Do not go beyond end of array
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include <stdio.h>
38 #include "config.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
85 really a loop (an insn outside the loop branches into it). */
86
87 static char *loop_invalid;
88
89 /* Indexed by loop number, links together all LABEL_REFs which refer to
90 code labels outside the loop. Used by routines that need to know all
91 loop exits, such as final_biv_value and final_giv_value.
92
93 This does not include loop exits due to return instructions. This is
94 because all bivs and givs are pseudos, and hence must be dead after a
95 return, so the presense of a return does not affect any of the
96 optimizations that use this info. It is simpler to just not include return
97 instructions on this list. */
98
99 rtx *loop_number_exit_labels;
100
101 /* Indexed by loop number, counts the number of LABEL_REFs on
102 loop_number_exit_labels for this loop and all loops nested inside it. */
103
104 int *loop_number_exit_count;
105
106 /* Holds the number of loop iterations. It is zero if the number could not be
107 calculated. Must be unsigned since the number of iterations can
108 be as high as 2^wordsize-1. For loops with a wider iterator, this number
109 will will be zero if the number of loop iterations is too large for an
110 unsigned integer to hold. */
111
112 unsigned HOST_WIDE_INT loop_n_iterations;
113
114 /* Nonzero if there is a subroutine call in the current loop.
115 (unknown_address_altered is also nonzero in this case.) */
116
117 static int loop_has_call;
118
119 /* Nonzero if there is a volatile memory reference in the current
120 loop. */
121
122 static int loop_has_volatile;
123
124 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
125 current loop. A continue statement will generate a branch to
126 NEXT_INSN (loop_continue). */
127
128 static rtx loop_continue;
129
130 /* Indexed by register number, contains the number of times the reg
131 is set during the loop being scanned.
132 During code motion, a negative value indicates a reg that has been
133 made a candidate; in particular -2 means that it is an candidate that
134 we know is equal to a constant and -1 means that it is an candidate
135 not known equal to a constant.
136 After code motion, regs moved have 0 (which is accurate now)
137 while the failed candidates have the original number of times set.
138
139 Therefore, at all times, == 0 indicates an invariant register;
140 < 0 a conditionally invariant one. */
141
142 static int *n_times_set;
143
144 /* Original value of n_times_set; same except that this value
145 is not set negative for a reg whose sets have been made candidates
146 and not set to 0 for a reg that is moved. */
147
148 static int *n_times_used;
149
150 /* Index by register number, 1 indicates that the register
151 cannot be moved or strength reduced. */
152
153 static char *may_not_optimize;
154
155 /* Nonzero means reg N has already been moved out of one loop.
156 This reduces the desire to move it out of another. */
157
158 static char *moved_once;
159
160 /* Array of MEMs that are stored in this loop. If there are too many to fit
161 here, we just turn on unknown_address_altered. */
162
163 #define NUM_STORES 20
164 static rtx loop_store_mems[NUM_STORES];
165
166 /* Index of first available slot in above array. */
167 static int loop_store_mems_idx;
168
169 /* Nonzero if we don't know what MEMs were changed in the current loop.
170 This happens if the loop contains a call (in which case `loop_has_call'
171 will also be set) or if we store into more than NUM_STORES MEMs. */
172
173 static int unknown_address_altered;
174
175 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
176 static int num_movables;
177
178 /* Count of memory write instructions discovered in the loop. */
179 static int num_mem_sets;
180
181 /* Number of loops contained within the current one, including itself. */
182 static int loops_enclosed;
183
184 /* Bound on pseudo register number before loop optimization.
185 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
186 int max_reg_before_loop;
187
188 /* This obstack is used in product_cheap_p to allocate its rtl. It
189 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
190 If we used the same obstack that it did, we would be deallocating
191 that array. */
192
193 static struct obstack temp_obstack;
194
195 /* This is where the pointer to the obstack being used for RTL is stored. */
196
197 extern struct obstack *rtl_obstack;
198
199 #define obstack_chunk_alloc xmalloc
200 #define obstack_chunk_free free
201
202 extern char *oballoc ();
203 \f
204 /* During the analysis of a loop, a chain of `struct movable's
205 is made to record all the movable insns found.
