avr.c (asm_output_section_name): output section attributes.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This is the loop optimization pass of the compiler.
24 It finds invariant computations within loops and moves them
25 to the beginning of the loop. Then it identifies basic and
26 general induction variables. Strength reduction is applied to the general
27 induction variables, and induction variable elimination is applied to
28 the basic induction variables.
29
30 It also finds cases where
31 a register is set within the loop by zero-extending a narrower value
32 and changes these to zero the entire register once before the loop
33 and merely copy the low part within the loop.
34
35 Most of the complexity is in heuristics to decide when it is worth
36 while to do these things. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "obstack.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "hard-reg-set.h"
46 #include "basic-block.h"
47 #include "insn-config.h"
48 #include "insn-flags.h"
49 #include "regs.h"
50 #include "recog.h"
51 #include "flags.h"
52 #include "real.h"
53 #include "loop.h"
54 #include "cselib.h"
55 #include "except.h"
56 #include "toplev.h"
57
58 /* Vector mapping INSN_UIDs to luids.
59 The luids are like uids but increase monotonically always.
60 We use them to see whether a jump comes from outside a given loop. */
61
62 int *uid_luid;
63
64 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
65 number the insn is contained in. */
66
67 struct loop **uid_loop;
68
69 /* 1 + largest uid of any insn. */
70
71 int max_uid_for_loop;
72
73 /* 1 + luid of last insn. */
74
75 static int max_luid;
76
77 /* Number of loops detected in current function. Used as index to the
78 next few tables. */
79
80 static int max_loop_num;
81
82 /* Indexed by register number, contains the number of times the reg
83 is set during the loop being scanned.
84 During code motion, a negative value indicates a reg that has been
85 made a candidate; in particular -2 means that it is an candidate that
86 we know is equal to a constant and -1 means that it is an candidate
87 not known equal to a constant.
88 After code motion, regs moved have 0 (which is accurate now)
89 while the failed candidates have the original number of times set.
90
91 Therefore, at all times, == 0 indicates an invariant register;
92 < 0 a conditionally invariant one. */
93
94 static varray_type set_in_loop;
95
96 /* Original value of set_in_loop; same except that this value
97 is not set negative for a reg whose sets have been made candidates
98 and not set to 0 for a reg that is moved. */
99
100 static varray_type n_times_set;
101
102 /* Index by register number, 1 indicates that the register
103 cannot be moved or strength reduced. */
104
105 static varray_type may_not_optimize;
106
107 /* Contains the insn in which a register was used if it was used
108 exactly once; contains const0_rtx if it was used more than once. */
109
110 static varray_type reg_single_usage;
111
112 /* Nonzero means reg N has already been moved out of one loop.
113 This reduces the desire to move it out of another. */
114
115 static char *moved_once;
116
117 /* List of MEMs that are stored in this loop. */
118
119 static rtx loop_store_mems;
120
121 /* The insn where the first of these was found. */
122 static rtx first_loop_store_insn;
123
124 typedef struct loop_mem_info {
125 rtx mem; /* The MEM itself. */
126 rtx reg; /* Corresponding pseudo, if any. */
127 int optimize; /* Nonzero if we can optimize access to this MEM. */
128 } loop_mem_info;
129
130 /* Array of MEMs that are used (read or written) in this loop, but
131 cannot be aliased by anything in this loop, except perhaps
132 themselves. In other words, if loop_mems[i] is altered during the
133 loop, it is altered by an expression that is rtx_equal_p to it. */
134
135 static loop_mem_info *loop_mems;
136
137 /* The index of the next available slot in LOOP_MEMS. */
138
139 static int loop_mems_idx;
140
141 /* The number of elements allocated in LOOP_MEMs. */
142
143 static int loop_mems_allocated;
144
145 /* Nonzero if we don't know what MEMs were changed in the current
146 loop. This happens if the loop contains a call (in which case
147 `loop_info->has_call' will also be set) or if we store into more
148 than NUM_STORES MEMs. */
149
150 static int unknown_address_altered;
151
152 /* The above doesn't count any readonly memory locations that are stored.
153 This does. */
154
155 static int unknown_constant_address_altered;
156
157 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
158 static int num_movables;
159
160 /* Count of memory write instructions discovered in the loop. */
161 static int num_mem_sets;
162
163 /* Bound on pseudo register number before loop optimization.
164 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
165 unsigned int max_reg_before_loop;
166
167 /* The value to pass to the next call of reg_scan_update. */
168 static int loop_max_reg;
169
170 /* This obstack is used in product_cheap_p to allocate its rtl. It
171 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
172 If we used the same obstack that it did, we would be deallocating
173 that array. */
174
175 static struct obstack temp_obstack;
176
177 /* This is where the pointer to the obstack being used for RTL is stored. */
178
179 extern struct obstack *rtl_obstack;
180
181 #define obstack_chunk_alloc xmalloc
182 #define obstack_chunk_free free
183 \f
184 /* During the analysis of a loop, a chain of `struct movable's
185 is made to record all the movable insns found.
186 Then the entire chain can be scanned to decide which to move. */
187
188 struct movable
189 {
190 rtx insn; /* A movable insn */
191 rtx set_src; /* The expression this reg is set from. */
192 rtx set_dest; /* The destination of this SET. */
193 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
194 of any registers used within the LIBCALL. */
195 int consec; /* Number of consecutive following insns
196 that must be moved with this one. */
197 unsigned int regno; /* The register it sets */
198 short lifetime; /* lifetime of that register;
199 may be adjusted when matching movables
200 that load the same value are found. */
201 short savings; /* Number of insns we can move for this reg,
202 including other movables that force this
203 or match this one. */
204 unsigned int cond : 1; /* 1 if only conditionally movable */
205 unsigned int force : 1; /* 1 means MUST move this insn */
206 unsigned int global : 1; /* 1 means reg is live outside this loop */
207 /* If PARTIAL is 1, GLOBAL means something different:
208 that the reg is live outside the range from where it is set
209 to the following label. */
210 unsigned int done : 1; /* 1 inhibits further processing of this */
211
212 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
213 In particular, moving it does not make it
214 invariant. */
215 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
216 load SRC, rather than copying INSN. */
217 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
218 first insn of a consecutive sets group. */
219 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
220 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
221 that we should avoid changing when clearing
222 the rest of the reg. */
223 struct movable *match; /* First entry for same value */
224 struct movable *forces; /* An insn that must be moved if this is */
225 struct movable *next;
226 };
227
228 static struct movable *the_movables;
229
230 FILE *loop_dump_stream;
231
232 /* Forward declarations. */
233
234 static void verify_dominator PARAMS ((struct loop *));
235 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
236 static void mark_loop_jump PARAMS ((rtx, struct loop *));
237 static void prescan_loop PARAMS ((struct loop *));
238 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
239 static int consec_sets_invariant_p PARAMS ((const struct loop *,
240 rtx, int, rtx));
241 static int labels_in_range_p PARAMS ((rtx, int));
242 static void count_one_set PARAMS ((rtx, rtx, varray_type, rtx *));
243
244 static void count_loop_regs_set PARAMS ((rtx, rtx, varray_type, varray_type,
245 int *, int));
246 static void note_addr_stored PARAMS ((rtx, rtx, void *));
247 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
248 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
249 static void scan_loop PARAMS ((struct loop*, int));
250 #if 0
251 static void replace_call_address PARAMS ((rtx, rtx, rtx));
252 #endif
253 static rtx skip_consec_insns PARAMS ((rtx, int));
254 static int libcall_benefit PARAMS ((rtx));
255 static void ignore_some_movables PARAMS ((struct movable *));
256 static void force_movables PARAMS ((struct movable *));
257 static void combine_movables PARAMS ((struct movable *, int));
258 static int regs_match_p PARAMS ((rtx, rtx, struct movable *));
259 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct movable *));
260 static void add_label_notes PARAMS ((rtx, rtx));
261 static void move_movables PARAMS ((struct loop *loop, struct movable *,
262 int, int, int));
263 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
264 static void strength_reduce PARAMS ((struct loop *, int, int));
265 static void find_single_use_in_loop PARAMS ((rtx, rtx, varray_type));
266 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
267 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
268 static void record_biv PARAMS ((struct induction *, rtx, rtx, rtx, rtx, rtx *,
269 int, int));
270 static void check_final_value PARAMS ((const struct loop *,
271 struct induction *));
272 static void record_giv PARAMS ((const struct loop *, struct induction *,
273 rtx, rtx, rtx, rtx, rtx, int, enum g_types,
274 int, int, rtx *));
275 static void update_giv_derive PARAMS ((const struct loop *, rtx));
276 static int basic_induction_var PARAMS ((const struct loop *, rtx,
277 enum machine_mode, rtx, rtx,
278 rtx *, rtx *, rtx **));
279 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, int *));
280 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
281 rtx *, rtx *, int, int *, enum machine_mode));
282 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
283 rtx, rtx, rtx *, rtx *, rtx *));
284 static int check_dbra_loop PARAMS ((struct loop *, int));
285 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
286 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
287 static void combine_givs PARAMS ((struct iv_class *));
288 struct recombine_givs_stats;
289 static int find_life_end PARAMS ((rtx, struct recombine_givs_stats *,
290 rtx, rtx));
291 static void recombine_givs PARAMS ((const struct loop *, struct iv_class *,
292 int));
293 static int product_cheap_p PARAMS ((rtx, rtx));
294 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
295 int, int, int));
296 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
297 struct iv_class *, int, rtx));
298 static int last_use_this_basic_block PARAMS ((rtx, rtx));
299 static void record_initial PARAMS ((rtx, rtx, void *));
300 static void update_reg_last_use PARAMS ((rtx, rtx));
301 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
302 static void load_mems_and_recount_loop_regs_set PARAMS ((const struct loop*,
303 int *));
304 static void load_mems PARAMS ((const struct loop *));
305 static int insert_loop_mem PARAMS ((rtx *, void *));
306 static int replace_loop_mem PARAMS ((rtx *, void *));
307 static int replace_loop_reg PARAMS ((rtx *, void *));
308 static void note_reg_stored PARAMS ((rtx, rtx, void *));
309 static void try_copy_prop PARAMS ((const struct loop *, rtx, unsigned int));
310 static int replace_label PARAMS ((rtx *, void *));
311 static rtx check_insn_for_givs PARAMS((struct loop *, rtx, int, int));
312 static rtx check_insn_for_bivs PARAMS((struct loop *, rtx, int, int));
313
314 typedef struct rtx_and_int {
315 rtx r;
316 int i;
317 } rtx_and_int;
318
319 typedef struct rtx_pair {
320 rtx r1;
321 rtx r2;
322 } rtx_pair;
323
324 /* Nonzero iff INSN is between START and END, inclusive. */
325 #define INSN_IN_RANGE_P(INSN, START, END) \
326 (INSN_UID (INSN) < max_uid_for_loop \
327 && INSN_LUID (INSN) >= INSN_LUID (START) \
328 && INSN_LUID (INSN) <= INSN_LUID (END))
329
330 #ifdef HAVE_decrement_and_branch_on_count
331 /* Test whether BCT applicable and safe. */
332 static void insert_bct PARAMS ((struct loop *));
333
334 /* Auxiliary function that inserts the BCT pattern into the loop. */
335 static void instrument_loop_bct PARAMS ((rtx, rtx, rtx));
336 #endif /* HAVE_decrement_and_branch_on_count */
337
338 /* Indirect_jump_in_function is computed once per function. */
339 int indirect_jump_in_function = 0;
340 static int indirect_jump_in_function_p PARAMS ((rtx));
341
342 static int compute_luids PARAMS ((rtx, rtx, int));
343
344 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
345 struct induction *, rtx));
346 \f
347 /* Relative gain of eliminating various kinds of operations. */
348 static int add_cost;
349 #if 0
350 static int shift_cost;
351 static int mult_cost;
352 #endif
353
354 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
355 copy the value of the strength reduced giv to its original register. */
356 static int copy_cost;
357
358 /* Cost of using a register, to normalize the benefits of a giv. */
359 static int reg_address_cost;
360
361
362 void
363 init_loop ()
364 {
365 char *free_point = (char *) oballoc (1);
366 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
367
368 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
369
370 reg_address_cost = address_cost (reg, SImode);
371
372 /* We multiply by 2 to reconcile the difference in scale between
373 these two ways of computing costs. Otherwise the cost of a copy
374 will be far less than the cost of an add. */
375
376 copy_cost = 2 * 2;
377
378 /* Free the objects we just allocated. */
379 obfree (free_point);
380
381 /* Initialize the obstack used for rtl in product_cheap_p. */
382 gcc_obstack_init (&temp_obstack);
383 }
384 \f
385 /* Compute the mapping from uids to luids.
386 LUIDs are numbers assigned to insns, like uids,
387 except that luids increase monotonically through the code.
388 Start at insn START and stop just before END. Assign LUIDs
389 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
390 static int
391 compute_luids (start, end, prev_luid)
392 rtx start, end;
393 int prev_luid;
394 {
395 int i;
396 rtx insn;
397
398 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
399 {
400 if (INSN_UID (insn) >= max_uid_for_loop)
401 continue;
402 /* Don't assign luids to line-number NOTEs, so that the distance in
403 luids between two insns is not affected by -g. */
404 if (GET_CODE (insn) != NOTE
405 || NOTE_LINE_NUMBER (insn) <= 0)
406 uid_luid[INSN_UID (insn)] = ++i;
407 else
408 /* Give a line number note the same luid as preceding insn. */
409 uid_luid[INSN_UID (insn)] = i;
410 }
411 return i + 1;
412 }
413 \f
414 /* Entry point of this file. Perform loop optimization
415 on the current function. F is the first insn of the function
416 and DUMPFILE is a stream for output of a trace of actions taken
417 (or 0 if none should be output). */
418
419 void
420 loop_optimize (f, dumpfile, flags)
421 /* f is the first instruction of a chain of insns for one function */
422 rtx f;
423 FILE *dumpfile;
424 int flags;
425 {
426 register rtx insn;
427 register int i;
428 struct loops loops_data;
429 struct loops *loops = &loops_data;
430 struct loop_info *loops_info;
431
432 loop_dump_stream = dumpfile;
433
434 init_recog_no_volatile ();
435
436 max_reg_before_loop = max_reg_num ();
437 loop_max_reg = max_reg_before_loop;
438
439 regs_may_share = 0;
440
441 /* Count the number of loops. */
442
443 max_loop_num = 0;
444 for (insn = f; insn; insn = NEXT_INSN (insn))
445 {
446 if (GET_CODE (insn) == NOTE
447 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
448 max_loop_num++;
449 }
450
451 /* Don't waste time if no loops. */
452 if (max_loop_num == 0)
453 return;
454
455 loops->num = max_loop_num;
456
457 moved_once = (char *) xcalloc (max_reg_before_loop, sizeof (char));
458
459 /* Get size to use for tables indexed by uids.
460 Leave some space for labels allocated by find_and_verify_loops. */
461 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
462
463 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
464 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
465 sizeof (struct loop *));
466
467 /* Allocate storage for array of loops. */
468 loops->array = (struct loop *)
469 xcalloc (loops->num, sizeof (struct loop));
470
471 /* Find and process each loop.
472 First, find them, and record them in order of their beginnings. */
473 find_and_verify_loops (f, loops);
474
475 /* Allocate and initialize auxiliary loop information. */
476 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
477 for (i = 0; i < loops->num; i++)
478 loops->array[i].aux = loops_info + i;
479
480 /* Now find all register lifetimes. This must be done after
481 find_and_verify_loops, because it might reorder the insns in the
482 function. */
483 reg_scan (f, max_reg_before_loop, 1);
484
485 /* This must occur after reg_scan so that registers created by gcse
486 will have entries in the register tables.
487
488 We could have added a call to reg_scan after gcse_main in toplev.c,
489 but moving this call to init_alias_analysis is more efficient. */
490 init_alias_analysis ();
491
492 /* See if we went too far. Note that get_max_uid already returns
493 one more that the maximum uid of all insn. */
494 if (get_max_uid () > max_uid_for_loop)
495 abort ();
496 /* Now reset it to the actual size we need. See above. */
497 max_uid_for_loop = get_max_uid ();
498
499 /* find_and_verify_loops has already called compute_luids, but it
500 might have rearranged code afterwards, so we need to recompute
501 the luids now. */
502 max_luid = compute_luids (f, NULL_RTX, 0);
503
504 /* Don't leave gaps in uid_luid for insns that have been
505 deleted. It is possible that the first or last insn
506 using some register has been deleted by cross-jumping.
507 Make sure that uid_luid for that former insn's uid
508 points to the general area where that insn used to be. */
509 for (i = 0; i < max_uid_for_loop; i++)
510 {
511 uid_luid[0] = uid_luid[i];
512 if (uid_luid[0] != 0)
513 break;
514 }
515 for (i = 0; i < max_uid_for_loop; i++)
516 if (uid_luid[i] == 0)
517 uid_luid[i] = uid_luid[i - 1];
518
519 /* Determine if the function has indirect jump. On some systems
520 this prevents low overhead loop instructions from being used. */
521 indirect_jump_in_function = indirect_jump_in_function_p (f);
522
523 /* Now scan the loops, last ones first, since this means inner ones are done
524 before outer ones. */
525 for (i = max_loop_num - 1; i >= 0; i--)
526 {
527 struct loop *loop = &loops->array[i];
528
529 if (! loop->invalid && loop->end)
530 scan_loop (loop, flags);
531 }
532
533 /* If there were lexical blocks inside the loop, they have been
534 replicated. We will now have more than one NOTE_INSN_BLOCK_BEG
535 and NOTE_INSN_BLOCK_END for each such block. We must duplicate
536 the BLOCKs as well. */
537 if (write_symbols != NO_DEBUG)
538 reorder_blocks ();
539
540 end_alias_analysis ();
541
542 /* Clean up. */
543 free (moved_once);
544 free (uid_luid);
545 free (uid_loop);
546 free (loops_info);
547 free (loops->array);
548 }
549 \f
550 /* Returns the next insn, in execution order, after INSN. START and
551 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
552 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
553 insn-stream; it is used with loops that are entered near the
554 bottom. */
555
556 static rtx
557 next_insn_in_loop (loop, insn)
558 const struct loop *loop;
559 rtx insn;
560 {
561 insn = NEXT_INSN (insn);
562
563 if (insn == loop->end)
564 {
565 if (loop->top)
566 /* Go to the top of the loop, and continue there. */
567 insn = loop->top;
568 else
569 /* We're done. */
570 insn = NULL_RTX;
571 }
572
573 if (insn == loop->scan_start)
574 /* We're done. */
575 insn = NULL_RTX;
576
577 return insn;
578 }
579
580 /* Optimize one loop described by LOOP. */
581
582 /* ??? Could also move memory writes out of loops if the destination address
583 is invariant, the source is invariant, the memory write is not volatile,
584 and if we can prove that no read inside the loop can read this address
585 before the write occurs. If there is a read of this address after the
586 write, then we can also mark the memory read as invariant. */
587
588 static void
589 scan_loop (loop, flags)
590 struct loop *loop;
591 int flags;
592 {
593 register int i;
594 rtx loop_start = loop->start;
595 rtx loop_end = loop->end;
596 /* Additional information about the current loop being processed
597 that is used to compute the number of loop iterations for loop
598 unrolling and doloop optimization. */
599 struct loop_info *loop_info = LOOP_INFO (loop);
600 rtx p;
601 /* 1 if we are scanning insns that could be executed zero times. */
602 int maybe_never = 0;
603 /* 1 if we are scanning insns that might never be executed
604 due to a subroutine call which might exit before they are reached. */
605 int call_passed = 0;
606 /* Jump insn that enters the loop, or 0 if control drops in. */
607 rtx loop_entry_jump = 0;
608 /* Number of insns in the loop. */
609 int insn_count;
610 int in_libcall = 0;
611 int tem;
612 rtx temp, update_start, update_end;
613 /* The SET from an insn, if it is the only SET in the insn. */
614 rtx set, set1;
615 /* Chain describing insns movable in current loop. */
616 struct movable *movables = 0;
617 /* Last element in `movables' -- so we can add elements at the end. */
618 struct movable *last_movable = 0;
619 /* Ratio of extra register life span we can justify
620 for saving an instruction. More if loop doesn't call subroutines
621 since in that case saving an insn makes more difference
622 and more registers are available. */
623 int threshold;
624 /* Nonzero if we are scanning instructions in a sub-loop. */
625 int loop_depth = 0;
626 int nregs;
627
628 loop->top = 0;
629
630 /* Determine whether this loop starts with a jump down to a test at
631 the end. This will occur for a small number of loops with a test
632 that is too complex to duplicate in front of the loop.
633
634 We search for the first insn or label in the loop, skipping NOTEs.
635 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
636 (because we might have a loop executed only once that contains a
637 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
638 (in case we have a degenerate loop).
639
640 Note that if we mistakenly think that a loop is entered at the top
641 when, in fact, it is entered at the exit test, the only effect will be
642 slightly poorer optimization. Making the opposite error can generate
643 incorrect code. Since very few loops now start with a jump to the
644 exit test, the code here to detect that case is very conservative. */
645
646 for (p = NEXT_INSN (loop_start);
647 p != loop_end
648 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
649 && (GET_CODE (p) != NOTE
650 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
651 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
652 p = NEXT_INSN (p))
653 ;
654
655 loop->scan_start = p;
656
657 /* Set up variables describing this loop. */
658 prescan_loop (loop);
659 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
660
661 /* If loop has a jump before the first label,
662 the true entry is the target of that jump.
663 Start scan from there.
664 But record in LOOP->TOP the place where the end-test jumps
665 back to so we can scan that after the end of the loop. */
666 if (GET_CODE (p) == JUMP_INSN)
667 {
668 loop_entry_jump = p;
669
670 /* Loop entry must be unconditional jump (and not a RETURN) */
671 if (any_uncondjump_p (p)
672 && JUMP_LABEL (p) != 0
673 /* Check to see whether the jump actually
674 jumps out of the loop (meaning it's no loop).
675 This case can happen for things like
676 do {..} while (0). If this label was generated previously
677 by loop, we can't tell anything about it and have to reject
678 the loop. */
679 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
680 {
681 loop->top = next_label (loop->scan_start);
682 loop->scan_start = JUMP_LABEL (p);
683 }
684 }
685
686 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
687 as required by loop_reg_used_before_p. So skip such loops. (This
688 test may never be true, but it's best to play it safe.)
689
690 Also, skip loops where we do not start scanning at a label. This
691 test also rejects loops starting with a JUMP_INSN that failed the
692 test above. */
693
694 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
695 || GET_CODE (loop->scan_start) != CODE_LABEL)
696 {
697 if (loop_dump_stream)
698 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
699 INSN_UID (loop_start), INSN_UID (loop_end));
700 return;
701 }
702
703 /* Count number of times each reg is set during this loop.
704 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
705 the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
706
707 /* Allocate extra space for REGS that might be created by
708 load_mems. We allocate a little extra slop as well, in the hopes
709 that even after the moving of movables creates some new registers
710 we won't have to reallocate these arrays. However, we do grow
711 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
712 nregs = max_reg_num () + loop_mems_idx + 16;
713 VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
714 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
715 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
716 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
717
718 count_loop_regs_set (loop->top ? loop->top : loop->start, loop->end,
719 may_not_optimize, reg_single_usage, &insn_count, nregs);
720
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
722 {
723 VARRAY_CHAR (may_not_optimize, i) = 1;
724 VARRAY_INT (set_in_loop, i) = 1;
725 }
726
727 #ifdef AVOID_CCMODE_COPIES
728 /* Don't try to move insns which set CC registers if we should not
729 create CCmode register copies. */
730 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
731 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
732 VARRAY_CHAR (may_not_optimize, i) = 1;
733 #endif
734
735 bcopy ((char *) &set_in_loop->data,
736 (char *) &n_times_set->data, nregs * sizeof (int));
737
738 if (loop_dump_stream)
739 {
740 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
741 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
742 if (loop->cont)
743 fprintf (loop_dump_stream, "Continue at insn %d.\n",
744 INSN_UID (loop->cont));
745 }
746
747 /* Scan through the loop finding insns that are safe to move.
748 Set set_in_loop negative for the reg being set, so that
749 this reg will be considered invariant for subsequent insns.
750 We consider whether subsequent insns use the reg
751 in deciding whether it is worth actually moving.
752
753 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
754 and therefore it is possible that the insns we are scanning
755 would never be executed. At such times, we must make sure
756 that it is safe to execute the insn once instead of zero times.
757 When MAYBE_NEVER is 0, all insns will be executed at least once
758 so that is not a problem. */
759
760 for (p = next_insn_in_loop (loop, loop->scan_start);
761 p != NULL_RTX;
762 p = next_insn_in_loop (loop, p))
763 {
764 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
765 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
766 in_libcall = 1;
767 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
768 && find_reg_note (p, REG_RETVAL, NULL_RTX))
769 in_libcall = 0;
770
771 if (GET_CODE (p) == INSN
772 && (set = single_set (p))
773 && GET_CODE (SET_DEST (set)) == REG
774 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
775 {
776 int tem1 = 0;
777 int tem2 = 0;
778 int move_insn = 0;
779 rtx src = SET_SRC (set);
780 rtx dependencies = 0;
781
782 /* Figure out what to use as a source of this insn. If a REG_EQUIV
783 note is given or if a REG_EQUAL note with a constant operand is
784 specified, use it as the source and mark that we should move
785 this insn by calling emit_move_insn rather that duplicating the
786 insn.
787
788 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
789 is present. */
790 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
791 if (temp)
792 src = XEXP (temp, 0), move_insn = 1;
793 else
794 {
795 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
796 if (temp && CONSTANT_P (XEXP (temp, 0)))
797 src = XEXP (temp, 0), move_insn = 1;
798 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
799 {
800 src = XEXP (temp, 0);
801 /* A libcall block can use regs that don't appear in
802 the equivalent expression. To move the libcall,
803 we must move those regs too. */
804 dependencies = libcall_other_reg (p, src);
805 }
806 }
807
808 /* Don't try to optimize a register that was made
809 by loop-optimization for an inner loop.
810 We don't know its life-span, so we can't compute the benefit. */
811 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
812 ;
813 else if (/* The register is used in basic blocks other
814 than the one where it is set (meaning that
815 something after this point in the loop might
816 depend on its value before the set). */
817 ! reg_in_basic_block_p (p, SET_DEST (set))
818 /* And the set is not guaranteed to be executed one
819 the loop starts, or the value before the set is
820 needed before the set occurs...
821
822 ??? Note we have quadratic behaviour here, mitigated
823 by the fact that the previous test will often fail for
824 large loops. Rather than re-scanning the entire loop
825 each time for register usage, we should build tables
826 of the register usage and use them here instead. */
827 && (maybe_never
828 || loop_reg_used_before_p (loop, set, p)))
829 /* It is unsafe to move the set.
830
831 This code used to consider it OK to move a set of a variable
832 which was not created by the user and not used in an exit test.
833 That behavior is incorrect and was removed. */
834 ;
835 else if ((tem = loop_invariant_p (loop, src))
836 && (dependencies == 0
837 || (tem2 = loop_invariant_p (loop, dependencies)) != 0)
838 && (VARRAY_INT (set_in_loop,
839 REGNO (SET_DEST (set))) == 1
840 || (tem1
841 = consec_sets_invariant_p
842 (loop, SET_DEST (set),
843 VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
844 p)))
845 /* If the insn can cause a trap (such as divide by zero),
846 can't move it unless it's guaranteed to be executed
847 once loop is entered. Even a function call might
848 prevent the trap insn from being reached
849 (since it might exit!) */
850 && ! ((maybe_never || call_passed)
851 && may_trap_p (src)))
852 {
853 register struct movable *m;
854 register int regno = REGNO (SET_DEST (set));
855
856 /* A potential lossage is where we have a case where two insns
857 can be combined as long as they are both in the loop, but
858 we move one of them outside the loop. For large loops,
859 this can lose. The most common case of this is the address
860 of a function being called.
861
862 Therefore, if this register is marked as being used exactly
863 once if we are in a loop with calls (a "large loop"), see if
864 we can replace the usage of this register with the source
865 of this SET. If we can, delete this insn.
866
867 Don't do this if P has a REG_RETVAL note or if we have
868 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
869
870 if (loop_info->has_call
871 && VARRAY_RTX (reg_single_usage, regno) != 0
872 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
873 && REGNO_FIRST_UID (regno) == INSN_UID (p)
874 && (REGNO_LAST_UID (regno)
875 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
876 && VARRAY_INT (set_in_loop, regno) == 1
877 && ! side_effects_p (SET_SRC (set))
878 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
879 && (! SMALL_REGISTER_CLASSES
880 || (! (GET_CODE (SET_SRC (set)) == REG
881 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
882 /* This test is not redundant; SET_SRC (set) might be
883 a call-clobbered register and the life of REGNO
884 might span a call. */
885 && ! modified_between_p (SET_SRC (set), p,
886 VARRAY_RTX
887 (reg_single_usage, regno))
888 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
889 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
890 VARRAY_RTX
891 (reg_single_usage, regno)))
892 {
893 /* Replace any usage in a REG_EQUAL note. Must copy the
894 new source, so that we don't get rtx sharing between the
895 SET_SOURCE and REG_NOTES of insn p. */
896 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
897 = replace_rtx (REG_NOTES (VARRAY_RTX
898 (reg_single_usage, regno)),
899 SET_DEST (set), copy_rtx (SET_SRC (set)));
900
901 PUT_CODE (p, NOTE);
902 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
903 NOTE_SOURCE_FILE (p) = 0;
904 VARRAY_INT (set_in_loop, regno) = 0;
905 continue;
906 }
907
908 m = (struct movable *) alloca (sizeof (struct movable));
909 m->next = 0;
910 m->insn = p;
911 m->set_src = src;
912 m->dependencies = dependencies;
913 m->set_dest = SET_DEST (set);
914 m->force = 0;
915 m->consec = VARRAY_INT (set_in_loop,
916 REGNO (SET_DEST (set))) - 1;
917 m->done = 0;
918 m->forces = 0;
919 m->partial = 0;
920 m->move_insn = move_insn;
921 m->move_insn_first = 0;
922 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
923 m->savemode = VOIDmode;
924 m->regno = regno;
925 /* Set M->cond if either loop_invariant_p
926 or consec_sets_invariant_p returned 2
927 (only conditionally invariant). */
928 m->cond = ((tem | tem1 | tem2) > 1);
929 m->global = (uid_luid[REGNO_LAST_UID (regno)]
930 > INSN_LUID (loop_end)
931 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
932 m->match = 0;
933 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
934 - uid_luid[REGNO_FIRST_UID (regno)]);
935 m->savings = VARRAY_INT (n_times_set, regno);
936 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
937 m->savings += libcall_benefit (p);
938 VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
939 /* Add M to the end of the chain MOVABLES. */
940 if (movables == 0)
941 movables = m;
942 else
943 last_movable->next = m;
944 last_movable = m;
945
946 if (m->consec > 0)
947 {
948 /* It is possible for the first instruction to have a
949 REG_EQUAL note but a non-invariant SET_SRC, so we must
950 remember the status of the first instruction in case
951 the last instruction doesn't have a REG_EQUAL note. */
952 m->move_insn_first = m->move_insn;
953
954 /* Skip this insn, not checking REG_LIBCALL notes. */
955 p = next_nonnote_insn (p);
956 /* Skip the consecutive insns, if there are any. */
957 p = skip_consec_insns (p, m->consec);
958 /* Back up to the last insn of the consecutive group. */
959 p = prev_nonnote_insn (p);
960
961 /* We must now reset m->move_insn, m->is_equiv, and possibly
962 m->set_src to correspond to the effects of all the
963 insns. */
964 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
965 if (temp)
966 m->set_src = XEXP (temp, 0), m->move_insn = 1;
967 else
968 {
969 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
970 if (temp && CONSTANT_P (XEXP (temp, 0)))
971 m->set_src = XEXP (temp, 0), m->move_insn = 1;
972 else
973 m->move_insn = 0;
974
975 }
976 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
977 }
978 }
979 /* If this register is always set within a STRICT_LOW_PART
980 or set to zero, then its high bytes are constant.
981 So clear them outside the loop and within the loop
982 just load the low bytes.
983 We must check that the machine has an instruction to do so.
984 Also, if the value loaded into the register
985 depends on the same register, this cannot be done. */
986 else if (SET_SRC (set) == const0_rtx
987 && GET_CODE (NEXT_INSN (p)) == INSN
988 && (set1 = single_set (NEXT_INSN (p)))
989 && GET_CODE (set1) == SET
990 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
991 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
992 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
993 == SET_DEST (set))
994 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
995 {
996 register int regno = REGNO (SET_DEST (set));
997 if (VARRAY_INT (set_in_loop, regno) == 2)
998 {
999 register struct movable *m;
1000 m = (struct movable *) alloca (sizeof (struct movable));
1001 m->next = 0;
1002 m->insn = p;
1003 m->set_dest = SET_DEST (set);
1004 m->dependencies = 0;
1005 m->force = 0;
1006 m->consec = 0;
1007 m->done = 0;
1008 m->forces = 0;
1009 m->move_insn = 0;
1010 m->move_insn_first = 0;
1011 m->partial = 1;
1012 /* If the insn may not be executed on some cycles,
1013 we can't clear the whole reg; clear just high part.
1014 Not even if the reg is used only within this loop.
1015 Consider this:
1016 while (1)
1017 while (s != t) {
1018 if (foo ()) x = *s;
1019 use (x);
1020 }
1021 Clearing x before the inner loop could clobber a value
1022 being saved from the last time around the outer loop.
1023 However, if the reg is not used outside this loop
1024 and all uses of the register are in the same
1025 basic block as the store, there is no problem.
1026
1027 If this insn was made by loop, we don't know its
1028 INSN_LUID and hence must make a conservative
1029 assumption. */
1030 m->global = (INSN_UID (p) >= max_uid_for_loop
1031 || (uid_luid[REGNO_LAST_UID (regno)]
1032 > INSN_LUID (loop_end))
1033 || (uid_luid[REGNO_FIRST_UID (regno)]
1034 < INSN_LUID (p))
1035 || (labels_in_range_p
1036 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1037 if (maybe_never && m->global)
1038 m->savemode = GET_MODE (SET_SRC (set1));
1039 else
1040 m->savemode = VOIDmode;
1041 m->regno = regno;
1042 m->cond = 0;
1043 m->match = 0;
1044 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1045 - uid_luid[REGNO_FIRST_UID (regno)]);
1046 m->savings = 1;
1047 VARRAY_INT (set_in_loop, regno) = -1;
1048 /* Add M to the end of the chain MOVABLES. */
1049 if (movables == 0)
1050 movables = m;
1051 else
1052 last_movable->next = m;
1053 last_movable = m;
1054 }
1055 }
1056 }
1057 /* Past a call insn, we get to insns which might not be executed
1058 because the call might exit. This matters for insns that trap.
1059 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1060 so they don't count. */
1061 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1062 call_passed = 1;
1063 /* Past a label or a jump, we get to insns for which we
1064 can't count on whether or how many times they will be
1065 executed during each iteration. Therefore, we can
1066 only move out sets of trivial variables
1067 (those not used after the loop). */
1068 /* Similar code appears twice in strength_reduce. */
1069 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1070 /* If we enter the loop in the middle, and scan around to the
1071 beginning, don't set maybe_never for that. This must be an
1072 unconditional jump, otherwise the code at the top of the
1073 loop might never be executed. Unconditional jumps are
1074 followed a by barrier then loop end. */
1075 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1076 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1077 && any_uncondjump_p (p)))
1078 maybe_never = 1;
1079 else if (GET_CODE (p) == NOTE)
1080 {
1081 /* At the virtual top of a converted loop, insns are again known to
1082 be executed: logically, the loop begins here even though the exit
1083 code has been duplicated. */
1084 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1085 maybe_never = call_passed = 0;
1086 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1087 loop_depth++;
1088 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1089 loop_depth--;
1090 }
1091 }
1092
1093 /* If one movable subsumes another, ignore that other. */
1094
1095 ignore_some_movables (movables);
1096
1097 /* For each movable insn, see if the reg that it loads
1098 leads when it dies right into another conditionally movable insn.
1099 If so, record that the second insn "forces" the first one,
1100 since the second can be moved only if the first is. */
1101
1102 force_movables (movables);
1103
1104 /* See if there are multiple movable insns that load the same value.
1105 If there are, make all but the first point at the first one
1106 through the `match' field, and add the priorities of them
1107 all together as the priority of the first. */
1108
1109 combine_movables (movables, nregs);
1110
1111 /* Now consider each movable insn to decide whether it is worth moving.
1112 Store 0 in set_in_loop for each reg that is moved.
1113
1114 Generally this increases code size, so do not move moveables when
1115 optimizing for code size. */
1116
1117 if (! optimize_size)
1118 move_movables (loop, movables, threshold, insn_count, nregs);
1119
1120 /* Now candidates that still are negative are those not moved.
1121 Change set_in_loop to indicate that those are not actually invariant. */
1122 for (i = 0; i < nregs; i++)
1123 if (VARRAY_INT (set_in_loop, i) < 0)
1124 VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
1125
1126 /* Now that we've moved some things out of the loop, we might be able to
1127 hoist even more memory references. */
1128 load_mems_and_recount_loop_regs_set (loop, &insn_count);
1129
1130 for (update_start = loop_start;
1131 PREV_INSN (update_start)
1132 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1133 update_start = PREV_INSN (update_start))
1134 ;
1135 update_end = NEXT_INSN (loop_end);
1136
1137 reg_scan_update (update_start, update_end, loop_max_reg);
1138 loop_max_reg = max_reg_num ();
1139
1140 if (flag_strength_reduce)
1141 {
1142 the_movables = movables;
1143 strength_reduce (loop, insn_count, flags);
1144
1145 reg_scan_update (update_start, update_end, loop_max_reg);
1146 loop_max_reg = max_reg_num ();
1147 }
1148
1149 VARRAY_FREE (reg_single_usage);
1150 VARRAY_FREE (set_in_loop);
1151 VARRAY_FREE (n_times_set);
1152 VARRAY_FREE (may_not_optimize);
1153 }
1154 \f
1155 /* Add elements to *OUTPUT to record all the pseudo-regs
1156 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1157
1158 void
1159 record_excess_regs (in_this, not_in_this, output)
1160 rtx in_this, not_in_this;
1161 rtx *output;
1162 {
1163 enum rtx_code code;
1164 const char *fmt;
1165 int i;
1166
1167 code = GET_CODE (in_this);
1168
1169 switch (code)
1170 {
1171 case PC:
1172 case CC0:
1173 case CONST_INT:
1174 case CONST_DOUBLE:
1175 case CONST:
1176 case SYMBOL_REF:
1177 case LABEL_REF:
1178 return;
1179
1180 case REG:
1181 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1182 && ! reg_mentioned_p (in_this, not_in_this))
1183 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1184 return;
1185
1186 default:
1187 break;
1188 }
1189
1190 fmt = GET_RTX_FORMAT (code);
1191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1192 {
1193 int j;
1194
1195 switch (fmt[i])
1196 {
1197 case 'E':
1198 for (j = 0; j < XVECLEN (in_this, i); j++)
1199 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1200 break;
1201
1202 case 'e':
1203 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1204 break;
1205 }
1206 }
1207 }
1208 \f
1209 /* Check what regs are referred to in the libcall block ending with INSN,
1210 aside from those mentioned in the equivalent value.
1211 If there are none, return 0.
1212 If there are one or more, return an EXPR_LIST containing all of them. */
1213
1214 rtx
1215 libcall_other_reg (insn, equiv)
1216 rtx insn, equiv;
1217 {
1218 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1219 rtx p = XEXP (note, 0);
1220 rtx output = 0;
1221
1222 /* First, find all the regs used in the libcall block
1223 that are not mentioned as inputs to the result. */
1224
1225 while (p != insn)
1226 {
1227 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1228 || GET_CODE (p) == CALL_INSN)
1229 record_excess_regs (PATTERN (p), equiv, &output);
1230 p = NEXT_INSN (p);
1231 }
1232
1233 return output;
1234 }
1235 \f
1236 /* Return 1 if all uses of REG
1237 are between INSN and the end of the basic block. */
1238
1239 static int
1240 reg_in_basic_block_p (insn, reg)
1241 rtx insn, reg;
1242 {
1243 int regno = REGNO (reg);
1244 rtx p;
1245
1246 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1247 return 0;
1248
1249 /* Search this basic block for the already recorded last use of the reg. */
1250 for (p = insn; p; p = NEXT_INSN (p))
1251 {
1252 switch (GET_CODE (p))
1253 {
1254 case NOTE:
1255 break;
1256
1257 case INSN:
1258 case CALL_INSN:
1259 /* Ordinary insn: if this is the last use, we win. */
1260 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1261 return 1;
1262 break;
1263
1264 case JUMP_INSN:
1265 /* Jump insn: if this is the last use, we win. */
1266 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1267 return 1;
1268 /* Otherwise, it's the end of the basic block, so we lose. */
1269 return 0;
1270
1271 case CODE_LABEL:
1272 case BARRIER:
1273 /* It's the end of the basic block, so we lose. */
1274 return 0;
1275
1276 default:
1277 break;
1278 }
1279 }
1280
1281 /* The "last use" that was recorded can't be found after the first
1282 use. This can happen when the last use was deleted while
1283 processing an inner loop, this inner loop was then completely
1284 unrolled, and the outer loop is always exited after the inner loop,
1285 so that everything after the first use becomes a single basic block. */
1286 return 1;
1287 }
1288 \f
1289 /* Compute the benefit of eliminating the insns in the block whose
1290 last insn is LAST. This may be a group of insns used to compute a
1291 value directly or can contain a library call. */
1292
1293 static int
1294 libcall_benefit (last)
1295 rtx last;
1296 {
1297 rtx insn;
1298 int benefit = 0;
1299
1300 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1301 insn != last; insn = NEXT_INSN (insn))
1302 {
1303 if (GET_CODE (insn) == CALL_INSN)
1304 benefit += 10; /* Assume at least this many insns in a library
1305 routine. */
1306 else if (GET_CODE (insn) == INSN
1307 && GET_CODE (PATTERN (insn)) != USE
1308 && GET_CODE (PATTERN (insn)) != CLOBBER)
1309 benefit++;
1310 }
1311
1312 return benefit;
1313 }
1314 \f
1315 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1316
1317 static rtx
1318 skip_consec_insns (insn, count)
1319 rtx insn;
1320 int count;
1321 {
1322 for (; count > 0; count--)
1323 {
1324 rtx temp;
1325
1326 /* If first insn of libcall sequence, skip to end. */
1327 /* Do this at start of loop, since INSN is guaranteed to
1328 be an insn here. */
1329 if (GET_CODE (insn) != NOTE
1330 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1331 insn = XEXP (temp, 0);
1332
1333 do insn = NEXT_INSN (insn);
1334 while (GET_CODE (insn) == NOTE);
1335 }
1336
1337 return insn;
1338 }
1339
1340 /* Ignore any movable whose insn falls within a libcall
1341 which is part of another movable.
