zero_check, last_may_exit;
974 unsigned max_unroll = loop->lpt_decision.times;
975 struct niter_desc *desc = get_simple_loop_desc (loop);
976 bool exit_at_end = loop_exit_at_end_p (loop);
977 struct opt_info *opt_info = NULL;
978 bool ok;
979
980 if (flag_split_ivs_in_unroller
981 || flag_variable_expansion_in_unroller)
982 opt_info = analyze_insns_in_loop (loop);
983
984 /* Remember blocks whose dominators will have to be updated. */
985 dom_bbs = NULL;
986
987 body = get_loop_body (loop);
988 for (i = 0; i < loop->num_nodes; i++)
989 {
990 VEC (basic_block, heap) *ldom;
991 basic_block bb;
992
993 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
994 FOR_EACH_VEC_ELT (basic_block, ldom, j, bb)
995 if (!flow_bb_inside_loop_p (loop, bb))
996 VEC_safe_push (basic_block, heap, dom_bbs, bb);
997
998 VEC_free (basic_block, heap, ldom);
999 }
1000 free (body);
1001
1002 if (!exit_at_end)
1003 {
1004 /* Leave exit in first copy (for explanation why see comment in
1005 unroll_loop_constant_iterations). */
1006 may_exit_copy = 0;
1007 n_peel = max_unroll - 1;
1008 extra_zero_check = true;
1009 last_may_exit = false;
1010 }
1011 else
1012 {
1013 /* Leave exit in last copy (for explanation why see comment in
1014 unroll_loop_constant_iterations). */
1015 may_exit_copy = max_unroll;
1016 n_peel = max_unroll;
1017 extra_zero_check = false;
1018 last_may_exit = true;
1019 }
1020
1021 /* Get expression for number of iterations. */
1022 start_sequence ();
1023 old_niter = niter = gen_reg_rtx (desc->mode);
1024 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1025 if (tmp != niter)
1026 emit_move_insn (niter, tmp);
1027
1028 /* Count modulo by ANDing it with max_unroll; we use the fact that
1029 the number of unrollings is a power of two, and thus this is correct
1030 even if there is overflow in the computation. */
1031 niter = expand_simple_binop (desc->mode, AND,
1032 niter,
1033 GEN_INT (max_unroll),
1034 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1035
1036 init_code = get_insns ();
1037 end_sequence ();
1038 unshare_all_rtl_in_chain (init_code);
1039
1040 /* Precondition the loop. */
1041 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1042
1043 remove_edges = NULL;
1044
1045 wont_exit = sbitmap_alloc (max_unroll + 2);
1046
1047 /* Peel the first copy of loop body (almost always we must leave exit test
1048 here; the only exception is when we have extra zero check and the number
1049 of iterations is reliable. Also record the place of (possible) extra
1050 zero check. */
1051 sbitmap_zero (wont_exit);
1052 if (extra_zero_check
1053 && !desc->noloop_assumptions)
1054 SET_BIT (wont_exit, 1);
1055 ezc_swtch = loop_preheader_edge (loop)->src;
1056 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1057 1, wont_exit, desc->out_edge,
1058 &remove_edges,
1059 DLTHE_FLAG_UPDATE_FREQ);
1060 gcc_assert (ok);
1061
1062 /* Record the place where switch will be built for preconditioning. */
1063 swtch = split_edge (loop_preheader_edge (loop));
1064
1065 for (i = 0; i < n_peel; i++)
1066 {
1067 /* Peel the copy. */
1068 sbitmap_zero (wont_exit);
1069 if (i != n_peel - 1 || !last_may_exit)
1070 SET_BIT (wont_exit, 1);
1071 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1072 1, wont_exit, desc->out_edge,
1073 &remove_edges,
1074 DLTHE_FLAG_UPDATE_FREQ);
1075 gcc_assert (ok);
1076
1077 /* Create item for switch. */
1078 j = n_peel - i - (extra_zero_check ? 0 : 1);
1079 p = REG_BR_PROB_BASE / (i + 2);
1080
1081 preheader = split_edge (loop_preheader_edge (loop));
1082 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1083 block_label (preheader), p,
1084 NULL_RTX);
1085
1086 /* We rely on the fact that the compare and jump cannot be optimized out,
1087 and hence the cfg we create is correct. */
1088 gcc_assert (branch_code != NULL_RTX);
1089
1090 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1091 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1092 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1093 e = make_edge (swtch, preheader,
1094 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1095 e->probability = p;
1096 }
1097
1098 if (extra_zero_check)
1099 {
1100 /* Add branch for zero iterations. */
1101 p = REG_BR_PROB_BASE / (max_unroll + 1);
1102 swtch = ezc_swtch;
1103 preheader = split_edge (loop_preheader_edge (loop));
1104 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1105 block_label (preheader), p,
1106 NULL_RTX);
1107 gcc_assert (branch_code != NULL_RTX);
1108
1109 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1110 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1111 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1112 e = make_edge (swtch, preheader,
1113 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1114 e->probability = p;
1115 }
1116
1117 /* Recount dominators for outer blocks. */
