Makefile.in (OBJS): Remove loop-unswitch.o.
[gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "params.h"
31 #include "expr.h"
32 #include "hash-table.h"
33 #include "recog.h"
34 #include "target.h"
35 #include "dumpfile.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx orig_var; /* The variable (register) for the IV before split. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
82 unsigned n_loc;
83 unsigned loc[3]; /* Location where the definition of the induction
84 variable occurs in the insn. For example if
85 N_LOC is 2, the expression is located at
86 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 };
88
89 /* Information about accumulators to expand. */
90
91 struct var_to_expand
92 {
93 rtx insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
104 };
105
106 /* Hashtable helper for iv_to_split. */
107
108 struct iv_split_hasher : typed_free_remove <iv_to_split>
109 {
110 typedef iv_to_split value_type;
111 typedef iv_to_split compare_type;
112 static inline hashval_t hash (const value_type *);
113 static inline bool equal (const value_type *, const compare_type *);
114 };
115
116
117 /* A hash function for information about insns to split. */
118
119 inline hashval_t
120 iv_split_hasher::hash (const value_type *ivts)
121 {
122 return (hashval_t) INSN_UID (ivts->insn);
123 }
124
125 /* An equality functions for information about insns to split. */
126
127 inline bool
128 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
129 {
130 return i1->insn == i2->insn;
131 }
132
133 /* Hashtable helper for iv_to_split. */
134
135 struct var_expand_hasher : typed_free_remove <var_to_expand>
136 {
137 typedef var_to_expand value_type;
138 typedef var_to_expand compare_type;
139 static inline hashval_t hash (const value_type *);
140 static inline bool equal (const value_type *, const compare_type *);
141 };
142
143 /* Return a hash for VES. */
144
145 inline hashval_t
146 var_expand_hasher::hash (const value_type *ves)
147 {
148 return (hashval_t) INSN_UID (ves->insn);
149 }
150
151 /* Return true if I1 and I2 refer to the same instruction. */
152
153 inline bool
154 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
155 {
156 return i1->insn == i2->insn;
157 }
158
159 /* Information about optimization applied in
160 the unrolled loop. */
161
162 struct opt_info
163 {
164 hash_table <iv_split_hasher> insns_to_split; /* A hashtable of insns to
165 split. */
166 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
167 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
168 hash_table <var_expand_hasher> insns_with_var_to_expand; /* A hashtable of
169 insns with accumulators to expand. */
170 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
171 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
172 unsigned first_new_block; /* The first basic block that was
173 duplicated. */
174 basic_block loop_exit; /* The loop exit basic block. */
175 basic_block loop_preheader; /* The loop preheader basic block. */
176 };
177
178 static void decide_unrolling_and_peeling (int);
179 static void peel_loops_completely (int);
180 static void decide_peel_simple (struct loop *, int);
181 static void decide_peel_once_rolling (struct loop *, int);
182 static void decide_peel_completely (struct loop *, int);
183 static void decide_unroll_stupid (struct loop *, int);
184 static void decide_unroll_constant_iterations (struct loop *, int);
185 static void decide_unroll_runtime_iterations (struct loop *, int);
186 static void peel_loop_simple (struct loop *);
187 static void peel_loop_completely (struct loop *);
188 static void unroll_loop_stupid (struct loop *);
189 static void unroll_loop_constant_iterations (struct loop *);
190 static void unroll_loop_runtime_iterations (struct loop *);
191 static struct opt_info *analyze_insns_in_loop (struct loop *);
192 static void opt_info_start_duplication (struct opt_info *);
193 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
194 static void free_opt_info (struct opt_info *);
195 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
196 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
197 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
198 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
199 static void insert_var_expansion_initialization (struct var_to_expand *,
200 basic_block);
201 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
202 basic_block);
203 static rtx get_expansion (struct var_to_expand *);
204
205 /* Emit a message summarizing the unroll or peel that will be
206 performed for LOOP, along with the loop's location LOCUS, if
207 appropriate given the dump or -fopt-info settings. */
208
209 static void
210 report_unroll_peel (struct loop *loop, location_t locus)
211 {
212 struct niter_desc *desc;
213 int niters = 0;
214 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
215
216 if (loop->lpt_decision.decision == LPT_NONE)
217 return;
218
219 if (!dump_enabled_p ())
220 return;
221
222 /* In the special case where the loop never iterated, emit
223 a different message so that we don't report an unroll by 0.
224 This matches the equivalent message emitted during tree unrolling. */
225 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
226 && !loop->lpt_decision.times)
227 {
228 dump_printf_loc (report_flags, locus,
229 "loop turned into non-loop; it never loops.\n");
230 return;
231 }
232
233 desc = get_simple_loop_desc (loop);
234
235 if (desc->const_iter)
236 niters = desc->niter;
237 else if (loop->header->count)
238 niters = expected_loop_iterations (loop);
239
240 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
241 dump_printf_loc (report_flags, locus,
242 "loop with %d iterations completely unrolled",
243 loop->lpt_decision.times + 1);
244 else
245 dump_printf_loc (report_flags, locus,
246 "loop %s %d times",
247 (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
248 ? "peeled" : "unrolled"),
249 loop->lpt_decision.times);
250 if (profile_info)
251 dump_printf (report_flags,
252 " (header execution count %d",
253 (int)loop->header->count);
254 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
255 dump_printf (report_flags,
256 "%s%s iterations %d)",
257 profile_info ? ", " : " (",
258 desc->const_iter ? "const" : "average",
259 niters);
260 else if (profile_info)
261 dump_printf (report_flags, ")");
262
263 dump_printf (report_flags, "\n");
264 }
265
266 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
267 void
268 unroll_and_peel_loops (int flags)
269 {
270 struct loop *loop;
271 bool changed = false;
272
273 /* First perform complete loop peeling (it is almost surely a win,
274 and affects parameters for further decision a lot). */
275 peel_loops_completely (flags);
276
277 /* Now decide rest of unrolling and peeling. */
278 decide_unrolling_and_peeling (flags);
279
280 /* Scan the loops, inner ones first. */
281 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
282 {
283 /* And perform the appropriate transformations. */
284 switch (loop->lpt_decision.decision)
285 {
286 case LPT_PEEL_COMPLETELY:
287 /* Already done. */
288 gcc_unreachable ();
289 case LPT_PEEL_SIMPLE:
290 peel_loop_simple (loop);
291 changed = true;
292 break;
293 case LPT_UNROLL_CONSTANT:
294 unroll_loop_constant_iterations (loop);
295 changed = true;
296 break;
297 case LPT_UNROLL_RUNTIME:
298 unroll_loop_runtime_iterations (loop);
299 changed = true;
300 break;
301 case LPT_UNROLL_STUPID:
302 unroll_loop_stupid (loop);
303 changed = true;
304 break;
305 case LPT_NONE:
306 break;
307 default:
308 gcc_unreachable ();
309 }
310 }
311
312 if (changed)
313 {
314 calculate_dominance_info (CDI_DOMINATORS);
315 fix_loop_structure (NULL);
316 }
317
318 iv_analysis_done ();
319 }
320
321 /* Check whether exit of the LOOP is at the end of loop body. */
322
323 static bool
324 loop_exit_at_end_p (struct loop *loop)
325 {
326 struct niter_desc *desc = get_simple_loop_desc (loop);
327 rtx insn;
328
329 if (desc->in_edge->dest != loop->latch)
330 return false;
331
332 /* Check that the latch is empty. */
333 FOR_BB_INSNS (loop->latch, insn)
334 {
335 if (NONDEBUG_INSN_P (insn))
336 return false;
337 }
338
339 return true;
340 }
341
342 /* Depending on FLAGS, check whether to peel loops completely and do so. */
343 static void
344 peel_loops_completely (int flags)
345 {
346 struct loop *loop;
347 bool changed = false;
348
349 /* Scan the loops, the inner ones first. */
350 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
351 {
352 loop->lpt_decision.decision = LPT_NONE;
353 location_t locus = get_loop_location (loop);
354