1342 We make use of the fact that the movable for the libcall value
1343 was made later and so appears later on the chain. */
1344
1345 static void
1346 ignore_some_movables (movables)
1347 struct movable *movables;
1348 {
1349 register struct movable *m, *m1;
1350
1351 for (m = movables; m; m = m->next)
1352 {
1353 /* Is this a movable for the value of a libcall? */
1354 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1355 if (note)
1356 {
1357 rtx insn;
1358 /* Check for earlier movables inside that range,
1359 and mark them invalid. We cannot use LUIDs here because
1360 insns created by loop.c for prior loops don't have LUIDs.
1361 Rather than reject all such insns from movables, we just
1362 explicitly check each insn in the libcall (since invariant
1363 libcalls aren't that common). */
1364 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1365 for (m1 = movables; m1 != m; m1 = m1->next)
1366 if (m1->insn == insn)
1367 m1->done = 1;
1368 }
1369 }
1370 }
1371
1372 /* For each movable insn, see if the reg that it loads
1373 leads when it dies right into another conditionally movable insn.
1374 If so, record that the second insn "forces" the first one,
1375 since the second can be moved only if the first is. */
1376
1377 static void
1378 force_movables (movables)
1379 struct movable *movables;
1380 {
1381 register struct movable *m, *m1;
1382 for (m1 = movables; m1; m1 = m1->next)
1383 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1384 if (!m1->partial && !m1->done)
1385 {
1386 int regno = m1->regno;
1387 for (m = m1->next; m; m = m->next)
1388 /* ??? Could this be a bug? What if CSE caused the
1389 register of M1 to be used after this insn?
1390 Since CSE does not update regno_last_uid,
1391 this insn M->insn might not be where it dies.
1392 But very likely this doesn't matter; what matters is
1393 that M's reg is computed from M1's reg. */
1394 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1395 && !m->done)
1396 break;
1397 if (m != 0 && m->set_src == m1->set_dest
1398 /* If m->consec, m->set_src isn't valid. */
1399 && m->consec == 0)
1400 m = 0;
1401
1402 /* Increase the priority of the moving the first insn
1403 since it permits the second to be moved as well. */
1404 if (m != 0)
1405 {
1406 m->forces = m1;
1407 m1->lifetime += m->lifetime;
1408 m1->savings += m->savings;
1409 }
1410 }
1411 }
1412 \f
1413 /* Find invariant expressions that are equal and can be combined into
1414 one register. */
1415
1416 static void
1417 combine_movables (movables, nregs)
1418 struct movable *movables;
1419 int nregs;
1420 {
1421 register struct movable *m;
1422 char *matched_regs = (char *) xmalloc (nregs);
1423 enum machine_mode mode;
1424
1425 /* Regs that are set more than once are not allowed to match
1426 or be matched. I'm no longer sure why not. */
1427 /* Perhaps testing m->consec_sets would be more appropriate here? */
1428
1429 for (m = movables; m; m = m->next)
1430 if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
1431 {
1432 register struct movable *m1;
1433 int regno = m->regno;
1434
1435 bzero (matched_regs, nregs);
1436 matched_regs[regno] = 1;
1437
1438 /* We want later insns to match the first one. Don't make the first
1439 one match any later ones. So start this loop at m->next. */
1440 for (m1 = m->next; m1; m1 = m1->next)
1441 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
1442 /* A reg used outside the loop mustn't be eliminated. */
1443 && !m1->global
1444 /* A reg used for zero-extending mustn't be eliminated. */
1445 && !m1->partial
1446 && (matched_regs[m1->regno]
1447 ||
1448 (
1449 /* Can combine regs with different modes loaded from the
1450 same constant only if the modes are the same or
1451 if both are integer modes with M wider or the same
1452 width as M1. The check for integer is redundant, but
1453 safe, since the only case of differing destination
1454 modes with equal sources is when both sources are
1455 VOIDmode, i.e., CONST_INT. */
1456 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1457 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1458 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1459 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1460 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1461 /* See if the source of M1 says it matches M. */
1462 && ((GET_CODE (m1->set_src) == REG
1463 && matched_regs[REGNO (m1->set_src)])
1464 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1465 movables))))
1466 && ((m->dependencies == m1->dependencies)
1467 || rtx_equal_p (m->dependencies, m1->dependencies)))
1468 {
1469 m->lifetime += m1->lifetime;
1470 m->savings += m1->savings;
1471 m1->done = 1;
1472 m1->match = m;
1473 matched_regs[m1->regno] = 1;
1474 }
1475 }
1476
1477 /* Now combine the regs used for zero-extension.
1478 This can be done for those not marked `global'
1479 provided their lives don't overlap. */
1480
1481 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1482 mode = GET_MODE_WIDER_MODE (mode))
1483 {
1484 register struct movable *m0 = 0;
1485
1486 /* Combine all the registers for extension from mode MODE.
1487 Don't combine any that are used outside this loop. */
1488 for (m = movables; m; m = m->next)
1489 if (m->partial && ! m->global
1490 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1491 {
1492 register struct movable *m1;
1493 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1494 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1495
1496 if (m0 == 0)
1497 {
1498 /* First one: don't check for overlap, just record it. */
1499 m0 = m;
1500 continue;
1501 }
1502
1503 /* Make sure they extend to the same mode.
1504 (Almost always true.) */
1505 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1506 continue;
1507
1508 /* We already have one: check for overlap with those
1509 already combined together. */
1510 for (m1 = movables; m1 != m; m1 = m1->next)
1511 if (m1 == m0 || (m1->partial && m1->match == m0))
1512 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1513 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1514 goto overlap;
1515
1516 /* No overlap: we can combine this with the others. */
1517 m0->lifetime += m->lifetime;
1518 m0->savings += m->savings;
1519 m->done = 1;
1520 m->match = m0;
1521
1522 overlap: ;
1523 }
1524 }
1525
1526 /* Clean up. */
1527 free (matched_regs);
1528 }
1529 \f
1530 /* Return 1 if regs X and Y will become the same if moved. */
1531
1532 static int
1533 regs_match_p (x, y, movables)
1534 rtx x, y;
1535 struct movable *movables;
1536 {
1537 unsigned int xn = REGNO (x);
1538 unsigned int yn = REGNO (y);
1539 struct movable *mx, *my;
1540
1541 for (mx = movables; mx; mx = mx->next)
1542 if (mx->regno == xn)
1543 break;
1544
1545 for (my = movables; my; my = my->next)
1546 if (my->regno == yn)
1547 break;
1548
1549 return (mx && my
1550 && ((mx->match == my->match && mx->match != 0)
1551 || mx->match == my
1552 || mx == my->match));
1553 }
1554
1555 /* Return 1 if X and Y are identical-looking rtx's.
1556 This is the Lisp function EQUAL for rtx arguments.
1557
1558 If two registers are matching movables or a movable register and an
1559 equivalent constant, consider them equal. */
1560
1561 static int
1562 rtx_equal_for_loop_p (x, y, movables)
1563 rtx x, y;
1564 struct movable *movables;
1565 {
1566 register int i;
1567 register int j;
1568 register struct movable *m;
1569 register enum rtx_code code;
1570 register const char *fmt;
1571
1572 if (x == y)
1573 return 1;
1574 if (x == 0 || y == 0)
1575 return 0;
1576
1577 code = GET_CODE (x);
1578
1579 /* If we have a register and a constant, they may sometimes be
1580 equal. */
1581 if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
1582 && CONSTANT_P (y))
1583 {
1584 for (m = movables; m; m = m->next)
1585 if (m->move_insn && m->regno == REGNO (x)
1586 && rtx_equal_p (m->set_src, y))
1587 return 1;
1588 }
1589 else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
1590 && CONSTANT_P (x))
1591 {
1592 for (m = movables; m; m = m->next)
1593 if (m->move_insn && m->regno == REGNO (y)
1594 && rtx_equal_p (m->set_src, x))
1595 return 1;
1596 }
1597
1598 /* Otherwise, rtx's of different codes cannot be equal. */
1599 if (code != GET_CODE (y))
1600 return 0;
1601
1602 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1603 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1604
1605 if (GET_MODE (x) != GET_MODE (y))
1606 return 0;
1607
1608 /* These three types of rtx's can be compared nonrecursively. */
1609 if (code == REG)
1610 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1611
1612 if (code == LABEL_REF)
1613 return XEXP (x, 0) == XEXP (y, 0);
1614 if (code == SYMBOL_REF)
1615 return XSTR (x, 0) == XSTR (y, 0);
1616
1617 /* Compare the elements. If any pair of corresponding elements
1618 fail to match, return 0 for the whole things. */
1619
1620 fmt = GET_RTX_FORMAT (code);
1621 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1622 {
1623 switch (fmt[i])
1624 {
1625 case 'w':
1626 if (XWINT (x, i) != XWINT (y, i))
1627 return 0;
1628 break;
1629
1630 case 'i':
1631 if (XINT (x, i) != XINT (y, i))
1632 return 0;
1633 break;
1634
1635 case 'E':
1636 /* Two vectors must have the same length. */
1637 if (XVECLEN (x, i) != XVECLEN (y, i))
1638 return 0;
1639
1640 /* And the corresponding elements must match. */
1641 for (j = 0; j < XVECLEN (x, i); j++)
1642 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1643 return 0;
1644 break;
1645
1646 case 'e':
1647 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1648 return 0;
1649 break;
1650
1651 case 's':
1652 if (strcmp (XSTR (x, i), XSTR (y, i)))
1653 return 0;
1654 break;
1655
1656 case 'u':
1657 /* These are just backpointers, so they don't matter. */
1658 break;
1659
1660 case '0':
1661 break;
1662
1663 /* It is believed that rtx's at this level will never
1664 contain anything but integers and other rtx's,
1665 except for within LABEL_REFs and SYMBOL_REFs. */
1666 default:
1667 abort ();
1668 }
1669 }
1670 return 1;
1671 }
1672 \f
1673 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1674 insns in INSNS which use the reference. */
1675
1676 static void
1677 add_label_notes (x, insns)
1678 rtx x;
1679 rtx insns;
1680 {
1681 enum rtx_code code = GET_CODE (x);
1682 int i, j;
1683 const char *fmt;
1684 rtx insn;
1685
1686 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1687 {
1688 /* This code used to ignore labels that referred to dispatch tables to
1689 avoid flow generating (slighly) worse code.
1690
1691 We no longer ignore such label references (see LABEL_REF handling in
1692 mark_jump_label for additional information). */
1693 for (insn = insns; insn; insn = NEXT_INSN (insn))
1694 if (reg_mentioned_p (XEXP (x, 0), insn))
1695 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1696 REG_NOTES (insn));
1697 }
1698
1699 fmt = GET_RTX_FORMAT (code);
1700 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1701 {
1702 if (fmt[i] == 'e')
1703 add_label_notes (XEXP (x, i), insns);
1704 else if (fmt[i] == 'E')
1705 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1706 add_label_notes (XVECEXP (x, i, j), insns);
1707 }
1708 }
1709 \f
1710 /* Scan MOVABLES, and move the insns that deserve to be moved.
1711 If two matching movables are combined, replace one reg with the
1712 other throughout. */
1713
1714 static void
1715 move_movables (loop, movables, threshold, insn_count, nregs)
1716 struct loop *loop;
1717 struct movable *movables;
1718 int threshold;
1719 int insn_count;
1720 int nregs;
1721 {
1722 rtx new_start = 0;
1723 register struct movable *m;
1724 register rtx p;
1725 rtx loop_start = loop->start;
1726 rtx loop_end = loop->end;
1727 /* Map of pseudo-register replacements to handle combining
1728 when we move several insns that load the same value
1729 into different pseudo-registers. */
1730 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1731 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1732
1733 num_movables = 0;
1734
1735 for (m = movables; m; m = m->next)
1736 {
1737 /* Describe this movable insn. */
1738
1739 if (loop_dump_stream)
1740 {
1741 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1742 INSN_UID (m->insn), m->regno, m->lifetime);
1743 if (m->consec > 0)
1744 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1745 if (m->cond)
1746 fprintf (loop_dump_stream, "cond ");
1747 if (m->force)
1748 fprintf (loop_dump_stream, "force ");
1749 if (m->global)
1750 fprintf (loop_dump_stream, "global ");
1751 if (m->done)
1752 fprintf (loop_dump_stream, "done ");
1753 if (m->move_insn)
1754 fprintf (loop_dump_stream, "move-insn ");
1755 if (m->match)
1756 fprintf (loop_dump_stream, "matches %d ",
1757 INSN_UID (m->match->insn));
1758 if (m->forces)
1759 fprintf (loop_dump_stream, "forces %d ",
1760 INSN_UID (m->forces->insn));
1761 }
1762
1763 /* Count movables. Value used in heuristics in strength_reduce. */
1764 num_movables++;
1765
1766 /* Ignore the insn if it's already done (it matched something else).
1767 Otherwise, see if it is now safe to move. */
1768
1769 if (!m->done
1770 && (! m->cond
1771 || (1 == loop_invariant_p (loop, m->set_src)
1772 && (m->dependencies == 0
1773 || 1 == loop_invariant_p (loop, m->dependencies))
1774 && (m->consec == 0
1775 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1776 m->consec + 1,
1777 m->insn))))
1778 && (! m->forces || m->forces->done))
1779 {
1780 register int regno;
1781 register rtx p;
1782 int savings = m->savings;
1783
1784 /* We have an insn that is safe to move.
1785 Compute its desirability. */
1786
1787 p = m->insn;
1788 regno = m->regno;
1789
1790 if (loop_dump_stream)
1791 fprintf (loop_dump_stream, "savings %d ", savings);
1792
1793 if (moved_once[regno] && loop_dump_stream)
1794 fprintf (loop_dump_stream, "halved since already moved ");
1795
1796 /* An insn MUST be moved if we already moved something else
1797 which is safe only if this one is moved too: that is,
1798 if already_moved[REGNO] is nonzero. */
1799
1800 /* An insn is desirable to move if the new lifetime of the
1801 register is no more than THRESHOLD times the old lifetime.
1802 If it's not desirable, it means the loop is so big
1803 that moving won't speed things up much,
1804 and it is liable to make register usage worse. */
1805
1806 /* It is also desirable to move if it can be moved at no
1807 extra cost because something else was already moved. */
1808
1809 if (already_moved[regno]
1810 || flag_move_all_movables
1811 || (threshold * savings * m->lifetime) >=
1812 (moved_once[regno] ? insn_count * 2 : insn_count)
1813 || (m->forces && m->forces->done
1814 && VARRAY_INT (n_times_set, m->forces->regno) == 1))
1815 {
1816 int count;
1817 register struct movable *m1;
1818 rtx first = NULL_RTX;
1819
1820 /* Now move the insns that set the reg. */
1821
1822 if (m->partial && m->match)
1823 {
1824 rtx newpat, i1;
1825 rtx r1, r2;
1826 /* Find the end of this chain of matching regs.
1827 Thus, we load each reg in the chain from that one reg.
1828 And that reg is loaded with 0 directly,
1829 since it has ->match == 0. */
1830 for (m1 = m; m1->match; m1 = m1->match);
1831 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1832 SET_DEST (PATTERN (m1->insn)));
1833 i1 = emit_insn_before (newpat, loop_start);
1834
1835 /* Mark the moved, invariant reg as being allowed to
1836 share a hard reg with the other matching invariant. */
1837 REG_NOTES (i1) = REG_NOTES (m->insn);
1838 r1 = SET_DEST (PATTERN (m->insn));
1839 r2 = SET_DEST (PATTERN (m1->insn));
1840 regs_may_share
1841 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1842 gen_rtx_EXPR_LIST (VOIDmode, r2,
1843 regs_may_share));
1844 delete_insn (m->insn);
1845
1846 if (new_start == 0)
1847 new_start = i1;
1848
1849 if (loop_dump_stream)
1850 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1851 }
1852 /* If we are to re-generate the item being moved with a
1853 new move insn, first delete what we have and then emit
1854 the move insn before the loop. */
1855 else if (m->move_insn)
1856 {
1857 rtx i1, temp;
1858
1859 for (count = m->consec; count >= 0; count--)
1860 {
1861 /* If this is the first insn of a library call sequence,
1862 skip to the end. */
1863 if (GET_CODE (p) != NOTE
1864 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1865 p = XEXP (temp, 0);
1866
1867 /* If this is the last insn of a libcall sequence, then
1868 delete every insn in the sequence except the last.
1869 The last insn is handled in the normal manner. */
1870 if (GET_CODE (p) != NOTE
1871 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1872 {
1873 temp = XEXP (temp, 0);
1874 while (temp != p)
1875 temp = delete_insn (temp);
1876 }
1877
1878 temp = p;
1879 p = delete_insn (p);
1880
1881 /* simplify_giv_expr expects that it can walk the insns
1882 at m->insn forwards and see this old sequence we are
1883 tossing here. delete_insn does preserve the next
1884 pointers, but when we skip over a NOTE we must fix
1885 it up. Otherwise that code walks into the non-deleted
1886 insn stream. */
1887 while (p && GET_CODE (p) == NOTE)
1888 p = NEXT_INSN (temp) = NEXT_INSN (p);
1889 }
1890
1891 start_sequence ();
1892 emit_move_insn (m->set_dest, m->set_src);
1893 temp = get_insns ();
1894 end_sequence ();
1895
1896 add_label_notes (m->set_src, temp);
1897
1898 i1 = emit_insns_before (temp, loop_start);
1899 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1900 REG_NOTES (i1)
1901 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1902 m->set_src, REG_NOTES (i1));
1903
1904 if (loop_dump_stream)
1905 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1906
1907 /* The more regs we move, the less we like moving them. */
1908 threshold -= 3;
1909 }
1910 else
1911 {
1912 for (count = m->consec; count >= 0; count--)
1913 {
1914 rtx i1, temp;
1915
1916 /* If first insn of libcall sequence, skip to end. */
1917 /* Do this at start of loop, since p is guaranteed to
1918 be an insn here. */
1919 if (GET_CODE (p) != NOTE
1920 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1921 p = XEXP (temp, 0);
1922
1923 /* If last insn of libcall sequence, move all
1924 insns except the last before the loop. The last
1925 insn is handled in the normal manner. */
1926 if (GET_CODE (p) != NOTE
1927 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1928 {
1929 rtx fn_address = 0;
1930 rtx fn_reg = 0;
1931 rtx fn_address_insn = 0;
1932
1933 first = 0;
1934 for (temp = XEXP (temp, 0); temp != p;
1935 temp = NEXT_INSN (temp))
1936 {
1937 rtx body;
1938 rtx n;
1939 rtx next;
1940
1941 if (GET_CODE (temp) == NOTE)
1942 continue;
1943
1944 body = PATTERN (temp);
1945
1946 /* Find the next insn after TEMP,
1947 not counting USE or NOTE insns. */
1948 for (next = NEXT_INSN (temp); next != p;
1949 next = NEXT_INSN (next))
1950 if (! (GET_CODE (next) == INSN
1951 && GET_CODE (PATTERN (next)) == USE)
1952 && GET_CODE (next) != NOTE)
1953 break;
1954
1955 /* If that is the call, this may be the insn
1956 that loads the function address.
1957
1958 Extract the function address from the insn
1959 that loads it into a register.
1960 If this insn was cse'd, we get incorrect code.
1961
1962 So emit a new move insn that copies the
1963 function address into the register that the
1964 call insn will use. flow.c will delete any
1965 redundant stores that we have created. */
1966 if (GET_CODE (next) == CALL_INSN
1967 && GET_CODE (body) == SET
1968 && GET_CODE (SET_DEST (body)) == REG
1969 && (n = find_reg_note (temp, REG_EQUAL,
1970 NULL_RTX)))
1971 {
1972 fn_reg = SET_SRC (body);
1973 if (GET_CODE (fn_reg) != REG)
1974 fn_reg = SET_DEST (body);
1975 fn_address = XEXP (n, 0);
1976 fn_address_insn = temp;
1977 }
1978 /* We have the call insn.
1979 If it uses the register we suspect it might,
1980 load it with the correct address directly. */
1981 if (GET_CODE (temp) == CALL_INSN
1982 && fn_address != 0
1983 && reg_referenced_p (fn_reg, body))
1984 emit_insn_after (gen_move_insn (fn_reg,
1985 fn_address),
1986 fn_address_insn);
1987
1988 if (GET_CODE (temp) == CALL_INSN)
1989 {
1990 i1 = emit_call_insn_before (body, loop_start);
1991 /* Because the USAGE information potentially
1992 contains objects other than hard registers
1993 we need to copy it. */
1994 if (CALL_INSN_FUNCTION_USAGE (temp))
1995 CALL_INSN_FUNCTION_USAGE (i1)
1996 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1997 }
1998 else
1999 i1 = emit_insn_before (body, loop_start);
2000 if (first == 0)
2001 first = i1;
2002 if (temp == fn_address_insn)
2003 fn_address_insn = i1;
2004 REG_NOTES (i1) = REG_NOTES (temp);
2005 delete_insn (temp);
2006 }
2007 if (new_start == 0)
2008 new_start = first;
2009 }
2010 if (m->savemode != VOIDmode)
2011 {
2012 /* P sets REG to zero; but we should clear only
2013 the bits that are not covered by the mode
2014 m->savemode. */
2015 rtx reg = m->set_dest;
2016 rtx sequence;
2017 rtx tem;
2018
2019 start_sequence ();
2020 tem = expand_binop
2021 (GET_MODE (reg), and_optab, reg,
2022 GEN_INT ((((HOST_WIDE_INT) 1
2023 << GET_MODE_BITSIZE (m->savemode)))
2024 - 1),
2025 reg, 1, OPTAB_LIB_WIDEN);
2026 if (tem == 0)
2027 abort ();
2028 if (tem != reg)
2029 emit_move_insn (reg, tem);
2030 sequence = gen_sequence ();
2031 end_sequence ();
2032 i1 = emit_insn_before (sequence, loop_start);
2033 }
2034 else if (GET_CODE (p) == CALL_INSN)
2035 {
2036 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2037 /* Because the USAGE information potentially
2038 contains objects other than hard registers
2039 we need to copy it. */
2040 if (CALL_INSN_FUNCTION_USAGE (p))
2041 CALL_INSN_FUNCTION_USAGE (i1)
2042 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2043 }
2044 else if (count == m->consec && m->move_insn_first)
2045 {
2046 /* The SET_SRC might not be invariant, so we must
2047 use the REG_EQUAL note. */
2048 start_sequence ();
2049 emit_move_insn (m->set_dest, m->set_src);
2050 temp = get_insns ();
2051 end_sequence ();
2052
2053 add_label_notes (m->set_src, temp);
2054
2055 i1 = emit_insns_before (temp, loop_start);
2056 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2057 REG_NOTES (i1)
2058 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2059 : REG_EQUAL),
2060 m->set_src, REG_NOTES (i1));
2061 }
2062 else
2063 i1 = emit_insn_before (PATTERN (p), loop_start);
2064
2065 if (REG_NOTES (i1) == 0)
2066 {
2067 REG_NOTES (i1) = REG_NOTES (p);
2068
2069 /* If there is a REG_EQUAL note present whose value
2070 is not loop invariant, then delete it, since it
2071 may cause problems with later optimization passes.
2072 It is possible for cse to create such notes
2073 like this as a result of record_jump_cond. */
2074
2075 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2076 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2077 remove_note (i1, temp);
2078 }
2079
2080 if (new_start == 0)
2081 new_start = i1;
2082
2083 if (loop_dump_stream)
2084 fprintf (loop_dump_stream, " moved to %d",
2085 INSN_UID (i1));
2086
2087 /* If library call, now fix the REG_NOTES that contain
2088 insn pointers, namely REG_LIBCALL on FIRST
2089 and REG_RETVAL on I1. */
2090 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2091 {
2092 XEXP (temp, 0) = first;
2093 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2094 XEXP (temp, 0) = i1;
2095 }
2096
2097 temp = p;
2098 delete_insn (p);
2099 p = NEXT_INSN (p);
2100
2101 /* simplify_giv_expr expects that it can walk the insns
2102 at m->insn forwards and see this old sequence we are
2103 tossing here. delete_insn does preserve the next
2104 pointers, but when we skip over a NOTE we must fix
2105 it up. Otherwise that code walks into the non-deleted
2106 insn stream. */
2107 while (p && GET_CODE (p) == NOTE)
2108 p = NEXT_INSN (temp) = NEXT_INSN (p);
2109 }
2110
2111 /* The more regs we move, the less we like moving them. */
2112 threshold -= 3;
2113 }
2114
2115 /* Any other movable that loads the same register
2116 MUST be moved. */
2117 already_moved[regno] = 1;
2118
2119 /* This reg has been moved out of one loop. */
2120 moved_once[regno] = 1;
2121
2122 /* The reg set here is now invariant. */
2123 if (! m->partial)
2124 VARRAY_INT (set_in_loop, regno) = 0;
2125
2126 m->done = 1;
2127
2128 /* Change the length-of-life info for the register
2129 to say it lives at least the full length of this loop.
2130 This will help guide optimizations in outer loops. */
2131
2132 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2133 /* This is the old insn before all the moved insns.
2134 We can't use the moved insn because it is out of range
2135 in uid_luid. Only the old insns have luids. */
2136 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2137 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (loop_end))
2138 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2139
2140 /* Combine with this moved insn any other matching movables. */
2141
2142 if (! m->partial)
2143 for (m1 = movables; m1; m1 = m1->next)
2144 if (m1->match == m)
2145 {
2146 rtx temp;
2147
2148 /* Schedule the reg loaded by M1
2149 for replacement so that shares the reg of M.
2150 If the modes differ (only possible in restricted
2151 circumstances, make a SUBREG.
2152
2153 Note this assumes that the target dependent files
2154 treat REG and SUBREG equally, including within
2155 GO_IF_LEGITIMATE_ADDRESS and in all the
2156 predicates since we never verify that replacing the
2157 original register with a SUBREG results in a
2158 recognizable insn. */
2159 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2160 reg_map[m1->regno] = m->set_dest;
2161 else
2162 reg_map[m1->regno]
2163 = gen_lowpart_common (GET_MODE (m1->set_dest),
2164 m->set_dest);
2165
2166 /* Get rid of the matching insn
2167 and prevent further processing of it. */
2168 m1->done = 1;
2169
2170 /* if library call, delete all insn except last, which
2171 is deleted below */
2172 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2173 NULL_RTX)))
2174 {
2175 for (temp = XEXP (temp, 0); temp != m1->insn;
2176 temp = NEXT_INSN (temp))
2177 delete_insn (temp);
2178 }
2179 delete_insn (m1->insn);
2180
2181 /* Any other movable that loads the same register
2182 MUST be moved. */
2183 already_moved[m1->regno] = 1;
2184
2185 /* The reg merged here is now invariant,
2186 if the reg it matches is invariant. */
2187 if (! m->partial)
2188 VARRAY_INT (set_in_loop, m1->regno) = 0;
2189 }
2190 }
2191 else if (loop_dump_stream)
2192 fprintf (loop_dump_stream, "not desirable");
2193 }
2194 else if (loop_dump_stream && !m->match)
2195 fprintf (loop_dump_stream, "not safe");
2196
2197 if (loop_dump_stream)
2198 fprintf (loop_dump_stream, "\n");
2199 }
2200
2201 if (new_start == 0)
2202 new_start = loop_start;
2203
2204 /* Go through all the instructions in the loop, making
2205 all the register substitutions scheduled in REG_MAP. */
2206 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2207 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2208 || GET_CODE (p) == CALL_INSN)
2209 {
2210 replace_regs (PATTERN (p), reg_map, nregs, 0);
2211 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2212 INSN_CODE (p) = -1;
2213 }
2214
2215 /* Clean up. */
2216 free (reg_map);
2217 free (already_moved);
2218 }
2219 \f
2220 #if 0
2221 /* Scan X and replace the address of any MEM in it with ADDR.
2222 REG is the address that MEM should have before the replacement. */
2223
2224 static void
2225 replace_call_address (x, reg, addr)
2226 rtx x, reg, addr;
2227 {
2228 register enum rtx_code code;
2229 register int i;
2230 register const char *fmt;
2231
2232 if (x == 0)
2233 return;
2234 code = GET_CODE (x);
2235 switch (code)
2236 {
2237 case PC:
2238 case CC0:
2239 case CONST_INT:
2240 case CONST_DOUBLE:
2241 case CONST:
2242 case SYMBOL_REF:
2243 case LABEL_REF:
2244 case REG:
2245 return;
2246
2247 case SET:
2248 /* Short cut for very common case. */
2249 replace_call_address (XEXP (x, 1), reg, addr);
2250 return;
2251
2252 case CALL:
2253 /* Short cut for very common case. */
2254 replace_call_address (XEXP (x, 0), reg, addr);
2255 return;
2256
2257 case MEM:
2258 /* If this MEM uses a reg other than the one we expected,
2259 something is wrong. */
2260 if (XEXP (x, 0) != reg)
2261 abort ();
2262 XEXP (x, 0) = addr;
2263 return;
2264
2265 default:
2266 break;
2267 }
2268
2269 fmt = GET_RTX_FORMAT (code);
2270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2271 {
2272 if (fmt[i] == 'e')
2273 replace_call_address (XEXP (x, i), reg, addr);
2274 else if (fmt[i] == 'E')
2275 {
2276 register int j;
2277 for (j = 0; j < XVECLEN (x, i); j++)
2278 replace_call_address (XVECEXP (x, i, j), reg, addr);
2279 }
2280 }
2281 }
2282 #endif
2283 \f
2284 /* Return the number of memory refs to addresses that vary
2285 in the rtx X. */
2286
2287 static int
2288 count_nonfixed_reads (loop, x)
2289 const struct loop *loop;
2290 rtx x;
2291 {
2292 register enum rtx_code code;
2293 register int i;
2294 register const char *fmt;
2295 int value;
2296
2297 if (x == 0)
2298 return 0;
2299
2300 code = GET_CODE (x);
2301 switch (code)
2302 {
2303 case PC:
2304 case CC0:
2305 case CONST_INT:
2306 case CONST_DOUBLE:
2307 case CONST:
2308 case SYMBOL_REF:
2309 case LABEL_REF:
2310 case REG:
2311 return 0;
2312
2313 case MEM:
2314 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2315 + count_nonfixed_reads (loop, XEXP (x, 0)));
2316
2317 default:
2318 break;
2319 }
2320
2321 value = 0;
2322 fmt = GET_RTX_FORMAT (code);
2323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2324 {
2325 if (fmt[i] == 'e')
2326 value += count_nonfixed_reads (loop, XEXP (x, i));
2327 if (fmt[i] == 'E')
2328 {
2329 register int j;
2330 for (j = 0; j < XVECLEN (x, i); j++)
2331 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2332 }
2333 }
2334 return value;
2335 }
2336
2337 \f
2338 #if 0
2339 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2340 Replace it with an instruction to load just the low bytes
2341 if the machine supports such an instruction,
2342 and insert above LOOP_START an instruction to clear the register. */
2343
2344 static void
2345 constant_high_bytes (p, loop_start)
2346 rtx p, loop_start;
2347 {
2348 register rtx new;
2349 register int insn_code_number;
2350
2351 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2352 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2353
2354 new
2355 = gen_rtx_SET
2356 (VOIDmode,
2357 gen_rtx_STRICT_LOW_PART
2358 (VOIDmode,
2359 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2360 SET_DEST (PATTERN (p)), 0)),
2361 XEXP (SET_SRC (PATTERN (p)), 0));
2362
2363 insn_code_number = recog (new, p);
2364
2365 if (insn_code_number)
2366 {
2367 register int i;
2368
2369 /* Clear destination register before the loop. */
2370 emit_insn_before (gen_rtx_SET (VOIDmode,
2371 SET_DEST (PATTERN (p)), const0_rtx),
2372 loop_start);
2373
2374 /* Inside the loop, just load the low part. */
2375 PATTERN (p) = new;
2376 }
2377 }
2378 #endif
2379 \f
2380 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2381 `has_call', `has_volatile', and `has_tablejump' within LOOP.
2382 Set the global variables `unknown_address_altered',
2383 `unknown_constant_address_altered', and `num_mem_sets'. Also, fill
2384 in the array `loop_mems' and the list `loop_store_mems'. */
2385
2386 static void
2387 prescan_loop (loop)
2388 struct loop *loop;
2389 {
2390 register int level = 1;
2391 rtx insn;
2392 struct loop_info *loop_info = LOOP_INFO (loop);
2393 rtx start = loop->start;
2394 rtx end = loop->end;
2395 /* The label after END. Jumping here is just like falling off the
2396 end of the loop. We use next_nonnote_insn instead of next_label
2397 as a hedge against the (pathological) case where some actual insn
2398 might end up between the two. */
2399 rtx exit_target = next_nonnote_insn (end);
2400
2401 loop_info->has_indirect_jump = indirect_jump_in_function;
2402 loop_info->has_call = 0;
2403 loop_info->has_volatile = 0;
2404 loop_info->has_tablejump = 0;
2405 loop_info->has_multiple_exit_targets = 0;
2406 loop->cont = 0;
2407 loop->vtop = 0;
2408 loop->level = 1;
2409
2410 unknown_address_altered = 0;
2411 unknown_constant_address_altered = 0;
2412 loop_store_mems = NULL_RTX;
2413 first_loop_store_insn = NULL_RTX;
2414 loop_mems_idx = 0;
2415 num_mem_sets = 0;
2416
2417 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2418 insn = NEXT_INSN (insn))
2419 {
2420 if (GET_CODE (insn) == NOTE)
2421 {
2422 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2423 {
2424 ++level;
2425 /* Count number of loops contained in this one. */
2426 loop->level++;
2427 }
2428 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2429 {
2430 --level;
2431 if (level == 0)
2432 {
2433 end = insn;
2434 break;
2435 }
2436 }
2437 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2438 {
2439 if (level == 1)
2440 loop->cont = insn;
2441 }
2442 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
2443 {
2444 /* If there is a NOTE_INSN_LOOP_VTOP, then this is a for
2445 or while style loop, with a loop exit test at the
2446 start. Thus, we can assume that the loop condition
2447 was true when the loop was entered. */
2448 if (level == 1)
2449 loop->vtop = insn;
2450 }
2451 }
2452 else if (GET_CODE (insn) == CALL_INSN)
2453 {
2454 if (! CONST_CALL_P (insn))
2455 unknown_address_altered = 1;
2456 loop_info->has_call = 1;
2457 }
2458 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2459 {
2460 rtx label1 = NULL_RTX;
2461 rtx label2 = NULL_RTX;
2462
2463 if (volatile_refs_p (PATTERN (insn)))
2464 loop_info->has_volatile = 1;
2465
2466 if (GET_CODE (insn) == JUMP_INSN
2467 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2468 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2469 loop_info->has_tablejump = 1;
2470
2471 note_stores (PATTERN (insn), note_addr_stored, NULL);
2472 if (! first_loop_store_insn && loop_store_mems)
2473 first_loop_store_insn = insn;
2474
2475 if (! loop_info->has_multiple_exit_targets
2476 && GET_CODE (insn) == JUMP_INSN
2477 && GET_CODE (PATTERN (insn)) == SET
2478 && SET_DEST (PATTERN (insn)) == pc_rtx)
2479 {
2480 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2481 {
2482 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2483 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2484 }
2485 else
2486 {
2487 label1 = SET_SRC (PATTERN (insn));
2488 }
2489
2490 do {
2491 if (label1 && label1 != pc_rtx)
2492 {
2493 if (GET_CODE (label1) != LABEL_REF)
2494 {
2495 /* Something tricky. */
2496 loop_info->has_multiple_exit_targets = 1;
2497 break;
2498 }
2499 else if (XEXP (label1, 0) != exit_target
2500 && LABEL_OUTSIDE_LOOP_P (label1))
2501 {
2502 /* A jump outside the current loop. */
2503 loop_info->has_multiple_exit_targets = 1;
2504 break;
2505 }
2506 }
2507
2508 label1 = label2;
2509 label2 = NULL_RTX;
2510 } while (label1);
2511 }
2512 }
2513 else if (GET_CODE (insn) == RETURN)
2514 loop_info->has_multiple_exit_targets = 1;
2515 }
2516
2517 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2518 if (/* We can't tell what MEMs are aliased by what. */
2519 ! unknown_address_altered
2520 /* An exception thrown by a called function might land us
2521 anywhere. */
2522 && ! loop_info->has_call
2523 /* We don't want loads for MEMs moved to a location before the
2524 one at which their stack memory becomes allocated. (Note
2525 that this is not a problem for malloc, etc., since those
2526 require actual function calls. */
2527 && ! current_function_calls_alloca
2528 /* There are ways to leave the loop other than falling off the
2529 end. */
2530 && ! loop_info->has_multiple_exit_targets)
2531 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2532 insn = NEXT_INSN (insn))
2533 for_each_rtx (&insn, insert_loop_mem, 0);
2534 }
2535 \f
2536 /* LOOP->CONT_DOMINATOR is now the last label between the loop start
2537 and the continue note that is a the destination of a (cond)jump after
2538 the continue note. If there is any (cond)jump between the loop start
2539 and what we have so far as LOOP->CONT_DOMINATOR that has a
2540 target between LOOP->DOMINATOR and the continue note, move
2541 LOOP->CONT_DOMINATOR forward to that label; if a jump's
2542 destination cannot be determined, clear LOOP->CONT_DOMINATOR. */
2543
2544 static void
2545 verify_dominator (loop)
2546 struct loop *loop;
2547 {
2548 rtx insn;
2549
2550 if (! loop->cont_dominator)
2551 /* This can happen for an empty loop, e.g. in
2552 gcc.c-torture/compile/920410-2.c */
2553 return;
2554 if (loop->cont_dominator == const0_rtx)
2555 {
2556 loop->cont_dominator = 0;
2557 return;
2558 }
2559 for (insn = loop->start; insn != loop->cont_dominator;
2560 insn = NEXT_INSN (insn))
2561 {
2562 if (GET_CODE (insn) == JUMP_INSN
2563 && GET_CODE (PATTERN (insn)) != RETURN)
2564 {
2565 rtx label = JUMP_LABEL (insn);
2566 int label_luid;
2567
2568 /* If it is not a jump we can easily understand or for
2569 which we do not have jump target information in the JUMP_LABEL
2570 field (consider ADDR_VEC and ADDR_DIFF_VEC insns), then clear
2571 LOOP->CONT_DOMINATOR. */
2572 if (! any_condjump_p (insn)
2573 || label == NULL_RTX)
2574 {
2575 loop->cont_dominator = NULL_RTX;
2576 return;
2577 }
2578
2579 label_luid = INSN_LUID (label);
2580 if (label_luid < INSN_LUID (loop->cont)
2581 && (label_luid
2582 > INSN_LUID (loop->cont)))
2583 loop->cont_dominator = label;
2584 }
2585 }
2586 }
2587
2588 /* Scan the function looking for loops. Record the start and end of each loop.
2589 Also mark as invalid loops any loops that contain a setjmp or are branched
2590 to from outside the loop. */
2591
2592 static void
2593 find_and_verify_loops (f, loops)
2594 rtx f;
2595 struct loops *loops;
2596 {
2597 rtx insn;
2598 rtx label;
2599 int num_loops;
2600 struct loop *current_loop;
2601 struct loop *next_loop;
2602 struct loop *loop;
2603
2604 num_loops = loops->num;
2605
2606 compute_luids (f, NULL_RTX, 0);
2607
2608 /* If there are jumps to undefined labels,
2609 treat them as jumps out of any/all loops.