1118 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1119
1120 /* And unroll loop. */
1121
1122 sbitmap_ones (wont_exit);
1123 RESET_BIT (wont_exit, may_exit_copy);
1124 opt_info_start_duplication (opt_info);
1125
1126 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1127 max_unroll,
1128 wont_exit, desc->out_edge,
1129 &remove_edges,
1130 DLTHE_FLAG_UPDATE_FREQ
1131 | (opt_info
1132 ? DLTHE_RECORD_COPY_NUMBER
1133 : 0));
1134 gcc_assert (ok);
1135
1136 if (opt_info)
1137 {
1138 apply_opt_in_copies (opt_info, max_unroll, true, true);
1139 free_opt_info (opt_info);
1140 }
1141
1142 free (wont_exit);
1143
1144 if (exit_at_end)
1145 {
1146 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1147 /* Find a new in and out edge; they are in the last copy we have
1148 made. */
1149
1150 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1151 {
1152 desc->out_edge = EDGE_SUCC (exit_block, 0);
1153 desc->in_edge = EDGE_SUCC (exit_block, 1);
1154 }
1155 else
1156 {
1157 desc->out_edge = EDGE_SUCC (exit_block, 1);
1158 desc->in_edge = EDGE_SUCC (exit_block, 0);
1159 }
1160 }
1161
1162 /* Remove the edges. */
1163 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
1164 remove_path (e);
1165 VEC_free (edge, heap, remove_edges);
1166
1167 /* We must be careful when updating the number of iterations due to
1168 preconditioning and the fact that the value must be valid at entry
1169 of the loop. After passing through the above code, we see that
1170 the correct new number of iterations is this: */
1171 gcc_assert (!desc->const_iter);
1172 desc->niter_expr =
1173 simplify_gen_binary (UDIV, desc->mode, old_niter,
1174 GEN_INT (max_unroll + 1));
1175 desc->niter_max /= max_unroll + 1;
1176 if (exit_at_end)
1177 {
1178 desc->niter_expr =
1179 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1180 desc->noloop_assumptions = NULL_RTX;
1181 desc->niter_max--;
1182 }
1183
1184 if (dump_file)
1185 fprintf (dump_file,
1186 ";; Unrolled loop %d times, counting # of iterations "
1187 "in runtime, %i insns\n",
1188 max_unroll, num_loop_insns (loop));
1189
1190 VEC_free (basic_block, heap, dom_bbs);
1191 }
1192
1193 /* Decide whether to simply peel LOOP and how much. */
1194 static void
1195 decide_peel_simple (struct loop *loop, int flags)
1196 {
1197 unsigned npeel;
1198 struct niter_desc *desc;
1199
1200 if (!(flags & UAP_PEEL))
1201 {
1202 /* We were not asked to, just return back silently. */
1203 return;
1204 }
1205
1206 if (dump_file)
1207 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1208
1209 /* npeel = number of iterations to peel. */
1210 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1211 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1212 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1213
1214 /* Skip big loops. */
1215 if (!npeel)
1216 {
1217 if (dump_file)
1218 fprintf (dump_file, ";; Not considering loop, is too big\n");
1219 return;
1220 }
1221
1222 /* Check for simple loops. */
1223 desc = get_simple_loop_desc (loop);
1224
1225 /* Check number of iterations. */
1226 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1227 {
1228 if (dump_file)
1229 fprintf (dump_file, ";; Loop iterates constant times\n");
1230 return;
1231 }
1232
1233 /* Do not simply peel loops with branches inside -- it increases number
1234 of mispredicts. */
1235 if (num_loop_branches (loop) > 1)
1236 {
1237 if (dump_file)
1238 fprintf (dump_file, ";; Not peeling, contains branches\n");
1239 return;
1240 }
1241
1242 if (loop->header->count)
1243 {
1244 unsigned niter = expected_loop_iterations (loop);
1245 if (niter + 1 > npeel)
1246 {
1247 if (dump_file)
1248 {
1249 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1250 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1251 (HOST_WIDEST_INT) (niter + 1));
1252 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1253 npeel);
1254 }
1255 return;
1256 }
1257 npeel = niter + 1;
1258 }
1259 else
1260 {
1261 /* For now we have no good heuristics to decide whether loop peeling
1262 will be effective, so disable it. */
1263 if (dump_file)
1264 fprintf (dump_file,
1265 ";; Not peeling loop, no evidence it will be profitable\n");
1266 return;
1267 }
1268
1269 /* Success. */
1270 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1271 loop->lpt_decision.times = npeel;
1272
1273 if (dump_file)
1274 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1275 loop->lpt_decision.times);
1276 }
1277
1278 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1279 while (cond)
1280 body;
1281
1282 ==>
1283
1284 if (!cond) goto end;
1285 body;
1286 if (!cond) goto end;
1287 body;
1288 while (cond)
1289 body;
1290 end: ;
1291 */
1292 static void
1293 peel_loop_simple (struct loop *loop)
1294 {
1295 sbitmap wont_exit;
1296 unsigned npeel = loop->lpt_decision.times;