355 if (dump_enabled_p ())
356 dump_printf_loc (TDF_RTL, locus,
357 ";; *** Considering loop %d at BB %d for "
358 "complete peeling ***\n",
359 loop->num, loop->header->index);
360
361 loop->ninsns = num_loop_insns (loop);
362
363 decide_peel_once_rolling (loop, flags);
364 if (loop->lpt_decision.decision == LPT_NONE)
365 decide_peel_completely (loop, flags);
366
367 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
368 {
369 report_unroll_peel (loop, locus);
370 peel_loop_completely (loop);
371 changed = true;
372 }
373 }
374
375 if (changed)
376 {
377 calculate_dominance_info (CDI_DOMINATORS);
378 fix_loop_structure (NULL);
379 }
380 }
381
382 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
383 static void
384 decide_unrolling_and_peeling (int flags)
385 {
386 struct loop *loop;
387
388 /* Scan the loops, inner ones first. */
389 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
390 {
391 loop->lpt_decision.decision = LPT_NONE;
392 location_t locus = get_loop_location (loop);
393
394 if (dump_enabled_p ())
395 dump_printf_loc (TDF_RTL, locus,
396 ";; *** Considering loop %d at BB %d for "
397 "unrolling and peeling ***\n",
398 loop->num, loop->header->index);
399
400 /* Do not peel cold areas. */
401 if (optimize_loop_for_size_p (loop))
402 {
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, cold area\n");
405 continue;
406 }
407
408 /* Can the loop be manipulated? */
409 if (!can_duplicate_loop_p (loop))
410 {
411 if (dump_file)
412 fprintf (dump_file,
413 ";; Not considering loop, cannot duplicate\n");
414 continue;
415 }
416
417 /* Skip non-innermost loops. */
418 if (loop->inner)
419 {
420 if (dump_file)
421 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
422 continue;
423 }
424
425 loop->ninsns = num_loop_insns (loop);
426 loop->av_ninsns = average_num_loop_insns (loop);
427
428 /* Try transformations one by one in decreasing order of
429 priority. */
430
431 decide_unroll_constant_iterations (loop, flags);
432 if (loop->lpt_decision.decision == LPT_NONE)
433 decide_unroll_runtime_iterations (loop, flags);
434 if (loop->lpt_decision.decision == LPT_NONE)
435 decide_unroll_stupid (loop, flags);
436 if (loop->lpt_decision.decision == LPT_NONE)
437 decide_peel_simple (loop, flags);
438
439 report_unroll_peel (loop, locus);
440 }
441 }
442
443 /* Decide whether the LOOP is once rolling and suitable for complete
444 peeling. */
445 static void
446 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
447 {
448 struct niter_desc *desc;
449
450 if (dump_file)
451 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
452
453 /* Is the loop small enough? */
454 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
455 {
456 if (dump_file)
457 fprintf (dump_file, ";; Not considering loop, is too big\n");
458 return;
459 }
460
461 /* Check for simple loops. */
462 desc = get_simple_loop_desc (loop);
463
464 /* Check number of iterations. */
465 if (!desc->simple_p
466 || desc->assumptions
467 || desc->infinite
468 || !desc->const_iter
469 || (desc->niter != 0
470 && get_max_loop_iterations_int (loop) != 0))
471 {
472 if (dump_file)
473 fprintf (dump_file,
474 ";; Unable to prove that the loop rolls exactly once\n");
475 return;
476 }
477
478 /* Success. */
479 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
480 }
481
482 /* Decide whether the LOOP is suitable for complete peeling. */
483 static void
484 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
485 {
486 unsigned npeel;
487 struct niter_desc *desc;
488
489 if (dump_file)
490 fprintf (dump_file, "\n;; Considering peeling completely\n");
491
492 /* Skip non-innermost loops. */
493 if (loop->inner)
494 {
495 if (dump_file)
496 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
497 return;
498 }
499
500 /* Do not peel cold areas. */
501 if (optimize_loop_for_size_p (loop))
502 {
503 if (dump_file)
504 fprintf (dump_file, ";; Not considering loop, cold area\n");
505 return;
506 }
507
508 /* Can the loop be manipulated? */
509 if (!can_duplicate_loop_p (loop))
510 {
511 if (dump_file)
512 fprintf (dump_file,
513 ";; Not considering loop, cannot duplicate\n");
514 return;
515 }
516
517 /* npeel = number of iterations to peel. */
518 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
519 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
520 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
521
522 /* Is the loop small enough? */
523 if (!npeel)
524 {
525 if (dump_file)
526 fprintf (dump_file, ";; Not considering loop, is too big\n");
527 return;
528 }
529
530 /* Check for simple loops. */
531 desc = get_simple_loop_desc (loop);
532
533 /* Check number of iterations. */
534 if (!desc->simple_p
535 || desc->assumptions
536 || !desc->const_iter
537 || desc->infinite)
538 {
539 if (dump_file)
540 fprintf (dump_file,
541 ";; Unable to prove that the loop iterates constant times\n");
542 return;
543 }
544
545 if (desc->niter > npeel - 1)
546 {
547 if (dump_file)
548 {
549 fprintf (dump_file,
550 ";; Not peeling loop completely, rolls too much (");
551 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
552 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
553 }
554 return;
555 }
556
557 /* Success. */
558 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
559 }
560
561 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
562 completely. The transformation done:
563
564 for (i = 0; i < 4; i++)
565 body;
566
567 ==>
568
569 i = 0;
570 body; i++;
571 body; i++;
572 body; i++;
573 body; i++;
574 */
575 static void
576 peel_loop_completely (struct loop *loop)
577 {
578 sbitmap wont_exit;
579 unsigned HOST_WIDE_INT npeel;
580 unsigned i;
581 edge ein;
582 struct niter_desc *desc = get_simple_loop_desc (loop);
583 struct opt_info *opt_info = NULL;
584
585 npeel = desc->niter;
586
587 if (npeel)
588 {
589 bool ok;
590
591 wont_exit = sbitmap_alloc (npeel + 1);
592 bitmap_ones (wont_exit);
593 bitmap_clear_bit (wont_exit, 0);
594 if (desc->noloop_assumptions)
595 bitmap_clear_bit (wont_exit, 1);
596
597 auto_vec<edge> remove_edges;
598 if (flag_split_ivs_in_unroller)
599 opt_info = analyze_insns_in_loop (loop);
600
601 opt_info_start_duplication (opt_info);
602 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
603 npeel,
604 wont_exit, desc->out_edge,
605 &remove_edges,
606 DLTHE_FLAG_UPDATE_FREQ
607 | DLTHE_FLAG_COMPLETTE_PEEL
608 | (opt_info
609 ? DLTHE_RECORD_COPY_NUMBER : 0));
610 gcc_assert (ok);
611
612 free (wont_exit);
613
614 if (opt_info)
615 {
616 apply_opt_in_copies (opt_info, npeel, false, true);
617 free_opt_info (opt_info);
618 }
619
620 /* Remove the exit edges. */
621 FOR_EACH_VEC_ELT (remove_edges, i, ein)
622 remove_path (ein);
623 }
624
625 ein = desc->in_edge;
626 free_simple_loop_desc (loop);
627
628 /* Now remove the unreachable part of the last iteration and cancel
629 the loop. */
630 remove_path (ein);
631
632 if (dump_file)
633 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
634 }
635
636 /* Decide whether to unroll LOOP iterating constant number of times
637 and how much. */
638
639 static void
640 decide_unroll_constant_iterations (struct loop *loop, int flags)
641 {
642 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
643 struct niter_desc *desc;
644 double_int iterations;
645
646 if (!(flags & UAP_UNROLL))
647 {
648 /* We were not asked to, just return back silently. */
649 return;
650 }
651
652 if (dump_file)
653 fprintf (dump_file,
654 "\n;; Considering unrolling loop with constant "
655 "number of iterations\n");
656
657 /* nunroll = total number of copies of the original loop body in
658 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
659 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
660 nunroll_by_av
661 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
662 if (nunroll > nunroll_by_av)
663 nunroll = nunroll_by_av;
664 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
665 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
666
667 if (targetm.loop_unroll_adjust)
668 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
669
670 /* Skip big loops. */
671 if (nunroll <= 1)
672 {
673 if (dump_file)
674 fprintf (dump_file, ";; Not considering loop, is too big\n");
675 return;
676 }
677
678 /* Check for simple loops. */
679 desc = get_simple_loop_desc (loop);
680
681 /* Check number of iterations. */
682 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
683 {
684 if (dump_file)
685 fprintf (dump_file,
686 ";; Unable to prove that the loop iterates constant times\n");
687 return;
688 }
689
690 /* Check whether the loop rolls enough to consider.