206 Then the entire chain can be scanned to decide which to move. */
207
208 struct movable
209 {
210 rtx insn; /* A movable insn */
211 rtx set_src; /* The expression this reg is set from. */
212 rtx set_dest; /* The destination of this SET. */
213 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
214 of any registers used within the LIBCALL. */
215 int consec; /* Number of consecutive following insns
216 that must be moved with this one. */
217 int regno; /* The register it sets */
218 short lifetime; /* lifetime of that register;
219 may be adjusted when matching movables
220 that load the same value are found. */
221 short savings; /* Number of insns we can move for this reg,
222 including other movables that force this
223 or match this one. */
224 unsigned int cond : 1; /* 1 if only conditionally movable */
225 unsigned int force : 1; /* 1 means MUST move this insn */
226 unsigned int global : 1; /* 1 means reg is live outside this loop */
227 /* If PARTIAL is 1, GLOBAL means something different:
228 that the reg is live outside the range from where it is set
229 to the following label. */
230 unsigned int done : 1; /* 1 inhibits further processing of this */
231
232 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
233 In particular, moving it does not make it
234 invariant. */
235 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
236 load SRC, rather than copying INSN. */
237 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
238 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
239 that we should avoid changing when clearing
240 the rest of the reg. */
241 struct movable *match; /* First entry for same value */
242 struct movable *forces; /* An insn that must be moved if this is */
243 struct movable *next;
244 };
245
246 FILE *loop_dump_stream;
247
248 /* Forward declarations. */
249
250 static void find_and_verify_loops ();
251 static void mark_loop_jump ();
252 static void prescan_loop ();
253 static int reg_in_basic_block_p ();
254 static int consec_sets_invariant_p ();
255 static rtx libcall_other_reg ();
256 static int labels_in_range_p ();
257 static void count_loop_regs_set ();
258 static void note_addr_stored ();
259 static int loop_reg_used_before_p ();
260 static void scan_loop ();
261 static void replace_call_address ();
262 static rtx skip_consec_insns ();
263 static int libcall_benefit ();
264 static void ignore_some_movables ();
265 static void force_movables ();
266 static void combine_movables ();
267 static int rtx_equal_for_loop_p ();
268 static void move_movables ();
269 static void strength_reduce ();
270 static int valid_initial_value_p ();
271 static void find_mem_givs ();
272 static void record_biv ();
273 static void check_final_value ();
274 static void record_giv ();
275 static void update_giv_derive ();
276 static int basic_induction_var ();
277 static rtx simplify_giv_expr ();
278 static int general_induction_var ();
279 static int consec_sets_giv ();
280 static int check_dbra_loop ();
281 static rtx express_from ();
282 static int combine_givs_p ();
283 static void combine_givs ();
284 static int product_cheap_p ();
285 static int maybe_eliminate_biv ();
286 static int maybe_eliminate_biv_1 ();
287 static int last_use_this_basic_block ();
288 static void record_initial ();
289 static void update_reg_last_use ();
290 \f
291 /* Relative gain of eliminating various kinds of operations. */
292 int add_cost;
293 #if 0
294 int shift_cost;
295 int mult_cost;
296 #endif
297
298 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
299 copy the value of the strength reduced giv to its original register. */
300 int copy_cost;
301
302 void
303 init_loop ()
304 {
305 char *free_point = (char *) oballoc (1);
306 rtx reg = gen_rtx (REG, word_mode, LAST_VIRTUAL_REGISTER + 1);
307
308 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
309
310 /* We multiply by 2 to reconcile the difference in scale between
311 these two ways of computing costs. Otherwise the cost of a copy
312 will be far less than the cost of an add. */
313
314 copy_cost = 2 * 2;
315
316 /* Free the objects we just allocated. */
317 obfree (free_point);
318
319 /* Initialize the obstack used for rtl in product_cheap_p. */
320 gcc_obstack_init (&temp_obstack);
321 }
322 \f
323 /* Entry point of this file. Perform loop optimization
324 on the current function. F is the first insn of the function
325 and DUMPFILE is a stream for output of a trace of actions taken
326 (or 0 if none should be output). */
327
328 void
329 loop_optimize (f, dumpfile)
330 /* f is the first instruction of a chain of insns for one function */
331 rtx f;
332 FILE *dumpfile;
333 {
334 register rtx insn;
335 register int i;
336 rtx last_insn;
337
338 loop_dump_stream = dumpfile;
339
340 init_recog_no_volatile ();
341 init_alias_analysis ();
342
343 max_reg_before_loop = max_reg_num ();
344
345 moved_once = (char *) alloca (max_reg_before_loop);
346 bzero (moved_once, max_reg_before_loop);
347
348 regs_may_share = 0;
349
350 /* Count the number of loops. */
351
352 max_loop_num = 0;
353 for (insn = f; insn; insn = NEXT_INSN (insn))
354 {
355 if (GET_CODE (insn) == NOTE
356 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
357 max_loop_num++;
358 }
359
360 /* Don't waste time if no loops. */
361 if (max_loop_num == 0)
362 return;
363
364 /* Get size to use for tables indexed by uids.
365 Leave some space for labels allocated by find_and_verify_loops. */
366 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
367
368 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
369 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
370
371 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
372 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
373
374 /* Allocate tables for recording each loop. We set each entry, so they need
375 not be zeroed. */
376 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
377 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
378 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
379 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
380 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
381 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
382
383 /* Find and process each loop.
384 First, find them, and record them in order of their beginnings. */
385 find_and_verify_loops (f);
386
387 /* Now find all register lifetimes. This must be done after
388 find_and_verify_loops, because it might reorder the insns in the
389 function. */
390 reg_scan (f, max_reg_num (), 1);
391
392 /* See if we went too far. */
393 if (get_max_uid () > max_uid_for_loop)
394 abort ();
395
396 /* Compute the mapping from uids to luids.