1297 struct niter_desc *desc = get_simple_loop_desc (loop);
1298 struct opt_info *opt_info = NULL;
1299 bool ok;
1300
1301 if (flag_split_ivs_in_unroller && npeel > 1)
1302 opt_info = analyze_insns_in_loop (loop);
1303
1304 wont_exit = sbitmap_alloc (npeel + 1);
1305 sbitmap_zero (wont_exit);
1306
1307 opt_info_start_duplication (opt_info);
1308
1309 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1310 npeel, wont_exit, NULL,
1311 NULL, DLTHE_FLAG_UPDATE_FREQ
1312 | (opt_info
1313 ? DLTHE_RECORD_COPY_NUMBER
1314 : 0));
1315 gcc_assert (ok);
1316
1317 free (wont_exit);
1318
1319 if (opt_info)
1320 {
1321 apply_opt_in_copies (opt_info, npeel, false, false);
1322 free_opt_info (opt_info);
1323 }
1324
1325 if (desc->simple_p)
1326 {
1327 if (desc->const_iter)
1328 {
1329 desc->niter -= npeel;
1330 desc->niter_expr = GEN_INT (desc->niter);
1331 desc->noloop_assumptions = NULL_RTX;
1332 }
1333 else
1334 {
1335 /* We cannot just update niter_expr, as its value might be clobbered
1336 inside loop. We could handle this by counting the number into
1337 temporary just like we do in runtime unrolling, but it does not
1338 seem worthwhile. */
1339 free_simple_loop_desc (loop);
1340 }
1341 }
1342 if (dump_file)
1343 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1344 }
1345
1346 /* Decide whether to unroll LOOP stupidly and how much. */
1347 static void
1348 decide_unroll_stupid (struct loop *loop, int flags)
1349 {
1350 unsigned nunroll, nunroll_by_av, i;
1351 struct niter_desc *desc;
1352
1353 if (!(flags & UAP_UNROLL_ALL))
1354 {
1355 /* We were not asked to, just return back silently. */
1356 return;
1357 }
1358
1359 if (dump_file)
1360 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1361
1362 /* nunroll = total number of copies of the original loop body in
1363 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1364 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1365 nunroll_by_av
1366 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1367 if (nunroll > nunroll_by_av)
1368 nunroll = nunroll_by_av;
1369 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1370 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1371
1372 if (targetm.loop_unroll_adjust)
1373 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1374
1375 /* Skip big loops. */
1376 if (nunroll <= 1)
1377 {
1378 if (dump_file)
1379 fprintf (dump_file, ";; Not considering loop, is too big\n");
1380 return;
1381 }
1382
1383 /* Check for simple loops. */
1384 desc = get_simple_loop_desc (loop);
1385
1386 /* Check simpleness. */
1387 if (desc->simple_p && !desc->assumptions)
1388 {
1389 if (dump_file)
1390 fprintf (dump_file, ";; The loop is simple\n");
1391 return;
1392 }
1393
1394 /* Do not unroll loops with branches inside -- it increases number
1395 of mispredicts. */
1396 if (num_loop_branches (loop) > 1)
1397 {
1398 if (dump_file)
1399 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1400 return;
1401 }
1402
1403 /* If we have profile feedback, check whether the loop rolls. */
1404 if ((loop->header->count
1405 && expected_loop_iterations (loop) < 2 * nunroll)
1406 || desc->niter_max < 2 * nunroll)
1407 {
1408 if (dump_file)
1409 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1410 return;
1411 }
1412
1413 /* Success. Now force nunroll to be power of 2, as it seems that this
1414 improves results (partially because of better alignments, partially
1415 because of some dark magic). */
1416 for (i = 1; 2 * i <= nunroll; i *= 2)
1417 continue;
1418
1419 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1420 loop->lpt_decision.times = i - 1;
1421
1422 if (dump_file)
1423 fprintf (dump_file,
1424 ";; Decided to unroll the loop stupidly, %d times.\n",
1425 loop->lpt_decision.times);
1426 }
1427
1428 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1429 while (cond)
1430 body;
1431
1432 ==>
1433
1434 while (cond)
1435 {
1436 body;
1437 if (!cond) break;
1438 body;
1439 if (!cond) break;
1440 body;
1441 if (!cond) break;
1442 body;
1443 }
1444 */
1445 static void
1446 unroll_loop_stupid (struct loop *loop)
1447 {
1448 sbitmap wont_exit;
1449 unsigned nunroll = loop->lpt_decision.times;
1450 struct niter_desc *desc = get_simple_loop_desc (loop);
1451 struct opt_info *opt_info = NULL;
1452 bool ok;
1453
1454 if (flag_split_ivs_in_unroller
1455 || flag_variable_expansion_in_unroller)
1456 opt_info = analyze_insns_in_loop (loop);
1457
1458
1459 wont_exit = sbitmap_alloc (nunroll + 1);
1460 sbitmap_zero (wont_exit);
1461 opt_info_start_duplication (opt_info);
1462
1463 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1464 nunroll, wont_exit,
1465 NULL, NULL,
1466 DLTHE_FLAG_UPDATE_FREQ
1467 | (opt_info
1468 ? DLTHE_RECORD_COPY_NUMBER
1469 : 0));
1470 gcc_assert (ok);
1471
1472 if (opt_info)
1473 {
1474 apply_opt_in_copies (opt_info, nunroll, true, true);