691 Consult also loop bounds and profile; in the case the loop has more
692 than one exit it may well loop less than determined maximal number
693 of iterations. */
694 if (desc->niter < 2 * nunroll
695 || ((get_estimated_loop_iterations (loop, &iterations)
696 || get_max_loop_iterations (loop, &iterations))
697 && iterations.ult (double_int::from_shwi (2 * nunroll))))
698 {
699 if (dump_file)
700 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
701 return;
702 }
703
704 /* Success; now compute number of iterations to unroll. We alter
705 nunroll so that as few as possible copies of loop body are
706 necessary, while still not decreasing the number of unrollings
707 too much (at most by 1). */
708 best_copies = 2 * nunroll + 10;
709
710 i = 2 * nunroll + 2;
711 if (i - 1 >= desc->niter)
712 i = desc->niter - 2;
713
714 for (; i >= nunroll - 1; i--)
715 {
716 unsigned exit_mod = desc->niter % (i + 1);
717
718 if (!loop_exit_at_end_p (loop))
719 n_copies = exit_mod + i + 1;
720 else if (exit_mod != (unsigned) i
721 || desc->noloop_assumptions != NULL_RTX)
722 n_copies = exit_mod + i + 2;
723 else
724 n_copies = i + 1;
725
726 if (n_copies < best_copies)
727 {
728 best_copies = n_copies;
729 best_unroll = i;
730 }
731 }
732
733 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
734 loop->lpt_decision.times = best_unroll;
735 }
736
737 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
738 The transformation does this:
739
740 for (i = 0; i < 102; i++)
741 body;
742
743 ==> (LOOP->LPT_DECISION.TIMES == 3)
744
745 i = 0;
746 body; i++;
747 body; i++;
748 while (i < 102)
749 {
750 body; i++;
751 body; i++;
752 body; i++;
753 body; i++;
754 }
755 */
756 static void
757 unroll_loop_constant_iterations (struct loop *loop)
758 {
759 unsigned HOST_WIDE_INT niter;
760 unsigned exit_mod;
761 sbitmap wont_exit;
762 unsigned i;
763 edge e;
764 unsigned max_unroll = loop->lpt_decision.times;
765 struct niter_desc *desc = get_simple_loop_desc (loop);
766 bool exit_at_end = loop_exit_at_end_p (loop);
767 struct opt_info *opt_info = NULL;
768 bool ok;
769
770 niter = desc->niter;
771
772 /* Should not get here (such loop should be peeled instead). */
773 gcc_assert (niter > max_unroll + 1);
774
775 exit_mod = niter % (max_unroll + 1);
776
777 wont_exit = sbitmap_alloc (max_unroll + 1);
778 bitmap_ones (wont_exit);
779
780 auto_vec<edge> remove_edges;
781 if (flag_split_ivs_in_unroller
782 || flag_variable_expansion_in_unroller)
783 opt_info = analyze_insns_in_loop (loop);
784
785 if (!exit_at_end)
786 {
787 /* The exit is not at the end of the loop; leave exit test
788 in the first copy, so that the loops that start with test
789 of exit condition have continuous body after unrolling. */
790
791 if (dump_file)
792 fprintf (dump_file, ";; Condition at beginning of loop.\n");
793
794 /* Peel exit_mod iterations. */
795 bitmap_clear_bit (wont_exit, 0);
796 if (desc->noloop_assumptions)
797 bitmap_clear_bit (wont_exit, 1);
798
799 if (exit_mod)
800 {
801 opt_info_start_duplication (opt_info);
802 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
803 exit_mod,
804 wont_exit, desc->out_edge,
805 &remove_edges,
806 DLTHE_FLAG_UPDATE_FREQ
807 | (opt_info && exit_mod > 1
808 ? DLTHE_RECORD_COPY_NUMBER
809 : 0));
810 gcc_assert (ok);
811
812 if (opt_info && exit_mod > 1)
813 apply_opt_in_copies (opt_info, exit_mod, false, false);
814
815 desc->noloop_assumptions = NULL_RTX;
816 desc->niter -= exit_mod;
817 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod);
818 if (loop->any_estimate
819 && double_int::from_uhwi (exit_mod).ule
820 (loop->nb_iterations_estimate))
821 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod);
822 else
823 loop->any_estimate = false;
824 }
825
826 bitmap_set_bit (wont_exit, 1);
827 }
828 else
829 {
830 /* Leave exit test in last copy, for the same reason as above if
831 the loop tests the condition at the end of loop body. */
832
833 if (dump_file)
834 fprintf (dump_file, ";; Condition at end of loop.\n");
835
836 /* We know that niter >= max_unroll + 2; so we do not need to care of
837 case when we would exit before reaching the loop. So just peel
838 exit_mod + 1 iterations. */
839 if (exit_mod != max_unroll
840 || desc->noloop_assumptions)
841 {
842 bitmap_clear_bit (wont_exit, 0);
843 if (desc->noloop_assumptions)
844 bitmap_clear_bit (wont_exit, 1);
845
846 opt_info_start_duplication (opt_info);
847 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
848 exit_mod + 1,
849 wont_exit, desc->out_edge,
850 &remove_edges,
851 DLTHE_FLAG_UPDATE_FREQ
852 | (opt_info && exit_mod > 0
853 ? DLTHE_RECORD_COPY_NUMBER
854 : 0));
855 gcc_assert (ok);
856
857 if (opt_info && exit_mod > 0)
858 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
859
860 desc->niter -= exit_mod + 1;
861 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod + 1);
862 if (loop->any_estimate
863 && double_int::from_uhwi (exit_mod + 1).ule
864 (loop->nb_iterations_estimate))
865 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod + 1);
866 else
867 loop->any_estimate = false;
868 desc->noloop_assumptions = NULL_RTX;
869
870 bitmap_set_bit (wont_exit, 0);
871 bitmap_set_bit (wont_exit, 1);
872 }
873
874 bitmap_clear_bit (wont_exit, max_unroll);
875 }
876
877 /* Now unroll the loop. */
878
879 opt_info_start_duplication (opt_info);
880 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
881 max_unroll,
882 wont_exit, desc->out_edge,
883 &remove_edges,
884 DLTHE_FLAG_UPDATE_FREQ
885 | (opt_info
886 ? DLTHE_RECORD_COPY_NUMBER
887 : 0));
888 gcc_assert (ok);
889
890 if (opt_info)
891 {
892 apply_opt_in_copies (opt_info, max_unroll, true, true);
893 free_opt_info (opt_info);
894 }
895
896 free (wont_exit);
897
898 if (exit_at_end)
899 {
900 basic_block exit_block = get_bb_copy (desc->in_edge->src);
901 /* Find a new in and out edge; they are in the last copy we have made. */
902
903 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
904 {
905 desc->out_edge = EDGE_SUCC (exit_block, 0);
906 desc->in_edge = EDGE_SUCC (exit_block, 1);
907 }
908 else
909 {
910 desc->out_edge = EDGE_SUCC (exit_block, 1);
911 desc->in_edge = EDGE_SUCC (exit_block, 0);
912 }
913 }
914
915 desc->niter /= max_unroll + 1;
916 loop->nb_iterations_upper_bound
917 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
918 + 1),
919 TRUNC_DIV_EXPR);
920 if (loop->any_estimate)
921 loop->nb_iterations_estimate
922 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
923 + 1),
924 TRUNC_DIV_EXPR);
925 desc->niter_expr = GEN_INT (desc->niter);
926
927 /* Remove the edges. */
928 FOR_EACH_VEC_ELT (remove_edges, i, e)
929 remove_path (e);
930
931 if (dump_file)
932 fprintf (dump_file,
933 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
934 max_unroll, num_loop_insns (loop));
935 }
936
937 /* Decide whether to unroll LOOP iterating runtime computable number of times
938 and how much. */
939 static void
940 decide_unroll_runtime_iterations (struct loop *loop, int flags)
941 {
942 unsigned nunroll, nunroll_by_av, i;
943 struct niter_desc *desc;
944 double_int iterations;
945
946 if (!(flags & UAP_UNROLL))
947 {
948 /* We were not asked to, just return back silently. */
949 return;
950 }
951
952 if (dump_file)
953 fprintf (dump_file,
954 "\n;; Considering unrolling loop with runtime "
955 "computable number of iterations\n");
956
957 /* nunroll = total number of copies of the original loop body in
958 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
959 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
960 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
961 if (nunroll > nunroll_by_av)
962 nunroll = nunroll_by_av;
963 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
964 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
965
966 if (targetm.loop_unroll_adjust)
967 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
968
969 /* Skip big loops. */
970 if (nunroll <= 1)
971 {
972 if (dump_file)
973 fprintf (dump_file, ";; Not considering loop, is too big\n");
974 return;
975 }
976
977 /* Check for simple loops. */
978 desc = get_simple_loop_desc (loop);
979
980 /* Check simpleness. */
981 if (!desc->simple_p || desc->assumptions)
982 {
983 if (dump_file)
984 fprintf (dump_file,
985 ";; Unable to prove that the number of iterations "
986 "can be counted in runtime\n");
987 return;
988 }
989
990 if (desc->const_iter)
991 {
992 if (dump_file)
993 fprintf (dump_file, ";; Loop iterates constant times\n");
994 return;
995 }
996
997 /* Check whether the loop rolls. */
998 if ((get_estimated_loop_iterations (loop, &iterations)
999 || get_max_loop_iterations (loop, &iterations))
1000 && iterations.ult (double_int::from_shwi (2 * nunroll)))
1001 {
1002 if (dump_file)
1003 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1004 return;
1005 }
1006
1007 /* Success; now force nunroll to be power of 2, as we are unable to
1008 cope with overflows in computation of number of iterations. */
1009 for (i = 1; 2 * i <= nunroll; i *= 2)
1010 continue;
1011
1012 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
1013 loop->lpt_decision.times = i - 1;
1014 }
1015
1016 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
1017 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
1018 and NULL is returned instead. */
1019
1020 basic_block
1021 split_edge_and_insert (edge e, rtx insns)
1022 {
1023 basic_block bb;
1024
1025 if (!insns)
1026 return NULL;
1027 bb = split_edge (e);
1028 emit_insn_after (insns, BB_END (bb));
1029
1030 /* ??? We used to assume that INSNS can contain control flow insns, and
1031 that we had to try to find sub basic blocks in BB to maintain a valid
1032 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
1033 and call break_superblocks when going out of cfglayout mode. But it
1034 turns out that this never happens; and that if it does ever happen,
1035 the TODO_verify_flow at the end of the RTL loop passes would fail.
1036
1037 There are two reasons why we expected we could have control flow insns
1038 in INSNS. The first is when a comparison has to be done in parts, and
1039 the second is when the number of iterations is computed for loops with
1040 the number of iterations known at runtime. In both cases, test cases
1041 to get control flow in INSNS appear to be impossible to construct:
1042
1043 * If do_compare_rtx_and_jump needs several branches to do comparison
1044 in a mode that needs comparison by parts, we cannot analyze the
1045 number of iterations of the loop, and we never get to unrolling it.