397 LUIDs are numbers assigned to insns, like uids,
398 except that luids increase monotonically through the code.
399 Don't assign luids to line-number NOTEs, so that the distance in luids
400 between two insns is not affected by -g. */
401
402 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
403 {
404 last_insn = insn;
405 if (GET_CODE (insn) != NOTE
406 || NOTE_LINE_NUMBER (insn) <= 0)
407 uid_luid[INSN_UID (insn)] = ++i;
408 else
409 /* Give a line number note the same luid as preceding insn. */
410 uid_luid[INSN_UID (insn)] = i;
411 }
412
413 max_luid = i + 1;
414
415 /* Don't leave gaps in uid_luid for insns that have been
416 deleted. It is possible that the first or last insn
417 using some register has been deleted by cross-jumping.
418 Make sure that uid_luid for that former insn's uid
419 points to the general area where that insn used to be. */
420 for (i = 0; i < max_uid_for_loop; i++)
421 {
422 uid_luid[0] = uid_luid[i];
423 if (uid_luid[0] != 0)
424 break;
425 }
426 for (i = 0; i < max_uid_for_loop; i++)
427 if (uid_luid[i] == 0)
428 uid_luid[i] = uid_luid[i - 1];
429
430 /* Create a mapping from loops to BLOCK tree nodes. */
431 if (flag_unroll_loops && write_symbols != NO_DEBUG)
432 find_loop_tree_blocks ();
433
434 /* Now scan the loops, last ones first, since this means inner ones are done
435 before outer ones. */
436 for (i = max_loop_num-1; i >= 0; i--)
437 if (! loop_invalid[i] && loop_number_loop_ends[i])
438 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
439 max_reg_num ());
440
441 /* If debugging and unrolling loops, we must replicate the tree nodes
442 corresponding to the blocks inside the loop, so that the original one
443 to one mapping will remain. */
444 if (flag_unroll_loops && write_symbols != NO_DEBUG)
445 unroll_block_trees ();
446 }
447 \f
448 /* Optimize one loop whose start is LOOP_START and end is END.
449 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
450 NOTE_INSN_LOOP_END. */
451
452 /* ??? Could also move memory writes out of loops if the destination address
453 is invariant, the source is invariant, the memory write is not volatile,
454 and if we can prove that no read inside the loop can read this address
455 before the write occurs. If there is a read of this address after the
456 write, then we can also mark the memory read as invariant. */
457
458 static void
459 scan_loop (loop_start, end, nregs)
460 rtx loop_start, end;
461 int nregs;
462 {
463 register int i;
464 register rtx p;
465 /* 1 if we are scanning insns that could be executed zero times. */
466 int maybe_never = 0;
467 /* 1 if we are scanning insns that might never be executed
468 due to a subroutine call which might exit before they are reached. */
469 int call_passed = 0;
470 /* For a rotated loop that is entered near the bottom,
471 this is the label at the top. Otherwise it is zero. */
472 rtx loop_top = 0;
473 /* Jump insn that enters the loop, or 0 if control drops in. */
474 rtx loop_entry_jump = 0;
475 /* Place in the loop where control enters. */
476 rtx scan_start;
477 /* Number of insns in the loop. */
478 int insn_count;
479 int in_libcall = 0;
480 int tem;
481 rtx temp;
482 /* The SET from an insn, if it is the only SET in the insn. */
483 rtx set, set1;
484 /* Chain describing insns movable in current loop. */
485 struct movable *movables = 0;
486 /* Last element in `movables' -- so we can add elements at the end. */
487 struct movable *last_movable = 0;
488 /* Ratio of extra register life span we can justify
489 for saving an instruction. More if loop doesn't call subroutines
490 since in that case saving an insn makes more difference
491 and more registers are available. */
492 int threshold;
493 /* If we have calls, contains the insn in which a register was used
494 if it was used exactly once; contains const0_rtx if it was used more
495 than once. */
496 rtx *reg_single_usage = 0;
497 /* Nonzero if we are scanning instructions in a sub-loop. */
498 int loop_depth = 0;
499
500 n_times_set = (int *) alloca (nregs * sizeof (int));
501 n_times_used = (int *) alloca (nregs * sizeof (int));
502 may_not_optimize = (char *) alloca (nregs);
503
504 /* Determine whether this loop starts with a jump down to a test at
505 the end. This will occur for a small number of loops with a test
506 that is too complex to duplicate in front of the loop.
507
508 We search for the first insn or label in the loop, skipping NOTEs.
509 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
510 (because we might have a loop executed only once that contains a
511 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
512 (in case we have a degenerate loop).
513
514 Note that if we mistakenly think that a loop is entered at the top
515 when, in fact, it is entered at the exit test, the only effect will be
516 slightly poorer optimization. Making the opposite error can generate
517 incorrect code. Since very few loops now start with a jump to the
518 exit test, the code here to detect that case is very conservative. */
519
520 for (p = NEXT_INSN (loop_start);
521 p != end
522 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
523 && (GET_CODE (p) != NOTE
524 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
525 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
526 p = NEXT_INSN (p))
527 ;
528
529 scan_start = p;
530
531 /* Set up variables describing this loop. */
532 prescan_loop (loop_start, end);
533 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
534
535 /* If loop has a jump before the first label,
536 the true entry is the target of that jump.