1475 free_opt_info (opt_info);
1476 }
1477
1478 free (wont_exit);
1479
1480 if (desc->simple_p)
1481 {
1482 /* We indeed may get here provided that there are nontrivial assumptions
1483 for a loop to be really simple. We could update the counts, but the
1484 problem is that we are unable to decide which exit will be taken
1485 (not really true in case the number of iterations is constant,
1486 but noone will do anything with this information, so we do not
1487 worry about it). */
1488 desc->simple_p = false;
1489 }
1490
1491 if (dump_file)
1492 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1493 nunroll, num_loop_insns (loop));
1494 }
1495
1496 /* A hash function for information about insns to split. */
1497
1498 static hashval_t
1499 si_info_hash (const void *ivts)
1500 {
1501 return (hashval_t) INSN_UID (((const struct iv_to_split *) ivts)->insn);
1502 }
1503
1504 /* An equality functions for information about insns to split. */
1505
1506 static int
1507 si_info_eq (const void *ivts1, const void *ivts2)
1508 {
1509 const struct iv_to_split *const i1 = (const struct iv_to_split *) ivts1;
1510 const struct iv_to_split *const i2 = (const struct iv_to_split *) ivts2;
1511
1512 return i1->insn == i2->insn;
1513 }
1514
1515 /* Return a hash for VES, which is really a "var_to_expand *". */
1516
1517 static hashval_t
1518 ve_info_hash (const void *ves)
1519 {
1520 return (hashval_t) INSN_UID (((const struct var_to_expand *) ves)->insn);
1521 }
1522
1523 /* Return true if IVTS1 and IVTS2 (which are really both of type
1524 "var_to_expand *") refer to the same instruction. */
1525
1526 static int
1527 ve_info_eq (const void *ivts1, const void *ivts2)
1528 {
1529 const struct var_to_expand *const i1 = (const struct var_to_expand *) ivts1;
1530 const struct var_to_expand *const i2 = (const struct var_to_expand *) ivts2;
1531
1532 return i1->insn == i2->insn;
1533 }
1534
1535 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1536 Set *DEBUG_USES to the number of debug insns that reference the
1537 variable. */
1538
1539 bool
1540 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1541 int *debug_uses)
1542 {
1543 basic_block *body, bb;
1544 unsigned i;
1545 int count_ref = 0;
1546 rtx insn;
1547
1548 body = get_loop_body (loop);
1549 for (i = 0; i < loop->num_nodes; i++)
1550 {
1551 bb = body[i];
1552
1553 FOR_BB_INSNS (bb, insn)
1554 if (!rtx_referenced_p (reg, insn))
1555 continue;
1556 else if (DEBUG_INSN_P (insn))
1557 ++*debug_uses;
1558 else if (++count_ref > 1)
1559 break;
1560 }
1561 free (body);
1562 return (count_ref == 1);
1563 }
1564
1565 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1566
1567 static void
1568 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1569 {
1570 basic_block *body, bb;
1571 unsigned i;
1572 rtx insn;
1573
1574 body = get_loop_body (loop);
1575 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1576 {
1577 bb = body[i];
1578
1579 FOR_BB_INSNS (bb, insn)
1580 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1581 continue;
1582 else
1583 {
1584 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1585 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1586 if (!--debug_uses)
1587 break;
1588 }
1589 }
1590 free (body);
1591 }
1592
1593 /* Determine whether INSN contains an accumulator
1594 which can be expanded into separate copies,
1595 one for each copy of the LOOP body.
1596
1597 for (i = 0 ; i < n; i++)
1598 sum += a[i];
1599
1600 ==>
1601
1602 sum += a[i]
1603 ....
1604 i = i+1;
1605 sum1 += a[i]
1606 ....
1607 i = i+1
1608 sum2 += a[i];
1609 ....
1610
1611 Return NULL if INSN contains no opportunity for expansion of accumulator.
1612 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1613 information and return a pointer to it.
1614 */
1615
1616 static struct var_to_expand *
1617 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1618 {
1619 rtx set, dest, src;
1620 struct var_to_expand *ves;
1621 unsigned accum_pos;
1622 enum rtx_code code;
1623 int debug_uses = 0;
1624
1625 set = single_set (insn);
1626 if (!set)
1627 return NULL;
1628
1629 dest = SET_DEST (set);
1630 src = SET_SRC (set);
1631 code = GET_CODE (src);
1632
1633 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1634 return NULL;
1635
1636 if (FLOAT_MODE_P (GET_MODE (dest)))
1637 {
1638 if (!flag_associative_math)
1639 return NULL;
1640 /* In the case of FMA, we're also changing the rounding. */
1641 if (code == FMA && !flag_unsafe_math_optimizations)
1642 return NULL;
1643 }
1644
1645 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1646 in MD. But if there is no optab to generate the insn, we can not
1647 perform the variable expansion. This can happen if an MD provides
1648 an insn but not a named pattern to generate it, for example to avoid
1649 producing code that needs additional mode switches like for x87/mmx.