1046
1047 * The code in expand_divmod that was suspected to cause creation of
1048 branching code seems to be only accessed for signed division. The
1049 divisions used by # of iterations analysis are always unsigned.
1050 Problems might arise on architectures that emits branching code
1051 for some operations that may appear in the unroller (especially
1052 for division), but we have no such architectures.
1053
1054 Considering all this, it was decided that we should for now assume
1055 that INSNS can in theory contain control flow insns, but in practice
1056 it never does. So we don't handle the theoretical case, and should
1057 a real failure ever show up, we have a pretty good clue for how to
1058 fix it. */
1059
1060 return bb;
1061 }
1062
1063 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
1064 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
1065 in order to create a jump. */
1066
1067 static rtx
1068 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
1069 rtx cinsn)
1070 {
1071 rtx seq, jump, cond;
1072 enum machine_mode mode;
1073
1074 mode = GET_MODE (op0);
1075 if (mode == VOIDmode)
1076 mode = GET_MODE (op1);
1077
1078 start_sequence ();
1079 if (GET_MODE_CLASS (mode) == MODE_CC)
1080 {
1081 /* A hack -- there seems to be no easy generic way how to make a
1082 conditional jump from a ccmode comparison. */
1083 gcc_assert (cinsn);
1084 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
1085 gcc_assert (GET_CODE (cond) == comp);
1086 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
1087 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
1088 emit_jump_insn (copy_insn (PATTERN (cinsn)));
1089 jump = get_last_insn ();
1090 gcc_assert (JUMP_P (jump));
1091 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
1092 LABEL_NUSES (JUMP_LABEL (jump))++;
1093 redirect_jump (jump, label, 0);
1094 }
1095 else
1096 {
1097 gcc_assert (!cinsn);
1098
1099 op0 = force_operand (op0, NULL_RTX);
1100 op1 = force_operand (op1, NULL_RTX);
1101 do_compare_rtx_and_jump (op0, op1, comp, 0,
1102 mode, NULL_RTX, NULL_RTX, label, -1);
1103 jump = get_last_insn ();
1104 gcc_assert (JUMP_P (jump));
1105 JUMP_LABEL (jump) = label;
1106 LABEL_NUSES (label)++;
1107 }
1108 add_int_reg_note (jump, REG_BR_PROB, prob);
1109
1110 seq = get_insns ();
1111 end_sequence ();
1112
1113 return seq;
1114 }
1115
1116 /* Unroll LOOP for which we are able to count number of iterations in runtime
1117 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1118 extra care for case n < 0):
1119
1120 for (i = 0; i < n; i++)
1121 body;
1122
1123 ==> (LOOP->LPT_DECISION.TIMES == 3)
1124
1125 i = 0;
1126 mod = n % 4;
1127
1128 switch (mod)
1129 {
1130 case 3:
1131 body; i++;
1132 case 2:
1133 body; i++;
1134 case 1:
1135 body; i++;
1136 case 0: ;
1137 }
1138
1139 while (i < n)
1140 {
1141 body; i++;
1142 body; i++;
1143 body; i++;
1144 body; i++;
1145 }
1146 */
1147 static void
1148 unroll_loop_runtime_iterations (struct loop *loop)
1149 {
1150 rtx old_niter, niter, init_code, branch_code, tmp;
1151 unsigned i, j, p;
1152 basic_block preheader, *body, swtch, ezc_swtch;
1153 sbitmap wont_exit;
1154 int may_exit_copy;
1155 unsigned n_peel;
1156 edge e;
1157 bool extra_zero_check, last_may_exit;
1158 unsigned max_unroll = loop->lpt_decision.times;
1159 struct niter_desc *desc = get_simple_loop_desc (loop);
1160 bool exit_at_end = loop_exit_at_end_p (loop);
1161 struct opt_info *opt_info = NULL;
1162 bool ok;
1163
1164 if (flag_split_ivs_in_unroller
1165 || flag_variable_expansion_in_unroller)
1166 opt_info = analyze_insns_in_loop (loop);
1167
1168 /* Remember blocks whose dominators will have to be updated. */
1169 auto_vec<basic_block> dom_bbs;
1170
1171 body = get_loop_body (loop);
1172 for (i = 0; i < loop->num_nodes; i++)
1173 {
1174 vec<basic_block> ldom;
1175 basic_block bb;
1176
1177 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1178 FOR_EACH_VEC_ELT (ldom, j, bb)
1179 if (!flow_bb_inside_loop_p (loop, bb))
1180 dom_bbs.safe_push (bb);
1181
1182 ldom.release ();
1183 }
1184 free (body);
1185
1186 if (!exit_at_end)
1187 {
1188 /* Leave exit in first copy (for explanation why see comment in
1189 unroll_loop_constant_iterations). */
1190 may_exit_copy = 0;
1191 n_peel = max_unroll - 1;
1192 extra_zero_check = true;
1193 last_may_exit = false;
1194 }
1195 else
1196 {
1197 /* Leave exit in last copy (for explanation why see comment in
1198 unroll_loop_constant_iterations). */
1199 may_exit_copy = max_unroll;
1200 n_peel = max_unroll;
1201 extra_zero_check = false;
1202 last_may_exit = true;
1203 }
1204
1205 /* Get expression for number of iterations. */
1206 start_sequence ();
1207 old_niter = niter = gen_reg_rtx (desc->mode);
1208 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1209 if (tmp != niter)
1210 emit_move_insn (niter, tmp);
1211
1212 /* Count modulo by ANDing it with max_unroll; we use the fact that
1213 the number of unrollings is a power of two, and thus this is correct
1214 even if there is overflow in the computation. */
1215 niter = expand_simple_binop (desc->mode, AND,
1216 niter, gen_int_mode (max_unroll, desc->mode),
1217 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1218
1219 init_code = get_insns ();
1220 end_sequence ();
1221 unshare_all_rtl_in_chain (init_code);
1222
1223 /* Precondition the loop. */
1224 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1225
1226 auto_vec<edge> remove_edges;
1227
1228 wont_exit = sbitmap_alloc (max_unroll + 2);
1229
1230 /* Peel the first copy of loop body (almost always we must leave exit test
1231 here; the only exception is when we have extra zero check and the number
1232 of iterations is reliable. Also record the place of (possible) extra
1233 zero check. */
1234 bitmap_clear (wont_exit);
1235 if (extra_zero_check
1236 && !desc->noloop_assumptions)
1237 bitmap_set_bit (wont_exit, 1);
1238 ezc_swtch = loop_preheader_edge (loop)->src;
1239 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1240 1, wont_exit, desc->out_edge,
1241 &remove_edges,
1242 DLTHE_FLAG_UPDATE_FREQ);
1243 gcc_assert (ok);
1244
1245 /* Record the place where switch will be built for preconditioning. */
1246 swtch = split_edge (loop_preheader_edge (loop));
1247
1248 for (i = 0; i < n_peel; i++)
1249 {
1250 /* Peel the copy. */
1251 bitmap_clear (wont_exit);
1252 if (i != n_peel - 1 || !last_may_exit)
1253 bitmap_set_bit (wont_exit, 1);
1254 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1255 1, wont_exit, desc->out_edge,
1256 &remove_edges,
1257 DLTHE_FLAG_UPDATE_FREQ);
1258 gcc_assert (ok);
1259
1260 /* Create item for switch. */
1261 j = n_peel - i - (extra_zero_check ? 0 : 1);
1262 p = REG_BR_PROB_BASE / (i + 2);
1263
1264 preheader = split_edge (loop_preheader_edge (loop));
1265 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1266 block_label (preheader), p,
1267 NULL_RTX);
1268
1269 /* We rely on the fact that the compare and jump cannot be optimized out,
1270 and hence the cfg we create is correct. */
1271 gcc_assert (branch_code != NULL_RTX);
1272
1273 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1274 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1275 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1276 e = make_edge (swtch, preheader,
1277 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1278 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1279 e->probability = p;
1280 }
1281
1282 if (extra_zero_check)
1283 {
1284 /* Add branch for zero iterations. */
1285 p = REG_BR_PROB_BASE / (max_unroll + 1);
1286 swtch = ezc_swtch;
1287 preheader = split_edge (loop_preheader_edge (loop));
1288 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1289 block_label (preheader), p,
1290 NULL_RTX);
1291 gcc_assert (branch_code != NULL_RTX);
1292
1293 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1294 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1295 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1296 e = make_edge (swtch, preheader,
1297 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1298 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1299 e->probability = p;
1300 }
1301
1302 /* Recount dominators for outer blocks. */
1303 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1304
1305 /* And unroll loop. */
1306
1307 bitmap_ones (wont_exit);
1308 bitmap_clear_bit (wont_exit, may_exit_copy);
1309 opt_info_start_duplication (opt_info);
1310
1311 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1312 max_unroll,
1313 wont_exit, desc->out_edge,
1314 &remove_edges,
1315 DLTHE_FLAG_UPDATE_FREQ
1316 | (opt_info
1317 ? DLTHE_RECORD_COPY_NUMBER
1318 : 0));
1319 gcc_assert (ok);
1320
1321 if (opt_info)
1322 {
1323 apply_opt_in_copies (opt_info, max_unroll, true, true);
1324 free_opt_info (opt_info);
1325 }
1326
1327 free (wont_exit);
1328
1329 if (exit_at_end)
1330 {
1331 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1332 /* Find a new in and out edge; they are in the last copy we have
1333 made. */
1334
1335 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1336 {
1337 desc->out_edge = EDGE_SUCC (exit_block, 0);
1338 desc->in_edge = EDGE_SUCC (exit_block, 1);
1339 }
1340 else
1341 {
1342 desc->out_edge = EDGE_SUCC (exit_block, 1);
1343 desc->in_edge = EDGE_SUCC (exit_block, 0);
1344 }
1345 }
1346
1347 /* Remove the edges. */
1348 FOR_EACH_VEC_ELT (remove_edges, i, e)
1349 remove_path (e);
1350
1351 /* We must be careful when updating the number of iterations due to
1352 preconditioning and the fact that the value must be valid at entry
1353 of the loop. After passing through the above code, we see that
1354 the correct new number of iterations is this: */
1355 gcc_assert (!desc->const_iter);
1356 desc->niter_expr =
1357 simplify_gen_binary (UDIV, desc->mode, old_niter,
1358 gen_int_mode (max_unroll + 1, desc->mode));
1359 loop->nb_iterations_upper_bound
1360 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
1361 + 1),
1362 TRUNC_DIV_EXPR);
1363 if (loop->any_estimate)
1364 loop->nb_iterations_estimate
1365 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
1366 + 1),
1367 TRUNC_DIV_EXPR);
1368 if (exit_at_end)
1369 {
1370 desc->niter_expr =
1371 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1372 desc->noloop_assumptions = NULL_RTX;
1373 --loop->nb_iterations_upper_bound;
1374 if (loop->any_estimate
1375 && loop->nb_iterations_estimate != double_int_zero)
1376 --loop->nb_iterations_estimate;
1377 else
1378 loop->any_estimate = false;
1379 }
1380
1381 if (dump_file)
1382 fprintf (dump_file,
1383 ";; Unrolled loop %d times, counting # of iterations "
1384 "in runtime, %i insns\n",
1385 max_unroll, num_loop_insns (loop));
1386 }
1387
1388 /* Decide whether to simply peel LOOP and how much. */
1389 static void
1390 decide_peel_simple (struct loop *loop, int flags)
1391 {
1392 unsigned npeel;
1393 double_int iterations;
1394
1395 if (!(flags & UAP_PEEL))
1396 {
1397 /* We were not asked to, just return back silently. */
1398 return;
1399 }
1400
1401 if (dump_file)
1402 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1403
1404 /* npeel = number of iterations to peel. */
1405 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1406 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1407 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1408
1409 /* Skip big loops. */
1410 if (!npeel)
1411 {
1412 if (dump_file)
1413 fprintf (dump_file, ";; Not considering loop, is too big\n");
1414 return;
1415 }
1416
1417 /* Do not simply peel loops with branches inside -- it increases number
1418 of mispredicts.