2610 This also avoids writing past end of tables when there are no loops. */
2611 uid_loop[0] = NULL;
2612
2613 /* Find boundaries of loops, mark which loops are contained within
2614 loops, and invalidate loops that have setjmp. */
2615
2616 num_loops = 0;
2617 current_loop = NULL;
2618 for (insn = f; insn; insn = NEXT_INSN (insn))
2619 {
2620 if (GET_CODE (insn) == NOTE)
2621 switch (NOTE_LINE_NUMBER (insn))
2622 {
2623 case NOTE_INSN_LOOP_BEG:
2624 next_loop = loops->array + num_loops;
2625 next_loop->num = num_loops;
2626 num_loops++;
2627 next_loop->start = insn;
2628 next_loop->outer = current_loop;
2629 current_loop = next_loop;
2630 break;
2631
2632 case NOTE_INSN_SETJMP:
2633 /* In this case, we must invalidate our current loop and any
2634 enclosing loop. */
2635 for (loop = current_loop; loop; loop = loop->outer)
2636 {
2637 loop->invalid = 1;
2638 if (loop_dump_stream)
2639 fprintf (loop_dump_stream,
2640 "\nLoop at %d ignored due to setjmp.\n",
2641 INSN_UID (loop->start));
2642 }
2643 break;
2644
2645 case NOTE_INSN_LOOP_CONT:
2646 current_loop->cont = insn;
2647 break;
2648 case NOTE_INSN_LOOP_END:
2649 if (! current_loop)
2650 abort ();
2651
2652 current_loop->end = insn;
2653 verify_dominator (current_loop);
2654 current_loop = current_loop->outer;
2655 break;
2656
2657 default:
2658 break;
2659 }
2660 /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
2661 and NOTE_INSN_LOOP_END notes, update loop->dominator. */
2662 else if (GET_CODE (insn) == JUMP_INSN
2663 && GET_CODE (PATTERN (insn)) != RETURN
2664 && current_loop)
2665 {
2666 rtx label = JUMP_LABEL (insn);
2667
2668 if (! any_condjump_p (insn))
2669 label = NULL_RTX;
2670
2671 loop = current_loop;
2672 do
2673 {
2674 /* First see if we care about this loop. */
2675 if (loop->cont && loop->cont_dominator != const0_rtx)
2676 {
2677 /* If the jump destination is not known, invalidate
2678 loop->const_dominator. */
2679 if (! label)
2680 loop->cont_dominator = const0_rtx;
2681 else
2682 /* Check if the destination is between loop start and
2683 cont. */
2684 if ((INSN_LUID (label)
2685 < INSN_LUID (loop->cont))
2686 && (INSN_LUID (label)
2687 > INSN_LUID (loop->start))
2688 /* And if there is no later destination already
2689 recorded. */
2690 && (! loop->cont_dominator
2691 || (INSN_LUID (label)
2692 > INSN_LUID (loop->cont_dominator))))
2693 loop->cont_dominator = label;
2694 }
2695 loop = loop->outer;
2696 }
2697 while (loop);
2698 }
2699
2700 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2701 enclosing loop, but this doesn't matter. */
2702 uid_loop[INSN_UID (insn)] = current_loop;
2703 }
2704
2705 /* Any loop containing a label used in an initializer must be invalidated,
2706 because it can be jumped into from anywhere. */
2707
2708 for (label = forced_labels; label; label = XEXP (label, 1))
2709 {
2710 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2711 loop; loop = loop->outer)
2712 loop->invalid = 1;
2713 }
2714
2715 /* Any loop containing a label used for an exception handler must be
2716 invalidated, because it can be jumped into from anywhere. */
2717
2718 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2719 {
2720 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2721 loop; loop = loop->outer)
2722 loop->invalid = 1;
2723 }
2724
2725 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2726 loop that it is not contained within, that loop is marked invalid.
2727 If any INSN or CALL_INSN uses a label's address, then the loop containing
2728 that label is marked invalid, because it could be jumped into from
2729 anywhere.
2730
2731 Also look for blocks of code ending in an unconditional branch that
2732 exits the loop. If such a block is surrounded by a conditional
2733 branch around the block, move the block elsewhere (see below) and
2734 invert the jump to point to the code block. This may eliminate a
2735 label in our loop and will simplify processing by both us and a
2736 possible second cse pass. */
2737
2738 for (insn = f; insn; insn = NEXT_INSN (insn))
2739 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2740 {
2741 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2742
2743 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2744 {
2745 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2746 if (note)
2747 {
2748 for (loop = uid_loop[INSN_UID (XEXP (note, 0))];
2749 loop; loop = loop->outer)
2750 loop->invalid = 1;
2751 }
2752 }
2753
2754 if (GET_CODE (insn) != JUMP_INSN)
2755 continue;
2756
2757 mark_loop_jump (PATTERN (insn), this_loop);
2758
2759 /* See if this is an unconditional branch outside the loop. */
2760 if (this_loop
2761 && (GET_CODE (PATTERN (insn)) == RETURN
2762 || (any_uncondjump_p (insn)
2763 && onlyjump_p (insn)
2764 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2765 != this_loop)))
2766 && get_max_uid () < max_uid_for_loop)
2767 {
2768 rtx p;
2769 rtx our_next = next_real_insn (insn);
2770 rtx last_insn_to_move = NEXT_INSN (insn);
2771 struct loop *dest_loop;
2772 struct loop *outer_loop = NULL;
2773
2774 /* Go backwards until we reach the start of the loop, a label,
2775 or a JUMP_INSN. */
2776 for (p = PREV_INSN (insn);
2777 GET_CODE (p) != CODE_LABEL
2778 && ! (GET_CODE (p) == NOTE
2779 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2780 && GET_CODE (p) != JUMP_INSN;
2781 p = PREV_INSN (p))
2782 ;
2783
2784 /* Check for the case where we have a jump to an inner nested
2785 loop, and do not perform the optimization in that case. */
2786
2787 if (JUMP_LABEL (insn))
2788 {
2789 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2790 if (dest_loop)
2791 {
2792 for (outer_loop = dest_loop; outer_loop;
2793 outer_loop = outer_loop->outer)
2794 if (outer_loop == this_loop)
2795 break;
2796 }
2797 }
2798
2799 /* Make sure that the target of P is within the current loop. */
2800
2801 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2802 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2803 outer_loop = this_loop;
2804
2805 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2806 we have a block of code to try to move.
2807
2808 We look backward and then forward from the target of INSN
2809 to find a BARRIER at the same loop depth as the target.
2810 If we find such a BARRIER, we make a new label for the start
2811 of the block, invert the jump in P and point it to that label,
2812 and move the block of code to the spot we found. */
2813
2814 if (! outer_loop
2815 && GET_CODE (p) == JUMP_INSN
2816 && JUMP_LABEL (p) != 0
2817 /* Just ignore jumps to labels that were never emitted.
2818 These always indicate compilation errors. */
2819 && INSN_UID (JUMP_LABEL (p)) != 0
2820 && any_condjump_p (p) && onlyjump_p (p)
2821 && next_real_insn (JUMP_LABEL (p)) == our_next
2822 /* If it's not safe to move the sequence, then we
2823 mustn't try. */
2824 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2825 &last_insn_to_move))
2826 {
2827 rtx target
2828 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2829 struct loop *target_loop = uid_loop[INSN_UID (target)];
2830 rtx loc, loc2;
2831
2832 for (loc = target; loc; loc = PREV_INSN (loc))
2833 if (GET_CODE (loc) == BARRIER
2834 /* Don't move things inside a tablejump. */
2835 && ((loc2 = next_nonnote_insn (loc)) == 0
2836 || GET_CODE (loc2) != CODE_LABEL
2837 || (loc2 = next_nonnote_insn (loc2)) == 0
2838 || GET_CODE (loc2) != JUMP_INSN
2839 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2840 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2841 && uid_loop[INSN_UID (loc)] == target_loop)
2842 break;
2843
2844 if (loc == 0)
2845 for (loc = target; loc; loc = NEXT_INSN (loc))
2846 if (GET_CODE (loc) == BARRIER
2847 /* Don't move things inside a tablejump. */
2848 && ((loc2 = next_nonnote_insn (loc)) == 0
2849 || GET_CODE (loc2) != CODE_LABEL
2850 || (loc2 = next_nonnote_insn (loc2)) == 0
2851 || GET_CODE (loc2) != JUMP_INSN
2852 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2853 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2854 && uid_loop[INSN_UID (loc)] == target_loop)
2855 break;
2856
2857 if (loc)
2858 {
2859 rtx cond_label = JUMP_LABEL (p);
2860 rtx new_label = get_label_after (p);
2861
2862 /* Ensure our label doesn't go away. */
2863 LABEL_NUSES (cond_label)++;
2864
2865 /* Verify that uid_loop is large enough and that
2866 we can invert P. */
2867 if (invert_jump (p, new_label, 1))
2868 {
2869 rtx q, r;
2870
2871 /* If no suitable BARRIER was found, create a suitable
2872 one before TARGET. Since TARGET is a fall through
2873 path, we'll need to insert an jump around our block
2874 and a add a BARRIER before TARGET.
2875
2876 This creates an extra unconditional jump outside
2877 the loop. However, the benefits of removing rarely
2878 executed instructions from inside the loop usually
2879 outweighs the cost of the extra unconditional jump
2880 outside the loop. */
2881 if (loc == 0)
2882 {
2883 rtx temp;
2884
2885 temp = gen_jump (JUMP_LABEL (insn));
2886 temp = emit_jump_insn_before (temp, target);
2887 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2888 LABEL_NUSES (JUMP_LABEL (insn))++;
2889 loc = emit_barrier_before (target);
2890 }
2891
2892 /* Include the BARRIER after INSN and copy the
2893 block after LOC. */
2894 new_label = squeeze_notes (new_label,
2895 last_insn_to_move);
2896 reorder_insns (new_label, last_insn_to_move, loc);
2897
2898 /* All those insns are now in TARGET_LOOP. */
2899 for (q = new_label;
2900 q != NEXT_INSN (last_insn_to_move);
2901 q = NEXT_INSN (q))
2902 uid_loop[INSN_UID (q)] = target_loop;
2903
2904 /* The label jumped to by INSN is no longer a loop
2905 exit. Unless INSN does not have a label (e.g.,
2906 it is a RETURN insn), search loop->exit_labels
2907 to find its label_ref, and remove it. Also turn
2908 off LABEL_OUTSIDE_LOOP_P bit. */
2909 if (JUMP_LABEL (insn))
2910 {
2911 for (q = 0,
2912 r = this_loop->exit_labels;
2913 r; q = r, r = LABEL_NEXTREF (r))
2914 if (XEXP (r, 0) == JUMP_LABEL (insn))
2915 {
2916 LABEL_OUTSIDE_LOOP_P (r) = 0;
2917 if (q)
2918 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2919 else
2920 this_loop->exit_labels = LABEL_NEXTREF (r);
2921 break;
2922 }
2923
2924 for (loop = this_loop; loop && loop != target_loop;
2925 loop = loop->outer)
2926 loop->exit_count--;
2927
2928 /* If we didn't find it, then something is
2929 wrong. */
2930 if (! r)
2931 abort ();
2932 }
2933
2934 /* P is now a jump outside the loop, so it must be put
2935 in loop->exit_labels, and marked as such.
2936 The easiest way to do this is to just call
2937 mark_loop_jump again for P. */
2938 mark_loop_jump (PATTERN (p), this_loop);
2939
2940 /* If INSN now jumps to the insn after it,
2941 delete INSN. */
2942 if (JUMP_LABEL (insn) != 0
2943 && (next_real_insn (JUMP_LABEL (insn))
2944 == next_real_insn (insn)))
2945 delete_insn (insn);
2946 }
2947
2948 /* Continue the loop after where the conditional
2949 branch used to jump, since the only branch insn
2950 in the block (if it still remains) is an inter-loop
2951 branch and hence needs no processing. */
2952 insn = NEXT_INSN (cond_label);
2953
2954 if (--LABEL_NUSES (cond_label) == 0)
2955 delete_insn (cond_label);
2956
2957 /* This loop will be continued with NEXT_INSN (insn). */
2958 insn = PREV_INSN (insn);
2959 }
2960 }
2961 }
2962 }
2963 }
2964
2965 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2966 loops it is contained in, mark the target loop invalid.
2967
2968 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2969
2970 static void
2971 mark_loop_jump (x, loop)
2972 rtx x;
2973 struct loop *loop;
2974 {
2975 struct loop *dest_loop;
2976 struct loop *outer_loop;
2977 int i;
2978
2979 switch (GET_CODE (x))
2980 {
2981 case PC:
2982 case USE:
2983 case CLOBBER:
2984 case REG:
2985 case MEM:
2986 case CONST_INT:
2987 case CONST_DOUBLE:
2988 case RETURN:
2989 return;
2990
2991 case CONST:
2992 /* There could be a label reference in here. */
2993 mark_loop_jump (XEXP (x, 0), loop);
2994 return;
2995
2996 case PLUS:
2997 case MINUS:
2998 case MULT:
2999 mark_loop_jump (XEXP (x, 0), loop);
3000 mark_loop_jump (XEXP (x, 1), loop);
3001 return;
3002
3003 case LO_SUM:
3004 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3005 mark_loop_jump (XEXP (x, 1), loop);
3006 return;
3007
3008 case SIGN_EXTEND:
3009 case ZERO_EXTEND:
3010 mark_loop_jump (XEXP (x, 0), loop);
3011 return;
3012
3013 case LABEL_REF:
3014 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3015
3016 /* Link together all labels that branch outside the loop. This
3017 is used by final_[bg]iv_value and the loop unrolling code. Also
3018 mark this LABEL_REF so we know that this branch should predict
3019 false. */
3020
3021 /* A check to make sure the label is not in an inner nested loop,
3022 since this does not count as a loop exit. */
3023 if (dest_loop)
3024 {
3025 for (outer_loop = dest_loop; outer_loop;
3026 outer_loop = outer_loop->outer)
3027 if (outer_loop == loop)
3028 break;
3029 }
3030 else
3031 outer_loop = NULL;
3032
3033 if (loop && ! outer_loop)
3034 {
3035 LABEL_OUTSIDE_LOOP_P (x) = 1;
3036 LABEL_NEXTREF (x) = loop->exit_labels;
3037 loop->exit_labels = x;
3038
3039 for (outer_loop = loop;
3040 outer_loop && outer_loop != dest_loop;
3041 outer_loop = outer_loop->outer)
3042 outer_loop->exit_count++;
3043 }
3044
3045 /* If this is inside a loop, but not in the current loop or one enclosed
3046 by it, it invalidates at least one loop. */
3047
3048 if (! dest_loop)
3049 return;
3050
3051 /* We must invalidate every nested loop containing the target of this
3052 label, except those that also contain the jump insn. */
3053
3054 for (; dest_loop; dest_loop = dest_loop->outer)
3055 {
3056 /* Stop when we reach a loop that also contains the jump insn. */
3057 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3058 if (dest_loop == outer_loop)
3059 return;
3060
3061 /* If we get here, we know we need to invalidate a loop. */
3062 if (loop_dump_stream && ! dest_loop->invalid)
3063 fprintf (loop_dump_stream,
3064 "\nLoop at %d ignored due to multiple entry points.\n",
3065 INSN_UID (dest_loop->start));
3066
3067 dest_loop->invalid = 1;
3068 }
3069 return;
3070
3071 case SET:
3072 /* If this is not setting pc, ignore. */
3073 if (SET_DEST (x) == pc_rtx)
3074 mark_loop_jump (SET_SRC (x), loop);
3075 return;
3076
3077 case IF_THEN_ELSE:
3078 mark_loop_jump (XEXP (x, 1), loop);
3079 mark_loop_jump (XEXP (x, 2), loop);
3080 return;
3081
3082 case PARALLEL:
3083 case ADDR_VEC:
3084 for (i = 0; i < XVECLEN (x, 0); i++)
3085 mark_loop_jump (XVECEXP (x, 0, i), loop);
3086 return;
3087
3088 case ADDR_DIFF_VEC:
3089 for (i = 0; i < XVECLEN (x, 1); i++)
3090 mark_loop_jump (XVECEXP (x, 1, i), loop);
3091 return;
3092
3093 default:
3094 /* Strictly speaking this is not a jump into the loop, only a possible
3095 jump out of the loop. However, we have no way to link the destination
3096 of this jump onto the list of exit labels. To be safe we mark this
3097 loop and any containing loops as invalid. */
3098 if (loop)
3099 {
3100 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3101 {
3102 if (loop_dump_stream && ! outer_loop->invalid)
3103 fprintf (loop_dump_stream,
3104 "\nLoop at %d ignored due to unknown exit jump.\n",
3105 INSN_UID (outer_loop->start));
3106 outer_loop->invalid = 1;
3107 }
3108 }
3109 return;
3110 }
3111 }
3112 \f
3113 /* Return nonzero if there is a label in the range from
3114 insn INSN to and including the insn whose luid is END
3115 INSN must have an assigned luid (i.e., it must not have
3116 been previously created by loop.c). */
3117
3118 static int
3119 labels_in_range_p (insn, end)
3120 rtx insn;
3121 int end;
3122 {
3123 while (insn && INSN_LUID (insn) <= end)
3124 {
3125 if (GET_CODE (insn) == CODE_LABEL)
3126 return 1;
3127 insn = NEXT_INSN (insn);
3128 }
3129
3130 return 0;
3131 }
3132
3133 /* Record that a memory reference X is being set. */
3134
3135 static void
3136 note_addr_stored (x, y, data)
3137 rtx x;
3138 rtx y ATTRIBUTE_UNUSED;
3139 void *data ATTRIBUTE_UNUSED;
3140 {
3141 if (x == 0 || GET_CODE (x) != MEM)
3142 return;
3143
3144 /* Count number of memory writes.
3145 This affects heuristics in strength_reduce. */
3146 num_mem_sets++;
3147
3148 /* BLKmode MEM means all memory is clobbered. */
3149 if (GET_MODE (x) == BLKmode)
3150 {
3151 if (RTX_UNCHANGING_P (x))
3152 unknown_constant_address_altered = 1;
3153 else
3154 unknown_address_altered = 1;
3155
3156 return;
3157 }
3158
3159 loop_store_mems = gen_rtx_EXPR_LIST (VOIDmode, x, loop_store_mems);
3160 }
3161
3162 /* X is a value modified by an INSN that references a biv inside a loop
3163 exit test (ie, X is somehow related to the value of the biv). If X
3164 is a pseudo that is used more than once, then the biv is (effectively)
3165 used more than once. DATA is really an `int *', and is set if the
3166 biv is used more than once. */
3167
3168 static void
3169 note_set_pseudo_multiple_uses (x, y, data)
3170 rtx x;
3171 rtx y ATTRIBUTE_UNUSED;
3172 void *data;
3173 {
3174 if (x == 0)
3175 return;
3176
3177 while (GET_CODE (x) == STRICT_LOW_PART
3178 || GET_CODE (x) == SIGN_EXTRACT
3179 || GET_CODE (x) == ZERO_EXTRACT
3180 || GET_CODE (x) == SUBREG)
3181 x = XEXP (x, 0);
3182
3183 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3184 return;
3185
3186 /* If we do not have usage information, or if we know the register
3187 is used more than once, note that fact for check_dbra_loop. */
3188 if (REGNO (x) >= max_reg_before_loop
3189 || ! VARRAY_RTX (reg_single_usage, REGNO (x))
3190 || VARRAY_RTX (reg_single_usage, REGNO (x)) == const0_rtx)
3191 *((int *) data) = 1;
3192 }
3193 \f
3194 /* Return nonzero if the rtx X is invariant over the current loop.
3195
3196 The value is 2 if we refer to something only conditionally invariant.
3197
3198 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3199 Otherwise, a memory ref is invariant if it does not conflict with
3200 anything stored in `loop_store_mems'. */
3201
3202 int
3203 loop_invariant_p (loop, x)
3204 const struct loop *loop;
3205 register rtx x;
3206 {
3207 register int i;
3208 register enum rtx_code code;
3209 register const char *fmt;
3210 int conditional = 0;
3211 rtx mem_list_entry;
3212
3213 if (x == 0)
3214 return 1;
3215 code = GET_CODE (x);
3216 switch (code)
3217 {
3218 case CONST_INT:
3219 case CONST_DOUBLE:
3220 case SYMBOL_REF:
3221 case CONST:
3222 return 1;
3223
3224 case LABEL_REF:
3225 /* A LABEL_REF is normally invariant, however, if we are unrolling
3226 loops, and this label is inside the loop, then it isn't invariant.
3227 This is because each unrolled copy of the loop body will have
3228 a copy of this label. If this was invariant, then an insn loading
3229 the address of this label into a register might get moved outside
3230 the loop, and then each loop body would end up using the same label.
3231
3232 We don't know the loop bounds here though, so just fail for all
3233 labels. */
3234 if (flag_unroll_loops)
3235 return 0;
3236 else
3237 return 1;
3238
3239 case PC:
3240 case CC0:
3241 case UNSPEC_VOLATILE:
3242 return 0;
3243
3244 case REG:
3245 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3246 since the reg might be set by initialization within the loop. */
3247
3248 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3249 || x == arg_pointer_rtx)
3250 && ! current_function_has_nonlocal_goto)
3251 return 1;
3252
3253 if (LOOP_INFO (loop)->has_call
3254 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3255 return 0;
3256
3257 if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
3258 return 2;
3259
3260 return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
3261
3262 case MEM:
3263 /* Volatile memory references must be rejected. Do this before
3264 checking for read-only items, so that volatile read-only items
3265 will be rejected also. */
3266 if (MEM_VOLATILE_P (x))
3267 return 0;
3268
3269 /* If we had a subroutine call, any location in memory could
3270 have been clobbered. We used to test here for volatile and
3271 readonly, but true_dependence knows how to do that better
3272 than we do. */
3273 if (RTX_UNCHANGING_P (x)
3274 ? unknown_constant_address_altered : unknown_address_altered)
3275 return 0;
3276
3277 /* See if there is any dependence between a store and this load. */
3278 mem_list_entry = loop_store_mems;
3279 while (mem_list_entry)
3280 {
3281 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3282 x, rtx_varies_p))
3283 return 0;
3284
3285 mem_list_entry = XEXP (mem_list_entry, 1);
3286 }
3287
3288 /* It's not invalidated by a store in memory
3289 but we must still verify the address is invariant. */
3290 break;
3291
3292 case ASM_OPERANDS:
3293 /* Don't mess with insns declared volatile. */
3294 if (MEM_VOLATILE_P (x))
3295 return 0;
3296 break;
3297
3298 default:
3299 break;
3300 }
3301
3302 fmt = GET_RTX_FORMAT (code);
3303 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3304 {
3305 if (fmt[i] == 'e')
3306 {
3307 int tem = loop_invariant_p (loop, XEXP (x, i));
3308 if (tem == 0)
3309 return 0;
3310 if (tem == 2)
3311 conditional = 1;
3312 }
3313 else if (fmt[i] == 'E')
3314 {
3315 register int j;
3316 for (j = 0; j < XVECLEN (x, i); j++)
3317 {
3318 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3319 if (tem == 0)
3320 return 0;
3321 if (tem == 2)
3322 conditional = 1;
3323 }
3324
3325 }
3326 }
3327
3328 return 1 + conditional;
3329 }
3330
3331 \f
3332 /* Return nonzero if all the insns in the loop that set REG
3333 are INSN and the immediately following insns,
3334 and if each of those insns sets REG in an invariant way
3335 (not counting uses of REG in them).
3336
3337 The value is 2 if some of these insns are only conditionally invariant.
3338
3339 We assume that INSN itself is the first set of REG
3340 and that its source is invariant. */
3341
3342 static int
3343 consec_sets_invariant_p (loop, reg, n_sets, insn)
3344 const struct loop *loop;
3345 int n_sets;
3346 rtx reg, insn;
3347 {
3348 rtx p = insn;
3349 unsigned int regno = REGNO (reg);
3350 rtx temp;
3351 /* Number of sets we have to insist on finding after INSN. */
3352 int count = n_sets - 1;
3353 int old = VARRAY_INT (set_in_loop, regno);
3354 int value = 0;
3355 int this;
3356
3357 /* If N_SETS hit the limit, we can't rely on its value. */
3358 if (n_sets == 127)
3359 return 0;
3360
3361 VARRAY_INT (set_in_loop, regno) = 0;
3362
3363 while (count > 0)
3364 {
3365 register enum rtx_code code;
3366 rtx set;
3367
3368 p = NEXT_INSN (p);
3369 code = GET_CODE (p);
3370
3371 /* If library call, skip to end of it. */
3372 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3373 p = XEXP (temp, 0);
3374
3375 this = 0;
3376 if (code == INSN
3377 && (set = single_set (p))
3378 && GET_CODE (SET_DEST (set)) == REG
3379 && REGNO (SET_DEST (set)) == regno)
3380 {
3381 this = loop_invariant_p (loop, SET_SRC (set));
3382 if (this != 0)
3383 value |= this;
3384 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3385 {
3386 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3387 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3388 notes are OK. */
3389 this = (CONSTANT_P (XEXP (temp, 0))
3390 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3391 && loop_invariant_p (loop, XEXP (temp, 0))));
3392 if (this != 0)
3393 value |= this;
3394 }
3395 }
3396 if (this != 0)
3397 count--;
3398 else if (code != NOTE)
3399 {
3400 VARRAY_INT (set_in_loop, regno) = old;
3401 return 0;
3402 }
3403 }
3404
3405 VARRAY_INT (set_in_loop, regno) = old;
3406 /* If loop_invariant_p ever returned 2, we return 2. */
3407 return 1 + (value & 2);
3408 }
3409
3410 #if 0
3411 /* I don't think this condition is sufficient to allow INSN
3412 to be moved, so we no longer test it. */
3413
3414 /* Return 1 if all insns in the basic block of INSN and following INSN
3415 that set REG are invariant according to TABLE. */
3416
3417 static int
3418 all_sets_invariant_p (reg, insn, table)
3419 rtx reg, insn;
3420 short *table;
3421 {
3422 register rtx p = insn;
3423 register int regno = REGNO (reg);
3424
3425 while (1)
3426 {
3427 register enum rtx_code code;
3428 p = NEXT_INSN (p);
3429 code = GET_CODE (p);
3430 if (code == CODE_LABEL || code == JUMP_INSN)
3431 return 1;
3432 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3433 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3434 && REGNO (SET_DEST (PATTERN (p))) == regno)
3435 {
3436 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3437 return 0;
3438 }
3439 }
3440 }
3441 #endif /* 0 */
3442 \f
3443 /* Look at all uses (not sets) of registers in X. For each, if it is
3444 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3445 a different insn, set USAGE[REGNO] to const0_rtx. */
3446
3447 static void
3448 find_single_use_in_loop (insn, x, usage)
3449 rtx insn;
3450 rtx x;
3451 varray_type usage;
3452 {
3453 enum rtx_code code = GET_CODE (x);
3454 const char *fmt = GET_RTX_FORMAT (code);
3455 int i, j;
3456
3457 if (code == REG)
3458 VARRAY_RTX (usage, REGNO (x))
3459 = (VARRAY_RTX (usage, REGNO (x)) != 0
3460 && VARRAY_RTX (usage, REGNO (x)) != insn)
3461 ? const0_rtx : insn;
3462
3463 else if (code == SET)
3464 {
3465 /* Don't count SET_DEST if it is a REG; otherwise count things
3466 in SET_DEST because if a register is partially modified, it won't
3467 show up as a potential movable so we don't care how USAGE is set
3468 for it. */
3469 if (GET_CODE (SET_DEST (x)) != REG)
3470 find_single_use_in_loop (insn, SET_DEST (x), usage);
3471 find_single_use_in_loop (insn, SET_SRC (x), usage);
3472 }
3473 else
3474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3475 {
3476 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3477 find_single_use_in_loop (insn, XEXP (x, i), usage);
3478 else if (fmt[i] == 'E')
3479 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3480 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3481 }
3482 }
3483 \f
3484 /* Count and record any set in X which is contained in INSN. Update
3485 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3486
3487 static void
3488 count_one_set (insn, x, may_not_move, last_set)
3489 rtx insn, x;
3490 varray_type may_not_move;
3491 rtx *last_set;
3492 {
3493 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3494 /* Don't move a reg that has an explicit clobber.
3495 It's not worth the pain to try to do it correctly. */
3496 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3497
3498 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3499 {
3500 rtx dest = SET_DEST (x);
3501 while (GET_CODE (dest) == SUBREG
3502 || GET_CODE (dest) == ZERO_EXTRACT
3503 || GET_CODE (dest) == SIGN_EXTRACT
3504 || GET_CODE (dest) == STRICT_LOW_PART)
3505 dest = XEXP (dest, 0);
3506 if (GET_CODE (dest) == REG)
3507 {
3508 register int regno = REGNO (dest);
3509 /* If this is the first setting of this reg
3510 in current basic block, and it was set before,
3511 it must be set in two basic blocks, so it cannot
3512 be moved out of the loop. */
3513 if (VARRAY_INT (set_in_loop, regno) > 0
3514 && last_set[regno] == 0)
3515 VARRAY_CHAR (may_not_move, regno) = 1;
3516 /* If this is not first setting in current basic block,
3517 see if reg was used in between previous one and this.
3518 If so, neither one can be moved. */
3519 if (last_set[regno] != 0
3520 && reg_used_between_p (dest, last_set[regno], insn))
3521 VARRAY_CHAR (may_not_move, regno) = 1;
3522 if (VARRAY_INT (set_in_loop, regno) < 127)
3523 ++VARRAY_INT (set_in_loop, regno);
3524 last_set[regno] = insn;
3525 }
3526 }
3527 }
3528
3529 /* Increment SET_IN_LOOP at the index of each register
3530 that is modified by an insn between FROM and TO.
3531 If the value of an element of SET_IN_LOOP becomes 127 or more,
3532 stop incrementing it, to avoid overflow.
3533
3534 Store in SINGLE_USAGE[I] the single insn in which register I is
3535 used, if it is only used once. Otherwise, it is set to 0 (for no
3536 uses) or const0_rtx for more than one use. This parameter may be zero,
3537 in which case this processing is not done.
3538
3539 Store in *COUNT_PTR the number of actual instruction
3540 in the loop. We use this to decide what is worth moving out. */
3541
3542 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3543 In that case, it is the insn that last set reg n. */
3544
3545 static void
3546 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3547 register rtx from, to;
3548 varray_type may_not_move;
3549 varray_type single_usage;
3550 int *count_ptr;
3551 int nregs;
3552 {
3553 register rtx *last_set = (rtx *) xcalloc (nregs, sizeof (rtx));
3554 register rtx insn;
3555 register int count = 0;
3556
3557 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3558 {
3559 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3560 {
3561 ++count;
3562
3563 /* Record registers that have exactly one use. */
3564 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3565
3566 /* Include uses in REG_EQUAL notes. */
3567 if (REG_NOTES (insn))
3568 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3569
3570 if (GET_CODE (PATTERN (insn)) == SET
3571 || GET_CODE (PATTERN (insn)) == CLOBBER)
3572 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3573 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3574 {
3575 register int i;
3576 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3577 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3578 may_not_move, last_set);
3579 }
3580 }
3581
3582 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3583 bzero ((char *) last_set, nregs * sizeof (rtx));
3584 }
3585 *count_ptr = count;
3586
3587 /* Clean up. */
3588 free (last_set);
3589 }
3590 \f
3591 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3592 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3593 contained in insn INSN is used by any insn that precedes INSN in
3594 cyclic order starting from the loop entry point.
3595
3596 We don't want to use INSN_LUID here because if we restrict INSN to those
3597 that have a valid INSN_LUID, it means we cannot move an invariant out
3598 from an inner loop past two loops. */
3599
3600 static int
3601 loop_reg_used_before_p (loop, set, insn)
3602 const struct loop *loop;
3603 rtx set, insn;
3604 {
3605 rtx reg = SET_DEST (set);
3606 rtx p;
3607
3608 /* Scan forward checking for register usage. If we hit INSN, we
3609 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3610 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3611 {
3612 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3613 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3614 return 1;
3615
3616 if (p == loop->end)
3617 p = loop->start;
3618 }
3619
3620 return 0;
3621 }
3622 \f
3623 /* A "basic induction variable" or biv is a pseudo reg that is set
3624 (within this loop) only by incrementing or decrementing it. */
3625 /* A "general induction variable" or giv is a pseudo reg whose
3626 value is a linear function of a biv. */
3627
3628 /* Bivs are recognized by `basic_induction_var';
3629 Givs by `general_induction_var'. */
3630
3631 /* Indexed by register number, indicates whether or not register is an
3632 induction variable, and if so what type. */
3633
3634 varray_type reg_iv_type;
3635
3636 /* Indexed by register number, contains pointer to `struct induction'
3637 if register is an induction variable. This holds general info for
3638 all induction variables. */
3639
3640 varray_type reg_iv_info;
3641
3642 /* Indexed by register number, contains pointer to `struct iv_class'
3643 if register is a basic induction variable. This holds info describing
3644 the class (a related group) of induction variables that the biv belongs
3645 to. */
3646
3647 struct iv_class **reg_biv_class;
3648
3649 /* The head of a list which links together (via the next field)
3650 every iv class for the current loop. */
3651
3652 struct iv_class *loop_iv_list;
3653
3654 /* Givs made from biv increments are always splittable for loop unrolling.
3655 Since there is no regscan info for them, we have to keep track of them
3656 separately. */
3657 unsigned int first_increment_giv, last_increment_giv;
3658
3659 /* Communication with routines called via `note_stores'. */
3660
3661 static rtx note_insn;
3662
3663 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3664
3665 static rtx addr_placeholder;
3666
3667 /* ??? Unfinished optimizations, and possible future optimizations,
3668 for the strength reduction code. */
3669
3670 /* ??? The interaction of biv elimination, and recognition of 'constant'
3671 bivs, may cause problems. */
3672
3673 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3674 performance problems.
3675
3676 Perhaps don't eliminate things that can be combined with an addressing
3677 mode. Find all givs that have the same biv, mult_val, and add_val;
3678 then for each giv, check to see if its only use dies in a following
3679 memory address. If so, generate a new memory address and check to see
3680 if it is valid. If it is valid, then store the modified memory address,
3681 otherwise, mark the giv as not done so that it will get its own iv. */
3682
3683 /* ??? Could try to optimize branches when it is known that a biv is always
3684 positive. */
3685
3686 /* ??? When replace a biv in a compare insn, we should replace with closest
3687 giv so that an optimized branch can still be recognized by the combiner,
3688 e.g. the VAX acb insn. */
3689
3690 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3691 was rerun in loop_optimize whenever a register was added or moved.
3692 Also, some of the optimizations could be a little less conservative. */
3693 \f
3694 /* Scan the loop body and call FNCALL for each insn. In the addition to the
3695 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
3696 callback.
3697
3698 NOT_EVERY_ITERATION if current insn is not executed at least once for every
3699 loop iteration except for the last one.
3700
3701 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
3702 loop iteration.
3703 */
3704 void
3705 for_each_insn_in_loop (loop, fncall)
3706 struct loop *loop;
3707 loop_insn_callback fncall;
3708 {
3709 /* This is 1 if current insn is not executed at least once for every loop
3710 iteration. */
3711 int not_every_iteration = 0;
3712 int maybe_multiple = 0;
3713 int past_loop_latch = 0;
3714 int loop_depth = 0;
3715 rtx p;
3716
3717 /* If loop_scan_start points to the loop exit test, we have to be wary of
3718 subversive use of gotos inside expression statements. */
3719 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
3720 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
3721
3722 /* Scan through loop to find all possible bivs. */
3723
3724 for (p = next_insn_in_loop (loop, loop->scan_start);
3725 p != NULL_RTX;
3726 p = next_insn_in_loop (loop, p))
3727 {
3728 p = fncall (loop, p, not_every_iteration, maybe_multiple);
3729
3730 /* Past CODE_LABEL, we get to insns that may be executed multiple
3731 times. The only way we can be sure that they can't is if every
3732 jump insn between here and the end of the loop either
3733 returns, exits the loop, is a jump to a location that is still
3734 behind the label, or is a jump to the loop start. */
3735
3736 if (GET_CODE (p) == CODE_LABEL)
3737 {
3738 rtx insn = p;
3739
3740 maybe_multiple = 0;
3741
3742 while (1)
3743 {
3744 insn = NEXT_INSN (insn);
3745 if (insn == loop->scan_start)
3746 break;
3747 if (insn == loop->end)
3748 {
3749 if (loop->top != 0)
3750 insn = loop->top;
3751 else
3752 break;
3753 if (insn == loop->scan_start)
3754 break;
3755 }
3756
3757 if (GET_CODE (insn) == JUMP_INSN
3758 && GET_CODE (PATTERN (insn)) != RETURN
3759 && (!any_condjump_p (insn)
3760 || (JUMP_LABEL (insn) != 0
3761 && JUMP_LABEL (insn) != loop->scan_start
3762 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
3763 {
3764 maybe_multiple = 1;
3765 break;
3766 }
3767 }
3768 }
3769
3770 /* Past a jump, we get to insns for which we can't count
3771 on whether they will be executed during each iteration. */
3772 /* This code appears twice in strength_reduce. There is also similar
3773 code in scan_loop. */
3774 if (GET_CODE (p) == JUMP_INSN
3775 /* If we enter the loop in the middle, and scan around to the
3776 beginning, don't set not_every_iteration for that.
3777 This can be any kind of jump, since we want to know if insns
3778 will be executed if the loop is executed. */
3779 && !(JUMP_LABEL (p) == loop->top
3780 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
3781 && any_uncondjump_p (p))
3782 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
3783 {
3784 rtx label = 0;
3785
3786 /* If this is a jump outside the loop, then it also doesn't
3787 matter. Check to see if the target of this branch is on the
3788 loop->exits_labels list. */
3789
3790 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3791 if (XEXP (label, 0) == JUMP_LABEL (p))
3792 break;
3793
3794 if (!label)
3795 not_every_iteration = 1;
3796 }
3797
3798 else if (GET_CODE (p) == NOTE)
3799 {
3800 /* At the virtual top of a converted loop, insns are again known to
3801 be executed each iteration: logically, the loop begins here
3802 even though the exit code has been duplicated.
3803
3804 Insns are also again known to be executed each iteration at
3805 the LOOP_CONT note. */
3806 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3807 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3808 && loop_depth == 0)
3809 not_every_iteration = 0;
3810 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3811 loop_depth++;
3812 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3813 loop_depth--;
3814 }
3815
3816 /* Note if we pass a loop latch. If we do, then we can not clear
3817 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3818 a loop since a jump before the last CODE_LABEL may have started
3819 a new loop iteration.
3820
3821 Note that LOOP_TOP is only set for rotated loops and we need
3822 this check for all loops, so compare against the CODE_LABEL
3823 which immediately follows LOOP_START. */
3824 if (GET_CODE (p) == JUMP_INSN
3825 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
3826 past_loop_latch = 1;
3827
3828 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3829 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3830 or not an insn is known to be executed each iteration of the
3831 loop, whether or not any iterations are known to occur.
3832
3833 Therefore, if we have just passed a label and have no more labels
3834 between here and the test insn of the loop, and we have not passed
3835 a jump to the top of the loop, then we know these insns will be
3836 executed each iteration. */
3837
3838 if (not_every_iteration
3839 && !past_loop_latch
3840 && GET_CODE (p) == CODE_LABEL
3841 && no_labels_between_p (p, loop->end)
3842 && loop_insn_first_p (p, loop->cont))
3843 not_every_iteration = 0;
3844 }
3845 }
3846 \f
3847 /* Perform strength reduction and induction variable elimination.
3848
3849 Pseudo registers created during this function will be beyond the last
3850 valid index in several tables including n_times_set and regno_last_uid.
3851 This does not cause a problem here, because the added registers cannot be
3852 givs outside of their loop, and hence will never be reconsidered.
3853 But scan_loop must check regnos to make sure they are in bounds. */
3854
3855 static void
3856 strength_reduce (loop, insn_count, flags)
3857 struct loop *loop;
3858 int insn_count;
3859 int flags;
3860 {
3861 rtx p;
3862 /* Temporary list pointers for traversing loop_iv_list. */
3863 struct iv_class *bl, **backbl;
3864 struct loop_info *loop_info = LOOP_INFO (loop);
3865 /* Ratio of extra register life span we can justify
3866 for saving an instruction. More if loop doesn't call subroutines
3867 since in that case saving an insn makes more difference
3868 and more registers are available. */
3869 /* ??? could set this to last value of threshold in move_movables */
3870 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3871 /* Map of pseudo-register replacements. */
3872 rtx *reg_map = NULL;
3873 int reg_map_size;
3874 int call_seen;
3875 rtx test;
3876 rtx end_insert_before;
3877 int n_extra_increment;
3878 int unrolled_insn_copies = 0;
3879 rtx loop_start = loop->start;
3880 rtx loop_end = loop->end;
3881 rtx loop_scan_start = loop->scan_start;
3882
3883 VARRAY_INT_INIT (reg_iv_type, max_reg_before_loop, "reg_iv_type");
3884 VARRAY_GENERIC_PTR_INIT (reg_iv_info, max_reg_before_loop, "reg_iv_info");
3885 reg_biv_class = (struct iv_class **)
3886 xcalloc (max_reg_before_loop, sizeof (struct iv_class *));
3887
3888 loop_iv_list = 0;
3889 addr_placeholder = gen_reg_rtx (Pmode);
3890
3891 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3892 must be put before this insn, so that they will appear in the right
3893 order (i.e. loop order).