537 Start scan from there.
538 But record in LOOP_TOP the place where the end-test jumps
539 back to so we can scan that after the end of the loop. */
540 if (GET_CODE (p) == JUMP_INSN)
541 {
542 loop_entry_jump = p;
543
544 /* Loop entry must be unconditional jump (and not a RETURN) */
545 if (simplejump_p (p)
546 && JUMP_LABEL (p) != 0
547 /* Check to see whether the jump actually
548 jumps out of the loop (meaning it's no loop).
549 This case can happen for things like
550 do {..} while (0). If this label was generated previously
551 by loop, we can't tell anything about it and have to reject
552 the loop. */
553 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
554 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
555 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
556 {
557 loop_top = next_label (scan_start);
558 scan_start = JUMP_LABEL (p);
559 }
560 }
561
562 /* If SCAN_START was an insn created by loop, we don't know its luid
563 as required by loop_reg_used_before_p. So skip such loops. (This
564 test may never be true, but it's best to play it safe.)
565
566 Also, skip loops where we do not start scanning at a label. This
567 test also rejects loops starting with a JUMP_INSN that failed the
568 test above. */
569
570 if (INSN_UID (scan_start) >= max_uid_for_loop
571 || GET_CODE (scan_start) != CODE_LABEL)
572 {
573 if (loop_dump_stream)
574 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
575 INSN_UID (loop_start), INSN_UID (end));
576 return;
577 }
578
579 /* Count number of times each reg is set during this loop.
580 Set may_not_optimize[I] if it is not safe to move out
581 the setting of register I. If this loop has calls, set
582 reg_single_usage[I]. */
583
584 bzero ((char *) n_times_set, nregs * sizeof (int));
585 bzero (may_not_optimize, nregs);
586
587 if (loop_has_call)
588 {
589 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
590 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
591 }
592
593 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
594 may_not_optimize, reg_single_usage, &insn_count, nregs);
595
596 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
597 may_not_optimize[i] = 1, n_times_set[i] = 1;
598 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
599
600 if (loop_dump_stream)
601 {
602 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
603 INSN_UID (loop_start), INSN_UID (end), insn_count);
604 if (loop_continue)
605 fprintf (loop_dump_stream, "Continue at insn %d.\n",
606 INSN_UID (loop_continue));
607 }
608
609 /* Scan through the loop finding insns that are safe to move.
610 Set n_times_set negative for the reg being set, so that
611 this reg will be considered invariant for subsequent insns.
612 We consider whether subsequent insns use the reg
613 in deciding whether it is worth actually moving.
614
615 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
616 and therefore it is possible that the insns we are scanning
617 would never be executed. At such times, we must make sure
618 that it is safe to execute the insn once instead of zero times.
619 When MAYBE_NEVER is 0, all insns will be executed at least once
620 so that is not a problem. */
621
622 p = scan_start;
623 while (1)
624 {
625 p = NEXT_INSN (p);
626 /* At end of a straight-in loop, we are done.
627 At end of a loop entered at the bottom, scan the top. */
628 if (p == scan_start)
629 break;
630 if (p == end)
631 {
632 if (loop_top != 0)
633 p = loop_top;
634 else
635 break;
636 if (p == scan_start)
637 break;
638 }
639
640 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
641 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
642 in_libcall = 1;
643 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
644 && find_reg_note (p, REG_RETVAL, NULL_RTX))
645 in_libcall = 0;
646
647 if (GET_CODE (p) == INSN
648 && (set = single_set (p))
649 && GET_CODE (SET_DEST (set)) == REG
650 && ! may_not_optimize[REGNO (SET_DEST (set))])
651 {
652 int tem1 = 0;
653 int tem2 = 0;
654 int move_insn = 0;
655 rtx src = SET_SRC (set);
656 rtx dependencies = 0;
657
658 /* Figure out what to use as a source of this insn. If a REG_EQUIV
659 note is given or if a REG_EQUAL note with a constant operand is
660 specified, use it as the source and mark that we should move
661 this insn by calling emit_move_insn rather that duplicating the
662 insn.
663
664 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
665 is present. */
666 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
667 if (temp)
668 src = XEXP (temp, 0), move_insn = 1;
669 else
670 {
671 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
672 if (temp && CONSTANT_P (XEXP (temp, 0)))
673 src = XEXP (temp, 0), move_insn = 1;
674 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
675 {
676 src = XEXP (temp, 0);
677 /* A libcall block can use regs that don't appear in
678 the equivalent expression. To move the libcall,
679 we must move those regs too. */
680 dependencies = libcall_other_reg (p, src);
681 }
682 }
683
684 /* Don't try to optimize a register that was made
685 by loop-optimization for an inner loop.