1419 Exception is when we do have profile and we however have good chance
1420 to peel proper number of iterations loop will iterate in practice.
1421 TODO: this heuristic needs tunning; while for complette unrolling
1422 the branch inside loop mostly eliminates any improvements, for
1423 peeling it is not the case. Also a function call inside loop is
1424 also branch from branch prediction POV (and probably better reason
1425 to not unroll/peel). */
1426 if (num_loop_branches (loop) > 1
1427 && profile_status_for_fn (cfun) != PROFILE_READ)
1428 {
1429 if (dump_file)
1430 fprintf (dump_file, ";; Not peeling, contains branches\n");
1431 return;
1432 }
1433
1434 /* If we have realistic estimate on number of iterations, use it. */
1435 if (get_estimated_loop_iterations (loop, &iterations))
1436 {
1437 if (double_int::from_shwi (npeel).ule (iterations))
1438 {
1439 if (dump_file)
1440 {
1441 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1442 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1443 (HOST_WIDEST_INT) (iterations.to_shwi () + 1));
1444 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1445 npeel);
1446 }
1447 return;
1448 }
1449 npeel = iterations.to_shwi () + 1;
1450 }
1451 /* If we have small enough bound on iterations, we can still peel (completely
1452 unroll). */
1453 else if (get_max_loop_iterations (loop, &iterations)
1454 && iterations.ult (double_int::from_shwi (npeel)))
1455 npeel = iterations.to_shwi () + 1;
1456 else
1457 {
1458 /* For now we have no good heuristics to decide whether loop peeling
1459 will be effective, so disable it. */
1460 if (dump_file)
1461 fprintf (dump_file,
1462 ";; Not peeling loop, no evidence it will be profitable\n");
1463 return;
1464 }
1465
1466 /* Success. */
1467 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1468 loop->lpt_decision.times = npeel;
1469 }
1470
1471 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1472
1473 while (cond)
1474 body;
1475
1476 ==> (LOOP->LPT_DECISION.TIMES == 3)
1477
1478 if (!cond) goto end;
1479 body;
1480 if (!cond) goto end;
1481 body;
1482 if (!cond) goto end;
1483 body;
1484 while (cond)
1485 body;
1486 end: ;
1487 */
1488 static void
1489 peel_loop_simple (struct loop *loop)
1490 {
1491 sbitmap wont_exit;
1492 unsigned npeel = loop->lpt_decision.times;
1493 struct niter_desc *desc = get_simple_loop_desc (loop);
1494 struct opt_info *opt_info = NULL;
1495 bool ok;
1496
1497 if (flag_split_ivs_in_unroller && npeel > 1)
1498 opt_info = analyze_insns_in_loop (loop);
1499
1500 wont_exit = sbitmap_alloc (npeel + 1);
1501 bitmap_clear (wont_exit);
1502
1503 opt_info_start_duplication (opt_info);
1504
1505 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1506 npeel, wont_exit, NULL,
1507 NULL, DLTHE_FLAG_UPDATE_FREQ
1508 | (opt_info
1509 ? DLTHE_RECORD_COPY_NUMBER
1510 : 0));
1511 gcc_assert (ok);
1512
1513 free (wont_exit);
1514
1515 if (opt_info)
1516 {
1517 apply_opt_in_copies (opt_info, npeel, false, false);
1518 free_opt_info (opt_info);
1519 }
1520
1521 if (desc->simple_p)
1522 {
1523 if (desc->const_iter)
1524 {
1525 desc->niter -= npeel;
1526 desc->niter_expr = GEN_INT (desc->niter);
1527 desc->noloop_assumptions = NULL_RTX;
1528 }
1529 else
1530 {
1531 /* We cannot just update niter_expr, as its value might be clobbered
1532 inside loop. We could handle this by counting the number into
1533 temporary just like we do in runtime unrolling, but it does not
1534 seem worthwhile. */
1535 free_simple_loop_desc (loop);
1536 }
1537 }
1538 if (dump_file)
1539 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1540 }
1541
1542 /* Decide whether to unroll LOOP stupidly and how much. */
1543 static void
1544 decide_unroll_stupid (struct loop *loop, int flags)
1545 {
1546 unsigned nunroll, nunroll_by_av, i;
1547 struct niter_desc *desc;
1548 double_int iterations;
1549
1550 if (!(flags & UAP_UNROLL_ALL))
1551 {
1552 /* We were not asked to, just return back silently. */
1553 return;
1554 }
1555
1556 if (dump_file)
1557 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1558
1559 /* nunroll = total number of copies of the original loop body in
1560 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1561 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1562 nunroll_by_av
1563 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1564 if (nunroll > nunroll_by_av)
1565 nunroll = nunroll_by_av;
1566 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1567 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1568
1569 if (targetm.loop_unroll_adjust)
1570 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1571
1572 /* Skip big loops. */
1573 if (nunroll <= 1)
1574 {
1575 if (dump_file)
1576 fprintf (dump_file, ";; Not considering loop, is too big\n");
1577 return;
1578 }
1579
1580 /* Check for simple loops. */
1581 desc = get_simple_loop_desc (loop);
1582
1583 /* Check simpleness. */
1584 if (desc->simple_p && !desc->assumptions)
1585 {
1586 if (dump_file)
1587 fprintf (dump_file, ";; The loop is simple\n");
1588 return;
1589 }
1590
1591 /* Do not unroll loops with branches inside -- it increases number
1592 of mispredicts.