3894
3895 If loop_end is the end of the current function, then emit a
3896 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3897 dummy note insn. */
3898 if (NEXT_INSN (loop_end) != 0)
3899 end_insert_before = NEXT_INSN (loop_end);
3900 else
3901 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3902
3903 for_each_insn_in_loop (loop, check_insn_for_bivs);
3904
3905 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3906 Make a sanity check against n_times_set. */
3907 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3908 {
3909 if (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3910 /* Above happens if register modified by subreg, etc. */
3911 /* Make sure it is not recognized as a basic induction var: */
3912 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3913 /* If never incremented, it is invariant that we decided not to
3914 move. So leave it alone. */
3915 || ! bl->incremented)
3916 {
3917 if (loop_dump_stream)
3918 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3919 bl->regno,
3920 (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3921 ? "not induction variable"
3922 : (! bl->incremented ? "never incremented"
3923 : "count error")));
3924
3925 REG_IV_TYPE (bl->regno) = NOT_BASIC_INDUCT;
3926 *backbl = bl->next;
3927 }
3928 else
3929 {
3930 backbl = &bl->next;
3931
3932 if (loop_dump_stream)
3933 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3934 }
3935 }
3936
3937 /* Exit if there are no bivs. */
3938 if (! loop_iv_list)
3939 {
3940 /* Can still unroll the loop anyways, but indicate that there is no
3941 strength reduction info available. */
3942 if (flags & LOOP_UNROLL)
3943 unroll_loop (loop, insn_count, end_insert_before, 0);
3944
3945 goto egress;
3946 }
3947
3948 /* Find initial value for each biv by searching backwards from loop_start,
3949 halting at first label. Also record any test condition. */
3950
3951 call_seen = 0;
3952 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3953 {
3954 note_insn = p;
3955
3956 if (GET_CODE (p) == CALL_INSN)
3957 call_seen = 1;
3958
3959 if (INSN_P (p))
3960 note_stores (PATTERN (p), record_initial, NULL);
3961
3962 /* Record any test of a biv that branches around the loop if no store
3963 between it and the start of loop. We only care about tests with
3964 constants and registers and only certain of those. */
3965 if (GET_CODE (p) == JUMP_INSN
3966 && JUMP_LABEL (p) != 0
3967 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3968 && (test = get_condition_for_loop (loop, p)) != 0
3969 && GET_CODE (XEXP (test, 0)) == REG
3970 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3971 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3972 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3973 && bl->init_insn == 0)
3974 {
3975 /* If an NE test, we have an initial value! */
3976 if (GET_CODE (test) == NE)
3977 {
3978 bl->init_insn = p;
3979 bl->init_set = gen_rtx_SET (VOIDmode,
3980 XEXP (test, 0), XEXP (test, 1));
3981 }
3982 else
3983 bl->initial_test = test;
3984 }
3985 }
3986
3987 /* Look at the each biv and see if we can say anything better about its
3988 initial value from any initializing insns set up above. (This is done
3989 in two passes to avoid missing SETs in a PARALLEL.) */
3990 for (backbl = &loop_iv_list; (bl = *backbl); backbl = &bl->next)
3991 {
3992 rtx src;
3993 rtx note;
3994
3995 if (! bl->init_insn)
3996 continue;
3997
3998 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3999 is a constant, use the value of that. */
4000 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4001 && CONSTANT_P (XEXP (note, 0)))
4002 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4003 && CONSTANT_P (XEXP (note, 0))))
4004 src = XEXP (note, 0);
4005 else
4006 src = SET_SRC (bl->init_set);
4007
4008 if (loop_dump_stream)
4009 fprintf (loop_dump_stream,
4010 "Biv %d initialized at insn %d: initial value ",
4011 bl->regno, INSN_UID (bl->init_insn));
4012
4013 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4014 || GET_MODE (src) == VOIDmode)
4015 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
4016 {
4017 bl->initial_value = src;
4018
4019 if (loop_dump_stream)
4020 {
4021 if (GET_CODE (src) == CONST_INT)
4022 {
4023 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
4024 fputc ('\n', loop_dump_stream);
4025 }
4026 else
4027 {
4028 print_rtl (loop_dump_stream, src);
4029 fprintf (loop_dump_stream, "\n");
4030 }
4031 }
4032 }
4033 else
4034 {
4035 struct iv_class *bl2 = 0;
4036 rtx increment = NULL_RTX;
4037
4038 /* Biv initial value is not a simple move. If it is the sum of
4039 another biv and a constant, check if both bivs are incremented
4040 in lockstep. Then we are actually looking at a giv.
4041 For simplicity, we only handle the case where there is but a
4042 single increment, and the register is not used elsewhere. */
4043 if (bl->biv_count == 1
4044 && bl->regno < max_reg_before_loop
4045 && uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4046 && GET_CODE (src) == PLUS
4047 && GET_CODE (XEXP (src, 0)) == REG
4048 && CONSTANT_P (XEXP (src, 1))
4049 && ((increment = biv_total_increment (bl)) != NULL_RTX))
4050 {
4051 unsigned int regno = REGNO (XEXP (src, 0));
4052
4053 for (bl2 = loop_iv_list; bl2; bl2 = bl2->next)
4054 if (bl2->regno == regno)
4055 break;
4056 }
4057
4058 /* Now, can we transform this biv into a giv? */
4059 if (bl2
4060 && bl2->biv_count == 1
4061 && rtx_equal_p (increment, biv_total_increment (bl2))
4062 /* init_insn is only set to insns that are before loop_start
4063 without any intervening labels. */
4064 && ! reg_set_between_p (bl2->biv->src_reg,
4065 PREV_INSN (bl->init_insn), loop_start)
4066 /* The register from BL2 must be set before the register from
4067 BL is set, or we must be able to move the latter set after
4068 the former set. Currently there can't be any labels
4069 in-between when biv_total_increment returns nonzero both times
4070 but we test it here in case some day some real cfg analysis
4071 gets used to set always_computable. */
4072 && (loop_insn_first_p (bl2->biv->insn, bl->biv->insn)
4073 ? no_labels_between_p (bl2->biv->insn, bl->biv->insn)
4074 : (! reg_used_between_p (bl->biv->src_reg, bl->biv->insn,
4075 bl2->biv->insn)
4076 && no_jumps_between_p (bl->biv->insn, bl2->biv->insn)))
4077 && validate_change (bl->biv->insn,
4078 &SET_SRC (single_set (bl->biv->insn)),
4079 copy_rtx (src), 0))
4080 {
4081 rtx dominator = loop->cont_dominator;
4082 rtx giv = bl->biv->src_reg;
4083 rtx giv_insn = bl->biv->insn;
4084 rtx after_giv = NEXT_INSN (giv_insn);
4085
4086 if (loop_dump_stream)
4087 fprintf (loop_dump_stream, "is giv of biv %d\n", bl2->regno);
4088 /* Let this giv be discovered by the generic code. */
4089 REG_IV_TYPE (bl->regno) = UNKNOWN_INDUCT;
4090 reg_biv_class[bl->regno] = (struct iv_class *) NULL_PTR;
4091 /* We can get better optimization if we can move the giv setting
4092 before the first giv use. */
4093 if (dominator
4094 && ! loop_insn_first_p (dominator, loop_scan_start)
4095 && ! reg_set_between_p (bl2->biv->src_reg, loop_start,
4096 dominator)
4097 && ! reg_used_between_p (giv, loop_start, dominator)
4098 && ! reg_used_between_p (giv, giv_insn, loop_end))
4099 {
4100 rtx p;
4101 rtx next;
4102
4103 for (next = NEXT_INSN (dominator); ; next = NEXT_INSN (next))
4104 {
4105 if (GET_CODE (next) == JUMP_INSN
4106 || (INSN_P (next)
4107 && insn_dependant_p (giv_insn, next)))
4108 break;
4109 #ifdef HAVE_cc0
4110 if (! INSN_P (next)
4111 || ! sets_cc0_p (PATTERN (next)))
4112 #endif
4113 dominator = next;
4114 }
4115 if (loop_dump_stream)
4116 fprintf (loop_dump_stream, "move after insn %d\n",
4117 INSN_UID (dominator));
4118 /* Avoid problems with luids by actually moving the insn
4119 and adjusting all luids in the range. */
4120 reorder_insns (giv_insn, giv_insn, dominator);
4121 for (p = dominator; INSN_UID (p) >= max_uid_for_loop; )
4122 p = PREV_INSN (p);
4123 compute_luids (giv_insn, after_giv, INSN_LUID (p));
4124 /* If the only purpose of the init insn is to initialize
4125 this giv, delete it. */
4126 if (single_set (bl->init_insn)
4127 && ! reg_used_between_p (giv, bl->init_insn, loop_start))
4128 delete_insn (bl->init_insn);
4129 }
4130 else if (! loop_insn_first_p (bl2->biv->insn, bl->biv->insn))
4131 {
4132 rtx p = PREV_INSN (giv_insn);
4133 while (INSN_UID (p) >= max_uid_for_loop)
4134 p = PREV_INSN (p);
4135 reorder_insns (giv_insn, giv_insn, bl2->biv->insn);
4136 compute_luids (after_giv, NEXT_INSN (giv_insn),
4137 INSN_LUID (p));
4138 }
4139 /* Remove this biv from the chain. */
4140 *backbl = bl->next;
4141 }
4142
4143 /* If we can't make it a giv,
4144 let biv keep initial value of "itself". */
4145 else if (loop_dump_stream)
4146 fprintf (loop_dump_stream, "is complex\n");
4147 }
4148 }
4149
4150 /* If a biv is unconditionally incremented several times in a row, convert
4151 all but the last increment into a giv. */
4152
4153 /* Get an upper bound for the number of registers
4154 we might have after all bivs have been processed. */
4155 first_increment_giv = max_reg_num ();
4156 for (n_extra_increment = 0, bl = loop_iv_list; bl; bl = bl->next)
4157 n_extra_increment += bl->biv_count - 1;
4158
4159 /* If the loop contains volatile memory references do not allow any
4160 replacements to take place, since this could loose the volatile
4161 markers. */
4162 if (n_extra_increment && ! loop_info->has_volatile)
4163 {
4164 unsigned int nregs = first_increment_giv + n_extra_increment;
4165
4166 /* Reallocate reg_iv_type and reg_iv_info. */
4167 VARRAY_GROW (reg_iv_type, nregs);
4168 VARRAY_GROW (reg_iv_info, nregs);
4169
4170 for (bl = loop_iv_list; bl; bl = bl->next)
4171 {
4172 struct induction **vp, *v, *next;
4173 int biv_dead_after_loop = 0;
4174
4175 /* The biv increments lists are in reverse order. Fix this
4176 first. */
4177 for (v = bl->biv, bl->biv = 0; v; v = next)
4178 {
4179 next = v->next_iv;
4180 v->next_iv = bl->biv;
4181 bl->biv = v;
4182 }
4183
4184 /* We must guard against the case that an early exit between v->insn
4185 and next->insn leaves the biv live after the loop, since that
4186 would mean that we'd be missing an increment for the final
4187 value. The following test to set biv_dead_after_loop is like
4188 the first part of the test to set bl->eliminable.
4189 We don't check here if we can calculate the final value, since
4190 this can't succeed if we already know that there is a jump
4191 between v->insn and next->insn, yet next->always_executed is
4192 set and next->maybe_multiple is cleared. Such a combination
4193 implies that the jump destination is outside the loop.
4194 If we want to make this check more sophisticated, we should
4195 check each branch between v->insn and next->insn individually
4196 to see if the biv is dead at its destination. */
4197
4198 if (uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4199 && bl->init_insn
4200 && INSN_UID (bl->init_insn) < max_uid_for_loop
4201 && (uid_luid[REGNO_FIRST_UID (bl->regno)]
4202 >= INSN_LUID (bl->init_insn))
4203 #ifdef HAVE_decrement_and_branch_until_zero
4204 && ! bl->nonneg
4205 #endif
4206 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4207 biv_dead_after_loop = 1;
4208
4209 for (vp = &bl->biv, next = *vp; v = next, next = v->next_iv;)
4210 {
4211 HOST_WIDE_INT offset;
4212 rtx set, add_val, old_reg, dest_reg, last_use_insn, note;
4213 int old_regno, new_regno;
4214 rtx next_loc_insn;
4215
4216 if (! v->always_executed
4217 || v->maybe_multiple
4218 || GET_CODE (v->add_val) != CONST_INT
4219 || ! next->always_executed
4220 || next->maybe_multiple
4221 || ! CONSTANT_P (next->add_val)
4222 || v->mult_val != const1_rtx
4223 || next->mult_val != const1_rtx
4224 || ! (biv_dead_after_loop
4225 || no_jumps_between_p (v->insn, next->insn)))
4226 {
4227 vp = &v->next_iv;
4228 continue;
4229 }
4230 offset = INTVAL (v->add_val);
4231 set = single_set (v->insn);
4232 add_val = plus_constant (next->add_val, offset);
4233 old_reg = v->dest_reg;
4234 dest_reg = gen_reg_rtx (v->mode);
4235
4236 /* Unlike reg_iv_type / reg_iv_info, the other three arrays
4237 have been allocated with some slop space, so we may not
4238 actually need to reallocate them. If we do, the following
4239 if statement will be executed just once in this loop. */
4240 if ((unsigned) max_reg_num () > n_times_set->num_elements)
4241 {
4242 /* Grow all the remaining arrays. */
4243 VARRAY_GROW (set_in_loop, nregs);
4244 VARRAY_GROW (n_times_set, nregs);
4245 VARRAY_GROW (may_not_optimize, nregs);
4246 VARRAY_GROW (reg_single_usage, nregs);
4247 }
4248
4249 /* Some bivs are incremented with a multi-insn sequence.
4250 The first insn contains the add. */
4251 next_loc_insn = next->insn;
4252 while (! loc_mentioned_in_p (next->location,
4253 PATTERN (next_loc_insn)))
4254 next_loc_insn = PREV_INSN (next_loc_insn);
4255
4256 if (next_loc_insn == v->insn)
4257 abort ();
4258
4259 if (! validate_change (next_loc_insn, next->location, add_val, 0))
4260 {
4261 vp = &v->next_iv;
4262 continue;
4263 }
4264
4265 /* Here we can try to eliminate the increment by combining
4266 it into the uses. */
4267
4268 /* Set last_use_insn so that we can check against it. */
4269
4270 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4271 p != next_loc_insn;
4272 p = next_insn_in_loop (loop, p))
4273 {
4274 if (!INSN_P (p))
4275 continue;
4276 if (reg_mentioned_p (old_reg, PATTERN (p)))
4277 {
4278 last_use_insn = p;
4279 }
4280 }
4281
4282 /* If we can't get the LUIDs for the insns, we can't
4283 calculate the lifetime. This is likely from unrolling
4284 of an inner loop, so there is little point in making this
4285 a DEST_REG giv anyways. */
4286 if (INSN_UID (v->insn) >= max_uid_for_loop
4287 || INSN_UID (last_use_insn) >= max_uid_for_loop
4288 || ! validate_change (v->insn, &SET_DEST (set), dest_reg, 0))
4289 {
4290 /* Change the increment at NEXT back to what it was. */
4291 if (! validate_change (next_loc_insn, next->location,
4292 next->add_val, 0))
4293 abort ();
4294 vp = &v->next_iv;
4295 continue;
4296 }
4297 next->add_val = add_val;
4298 v->dest_reg = dest_reg;
4299 v->giv_type = DEST_REG;
4300 v->location = &SET_SRC (set);
4301 v->cant_derive = 0;
4302 v->combined_with = 0;
4303 v->maybe_dead = 0;
4304 v->derive_adjustment = 0;
4305 v->same = 0;
4306 v->ignore = 0;
4307 v->new_reg = 0;
4308 v->final_value = 0;
4309 v->same_insn = 0;
4310 v->auto_inc_opt = 0;
4311 v->unrolled = 0;
4312 v->shared = 0;
4313 v->derived_from = 0;
4314 v->always_computable = 1;
4315 v->always_executed = 1;
4316 v->replaceable = 1;
4317 v->no_const_addval = 0;
4318
4319 old_regno = REGNO (old_reg);
4320 new_regno = REGNO (dest_reg);
4321 VARRAY_INT (set_in_loop, old_regno)--;
4322 VARRAY_INT (set_in_loop, new_regno) = 1;
4323 VARRAY_INT (n_times_set, old_regno)--;
4324 VARRAY_INT (n_times_set, new_regno) = 1;
4325 VARRAY_CHAR (may_not_optimize, new_regno) = 0;
4326
4327 REG_IV_TYPE (new_regno) = GENERAL_INDUCT;
4328 REG_IV_INFO (new_regno) = v;
4329
4330 /* If next_insn has a REG_EQUAL note that mentiones OLD_REG,
4331 it must be replaced. */
4332 note = find_reg_note (next->insn, REG_EQUAL, NULL_RTX);
4333 if (note && reg_mentioned_p (old_reg, XEXP (note, 0)))
4334 XEXP (note, 0) = copy_rtx (SET_SRC (single_set (next->insn)));
4335
4336 /* Remove the increment from the list of biv increments,
4337 and record it as a giv. */
4338 *vp = next;
4339 bl->biv_count--;
4340 v->next_iv = bl->giv;
4341 bl->giv = v;
4342 bl->giv_count++;
4343 v->benefit = rtx_cost (SET_SRC (set), SET);
4344 bl->total_benefit += v->benefit;
4345
4346 /* Now replace the biv with DEST_REG in all insns between
4347 the replaced increment and the next increment, and
4348 remember the last insn that needed a replacement. */
4349 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4350 p != next_loc_insn;
4351 p = next_insn_in_loop (loop, p))
4352 {
4353 rtx note;
4354
4355 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4356 continue;
4357 if (reg_mentioned_p (old_reg, PATTERN (p)))
4358 {
4359 last_use_insn = p;
4360 if (! validate_replace_rtx (old_reg, dest_reg, p))
4361 abort ();
4362 }
4363 for (note = REG_NOTES (p); note; note = XEXP (note, 1))
4364 {
4365 if (GET_CODE (note) == EXPR_LIST)
4366 XEXP (note, 0)
4367 = replace_rtx (XEXP (note, 0), old_reg, dest_reg);
4368 }
4369 }
4370
4371 v->last_use = last_use_insn;
4372 v->lifetime = INSN_LUID (last_use_insn) - INSN_LUID (v->insn);
4373 /* If the lifetime is zero, it means that this register is really
4374 a dead store. So mark this as a giv that can be ignored.
4375 This will not prevent the biv from being eliminated. */
4376 if (v->lifetime == 0)
4377 v->ignore = 1;
4378
4379 if (loop_dump_stream)
4380 fprintf (loop_dump_stream,
4381 "Increment %d of biv %d converted to giv %d.\n\n",
4382 INSN_UID (v->insn), old_regno, new_regno);
4383 }
4384 }
4385 }
4386 last_increment_giv = max_reg_num () - 1;
4387
4388 /* Search the loop for general induction variables. */
4389
4390 for_each_insn_in_loop (loop, check_insn_for_givs);
4391
4392 /* Try to calculate and save the number of loop iterations. This is
4393 set to zero if the actual number can not be calculated. This must
4394 be called after all giv's have been identified, since otherwise it may
4395 fail if the iteration variable is a giv. */
4396
4397 loop_iterations (loop);
4398
4399 /* Now for each giv for which we still don't know whether or not it is
4400 replaceable, check to see if it is replaceable because its final value
4401 can be calculated. This must be done after loop_iterations is called,
4402 so that final_giv_value will work correctly. */
4403
4404 for (bl = loop_iv_list; bl; bl = bl->next)
4405 {
4406 struct induction *v;
4407
4408 for (v = bl->giv; v; v = v->next_iv)
4409 if (! v->replaceable && ! v->not_replaceable)
4410 check_final_value (loop, v);
4411 }
4412
4413 /* Try to prove that the loop counter variable (if any) is always
4414 nonnegative; if so, record that fact with a REG_NONNEG note
4415 so that "decrement and branch until zero" insn can be used. */
4416 check_dbra_loop (loop, insn_count);
4417
4418 /* Create reg_map to hold substitutions for replaceable giv regs.
4419 Some givs might have been made from biv increments, so look at
4420 reg_iv_type for a suitable size. */
4421 reg_map_size = reg_iv_type->num_elements;
4422 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
4423
4424 /* Examine each iv class for feasibility of strength reduction/induction
4425 variable elimination. */
4426
4427 for (bl = loop_iv_list; bl; bl = bl->next)
4428 {
4429 struct induction *v;
4430 int benefit;
4431 int all_reduced;
4432 rtx final_value = 0;
4433 unsigned int nregs;
4434
4435 /* Test whether it will be possible to eliminate this biv
4436 provided all givs are reduced. This is possible if either
4437 the reg is not used outside the loop, or we can compute
4438 what its final value will be.
4439
4440 For architectures with a decrement_and_branch_until_zero insn,
4441 don't do this if we put a REG_NONNEG note on the endtest for
4442 this biv. */
4443
4444 /* Compare against bl->init_insn rather than loop_start.
4445 We aren't concerned with any uses of the biv between
4446 init_insn and loop_start since these won't be affected
4447 by the value of the biv elsewhere in the function, so
4448 long as init_insn doesn't use the biv itself.
4449 March 14, 1989 -- self@bayes.arc.nasa.gov */
4450
4451 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4452 && bl->init_insn
4453 && INSN_UID (bl->init_insn) < max_uid_for_loop
4454 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4455 #ifdef HAVE_decrement_and_branch_until_zero
4456 && ! bl->nonneg
4457 #endif
4458 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4459 || ((final_value = final_biv_value (loop, bl))
4460 #ifdef HAVE_decrement_and_branch_until_zero
4461 && ! bl->nonneg
4462 #endif
4463 ))
4464 bl->eliminable = maybe_eliminate_biv (loop, bl, 0, threshold,
4465 insn_count);
4466 else
4467 {
4468 if (loop_dump_stream)
4469 {
4470 fprintf (loop_dump_stream,
4471 "Cannot eliminate biv %d.\n",
4472 bl->regno);
4473 fprintf (loop_dump_stream,
4474 "First use: insn %d, last use: insn %d.\n",
4475 REGNO_FIRST_UID (bl->regno),
4476 REGNO_LAST_UID (bl->regno));
4477 }
4478 }
4479
4480 /* Combine all giv's for this iv_class. */
4481 combine_givs (bl);
4482
4483 /* This will be true at the end, if all givs which depend on this
4484 biv have been strength reduced.
4485 We can't (currently) eliminate the biv unless this is so. */
4486 all_reduced = 1;
4487
4488 /* Check each giv in this class to see if we will benefit by reducing
4489 it. Skip giv's combined with others. */
4490 for (v = bl->giv; v; v = v->next_iv)
4491 {
4492 struct induction *tv;
4493
4494 if (v->ignore || v->same)
4495 continue;
4496
4497 benefit = v->benefit;
4498
4499 /* Reduce benefit if not replaceable, since we will insert
4500 a move-insn to replace the insn that calculates this giv.
4501 Don't do this unless the giv is a user variable, since it
4502 will often be marked non-replaceable because of the duplication
4503 of the exit code outside the loop. In such a case, the copies
4504 we insert are dead and will be deleted. So they don't have
4505 a cost. Similar situations exist. */
4506 /* ??? The new final_[bg]iv_value code does a much better job
4507 of finding replaceable giv's, and hence this code may no longer
4508 be necessary. */
4509 if (! v->replaceable && ! bl->eliminable
4510 && REG_USERVAR_P (v->dest_reg))
4511 benefit -= copy_cost;
4512
4513 /* Decrease the benefit to count the add-insns that we will
4514 insert to increment the reduced reg for the giv. */
4515 benefit -= add_cost * bl->biv_count;
4516
4517 /* Decide whether to strength-reduce this giv or to leave the code
4518 unchanged (recompute it from the biv each time it is used).
4519 This decision can be made independently for each giv. */
4520
4521 #ifdef AUTO_INC_DEC
4522 /* Attempt to guess whether autoincrement will handle some of the
4523 new add insns; if so, increase BENEFIT (undo the subtraction of
4524 add_cost that was done above). */
4525 if (v->giv_type == DEST_ADDR
4526 && GET_CODE (v->mult_val) == CONST_INT)
4527 {
4528 if (HAVE_POST_INCREMENT
4529 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4530 benefit += add_cost * bl->biv_count;
4531 else if (HAVE_PRE_INCREMENT
4532 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4533 benefit += add_cost * bl->biv_count;
4534 else if (HAVE_POST_DECREMENT
4535 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4536 benefit += add_cost * bl->biv_count;
4537 else if (HAVE_PRE_DECREMENT
4538 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4539 benefit += add_cost * bl->biv_count;
4540 }
4541 #endif
4542
4543 /* If an insn is not to be strength reduced, then set its ignore
4544 flag, and clear all_reduced. */
4545
4546 /* A giv that depends on a reversed biv must be reduced if it is
4547 used after the loop exit, otherwise, it would have the wrong
4548 value after the loop exit. To make it simple, just reduce all
4549 of such giv's whether or not we know they are used after the loop
4550 exit. */
4551
4552 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4553 && ! bl->reversed )
4554 {
4555 if (loop_dump_stream)
4556 fprintf (loop_dump_stream,
4557 "giv of insn %d not worth while, %d vs %d.\n",
4558 INSN_UID (v->insn),
4559 v->lifetime * threshold * benefit, insn_count);
4560 v->ignore = 1;
4561 all_reduced = 0;
4562 }
4563 else
4564 {
4565 /* Check that we can increment the reduced giv without a
4566 multiply insn. If not, reject it. */
4567
4568 for (tv = bl->biv; tv; tv = tv->next_iv)
4569 if (tv->mult_val == const1_rtx
4570 && ! product_cheap_p (tv->add_val, v->mult_val))
4571 {
4572 if (loop_dump_stream)
4573 fprintf (loop_dump_stream,
4574 "giv of insn %d: would need a multiply.\n",
4575 INSN_UID (v->insn));
4576 v->ignore = 1;
4577 all_reduced = 0;
4578 break;
4579 }
4580 }
4581 }
4582
4583 /* Check for givs whose first use is their definition and whose
4584 last use is the definition of another giv. If so, it is likely
4585 dead and should not be used to derive another giv nor to
4586 eliminate a biv. */
4587 for (v = bl->giv; v; v = v->next_iv)
4588 {
4589 if (v->ignore
4590 || (v->same && v->same->ignore))
4591 continue;
4592
4593 if (v->last_use)
4594 {
4595 struct induction *v1;
4596
4597 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4598 if (v->last_use == v1->insn)
4599 v->maybe_dead = 1;
4600 }
4601 else if (v->giv_type == DEST_REG
4602 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4603 {
4604 struct induction *v1;
4605
4606 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4607 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4608 v->maybe_dead = 1;
4609 }
4610 }
4611
4612 /* Now that we know which givs will be reduced, try to rearrange the
4613 combinations to reduce register pressure.
4614 recombine_givs calls find_life_end, which needs reg_iv_type and
4615 reg_iv_info to be valid for all pseudos. We do the necessary
4616 reallocation here since it allows to check if there are still
4617 more bivs to process. */
4618 nregs = max_reg_num ();
4619 if (nregs > reg_iv_type->num_elements)
4620 {
4621 /* If there are still more bivs to process, allocate some slack
4622 space so that we're not constantly reallocating these arrays. */
4623 if (bl->next)
4624 nregs += nregs / 4;
4625 /* Reallocate reg_iv_type and reg_iv_info. */
4626 VARRAY_GROW (reg_iv_type, nregs);
4627 VARRAY_GROW (reg_iv_info, nregs);
4628 }
4629 recombine_givs (loop, bl, flags & LOOP_UNROLL);
4630
4631 /* Reduce each giv that we decided to reduce. */
4632
4633 for (v = bl->giv; v; v = v->next_iv)
4634 {
4635 struct induction *tv;
4636 if (! v->ignore && v->same == 0)
4637 {
4638 int auto_inc_opt = 0;
4639
4640 /* If the code for derived givs immediately below has already
4641 allocated a new_reg, we must keep it. */
4642 if (! v->new_reg)
4643 v->new_reg = gen_reg_rtx (v->mode);
4644
4645 if (v->derived_from)
4646 {
4647 struct induction *d = v->derived_from;
4648
4649 /* In case d->dest_reg is not replaceable, we have
4650 to replace it in v->insn now. */
4651 if (! d->new_reg)
4652 d->new_reg = gen_reg_rtx (d->mode);
4653 PATTERN (v->insn)
4654 = replace_rtx (PATTERN (v->insn), d->dest_reg, d->new_reg);
4655 PATTERN (v->insn)
4656 = replace_rtx (PATTERN (v->insn), v->dest_reg, v->new_reg);
4657 /* For each place where the biv is incremented, add an
4658 insn to set the new, reduced reg for the giv.
4659 We used to do this only for biv_count != 1, but
4660 this fails when there is a giv after a single biv
4661 increment, e.g. when the last giv was expressed as
4662 pre-decrement. */
4663 for (tv = bl->biv; tv; tv = tv->next_iv)
4664 {
4665 /* We always emit reduced giv increments before the
4666 biv increment when bl->biv_count != 1. So by
4667 emitting the add insns for derived givs after the
4668 biv increment, they pick up the updated value of
4669 the reduced giv.
4670 If the reduced giv is processed with
4671 auto_inc_opt == 1, then it is incremented earlier
4672 than the biv, hence we'll still pick up the right
4673 value.
4674 If it's processed with auto_inc_opt == -1,
4675 that implies that the biv increment is before the
4676 first reduced giv's use. The derived giv's lifetime
4677 is after the reduced giv's lifetime, hence in this
4678 case, the biv increment doesn't matter. */
4679 emit_insn_after (copy_rtx (PATTERN (v->insn)), tv->insn);
4680 }
4681 continue;
4682 }
4683
4684 #ifdef AUTO_INC_DEC
4685 /* If the target has auto-increment addressing modes, and
4686 this is an address giv, then try to put the increment
4687 immediately after its use, so that flow can create an
4688 auto-increment addressing mode. */
4689 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4690 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4691 /* We don't handle reversed biv's because bl->biv->insn
4692 does not have a valid INSN_LUID. */
4693 && ! bl->reversed
4694 && v->always_executed && ! v->maybe_multiple
4695 && INSN_UID (v->insn) < max_uid_for_loop)
4696 {
4697 /* If other giv's have been combined with this one, then
4698 this will work only if all uses of the other giv's occur
4699 before this giv's insn. This is difficult to check.
4700
4701 We simplify this by looking for the common case where
4702 there is one DEST_REG giv, and this giv's insn is the
4703 last use of the dest_reg of that DEST_REG giv. If the
4704 increment occurs after the address giv, then we can
4705 perform the optimization. (Otherwise, the increment
4706 would have to go before other_giv, and we would not be
4707 able to combine it with the address giv to get an
4708 auto-inc address.) */
4709 if (v->combined_with)
4710 {
4711 struct induction *other_giv = 0;
4712
4713 for (tv = bl->giv; tv; tv = tv->next_iv)
4714 if (tv->same == v)
4715 {
4716 if (other_giv)
4717 break;
4718 else
4719 other_giv = tv;
4720 }
4721 if (! tv && other_giv
4722 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4723 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4724 == INSN_UID (v->insn))
4725 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4726 auto_inc_opt = 1;
4727 }
4728 /* Check for case where increment is before the address
4729 giv. Do this test in "loop order". */
4730 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4731 && (INSN_LUID (v->insn) < INSN_LUID (loop_scan_start)
4732 || (INSN_LUID (bl->biv->insn)
4733 > INSN_LUID (loop_scan_start))))
4734 || (INSN_LUID (v->insn) < INSN_LUID (loop_scan_start)
4735 && (INSN_LUID (loop_scan_start)
4736 < INSN_LUID (bl->biv->insn))))
4737 auto_inc_opt = -1;
4738 else
4739 auto_inc_opt = 1;
4740
4741 #ifdef HAVE_cc0
4742 {
4743 rtx prev;
4744
4745 /* We can't put an insn immediately after one setting
4746 cc0, or immediately before one using cc0. */
4747 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4748 || (auto_inc_opt == -1
4749 && (prev = prev_nonnote_insn (v->insn)) != 0
4750 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4751 && sets_cc0_p (PATTERN (prev))))
4752 auto_inc_opt = 0;
4753 }
4754 #endif
4755
4756 if (auto_inc_opt)
4757 v->auto_inc_opt = 1;
4758 }
4759 #endif
4760
4761 /* For each place where the biv is incremented, add an insn
4762 to increment the new, reduced reg for the giv. */
4763 for (tv = bl->biv; tv; tv = tv->next_iv)
4764 {
4765 rtx insert_before;
4766
4767 if (! auto_inc_opt)
4768 insert_before = tv->insn;
4769 else if (auto_inc_opt == 1)
4770 insert_before = NEXT_INSN (v->insn);
4771 else
4772 insert_before = v->insn;
4773
4774 if (tv->mult_val == const1_rtx)
4775 emit_iv_add_mult (tv->add_val, v->mult_val,
4776 v->new_reg, v->new_reg, insert_before);
4777 else /* tv->mult_val == const0_rtx */
4778 /* A multiply is acceptable here
4779 since this is presumed to be seldom executed. */
4780 emit_iv_add_mult (tv->add_val, v->mult_val,
4781 v->add_val, v->new_reg, insert_before);
4782 }
4783
4784 /* Add code at loop start to initialize giv's reduced reg. */
4785
4786 emit_iv_add_mult (bl->initial_value, v->mult_val,
4787 v->add_val, v->new_reg, loop_start);
4788 }
4789 }
4790
4791 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4792 as not reduced.
4793
4794 For each giv register that can be reduced now: if replaceable,
4795 substitute reduced reg wherever the old giv occurs;
4796 else add new move insn "giv_reg = reduced_reg". */
4797
4798 for (v = bl->giv; v; v = v->next_iv)
4799 {
4800 if (v->same && v->same->ignore)
4801 v->ignore = 1;
4802
4803 if (v->ignore)
4804 continue;
4805
4806 /* Update expression if this was combined, in case other giv was
4807 replaced. */
4808 if (v->same)
4809 v->new_reg = replace_rtx (v->new_reg,
4810 v->same->dest_reg, v->same->new_reg);
4811
4812 if (v->giv_type == DEST_ADDR)
4813 /* Store reduced reg as the address in the memref where we found
4814 this giv. */
4815 validate_change (v->insn, v->location, v->new_reg, 0);
4816 else if (v->replaceable)
4817 {
4818 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4819
4820 #if 0
4821 /* I can no longer duplicate the original problem. Perhaps
4822 this is unnecessary now? */
4823
4824 /* Replaceable; it isn't strictly necessary to delete the old
4825 insn and emit a new one, because v->dest_reg is now dead.
4826
4827 However, especially when unrolling loops, the special
4828 handling for (set REG0 REG1) in the second cse pass may
4829 make v->dest_reg live again. To avoid this problem, emit
4830 an insn to set the original giv reg from the reduced giv.
4831 We can not delete the original insn, since it may be part
4832 of a LIBCALL, and the code in flow that eliminates dead
4833 libcalls will fail if it is deleted. */
4834 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4835 v->insn);
4836 #endif
4837 }
4838 else
4839 {
4840 /* Not replaceable; emit an insn to set the original giv reg from
4841 the reduced giv, same as above. */
4842 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4843 v->insn);
4844 }
4845
4846 /* When a loop is reversed, givs which depend on the reversed
4847 biv, and which are live outside the loop, must be set to their
4848 correct final value. This insn is only needed if the giv is
4849 not replaceable. The correct final value is the same as the
4850 value that the giv starts the reversed loop with. */
4851 if (bl->reversed && ! v->replaceable)
4852 emit_iv_add_mult (bl->initial_value, v->mult_val,
4853 v->add_val, v->dest_reg, end_insert_before);
4854 else if (v->final_value)
4855 {
4856 rtx insert_before;
4857
4858 /* If the loop has multiple exits, emit the insn before the
4859 loop to ensure that it will always be executed no matter
4860 how the loop exits. Otherwise, emit the insn after the loop,
4861 since this is slightly more efficient. */
4862 if (loop->exit_count)
4863 insert_before = loop_start;
4864 else
4865 insert_before = end_insert_before;
4866 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4867 insert_before);
4868
4869 #if 0
4870 /* If the insn to set the final value of the giv was emitted
4871 before the loop, then we must delete the insn inside the loop
4872 that sets it. If this is a LIBCALL, then we must delete
4873 every insn in the libcall. Note, however, that
4874 final_giv_value will only succeed when there are multiple
4875 exits if the giv is dead at each exit, hence it does not
4876 matter that the original insn remains because it is dead
4877 anyways. */
4878 /* Delete the insn inside the loop that sets the giv since
4879 the giv is now set before (or after) the loop. */
4880 delete_insn (v->insn);
4881 #endif
4882 }
4883
4884 if (loop_dump_stream)
4885 {
4886 fprintf (loop_dump_stream, "giv at %d reduced to ",
4887 INSN_UID (v->insn));
4888 print_rtl (loop_dump_stream, v->new_reg);
4889 fprintf (loop_dump_stream, "\n");
4890 }
4891 }
4892
4893 /* All the givs based on the biv bl have been reduced if they
4894 merit it. */
4895
4896 /* For each giv not marked as maybe dead that has been combined with a
4897 second giv, clear any "maybe dead" mark on that second giv.
4898 v->new_reg will either be or refer to the register of the giv it
4899 combined with.
4900
4901 Doing this clearing avoids problems in biv elimination where a
4902 giv's new_reg is a complex value that can't be put in the insn but
4903 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4904 Since the register will be used in either case, we'd prefer it be
4905 used from the simpler giv. */
4906
4907 for (v = bl->giv; v; v = v->next_iv)
4908 if (! v->maybe_dead && v->same)
4909 v->same->maybe_dead = 0;
4910
4911 /* Try to eliminate the biv, if it is a candidate.
4912 This won't work if ! all_reduced,
4913 since the givs we planned to use might not have been reduced.
4914
4915 We have to be careful that we didn't initially think we could eliminate
4916 this biv because of a giv that we now think may be dead and shouldn't
4917 be used as a biv replacement.
4918
4919 Also, there is the possibility that we may have a giv that looks
4920 like it can be used to eliminate a biv, but the resulting insn
4921 isn't valid. This can happen, for example, on the 88k, where a
4922 JUMP_INSN can compare a register only with zero. Attempts to
4923 replace it with a compare with a constant will fail.
4924
4925 Note that in cases where this call fails, we may have replaced some
4926 of the occurrences of the biv with a giv, but no harm was done in
4927 doing so in the rare cases where it can occur. */
4928
4929 if (all_reduced == 1 && bl->eliminable
4930 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
4931 {
4932 /* ?? If we created a new test to bypass the loop entirely,
4933 or otherwise drop straight in, based on this test, then
4934 we might want to rewrite it also. This way some later
4935 pass has more hope of removing the initialization of this
4936 biv entirely. */
4937
4938 /* If final_value != 0, then the biv may be used after loop end
4939 and we must emit an insn to set it just in case.
4940
4941 Reversed bivs already have an insn after the loop setting their
4942 value, so we don't need another one. We can't calculate the
4943 proper final value for such a biv here anyways. */
4944 if (final_value != 0 && ! bl->reversed)
4945 {
4946 rtx insert_before;
4947
4948 /* If the loop has multiple exits, emit the insn before the
4949 loop to ensure that it will always be executed no matter
4950 how the loop exits. Otherwise, emit the insn after the
4951 loop, since this is slightly more efficient. */
4952 if (loop->exit_count)
4953 insert_before = loop_start;
4954 else
4955 insert_before = end_insert_before;
4956
4957 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4958 end_insert_before);
4959 }
4960
4961 #if 0
4962 /* Delete all of the instructions inside the loop which set
4963 the biv, as they are all dead. If is safe to delete them,
4964 because an insn setting a biv will never be part of a libcall. */
4965 /* However, deleting them will invalidate the regno_last_uid info,
4966 so keeping them around is more convenient. Final_biv_value
4967 will only succeed when there are multiple exits if the biv
4968 is dead at each exit, hence it does not matter that the original
4969 insn remains, because it is dead anyways. */
4970 for (v = bl->biv; v; v = v->next_iv)
4971 delete_insn (v->insn);
4972 #endif
4973
4974 if (loop_dump_stream)
4975 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4976 bl->regno);
4977 }
4978 }
4979
4980 /* Go through all the instructions in the loop, making all the
4981 register substitutions scheduled in REG_MAP. */
4982
4983 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
4984 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4985 || GET_CODE (p) == CALL_INSN)
4986 {
4987 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
4988 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
4989 INSN_CODE (p) = -1;
4990 }
4991
4992 if (loop_info->n_iterations > 0)
4993 {
4994 /* When we completely unroll a loop we will likely not need the increment
4995 of the loop BIV and we will not need the conditional branch at the
4996 end of the loop. */
4997 unrolled_insn_copies = insn_count - 2;
4998
4999 #ifdef HAVE_cc0
5000 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5001 need the comparison before the conditional branch at the end of the
5002 loop. */
5003 unrolled_insn_copies -= 1;
5004 #endif
5005
5006 /* We'll need one copy for each loop iteration. */
5007 unrolled_insn_copies *= loop_info->n_iterations;
5008
5009 /* A little slop to account for the ability to remove initialization
5010 code, better CSE, and other secondary benefits of completely
5011 unrolling some loops. */
5012 unrolled_insn_copies -= 1;
5013
5014 /* Clamp the value. */
5015 if (unrolled_insn_copies < 0)
5016 unrolled_insn_copies = 0;
5017 }
5018
5019 /* Unroll loops from within strength reduction so that we can use the
5020 induction variable information that strength_reduce has already
5021 collected. Always unroll loops that would be as small or smaller
5022 unrolled than when rolled. */
5023 if ((flags & LOOP_UNROLL)
5024 || (loop_info->n_iterations > 0
5025 && unrolled_insn_copies <= insn_count))
5026 unroll_loop (loop, insn_count, end_insert_before, 1);
5027
5028 #ifdef HAVE_decrement_and_branch_on_count
5029 /* Instrument the loop with BCT insn. */
5030 if (HAVE_decrement_and_branch_on_count && (flags & LOOP_BCT)
5031 && flag_branch_on_count_reg)
5032 insert_bct (loop);
5033 #endif /* HAVE_decrement_and_branch_on_count */
5034
5035 if (loop_dump_stream)
5036 fprintf (loop_dump_stream, "\n");
5037
5038 egress:
5039 VARRAY_FREE (reg_iv_type);
5040 VARRAY_FREE (reg_iv_info);
5041 free (reg_biv_class);
5042 if (reg_map)
5043 free (reg_map);
5044 }
5045 \f
5046 /*Record all basic induction variables calculated in the insn. */
5047 static rtx
5048 check_insn_for_bivs (loop, p, not_every_iteration, maybe_multiple)
5049 struct loop *loop;
5050 rtx p;
5051 int not_every_iteration;
5052 int maybe_multiple;
5053 {
5054 rtx set;
5055 rtx dest_reg;
5056 rtx inc_val;
5057 rtx mult_val;
5058 rtx *location;
5059
5060 if (GET_CODE (p) == INSN
5061 && (set = single_set (p))
5062 && GET_CODE (SET_DEST (set)) == REG)
5063 {
5064 dest_reg = SET_DEST (set);
5065 if (REGNO (dest_reg) < max_reg_before_loop
5066 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
5067 && REG_IV_TYPE (REGNO (dest_reg)) != NOT_BASIC_INDUCT)
5068 {
5069 if (basic_induction_var (loop, SET_SRC (set),
5070 GET_MODE (SET_SRC (set)),
5071 dest_reg, p, &inc_val, &mult_val,
5072 &location))
5073 {
5074 /* It is a possible basic induction variable.