1650
1651 So we check have_insn_for which looks for an optab for the operation
1652 in SRC. If it doesn't exist, we can't perform the expansion even
1653 though INSN is valid. */
1654 if (!have_insn_for (code, GET_MODE (src)))
1655 return NULL;
1656
1657 if (!REG_P (dest)
1658 && !(GET_CODE (dest) == SUBREG
1659 && REG_P (SUBREG_REG (dest))))
1660 return NULL;
1661
1662 /* Find the accumulator use within the operation. */
1663 if (code == FMA)
1664 {
1665 /* We only support accumulation via FMA in the ADD position. */
1666 if (!rtx_equal_p (dest, XEXP (src, 2)))
1667 return NULL;
1668 accum_pos = 2;
1669 }
1670 else if (rtx_equal_p (dest, XEXP (src, 0)))
1671 accum_pos = 0;
1672 else if (rtx_equal_p (dest, XEXP (src, 1)))
1673 {
1674 /* The method of expansion that we are using; which includes the
1675 initialization of the expansions with zero and the summation of
1676 the expansions at the end of the computation will yield wrong
1677 results for (x = something - x) thus avoid using it in that case. */
1678 if (code == MINUS)
1679 return NULL;
1680 accum_pos = 1;
1681 }
1682 else
1683 return NULL;
1684
1685 /* It must not otherwise be used. */
1686 if (code == FMA)
1687 {
1688 if (rtx_referenced_p (dest, XEXP (src, 0))
1689 || rtx_referenced_p (dest, XEXP (src, 1)))
1690 return NULL;
1691 }
1692 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1693 return NULL;
1694
1695 /* It must be used in exactly one insn. */
1696 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1697 return NULL;
1698
1699 if (dump_file)
1700 {
1701 fprintf (dump_file, "\n;; Expanding Accumulator ");
1702 print_rtl (dump_file, dest);
1703 fprintf (dump_file, "\n");
1704 }
1705
1706 if (debug_uses)
1707 /* Instead of resetting the debug insns, we could replace each
1708 debug use in the loop with the sum or product of all expanded
1709 accummulators. Since we'll only know of all expansions at the
1710 end, we'd have to keep track of which vars_to_expand a debug
1711 insn in the loop references, take note of each copy of the
1712 debug insn during unrolling, and when it's all done, compute
1713 the sum or product of each variable and adjust the original
1714 debug insn and each copy thereof. What a pain! */
1715 reset_debug_uses_in_loop (loop, dest, debug_uses);
1716
1717 /* Record the accumulator to expand. */
1718 ves = XNEW (struct var_to_expand);
1719 ves->insn = insn;
1720 ves->reg = copy_rtx (dest);
1721 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1722 ves->next = NULL;
1723 ves->op = GET_CODE (src);
1724 ves->expansion_count = 0;
1725 ves->reuse_expansion = 0;
1726 ves->accum_pos = accum_pos;
1727 return ves;
1728 }
1729
1730 /* Determine whether there is an induction variable in INSN that
1731 we would like to split during unrolling.
1732
1733 I.e. replace
1734
1735 i = i + 1;
1736 ...
1737 i = i + 1;
1738 ...
1739 i = i + 1;
1740 ...
1741
1742 type chains by
1743
1744 i0 = i + 1
1745 ...
1746 i = i0 + 1
1747 ...
1748 i = i0 + 2
1749 ...
1750
1751 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1752 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1753 pointer to it. */
1754
1755 static struct iv_to_split *
1756 analyze_iv_to_split_insn (rtx insn)
1757 {
1758 rtx set, dest;
1759 struct rtx_iv iv;
1760 struct iv_to_split *ivts;
1761 bool ok;
1762
1763 /* For now we just split the basic induction variables. Later this may be
1764 extended for example by selecting also addresses of memory references. */
1765 set = single_set (insn);
1766 if (!set)
1767 return NULL;
1768
1769 dest = SET_DEST (set);
1770 if (!REG_P (dest))
1771 return NULL;
1772
1773 if (!biv_p (insn, dest))
1774 return NULL;
1775
1776 ok = iv_analyze_result (insn, dest, &iv);
1777
1778 /* This used to be an assert under the assumption that if biv_p returns
1779 true that iv_analyze_result must also return true. However, that
1780 assumption is not strictly correct as evidenced by pr25569.
1781
1782 Returning NULL when iv_analyze_result returns false is safe and
1783 avoids the problems in pr25569 until the iv_analyze_* routines
1784 can be fixed, which is apparently hard and time consuming
1785 according to their author. */
1786 if (! ok)
1787 return NULL;
1788
1789 if (iv.step == const0_rtx
1790 || iv.mode != iv.extend_mode)
1791 return NULL;
1792
1793 /* Record the insn to split. */
1794 ivts = XNEW (struct iv_to_split);
1795 ivts->insn = insn;
1796 ivts->base_var = NULL_RTX;
1797 ivts->step = iv.step;
1798 ivts->next = NULL;
1799 ivts->n_loc = 1;
1800 ivts->loc[0] = 1;
1801
1802 return ivts;
1803 }
1804
1805 /* Determines which of insns in LOOP can be optimized.