1593 TODO: this heuristic needs tunning; call inside the loop body
1594 is also relatively good reason to not unroll. */
1595 if (num_loop_branches (loop) > 1)
1596 {
1597 if (dump_file)
1598 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1599 return;
1600 }
1601
1602 /* Check whether the loop rolls. */
1603 if ((get_estimated_loop_iterations (loop, &iterations)
1604 || get_max_loop_iterations (loop, &iterations))
1605 && iterations.ult (double_int::from_shwi (2 * nunroll)))
1606 {
1607 if (dump_file)
1608 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1609 return;
1610 }
1611
1612 /* Success. Now force nunroll to be power of 2, as it seems that this
1613 improves results (partially because of better alignments, partially
1614 because of some dark magic). */
1615 for (i = 1; 2 * i <= nunroll; i *= 2)
1616 continue;
1617
1618 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1619 loop->lpt_decision.times = i - 1;
1620 }
1621
1622 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1623
1624 while (cond)
1625 body;
1626
1627 ==> (LOOP->LPT_DECISION.TIMES == 3)
1628
1629 while (cond)
1630 {
1631 body;
1632 if (!cond) break;
1633 body;
1634 if (!cond) break;
1635 body;
1636 if (!cond) break;
1637 body;
1638 }
1639 */
1640 static void
1641 unroll_loop_stupid (struct loop *loop)
1642 {
1643 sbitmap wont_exit;
1644 unsigned nunroll = loop->lpt_decision.times;
1645 struct niter_desc *desc = get_simple_loop_desc (loop);
1646 struct opt_info *opt_info = NULL;
1647 bool ok;
1648
1649 if (flag_split_ivs_in_unroller
1650 || flag_variable_expansion_in_unroller)
1651 opt_info = analyze_insns_in_loop (loop);
1652
1653
1654 wont_exit = sbitmap_alloc (nunroll + 1);
1655 bitmap_clear (wont_exit);
1656 opt_info_start_duplication (opt_info);
1657
1658 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1659 nunroll, wont_exit,
1660 NULL, NULL,
1661 DLTHE_FLAG_UPDATE_FREQ
1662 | (opt_info
1663 ? DLTHE_RECORD_COPY_NUMBER
1664 : 0));
1665 gcc_assert (ok);
1666
1667 if (opt_info)
1668 {
1669 apply_opt_in_copies (opt_info, nunroll, true, true);
1670 free_opt_info (opt_info);
1671 }
1672
1673 free (wont_exit);
1674
1675 if (desc->simple_p)
1676 {
1677 /* We indeed may get here provided that there are nontrivial assumptions
1678 for a loop to be really simple. We could update the counts, but the
1679 problem is that we are unable to decide which exit will be taken
1680 (not really true in case the number of iterations is constant,
1681 but no one will do anything with this information, so we do not
1682 worry about it). */
1683 desc->simple_p = false;
1684 }
1685
1686 if (dump_file)
1687 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1688 nunroll, num_loop_insns (loop));
1689 }
1690
1691 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1692 Set *DEBUG_USES to the number of debug insns that reference the
1693 variable. */
1694
1695 bool
1696 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1697 int *debug_uses)
1698 {
1699 basic_block *body, bb;
1700 unsigned i;
1701 int count_ref = 0;
1702 rtx insn;
1703
1704 body = get_loop_body (loop);
1705 for (i = 0; i < loop->num_nodes; i++)
1706 {
1707 bb = body[i];
1708
1709 FOR_BB_INSNS (bb, insn)
1710 if (!rtx_referenced_p (reg, insn))
1711 continue;
1712 else if (DEBUG_INSN_P (insn))
1713 ++*debug_uses;
1714 else if (++count_ref > 1)
1715 break;
1716 }
1717 free (body);
1718 return (count_ref == 1);
1719 }
1720
1721 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1722
1723 static void
1724 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1725 {
1726 basic_block *body, bb;
1727 unsigned i;
1728 rtx insn;
1729
1730 body = get_loop_body (loop);
1731 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1732 {
1733 bb = body[i];
1734
1735 FOR_BB_INSNS (bb, insn)
1736 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1737 continue;
1738 else
1739 {
1740 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1741 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1742 if (!--debug_uses)
1743 break;
1744 }
1745 }
1746 free (body);
1747 }
1748
1749 /* Determine whether INSN contains an accumulator
1750 which can be expanded into separate copies,
1751 one for each copy of the LOOP body.
1752
1753 for (i = 0 ; i < n; i++)
1754 sum += a[i];
1755
1756 ==>
1757
1758 sum += a[i]
1759 ....
1760 i = i+1;
1761 sum1 += a[i]
1762 ....
1763 i = i+1
1764 sum2 += a[i];
1765 ....
1766
1767 Return NULL if INSN contains no opportunity for expansion of accumulator.
1768 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1769 information and return a pointer to it.
1770 */
1771
1772 static struct var_to_expand *
1773 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1774 {
1775 rtx set, dest, src;
1776 struct var_to_expand *ves;
1777 unsigned accum_pos;
1778 enum rtx_code code;
1779 int debug_uses = 0;
1780
1781 set = single_set (insn);
1782 if (!set)
1783 return NULL;
1784
1785 dest = SET_DEST (set);
1786 src = SET_SRC (set);
1787 code = GET_CODE (src);
1788
1789 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1790 return NULL;
1791
1792 if (FLOAT_MODE_P (GET_MODE (dest)))
1793 {
1794 if (!flag_associative_math)
1795 return NULL;
1796 /* In the case of FMA, we're also changing the rounding. */
1797 if (code == FMA && !flag_unsafe_math_optimizations)
1798 return NULL;
1799 }
1800
1801 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1802 in MD. But if there is no optab to generate the insn, we can not
1803 perform the variable expansion. This can happen if an MD provides
1804 an insn but not a named pattern to generate it, for example to avoid
1805 producing code that needs additional mode switches like for x87/mmx.
1806
1807 So we check have_insn_for which looks for an optab for the operation
1808 in SRC. If it doesn't exist, we can't perform the expansion even
1809 though INSN is valid. */
1810 if (!have_insn_for (code, GET_MODE (src)))
1811 return NULL;
1812
1813 if (!REG_P (dest)
1814 && !(GET_CODE (dest) == SUBREG
1815 && REG_P (SUBREG_REG (dest))))
1816 return NULL;
1817
1818 /* Find the accumulator use within the operation. */
1819 if (code == FMA)
1820 {
1821 /* We only support accumulation via FMA in the ADD position. */
1822 if (!rtx_equal_p (dest, XEXP (src, 2)))
1823 return NULL;
1824 accum_pos = 2;
1825 }
1826 else if (rtx_equal_p (dest, XEXP (src, 0)))
1827 accum_pos = 0;
1828 else if (rtx_equal_p (dest, XEXP (src, 1)))
1829 {
1830 /* The method of expansion that we are using; which includes the
1831 initialization of the expansions with zero and the summation of
1832 the expansions at the end of the computation will yield wrong
1833 results for (x = something - x) thus avoid using it in that case. */
1834 if (code == MINUS)
1835 return NULL;
1836 accum_pos = 1;
1837 }
1838 else
1839 return NULL;
1840
1841 /* It must not otherwise be used. */
1842 if (code == FMA)
1843 {
1844 if (rtx_referenced_p (dest, XEXP (src, 0))
1845 || rtx_referenced_p (dest, XEXP (src, 1)))
1846 return NULL;
1847 }
1848 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1849 return NULL;
1850
1851 /* It must be used in exactly one insn. */
1852 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1853 return NULL;
1854
1855 if (dump_file)
1856 {
1857 fprintf (dump_file, "\n;; Expanding Accumulator ");
1858 print_rtl (dump_file, dest);
1859 fprintf (dump_file, "\n");
1860 }
1861
1862 if (debug_uses)
1863 /* Instead of resetting the debug insns, we could replace each
1864 debug use in the loop with the sum or product of all expanded
1865 accummulators. Since we'll only know of all expansions at the
1866 end, we'd have to keep track of which vars_to_expand a debug
1867 insn in the loop references, take note of each copy of the
1868 debug insn during unrolling, and when it's all done, compute
1869 the sum or product of each variable and adjust the original
1870 debug insn and each copy thereof. What a pain! */
1871 reset_debug_uses_in_loop (loop, dest, debug_uses);
1872
1873 /* Record the accumulator to expand. */
1874 ves = XNEW (struct var_to_expand);
1875 ves->insn = insn;
1876 ves->reg = copy_rtx (dest);
1877 ves->var_expansions.create (1);
1878 ves->next = NULL;
1879 ves->op = GET_CODE (src);
1880 ves->expansion_count = 0;
1881 ves->reuse_expansion = 0;
1882 return ves;
1883 }
1884
1885 /* Determine whether there is an induction variable in INSN that
1886 we would like to split during unrolling.
1887
1888 I.e. replace
1889
1890 i = i + 1;
1891 ...
1892 i = i + 1;
1893 ...
1894 i = i + 1;
1895 ...
1896
1897 type chains by
1898
1899 i0 = i + 1
1900 ...
1901 i = i0 + 1
1902 ...
1903 i = i0 + 2
1904 ...
1905
1906 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1907 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1908 pointer to it. */
1909
1910 static struct iv_to_split *
1911 analyze_iv_to_split_insn (rtx insn)
1912 {
1913 rtx set, dest;
1914 struct rtx_iv iv;
1915 struct iv_to_split *ivts;
1916 bool ok;
1917
1918 /* For now we just split the basic induction variables. Later this may be
1919 extended for example by selecting also addresses of memory references. */
1920 set = single_set (insn);
1921 if (!set)
1922 return NULL;
1923
1924 dest = SET_DEST (set);
1925 if (!REG_P (dest))
1926 return NULL;
1927
1928 if (!biv_p (insn, dest))
1929 return NULL;
1930
1931 ok = iv_analyze_result (insn, dest, &iv);
1932
1933 /* This used to be an assert under the assumption that if biv_p returns
1934 true that iv_analyze_result must also return true. However, that
1935 assumption is not strictly correct as evidenced by pr25569.