5075 Create and initialize an induction structure for it. */
5076
5077 struct induction *v
5078 = (struct induction *) oballoc (sizeof (struct induction));
5079
5080 record_biv (v, p, dest_reg, inc_val, mult_val, location,
5081 not_every_iteration, maybe_multiple);
5082 REG_IV_TYPE (REGNO (dest_reg)) = BASIC_INDUCT;
5083 }
5084 else if (REGNO (dest_reg) < max_reg_before_loop)
5085 REG_IV_TYPE (REGNO (dest_reg)) = NOT_BASIC_INDUCT;
5086 }
5087 }
5088 return p;
5089 }
5090 \f
5091 /* Record all givs calculated in the insn.
5092 A register is a giv if: it is only set once, it is a function of a
5093 biv and a constant (or invariant), and it is not a biv. */
5094 static rtx
5095 check_insn_for_givs (loop, p, not_every_iteration, maybe_multiple)
5096 struct loop *loop;
5097 rtx p;
5098 int not_every_iteration;
5099 int maybe_multiple;
5100 {
5101 rtx set;
5102 /* Look for a general induction variable in a register. */
5103 if (GET_CODE (p) == INSN
5104 && (set = single_set (p))
5105 && GET_CODE (SET_DEST (set)) == REG
5106 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
5107 {
5108 rtx src_reg;
5109 rtx dest_reg;
5110 rtx add_val;
5111 rtx mult_val;
5112 int benefit;
5113 rtx regnote = 0;
5114 rtx last_consec_insn;
5115
5116 dest_reg = SET_DEST (set);
5117 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
5118 return p;
5119
5120 if (/* SET_SRC is a giv. */
5121 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
5122 &mult_val, 0, &benefit, VOIDmode)
5123 /* Equivalent expression is a giv. */
5124 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
5125 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
5126 &add_val, &mult_val, 0,
5127 &benefit, VOIDmode)))
5128 /* Don't try to handle any regs made by loop optimization.
5129 We have nothing on them in regno_first_uid, etc. */
5130 && REGNO (dest_reg) < max_reg_before_loop
5131 /* Don't recognize a BASIC_INDUCT_VAR here. */
5132 && dest_reg != src_reg
5133 /* This must be the only place where the register is set. */
5134 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
5135 /* or all sets must be consecutive and make a giv. */
5136 || (benefit = consec_sets_giv (loop, benefit, p,
5137 src_reg, dest_reg,
5138 &add_val, &mult_val,
5139 &last_consec_insn))))
5140 {
5141 struct induction *v
5142 = (struct induction *) oballoc (sizeof (struct induction));
5143
5144 /* If this is a library call, increase benefit. */
5145 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5146 benefit += libcall_benefit (p);
5147
5148 /* Skip the consecutive insns, if there are any. */
5149 if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
5150 p = last_consec_insn;
5151
5152 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
5153 benefit, DEST_REG, not_every_iteration,
5154 maybe_multiple, NULL_PTR);
5155
5156 }
5157 }
5158
5159 #ifndef DONT_REDUCE_ADDR
5160 /* Look for givs which are memory addresses. */
5161 /* This resulted in worse code on a VAX 8600. I wonder if it
5162 still does. */
5163 if (GET_CODE (p) == INSN)
5164 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
5165 maybe_multiple);
5166 #endif
5167
5168 /* Update the status of whether giv can derive other givs. This can
5169 change when we pass a label or an insn that updates a biv. */
5170 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5171 || GET_CODE (p) == CODE_LABEL)
5172 update_giv_derive (loop, p);
5173 return p;
5174 }
5175 \f
5176 /* Return 1 if X is a valid source for an initial value (or as value being
5177 compared against in an initial test).
5178
5179 X must be either a register or constant and must not be clobbered between
5180 the current insn and the start of the loop.
5181
5182 INSN is the insn containing X. */
5183
5184 static int
5185 valid_initial_value_p (x, insn, call_seen, loop_start)
5186 rtx x;
5187 rtx insn;
5188 int call_seen;
5189 rtx loop_start;
5190 {
5191 if (CONSTANT_P (x))
5192 return 1;
5193
5194 /* Only consider pseudos we know about initialized in insns whose luids
5195 we know. */
5196 if (GET_CODE (x) != REG
5197 || REGNO (x) >= max_reg_before_loop)
5198 return 0;
5199
5200 /* Don't use call-clobbered registers across a call which clobbers it. On
5201 some machines, don't use any hard registers at all. */
5202 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5203 && (SMALL_REGISTER_CLASSES
5204 || (call_used_regs[REGNO (x)] && call_seen)))
5205 return 0;
5206
5207 /* Don't use registers that have been clobbered before the start of the
5208 loop. */
5209 if (reg_set_between_p (x, insn, loop_start))
5210 return 0;
5211
5212 return 1;
5213 }
5214 \f
5215 /* Scan X for memory refs and check each memory address
5216 as a possible giv. INSN is the insn whose pattern X comes from.
5217 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5218 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5219 more thanonce in each loop iteration. */
5220
5221 static void
5222 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
5223 const struct loop *loop;
5224 rtx x;
5225 rtx insn;
5226 int not_every_iteration, maybe_multiple;
5227 {
5228 register int i, j;
5229 register enum rtx_code code;
5230 register const char *fmt;
5231
5232 if (x == 0)
5233 return;
5234
5235 code = GET_CODE (x);
5236 switch (code)
5237 {
5238 case REG:
5239 case CONST_INT:
5240 case CONST:
5241 case CONST_DOUBLE:
5242 case SYMBOL_REF:
5243 case LABEL_REF:
5244 case PC:
5245 case CC0:
5246 case ADDR_VEC:
5247 case ADDR_DIFF_VEC:
5248 case USE:
5249 case CLOBBER:
5250 return;
5251
5252 case MEM:
5253 {
5254 rtx src_reg;
5255 rtx add_val;
5256 rtx mult_val;
5257 int benefit;
5258
5259 /* This code used to disable creating GIVs with mult_val == 1 and
5260 add_val == 0. However, this leads to lost optimizations when
5261 it comes time to combine a set of related DEST_ADDR GIVs, since
5262 this one would not be seen. */
5263
5264 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5265 &mult_val, 1, &benefit, GET_MODE (x)))
5266 {
5267 /* Found one; record it. */
5268 struct induction *v
5269 = (struct induction *) oballoc (sizeof (struct induction));
5270
5271 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5272 add_val, benefit, DEST_ADDR, not_every_iteration,
5273 maybe_multiple, &XEXP (x, 0));
5274
5275 v->mem_mode = GET_MODE (x);
5276 }
5277 }
5278 return;
5279
5280 default:
5281 break;
5282 }
5283
5284 /* Recursively scan the subexpressions for other mem refs. */
5285
5286 fmt = GET_RTX_FORMAT (code);
5287 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5288 if (fmt[i] == 'e')
5289 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5290 maybe_multiple);
5291 else if (fmt[i] == 'E')
5292 for (j = 0; j < XVECLEN (x, i); j++)
5293 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5294 maybe_multiple);
5295 }
5296 \f
5297 /* Fill in the data about one biv update.
5298 V is the `struct induction' in which we record the biv. (It is
5299 allocated by the caller, with alloca.)
5300 INSN is the insn that sets it.
5301 DEST_REG is the biv's reg.
5302
5303 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5304 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5305 being set to INC_VAL.
5306
5307 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5308 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5309 can be executed more than once per iteration. If MAYBE_MULTIPLE
5310 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5311 executed exactly once per iteration. */
5312
5313 static void
5314 record_biv (v, insn, dest_reg, inc_val, mult_val, location,
5315 not_every_iteration, maybe_multiple)
5316 struct induction *v;
5317 rtx insn;
5318 rtx dest_reg;
5319 rtx inc_val;
5320 rtx mult_val;
5321 rtx *location;
5322 int not_every_iteration;
5323 int maybe_multiple;
5324 {
5325 struct iv_class *bl;
5326
5327 v->insn = insn;
5328 v->src_reg = dest_reg;
5329 v->dest_reg = dest_reg;
5330 v->mult_val = mult_val;
5331 v->add_val = inc_val;
5332 v->location = location;
5333 v->mode = GET_MODE (dest_reg);
5334 v->always_computable = ! not_every_iteration;
5335 v->always_executed = ! not_every_iteration;
5336 v->maybe_multiple = maybe_multiple;
5337
5338 /* Add this to the reg's iv_class, creating a class
5339 if this is the first incrementation of the reg. */
5340
5341 bl = reg_biv_class[REGNO (dest_reg)];
5342 if (bl == 0)
5343 {
5344 /* Create and initialize new iv_class. */
5345
5346 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
5347
5348 bl->regno = REGNO (dest_reg);
5349 bl->biv = 0;
5350 bl->giv = 0;
5351 bl->biv_count = 0;
5352 bl->giv_count = 0;
5353
5354 /* Set initial value to the reg itself. */
5355 bl->initial_value = dest_reg;
5356 /* We haven't seen the initializing insn yet */
5357 bl->init_insn = 0;
5358 bl->init_set = 0;
5359 bl->initial_test = 0;
5360 bl->incremented = 0;
5361 bl->eliminable = 0;
5362 bl->nonneg = 0;
5363 bl->reversed = 0;
5364 bl->total_benefit = 0;
5365
5366 /* Add this class to loop_iv_list. */
5367 bl->next = loop_iv_list;
5368 loop_iv_list = bl;
5369
5370 /* Put it in the array of biv register classes. */
5371 reg_biv_class[REGNO (dest_reg)] = bl;
5372 }
5373
5374 /* Update IV_CLASS entry for this biv. */
5375 v->next_iv = bl->biv;
5376 bl->biv = v;
5377 bl->biv_count++;
5378 if (mult_val == const1_rtx)
5379 bl->incremented = 1;
5380
5381 if (loop_dump_stream)
5382 {
5383 fprintf (loop_dump_stream,
5384 "Insn %d: possible biv, reg %d,",
5385 INSN_UID (insn), REGNO (dest_reg));
5386 if (GET_CODE (inc_val) == CONST_INT)
5387 {
5388 fprintf (loop_dump_stream, " const =");
5389 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
5390 fputc ('\n', loop_dump_stream);
5391 }
5392 else
5393 {
5394 fprintf (loop_dump_stream, " const = ");
5395 print_rtl (loop_dump_stream, inc_val);
5396 fprintf (loop_dump_stream, "\n");
5397 }
5398 }
5399 }
5400 \f
5401 /* Fill in the data about one giv.
5402 V is the `struct induction' in which we record the giv. (It is
5403 allocated by the caller, with alloca.)
5404 INSN is the insn that sets it.
5405 BENEFIT estimates the savings from deleting this insn.
5406 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5407 into a register or is used as a memory address.
5408
5409 SRC_REG is the biv reg which the giv is computed from.
5410 DEST_REG is the giv's reg (if the giv is stored in a reg).
5411 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5412 LOCATION points to the place where this giv's value appears in INSN. */
5413
5414 static void
5415 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
5416 type, not_every_iteration, maybe_multiple, location)
5417 const struct loop *loop;
5418 struct induction *v;
5419 rtx insn;
5420 rtx src_reg;
5421 rtx dest_reg;
5422 rtx mult_val, add_val;
5423 int benefit;
5424 enum g_types type;
5425 int not_every_iteration, maybe_multiple;
5426 rtx *location;
5427 {
5428 struct induction *b;
5429 struct iv_class *bl;
5430 rtx set = single_set (insn);
5431 rtx temp;
5432
5433 /* Attempt to prove constantness of the values. */
5434 temp = simplify_rtx (add_val);
5435 if (temp)
5436 add_val = temp;
5437
5438 v->insn = insn;
5439 v->src_reg = src_reg;
5440 v->giv_type = type;
5441 v->dest_reg = dest_reg;
5442 v->mult_val = mult_val;
5443 v->add_val = add_val;
5444 v->benefit = benefit;
5445 v->location = location;
5446 v->cant_derive = 0;
5447 v->combined_with = 0;
5448 v->maybe_multiple = maybe_multiple;
5449 v->maybe_dead = 0;
5450 v->derive_adjustment = 0;
5451 v->same = 0;
5452 v->ignore = 0;
5453 v->new_reg = 0;
5454 v->final_value = 0;
5455 v->same_insn = 0;
5456 v->auto_inc_opt = 0;
5457 v->unrolled = 0;
5458 v->shared = 0;
5459 v->derived_from = 0;
5460 v->last_use = 0;
5461
5462 /* The v->always_computable field is used in update_giv_derive, to
5463 determine whether a giv can be used to derive another giv. For a
5464 DEST_REG giv, INSN computes a new value for the giv, so its value
5465 isn't computable if INSN insn't executed every iteration.
5466 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5467 it does not compute a new value. Hence the value is always computable
5468 regardless of whether INSN is executed each iteration. */
5469
5470 if (type == DEST_ADDR)
5471 v->always_computable = 1;
5472 else
5473 v->always_computable = ! not_every_iteration;
5474
5475 v->always_executed = ! not_every_iteration;
5476
5477 if (type == DEST_ADDR)
5478 {
5479 v->mode = GET_MODE (*location);
5480 v->lifetime = 1;
5481 }
5482 else /* type == DEST_REG */
5483 {
5484 v->mode = GET_MODE (SET_DEST (set));
5485
5486 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5487 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
5488
5489 /* If the lifetime is zero, it means that this register is
5490 really a dead store. So mark this as a giv that can be
5491 ignored. This will not prevent the biv from being eliminated. */
5492 if (v->lifetime == 0)
5493 v->ignore = 1;
5494
5495 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
5496 REG_IV_INFO (REGNO (dest_reg)) = v;
5497 }
5498
5499 /* Add the giv to the class of givs computed from one biv. */
5500
5501 bl = reg_biv_class[REGNO (src_reg)];
5502 if (bl)
5503 {
5504 v->next_iv = bl->giv;
5505 bl->giv = v;
5506 /* Don't count DEST_ADDR. This is supposed to count the number of
5507 insns that calculate givs. */
5508 if (type == DEST_REG)
5509 bl->giv_count++;
5510 bl->total_benefit += benefit;
5511 }
5512 else
5513 /* Fatal error, biv missing for this giv? */
5514 abort ();
5515
5516 if (type == DEST_ADDR)
5517 v->replaceable = 1;
5518 else
5519 {
5520 /* The giv can be replaced outright by the reduced register only if all
5521 of the following conditions are true:
5522 - the insn that sets the giv is always executed on any iteration
5523 on which the giv is used at all
5524 (there are two ways to deduce this:
5525 either the insn is executed on every iteration,
5526 or all uses follow that insn in the same basic block),
5527 - the giv is not used outside the loop
5528 - no assignments to the biv occur during the giv's lifetime. */
5529
5530 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5531 /* Previous line always fails if INSN was moved by loop opt. */
5532 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5533 < INSN_LUID (loop->end)
5534 && (! not_every_iteration
5535 || last_use_this_basic_block (dest_reg, insn)))
5536 {
5537 /* Now check that there are no assignments to the biv within the
5538 giv's lifetime. This requires two separate checks. */
5539
5540 /* Check each biv update, and fail if any are between the first
5541 and last use of the giv.
5542
5543 If this loop contains an inner loop that was unrolled, then
5544 the insn modifying the biv may have been emitted by the loop
5545 unrolling code, and hence does not have a valid luid. Just
5546 mark the biv as not replaceable in this case. It is not very
5547 useful as a biv, because it is used in two different loops.
5548 It is very unlikely that we would be able to optimize the giv
5549 using this biv anyways. */
5550
5551 v->replaceable = 1;
5552 for (b = bl->biv; b; b = b->next_iv)
5553 {
5554 if (INSN_UID (b->insn) >= max_uid_for_loop
5555 || ((uid_luid[INSN_UID (b->insn)]
5556 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
5557 && (uid_luid[INSN_UID (b->insn)]
5558 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
5559 {
5560 v->replaceable = 0;
5561 v->not_replaceable = 1;
5562 break;
5563 }
5564 }
5565
5566 /* If there are any backwards branches that go from after the
5567 biv update to before it, then this giv is not replaceable. */
5568 if (v->replaceable)
5569 for (b = bl->biv; b; b = b->next_iv)
5570 if (back_branch_in_range_p (loop, b->insn))
5571 {
5572 v->replaceable = 0;
5573 v->not_replaceable = 1;
5574 break;
5575 }
5576 }
5577 else
5578 {
5579 /* May still be replaceable, we don't have enough info here to
5580 decide. */
5581 v->replaceable = 0;
5582 v->not_replaceable = 0;
5583 }
5584 }
5585
5586 /* Record whether the add_val contains a const_int, for later use by
5587 combine_givs. */
5588 {
5589 rtx tem = add_val;
5590
5591 v->no_const_addval = 1;
5592 if (tem == const0_rtx)
5593 ;
5594 else if (CONSTANT_P (add_val))
5595 v->no_const_addval = 0;
5596 if (GET_CODE (tem) == PLUS)
5597 {
5598 while (1)
5599 {
5600 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5601 tem = XEXP (tem, 0);
5602 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5603 tem = XEXP (tem, 1);
5604 else
5605 break;
5606 }
5607 if (CONSTANT_P (XEXP (tem, 1)))
5608 v->no_const_addval = 0;
5609 }
5610 }
5611
5612 if (loop_dump_stream)
5613 {
5614 if (type == DEST_REG)
5615 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
5616 INSN_UID (insn), REGNO (dest_reg));
5617 else
5618 fprintf (loop_dump_stream, "Insn %d: dest address",
5619 INSN_UID (insn));
5620
5621 fprintf (loop_dump_stream, " src reg %d benefit %d",
5622 REGNO (src_reg), v->benefit);
5623 fprintf (loop_dump_stream, " lifetime %d",
5624 v->lifetime);
5625
5626 if (v->replaceable)
5627 fprintf (loop_dump_stream, " replaceable");
5628
5629 if (v->no_const_addval)
5630 fprintf (loop_dump_stream, " ncav");
5631
5632 if (GET_CODE (mult_val) == CONST_INT)
5633 {
5634 fprintf (loop_dump_stream, " mult ");
5635 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5636 }
5637 else
5638 {
5639 fprintf (loop_dump_stream, " mult ");
5640 print_rtl (loop_dump_stream, mult_val);
5641 }
5642
5643 if (GET_CODE (add_val) == CONST_INT)
5644 {
5645 fprintf (loop_dump_stream, " add ");
5646 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5647 }
5648 else
5649 {
5650 fprintf (loop_dump_stream, " add ");
5651 print_rtl (loop_dump_stream, add_val);
5652 }
5653 }
5654
5655 if (loop_dump_stream)
5656 fprintf (loop_dump_stream, "\n");
5657
5658 }
5659
5660
5661 /* All this does is determine whether a giv can be made replaceable because
5662 its final value can be calculated. This code can not be part of record_giv
5663 above, because final_giv_value requires that the number of loop iterations
5664 be known, and that can not be accurately calculated until after all givs
5665 have been identified. */
5666
5667 static void
5668 check_final_value (loop, v)
5669 const struct loop *loop;
5670 struct induction *v;
5671 {
5672 struct iv_class *bl;
5673 rtx final_value = 0;
5674
5675 bl = reg_biv_class[REGNO (v->src_reg)];
5676
5677 /* DEST_ADDR givs will never reach here, because they are always marked
5678 replaceable above in record_giv. */
5679
5680 /* The giv can be replaced outright by the reduced register only if all
5681 of the following conditions are true:
5682 - the insn that sets the giv is always executed on any iteration
5683 on which the giv is used at all
5684 (there are two ways to deduce this:
5685 either the insn is executed on every iteration,
5686 or all uses follow that insn in the same basic block),
5687 - its final value can be calculated (this condition is different
5688 than the one above in record_giv)
5689 - no assignments to the biv occur during the giv's lifetime. */
5690
5691 #if 0
5692 /* This is only called now when replaceable is known to be false. */
5693 /* Clear replaceable, so that it won't confuse final_giv_value. */
5694 v->replaceable = 0;
5695 #endif
5696
5697 if ((final_value = final_giv_value (loop, v))
5698 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5699 {
5700 int biv_increment_seen = 0;
5701 rtx p = v->insn;
5702 rtx last_giv_use;
5703
5704 v->replaceable = 1;
5705
5706 /* When trying to determine whether or not a biv increment occurs
5707 during the lifetime of the giv, we can ignore uses of the variable
5708 outside the loop because final_value is true. Hence we can not
5709 use regno_last_uid and regno_first_uid as above in record_giv. */
5710
5711 /* Search the loop to determine whether any assignments to the
5712 biv occur during the giv's lifetime. Start with the insn
5713 that sets the giv, and search around the loop until we come
5714 back to that insn again.
5715
5716 Also fail if there is a jump within the giv's lifetime that jumps
5717 to somewhere outside the lifetime but still within the loop. This
5718 catches spaghetti code where the execution order is not linear, and
5719 hence the above test fails. Here we assume that the giv lifetime
5720 does not extend from one iteration of the loop to the next, so as
5721 to make the test easier. Since the lifetime isn't known yet,
5722 this requires two loops. See also record_giv above. */
5723
5724 last_giv_use = v->insn;
5725
5726 while (1)
5727 {
5728 p = NEXT_INSN (p);
5729 if (p == loop->end)
5730 p = NEXT_INSN (loop->start);
5731 if (p == v->insn)
5732 break;
5733
5734 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5735 || GET_CODE (p) == CALL_INSN)
5736 {
5737 if (biv_increment_seen)
5738 {
5739 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5740 {
5741 v->replaceable = 0;
5742 v->not_replaceable = 1;
5743 break;
5744 }
5745 }
5746 else if (reg_set_p (v->src_reg, PATTERN (p)))
5747 biv_increment_seen = 1;
5748 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5749 last_giv_use = p;
5750 }
5751 }
5752
5753 /* Now that the lifetime of the giv is known, check for branches
5754 from within the lifetime to outside the lifetime if it is still
5755 replaceable. */
5756
5757 if (v->replaceable)
5758 {
5759 p = v->insn;
5760 while (1)
5761 {
5762 p = NEXT_INSN (p);
5763 if (p == loop->end)
5764 p = NEXT_INSN (loop->start);
5765 if (p == last_giv_use)
5766 break;
5767
5768 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5769 && LABEL_NAME (JUMP_LABEL (p))
5770 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5771 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
5772 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5773 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
5774 {
5775 v->replaceable = 0;
5776 v->not_replaceable = 1;
5777
5778 if (loop_dump_stream)
5779 fprintf (loop_dump_stream,
5780 "Found branch outside giv lifetime.\n");
5781
5782 break;
5783 }
5784 }
5785 }
5786
5787 /* If it is replaceable, then save the final value. */
5788 if (v->replaceable)
5789 v->final_value = final_value;
5790 }
5791
5792 if (loop_dump_stream && v->replaceable)
5793 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5794 INSN_UID (v->insn), REGNO (v->dest_reg));
5795 }
5796 \f
5797 /* Update the status of whether a giv can derive other givs.
5798
5799 We need to do something special if there is or may be an update to the biv
5800 between the time the giv is defined and the time it is used to derive
5801 another giv.
5802
5803 In addition, a giv that is only conditionally set is not allowed to
5804 derive another giv once a label has been passed.
5805
5806 The cases we look at are when a label or an update to a biv is passed. */
5807
5808 static void
5809 update_giv_derive (loop, p)
5810 const struct loop *loop;
5811 rtx p;
5812 {
5813 struct iv_class *bl;
5814 struct induction *biv, *giv;
5815 rtx tem;
5816 int dummy;
5817
5818 /* Search all IV classes, then all bivs, and finally all givs.
5819
5820 There are three cases we are concerned with. First we have the situation
5821 of a giv that is only updated conditionally. In that case, it may not
5822 derive any givs after a label is passed.
5823
5824 The second case is when a biv update occurs, or may occur, after the
5825 definition of a giv. For certain biv updates (see below) that are
5826 known to occur between the giv definition and use, we can adjust the
5827 giv definition. For others, or when the biv update is conditional,
5828 we must prevent the giv from deriving any other givs. There are two
5829 sub-cases within this case.
5830
5831 If this is a label, we are concerned with any biv update that is done
5832 conditionally, since it may be done after the giv is defined followed by
5833 a branch here (actually, we need to pass both a jump and a label, but
5834 this extra tracking doesn't seem worth it).
5835
5836 If this is a jump, we are concerned about any biv update that may be
5837 executed multiple times. We are actually only concerned about
5838 backward jumps, but it is probably not worth performing the test
5839 on the jump again here.
5840
5841 If this is a biv update, we must adjust the giv status to show that a
5842 subsequent biv update was performed. If this adjustment cannot be done,
5843 the giv cannot derive further givs. */
5844
5845 for (bl = loop_iv_list; bl; bl = bl->next)
5846 for (biv = bl->biv; biv; biv = biv->next_iv)
5847 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5848 || biv->insn == p)
5849 {
5850 for (giv = bl->giv; giv; giv = giv->next_iv)
5851 {
5852 /* If cant_derive is already true, there is no point in
5853 checking all of these conditions again. */
5854 if (giv->cant_derive)
5855 continue;
5856
5857 /* If this giv is conditionally set and we have passed a label,
5858 it cannot derive anything. */
5859 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5860 giv->cant_derive = 1;
5861
5862 /* Skip givs that have mult_val == 0, since
5863 they are really invariants. Also skip those that are
5864 replaceable, since we know their lifetime doesn't contain
5865 any biv update. */
5866 else if (giv->mult_val == const0_rtx || giv->replaceable)
5867 continue;
5868
5869 /* The only way we can allow this giv to derive another
5870 is if this is a biv increment and we can form the product
5871 of biv->add_val and giv->mult_val. In this case, we will
5872 be able to compute a compensation. */
5873 else if (biv->insn == p)
5874 {
5875 tem = 0;
5876
5877 if (biv->mult_val == const1_rtx)
5878 tem = simplify_giv_expr (loop,
5879 gen_rtx_MULT (giv->mode,
5880 biv->add_val,
5881 giv->mult_val),
5882 &dummy);
5883
5884 if (tem && giv->derive_adjustment)
5885 tem = simplify_giv_expr
5886 (loop,
5887 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
5888 &dummy);
5889
5890 if (tem)
5891 giv->derive_adjustment = tem;
5892 else
5893 giv->cant_derive = 1;
5894 }
5895 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5896 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5897 giv->cant_derive = 1;
5898 }
5899 }
5900 }
5901 \f
5902 /* Check whether an insn is an increment legitimate for a basic induction var.
5903 X is the source of insn P, or a part of it.
5904 MODE is the mode in which X should be interpreted.
5905
5906 DEST_REG is the putative biv, also the destination of the insn.
5907 We accept patterns of these forms:
5908 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5909 REG = INVARIANT + REG
5910
5911 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5912 store the additive term into *INC_VAL, and store the place where
5913 we found the additive term into *LOCATION.
5914
5915 If X is an assignment of an invariant into DEST_REG, we set
5916 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5917
5918 We also want to detect a BIV when it corresponds to a variable
5919 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5920 of the variable may be a PLUS that adds a SUBREG of that variable to
5921 an invariant and then sign- or zero-extends the result of the PLUS
5922 into the variable.
5923
5924 Most GIVs in such cases will be in the promoted mode, since that is the
5925 probably the natural computation mode (and almost certainly the mode
5926 used for addresses) on the machine. So we view the pseudo-reg containing
5927 the variable as the BIV, as if it were simply incremented.
5928
5929 Note that treating the entire pseudo as a BIV will result in making
5930 simple increments to any GIVs based on it. However, if the variable
5931 overflows in its declared mode but not its promoted mode, the result will
5932 be incorrect. This is acceptable if the variable is signed, since
5933 overflows in such cases are undefined, but not if it is unsigned, since
5934 those overflows are defined. So we only check for SIGN_EXTEND and
5935 not ZERO_EXTEND.
5936
5937 If we cannot find a biv, we return 0. */
5938
5939 static int
5940 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val, location)
5941 const struct loop *loop;
5942 register rtx x;
5943 enum machine_mode mode;
5944 rtx dest_reg;
5945 rtx p;
5946 rtx *inc_val;
5947 rtx *mult_val;
5948 rtx **location;
5949 {
5950 register enum rtx_code code;
5951 rtx *argp, arg;
5952 rtx insn, set = 0;
5953
5954 code = GET_CODE (x);
5955 *location = NULL;
5956 switch (code)
5957 {
5958 case PLUS:
5959 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5960 || (GET_CODE (XEXP (x, 0)) == SUBREG
5961 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5962 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5963 {
5964 argp = &XEXP (x, 1);
5965 }
5966 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5967 || (GET_CODE (XEXP (x, 1)) == SUBREG
5968 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5969 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5970 {
5971 argp = &XEXP (x, 0);
5972 }
5973 else
5974 return 0;
5975
5976 arg = *argp;
5977 if (loop_invariant_p (loop, arg) != 1)
5978 return 0;
5979
5980 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5981 *mult_val = const1_rtx;
5982 *location = argp;
5983 return 1;
5984
5985 case SUBREG:
5986 /* If this is a SUBREG for a promoted variable, check the inner
5987 value. */
5988 if (SUBREG_PROMOTED_VAR_P (x))
5989 return basic_induction_var (loop, SUBREG_REG (x),
5990 GET_MODE (SUBREG_REG (x)),
5991 dest_reg, p, inc_val, mult_val, location);
5992 return 0;
5993
5994 case REG:
5995 /* If this register is assigned in a previous insn, look at its
5996 source, but don't go outside the loop or past a label. */
5997
5998 /* If this sets a register to itself, we would repeat any previous
5999 biv increment if we applied this strategy blindly. */
6000 if (rtx_equal_p (dest_reg, x))
6001 return 0;
6002
6003 insn = p;
6004 while (1)
6005 {
6006 do {
6007 insn = PREV_INSN (insn);
6008 } while (insn && GET_CODE (insn) == NOTE
6009 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6010
6011 if (!insn)
6012 break;
6013 set = single_set (insn);
6014 if (set == 0)
6015 break;
6016
6017 if ((SET_DEST (set) == x
6018 || (GET_CODE (SET_DEST (set)) == SUBREG
6019 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
6020 <= UNITS_PER_WORD)
6021 && (GET_MODE_CLASS (GET_MODE (SET_DEST (set)))
6022 == MODE_INT)
6023 && SUBREG_REG (SET_DEST (set)) == x))
6024 && basic_induction_var (loop, SET_SRC (set),
6025 (GET_MODE (SET_SRC (set)) == VOIDmode
6026 ? GET_MODE (x)
6027 : GET_MODE (SET_SRC (set))),
6028 dest_reg, insn,
6029 inc_val, mult_val, location))
6030 return 1;
6031 }
6032 /* ... fall through ... */
6033
6034 /* Can accept constant setting of biv only when inside inner most loop.
6035 Otherwise, a biv of an inner loop may be incorrectly recognized
6036 as a biv of the outer loop,
6037 causing code to be moved INTO the inner loop. */
6038 case MEM:
6039 if (loop_invariant_p (loop, x) != 1)
6040 return 0;
6041 case CONST_INT:
6042 case SYMBOL_REF:
6043 case CONST:
6044 /* convert_modes aborts if we try to convert to or from CCmode, so just
6045 exclude that case. It is very unlikely that a condition code value
6046 would be a useful iterator anyways. */
6047 if (loop->level == 1
6048 && GET_MODE_CLASS (mode) != MODE_CC
6049 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
6050 {
6051 /* Possible bug here? Perhaps we don't know the mode of X. */
6052 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6053 *mult_val = const0_rtx;
6054 return 1;
6055 }
6056 else
6057 return 0;
6058
6059 case SIGN_EXTEND:
6060 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6061 dest_reg, p, inc_val, mult_val, location);
6062
6063 case ASHIFTRT:
6064 /* Similar, since this can be a sign extension. */
6065 for (insn = PREV_INSN (p);
6066 (insn && GET_CODE (insn) == NOTE
6067 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6068 insn = PREV_INSN (insn))
6069 ;
6070
6071 if (insn)
6072 set = single_set (insn);
6073
6074 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
6075 && set && SET_DEST (set) == XEXP (x, 0)
6076 && GET_CODE (XEXP (x, 1)) == CONST_INT
6077 && INTVAL (XEXP (x, 1)) >= 0
6078 && GET_CODE (SET_SRC (set)) == ASHIFT
6079 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6080 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6081 GET_MODE (XEXP (x, 0)),
6082 dest_reg, insn, inc_val, mult_val,
6083 location);
6084 return 0;
6085
6086 default:
6087 return 0;
6088 }
6089 }
6090 \f
6091 /* A general induction variable (giv) is any quantity that is a linear
6092 function of a basic induction variable,
6093 i.e. giv = biv * mult_val + add_val.
6094 The coefficients can be any loop invariant quantity.
6095 A giv need not be computed directly from the biv;
6096 it can be computed by way of other givs. */
6097
6098 /* Determine whether X computes a giv.
6099 If it does, return a nonzero value
6100 which is the benefit from eliminating the computation of X;
6101 set *SRC_REG to the register of the biv that it is computed from;
6102 set *ADD_VAL and *MULT_VAL to the coefficients,
6103 such that the value of X is biv * mult + add; */
6104
6105 static int
6106 general_induction_var (loop, x, src_reg, add_val, mult_val, is_addr,
6107 pbenefit, addr_mode)
6108 const struct loop *loop;
6109 rtx x;
6110 rtx *src_reg;
6111 rtx *add_val;
6112 rtx *mult_val;
6113 int is_addr;
6114 int *pbenefit;
6115 enum machine_mode addr_mode;
6116 {
6117 rtx orig_x = x;
6118 char *storage;
6119
6120 /* If this is an invariant, forget it, it isn't a giv. */
6121 if (loop_invariant_p (loop, x) == 1)
6122 return 0;
6123
6124 /* See if the expression could be a giv and get its form.
6125 Mark our place on the obstack in case we don't find a giv. */
6126 storage = (char *) oballoc (0);
6127 *pbenefit = 0;
6128 x = simplify_giv_expr (loop, x, pbenefit);
6129 if (x == 0)
6130 {
6131 obfree (storage);
6132 return 0;
6133 }
6134
6135 switch (GET_CODE (x))
6136 {
6137 case USE:
6138 case CONST_INT:
6139 /* Since this is now an invariant and wasn't before, it must be a giv
6140 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6141 with. */
6142 *src_reg = loop_iv_list->biv->dest_reg;
6143 *mult_val = const0_rtx;
6144 *add_val = x;
6145 break;
6146
6147 case REG:
6148 /* This is equivalent to a BIV. */
6149 *src_reg = x;
6150 *mult_val = const1_rtx;
6151 *add_val = const0_rtx;
6152 break;
6153
6154 case PLUS:
6155 /* Either (plus (biv) (invar)) or
6156 (plus (mult (biv) (invar_1)) (invar_2)). */
6157 if (GET_CODE (XEXP (x, 0)) == MULT)
6158 {
6159 *src_reg = XEXP (XEXP (x, 0), 0);
6160 *mult_val = XEXP (XEXP (x, 0), 1);
6161 }
6162 else
6163 {
6164 *src_reg = XEXP (x, 0);
6165 *mult_val = const1_rtx;
6166 }
6167 *add_val = XEXP (x, 1);
6168 break;
6169
6170 case MULT:
6171 /* ADD_VAL is zero. */
6172 *src_reg = XEXP (x, 0);
6173 *mult_val = XEXP (x, 1);
6174 *add_val = const0_rtx;
6175 break;
6176
6177 default:
6178 abort ();
6179 }
6180
6181 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6182 unless they are CONST_INT). */
6183 if (GET_CODE (*add_val) == USE)
6184 *add_val = XEXP (*add_val, 0);
6185 if (GET_CODE (*mult_val) == USE)
6186 *mult_val = XEXP (*mult_val, 0);
6187
6188 if (is_addr)
6189 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
6190 else
6191 *pbenefit += rtx_cost (orig_x, SET);
6192
6193 /* Always return true if this is a giv so it will be detected as such,
6194 even if the benefit is zero or negative. This allows elimination
6195 of bivs that might otherwise not be eliminated. */
6196 return 1;
6197 }
6198 \f
6199 /* Given an expression, X, try to form it as a linear function of a biv.
6200 We will canonicalize it to be of the form
6201 (plus (mult (BIV) (invar_1))
6202 (invar_2))
6203 with possible degeneracies.
6204
6205 The invariant expressions must each be of a form that can be used as a
6206 machine operand. We surround then with a USE rtx (a hack, but localized
6207 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6208 routine; it is the caller's responsibility to strip them.
6209
6210 If no such canonicalization is possible (i.e., two biv's are used or an
6211 expression that is neither invariant nor a biv or giv), this routine
6212 returns 0.