1806 Return a OPT_INFO struct with the relevant hash tables filled
1807 with all insns to be optimized. The FIRST_NEW_BLOCK field
1808 is undefined for the return value. */
1809
1810 static struct opt_info *
1811 analyze_insns_in_loop (struct loop *loop)
1812 {
1813 basic_block *body, bb;
1814 unsigned i;
1815 struct opt_info *opt_info = XCNEW (struct opt_info);
1816 rtx insn;
1817 struct iv_to_split *ivts = NULL;
1818 struct var_to_expand *ves = NULL;
1819 PTR *slot1;
1820 PTR *slot2;
1821 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1822 edge exit;
1823 bool can_apply = false;
1824
1825 iv_analysis_loop_init (loop);
1826
1827 body = get_loop_body (loop);
1828
1829 if (flag_split_ivs_in_unroller)
1830 {
1831 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1832 si_info_hash, si_info_eq, free);
1833 opt_info->iv_to_split_head = NULL;
1834 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1835 }
1836
1837 /* Record the loop exit bb and loop preheader before the unrolling. */
1838 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1839
1840 if (VEC_length (edge, edges) == 1)
1841 {
1842 exit = VEC_index (edge, edges, 0);
1843 if (!(exit->flags & EDGE_COMPLEX))
1844 {
1845 opt_info->loop_exit = split_edge (exit);
1846 can_apply = true;
1847 }
1848 }
1849
1850 if (flag_variable_expansion_in_unroller
1851 && can_apply)
1852 {
1853 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1854 ve_info_hash,
1855 ve_info_eq, free);
1856 opt_info->var_to_expand_head = NULL;
1857 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1858 }
1859
1860 for (i = 0; i < loop->num_nodes; i++)
1861 {
1862 bb = body[i];
1863 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1864 continue;
1865
1866 FOR_BB_INSNS (bb, insn)
1867 {
1868 if (!INSN_P (insn))
1869 continue;
1870
1871 if (opt_info->insns_to_split)
1872 ivts = analyze_iv_to_split_insn (insn);
1873
1874 if (ivts)
1875 {
1876 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1877 gcc_assert (*slot1 == NULL);
1878 *slot1 = ivts;
1879 *opt_info->iv_to_split_tail = ivts;
1880 opt_info->iv_to_split_tail = &ivts->next;
1881 continue;
1882 }
1883
1884 if (opt_info->insns_with_var_to_expand)
1885 ves = analyze_insn_to_expand_var (loop, insn);
1886
1887 if (ves)
1888 {
1889 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1890 gcc_assert (*slot2 == NULL);
1891 *slot2 = ves;
1892 *opt_info->var_to_expand_tail = ves;
1893 opt_info->var_to_expand_tail = &ves->next;
1894 }
1895 }
1896 }
1897
1898 VEC_free (edge, heap, edges);
1899 free (body);
1900 return opt_info;
1901 }
1902
1903 /* Called just before loop duplication. Records start of duplicated area
1904 to OPT_INFO. */
1905
1906 static void
1907 opt_info_start_duplication (struct opt_info *opt_info)
1908 {
1909 if (opt_info)
1910 opt_info->first_new_block = last_basic_block;
1911 }
1912
1913 /* Determine the number of iterations between initialization of the base
1914 variable and the current copy (N_COPY). N_COPIES is the total number
1915 of newly created copies. UNROLLING is true if we are unrolling
1916 (not peeling) the loop. */
1917
1918 static unsigned
1919 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1920 {
1921 if (unrolling)
1922 {
1923 /* If we are unrolling, initialization is done in the original loop
1924 body (number 0). */
1925 return n_copy;
1926 }
1927 else
1928 {
1929 /* If we are peeling, the copy in that the initialization occurs has
1930 number 1. The original loop (number 0) is the last. */
1931 if (n_copy)
1932 return n_copy - 1;
1933 else
1934 return n_copies;
1935 }
1936 }
1937
1938 /* Locate in EXPR the expression corresponding to the location recorded
1939 in IVTS, and return a pointer to the RTX for this location. */
1940
1941 static rtx *
1942 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1943 {
1944 unsigned i;
1945 rtx *ret = &expr;
1946
1947 for (i = 0; i < ivts->n_loc; i++)
1948 ret = &XEXP (*ret, ivts->loc[i]);
1949
1950 return ret;
1951 }
1952
1953 /* Allocate basic variable for the induction variable chain. */
1954
1955 static void
1956 allocate_basic_variable (struct iv_to_split *ivts)
1957 {
1958 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1959
1960 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1961 }
1962
1963 /* Insert initialization of basic variable of IVTS before INSN, taking
1964 the initial value from INSN. */
1965
1966 static void
1967 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1968 {
1969 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1970 rtx seq;
1971
1972 start_sequence ();
1973 expr = force_operand (expr, ivts->base_var);
1974 if (expr != ivts->base_var)
1975 emit_move_insn (ivts->base_var, expr);
1976 seq = get_insns ();
1977 end_sequence ();
1978
1979 emit_insn_before (seq, insn);
1980 }
1981
1982 /* Replace the use of induction variable described in IVTS in INSN
1983 by base variable + DELTA * step. */
1984
1985 static void
1986 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1987 {
1988 rtx expr, *loc, seq, incr, var;
1989 enum machine_mode mode = GET_MODE (ivts->base_var);
1990 rtx src, dest, set;
1991
1992 /* Construct base + DELTA * step. */
1993 if (!delta)
1994 expr = ivts->base_var;
1995 else
1996 {
1997 incr = simplify_gen_binary (MULT, mode,
1998 ivts->step, gen_int_mode (delta, mode));
1999 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2000 ivts->base_var, incr);
2001 }
2002
2003 /* Figure out where to do the replacement. */
2004 loc = get_ivts_expr (single_set (insn), ivts);
2005
2006 /* If we can make the replacement right away, we're done. */
2007 if (validate_change (insn, loc, expr, 0))
2008 return;