686 We don't know its life-span, so we can't compute the benefit. */
687 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
688 ;
689 /* In order to move a register, we need to have one of three cases:
690 (1) it is used only in the same basic block as the set
691 (2) it is not a user variable and it is not used in the
692 exit test (this can cause the variable to be used
693 before it is set just like a user-variable).
694 (3) the set is guaranteed to be executed once the loop starts,
695 and the reg is not used until after that. */
696 else if (! ((! maybe_never
697 && ! loop_reg_used_before_p (set, p, loop_start,
698 scan_start, end))
699 || (! REG_USERVAR_P (SET_DEST (set))
700 && ! REG_LOOP_TEST_P (SET_DEST (set)))
701 || reg_in_basic_block_p (p, SET_DEST (set))))
702 ;
703 else if ((tem = invariant_p (src))
704 && (dependencies == 0
705 || (tem2 = invariant_p (dependencies)) != 0)
706 && (n_times_set[REGNO (SET_DEST (set))] == 1
707 || (tem1
708 = consec_sets_invariant_p (SET_DEST (set),
709 n_times_set[REGNO (SET_DEST (set))],
710 p)))
711 /* If the insn can cause a trap (such as divide by zero),
712 can't move it unless it's guaranteed to be executed
713 once loop is entered. Even a function call might
714 prevent the trap insn from being reached
715 (since it might exit!) */
716 && ! ((maybe_never || call_passed)
717 && may_trap_p (src)))
718 {
719 register struct movable *m;
720 register int regno = REGNO (SET_DEST (set));
721
722 /* A potential lossage is where we have a case where two insns
723 can be combined as long as they are both in the loop, but
724 we move one of them outside the loop. For large loops,
725 this can lose. The most common case of this is the address
726 of a function being called.
727
728 Therefore, if this register is marked as being used exactly
729 once if we are in a loop with calls (a "large loop"), see if
730 we can replace the usage of this register with the source
731 of this SET. If we can, delete this insn.
732
733 Don't do this if P has a REG_RETVAL note or if we have
734 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
735
736 if (reg_single_usage && reg_single_usage[regno] != 0
737 && reg_single_usage[regno] != const0_rtx
738 && REGNO_FIRST_UID (regno) == INSN_UID (p)
739 && (REGNO_LAST_UID (regno)
740 == INSN_UID (reg_single_usage[regno]))
741 && n_times_set[REGNO (SET_DEST (set))] == 1
742 && ! side_effects_p (SET_SRC (set))
743 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
744 #ifdef SMALL_REGISTER_CLASSES
745 && ! (SMALL_REGISTER_CLASSES
746 && GET_CODE (SET_SRC (set)) == REG
747 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
748 #endif
749 /* This test is not redundant; SET_SRC (set) might be
750 a call-clobbered register and the life of REGNO
751 might span a call. */
752 && ! modified_between_p (SET_SRC (set), p,
753 reg_single_usage[regno])
754 && no_labels_between_p (p, reg_single_usage[regno])
755 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
756 reg_single_usage[regno]))
757 {
758 /* Replace any usage in a REG_EQUAL note. Must copy the
759 new source, so that we don't get rtx sharing between the
760 SET_SOURCE and REG_NOTES of insn p. */
761 REG_NOTES (reg_single_usage[regno])
762 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
763 SET_DEST (set), copy_rtx (SET_SRC (set)));
764
765 PUT_CODE (p, NOTE);
766 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
767 NOTE_SOURCE_FILE (p) = 0;
768 n_times_set[regno] = 0;
769 continue;
770 }
771
772 m = (struct movable *) alloca (sizeof (struct movable));
773 m->next = 0;
774 m->insn = p;
775 m->set_src = src;
776 m->dependencies = dependencies;
777 m->set_dest = SET_DEST (set);
778 m->force = 0;
779 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
780 m->done = 0;
781 m->forces = 0;
782 m->partial = 0;
783 m->move_insn = move_insn;
784 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
785 m->savemode = VOIDmode;
786 m->regno = regno;
787 /* Set M->cond if either invariant_p or consec_sets_invariant_p
788 returned 2 (only conditionally invariant). */
789 m->cond = ((tem | tem1 | tem2) > 1);
790 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
791 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
792 m->match = 0;
793 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
794 - uid_luid[REGNO_FIRST_UID (regno)]);
795 m->savings = n_times_used[regno];
796 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
797 m->savings += libcall_benefit (p);
798 n_times_set[regno] = move_insn ? -2 : -1;
799 /* Add M to the end of the chain MOVABLES. */
800 if (movables == 0)
801 movables = m;
802 else
803 last_movable->next = m;
804 last_movable = m;
805
806 if (m->consec > 0)
807 {
808 /* Skip this insn, not checking REG_LIBCALL notes. */
809 p = next_nonnote_insn (p);
810 /* Skip the consecutive insns, if there are any. */
811 p = skip_consec_insns (p, m->consec);
812 /* Back up to the last insn of the consecutive group. */
813 p = prev_nonnote_insn (p);
814
815 /* We must now reset m->move_insn, m->is_equiv, and possibly
816 m->set_src to correspond to the effects of all the
817 insns. */
818 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
819 if (temp)
820 m->set_src = XEXP (temp, 0), m->move_insn = 1;
821 else
822 {
823 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
824 if (temp && CONSTANT_P (XEXP (temp, 0)))
825 m->set_src = XEXP (temp, 0), m->move_insn = 1;
826 else
827 m->move_insn = 0;
828
829 }
830 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
831 }
832 }
833 /* If this register is always set within a STRICT_LOW_PART
834 or set to zero, then its high bytes are constant.