6213
6214 For a non-zero return, the result will have a code of CONST_INT, USE,
6215 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6216
6217 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6218
6219 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
6220 static rtx sge_plus_constant PARAMS ((rtx, rtx));
6221 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
6222 static int cmp_recombine_givs_stats PARAMS ((const PTR, const PTR));
6223
6224 static rtx
6225 simplify_giv_expr (loop, x, benefit)
6226 const struct loop *loop;
6227 rtx x;
6228 int *benefit;
6229 {
6230 enum machine_mode mode = GET_MODE (x);
6231 rtx arg0, arg1;
6232 rtx tem;
6233
6234 /* If this is not an integer mode, or if we cannot do arithmetic in this
6235 mode, this can't be a giv. */
6236 if (mode != VOIDmode
6237 && (GET_MODE_CLASS (mode) != MODE_INT
6238 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6239 return NULL_RTX;
6240
6241 switch (GET_CODE (x))
6242 {
6243 case PLUS:
6244 arg0 = simplify_giv_expr (loop, XEXP (x, 0), benefit);
6245 arg1 = simplify_giv_expr (loop, XEXP (x, 1), benefit);
6246 if (arg0 == 0 || arg1 == 0)
6247 return NULL_RTX;
6248
6249 /* Put constant last, CONST_INT last if both constant. */
6250 if ((GET_CODE (arg0) == USE
6251 || GET_CODE (arg0) == CONST_INT)
6252 && ! ((GET_CODE (arg0) == USE
6253 && GET_CODE (arg1) == USE)
6254 || GET_CODE (arg1) == CONST_INT))
6255 tem = arg0, arg0 = arg1, arg1 = tem;
6256
6257 /* Handle addition of zero, then addition of an invariant. */
6258 if (arg1 == const0_rtx)
6259 return arg0;
6260 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6261 switch (GET_CODE (arg0))
6262 {
6263 case CONST_INT:
6264 case USE:
6265 /* Adding two invariants must result in an invariant, so enclose
6266 addition operation inside a USE and return it. */
6267 if (GET_CODE (arg0) == USE)
6268 arg0 = XEXP (arg0, 0);
6269 if (GET_CODE (arg1) == USE)
6270 arg1 = XEXP (arg1, 0);
6271
6272 if (GET_CODE (arg0) == CONST_INT)
6273 tem = arg0, arg0 = arg1, arg1 = tem;
6274 if (GET_CODE (arg1) == CONST_INT)
6275 tem = sge_plus_constant (arg0, arg1);
6276 else
6277 tem = sge_plus (mode, arg0, arg1);
6278
6279 if (GET_CODE (tem) != CONST_INT)
6280 tem = gen_rtx_USE (mode, tem);
6281 return tem;
6282
6283 case REG:
6284 case MULT:
6285 /* biv + invar or mult + invar. Return sum. */
6286 return gen_rtx_PLUS (mode, arg0, arg1);
6287
6288 case PLUS:
6289 /* (a + invar_1) + invar_2. Associate. */
6290 return
6291 simplify_giv_expr (loop,
6292 gen_rtx_PLUS (mode,
6293 XEXP (arg0, 0),
6294 gen_rtx_PLUS (mode,
6295 XEXP (arg0, 1),
6296 arg1)),
6297 benefit);
6298
6299 default:
6300 abort ();
6301 }
6302
6303 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6304 MULT to reduce cases. */
6305 if (GET_CODE (arg0) == REG)
6306 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6307 if (GET_CODE (arg1) == REG)
6308 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6309
6310 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6311 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6312 Recurse to associate the second PLUS. */
6313 if (GET_CODE (arg1) == MULT)
6314 tem = arg0, arg0 = arg1, arg1 = tem;
6315
6316 if (GET_CODE (arg1) == PLUS)
6317 return
6318 simplify_giv_expr (loop,
6319 gen_rtx_PLUS (mode,
6320 gen_rtx_PLUS (mode, arg0,
6321 XEXP (arg1, 0)),
6322 XEXP (arg1, 1)),
6323 benefit);
6324
6325 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6326 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6327 return NULL_RTX;
6328
6329 if (!rtx_equal_p (arg0, arg1))
6330 return NULL_RTX;
6331
6332 return simplify_giv_expr (loop,
6333 gen_rtx_MULT (mode,
6334 XEXP (arg0, 0),
6335 gen_rtx_PLUS (mode,
6336 XEXP (arg0, 1),
6337 XEXP (arg1, 1))),
6338 benefit);
6339
6340 case MINUS:
6341 /* Handle "a - b" as "a + b * (-1)". */
6342 return simplify_giv_expr (loop,
6343 gen_rtx_PLUS (mode,
6344 XEXP (x, 0),
6345 gen_rtx_MULT (mode,
6346 XEXP (x, 1),
6347 constm1_rtx)),
6348 benefit);
6349
6350 case MULT:
6351 arg0 = simplify_giv_expr (loop, XEXP (x, 0), benefit);
6352 arg1 = simplify_giv_expr (loop, XEXP (x, 1), benefit);
6353 if (arg0 == 0 || arg1 == 0)
6354 return NULL_RTX;
6355
6356 /* Put constant last, CONST_INT last if both constant. */
6357 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6358 && GET_CODE (arg1) != CONST_INT)
6359 tem = arg0, arg0 = arg1, arg1 = tem;
6360
6361 /* If second argument is not now constant, not giv. */
6362 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6363 return NULL_RTX;
6364
6365 /* Handle multiply by 0 or 1. */
6366 if (arg1 == const0_rtx)
6367 return const0_rtx;
6368
6369 else if (arg1 == const1_rtx)
6370 return arg0;
6371
6372 switch (GET_CODE (arg0))
6373 {
6374 case REG:
6375 /* biv * invar. Done. */
6376 return gen_rtx_MULT (mode, arg0, arg1);
6377
6378 case CONST_INT:
6379 /* Product of two constants. */
6380 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6381
6382 case USE:
6383 /* invar * invar is a giv, but attempt to simplify it somehow. */
6384 if (GET_CODE (arg1) != CONST_INT)
6385 return NULL_RTX;
6386
6387 arg0 = XEXP (arg0, 0);
6388 if (GET_CODE (arg0) == MULT)
6389 {
6390 /* (invar_0 * invar_1) * invar_2. Associate. */
6391 return simplify_giv_expr (loop,
6392 gen_rtx_MULT (mode,
6393 XEXP (arg0, 0),
6394 gen_rtx_MULT (mode,
6395 XEXP (arg0,
6396 1),
6397 arg1)),
6398 benefit);
6399 }
6400 /* Porpagate the MULT expressions to the intermost nodes. */
6401 else if (GET_CODE (arg0) == PLUS)
6402 {
6403 /* (invar_0 + invar_1) * invar_2. Distribute. */
6404 return simplify_giv_expr (loop,
6405 gen_rtx_PLUS (mode,
6406 gen_rtx_MULT (mode,
6407 XEXP (arg0,
6408 0),
6409 arg1),
6410 gen_rtx_MULT (mode,
6411 XEXP (arg0,
6412 1),
6413 arg1)),
6414 benefit);
6415 }
6416 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
6417
6418 case MULT:
6419 /* (a * invar_1) * invar_2. Associate. */
6420 return simplify_giv_expr (loop,
6421 gen_rtx_MULT (mode,
6422 XEXP (arg0, 0),
6423 gen_rtx_MULT (mode,
6424 XEXP (arg0, 1),
6425 arg1)),
6426 benefit);
6427
6428 case PLUS:
6429 /* (a + invar_1) * invar_2. Distribute. */
6430 return simplify_giv_expr (loop,
6431 gen_rtx_PLUS (mode,
6432 gen_rtx_MULT (mode,
6433 XEXP (arg0, 0),
6434 arg1),
6435 gen_rtx_MULT (mode,
6436 XEXP (arg0, 1),
6437 arg1)),
6438 benefit);
6439
6440 default:
6441 abort ();
6442 }
6443
6444 case ASHIFT:
6445 /* Shift by constant is multiply by power of two. */
6446 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6447 return 0;
6448
6449 return
6450 simplify_giv_expr (loop,
6451 gen_rtx_MULT (mode,
6452 XEXP (x, 0),
6453 GEN_INT ((HOST_WIDE_INT) 1
6454 << INTVAL (XEXP (x, 1)))),
6455 benefit);
6456
6457 case NEG:
6458 /* "-a" is "a * (-1)" */
6459 return simplify_giv_expr (loop,
6460 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6461 benefit);
6462
6463 case NOT:
6464 /* "~a" is "-a - 1". Silly, but easy. */
6465 return simplify_giv_expr (loop,
6466 gen_rtx_MINUS (mode,
6467 gen_rtx_NEG (mode, XEXP (x, 0)),
6468 const1_rtx),
6469 benefit);
6470
6471 case USE:
6472 /* Already in proper form for invariant. */
6473 return x;
6474
6475 case REG:
6476 /* If this is a new register, we can't deal with it. */
6477 if (REGNO (x) >= max_reg_before_loop)
6478 return 0;
6479
6480 /* Check for biv or giv. */
6481 switch (REG_IV_TYPE (REGNO (x)))
6482 {
6483 case BASIC_INDUCT:
6484 return x;
6485 case GENERAL_INDUCT:
6486 {
6487 struct induction *v = REG_IV_INFO (REGNO (x));
6488
6489 /* Form expression from giv and add benefit. Ensure this giv
6490 can derive another and subtract any needed adjustment if so. */
6491 *benefit += v->benefit;
6492 if (v->cant_derive)
6493 return 0;
6494
6495 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6496 v->src_reg, v->mult_val),
6497 v->add_val);
6498
6499 if (v->derive_adjustment)
6500 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6501 return simplify_giv_expr (loop, tem, benefit);
6502 }
6503
6504 default:
6505 /* If it isn't an induction variable, and it is invariant, we
6506 may be able to simplify things further by looking through
6507 the bits we just moved outside the loop. */
6508 if (loop_invariant_p (loop, x) == 1)
6509 {
6510 struct movable *m;
6511
6512 for (m = the_movables; m ; m = m->next)
6513 if (rtx_equal_p (x, m->set_dest))
6514 {
6515 /* Ok, we found a match. Substitute and simplify. */
6516
6517 /* If we match another movable, we must use that, as
6518 this one is going away. */
6519 if (m->match)
6520 return simplify_giv_expr (loop, m->match->set_dest,
6521 benefit);
6522
6523 /* If consec is non-zero, this is a member of a group of
6524 instructions that were moved together. We handle this
6525 case only to the point of seeking to the last insn and
6526 looking for a REG_EQUAL. Fail if we don't find one. */
6527 if (m->consec != 0)
6528 {
6529 int i = m->consec;
6530 tem = m->insn;
6531 do { tem = NEXT_INSN (tem); } while (--i > 0);
6532
6533 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6534 if (tem)
6535 tem = XEXP (tem, 0);
6536 }
6537 else
6538 {
6539 tem = single_set (m->insn);
6540 if (tem)
6541 tem = SET_SRC (tem);
6542 }
6543
6544 if (tem)
6545 {
6546 /* What we are most interested in is pointer
6547 arithmetic on invariants -- only take
6548 patterns we may be able to do something with. */
6549 if (GET_CODE (tem) == PLUS
6550 || GET_CODE (tem) == MULT
6551 || GET_CODE (tem) == ASHIFT
6552 || GET_CODE (tem) == CONST_INT
6553 || GET_CODE (tem) == SYMBOL_REF)
6554 {
6555 tem = simplify_giv_expr (loop, tem, benefit);
6556 if (tem)
6557 return tem;
6558 }
6559 else if (GET_CODE (tem) == CONST
6560 && GET_CODE (XEXP (tem, 0)) == PLUS
6561 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6562 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6563 {
6564 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6565 benefit);
6566 if (tem)
6567 return tem;
6568 }
6569 }
6570 break;
6571 }
6572 }
6573 break;
6574 }
6575
6576 /* Fall through to general case. */
6577 default:
6578 /* If invariant, return as USE (unless CONST_INT).
6579 Otherwise, not giv. */
6580 if (GET_CODE (x) == USE)
6581 x = XEXP (x, 0);
6582
6583 if (loop_invariant_p (loop, x) == 1)
6584 {
6585 if (GET_CODE (x) == CONST_INT)
6586 return x;
6587 if (GET_CODE (x) == CONST
6588 && GET_CODE (XEXP (x, 0)) == PLUS
6589 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6590 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6591 x = XEXP (x, 0);
6592 return gen_rtx_USE (mode, x);
6593 }
6594 else
6595 return 0;
6596 }
6597 }
6598
6599 /* This routine folds invariants such that there is only ever one
6600 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6601
6602 static rtx
6603 sge_plus_constant (x, c)
6604 rtx x, c;
6605 {
6606 if (GET_CODE (x) == CONST_INT)
6607 return GEN_INT (INTVAL (x) + INTVAL (c));
6608 else if (GET_CODE (x) != PLUS)
6609 return gen_rtx_PLUS (GET_MODE (x), x, c);
6610 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6611 {
6612 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6613 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6614 }
6615 else if (GET_CODE (XEXP (x, 0)) == PLUS
6616 || GET_CODE (XEXP (x, 1)) != PLUS)
6617 {
6618 return gen_rtx_PLUS (GET_MODE (x),
6619 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6620 }
6621 else
6622 {
6623 return gen_rtx_PLUS (GET_MODE (x),
6624 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6625 }
6626 }
6627
6628 static rtx
6629 sge_plus (mode, x, y)
6630 enum machine_mode mode;
6631 rtx x, y;
6632 {
6633 while (GET_CODE (y) == PLUS)
6634 {
6635 rtx a = XEXP (y, 0);
6636 if (GET_CODE (a) == CONST_INT)
6637 x = sge_plus_constant (x, a);
6638 else
6639 x = gen_rtx_PLUS (mode, x, a);
6640 y = XEXP (y, 1);
6641 }
6642 if (GET_CODE (y) == CONST_INT)
6643 x = sge_plus_constant (x, y);
6644 else
6645 x = gen_rtx_PLUS (mode, x, y);
6646 return x;
6647 }
6648 \f
6649 /* Help detect a giv that is calculated by several consecutive insns;
6650 for example,
6651 giv = biv * M
6652 giv = giv + A
6653 The caller has already identified the first insn P as having a giv as dest;
6654 we check that all other insns that set the same register follow
6655 immediately after P, that they alter nothing else,
6656 and that the result of the last is still a giv.
6657
6658 The value is 0 if the reg set in P is not really a giv.
6659 Otherwise, the value is the amount gained by eliminating
6660 all the consecutive insns that compute the value.
6661
6662 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6663 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6664
6665 The coefficients of the ultimate giv value are stored in
6666 *MULT_VAL and *ADD_VAL. */
6667
6668 static int
6669 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
6670 add_val, mult_val, last_consec_insn)
6671 const struct loop *loop;
6672 int first_benefit;
6673 rtx p;
6674 rtx src_reg;
6675 rtx dest_reg;
6676 rtx *add_val;
6677 rtx *mult_val;
6678 rtx *last_consec_insn;
6679 {
6680 int count;
6681 enum rtx_code code;
6682 int benefit;
6683 rtx temp;
6684 rtx set;
6685
6686 /* Indicate that this is a giv so that we can update the value produced in
6687 each insn of the multi-insn sequence.
6688
6689 This induction structure will be used only by the call to
6690 general_induction_var below, so we can allocate it on our stack.
6691 If this is a giv, our caller will replace the induct var entry with
6692 a new induction structure. */
6693 struct induction *v
6694 = (struct induction *) alloca (sizeof (struct induction));
6695 v->src_reg = src_reg;
6696 v->mult_val = *mult_val;
6697 v->add_val = *add_val;
6698 v->benefit = first_benefit;
6699 v->cant_derive = 0;
6700 v->derive_adjustment = 0;
6701
6702 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
6703 REG_IV_INFO (REGNO (dest_reg)) = v;
6704
6705 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6706
6707 while (count > 0)
6708 {
6709 p = NEXT_INSN (p);
6710 code = GET_CODE (p);
6711
6712 /* If libcall, skip to end of call sequence. */
6713 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6714 p = XEXP (temp, 0);
6715
6716 if (code == INSN
6717 && (set = single_set (p))
6718 && GET_CODE (SET_DEST (set)) == REG
6719 && SET_DEST (set) == dest_reg
6720 && (general_induction_var (loop, SET_SRC (set), &src_reg,
6721 add_val, mult_val, 0, &benefit, VOIDmode)
6722 /* Giv created by equivalent expression. */
6723 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6724 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
6725 add_val, mult_val, 0, &benefit,
6726 VOIDmode)))
6727 && src_reg == v->src_reg)
6728 {
6729 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6730 benefit += libcall_benefit (p);
6731
6732 count--;
6733 v->mult_val = *mult_val;
6734 v->add_val = *add_val;
6735 v->benefit = benefit;
6736 }
6737 else if (code != NOTE)
6738 {
6739 /* Allow insns that set something other than this giv to a
6740 constant. Such insns are needed on machines which cannot
6741 include long constants and should not disqualify a giv. */
6742 if (code == INSN
6743 && (set = single_set (p))
6744 && SET_DEST (set) != dest_reg
6745 && CONSTANT_P (SET_SRC (set)))
6746 continue;
6747
6748 REG_IV_TYPE (REGNO (dest_reg)) = UNKNOWN_INDUCT;
6749 return 0;
6750 }
6751 }
6752
6753 *last_consec_insn = p;
6754 return v->benefit;
6755 }
6756 \f
6757 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6758 represented by G1. If no such expression can be found, or it is clear that
6759 it cannot possibly be a valid address, 0 is returned.
6760
6761 To perform the computation, we note that
6762 G1 = x * v + a and
6763 G2 = y * v + b
6764 where `v' is the biv.
6765
6766 So G2 = (y/b) * G1 + (b - a*y/x).
6767
6768 Note that MULT = y/x.
6769
6770 Update: A and B are now allowed to be additive expressions such that
6771 B contains all variables in A. That is, computing B-A will not require
6772 subtracting variables. */
6773
6774 static rtx
6775 express_from_1 (a, b, mult)
6776 rtx a, b, mult;
6777 {
6778 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6779
6780 if (mult == const0_rtx)
6781 return b;
6782
6783 /* If MULT is not 1, we cannot handle A with non-constants, since we
6784 would then be required to subtract multiples of the registers in A.
6785 This is theoretically possible, and may even apply to some Fortran
6786 constructs, but it is a lot of work and we do not attempt it here. */
6787
6788 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6789 return NULL_RTX;
6790
6791 /* In general these structures are sorted top to bottom (down the PLUS
6792 chain), but not left to right across the PLUS. If B is a higher
6793 order giv than A, we can strip one level and recurse. If A is higher
6794 order, we'll eventually bail out, but won't know that until the end.
6795 If they are the same, we'll strip one level around this loop. */
6796
6797 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6798 {
6799 rtx ra, rb, oa, ob, tmp;
6800
6801 ra = XEXP (a, 0), oa = XEXP (a, 1);
6802 if (GET_CODE (ra) == PLUS)
6803 tmp = ra, ra = oa, oa = tmp;
6804
6805 rb = XEXP (b, 0), ob = XEXP (b, 1);
6806 if (GET_CODE (rb) == PLUS)
6807 tmp = rb, rb = ob, ob = tmp;
6808
6809 if (rtx_equal_p (ra, rb))
6810 /* We matched: remove one reg completely. */
6811 a = oa, b = ob;
6812 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6813 /* An alternate match. */
6814 a = oa, b = rb;
6815 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6816 /* An alternate match. */
6817 a = ra, b = ob;
6818 else
6819 {
6820 /* Indicates an extra register in B. Strip one level from B and
6821 recurse, hoping B was the higher order expression. */
6822 ob = express_from_1 (a, ob, mult);
6823 if (ob == NULL_RTX)
6824 return NULL_RTX;
6825 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6826 }
6827 }
6828
6829 /* Here we are at the last level of A, go through the cases hoping to
6830 get rid of everything but a constant. */
6831
6832 if (GET_CODE (a) == PLUS)
6833 {
6834 rtx ra, oa;
6835
6836 ra = XEXP (a, 0), oa = XEXP (a, 1);
6837 if (rtx_equal_p (oa, b))
6838 oa = ra;
6839 else if (!rtx_equal_p (ra, b))
6840 return NULL_RTX;
6841
6842 if (GET_CODE (oa) != CONST_INT)
6843 return NULL_RTX;
6844
6845 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6846 }
6847 else if (GET_CODE (a) == CONST_INT)
6848 {
6849 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6850 }
6851 else if (CONSTANT_P (a))
6852 {
6853 return simplify_gen_binary (MINUS, GET_MODE (b), const0_rtx, a);
6854 }
6855 else if (GET_CODE (b) == PLUS)
6856 {
6857 if (rtx_equal_p (a, XEXP (b, 0)))
6858 return XEXP (b, 1);
6859 else if (rtx_equal_p (a, XEXP (b, 1)))
6860 return XEXP (b, 0);
6861 else
6862 return NULL_RTX;
6863 }
6864 else if (rtx_equal_p (a, b))
6865 return const0_rtx;
6866
6867 return NULL_RTX;
6868 }
6869
6870 rtx
6871 express_from (g1, g2)
6872 struct induction *g1, *g2;
6873 {
6874 rtx mult, add;
6875
6876 /* The value that G1 will be multiplied by must be a constant integer. Also,
6877 the only chance we have of getting a valid address is if b*c/a (see above
6878 for notation) is also an integer. */
6879 if (GET_CODE (g1->mult_val) == CONST_INT
6880 && GET_CODE (g2->mult_val) == CONST_INT)
6881 {
6882 if (g1->mult_val == const0_rtx
6883 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6884 return NULL_RTX;
6885 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6886 }
6887 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6888 mult = const1_rtx;
6889 else
6890 {
6891 /* ??? Find out if the one is a multiple of the other? */
6892 return NULL_RTX;
6893 }
6894
6895 add = express_from_1 (g1->add_val, g2->add_val, mult);
6896 if (add == NULL_RTX)
6897 {
6898 /* Failed. If we've got a multiplication factor between G1 and G2,
6899 scale G1's addend and try again. */
6900 if (INTVAL (mult) > 1)
6901 {
6902 rtx g1_add_val = g1->add_val;
6903 if (GET_CODE (g1_add_val) == MULT
6904 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
6905 {
6906 HOST_WIDE_INT m;
6907 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
6908 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
6909 XEXP (g1_add_val, 0), GEN_INT (m));
6910 }
6911 else
6912 {
6913 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
6914 mult);
6915 }
6916
6917 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
6918 }
6919 }
6920 if (add == NULL_RTX)
6921 return NULL_RTX;
6922
6923 /* Form simplified final result. */
6924 if (mult == const0_rtx)
6925 return add;
6926 else if (mult == const1_rtx)
6927 mult = g1->dest_reg;
6928 else
6929 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6930
6931 if (add == const0_rtx)
6932 return mult;
6933 else
6934 {
6935 if (GET_CODE (add) == PLUS
6936 && CONSTANT_P (XEXP (add, 1)))
6937 {
6938 rtx tem = XEXP (add, 1);
6939 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6940 add = tem;
6941 }
6942
6943 return gen_rtx_PLUS (g2->mode, mult, add);
6944 }
6945
6946 }
6947 \f
6948 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6949 represented by G1. This indicates that G2 should be combined with G1 and
6950 that G2 can use (either directly or via an address expression) a register
6951 used to represent G1. */
6952
6953 static rtx
6954 combine_givs_p (g1, g2)
6955 struct induction *g1, *g2;
6956 {
6957 rtx tem = express_from (g1, g2);
6958
6959 /* If these givs are identical, they can be combined. We use the results
6960 of express_from because the addends are not in a canonical form, so
6961 rtx_equal_p is a weaker test. */
6962 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6963 combination to be the other way round. */
6964 if (tem == g1->dest_reg
6965 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
6966 {
6967 return g1->dest_reg;
6968 }
6969
6970 /* If G2 can be expressed as a function of G1 and that function is valid
6971 as an address and no more expensive than using a register for G2,
6972 the expression of G2 in terms of G1 can be used. */
6973 if (tem != NULL_RTX
6974 && g2->giv_type == DEST_ADDR
6975 && memory_address_p (g2->mem_mode, tem)
6976 /* ??? Looses, especially with -fforce-addr, where *g2->location
6977 will always be a register, and so anything more complicated
6978 gets discarded. */
6979 #if 0
6980 #ifdef ADDRESS_COST
6981 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6982 #else
6983 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6984 #endif
6985 #endif
6986 )
6987 {
6988 return tem;
6989 }
6990
6991 return NULL_RTX;
6992 }
6993 \f
6994 struct combine_givs_stats
6995 {
6996 int giv_number;
6997 int total_benefit;
6998 };
6999
7000 static int
7001 cmp_combine_givs_stats (xp, yp)
7002 const PTR xp;
7003 const PTR yp;
7004 {
7005 const struct combine_givs_stats * const x =
7006 (const struct combine_givs_stats *) xp;
7007 const struct combine_givs_stats * const y =
7008 (const struct combine_givs_stats *) yp;
7009 int d;
7010 d = y->total_benefit - x->total_benefit;
7011 /* Stabilize the sort. */
7012 if (!d)
7013 d = x->giv_number - y->giv_number;
7014 return d;
7015 }
7016
7017 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7018 any other. If so, point SAME to the giv combined with and set NEW_REG to
7019 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7020 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7021
7022 static void
7023 combine_givs (bl)
7024 struct iv_class *bl;
7025 {
7026 /* Additional benefit to add for being combined multiple times. */
7027 const int extra_benefit = 3;
7028
7029 struct induction *g1, *g2, **giv_array;
7030 int i, j, k, giv_count;
7031 struct combine_givs_stats *stats;
7032 rtx *can_combine;
7033
7034 /* Count givs, because bl->giv_count is incorrect here. */
7035 giv_count = 0;
7036 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7037 if (!g1->ignore)
7038 giv_count++;
7039
7040 giv_array
7041 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7042 i = 0;
7043 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7044 if (!g1->ignore)
7045 giv_array[i++] = g1;
7046
7047 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
7048 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof(rtx));
7049
7050 for (i = 0; i < giv_count; i++)
7051 {
7052 int this_benefit;
7053 rtx single_use;
7054
7055 g1 = giv_array[i];
7056 stats[i].giv_number = i;
7057
7058 /* If a DEST_REG GIV is used only once, do not allow it to combine
7059 with anything, for in doing so we will gain nothing that cannot
7060 be had by simply letting the GIV with which we would have combined
7061 to be reduced on its own. The losage shows up in particular with
7062 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7063 be seen elsewhere as well. */
7064 if (g1->giv_type == DEST_REG
7065 && (single_use = VARRAY_RTX (reg_single_usage, REGNO (g1->dest_reg)))
7066 && single_use != const0_rtx)
7067 continue;
7068
7069 this_benefit = g1->benefit;
7070 /* Add an additional weight for zero addends. */
7071 if (g1->no_const_addval)
7072 this_benefit += 1;
7073
7074 for (j = 0; j < giv_count; j++)
7075 {
7076 rtx this_combine;
7077
7078 g2 = giv_array[j];
7079 if (g1 != g2
7080 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7081 {
7082 can_combine[i*giv_count + j] = this_combine;
7083 this_benefit += g2->benefit + extra_benefit;
7084 }
7085 }
7086 stats[i].total_benefit = this_benefit;
7087 }
7088
7089 /* Iterate, combining until we can't. */
7090 restart:
7091 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
7092
7093 if (loop_dump_stream)
7094 {
7095 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7096 for (k = 0; k < giv_count; k++)
7097 {
7098 g1 = giv_array[stats[k].giv_number];
7099 if (!g1->combined_with && !g1->same)
7100 fprintf (loop_dump_stream, " {%d, %d}",
7101 INSN_UID (giv_array[stats[k].giv_number]->insn),
7102 stats[k].total_benefit);
7103 }
7104 putc ('\n', loop_dump_stream);
7105 }
7106
7107 for (k = 0; k < giv_count; k++)
7108 {
7109 int g1_add_benefit = 0;
7110
7111 i = stats[k].giv_number;
7112 g1 = giv_array[i];
7113
7114 /* If it has already been combined, skip. */
7115 if (g1->combined_with || g1->same)
7116 continue;
7117
7118 for (j = 0; j < giv_count; j++)
7119 {
7120 g2 = giv_array[j];
7121 if (g1 != g2 && can_combine[i*giv_count + j]
7122 /* If it has already been combined, skip. */
7123 && ! g2->same && ! g2->combined_with)
7124 {
7125 int l;
7126
7127 g2->new_reg = can_combine[i*giv_count + j];
7128 g2->same = g1;
7129 g1->combined_with++;
7130 g1->lifetime += g2->lifetime;
7131
7132 g1_add_benefit += g2->benefit;
7133
7134 /* ??? The new final_[bg]iv_value code does a much better job
7135 of finding replaceable giv's, and hence this code may no
7136 longer be necessary. */
7137 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7138 g1_add_benefit -= copy_cost;
7139
7140 /* To help optimize the next set of combinations, remove
7141 this giv from the benefits of other potential mates. */
7142 for (l = 0; l < giv_count; ++l)
7143 {
7144 int m = stats[l].giv_number;
7145 if (can_combine[m*giv_count + j])
7146 stats[l].total_benefit -= g2->benefit + extra_benefit;
7147 }
7148
7149 if (loop_dump_stream)
7150 fprintf (loop_dump_stream,
7151 "giv at %d combined with giv at %d\n",
7152 INSN_UID (g2->insn), INSN_UID (g1->insn));
7153 }
7154 }
7155
7156 /* To help optimize the next set of combinations, remove
7157 this giv from the benefits of other potential mates. */
7158 if (g1->combined_with)
7159 {
7160 for (j = 0; j < giv_count; ++j)
7161 {
7162 int m = stats[j].giv_number;
7163 if (can_combine[m*giv_count + i])
7164 stats[j].total_benefit -= g1->benefit + extra_benefit;
7165 }
7166
7167 g1->benefit += g1_add_benefit;
7168
7169 /* We've finished with this giv, and everything it touched.
7170 Restart the combination so that proper weights for the
7171 rest of the givs are properly taken into account. */
7172 /* ??? Ideally we would compact the arrays at this point, so
7173 as to not cover old ground. But sanely compacting
7174 can_combine is tricky. */
7175 goto restart;
7176 }
7177 }
7178
7179 /* Clean up. */
7180 free (stats);
7181 free (can_combine);
7182 }
7183 \f
7184 struct recombine_givs_stats
7185 {
7186 int giv_number;
7187 int start_luid, end_luid;
7188 };
7189
7190 /* Used below as comparison function for qsort. We want a ascending luid
7191 when scanning the array starting at the end, thus the arguments are
7192 used in reverse. */
7193 static int
7194 cmp_recombine_givs_stats (xp, yp)
7195 const PTR xp;
7196 const PTR yp;
7197 {
7198 const struct recombine_givs_stats * const x =
7199 (const struct recombine_givs_stats *) xp;
7200 const struct recombine_givs_stats * const y =
7201 (const struct recombine_givs_stats *) yp;
7202 int d;
7203 d = y->start_luid - x->start_luid;
7204 /* Stabilize the sort. */
7205 if (!d)
7206 d = y->giv_number - x->giv_number;
7207 return d;
7208 }
7209
7210 /* Scan X, which is a part of INSN, for the end of life of a giv. Also
7211 look for the start of life of a giv where the start has not been seen
7212 yet to unlock the search for the end of its life.
7213 Only consider givs that belong to BIV.
7214 Return the total number of lifetime ends that have been found. */
7215 static int
7216 find_life_end (x, stats, insn, biv)
7217 rtx x, insn, biv;
7218 struct recombine_givs_stats *stats;
7219 {
7220 enum rtx_code code;
7221 const char *fmt;
7222 int i, j;
7223 int retval;
7224
7225 code = GET_CODE (x);
7226 switch (code)
7227 {
7228 case SET:
7229 {
7230 rtx reg = SET_DEST (x);
7231 if (GET_CODE (reg) == REG)
7232 {
7233 int regno = REGNO (reg);
7234 struct induction *v = REG_IV_INFO (regno);
7235
7236 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7237 && ! v->ignore
7238 && v->src_reg == biv
7239 && stats[v->ix].end_luid <= 0)
7240 {
7241 /* If we see a 0 here for end_luid, it means that we have
7242 scanned the entire loop without finding any use at all.
7243 We must not predicate this code on a start_luid match
7244 since that would make the test fail for givs that have
7245 been hoisted out of inner loops. */
7246 if (stats[v->ix].end_luid == 0)
7247 {
7248 stats[v->ix].end_luid = stats[v->ix].start_luid;
7249 return 1 + find_life_end (SET_SRC (x), stats, insn, biv);
7250 }
7251 else if (stats[v->ix].start_luid == INSN_LUID (insn))
7252 stats[v->ix].end_luid = 0;
7253 }
7254 return find_life_end (SET_SRC (x), stats, insn, biv);
7255 }
7256 break;
7257 }
7258 case REG:
7259 {
7260 int regno = REGNO (x);
7261 struct induction *v = REG_IV_INFO (regno);
7262
7263 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7264 && ! v->ignore
7265 && v->src_reg == biv
7266 && stats[v->ix].end_luid == 0)
7267 {
7268 while (INSN_UID (insn) >= max_uid_for_loop)
7269 insn = NEXT_INSN (insn);
7270 stats[v->ix].end_luid = INSN_LUID (insn);
7271 return 1;
7272 }
7273 return 0;
7274 }
7275 case LABEL_REF:
7276 case CONST_DOUBLE:
7277 case CONST_INT:
7278 case CONST:
7279 return 0;
7280 default:
7281 break;
7282 }
7283 fmt = GET_RTX_FORMAT (code);
7284 retval = 0;
7285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7286 {
7287 if (fmt[i] == 'e')
7288 retval += find_life_end (XEXP (x, i), stats, insn, biv);
7289
7290 else if (fmt[i] == 'E')
7291 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7292 retval += find_life_end (XVECEXP (x, i, j), stats, insn, biv);
7293 }
7294 return retval;
7295 }
7296
7297 /* For each giv that has been combined with another, look if
7298 we can combine it with the most recently used one instead.
7299 This tends to shorten giv lifetimes, and helps the next step:
7300 try to derive givs from other givs. */
7301 static void
7302 recombine_givs (loop, bl, unroll_p)
7303 const struct loop *loop;
7304 struct iv_class *bl;
7305 int unroll_p;
7306 {
7307 struct induction *v, **giv_array, *last_giv;
7308 struct recombine_givs_stats *stats;
7309 int giv_count;
7310 int i, rescan;
7311 int ends_need_computing;
7312
7313 for (giv_count = 0, v = bl->giv; v; v = v->next_iv)
7314 {
7315 if (! v->ignore)
7316 giv_count++;
7317 }
7318 giv_array
7319 = (struct induction **) xmalloc (giv_count * sizeof (struct induction *));
7320 stats = (struct recombine_givs_stats *) xmalloc (giv_count * sizeof *stats);
7321
7322 /* Initialize stats and set up the ix field for each giv in stats to name
7323 the corresponding index into stats. */
7324 for (i = 0, v = bl->giv; v; v = v->next_iv)
7325 {
7326 rtx p;
7327
7328 if (v->ignore)
7329 continue;
7330 giv_array[i] = v;
7331 stats[i].giv_number = i;
7332 /* If this giv has been hoisted out of an inner loop, use the luid of
7333 the previous insn. */
7334 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7335 p = PREV_INSN (p);
7336 stats[i].start_luid = INSN_LUID (p);
7337 i++;
7338 }
7339
7340 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7341
7342 /* Set up the ix field for each giv in stats to name
7343 the corresponding index into stats, and
7344 do the actual most-recently-used recombination. */
7345 for (last_giv = 0, i = giv_count - 1; i >= 0; i--)
7346 {
7347 v = giv_array[stats[i].giv_number];
7348 v->ix = i;
7349 if (v->same)
7350 {
7351 struct induction *old_same = v->same;
7352 rtx new_combine;
7353
7354 /* combine_givs_p actually says if we can make this transformation.
7355 The other tests are here only to avoid keeping a giv alive
7356 that could otherwise be eliminated. */
7357 if (last_giv
7358 && ((old_same->maybe_dead && ! old_same->combined_with)
7359 || ! last_giv->maybe_dead
7360 || last_giv->combined_with)
7361 && (new_combine = combine_givs_p (last_giv, v)))
7362 {
7363 old_same->combined_with--;
7364 v->new_reg = new_combine;
7365 v->same = last_giv;
7366 last_giv->combined_with++;
7367 /* No need to update lifetimes / benefits here since we have
7368 already decided what to reduce. */
7369
7370 if (loop_dump_stream)
7371 {
7372 fprintf (loop_dump_stream,
7373 "giv at %d recombined with giv at %d as ",
7374 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7375 print_rtl (loop_dump_stream, v->new_reg);
7376 putc ('\n', loop_dump_stream);
7377 }
7378 continue;
7379 }
7380 v = v->same;
7381 }
7382 else if (v->giv_type != DEST_REG)
7383 continue;
7384 if (! last_giv
7385 || (last_giv->maybe_dead && ! last_giv->combined_with)
7386 || ! v->maybe_dead
7387 || v->combined_with)
7388 last_giv = v;
7389 }
7390
7391 ends_need_computing = 0;
7392 /* For each DEST_REG giv, compute lifetime starts, and try to compute
7393 lifetime ends from regscan info. */
7394 for (i = giv_count - 1; i >= 0; i--)
7395 {
7396 v = giv_array[stats[i].giv_number];
7397 if (v->ignore)
7398 continue;
7399 if (v->giv_type == DEST_ADDR)
7400 {
7401 /* Loop unrolling of an inner loop can even create new DEST_REG
7402 givs. */
7403 rtx p;
7404 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7405 p = PREV_INSN (p);
7406 stats[i].start_luid = stats[i].end_luid = INSN_LUID (p);
7407 if (p != v->insn)
7408 stats[i].end_luid++;
7409 }
7410 else /* v->giv_type == DEST_REG */
7411 {
7412 if (v->last_use)
7413 {
7414 stats[i].start_luid = INSN_LUID (v->insn);
7415 stats[i].end_luid = INSN_LUID (v->last_use);
7416 }
7417 else if (INSN_UID (v->insn) >= max_uid_for_loop)
7418 {
7419 rtx p;
7420 /* This insn has been created by loop optimization on an inner
7421 loop. We don't have a proper start_luid that will match
7422 when we see the first set. But we do know that there will
7423 be no use before the set, so we can set end_luid to 0 so that
7424 we'll start looking for the last use right away. */
7425 for (p = PREV_INSN (v->insn); INSN_UID (p) >= max_uid_for_loop; )
7426 p = PREV_INSN (p);
7427 stats[i].start_luid = INSN_LUID (p);
7428 stats[i].end_luid = 0;
7429 ends_need_computing++;
7430 }
7431 else
7432 {
7433 int regno = REGNO (v->dest_reg);
7434 int count = VARRAY_INT (n_times_set, regno) - 1;
7435 rtx p = v->insn;
7436
7437 /* Find the first insn that sets the giv, so that we can verify
7438 if this giv's lifetime wraps around the loop. We also need
7439 the luid of the first setting insn in order to detect the
7440 last use properly. */
7441 while (count)
7442 {
7443 p = prev_nonnote_insn (p);
7444 if (reg_set_p (v->dest_reg, p))
7445 count--;
7446 }
7447
7448 stats[i].start_luid = INSN_LUID (p);
7449 if (stats[i].start_luid > uid_luid[REGNO_FIRST_UID (regno)])
7450 {
7451 stats[i].end_luid = -1;
7452 ends_need_computing++;
7453 }
7454 else
7455 {
7456 stats[i].end_luid = uid_luid[REGNO_LAST_UID (regno)];
7457 if (stats[i].end_luid > INSN_LUID (loop->end))
7458 {
7459 stats[i].end_luid = -1;
7460 ends_need_computing++;
7461 }
7462 }
7463 }
7464 }
7465 }
7466
7467 /* If the regscan information was unconclusive for one or more DEST_REG
7468 givs, scan the all insn in the loop to find out lifetime ends. */
7469 if (ends_need_computing)
7470 {
7471 rtx biv = bl->biv->src_reg;
7472 rtx p = loop->end;
7473
7474 do
7475 {
7476 if (p == loop->start)
7477 p = loop->end;
7478 p = PREV_INSN (p);
7479 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
7480 continue;
7481 ends_need_computing -= find_life_end (PATTERN (p), stats, p, biv);
7482 }
7483 while (ends_need_computing);
7484 }
7485
7486 /* Set start_luid back to the last insn that sets the giv. This allows
7487 more combinations. */
7488 for (i = giv_count - 1; i >= 0; i--)
7489 {
7490 v = giv_array[stats[i].giv_number];
7491 if (v->ignore)
7492 continue;
7493 if (INSN_UID (v->insn) < max_uid_for_loop)
7494 stats[i].start_luid = INSN_LUID (v->insn);
7495 }
7496
7497 /* Now adjust lifetime ends by taking combined givs into account. */
7498 for (i = giv_count - 1; i >= 0; i--)
7499 {
7500 unsigned luid;
7501 int j;
7502
7503 v = giv_array[stats[i].giv_number];
7504 if (v->ignore)
7505 continue;
7506 if (v->same && ! v->same->ignore)
7507 {
7508 j = v->same->ix;
7509 luid = stats[i].start_luid;
7510 /* Use unsigned arithmetic to model loop wrap-around. */
7511 if (luid - stats[j].start_luid
7512 > (unsigned) stats[j].end_luid - stats[j].start_luid)
7513 stats[j].end_luid = luid;
7514 }
7515 }
7516
7517 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7518
7519 /* Try to derive DEST_REG givs from previous DEST_REG givs with the
7520 same mult_val and non-overlapping lifetime. This reduces register
7521 pressure.
7522 Once we find a DEST_REG giv that is suitable to derive others from,
7523 we set last_giv to this giv, and try to derive as many other DEST_REG
7524 givs from it without joining overlapping lifetimes. If we then
7525 encounter a DEST_REG giv that we can't derive, we set rescan to the
7526 index for this giv (unless rescan is already set).
7527 When we are finished with the current LAST_GIV (i.e. the inner loop
7528 terminates), we start again with rescan, which then becomes the new
7529 LAST_GIV. */
7530 for (i = giv_count - 1; i >= 0; i = rescan)
7531 {
7532 int life_start = 0, life_end = 0;
7533
7534 for (last_giv = 0, rescan = -1; i >= 0; i--)
7535 {
7536 rtx sum;
7537
7538 v = giv_array[stats[i].giv_number];
7539 if (v->giv_type != DEST_REG || v->derived_from || v->same)
7540 continue;
7541 if (! last_giv)
7542 {
7543 /* Don't use a giv that's likely to be dead to derive
7544 others - that would be likely to keep that giv alive. */
7545 if (! v->maybe_dead || v->combined_with)
7546 {
7547 last_giv = v;
7548 life_start = stats[i].start_luid;
7549 life_end = stats[i].end_luid;
7550 }
7551 continue;
7552 }
7553 /* Use unsigned arithmetic to model loop wrap around. */
7554 if (((unsigned) stats[i].start_luid - life_start
7555 >= (unsigned) life_end - life_start)
7556 && ((unsigned) stats[i].end_luid - life_start
7557 > (unsigned) life_end - life_start)
7558 /* Check that the giv insn we're about to use for deriving
7559 precedes all uses of that giv. Note that initializing the
7560 derived giv would defeat the purpose of reducing register
7561 pressure.
7562 ??? We could arrange to move the insn. */
7563 && ((unsigned) stats[i].end_luid - INSN_LUID (loop->start)
7564 > (unsigned) stats[i].start_luid - INSN_LUID (loop->start))
7565 && rtx_equal_p (last_giv->mult_val, v->mult_val)
7566 /* ??? Could handle libcalls, but would need more logic. */
7567 && ! find_reg_note (v->insn, REG_RETVAL, NULL_RTX)
7568 /* We would really like to know if for any giv that v
7569 is combined with, v->insn or any intervening biv increment
7570 dominates that combined giv. However, we
7571 don't have this detailed control flow information.
7572 N.B. since last_giv will be reduced, it is valid
7573 anywhere in the loop, so we don't need to check the
7574 validity of last_giv.