2009
2010 /* Otherwise, force EXPR into a register and try again. */
2011 start_sequence ();
2012 var = gen_reg_rtx (mode);
2013 expr = force_operand (expr, var);
2014 if (expr != var)
2015 emit_move_insn (var, expr);
2016 seq = get_insns ();
2017 end_sequence ();
2018 emit_insn_before (seq, insn);
2019
2020 if (validate_change (insn, loc, var, 0))
2021 return;
2022
2023 /* The last chance. Try recreating the assignment in insn
2024 completely from scratch. */
2025 set = single_set (insn);
2026 gcc_assert (set);
2027
2028 start_sequence ();
2029 *loc = var;
2030 src = copy_rtx (SET_SRC (set));
2031 dest = copy_rtx (SET_DEST (set));
2032 src = force_operand (src, dest);
2033 if (src != dest)
2034 emit_move_insn (dest, src);
2035 seq = get_insns ();
2036 end_sequence ();
2037
2038 emit_insn_before (seq, insn);
2039 delete_insn (insn);
2040 }
2041
2042
2043 /* Return one expansion of the accumulator recorded in struct VE. */
2044
2045 static rtx
2046 get_expansion (struct var_to_expand *ve)
2047 {
2048 rtx reg;
2049
2050 if (ve->reuse_expansion == 0)
2051 reg = ve->reg;
2052 else
2053 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
2054
2055 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
2056 ve->reuse_expansion = 0;
2057 else
2058 ve->reuse_expansion++;
2059
2060 return reg;
2061 }
2062
2063
2064 /* Given INSN replace the uses of the accumulator recorded in VE
2065 with a new register. */
2066
2067 static void
2068 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2069 {
2070 rtx new_reg, set;
2071 bool really_new_expansion = false;
2072
2073 set = single_set (insn);
2074 gcc_assert (set);
2075
2076 /* Generate a new register only if the expansion limit has not been
2077 reached. Else reuse an already existing expansion. */
2078 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2079 {
2080 really_new_expansion = true;
2081 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2082 }
2083 else
2084 new_reg = get_expansion (ve);
2085
2086 validate_change (insn, &SET_DEST (set), new_reg, 1);
2087 validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
2088
2089 if (apply_change_group ())
2090 if (really_new_expansion)
2091 {
2092 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
2093 ve->expansion_count++;
2094 }
2095 }
2096
2097 /* Initialize the variable expansions in loop preheader. PLACE is the
2098 loop-preheader basic block where the initialization of the
2099 expansions should take place. The expansions are initialized with
2100 (-0) when the operation is plus or minus to honor sign zero. This
2101 way we can prevent cases where the sign of the final result is
2102 effected by the sign of the expansion. Here is an example to
2103 demonstrate this:
2104
2105 for (i = 0 ; i < n; i++)
2106 sum += something;
2107
2108 ==>
2109
2110 sum += something
2111 ....
2112 i = i+1;
2113 sum1 += something
2114 ....
2115 i = i+1
2116 sum2 += something;
2117 ....
2118
2119 When SUM is initialized with -zero and SOMETHING is also -zero; the
2120 final result of sum should be -zero thus the expansions sum1 and sum2
2121 should be initialized with -zero as well (otherwise we will get +zero
2122 as the final result). */
2123
2124 static void
2125 insert_var_expansion_initialization (struct var_to_expand *ve,
2126 basic_block place)
2127 {
2128 rtx seq, var, zero_init, insn;
2129 unsigned i;
2130 enum machine_mode mode = GET_MODE (ve->reg);
2131 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2132
2133 if (VEC_length (rtx, ve->var_expansions) == 0)
2134 return;
2135
2136 start_sequence ();
2137 switch (ve->op)
2138 {
2139 case FMA:
2140 /* Note that we only accumulate FMA via the ADD operand. */
2141 case PLUS:
2142 case MINUS:
2143 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2144 {
2145 if (honor_signed_zero_p)
2146 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2147 else
2148 zero_init = CONST0_RTX (mode);
2149 emit_move_insn (var, zero_init);
2150 }
2151 break;
2152
2153 case MULT:
2154 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2155 {
2156 zero_init = CONST1_RTX (GET_MODE (var));
2157 emit_move_insn (var, zero_init);
2158 }
2159 break;
2160
2161 default:
2162 gcc_unreachable ();
2163 }
2164
2165 seq = get_insns ();
2166 end_sequence ();
2167
2168 insn = BB_HEAD (place);
2169 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2170 insn = NEXT_INSN (insn);
2171
2172 emit_insn_after (seq, insn);
2173 }
2174
2175 /* Combine the variable expansions at the loop exit. PLACE is the
2176 loop exit basic block where the summation of the expansions should
2177 take place. */
2178
2179 static void
2180 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2181 {
2182 rtx sum = ve->reg;
2183 rtx expr, seq, var, insn;
2184 unsigned i;
2185
2186 if (VEC_length (rtx, ve->var_expansions) == 0)
2187 return;
2188
2189 start_sequence ();
2190 switch (ve->op)
2191 {
2192 case FMA:
2193 /* Note that we only accumulate FMA via the ADD operand. */
2194 case PLUS:
2195 case MINUS:
2196 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2197 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2198 break;
2199
2200 case MULT:
2201 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2202 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2203 break;
2204
2205 default:
2206 gcc_unreachable ();
2207 }
2208
2209 expr = force_operand (sum, ve->reg);
2210 if (expr != ve->reg)
2211 emit_move_insn (ve->reg, expr);
2212 seq = get_insns ();
2213 end_sequence ();
2214
2215 insn = BB_HEAD (place);
2216 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2217 insn = NEXT_INSN (insn);
2218
2219 emit_insn_after (seq, insn);