835 So clear them outside the loop and within the loop
836 just load the low bytes.
837 We must check that the machine has an instruction to do so.
838 Also, if the value loaded into the register
839 depends on the same register, this cannot be done. */
840 else if (SET_SRC (set) == const0_rtx
841 && GET_CODE (NEXT_INSN (p)) == INSN
842 && (set1 = single_set (NEXT_INSN (p)))
843 && GET_CODE (set1) == SET
844 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
845 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
846 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
847 == SET_DEST (set))
848 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
849 {
850 register int regno = REGNO (SET_DEST (set));
851 if (n_times_set[regno] == 2)
852 {
853 register struct movable *m;
854 m = (struct movable *) alloca (sizeof (struct movable));
855 m->next = 0;
856 m->insn = p;
857 m->set_dest = SET_DEST (set);
858 m->dependencies = 0;
859 m->force = 0;
860 m->consec = 0;
861 m->done = 0;
862 m->forces = 0;
863 m->move_insn = 0;
864 m->partial = 1;
865 /* If the insn may not be executed on some cycles,
866 we can't clear the whole reg; clear just high part.
867 Not even if the reg is used only within this loop.
868 Consider this:
869 while (1)
870 while (s != t) {
871 if (foo ()) x = *s;
872 use (x);
873 }
874 Clearing x before the inner loop could clobber a value
875 being saved from the last time around the outer loop.
876 However, if the reg is not used outside this loop
877 and all uses of the register are in the same
878 basic block as the store, there is no problem.
879
880 If this insn was made by loop, we don't know its
881 INSN_LUID and hence must make a conservative
882 assumption. */
883 m->global = (INSN_UID (p) >= max_uid_for_loop
884 || (uid_luid[REGNO_LAST_UID (regno)]
885 > INSN_LUID (end))
886 || (uid_luid[REGNO_FIRST_UID (regno)]
887 < INSN_LUID (p))
888 || (labels_in_range_p
889 (p, uid_luid[REGNO_FIRST_UID (regno)])));
890 if (maybe_never && m->global)
891 m->savemode = GET_MODE (SET_SRC (set1));
892 else
893 m->savemode = VOIDmode;
894 m->regno = regno;
895 m->cond = 0;
896 m->match = 0;
897 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
898 - uid_luid[REGNO_FIRST_UID (regno)]);
899 m->savings = 1;
900 n_times_set[regno] = -1;
901 /* Add M to the end of the chain MOVABLES. */
902 if (movables == 0)
903 movables = m;
904 else
905 last_movable->next = m;
906 last_movable = m;
907 }
908 }
909 }
910 /* Past a call insn, we get to insns which might not be executed
911 because the call might exit. This matters for insns that trap.
912 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
913 so they don't count. */
914 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
915 call_passed = 1;
916 /* Past a label or a jump, we get to insns for which we
917 can't count on whether or how many times they will be
918 executed during each iteration. Therefore, we can
919 only move out sets of trivial variables
920 (those not used after the loop). */
921 /* Similar code appears twice in strength_reduce. */
922 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
923 /* If we enter the loop in the middle, and scan around to the
924 beginning, don't set maybe_never for that. This must be an
925 unconditional jump, otherwise the code at the top of the
926 loop might never be executed. Unconditional jumps are
927 followed a by barrier then loop end. */
928 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
929 && NEXT_INSN (NEXT_INSN (p)) == end
930 && simplejump_p (p)))
931 maybe_never = 1;
932 else if (GET_CODE (p) == NOTE)
933 {
934 /* At the virtual top of a converted loop, insns are again known to
935 be executed: logically, the loop begins here even though the exit
936 code has been duplicated. */
937 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
938 maybe_never = call_passed = 0;
939 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
940 loop_depth++;
941 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
942 loop_depth--;
943 }
944 }
945
946 /* If one movable subsumes another, ignore that other. */
947
948 ignore_some_movables (movables);
949
950 /* For each movable insn, see if the reg that it loads
951 leads when it dies right into another conditionally movable insn.
952 If so, record that the second insn "forces" the first one,
953 since the second can be moved only if the first is. */
954
955 force_movables (movables);
956
957 /* See if there are multiple movable insns that load the same value.
958 If there are, make all but the first point at the first one
959 through the `match' field, and add the priorities of them
960 all together as the priority of the first. */
961
962 combine_movables (movables, nregs);
963
964 /* Now consider each movable insn to decide whether it is worth moving.