1936
1937 Returning NULL when iv_analyze_result returns false is safe and
1938 avoids the problems in pr25569 until the iv_analyze_* routines
1939 can be fixed, which is apparently hard and time consuming
1940 according to their author. */
1941 if (! ok)
1942 return NULL;
1943
1944 if (iv.step == const0_rtx
1945 || iv.mode != iv.extend_mode)
1946 return NULL;
1947
1948 /* Record the insn to split. */
1949 ivts = XNEW (struct iv_to_split);
1950 ivts->insn = insn;
1951 ivts->orig_var = dest;
1952 ivts->base_var = NULL_RTX;
1953 ivts->step = iv.step;
1954 ivts->next = NULL;
1955 ivts->n_loc = 1;
1956 ivts->loc[0] = 1;
1957
1958 return ivts;
1959 }
1960
1961 /* Determines which of insns in LOOP can be optimized.
1962 Return a OPT_INFO struct with the relevant hash tables filled
1963 with all insns to be optimized. The FIRST_NEW_BLOCK field
1964 is undefined for the return value. */
1965
1966 static struct opt_info *
1967 analyze_insns_in_loop (struct loop *loop)
1968 {
1969 basic_block *body, bb;
1970 unsigned i;
1971 struct opt_info *opt_info = XCNEW (struct opt_info);
1972 rtx insn;
1973 struct iv_to_split *ivts = NULL;
1974 struct var_to_expand *ves = NULL;
1975 iv_to_split **slot1;
1976 var_to_expand **slot2;
1977 vec<edge> edges = get_loop_exit_edges (loop);
1978 edge exit;
1979 bool can_apply = false;
1980
1981 iv_analysis_loop_init (loop);
1982
1983 body = get_loop_body (loop);
1984
1985 if (flag_split_ivs_in_unroller)
1986 {
1987 opt_info->insns_to_split.create (5 * loop->num_nodes);
1988 opt_info->iv_to_split_head = NULL;
1989 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1990 }
1991
1992 /* Record the loop exit bb and loop preheader before the unrolling. */
1993 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1994
1995 if (edges.length () == 1)
1996 {
1997 exit = edges[0];
1998 if (!(exit->flags & EDGE_COMPLEX))
1999 {
2000 opt_info->loop_exit = split_edge (exit);
2001 can_apply = true;
2002 }
2003 }
2004
2005 if (flag_variable_expansion_in_unroller
2006 && can_apply)
2007 {
2008 opt_info->insns_with_var_to_expand.create (5 * loop->num_nodes);
2009 opt_info->var_to_expand_head = NULL;
2010 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
2011 }
2012
2013 for (i = 0; i < loop->num_nodes; i++)
2014 {
2015 bb = body[i];
2016 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2017 continue;
2018
2019 FOR_BB_INSNS (bb, insn)
2020 {
2021 if (!INSN_P (insn))
2022 continue;
2023
2024 if (opt_info->insns_to_split.is_created ())
2025 ivts = analyze_iv_to_split_insn (insn);
2026
2027 if (ivts)
2028 {
2029 slot1 = opt_info->insns_to_split.find_slot (ivts, INSERT);
2030 gcc_assert (*slot1 == NULL);
2031 *slot1 = ivts;
2032 *opt_info->iv_to_split_tail = ivts;
2033 opt_info->iv_to_split_tail = &ivts->next;
2034 continue;
2035 }
2036
2037 if (opt_info->insns_with_var_to_expand.is_created ())
2038 ves = analyze_insn_to_expand_var (loop, insn);
2039
2040 if (ves)
2041 {
2042 slot2 = opt_info->insns_with_var_to_expand.find_slot (ves, INSERT);
2043 gcc_assert (*slot2 == NULL);
2044 *slot2 = ves;
2045 *opt_info->var_to_expand_tail = ves;
2046 opt_info->var_to_expand_tail = &ves->next;
2047 }
2048 }
2049 }
2050
2051 edges.release ();
2052 free (body);
2053 return opt_info;
2054 }
2055
2056 /* Called just before loop duplication. Records start of duplicated area
2057 to OPT_INFO. */
2058
2059 static void
2060 opt_info_start_duplication (struct opt_info *opt_info)
2061 {
2062 if (opt_info)
2063 opt_info->first_new_block = last_basic_block_for_fn (cfun);
2064 }
2065
2066 /* Determine the number of iterations between initialization of the base
2067 variable and the current copy (N_COPY). N_COPIES is the total number
2068 of newly created copies. UNROLLING is true if we are unrolling
2069 (not peeling) the loop. */
2070
2071 static unsigned
2072 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2073 {
2074 if (unrolling)
2075 {
2076 /* If we are unrolling, initialization is done in the original loop
2077 body (number 0). */
2078 return n_copy;
2079 }
2080 else
2081 {
2082 /* If we are peeling, the copy in that the initialization occurs has
2083 number 1. The original loop (number 0) is the last. */
2084 if (n_copy)
2085 return n_copy - 1;
2086 else
2087 return n_copies;
2088 }
2089 }
2090
2091 /* Locate in EXPR the expression corresponding to the location recorded
2092 in IVTS, and return a pointer to the RTX for this location. */
2093
2094 static rtx *
2095 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
2096 {
2097 unsigned i;
2098 rtx *ret = &expr;
2099
2100 for (i = 0; i < ivts->n_loc; i++)
2101 ret = &XEXP (*ret, ivts->loc[i]);
2102
2103 return ret;
2104 }
2105
2106 /* Allocate basic variable for the induction variable chain. */
2107
2108 static void
2109 allocate_basic_variable (struct iv_to_split *ivts)
2110 {
2111 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
2112
2113 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2114 }
2115
2116 /* Insert initialization of basic variable of IVTS before INSN, taking
2117 the initial value from INSN. */
2118
2119 static void
2120 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
2121 {
2122 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
2123 rtx seq;
2124
2125 start_sequence ();
2126 expr = force_operand (expr, ivts->base_var);
2127 if (expr != ivts->base_var)
2128 emit_move_insn (ivts->base_var, expr);
2129 seq = get_insns ();
2130 end_sequence ();
2131
2132 emit_insn_before (seq, insn);
2133 }
2134
2135 /* Replace the use of induction variable described in IVTS in INSN
2136 by base variable + DELTA * step. */
2137
2138 static void
2139 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
2140 {
2141 rtx expr, *loc, seq, incr, var;
2142 enum machine_mode mode = GET_MODE (ivts->base_var);
2143 rtx src, dest, set;
2144
2145 /* Construct base + DELTA * step. */
2146 if (!delta)
2147 expr = ivts->base_var;
2148 else
2149 {
2150 incr = simplify_gen_binary (MULT, mode,
2151 ivts->step, gen_int_mode (delta, mode));
2152 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2153 ivts->base_var, incr);
2154 }
2155
2156 /* Figure out where to do the replacement. */
2157 loc = get_ivts_expr (single_set (insn), ivts);
2158
2159 /* If we can make the replacement right away, we're done. */
2160 if (validate_change (insn, loc, expr, 0))
2161 return;
2162
2163 /* Otherwise, force EXPR into a register and try again. */
2164 start_sequence ();
2165 var = gen_reg_rtx (mode);
2166 expr = force_operand (expr, var);
2167 if (expr != var)
2168 emit_move_insn (var, expr);
2169 seq = get_insns ();
2170 end_sequence ();
2171 emit_insn_before (seq, insn);
2172
2173 if (validate_change (insn, loc, var, 0))
2174 return;
2175
2176 /* The last chance. Try recreating the assignment in insn
2177 completely from scratch. */
2178 set = single_set (insn);
2179 gcc_assert (set);
2180
2181 start_sequence ();
2182 *loc = var;
2183 src = copy_rtx (SET_SRC (set));
2184 dest = copy_rtx (SET_DEST (set));
2185 src = force_operand (src, dest);
2186 if (src != dest)
2187 emit_move_insn (dest, src);
2188 seq = get_insns ();
2189 end_sequence ();
2190
2191 emit_insn_before (seq, insn);
2192 delete_insn (insn);
2193 }
2194
2195
2196 /* Return one expansion of the accumulator recorded in struct VE. */
2197
2198 static rtx
2199 get_expansion (struct var_to_expand *ve)
2200 {
2201 rtx reg;
2202
2203 if (ve->reuse_expansion == 0)
2204 reg = ve->reg;
2205 else
2206 reg = ve->var_expansions[ve->reuse_expansion - 1];
2207
2208 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2209 ve->reuse_expansion = 0;
2210 else
2211 ve->reuse_expansion++;
2212
2213 return reg;
2214 }
2215
2216
2217 /* Given INSN replace the uses of the accumulator recorded in VE
2218 with a new register. */
2219
2220 static void
2221 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2222 {
2223 rtx new_reg, set;
2224 bool really_new_expansion = false;
2225
2226 set = single_set (insn);
2227 gcc_assert (set);
2228
2229 /* Generate a new register only if the expansion limit has not been
2230 reached. Else reuse an already existing expansion. */
2231 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2232 {
2233 really_new_expansion = true;
2234 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2235 }
2236 else
2237 new_reg = get_expansion (ve);
2238
2239 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2240 if (apply_change_group ())
2241 if (really_new_expansion)
2242 {
2243 ve->var_expansions.safe_push (new_reg);
2244 ve->expansion_count++;
2245 }
2246 }
2247
2248 /* Initialize the variable expansions in loop preheader. PLACE is the
2249 loop-preheader basic block where the initialization of the
2250 expansions should take place. The expansions are initialized with
2251 (-0) when the operation is plus or minus to honor sign zero. This
2252 way we can prevent cases where the sign of the final result is
2253 effected by the sign of the expansion. Here is an example to
2254 demonstrate this:
2255
2256 for (i = 0 ; i < n; i++)
2257 sum += something;
2258
2259 ==>
2260
2261 sum += something
2262 ....