7575 We rely here on the fact that v->always_executed implies that
7576 there is no jump to someplace else in the loop before the
7577 giv insn, and hence any insn that is executed before the
7578 giv insn in the loop will have a lower luid. */
7579 && (v->always_executed || ! v->combined_with)
7580 && (sum = express_from (last_giv, v))
7581 /* Make sure we don't make the add more expensive. ADD_COST
7582 doesn't take different costs of registers and constants into
7583 account, so compare the cost of the actual SET_SRCs. */
7584 && (rtx_cost (sum, SET)
7585 <= rtx_cost (SET_SRC (single_set (v->insn)), SET))
7586 /* ??? unroll can't understand anything but reg + const_int
7587 sums. It would be cleaner to fix unroll. */
7588 && ((GET_CODE (sum) == PLUS
7589 && GET_CODE (XEXP (sum, 0)) == REG
7590 && GET_CODE (XEXP (sum, 1)) == CONST_INT)
7591 || ! unroll_p)
7592 && validate_change (v->insn, &PATTERN (v->insn),
7593 gen_rtx_SET (VOIDmode, v->dest_reg, sum), 0))
7594 {
7595 v->derived_from = last_giv;
7596 life_end = stats[i].end_luid;
7597
7598 if (loop_dump_stream)
7599 {
7600 fprintf (loop_dump_stream,
7601 "giv at %d derived from %d as ",
7602 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7603 print_rtl (loop_dump_stream, sum);
7604 putc ('\n', loop_dump_stream);
7605 }
7606 }
7607 else if (rescan < 0)
7608 rescan = i;
7609 }
7610 }
7611
7612 /* Clean up. */
7613 free (giv_array);
7614 free (stats);
7615 }
7616 \f
7617 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
7618
7619 void
7620 emit_iv_add_mult (b, m, a, reg, insert_before)
7621 rtx b; /* initial value of basic induction variable */
7622 rtx m; /* multiplicative constant */
7623 rtx a; /* additive constant */
7624 rtx reg; /* destination register */
7625 rtx insert_before;
7626 {
7627 rtx seq;
7628 rtx result;
7629
7630 /* Prevent unexpected sharing of these rtx. */
7631 a = copy_rtx (a);
7632 b = copy_rtx (b);
7633
7634 /* Increase the lifetime of any invariants moved further in code. */
7635 update_reg_last_use (a, insert_before);
7636 update_reg_last_use (b, insert_before);
7637 update_reg_last_use (m, insert_before);
7638
7639 start_sequence ();
7640 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
7641 if (reg != result)
7642 emit_move_insn (reg, result);
7643 seq = gen_sequence ();
7644 end_sequence ();
7645
7646 emit_insn_before (seq, insert_before);
7647
7648 /* It is entirely possible that the expansion created lots of new
7649 registers. Iterate over the sequence we just created and
7650 record them all. */
7651
7652 if (GET_CODE (seq) == SEQUENCE)
7653 {
7654 int i;
7655 for (i = 0; i < XVECLEN (seq, 0); ++i)
7656 {
7657 rtx set = single_set (XVECEXP (seq, 0, i));
7658 if (set && GET_CODE (SET_DEST (set)) == REG)
7659 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7660 }
7661 }
7662 else if (GET_CODE (seq) == SET
7663 && GET_CODE (SET_DEST (seq)) == REG)
7664 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7665 }
7666 \f
7667 /* Test whether A * B can be computed without
7668 an actual multiply insn. Value is 1 if so. */
7669
7670 static int
7671 product_cheap_p (a, b)
7672 rtx a;
7673 rtx b;
7674 {
7675 int i;
7676 rtx tmp;
7677 struct obstack *old_rtl_obstack = rtl_obstack;
7678 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
7679 int win = 1;
7680
7681 /* If only one is constant, make it B. */
7682 if (GET_CODE (a) == CONST_INT)
7683 tmp = a, a = b, b = tmp;
7684
7685 /* If first constant, both constant, so don't need multiply. */
7686 if (GET_CODE (a) == CONST_INT)
7687 return 1;
7688
7689 /* If second not constant, neither is constant, so would need multiply. */
7690 if (GET_CODE (b) != CONST_INT)
7691 return 0;
7692
7693 /* One operand is constant, so might not need multiply insn. Generate the
7694 code for the multiply and see if a call or multiply, or long sequence
7695 of insns is generated. */
7696
7697 rtl_obstack = &temp_obstack;
7698 start_sequence ();
7699 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
7700 tmp = gen_sequence ();
7701 end_sequence ();
7702
7703 if (GET_CODE (tmp) == SEQUENCE)
7704 {
7705 if (XVEC (tmp, 0) == 0)
7706 win = 1;
7707 else if (XVECLEN (tmp, 0) > 3)
7708 win = 0;
7709 else
7710 for (i = 0; i < XVECLEN (tmp, 0); i++)
7711 {
7712 rtx insn = XVECEXP (tmp, 0, i);
7713
7714 if (GET_CODE (insn) != INSN
7715 || (GET_CODE (PATTERN (insn)) == SET
7716 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7717 || (GET_CODE (PATTERN (insn)) == PARALLEL
7718 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7719 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7720 {
7721 win = 0;
7722 break;
7723 }
7724 }
7725 }
7726 else if (GET_CODE (tmp) == SET
7727 && GET_CODE (SET_SRC (tmp)) == MULT)
7728 win = 0;
7729 else if (GET_CODE (tmp) == PARALLEL
7730 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7731 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7732 win = 0;
7733
7734 /* Free any storage we obtained in generating this multiply and restore rtl
7735 allocation to its normal obstack. */
7736 obstack_free (&temp_obstack, storage);
7737 rtl_obstack = old_rtl_obstack;
7738
7739 return win;
7740 }
7741 \f
7742 /* Check to see if loop can be terminated by a "decrement and branch until
7743 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7744 Also try reversing an increment loop to a decrement loop
7745 to see if the optimization can be performed.
7746 Value is nonzero if optimization was performed. */
7747
7748 /* This is useful even if the architecture doesn't have such an insn,
7749 because it might change a loops which increments from 0 to n to a loop
7750 which decrements from n to 0. A loop that decrements to zero is usually
7751 faster than one that increments from zero. */
7752
7753 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7754 such as approx_final_value, biv_total_increment, loop_iterations, and
7755 final_[bg]iv_value. */
7756
7757 static int
7758 check_dbra_loop (loop, insn_count)
7759 struct loop *loop;
7760 int insn_count;
7761 {
7762 struct iv_class *bl;
7763 rtx reg;
7764 rtx jump_label;
7765 rtx final_value;
7766 rtx start_value;
7767 rtx new_add_val;
7768 rtx comparison;
7769 rtx before_comparison;
7770 rtx p;
7771 rtx jump;
7772 rtx first_compare;
7773 int compare_and_branch;
7774 rtx loop_start = loop->start;
7775 rtx loop_end = loop->end;
7776 struct loop_info *loop_info = LOOP_INFO (loop);
7777
7778 /* If last insn is a conditional branch, and the insn before tests a
7779 register value, try to optimize it. Otherwise, we can't do anything. */
7780
7781 jump = PREV_INSN (loop_end);
7782 comparison = get_condition_for_loop (loop, jump);
7783 if (comparison == 0)
7784 return 0;
7785 if (!onlyjump_p (jump))
7786 return 0;
7787
7788 /* Try to compute whether the compare/branch at the loop end is one or
7789 two instructions. */
7790 get_condition (jump, &first_compare);
7791 if (first_compare == jump)
7792 compare_and_branch = 1;
7793 else if (first_compare == prev_nonnote_insn (jump))
7794 compare_and_branch = 2;
7795 else
7796 return 0;
7797
7798 /* Check all of the bivs to see if the compare uses one of them.
7799 Skip biv's set more than once because we can't guarantee that
7800 it will be zero on the last iteration. Also skip if the biv is
7801 used between its update and the test insn. */
7802
7803 for (bl = loop_iv_list; bl; bl = bl->next)
7804 {
7805 if (bl->biv_count == 1
7806 && ! bl->biv->maybe_multiple
7807 && bl->biv->dest_reg == XEXP (comparison, 0)
7808 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7809 first_compare))
7810 break;
7811 }
7812
7813 if (! bl)
7814 return 0;
7815
7816 /* Look for the case where the basic induction variable is always
7817 nonnegative, and equals zero on the last iteration.
7818 In this case, add a reg_note REG_NONNEG, which allows the
7819 m68k DBRA instruction to be used. */
7820
7821 if (((GET_CODE (comparison) == GT
7822 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7823 && INTVAL (XEXP (comparison, 1)) == -1)
7824 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7825 && GET_CODE (bl->biv->add_val) == CONST_INT
7826 && INTVAL (bl->biv->add_val) < 0)
7827 {
7828 /* Initial value must be greater than 0,
7829 init_val % -dec_value == 0 to ensure that it equals zero on
7830 the last iteration */
7831
7832 if (GET_CODE (bl->initial_value) == CONST_INT
7833 && INTVAL (bl->initial_value) > 0
7834 && (INTVAL (bl->initial_value)
7835 % (-INTVAL (bl->biv->add_val))) == 0)
7836 {
7837 /* register always nonnegative, add REG_NOTE to branch */
7838 REG_NOTES (PREV_INSN (loop_end))
7839 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7840 REG_NOTES (PREV_INSN (loop_end)));
7841 bl->nonneg = 1;
7842
7843 return 1;
7844 }
7845
7846 /* If the decrement is 1 and the value was tested as >= 0 before
7847 the loop, then we can safely optimize. */
7848 for (p = loop_start; p; p = PREV_INSN (p))
7849 {
7850 if (GET_CODE (p) == CODE_LABEL)
7851 break;
7852 if (GET_CODE (p) != JUMP_INSN)
7853 continue;
7854
7855 before_comparison = get_condition_for_loop (loop, p);
7856 if (before_comparison
7857 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7858 && GET_CODE (before_comparison) == LT
7859 && XEXP (before_comparison, 1) == const0_rtx
7860 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7861 && INTVAL (bl->biv->add_val) == -1)
7862 {
7863 REG_NOTES (PREV_INSN (loop_end))
7864 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7865 REG_NOTES (PREV_INSN (loop_end)));
7866 bl->nonneg = 1;
7867
7868 return 1;
7869 }
7870 }
7871 }
7872 else if (GET_CODE (bl->biv->add_val) == CONST_INT
7873 && INTVAL (bl->biv->add_val) > 0)
7874 {
7875 /* Try to change inc to dec, so can apply above optimization. */
7876 /* Can do this if:
7877 all registers modified are induction variables or invariant,
7878 all memory references have non-overlapping addresses
7879 (obviously true if only one write)
7880 allow 2 insns for the compare/jump at the end of the loop. */
7881 /* Also, we must avoid any instructions which use both the reversed
7882 biv and another biv. Such instructions will fail if the loop is
7883 reversed. We meet this condition by requiring that either
7884 no_use_except_counting is true, or else that there is only
7885 one biv. */
7886 int num_nonfixed_reads = 0;
7887 /* 1 if the iteration var is used only to count iterations. */
7888 int no_use_except_counting = 0;
7889 /* 1 if the loop has no memory store, or it has a single memory store
7890 which is reversible. */
7891 int reversible_mem_store = 1;
7892
7893 if (bl->giv_count == 0 && ! loop->exit_count)
7894 {
7895 rtx bivreg = regno_reg_rtx[bl->regno];
7896
7897 /* If there are no givs for this biv, and the only exit is the
7898 fall through at the end of the loop, then
7899 see if perhaps there are no uses except to count. */
7900 no_use_except_counting = 1;
7901 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7902 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7903 {
7904 rtx set = single_set (p);
7905
7906 if (set && GET_CODE (SET_DEST (set)) == REG
7907 && REGNO (SET_DEST (set)) == bl->regno)
7908 /* An insn that sets the biv is okay. */
7909 ;
7910 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
7911 || p == prev_nonnote_insn (loop_end))
7912 && reg_mentioned_p (bivreg, PATTERN (p)))
7913 {
7914 /* If either of these insns uses the biv and sets a pseudo
7915 that has more than one usage, then the biv has uses
7916 other than counting since it's used to derive a value
7917 that is used more than one time. */
7918 int note_set_pseudo_multiple_uses_retval = 0;
7919 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
7920 &note_set_pseudo_multiple_uses_retval);
7921 if (note_set_pseudo_multiple_uses_retval)
7922 {
7923 no_use_except_counting = 0;
7924 break;
7925 }
7926 }
7927 else if (reg_mentioned_p (bivreg, PATTERN (p)))
7928 {
7929 no_use_except_counting = 0;
7930 break;
7931 }
7932 }
7933 }
7934
7935 if (no_use_except_counting)
7936 ; /* no need to worry about MEMs. */
7937 else if (num_mem_sets <= 1)
7938 {
7939 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7940 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7941 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
7942
7943 /* If the loop has a single store, and the destination address is
7944 invariant, then we can't reverse the loop, because this address
7945 might then have the wrong value at loop exit.
7946 This would work if the source was invariant also, however, in that
7947 case, the insn should have been moved out of the loop. */
7948
7949 if (num_mem_sets == 1)
7950 {
7951 struct induction *v;
7952
7953 reversible_mem_store
7954 = (! unknown_address_altered
7955 && ! unknown_constant_address_altered
7956 && ! loop_invariant_p (loop,
7957 XEXP (XEXP (loop_store_mems, 0),
7958 0)));
7959
7960 /* If the store depends on a register that is set after the
7961 store, it depends on the initial value, and is thus not
7962 reversible. */
7963 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
7964 {
7965 if (v->giv_type == DEST_REG
7966 && reg_mentioned_p (v->dest_reg,
7967 PATTERN (first_loop_store_insn))
7968 && loop_insn_first_p (first_loop_store_insn, v->insn))
7969 reversible_mem_store = 0;
7970 }
7971 }
7972 }
7973 else
7974 return 0;
7975
7976 /* This code only acts for innermost loops. Also it simplifies
7977 the memory address check by only reversing loops with
7978 zero or one memory access.
7979 Two memory accesses could involve parts of the same array,
7980 and that can't be reversed.
7981 If the biv is used only for counting, than we don't need to worry
7982 about all these things. */
7983
7984 if ((num_nonfixed_reads <= 1
7985 && ! loop_info->has_call
7986 && ! loop_info->has_volatile
7987 && reversible_mem_store
7988 && (bl->giv_count + bl->biv_count + num_mem_sets
7989 + num_movables + compare_and_branch == insn_count)
7990 && (bl == loop_iv_list && bl->next == 0))
7991 || no_use_except_counting)
7992 {
7993 rtx tem;
7994
7995 /* Loop can be reversed. */
7996 if (loop_dump_stream)
7997 fprintf (loop_dump_stream, "Can reverse loop\n");
7998
7999 /* Now check other conditions:
8000
8001 The increment must be a constant, as must the initial value,
8002 and the comparison code must be LT.
8003
8004 This test can probably be improved since +/- 1 in the constant
8005 can be obtained by changing LT to LE and vice versa; this is
8006 confusing. */
8007
8008 if (comparison
8009 /* for constants, LE gets turned into LT */
8010 && (GET_CODE (comparison) == LT
8011 || (GET_CODE (comparison) == LE
8012 && no_use_except_counting)))
8013 {
8014 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8015 rtx initial_value, comparison_value;
8016 int nonneg = 0;
8017 enum rtx_code cmp_code;
8018 int comparison_const_width;
8019 unsigned HOST_WIDE_INT comparison_sign_mask;
8020
8021 add_val = INTVAL (bl->biv->add_val);
8022 comparison_value = XEXP (comparison, 1);
8023 if (GET_MODE (comparison_value) == VOIDmode)
8024 comparison_const_width
8025 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8026 else
8027 comparison_const_width
8028 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8029 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8030 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8031 comparison_sign_mask
8032 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
8033
8034 /* If the comparison value is not a loop invariant, then we
8035 can not reverse this loop.
8036
8037 ??? If the insns which initialize the comparison value as
8038 a whole compute an invariant result, then we could move
8039 them out of the loop and proceed with loop reversal. */
8040 if (! loop_invariant_p (loop, comparison_value))
8041 return 0;
8042
8043 if (GET_CODE (comparison_value) == CONST_INT)
8044 comparison_val = INTVAL (comparison_value);
8045 initial_value = bl->initial_value;
8046
8047 /* Normalize the initial value if it is an integer and
8048 has no other use except as a counter. This will allow
8049 a few more loops to be reversed. */
8050 if (no_use_except_counting
8051 && GET_CODE (comparison_value) == CONST_INT
8052 && GET_CODE (initial_value) == CONST_INT)
8053 {
8054 comparison_val = comparison_val - INTVAL (bl->initial_value);
8055 /* The code below requires comparison_val to be a multiple
8056 of add_val in order to do the loop reversal, so
8057 round up comparison_val to a multiple of add_val.
8058 Since comparison_value is constant, we know that the
8059 current comparison code is LT. */
8060 comparison_val = comparison_val + add_val - 1;
8061 comparison_val
8062 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8063 /* We postpone overflow checks for COMPARISON_VAL here;
8064 even if there is an overflow, we might still be able to
8065 reverse the loop, if converting the loop exit test to
8066 NE is possible. */
8067 initial_value = const0_rtx;
8068 }
8069
8070 /* First check if we can do a vanilla loop reversal. */
8071 if (initial_value == const0_rtx
8072 /* If we have a decrement_and_branch_on_count,
8073 prefer the NE test, since this will allow that
8074 instruction to be generated. Note that we must
8075 use a vanilla loop reversal if the biv is used to
8076 calculate a giv or has a non-counting use. */
8077 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8078 && defined (HAVE_decrement_and_branch_on_count)
8079 && (! (add_val == 1 && loop->vtop
8080 && (bl->biv_count == 0
8081 || no_use_except_counting)))
8082 #endif
8083 && GET_CODE (comparison_value) == CONST_INT
8084 /* Now do postponed overflow checks on COMPARISON_VAL. */
8085 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8086 & comparison_sign_mask))
8087 {
8088 /* Register will always be nonnegative, with value
8089 0 on last iteration */
8090 add_adjust = add_val;
8091 nonneg = 1;
8092 cmp_code = GE;
8093 }
8094 else if (add_val == 1 && loop->vtop
8095 && (bl->biv_count == 0
8096 || no_use_except_counting))
8097 {
8098 add_adjust = 0;
8099 cmp_code = NE;
8100 }
8101 else
8102 return 0;
8103
8104 if (GET_CODE (comparison) == LE)
8105 add_adjust -= add_val;
8106
8107 /* If the initial value is not zero, or if the comparison
8108 value is not an exact multiple of the increment, then we
8109 can not reverse this loop. */
8110 if (initial_value == const0_rtx
8111 && GET_CODE (comparison_value) == CONST_INT)
8112 {
8113 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8114 return 0;
8115 }
8116 else
8117 {
8118 if (! no_use_except_counting || add_val != 1)
8119 return 0;
8120 }
8121
8122 final_value = comparison_value;
8123
8124 /* Reset these in case we normalized the initial value
8125 and comparison value above. */
8126 if (GET_CODE (comparison_value) == CONST_INT
8127 && GET_CODE (initial_value) == CONST_INT)
8128 {
8129 comparison_value = GEN_INT (comparison_val);
8130 final_value
8131 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8132 }
8133 bl->initial_value = initial_value;
8134
8135 /* Save some info needed to produce the new insns. */
8136 reg = bl->biv->dest_reg;
8137 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
8138 if (jump_label == pc_rtx)
8139 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
8140 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
8141
8142 /* Set start_value; if this is not a CONST_INT, we need
8143 to generate a SUB.
8144 Initialize biv to start_value before loop start.
8145 The old initializing insn will be deleted as a
8146 dead store by flow.c. */
8147 if (initial_value == const0_rtx
8148 && GET_CODE (comparison_value) == CONST_INT)
8149 {
8150 start_value = GEN_INT (comparison_val - add_adjust);
8151 emit_insn_before (gen_move_insn (reg, start_value),
8152 loop_start);
8153 }
8154 else if (GET_CODE (initial_value) == CONST_INT)
8155 {
8156 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8157 enum machine_mode mode = GET_MODE (reg);
8158 enum insn_code icode
8159 = add_optab->handlers[(int) mode].insn_code;
8160
8161 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8162 || ! ((*insn_data[icode].operand[1].predicate)
8163 (comparison_value, mode))
8164 || ! ((*insn_data[icode].operand[2].predicate)
8165 (offset, mode)))
8166 return 0;
8167 start_value
8168 = gen_rtx_PLUS (mode, comparison_value, offset);
8169 emit_insn_before ((GEN_FCN (icode)
8170 (reg, comparison_value, offset)),
8171 loop_start);
8172 if (GET_CODE (comparison) == LE)
8173 final_value = gen_rtx_PLUS (mode, comparison_value,
8174 GEN_INT (add_val));
8175 }
8176 else if (! add_adjust)
8177 {
8178 enum machine_mode mode = GET_MODE (reg);
8179 enum insn_code icode
8180 = sub_optab->handlers[(int) mode].insn_code;
8181 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8182 || ! ((*insn_data[icode].operand[1].predicate)
8183 (comparison_value, mode))
8184 || ! ((*insn_data[icode].operand[2].predicate)
8185 (initial_value, mode)))
8186 return 0;
8187 start_value
8188 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8189 emit_insn_before ((GEN_FCN (icode)
8190 (reg, comparison_value, initial_value)),
8191 loop_start);
8192 }
8193 else
8194 /* We could handle the other cases too, but it'll be
8195 better to have a testcase first. */
8196 return 0;
8197
8198 /* We may not have a single insn which can increment a reg, so
8199 create a sequence to hold all the insns from expand_inc. */
8200 start_sequence ();
8201 expand_inc (reg, new_add_val);
8202 tem = gen_sequence ();
8203 end_sequence ();
8204
8205 p = emit_insn_before (tem, bl->biv->insn);
8206 delete_insn (bl->biv->insn);
8207
8208 /* Update biv info to reflect its new status. */
8209 bl->biv->insn = p;
8210 bl->initial_value = start_value;
8211 bl->biv->add_val = new_add_val;
8212
8213 /* Update loop info. */
8214 loop_info->initial_value = reg;
8215 loop_info->initial_equiv_value = reg;
8216 loop_info->final_value = const0_rtx;
8217 loop_info->final_equiv_value = const0_rtx;
8218 loop_info->comparison_value = const0_rtx;
8219 loop_info->comparison_code = cmp_code;
8220 loop_info->increment = new_add_val;
8221
8222 /* Inc LABEL_NUSES so that delete_insn will
8223 not delete the label. */
8224 LABEL_NUSES (XEXP (jump_label, 0)) ++;
8225
8226 /* Emit an insn after the end of the loop to set the biv's
8227 proper exit value if it is used anywhere outside the loop. */
8228 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8229 || ! bl->init_insn
8230 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8231 emit_insn_after (gen_move_insn (reg, final_value),
8232 loop_end);
8233
8234 /* Delete compare/branch at end of loop. */
8235 delete_insn (PREV_INSN (loop_end));
8236 if (compare_and_branch == 2)
8237 delete_insn (first_compare);
8238
8239 /* Add new compare/branch insn at end of loop. */
8240 start_sequence ();
8241 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8242 GET_MODE (reg), 0, 0,
8243 XEXP (jump_label, 0));
8244 tem = gen_sequence ();
8245 end_sequence ();
8246 emit_jump_insn_before (tem, loop_end);
8247
8248 for (tem = PREV_INSN (loop_end);
8249 tem && GET_CODE (tem) != JUMP_INSN;
8250 tem = PREV_INSN (tem))
8251 ;
8252
8253 if (tem)
8254 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8255
8256 if (nonneg)
8257 {
8258 if (tem)
8259 {
8260 /* Increment of LABEL_NUSES done above. */
8261 /* Register is now always nonnegative,
8262 so add REG_NONNEG note to the branch. */
8263 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
8264 REG_NOTES (tem));
8265 }
8266 bl->nonneg = 1;
8267 }
8268
8269 /* No insn may reference both the reversed and another biv or it
8270 will fail (see comment near the top of the loop reversal
8271 code).
8272 Earlier on, we have verified that the biv has no use except
8273 counting, or it is the only biv in this function.
8274 However, the code that computes no_use_except_counting does
8275 not verify reg notes. It's possible to have an insn that
8276 references another biv, and has a REG_EQUAL note with an
8277 expression based on the reversed biv. To avoid this case,
8278 remove all REG_EQUAL notes based on the reversed biv
8279 here. */
8280 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8281 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
8282 {
8283 rtx *pnote;
8284 rtx set = single_set (p);
8285 /* If this is a set of a GIV based on the reversed biv, any
8286 REG_EQUAL notes should still be correct. */
8287 if (! set
8288 || GET_CODE (SET_DEST (set)) != REG
8289 || (size_t) REGNO (SET_DEST (set)) >= reg_iv_type->num_elements
8290 || REG_IV_TYPE (REGNO (SET_DEST (set))) != GENERAL_INDUCT
8291 || REG_IV_INFO (REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8292 for (pnote = &REG_NOTES (p); *pnote;)
8293 {
8294 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8295 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8296 XEXP (*pnote, 0)))
8297 *pnote = XEXP (*pnote, 1);
8298 else
8299 pnote = &XEXP (*pnote, 1);
8300 }
8301 }
8302
8303 /* Mark that this biv has been reversed. Each giv which depends
8304 on this biv, and which is also live past the end of the loop
8305 will have to be fixed up. */
8306
8307 bl->reversed = 1;
8308
8309 if (loop_dump_stream)
8310 {
8311 fprintf (loop_dump_stream, "Reversed loop");
8312 if (bl->nonneg)
8313 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8314 else
8315 fprintf (loop_dump_stream, "\n");
8316 }
8317
8318 return 1;
8319 }
8320 }
8321 }
8322
8323 return 0;
8324 }
8325 \f
8326 /* Verify whether the biv BL appears to be eliminable,
8327 based on the insns in the loop that refer to it.
8328
8329 If ELIMINATE_P is non-zero, actually do the elimination.
8330
8331 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8332 determine whether invariant insns should be placed inside or at the
8333 start of the loop. */
8334
8335 static int
8336 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
8337 const struct loop *loop;
8338 struct iv_class *bl;
8339 int eliminate_p;
8340 int threshold, insn_count;
8341 {
8342 rtx reg = bl->biv->dest_reg;
8343 rtx loop_start = loop->start;
8344 rtx loop_end = loop->end;
8345 rtx p;
8346
8347 /* Scan all insns in the loop, stopping if we find one that uses the
8348 biv in a way that we cannot eliminate. */
8349
8350 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8351 {
8352 enum rtx_code code = GET_CODE (p);
8353 rtx where = threshold >= insn_count ? loop_start : p;
8354
8355 /* If this is a libcall that sets a giv, skip ahead to its end. */
8356 if (GET_RTX_CLASS (code) == 'i')
8357 {
8358 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8359
8360 if (note)
8361 {
8362 rtx last = XEXP (note, 0);
8363 rtx set = single_set (last);
8364
8365 if (set && GET_CODE (SET_DEST (set)) == REG)
8366 {
8367 unsigned int regno = REGNO (SET_DEST (set));
8368
8369 if (regno < max_reg_before_loop
8370 && REG_IV_TYPE (regno) == GENERAL_INDUCT
8371 && REG_IV_INFO (regno)->src_reg == bl->biv->src_reg)
8372 p = last;
8373 }
8374 }
8375 }
8376 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8377 && reg_mentioned_p (reg, PATTERN (p))
8378 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8379 eliminate_p, where))
8380 {
8381 if (loop_dump_stream)
8382 fprintf (loop_dump_stream,
8383 "Cannot eliminate biv %d: biv used in insn %d.\n",
8384 bl->regno, INSN_UID (p));
8385 break;
8386 }
8387 }
8388
8389 if (p == loop_end)
8390 {
8391 if (loop_dump_stream)
8392 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8393 bl->regno, eliminate_p ? "was" : "can be");
8394 return 1;
8395 }
8396
8397 return 0;
8398 }
8399 \f
8400 /* INSN and REFERENCE are instructions in the same insn chain.
8401 Return non-zero if INSN is first. */
8402
8403 int
8404 loop_insn_first_p (insn, reference)
8405 rtx insn, reference;
8406 {
8407 rtx p, q;
8408
8409 for (p = insn, q = reference; ;)
8410 {
8411 /* Start with test for not first so that INSN == REFERENCE yields not
8412 first. */
8413 if (q == insn || ! p)
8414 return 0;
8415 if (p == reference || ! q)
8416 return 1;
8417
8418 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8419 previous insn, hence the <= comparison below does not work if
8420 P is a note. */
8421 if (INSN_UID (p) < max_uid_for_loop
8422 && INSN_UID (q) < max_uid_for_loop
8423 && GET_CODE (p) != NOTE)
8424 return INSN_LUID (p) <= INSN_LUID (q);
8425
8426 if (INSN_UID (p) >= max_uid_for_loop
8427 || GET_CODE (p) == NOTE)
8428 p = NEXT_INSN (p);
8429 if (INSN_UID (q) >= max_uid_for_loop)
8430 q = NEXT_INSN (q);
8431 }
8432 }
8433
8434 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8435 the offset that we have to take into account due to auto-increment /
8436 div derivation is zero. */
8437 static int
8438 biv_elimination_giv_has_0_offset (biv, giv, insn)
8439 struct induction *biv, *giv;
8440 rtx insn;
8441 {
8442 /* If the giv V had the auto-inc address optimization applied
8443 to it, and INSN occurs between the giv insn and the biv
8444 insn, then we'd have to adjust the value used here.
8445 This is rare, so we don't bother to make this possible. */
8446 if (giv->auto_inc_opt
8447 && ((loop_insn_first_p (giv->insn, insn)
8448 && loop_insn_first_p (insn, biv->insn))
8449 || (loop_insn_first_p (biv->insn, insn)
8450 && loop_insn_first_p (insn, giv->insn))))
8451 return 0;
8452
8453 /* If the giv V was derived from another giv, and INSN does
8454 not occur between the giv insn and the biv insn, then we'd
8455 have to adjust the value used here. This is rare, so we don't
8456 bother to make this possible. */
8457 if (giv->derived_from
8458 && ! (giv->always_executed
8459 && loop_insn_first_p (giv->insn, insn)
8460 && loop_insn_first_p (insn, biv->insn)))
8461 return 0;
8462 if (giv->same
8463 && giv->same->derived_from
8464 && ! (giv->same->always_executed
8465 && loop_insn_first_p (giv->same->insn, insn)
8466 && loop_insn_first_p (insn, biv->insn)))
8467 return 0;
8468
8469 return 1;
8470 }
8471
8472 /* If BL appears in X (part of the pattern of INSN), see if we can
8473 eliminate its use. If so, return 1. If not, return 0.
8474
8475 If BIV does not appear in X, return 1.
8476
8477 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
8478 where extra insns should be added. Depending on how many items have been
8479 moved out of the loop, it will either be before INSN or at the start of
8480 the loop. */
8481
8482 static int
8483 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where)
8484 const struct loop *loop;
8485 rtx x, insn;
8486 struct iv_class *bl;
8487 int eliminate_p;
8488 rtx where;
8489 {
8490 enum rtx_code code = GET_CODE (x);
8491 rtx reg = bl->biv->dest_reg;
8492 enum machine_mode mode = GET_MODE (reg);
8493 struct induction *v;
8494 rtx arg, tem;
8495 #ifdef HAVE_cc0
8496 rtx new;
8497 #endif
8498 int arg_operand;
8499 const char *fmt;
8500 int i, j;
8501
8502 switch (code)
8503 {
8504 case REG:
8505 /* If we haven't already been able to do something with this BIV,
8506 we can't eliminate it. */
8507 if (x == reg)
8508 return 0;
8509 return 1;
8510
8511 case SET:
8512 /* If this sets the BIV, it is not a problem. */
8513 if (SET_DEST (x) == reg)
8514 return 1;
8515
8516 /* If this is an insn that defines a giv, it is also ok because
8517 it will go away when the giv is reduced. */
8518 for (v = bl->giv; v; v = v->next_iv)
8519 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8520 return 1;
8521
8522 #ifdef HAVE_cc0
8523 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8524 {
8525 /* Can replace with any giv that was reduced and
8526 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8527 Require a constant for MULT_VAL, so we know it's nonzero.
8528 ??? We disable this optimization to avoid potential
8529 overflows. */
8530
8531 for (v = bl->giv; v; v = v->next_iv)
8532 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8533 && v->add_val == const0_rtx
8534 && ! v->ignore && ! v->maybe_dead && v->always_computable
8535 && v->mode == mode
8536 && 0)
8537 {
8538 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8539 continue;
8540
8541 if (! eliminate_p)
8542 return 1;
8543
8544 /* If the giv has the opposite direction of change,
8545 then reverse the comparison. */
8546 if (INTVAL (v->mult_val) < 0)
8547 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8548 const0_rtx, v->new_reg);
8549 else
8550 new = v->new_reg;
8551
8552 /* We can probably test that giv's reduced reg. */
8553 if (validate_change (insn, &SET_SRC (x), new, 0))
8554 return 1;
8555 }
8556
8557 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8558 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8559 Require a constant for MULT_VAL, so we know it's nonzero.
8560 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8561 overflow problem. */
8562
8563 for (v = bl->giv; v; v = v->next_iv)
8564 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8565 && ! v->ignore && ! v->maybe_dead && v->always_computable
8566 && v->mode == mode
8567 && (GET_CODE (v->add_val) == SYMBOL_REF
8568 || GET_CODE (v->add_val) == LABEL_REF
8569 || GET_CODE (v->add_val) == CONST
8570 || (GET_CODE (v->add_val) == REG
8571 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
8572 {
8573 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8574 continue;
8575
8576 if (! eliminate_p)
8577 return 1;
8578
8579 /* If the giv has the opposite direction of change,
8580 then reverse the comparison. */
8581 if (INTVAL (v->mult_val) < 0)
8582 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8583 v->new_reg);
8584 else
8585 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8586 copy_rtx (v->add_val));
8587
8588 /* Replace biv with the giv's reduced register. */
8589 update_reg_last_use (v->add_val, insn);
8590 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8591 return 1;
8592
8593 /* Insn doesn't support that constant or invariant. Copy it
8594 into a register (it will be a loop invariant.) */
8595 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8596
8597 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
8598 where);
8599
8600 /* Substitute the new register for its invariant value in
8601 the compare expression. */
8602 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8603 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8604 return 1;
8605 }
8606 }
8607 #endif
8608 break;
8609
8610 case COMPARE:
8611 case EQ: case NE:
8612 case GT: case GE: case GTU: case GEU:
8613 case LT: case LE: case LTU: case LEU:
8614 /* See if either argument is the biv. */
8615 if (XEXP (x, 0) == reg)
8616 arg = XEXP (x, 1), arg_operand = 1;
8617 else if (XEXP (x, 1) == reg)
8618 arg = XEXP (x, 0), arg_operand = 0;
8619 else
8620 break;
8621
8622 if (CONSTANT_P (arg))
8623 {
8624 /* First try to replace with any giv that has constant positive
8625 mult_val and constant add_val. We might be able to support
8626 negative mult_val, but it seems complex to do it in general. */
8627
8628 for (v = bl->giv; v; v = v->next_iv)
8629 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8630 && (GET_CODE (v->add_val) == SYMBOL_REF
8631 || GET_CODE (v->add_val) == LABEL_REF
8632 || GET_CODE (v->add_val) == CONST
8633 || (GET_CODE (v->add_val) == REG
8634 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
8635 && ! v->ignore && ! v->maybe_dead && v->always_computable
8636 && v->mode == mode)
8637 {
8638 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8639 continue;
8640
8641 if (! eliminate_p)
8642 return 1;
8643
8644 /* Replace biv with the giv's reduced reg. */
8645 validate_change (insn, &XEXP (x, 1-arg_operand), v->new_reg, 1);
8646
8647 /* If all constants are actually constant integers and
8648 the derived constant can be directly placed in the COMPARE,
8649 do so. */
8650 if (GET_CODE (arg) == CONST_INT
8651 && GET_CODE (v->mult_val) == CONST_INT
8652 && GET_CODE (v->add_val) == CONST_INT)
8653 {
8654 validate_change (insn, &XEXP (x, arg_operand),
8655 GEN_INT (INTVAL (arg)
8656 * INTVAL (v->mult_val)
8657 + INTVAL (v->add_val)), 1);
8658 }
8659 else
8660 {
8661 /* Otherwise, load it into a register. */
8662 tem = gen_reg_rtx (mode);
8663 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8664 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8665 }
8666 if (apply_change_group ())
8667 return 1;
8668 }
8669
8670 /* Look for giv with positive constant mult_val and nonconst add_val.
8671 Insert insns to calculate new compare value.
8672 ??? Turn this off due to possible overflow. */
8673
8674 for (v = bl->giv; v; v = v->next_iv)
8675 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8676 && ! v->ignore && ! v->maybe_dead && v->always_computable
8677 && v->mode == mode
8678 && 0)
8679 {
8680 rtx tem;
8681
8682 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8683 continue;
8684
8685 if (! eliminate_p)
8686 return 1;
8687
8688 tem = gen_reg_rtx (mode);
8689
8690 /* Replace biv with giv's reduced register. */
8691 validate_change (insn, &XEXP (x, 1 - arg_operand),
8692 v->new_reg, 1);
8693
8694 /* Compute value to compare against. */
8695 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8696 /* Use it in this insn. */
8697 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8698 if (apply_change_group ())
8699 return 1;
8700 }
8701 }
8702 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8703 {
8704 if (loop_invariant_p (loop, arg) == 1)
8705 {
8706 /* Look for giv with constant positive mult_val and nonconst
8707 add_val. Insert insns to compute new compare value.
8708 ??? Turn this off due to possible overflow. */
8709
8710 for (v = bl->giv; v; v = v->next_iv)
8711 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8712 && ! v->ignore && ! v->maybe_dead && v->always_computable
8713 && v->mode == mode
8714 && 0)
8715 {
8716 rtx tem;
8717
8718 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8719 continue;
8720
8721 if (! eliminate_p)
8722 return 1;
8723
8724 tem = gen_reg_rtx (mode);
8725
8726 /* Replace biv with giv's reduced register. */
8727 validate_change (insn, &XEXP (x, 1 - arg_operand),
8728 v->new_reg, 1);
8729
8730 /* Compute value to compare against. */
8731 emit_iv_add_mult (arg, v->mult_val, v->add_val,
8732 tem, where);
8733 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8734 if (apply_change_group ())
8735 return 1;
8736 }
8737 }
8738
8739 /* This code has problems. Basically, you can't know when
8740 seeing if we will eliminate BL, whether a particular giv
8741 of ARG will be reduced. If it isn't going to be reduced,
8742 we can't eliminate BL. We can try forcing it to be reduced,
8743 but that can generate poor code.
8744
8745 The problem is that the benefit of reducing TV, below should
8746 be increased if BL can actually be eliminated, but this means
8747 we might have to do a topological sort of the order in which
8748 we try to process biv. It doesn't seem worthwhile to do
8749 this sort of thing now. */
8750
8751 #if 0
8752 /* Otherwise the reg compared with had better be a biv. */
8753 if (GET_CODE (arg) != REG
8754 || REG_IV_TYPE (REGNO (arg)) != BASIC_INDUCT)
8755 return 0;
8756
8757 /* Look for a pair of givs, one for each biv,
8758 with identical coefficients. */
8759 for (v = bl->giv; v; v = v->next_iv)
8760 {
8761 struct induction *tv;
8762
8763 if (v->ignore || v->maybe_dead || v->mode != mode)
8764 continue;
8765
8766 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
8767 if (! tv->ignore && ! tv->maybe_dead
8768 && rtx_equal_p (tv->mult_val, v->mult_val)
8769 && rtx_equal_p (tv->add_val, v->add_val)
8770 && tv->mode == mode)
8771 {
8772 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8773 continue;
8774
8775 if (! eliminate_p)
8776 return 1;
8777
8778 /* Replace biv with its giv's reduced reg. */
8779 XEXP (x, 1-arg_operand) = v->new_reg;
8780 /* Replace other operand with the other giv's
8781 reduced reg. */
8782 XEXP (x, arg_operand) = tv->new_reg;
8783 return 1;
8784 }
8785 }
8786 #endif
8787 }
8788
8789 /* If we get here, the biv can't be eliminated. */
8790 return 0;
8791
8792 case MEM:
8793 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8794 biv is used in it, since it will be replaced. */
8795 for (v = bl->giv; v; v = v->next_iv)
8796 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8797 return 1;
8798 break;
8799
8800 default:
8801 break;
8802 }
8803
8804 /* See if any subexpression fails elimination. */
8805 fmt = GET_RTX_FORMAT (code);
8806 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8807 {
8808 switch (fmt[i])
8809 {
8810 case 'e':
8811 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
8812 eliminate_p, where))
8813 return 0;
8814 break;
8815
8816 case 'E':
8817 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8818 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
8819 eliminate_p, where))
8820 return 0;
8821 break;
8822 }
8823 }
8824
8825 return 1;
8826 }
8827 \f
8828 /* Return nonzero if the last use of REG
8829 is in an insn following INSN in the same basic block. */
8830
8831 static int
8832 last_use_this_basic_block (reg, insn)
8833 rtx reg;
8834 rtx insn;
8835 {
8836 rtx n;
8837 for (n = insn;
8838 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8839 n = NEXT_INSN (n))
8840 {
8841 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8842 return 1;
8843 }
8844 return 0;
8845 }
8846 \f
8847 /* Called via `note_stores' to record the initial value of a biv. Here we
8848 just record the location of the set and process it later. */
8849
8850 static void
8851 record_initial (dest, set, data)
8852 rtx dest;
8853 rtx set;
8854 void *data ATTRIBUTE_UNUSED;
8855 {
8856 struct iv_class *bl;
8857
8858 if (GET_CODE (dest) != REG
8859 || REGNO (dest) >= max_reg_before_loop
8860 || REG_IV_TYPE (REGNO (dest)) != BASIC_INDUCT)
8861 return;
8862
8863 bl = reg_biv_class[REGNO (dest)];
8864
8865 /* If this is the first set found, record it. */
8866 if (bl->init_insn == 0)
8867 {
8868 bl->init_insn = note_insn;
8869 bl->init_set = set;
8870 }
8871 }
8872 \f
8873 /* If any of the registers in X are "old" and currently have a last use earlier
8874 than INSN, update them to have a last use of INSN. Their actual last use
8875 will be the previous insn but it will not have a valid uid_luid so we can't
8876 use it. */
8877
8878 static void
8879 update_reg_last_use (x, insn)
8880 rtx x;
8881 rtx insn;
8882 {
8883 /* Check for the case where INSN does not have a valid luid. In this case,
8884 there is no need to modify the regno_last_uid, as this can only happen
8885 when code is inserted after the loop_end to set a pseudo's final value,
8886 and hence this insn will never be the last use of x. */
8887 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8888 && INSN_UID (insn) < max_uid_for_loop
8889 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
8890 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8891 else
8892 {
8893 register int i, j;
8894 register const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8895 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8896 {
8897 if (fmt[i] == 'e')
8898 update_reg_last_use (XEXP (x, i), insn);
8899 else if (fmt[i] == 'E')
8900 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8901 update_reg_last_use (XVECEXP (x, i, j), insn);
8902 }
8903 }
8904 }
8905 \f
8906 /* Given an insn INSN and condition COND, return the condition in a
8907 canonical form to simplify testing by callers. Specifically:
8908
8909 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8910 (2) Both operands will be machine operands; (cc0) will have been replaced.