965 Store 0 in n_times_set for each reg that is moved. */
966
967 move_movables (movables, threshold,
968 insn_count, loop_start, end, nregs);
969
970 /* Now candidates that still are negative are those not moved.
971 Change n_times_set to indicate that those are not actually invariant. */
972 for (i = 0; i < nregs; i++)
973 if (n_times_set[i] < 0)
974 n_times_set[i] = n_times_used[i];
975
976 if (flag_strength_reduce)
977 strength_reduce (scan_start, end, loop_top,
978 insn_count, loop_start, end);
979 }
980 \f
981 /* Add elements to *OUTPUT to record all the pseudo-regs
982 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
983
984 void
985 record_excess_regs (in_this, not_in_this, output)
986 rtx in_this, not_in_this;
987 rtx *output;
988 {
989 enum rtx_code code;
990 char *fmt;
991 int i;
992
993 code = GET_CODE (in_this);
994
995 switch (code)
996 {
997 case PC:
998 case CC0:
999 case CONST_INT:
1000 case CONST_DOUBLE:
1001 case CONST:
1002 case SYMBOL_REF:
1003 case LABEL_REF:
1004 return;
1005
1006 case REG:
1007 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1008 && ! reg_mentioned_p (in_this, not_in_this))
1009 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
1010 return;
1011 }
1012
1013 fmt = GET_RTX_FORMAT (code);
1014 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1015 {
1016 int j;
1017
1018 switch (fmt[i])
1019 {
1020 case 'E':
1021 for (j = 0; j < XVECLEN (in_this, i); j++)
1022 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1023 break;
1024
1025 case 'e':
1026 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1027 break;
1028 }
1029 }
1030 }
1031 \f
1032 /* Check what regs are referred to in the libcall block ending with INSN,
1033 aside from those mentioned in the equivalent value.
1034 If there are none, return 0.
1035 If there are one or more, return an EXPR_LIST containing all of them. */
1036
1037 static rtx
1038 libcall_other_reg (insn, equiv)
1039 rtx insn, equiv;
1040 {
1041 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1042 rtx p = XEXP (note, 0);
1043 rtx output = 0;
1044
1045 /* First, find all the regs used in the libcall block
1046 that are not mentioned as inputs to the result. */
1047
1048 while (p != insn)
1049 {
1050 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1051 || GET_CODE (p) == CALL_INSN)
1052 record_excess_regs (PATTERN (p), equiv, &output);
1053 p = NEXT_INSN (p);
1054 }
1055
1056 return output;
1057 }
1058 \f
1059 /* Return 1 if all uses of REG
1060 are between INSN and the end of the basic block. */
1061
1062 static int
1063 reg_in_basic_block_p (insn, reg)
1064 rtx insn, reg;
1065 {
1066 int regno = REGNO (reg);
1067 rtx p;
1068
1069 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1070 return 0;
1071
1072 /* Search this basic block for the already recorded last use of the reg. */
1073 for (p = insn; p; p = NEXT_INSN (p))
1074 {
1075 switch (GET_CODE (p))
1076 {
1077 case NOTE:
1078 break;
1079
1080 case INSN:
1081 case CALL_INSN:
1082 /* Ordinary insn: if this is the last use, we win. */
1083 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1084 return 1;
1085 break;
1086
1087 case JUMP_INSN:
1088 /* Jump insn: if this is the last use, we win. */
1089 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1090 return 1;
1091 /* Otherwise, it's the end of the basic block, so we lose. */
1092 return 0;
1093
1094 case CODE_LABEL:
1095 case BARRIER:
1096 /* It's the end of the basic block, so we lose. */
1097 return 0;
1098 }
1099 }
1100
1101 /* The "last use" doesn't follow the "first use"?? */
1102 abort ();
1103 }
1104 \f
1105 /* Compute the benefit of eliminating the insns in the block whose
1106 last insn is LAST. This may be a group of insns used to compute a
1107 value directly or can contain a library call. */
1108
1109 static int
1110 libcall_benefit (last)
1111 rtx last;
1112 {
1113 rtx insn;
1114 int benefit = 0;
1115
1116 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1117 insn != last; insn = NEXT_INSN (insn))
1118 {
1119 if (GET_CODE (insn) == CALL_INSN)
1120 benefit += 10; /* Assume at least this many insns in a library
1121 routine. */
1122 else if (GET_CODE (insn) == INSN
1123 && GET_CODE (PATTERN (insn)) != USE
1124 && GET_CODE (PATTERN (insn)) != CLOBBER)
1125 benefit++;
1126 }
1127
1128 return benefit;
1129 }
1130 \f
1131 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1132
1133 static rtx
1134 skip_consec_insns (insn, count)
1135 rtx insn;
1136 int count;
1137 {
1138 for (; count > 0; count--)
1139 {
1140 rtx temp;
1141
1142 /* If first insn of libcall sequence, skip to end. */
1143 /* Do this at start of loop, since INSN is guaranteed to
1144 be an insn here. */
1145 if (GET_CODE (insn) != NOTE
1146 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1147 insn = XEXP (temp, 0);
1148
1149 do insn = NEXT_INSN (insn);
1150 while (GET_CODE (insn) == NOTE);
1151 }
1152
1153 return insn;
1154 }
1155
1156 /* Ignore any movable whose insn falls within a libcall
1157 which is part of another movable.