2263 i = i+1;
2264 sum1 += something
2265 ....
2266 i = i+1
2267 sum2 += something;
2268 ....
2269
2270 When SUM is initialized with -zero and SOMETHING is also -zero; the
2271 final result of sum should be -zero thus the expansions sum1 and sum2
2272 should be initialized with -zero as well (otherwise we will get +zero
2273 as the final result). */
2274
2275 static void
2276 insert_var_expansion_initialization (struct var_to_expand *ve,
2277 basic_block place)
2278 {
2279 rtx seq, var, zero_init;
2280 unsigned i;
2281 enum machine_mode mode = GET_MODE (ve->reg);
2282 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2283
2284 if (ve->var_expansions.length () == 0)
2285 return;
2286
2287 start_sequence ();
2288 switch (ve->op)
2289 {
2290 case FMA:
2291 /* Note that we only accumulate FMA via the ADD operand. */
2292 case PLUS:
2293 case MINUS:
2294 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2295 {
2296 if (honor_signed_zero_p)
2297 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2298 else
2299 zero_init = CONST0_RTX (mode);
2300 emit_move_insn (var, zero_init);
2301 }
2302 break;
2303
2304 case MULT:
2305 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2306 {
2307 zero_init = CONST1_RTX (GET_MODE (var));
2308 emit_move_insn (var, zero_init);
2309 }
2310 break;
2311
2312 default:
2313 gcc_unreachable ();
2314 }
2315
2316 seq = get_insns ();
2317 end_sequence ();
2318
2319 emit_insn_after (seq, BB_END (place));
2320 }
2321
2322 /* Combine the variable expansions at the loop exit. PLACE is the
2323 loop exit basic block where the summation of the expansions should
2324 take place. */
2325
2326 static void
2327 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2328 {
2329 rtx sum = ve->reg;
2330 rtx expr, seq, var, insn;
2331 unsigned i;
2332
2333 if (ve->var_expansions.length () == 0)
2334 return;
2335
2336 start_sequence ();
2337 switch (ve->op)
2338 {
2339 case FMA:
2340 /* Note that we only accumulate FMA via the ADD operand. */
2341 case PLUS:
2342 case MINUS:
2343 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2344 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2345 break;
2346
2347 case MULT:
2348 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2349 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2350 break;
2351
2352 default:
2353 gcc_unreachable ();
2354 }
2355
2356 expr = force_operand (sum, ve->reg);
2357 if (expr != ve->reg)
2358 emit_move_insn (ve->reg, expr);
2359 seq = get_insns ();
2360 end_sequence ();
2361
2362 insn = BB_HEAD (place);
2363 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2364 insn = NEXT_INSN (insn);
2365
2366 emit_insn_after (seq, insn);
2367 }
2368
2369 /* Strip away REG_EQUAL notes for IVs we're splitting.
2370
2371 Updating REG_EQUAL notes for IVs we split is tricky: We
2372 cannot tell until after unrolling, DF-rescanning, and liveness
2373 updating, whether an EQ_USE is reached by the split IV while
2374 the IV reg is still live. See PR55006.
2375
2376 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2377 because RTL loop-iv requires us to defer rescanning insns and
2378 any notes attached to them. So resort to old techniques... */
2379
2380 static void
2381 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx insn)
2382 {
2383 struct iv_to_split *ivts;
2384 rtx note = find_reg_equal_equiv_note (insn);
2385 if (! note)
2386 return;
2387 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2388 if (reg_mentioned_p (ivts->orig_var, note))
2389 {
2390 remove_note (insn, note);
2391 return;
2392 }
2393 }
2394
2395 /* Apply loop optimizations in loop copies using the
2396 data which gathered during the unrolling. Structure
2397 OPT_INFO record that data.
2398
2399 UNROLLING is true if we unrolled (not peeled) the loop.
2400 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2401 the loop (as it should happen in complete unrolling, but not in ordinary
2402 peeling of the loop). */
2403
2404 static void
2405 apply_opt_in_copies (struct opt_info *opt_info,
2406 unsigned n_copies, bool unrolling,
2407 bool rewrite_original_loop)
2408 {
2409 unsigned i, delta;
2410 basic_block bb, orig_bb;
2411 rtx insn, orig_insn, next;
2412 struct iv_to_split ivts_templ, *ivts;
2413 struct var_to_expand ve_templ, *ves;
2414
2415 /* Sanity check -- we need to put initialization in the original loop
2416 body. */
2417 gcc_assert (!unrolling || rewrite_original_loop);
2418
2419 /* Allocate the basic variables (i0). */
2420 if (opt_info->insns_to_split.is_created ())
2421 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2422 allocate_basic_variable (ivts);
2423
2424 for (i = opt_info->first_new_block;
2425 i < (unsigned) last_basic_block_for_fn (cfun);
2426 i++)
2427 {
2428 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2429 orig_bb = get_bb_original (bb);
2430
2431 /* bb->aux holds position in copy sequence initialized by
2432 duplicate_loop_to_header_edge. */
2433 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2434 unrolling);
2435 bb->aux = 0;
2436 orig_insn = BB_HEAD (orig_bb);
2437 FOR_BB_INSNS_SAFE (bb, insn, next)
2438 {
2439 if (!INSN_P (insn)
2440 || (DEBUG_INSN_P (insn)
2441 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2442 continue;
2443
2444 while (!INSN_P (orig_insn)
2445 || (DEBUG_INSN_P (orig_insn)
2446 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2447 == LABEL_DECL)))
2448 orig_insn = NEXT_INSN (orig_insn);
2449
2450 ivts_templ.insn = orig_insn;
2451 ve_templ.insn = orig_insn;
2452
2453 /* Apply splitting iv optimization. */
2454 if (opt_info->insns_to_split.is_created ())
2455 {
2456 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2457
2458 ivts = opt_info->insns_to_split.find (&ivts_templ);
2459
2460 if (ivts)
2461 {
2462 gcc_assert (GET_CODE (PATTERN (insn))
2463 == GET_CODE (PATTERN (orig_insn)));
2464
2465 if (!delta)
2466 insert_base_initialization (ivts, insn);
2467 split_iv (ivts, insn, delta);
2468 }
2469 }
2470 /* Apply variable expansion optimization. */
2471 if (unrolling && opt_info->insns_with_var_to_expand.is_created ())
2472 {
2473 ves = (struct var_to_expand *)
2474 opt_info->insns_with_var_to_expand.find (&ve_templ);
2475 if (ves)
2476 {
2477 gcc_assert (GET_CODE (PATTERN (insn))
2478 == GET_CODE (PATTERN (orig_insn)));
2479 expand_var_during_unrolling (ves, insn);
2480 }
2481 }
2482 orig_insn = NEXT_INSN (orig_insn);
2483 }
2484 }
2485
2486 if (!rewrite_original_loop)
2487 return;
2488
2489 /* Initialize the variable expansions in the loop preheader
2490 and take care of combining them at the loop exit. */
2491 if (opt_info->insns_with_var_to_expand.is_created ())
2492 {
2493 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2494 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2495 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2496 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2497 }
2498
2499 /* Rewrite also the original loop body. Find them as originals of the blocks
2500 in the last copied iteration, i.e. those that have
2501 get_bb_copy (get_bb_original (bb)) == bb. */
2502 for (i = opt_info->first_new_block;
2503 i < (unsigned) last_basic_block_for_fn (cfun);
2504 i++)
2505 {
2506 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2507 orig_bb = get_bb_original (bb);
2508 if (get_bb_copy (orig_bb) != bb)
2509 continue;
2510
2511 delta = determine_split_iv_delta (0, n_copies, unrolling);
2512 for (orig_insn = BB_HEAD (orig_bb);
2513 orig_insn != NEXT_INSN (BB_END (bb));
2514 orig_insn = next)
2515 {
2516 next = NEXT_INSN (orig_insn);
2517
2518 if (!INSN_P (orig_insn))
2519 continue;
2520
2521 ivts_templ.insn = orig_insn;
2522 if (opt_info->insns_to_split.is_created ())
2523 {
2524 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2525
2526 ivts = (struct iv_to_split *)
2527 opt_info->insns_to_split.find (&ivts_templ);
2528 if (ivts)
2529 {
2530 if (!delta)
2531 insert_base_initialization (ivts, orig_insn);
2532 split_iv (ivts, orig_insn, delta);
2533 continue;
2534 }
2535 }
2536
2537 }
2538 }
2539 }
2540
2541 /* Release OPT_INFO. */
2542
2543 static void
2544 free_opt_info (struct opt_info *opt_info)
2545 {
2546 if (opt_info->insns_to_split.is_created ())
2547 opt_info->insns_to_split.dispose ();
2548 if (opt_info->insns_with_var_to_expand.is_created ())
2549 {
2550 struct var_to_expand *ves;
2551
2552 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2553 ves->var_expansions.release ();
2554 opt_info->insns_with_var_to_expand.dispose ();
2555 }
2556 free (opt_info);
2557 }