2220 }
2221
2222 /* Apply loop optimizations in loop copies using the
2223 data which gathered during the unrolling. Structure
2224 OPT_INFO record that data.
2225
2226 UNROLLING is true if we unrolled (not peeled) the loop.
2227 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2228 the loop (as it should happen in complete unrolling, but not in ordinary
2229 peeling of the loop). */
2230
2231 static void
2232 apply_opt_in_copies (struct opt_info *opt_info,
2233 unsigned n_copies, bool unrolling,
2234 bool rewrite_original_loop)
2235 {
2236 unsigned i, delta;
2237 basic_block bb, orig_bb;
2238 rtx insn, orig_insn, next;
2239 struct iv_to_split ivts_templ, *ivts;
2240 struct var_to_expand ve_templ, *ves;
2241
2242 /* Sanity check -- we need to put initialization in the original loop
2243 body. */
2244 gcc_assert (!unrolling || rewrite_original_loop);
2245
2246 /* Allocate the basic variables (i0). */
2247 if (opt_info->insns_to_split)
2248 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2249 allocate_basic_variable (ivts);
2250
2251 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2252 {
2253 bb = BASIC_BLOCK (i);
2254 orig_bb = get_bb_original (bb);
2255
2256 /* bb->aux holds position in copy sequence initialized by
2257 duplicate_loop_to_header_edge. */
2258 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2259 unrolling);
2260 bb->aux = 0;
2261 orig_insn = BB_HEAD (orig_bb);
2262 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2263 {
2264 next = NEXT_INSN (insn);
2265 if (!INSN_P (insn)
2266 || (DEBUG_INSN_P (insn)
2267 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2268 continue;
2269
2270 while (!INSN_P (orig_insn)
2271 || (DEBUG_INSN_P (orig_insn)
2272 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2273 == LABEL_DECL)))
2274 orig_insn = NEXT_INSN (orig_insn);
2275
2276 ivts_templ.insn = orig_insn;
2277 ve_templ.insn = orig_insn;
2278
2279 /* Apply splitting iv optimization. */
2280 if (opt_info->insns_to_split)
2281 {
2282 ivts = (struct iv_to_split *)
2283 htab_find (opt_info->insns_to_split, &ivts_templ);
2284
2285 if (ivts)
2286 {
2287 gcc_assert (GET_CODE (PATTERN (insn))
2288 == GET_CODE (PATTERN (orig_insn)));
2289
2290 if (!delta)
2291 insert_base_initialization (ivts, insn);
2292 split_iv (ivts, insn, delta);
2293 }
2294 }
2295 /* Apply variable expansion optimization. */
2296 if (unrolling && opt_info->insns_with_var_to_expand)
2297 {
2298 ves = (struct var_to_expand *)
2299 htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2300 if (ves)
2301 {
2302 gcc_assert (GET_CODE (PATTERN (insn))
2303 == GET_CODE (PATTERN (orig_insn)));
2304 expand_var_during_unrolling (ves, insn);
2305 }
2306 }
2307 orig_insn = NEXT_INSN (orig_insn);
2308 }
2309 }
2310
2311 if (!rewrite_original_loop)
2312 return;
2313
2314 /* Initialize the variable expansions in the loop preheader
2315 and take care of combining them at the loop exit. */
2316 if (opt_info->insns_with_var_to_expand)
2317 {
2318 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2319 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2320 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2321 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2322 }
2323
2324 /* Rewrite also the original loop body. Find them as originals of the blocks
2325 in the last copied iteration, i.e. those that have
2326 get_bb_copy (get_bb_original (bb)) == bb. */
2327 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2328 {
2329 bb = BASIC_BLOCK (i);
2330 orig_bb = get_bb_original (bb);
2331 if (get_bb_copy (orig_bb) != bb)
2332 continue;
2333
2334 delta = determine_split_iv_delta (0, n_copies, unrolling);
2335 for (orig_insn = BB_HEAD (orig_bb);
2336 orig_insn != NEXT_INSN (BB_END (bb));
2337 orig_insn = next)
2338 {
2339 next = NEXT_INSN (orig_insn);
2340
2341 if (!INSN_P (orig_insn))
2342 continue;
2343
2344 ivts_templ.insn = orig_insn;
2345 if (opt_info->insns_to_split)
2346 {
2347 ivts = (struct iv_to_split *)
2348 htab_find (opt_info->insns_to_split, &ivts_templ);
2349 if (ivts)
2350 {
2351 if (!delta)
2352 insert_base_initialization (ivts, orig_insn);
2353 split_iv (ivts, orig_insn, delta);
2354 continue;
2355 }
2356 }
2357
2358 }
2359 }
2360 }
2361
2362 /* Release OPT_INFO. */
2363
2364 static void
2365 free_opt_info (struct opt_info *opt_info)
2366 {
2367 if (opt_info->insns_to_split)
2368 htab_delete (opt_info->insns_to_split);
2369 if (opt_info->insns_with_var_to_expand)
2370 {
2371 struct var_to_expand *ves;
2372
2373 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2374 VEC_free (rtx, heap, ves->var_expansions);
2375 htab_delete (opt_info->insns_with_var_to_expand);
2376 }
2377 free (opt_info);
2378 }