8911 (3) If an operand is a constant, it will be the second operand.
8912 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8913 for GE, GEU, and LEU.
8914
8915 If the condition cannot be understood, or is an inequality floating-point
8916 comparison which needs to be reversed, 0 will be returned.
8917
8918 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
8919
8920 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8921 insn used in locating the condition was found. If a replacement test
8922 of the condition is desired, it should be placed in front of that
8923 insn and we will be sure that the inputs are still valid.
8924
8925 If WANT_REG is non-zero, we wish the condition to be relative to that
8926 register, if possible. Therefore, do not canonicalize the condition
8927 further. */
8928
8929 rtx
8930 canonicalize_condition (insn, cond, reverse, earliest, want_reg)
8931 rtx insn;
8932 rtx cond;
8933 int reverse;
8934 rtx *earliest;
8935 rtx want_reg;
8936 {
8937 enum rtx_code code;
8938 rtx prev = insn;
8939 rtx set;
8940 rtx tem;
8941 rtx op0, op1;
8942 int reverse_code = 0;
8943 int did_reverse_condition = 0;
8944 enum machine_mode mode;
8945
8946 code = GET_CODE (cond);
8947 mode = GET_MODE (cond);
8948 op0 = XEXP (cond, 0);
8949 op1 = XEXP (cond, 1);
8950
8951 if (reverse)
8952 {
8953 code = reverse_condition (code);
8954 did_reverse_condition ^= 1;
8955 }
8956
8957 if (earliest)
8958 *earliest = insn;
8959
8960 /* If we are comparing a register with zero, see if the register is set
8961 in the previous insn to a COMPARE or a comparison operation. Perform
8962 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8963 in cse.c */
8964
8965 while (GET_RTX_CLASS (code) == '<'
8966 && op1 == CONST0_RTX (GET_MODE (op0))
8967 && op0 != want_reg)
8968 {
8969 /* Set non-zero when we find something of interest. */
8970 rtx x = 0;
8971
8972 #ifdef HAVE_cc0
8973 /* If comparison with cc0, import actual comparison from compare
8974 insn. */
8975 if (op0 == cc0_rtx)
8976 {
8977 if ((prev = prev_nonnote_insn (prev)) == 0
8978 || GET_CODE (prev) != INSN
8979 || (set = single_set (prev)) == 0
8980 || SET_DEST (set) != cc0_rtx)
8981 return 0;
8982
8983 op0 = SET_SRC (set);
8984 op1 = CONST0_RTX (GET_MODE (op0));
8985 if (earliest)
8986 *earliest = prev;
8987 }
8988 #endif
8989
8990 /* If this is a COMPARE, pick up the two things being compared. */
8991 if (GET_CODE (op0) == COMPARE)
8992 {
8993 op1 = XEXP (op0, 1);
8994 op0 = XEXP (op0, 0);
8995 continue;
8996 }
8997 else if (GET_CODE (op0) != REG)
8998 break;
8999
9000 /* Go back to the previous insn. Stop if it is not an INSN. We also
9001 stop if it isn't a single set or if it has a REG_INC note because
9002 we don't want to bother dealing with it. */
9003
9004 if ((prev = prev_nonnote_insn (prev)) == 0
9005 || GET_CODE (prev) != INSN
9006 || FIND_REG_INC_NOTE (prev, 0)
9007 || (set = single_set (prev)) == 0)
9008 break;
9009
9010 /* If this is setting OP0, get what it sets it to if it looks
9011 relevant. */
9012 if (rtx_equal_p (SET_DEST (set), op0))
9013 {
9014 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
9015
9016 /* ??? We may not combine comparisons done in a CCmode with
9017 comparisons not done in a CCmode. This is to aid targets
9018 like Alpha that have an IEEE compliant EQ instruction, and
9019 a non-IEEE compliant BEQ instruction. The use of CCmode is
9020 actually artificial, simply to prevent the combination, but
9021 should not affect other platforms.
9022
9023 However, we must allow VOIDmode comparisons to match either
9024 CCmode or non-CCmode comparison, because some ports have
9025 modeless comparisons inside branch patterns.
9026
9027 ??? This mode check should perhaps look more like the mode check
9028 in simplify_comparison in combine. */
9029
9030 if ((GET_CODE (SET_SRC (set)) == COMPARE
9031 || (((code == NE
9032 || (code == LT
9033 && GET_MODE_CLASS (inner_mode) == MODE_INT
9034 && (GET_MODE_BITSIZE (inner_mode)
9035 <= HOST_BITS_PER_WIDE_INT)
9036 && (STORE_FLAG_VALUE
9037 & ((HOST_WIDE_INT) 1
9038 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9039 #ifdef FLOAT_STORE_FLAG_VALUE
9040 || (code == LT
9041 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9042 && (REAL_VALUE_NEGATIVE
9043 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9044 #endif
9045 ))
9046 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9047 && (((GET_MODE_CLASS (mode) == MODE_CC)
9048 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9049 || mode == VOIDmode || inner_mode == VOIDmode))
9050 x = SET_SRC (set);
9051 else if (((code == EQ
9052 || (code == GE
9053 && (GET_MODE_BITSIZE (inner_mode)
9054 <= HOST_BITS_PER_WIDE_INT)
9055 && GET_MODE_CLASS (inner_mode) == MODE_INT
9056 && (STORE_FLAG_VALUE
9057 & ((HOST_WIDE_INT) 1
9058 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9059 #ifdef FLOAT_STORE_FLAG_VALUE
9060 || (code == GE
9061 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9062 && (REAL_VALUE_NEGATIVE
9063 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9064 #endif
9065 ))
9066 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9067 && (((GET_MODE_CLASS (mode) == MODE_CC)
9068 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9069 || mode == VOIDmode || inner_mode == VOIDmode))
9070
9071 {
9072 /* We might have reversed a LT to get a GE here. But this wasn't
9073 actually the comparison of data, so we don't flag that we
9074 have had to reverse the condition. */
9075 did_reverse_condition ^= 1;
9076 reverse_code = 1;
9077 x = SET_SRC (set);
9078 }
9079 else
9080 break;
9081 }
9082
9083 else if (reg_set_p (op0, prev))
9084 /* If this sets OP0, but not directly, we have to give up. */
9085 break;
9086
9087 if (x)
9088 {
9089 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9090 code = GET_CODE (x);
9091 if (reverse_code)
9092 {
9093 code = reverse_condition (code);
9094 if (code == UNKNOWN)
9095 return 0;
9096 did_reverse_condition ^= 1;
9097 reverse_code = 0;
9098 }
9099
9100 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9101 if (earliest)
9102 *earliest = prev;
9103 }
9104 }
9105
9106 /* If constant is first, put it last. */
9107 if (CONSTANT_P (op0))
9108 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9109
9110 /* If OP0 is the result of a comparison, we weren't able to find what
9111 was really being compared, so fail. */
9112 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9113 return 0;
9114
9115 /* Canonicalize any ordered comparison with integers involving equality
9116 if we can do computations in the relevant mode and we do not
9117 overflow. */
9118
9119 if (GET_CODE (op1) == CONST_INT
9120 && GET_MODE (op0) != VOIDmode
9121 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9122 {
9123 HOST_WIDE_INT const_val = INTVAL (op1);
9124 unsigned HOST_WIDE_INT uconst_val = const_val;
9125 unsigned HOST_WIDE_INT max_val
9126 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9127
9128 switch (code)
9129 {
9130 case LE:
9131 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9132 code = LT, op1 = GEN_INT (const_val + 1);
9133 break;
9134
9135 /* When cross-compiling, const_val might be sign-extended from
9136 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9137 case GE:
9138 if ((HOST_WIDE_INT) (const_val & max_val)
9139 != (((HOST_WIDE_INT) 1
9140 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9141 code = GT, op1 = GEN_INT (const_val - 1);
9142 break;
9143
9144 case LEU:
9145 if (uconst_val < max_val)
9146 code = LTU, op1 = GEN_INT (uconst_val + 1);
9147 break;
9148
9149 case GEU:
9150 if (uconst_val != 0)
9151 code = GTU, op1 = GEN_INT (uconst_val - 1);
9152 break;
9153
9154 default:
9155 break;
9156 }
9157 }
9158
9159 /* If this was floating-point and we reversed anything other than an
9160 EQ or NE or (UN)ORDERED, return zero. */
9161 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
9162 && did_reverse_condition
9163 && code != NE && code != EQ && code != UNORDERED && code != ORDERED
9164 && ! flag_fast_math
9165 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
9166 return 0;
9167
9168 #ifdef HAVE_cc0
9169 /* Never return CC0; return zero instead. */
9170 if (op0 == cc0_rtx)
9171 return 0;
9172 #endif
9173
9174 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9175 }
9176
9177 /* Given a jump insn JUMP, return the condition that will cause it to branch
9178 to its JUMP_LABEL. If the condition cannot be understood, or is an
9179 inequality floating-point comparison which needs to be reversed, 0 will
9180 be returned.
9181
9182 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9183 insn used in locating the condition was found. If a replacement test
9184 of the condition is desired, it should be placed in front of that
9185 insn and we will be sure that the inputs are still valid. */
9186
9187 rtx
9188 get_condition (jump, earliest)
9189 rtx jump;
9190 rtx *earliest;
9191 {
9192 rtx cond;
9193 int reverse;
9194 rtx set;
9195
9196 /* If this is not a standard conditional jump, we can't parse it. */
9197 if (GET_CODE (jump) != JUMP_INSN
9198 || ! any_condjump_p (jump))
9199 return 0;
9200 set = pc_set (jump);
9201
9202 cond = XEXP (SET_SRC (set), 0);
9203
9204 /* If this branches to JUMP_LABEL when the condition is false, reverse
9205 the condition. */
9206 reverse
9207 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
9208 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
9209
9210 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
9211 }
9212
9213 /* Similar to above routine, except that we also put an invariant last
9214 unless both operands are invariants. */
9215
9216 rtx
9217 get_condition_for_loop (loop, x)
9218 const struct loop *loop;
9219 rtx x;
9220 {
9221 rtx comparison = get_condition (x, NULL_PTR);
9222
9223 if (comparison == 0
9224 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9225 || loop_invariant_p (loop, XEXP (comparison, 1)))
9226 return comparison;
9227
9228 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9229 XEXP (comparison, 1), XEXP (comparison, 0));
9230 }
9231
9232 #ifdef HAVE_decrement_and_branch_on_count
9233 /* Instrument loop for insertion of bct instruction. We distinguish between
9234 loops with compile-time bounds and those with run-time bounds.
9235 Information from loop_iterations() is used to compute compile-time bounds.
9236 Run-time bounds should use loop preconditioning, but currently ignored.
9237 */
9238
9239 static void
9240 insert_bct (loop)
9241 struct loop *loop;
9242 {
9243 unsigned HOST_WIDE_INT n_iterations;
9244 rtx loop_start = loop->start;
9245 rtx loop_end = loop->end;
9246 struct loop_info *loop_info = LOOP_INFO (loop);
9247 int loop_num = loop->num;
9248
9249 #if 0
9250 int increment_direction, compare_direction;
9251 /* If the loop condition is <= or >=, the number of iteration
9252 is 1 more than the range of the bounds of the loop. */
9253 int add_iteration = 0;
9254 enum machine_mode loop_var_mode = word_mode;
9255 #endif
9256
9257 /* It's impossible to instrument a competely unrolled loop. */
9258 if (loop_info->unroll_number == loop_info->n_iterations)
9259 return;
9260
9261 /* Make sure that the count register is not in use. */
9262 if (loop_info->used_count_register)
9263 {
9264 if (loop_dump_stream)
9265 fprintf (loop_dump_stream,
9266 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
9267 loop_num);
9268 return;
9269 }
9270
9271 /* Make sure that the function has no indirect jumps. */
9272 if (indirect_jump_in_function)
9273 {
9274 if (loop_dump_stream)
9275 fprintf (loop_dump_stream,
9276 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
9277 loop_num);
9278 return;
9279 }
9280
9281 /* Make sure that the last loop insn is a conditional jump. */
9282 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
9283 || ! onlyjump_p (PREV_INSN (loop_end))
9284 || ! any_condjump_p (PREV_INSN (loop_end)))
9285 {
9286 if (loop_dump_stream)
9287 fprintf (loop_dump_stream,
9288 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
9289 loop_num);
9290 return;
9291 }
9292
9293 /* Make sure that the loop does not contain a function call
9294 (the count register might be altered by the called function). */
9295 if (loop_info->has_call)
9296 {
9297 if (loop_dump_stream)
9298 fprintf (loop_dump_stream,
9299 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
9300 loop_num);
9301 return;
9302 }
9303
9304 /* Make sure that the loop does not jump via a table.
9305 (the count register might be used to perform the branch on table). */
9306 if (loop_info->has_tablejump)
9307 {
9308 if (loop_dump_stream)
9309 fprintf (loop_dump_stream,
9310 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
9311 loop_num);
9312 return;
9313 }
9314
9315 /* Account for loop unrolling in instrumented iteration count. */
9316 if (loop_info->unroll_number > 1)
9317 n_iterations = loop_info->n_iterations / loop_info->unroll_number;
9318 else
9319 n_iterations = loop_info->n_iterations;
9320
9321 if (n_iterations != 0 && n_iterations < 3)
9322 {
9323 /* Allow an enclosing outer loop to benefit if possible. */
9324 if (loop_dump_stream)
9325 fprintf (loop_dump_stream,
9326 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
9327 loop_num);
9328 return;
9329 }
9330
9331 /* Try to instrument the loop. */
9332
9333 /* Handle the simpler case, where the bounds are known at compile time. */
9334 if (n_iterations > 0)
9335 {
9336 struct loop *outer_loop;
9337 struct loop_info *outer_loop_info;
9338
9339 /* Mark all enclosing loops that they cannot use count register. */
9340 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
9341 {
9342 outer_loop_info = LOOP_INFO (outer_loop);
9343 outer_loop_info->used_count_register = 1;
9344 }
9345 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
9346 return;
9347 }
9348
9349 /* Handle the more complex case, that the bounds are NOT known
9350 at compile time. In this case we generate run_time calculation
9351 of the number of iterations. */
9352
9353 if (loop_info->iteration_var == 0)
9354 {
9355 if (loop_dump_stream)
9356 fprintf (loop_dump_stream,
9357 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
9358 loop_num);
9359 return;
9360 }
9361
9362 if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
9363 || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
9364 {
9365 if (loop_dump_stream)
9366 fprintf (loop_dump_stream,
9367 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
9368 loop_num);
9369 return;
9370 }
9371
9372 /* With runtime bounds, if the compare is of the form '!=' we give up */
9373 if (loop_info->comparison_code == NE)
9374 {
9375 if (loop_dump_stream)
9376 fprintf (loop_dump_stream,
9377 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
9378 loop_num);
9379 return;
9380 }
9381 /* Use common loop preconditioning code instead. */
9382 #if 0
9383 else
9384 {
9385 /* We rely on the existence of run-time guard to ensure that the
9386 loop executes at least once. */
9387 rtx sequence;
9388 rtx iterations_num_reg;
9389
9390 unsigned HOST_WIDE_INT increment_value_abs
9391 = INTVAL (increment) * increment_direction;
9392
9393 /* make sure that the increment is a power of two, otherwise (an
9394 expensive) divide is needed. */
9395 if (exact_log2 (increment_value_abs) == -1)
9396 {
9397 if (loop_dump_stream)
9398 fprintf (loop_dump_stream,
9399 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
9400 return;
9401 }
9402
9403 /* compute the number of iterations */
9404 start_sequence ();
9405 {
9406 rtx temp_reg;
9407
9408 /* Again, the number of iterations is calculated by:
9409 ;
9410 ; compare-val - initial-val + (increment -1) + additional-iteration
9411 ; num_iterations = -----------------------------------------------------------------
9412 ; increment
9413 */
9414 /* ??? Do we have to call copy_rtx here before passing rtx to
9415 expand_binop? */
9416 if (compare_direction > 0)
9417 {
9418 /* <, <= :the loop variable is increasing */
9419 temp_reg = expand_binop (loop_var_mode, sub_optab,
9420 comparison_value, initial_value,
9421 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9422 }
9423 else
9424 {
9425 temp_reg = expand_binop (loop_var_mode, sub_optab,
9426 initial_value, comparison_value,
9427 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9428 }
9429
9430 if (increment_value_abs - 1 + add_iteration != 0)
9431 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
9432 GEN_INT (increment_value_abs - 1
9433 + add_iteration),
9434 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9435
9436 if (increment_value_abs != 1)
9437 iterations_num_reg = expand_binop (loop_var_mode, asr_optab,
9438 temp_reg,
9439 GEN_INT (exact_log2 (increment_value_abs)),
9440 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9441 else
9442 iterations_num_reg = temp_reg;
9443 }
9444 sequence = gen_sequence ();
9445 end_sequence ();
9446 emit_insn_before (sequence, loop_start);
9447 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
9448 }
9449
9450 return;
9451 #endif /* Complex case */
9452 }
9453
9454 /* Instrument loop by inserting a bct in it as follows:
9455 1. A new counter register is created.
9456 2. In the head of the loop the new variable is initialized to the value
9457 passed in the loop_num_iterations parameter.
9458 3. At the end of the loop, comparison of the register with 0 is generated.
9459 The created comparison follows the pattern defined for the
9460 decrement_and_branch_on_count insn, so this insn will be generated.
9461 4. The branch on the old variable are deleted. The compare must remain
9462 because it might be used elsewhere. If the loop-variable or condition
9463 register are used elsewhere, they will be eliminated by flow. */
9464
9465 static void
9466 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
9467 rtx loop_start, loop_end;
9468 rtx loop_num_iterations;
9469 {
9470 rtx counter_reg;
9471 rtx start_label;
9472 rtx sequence;
9473
9474 if (HAVE_decrement_and_branch_on_count)
9475 {
9476 if (loop_dump_stream)
9477 {
9478 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
9479 if (GET_CODE (loop_num_iterations) == CONST_INT)
9480 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
9481 INTVAL (loop_num_iterations));
9482 else
9483 fputs ("runtime", loop_dump_stream);
9484 fputs (" iterations)", loop_dump_stream);
9485 }
9486
9487 /* Discard original jump to continue loop. Original compare result
9488 may still be live, so it cannot be discarded explicitly. */
9489 delete_insn (PREV_INSN (loop_end));
9490
9491 /* Insert the label which will delimit the start of the loop. */
9492 start_label = gen_label_rtx ();
9493 emit_label_after (start_label, loop_start);
9494
9495 /* Insert initialization of the count register into the loop header. */
9496 start_sequence ();
9497 counter_reg = gen_reg_rtx (word_mode);
9498 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
9499 sequence = gen_sequence ();
9500 end_sequence ();
9501 emit_insn_before (sequence, loop_start);
9502
9503 /* Insert new comparison on the count register instead of the
9504 old one, generating the needed BCT pattern (that will be
9505 later recognized by assembly generation phase). */
9506 sequence = emit_jump_insn_before (
9507 gen_decrement_and_branch_on_count (counter_reg, start_label),
9508 loop_end);
9509
9510 if (GET_CODE (sequence) != JUMP_INSN)
9511 abort ();
9512 JUMP_LABEL (sequence) = start_label;
9513 LABEL_NUSES (start_label)++;
9514 }
9515 }
9516 #endif /* HAVE_decrement_and_branch_on_count */
9517
9518 /* Scan the function and determine whether it has indirect (computed) jumps.
9519
9520 This is taken mostly from flow.c; similar code exists elsewhere
9521 in the compiler. It may be useful to put this into rtlanal.c. */
9522 static int
9523 indirect_jump_in_function_p (start)
9524 rtx start;
9525 {
9526 rtx insn;
9527
9528 for (insn = start; insn; insn = NEXT_INSN (insn))
9529 if (computed_jump_p (insn))
9530 return 1;
9531
9532 return 0;
9533 }
9534
9535 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9536 documentation for LOOP_MEMS for the definition of `appropriate'.
9537 This function is called from prescan_loop via for_each_rtx. */
9538
9539 static int
9540 insert_loop_mem (mem, data)
9541 rtx *mem;
9542 void *data ATTRIBUTE_UNUSED;
9543 {
9544 int i;
9545 rtx m = *mem;
9546
9547 if (m == NULL_RTX)
9548 return 0;
9549
9550 switch (GET_CODE (m))
9551 {
9552 case MEM:
9553 break;
9554
9555 case CLOBBER:
9556 /* We're not interested in MEMs that are only clobbered. */
9557 return -1;
9558
9559 case CONST_DOUBLE:
9560 /* We're not interested in the MEM associated with a
9561 CONST_DOUBLE, so there's no need to traverse into this. */
9562 return -1;
9563
9564 case EXPR_LIST:
9565 /* We're not interested in any MEMs that only appear in notes. */
9566 return -1;
9567
9568 default:
9569 /* This is not a MEM. */
9570 return 0;
9571 }
9572
9573 /* See if we've already seen this MEM. */
9574 for (i = 0; i < loop_mems_idx; ++i)
9575 if (rtx_equal_p (m, loop_mems[i].mem))
9576 {
9577 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
9578 /* The modes of the two memory accesses are different. If
9579 this happens, something tricky is going on, and we just
9580 don't optimize accesses to this MEM. */
9581 loop_mems[i].optimize = 0;
9582
9583 return 0;
9584 }
9585
9586 /* Resize the array, if necessary. */
9587 if (loop_mems_idx == loop_mems_allocated)
9588 {
9589 if (loop_mems_allocated != 0)
9590 loop_mems_allocated *= 2;
9591 else
9592 loop_mems_allocated = 32;
9593
9594 loop_mems = (loop_mem_info*)
9595 xrealloc (loop_mems,
9596 loop_mems_allocated * sizeof (loop_mem_info));
9597 }
9598
9599 /* Actually insert the MEM. */
9600 loop_mems[loop_mems_idx].mem = m;
9601 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9602 because we can't put it in a register. We still store it in the
9603 table, though, so that if we see the same address later, but in a
9604 non-BLK mode, we'll not think we can optimize it at that point. */
9605 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
9606 loop_mems[loop_mems_idx].reg = NULL_RTX;
9607 ++loop_mems_idx;
9608
9609 return 0;
9610 }
9611
9612 /* Like load_mems, but also ensures that SET_IN_LOOP,
9613 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
9614 values after load_mems. */
9615
9616 static void
9617 load_mems_and_recount_loop_regs_set (loop, insn_count)
9618 const struct loop *loop;
9619 int *insn_count;
9620 {
9621 int nregs = max_reg_num ();
9622
9623 load_mems (loop);
9624
9625 /* Recalculate set_in_loop and friends since load_mems may have
9626 created new registers. */
9627 if (max_reg_num () > nregs)
9628 {
9629 int i;
9630 int old_nregs;
9631
9632 old_nregs = nregs;
9633 nregs = max_reg_num ();
9634
9635 if ((unsigned) nregs > set_in_loop->num_elements)
9636 {
9637 /* Grow all the arrays. */
9638 VARRAY_GROW (set_in_loop, nregs);
9639 VARRAY_GROW (n_times_set, nregs);
9640 VARRAY_GROW (may_not_optimize, nregs);
9641 VARRAY_GROW (reg_single_usage, nregs);
9642 }
9643 /* Clear the arrays */
9644 bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
9645 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
9646 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
9647
9648 count_loop_regs_set (loop->top ? loop->top : loop->start, loop->end,
9649 may_not_optimize, reg_single_usage,
9650 insn_count, nregs);
9651
9652 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9653 {
9654 VARRAY_CHAR (may_not_optimize, i) = 1;
9655 VARRAY_INT (set_in_loop, i) = 1;
9656 }
9657
9658 #ifdef AVOID_CCMODE_COPIES
9659 /* Don't try to move insns which set CC registers if we should not
9660 create CCmode register copies. */
9661 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9662 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9663 VARRAY_CHAR (may_not_optimize, i) = 1;
9664 #endif
9665
9666 /* Set n_times_set for the new registers. */
9667 bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
9668 (char *) (&n_times_set->data.i[0] + old_nregs),
9669 (nregs - old_nregs) * sizeof (int));
9670 }
9671 }
9672
9673 /* Move MEMs into registers for the duration of the loop. */
9674
9675 static void
9676 load_mems (loop)
9677 const struct loop *loop;
9678 {
9679 int maybe_never = 0;
9680 int i;
9681 rtx p;
9682 rtx label = NULL_RTX;
9683 rtx end_label = NULL_RTX;
9684 /* Nonzero if the next instruction may never be executed. */
9685 int next_maybe_never = 0;
9686 int last_max_reg = max_reg_num ();
9687
9688 if (loop_mems_idx == 0)
9689 return;
9690
9691 /* Find start of the extended basic block that enters the loop. */
9692 for (p = loop->start;
9693 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
9694 p = PREV_INSN (p))
9695 ;
9696
9697 cselib_init ();
9698
9699 /* Build table of mems that get set to constant values before the
9700 loop. */
9701 for (; p != loop->start; p = NEXT_INSN (p))
9702 cselib_process_insn (p);
9703
9704 /* Check to see if it's possible that some instructions in the
9705 loop are never executed. */
9706 for (p = next_insn_in_loop (loop, loop->scan_start);
9707 p != NULL_RTX && ! maybe_never;
9708 p = next_insn_in_loop (loop, p))
9709 {
9710 if (GET_CODE (p) == CODE_LABEL)
9711 maybe_never = 1;
9712 else if (GET_CODE (p) == JUMP_INSN
9713 /* If we enter the loop in the middle, and scan
9714 around to the beginning, don't set maybe_never
9715 for that. This must be an unconditional jump,
9716 otherwise the code at the top of the loop might
9717 never be executed. Unconditional jumps are
9718 followed a by barrier then loop end. */
9719 && ! (GET_CODE (p) == JUMP_INSN
9720 && JUMP_LABEL (p) == loop->top
9721 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9722 && any_uncondjump_p (p)))
9723 {
9724 if (!any_condjump_p (p))
9725 /* Something complicated. */
9726 maybe_never = 1;
9727 else
9728 /* If there are any more instructions in the loop, they
9729 might not be reached. */
9730 next_maybe_never = 1;
9731 }
9732 else if (next_maybe_never)
9733 maybe_never = 1;
9734 }
9735
9736 /* Actually move the MEMs. */
9737 for (i = 0; i < loop_mems_idx; ++i)
9738 {
9739 regset_head copies;
9740 int written = 0;
9741 rtx reg;
9742 rtx mem = loop_mems[i].mem;
9743 rtx mem_list_entry;
9744
9745 if (MEM_VOLATILE_P (mem)
9746 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9747 /* There's no telling whether or not MEM is modified. */
9748 loop_mems[i].optimize = 0;
9749
9750 /* Go through the MEMs written to in the loop to see if this
9751 one is aliased by one of them. */
9752 mem_list_entry = loop_store_mems;
9753 while (mem_list_entry)
9754 {
9755 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9756 written = 1;
9757 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9758 mem, rtx_varies_p))
9759 {
9760 /* MEM is indeed aliased by this store. */
9761 loop_mems[i].optimize = 0;
9762 break;
9763 }
9764 mem_list_entry = XEXP (mem_list_entry, 1);
9765 }
9766
9767 if (flag_float_store && written
9768 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9769 loop_mems[i].optimize = 0;
9770
9771 /* If this MEM is written to, we must be sure that there
9772 are no reads from another MEM that aliases this one. */
9773 if (loop_mems[i].optimize && written)
9774 {
9775 int j;
9776
9777 for (j = 0; j < loop_mems_idx; ++j)
9778 {
9779 if (j == i)
9780 continue;
9781 else if (true_dependence (mem,
9782 VOIDmode,
9783 loop_mems[j].mem,
9784 rtx_varies_p))
9785 {
9786 /* It's not safe to hoist loop_mems[i] out of
9787 the loop because writes to it might not be
9788 seen by reads from loop_mems[j]. */
9789 loop_mems[i].optimize = 0;
9790 break;
9791 }
9792 }
9793 }
9794
9795 if (maybe_never && may_trap_p (mem))
9796 /* We can't access the MEM outside the loop; it might
9797 cause a trap that wouldn't have happened otherwise. */
9798 loop_mems[i].optimize = 0;
9799
9800 if (!loop_mems[i].optimize)
9801 /* We thought we were going to lift this MEM out of the
9802 loop, but later discovered that we could not. */
9803 continue;
9804
9805 INIT_REG_SET (&copies);
9806
9807 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9808 order to keep scan_loop from moving stores to this MEM
9809 out of the loop just because this REG is neither a
9810 user-variable nor used in the loop test. */
9811 reg = gen_reg_rtx (GET_MODE (mem));
9812 REG_USERVAR_P (reg) = 1;
9813 loop_mems[i].reg = reg;
9814
9815 /* Now, replace all references to the MEM with the
9816 corresponding pesudos. */
9817 maybe_never = 0;
9818 for (p = next_insn_in_loop (loop, loop->scan_start);
9819 p != NULL_RTX;
9820 p = next_insn_in_loop (loop, p))
9821 {
9822 rtx_and_int ri;
9823 rtx set;
9824
9825 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
9826 {
9827 /* See if this copies the mem into a register that isn't
9828 modified afterwards. We'll try to do copy propagation
9829 a little further on. */
9830 set = single_set (p);
9831 if (set
9832 /* @@@ This test is _way_ too conservative. */
9833 && ! maybe_never
9834 && GET_CODE (SET_DEST (set)) == REG
9835 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9836 && REGNO (SET_DEST (set)) < last_max_reg
9837 && VARRAY_INT (n_times_set, REGNO (SET_DEST (set))) == 1
9838 && rtx_equal_p (SET_SRC (set), loop_mems[i].mem))
9839 SET_REGNO_REG_SET (&copies, REGNO (SET_DEST (set)));
9840 ri.r = p;
9841 ri.i = i;
9842 for_each_rtx (&p, replace_loop_mem, &ri);
9843 }
9844
9845 if (GET_CODE (p) == CODE_LABEL
9846 || GET_CODE (p) == JUMP_INSN)
9847 maybe_never = 1;
9848 }
9849
9850 if (! apply_change_group ())
9851 /* We couldn't replace all occurrences of the MEM. */
9852 loop_mems[i].optimize = 0;
9853 else
9854 {
9855 /* Load the memory immediately before LOOP->START, which is
9856 the NOTE_LOOP_BEG. */
9857 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9858 rtx set;
9859 rtx best = mem;
9860 int j;
9861 struct elt_loc_list *const_equiv = 0;
9862
9863 if (e)
9864 {
9865 struct elt_loc_list *equiv;
9866 struct elt_loc_list *best_equiv = 0;
9867 for (equiv = e->locs; equiv; equiv = equiv->next)
9868 {
9869 if (CONSTANT_P (equiv->loc))
9870 const_equiv = equiv;
9871 else if (GET_CODE (equiv->loc) == REG
9872 /* Extending hard register lifetimes cuases crash
9873 on SRC targets. Doing so on non-SRC is
9874 probably also not good idea, since we most
9875 probably have pseudoregister equivalence as
9876 well. */
9877 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9878 best_equiv = equiv;
9879 }
9880 /* Use the constant equivalence if that is cheap enough. */
9881 if (! best_equiv)
9882 best_equiv = const_equiv;
9883 else if (const_equiv
9884 && (rtx_cost (const_equiv->loc, SET)
9885 <= rtx_cost (best_equiv->loc, SET)))
9886 {
9887 best_equiv = const_equiv;
9888 const_equiv = 0;
9889 }
9890
9891 /* If best_equiv is nonzero, we know that MEM is set to a
9892 constant or register before the loop. We will use this
9893 knowledge to initialize the shadow register with that
9894 constant or reg rather than by loading from MEM. */
9895 if (best_equiv)
9896 best = copy_rtx (best_equiv->loc);
9897 }
9898 set = gen_move_insn (reg, best);
9899 set = emit_insn_before (set, loop->start);
9900 if (const_equiv)
9901 REG_NOTES (set) = gen_rtx_EXPR_LIST (REG_EQUAL,
9902 copy_rtx (const_equiv->loc),
9903 REG_NOTES (set));
9904
9905 if (written)
9906 {
9907 if (label == NULL_RTX)
9908 {
9909 /* We must compute the former
9910 right-after-the-end label before we insert
9911 the new one. */
9912 end_label = next_label (loop->end);
9913 label = gen_label_rtx ();
9914 emit_label_after (label, loop->end);
9915 }
9916
9917 /* Store the memory immediately after END, which is
9918 the NOTE_LOOP_END. */
9919 set = gen_move_insn (copy_rtx (mem), reg);
9920 emit_insn_after (set, label);
9921 }
9922
9923 if (loop_dump_stream)
9924 {
9925 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9926 REGNO (reg), (written ? "r/w" : "r/o"));
9927 print_rtl (loop_dump_stream, mem);
9928 fputc ('\n', loop_dump_stream);
9929 }
9930
9931 /* Attempt a bit of copy propagation. This helps untangle the
9932 data flow, and enables {basic,general}_induction_var to find
9933 more bivs/givs. */
9934 EXECUTE_IF_SET_IN_REG_SET
9935 (&copies, FIRST_PSEUDO_REGISTER, j,
9936 {
9937 try_copy_prop (loop, loop_mems[i].reg, j);
9938 });
9939 CLEAR_REG_SET (&copies);
9940 }
9941 }
9942
9943 if (label != NULL_RTX)
9944 {
9945 /* Now, we need to replace all references to the previous exit
9946 label with the new one. */
9947 rtx_pair rr;
9948 rr.r1 = end_label;
9949 rr.r2 = label;
9950
9951 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
9952 {
9953 for_each_rtx (&p, replace_label, &rr);
9954
9955 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9956 field. This is not handled by for_each_rtx because it doesn't
9957 handle unprinted ('0') fields. We need to update JUMP_LABEL
9958 because the immediately following unroll pass will use it.
9959 replace_label would not work anyways, because that only handles
9960 LABEL_REFs. */
9961 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9962 JUMP_LABEL (p) = label;
9963 }
9964 }
9965
9966 cselib_finish ();
9967 }
9968
9969 /* For communication between note_reg_stored and its caller. */
9970 struct note_reg_stored_arg
9971 {
9972 int set_seen;
9973 rtx reg;
9974 };
9975
9976 /* Called via note_stores, record in SET_SEEN whether X, which is written,
9977 is equal to ARG. */
9978 static void
9979 note_reg_stored (x, setter, arg)
9980 rtx x, setter ATTRIBUTE_UNUSED;
9981 void *arg;
9982 {
9983 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *)arg;
9984 if (t->reg == x)
9985 t->set_seen = 1;
9986 }
9987
9988 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
9989 There must be exactly one insn that sets this pseudo; it will be
9990 deleted if all replacements succeed and we can prove that the register
9991 is not used after the loop. */
9992
9993 static void
9994 try_copy_prop (loop, replacement, regno)
9995 const struct loop *loop;
9996 rtx replacement;
9997 unsigned int regno;
9998 {
9999 /* This is the reg that we are copying from. */
10000 rtx reg_rtx = regno_reg_rtx[regno];
10001 rtx init_insn = 0;
10002 rtx insn;
10003 /* These help keep track of whether we replaced all uses of the reg. */
10004 int replaced_last = 0;
10005 int store_is_first = 0;
10006
10007 for (insn = next_insn_in_loop (loop, loop->scan_start);
10008 insn != NULL_RTX;
10009 insn = next_insn_in_loop (loop, insn))
10010 {
10011 rtx set;
10012
10013 /* Only substitute within one extended basic block from the initializing
10014 insn. */
10015 if (GET_CODE (insn) == CODE_LABEL && init_insn)
10016 break;
10017
10018 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
10019 continue;
10020
10021 /* Is this the initializing insn? */
10022 set = single_set (insn);
10023 if (set
10024 && GET_CODE (SET_DEST (set)) == REG
10025 && REGNO (SET_DEST (set)) == regno)
10026 {
10027 if (init_insn)
10028 abort ();
10029
10030 init_insn = insn;
10031 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
10032 store_is_first = 1;
10033 }
10034
10035 /* Only substitute after seeing the initializing insn. */
10036 if (init_insn && insn != init_insn)
10037 {
10038 struct note_reg_stored_arg arg;
10039 rtx array[3];
10040 array[0] = reg_rtx;
10041 array[1] = replacement;
10042 array[2] = insn;
10043
10044 for_each_rtx (&insn, replace_loop_reg, array);
10045 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10046 replaced_last = 1;
10047
10048 /* Stop replacing when REPLACEMENT is modified. */
10049 arg.reg = replacement;
10050 arg.set_seen = 0;
10051 note_stores (PATTERN (insn), note_reg_stored, &arg);
10052 if (arg.set_seen)
10053 break;
10054 }
10055 }
10056 if (! init_insn)
10057 abort ();
10058 if (apply_change_group ())
10059 {
10060 if (loop_dump_stream)
10061 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10062 if (store_is_first && replaced_last)
10063 {
10064 PUT_CODE (init_insn, NOTE);
10065 NOTE_LINE_NUMBER (init_insn) = NOTE_INSN_DELETED;
10066 if (loop_dump_stream)
10067 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10068 INSN_UID (init_insn));
10069 }
10070 if (loop_dump_stream)
10071 fprintf (loop_dump_stream, ".\n");
10072 }
10073 }
10074
10075 /* Replace MEM with its associated pseudo register. This function is
10076 called from load_mems via for_each_rtx. DATA is actually an
10077 rtx_and_int * describing the instruction currently being scanned
10078 and the MEM we are currently replacing. */
10079
10080 static int
10081 replace_loop_mem (mem, data)
10082 rtx *mem;
10083 void *data;
10084 {
10085 rtx_and_int *ri;
10086 rtx insn;
10087 int i;
10088 rtx m = *mem;
10089
10090 if (m == NULL_RTX)
10091 return 0;
10092
10093 switch (GET_CODE (m))
10094 {
10095 case MEM:
10096 break;
10097
10098 case CONST_DOUBLE:
10099 /* We're not interested in the MEM associated with a
10100 CONST_DOUBLE, so there's no need to traverse into one. */
10101 return -1;
10102
10103 default:
10104 /* This is not a MEM. */
10105 return 0;
10106 }
10107
10108 ri = (rtx_and_int*) data;
10109 i = ri->i;
10110
10111 if (!rtx_equal_p (loop_mems[i].mem, m))
10112 /* This is not the MEM we are currently replacing. */
10113 return 0;
10114
10115 insn = ri->r;
10116
10117 /* Actually replace the MEM. */
10118 validate_change (insn, mem, loop_mems[i].reg, 1);
10119
10120 return 0;
10121 }
10122
10123 /* Replace one register with another. Called through for_each_rtx; PX points
10124 to the rtx being scanned. DATA is actually an array of three rtx's; the
10125 first one is the one to be replaced, and the second one the replacement.
10126 The third one is the current insn. */
10127
10128 static int
10129 replace_loop_reg (px, data)
10130 rtx *px;
10131 void *data;
10132 {
10133 rtx x = *px;
10134 rtx *array = (rtx *)data;
10135
10136 if (x == NULL_RTX)
10137 return 0;
10138
10139 if (x == array[0])
10140 validate_change (array[2], px, array[1], 1);
10141
10142 return 0;
10143 }
10144
10145 /* Replace occurrences of the old exit label for the loop with the new
10146 one. DATA is an rtx_pair containing the old and new labels,
10147 respectively. */
10148
10149 static int
10150 replace_label (x, data)
10151 rtx *x;
10152 void *data;
10153 {
10154 rtx l = *x;
10155 rtx old_label = ((rtx_pair*) data)->r1;
10156 rtx new_label = ((rtx_pair*) data)->r2;
10157
10158 if (l == NULL_RTX)
10159 return 0;
10160
10161 if (GET_CODE (l) != LABEL_REF)
10162 return 0;
10163
10164 if (XEXP (l, 0) != old_label)
10165 return 0;
10166
10167 XEXP (l, 0) = new_label;
10168 ++LABEL_NUSES (new_label);
10169 --LABEL_NUSES (old_label);
10170
10171 return 0;
10172 }