1158 We make use of the fact that the movable for the libcall value
1159 was made later and so appears later on the chain. */
1160
1161 static void
1162 ignore_some_movables (movables)
1163 struct movable *movables;
1164 {
1165 register struct movable *m, *m1;
1166
1167 for (m = movables; m; m = m->next)
1168 {
1169 /* Is this a movable for the value of a libcall? */
1170 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1171 if (note)
1172 {
1173 rtx insn;
1174 /* Check for earlier movables inside that range,
1175 and mark them invalid. We cannot use LUIDs here because
1176 insns created by loop.c for prior loops don't have LUIDs.
1177 Rather than reject all such insns from movables, we just
1178 explicitly check each insn in the libcall (since invariant
1179 libcalls aren't that common). */
1180 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1181 for (m1 = movables; m1 != m; m1 = m1->next)
1182 if (m1->insn == insn)
1183 m1->done = 1;
1184 }
1185 }
1186 }
1187
1188 /* For each movable insn, see if the reg that it loads
1189 leads when it dies right into another conditionally movable insn.
1190 If so, record that the second insn "forces" the first one,
1191 since the second can be moved only if the first is. */
1192
1193 static void
1194 force_movables (movables)
1195 struct movable *movables;
1196 {
1197 register struct movable *m, *m1;
1198 for (m1 = movables; m1; m1 = m1->next)
1199 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1200 if (!m1->partial && !m1->done)
1201 {
1202 int regno = m1->regno;
1203 for (m = m1->next; m; m = m->next)
1204 /* ??? Could this be a bug? What if CSE caused the
1205 register of M1 to be used after this insn?
1206 Since CSE does not update regno_last_uid,
1207 this insn M->insn might not be where it dies.
1208 But very likely this doesn't matter; what matters is
1209 that M's reg is computed from M1's reg. */
1210 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1211 && !m->done)
1212 break;
1213 if (m != 0 && m->set_src == m1->set_dest
1214 /* If m->consec, m->set_src isn't valid. */
1215 && m->consec == 0)
1216 m = 0;
1217
1218 /* Increase the priority of the moving the first insn
1219 since it permits the second to be moved as well. */
1220 if (m != 0)
1221 {
1222 m->forces = m1;
1223 m1->lifetime += m->lifetime;
1224 m1->savings += m1->savings;
1225 }
1226 }
1227 }
1228 \f
1229 /* Find invariant expressions that are equal and can be combined into
1230 one register. */
1231
1232 static void
1233 combine_movables (movables, nregs)
1234 struct movable *movables;
1235 int nregs;
1236 {
1237 register struct movable *m;
1238 char *matched_regs = (char *) alloca (nregs);
1239 enum machine_mode mode;
1240
1241 /* Regs that are set more than once are not allowed to match
1242 or be matched. I'm no longer sure why not. */
1243 /* Perhaps testing m->consec_sets would be more appropriate here? */
1244
1245 for (m = movables; m; m = m->next)
1246 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1247 {
1248 register struct movable *m1;
1249 int regno = m->regno;
1250
1251 bzero (matched_regs, nregs);
1252 matched_regs[regno] = 1;
1253
1254 for (m1 = movables; m1; m1 = m1->next)
1255 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1256 /* A reg used outside the loop mustn't be eliminated. */
1257 && !m1->global
1258 /* A reg used for zero-extending mustn't be eliminated. */
1259 && !m1->partial
1260 && (matched_regs[m1->regno]
1261 ||
1262 (
1263 /* Can combine regs with different modes loaded from the
1264 same constant only if the modes are the same or
1265 if both are integer modes with M wider or the same
1266 width as M1. The check for integer is redundant, but
1267 safe, since the only case of differing destination
1268 modes with equal sources is when both sources are
1269 VOIDmode, i.e., CONST_INT. */
1270 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1271 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1272 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1273 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1274 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1275 /* See if the source of M1 says it matches M. */
1276 && ((GET_CODE (m1->set_src) == REG
1277 && matched_regs[REGNO (m1->set_src)])
1278 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1279 movables))))
1280 && ((m->dependencies == m1->dependencies)
1281 || rtx_equal_p (m->dependencies, m1->dependencies)))
1282 {
1283 m->lifetime += m1->lifetime;
1284 m->savings += m1->savings;
1285 m1->done = 1;
1286 m1->match = m;
1287 matched_regs[m1->regno] = 1;
1288 }
1289 }
1290
1291 /* Now combine the regs used for zero-extension.
1292 This can be done for those not marked `global'
1293 provided their lives don't overlap. */
1294
1295 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1296 mode = GET_MODE_WIDER_MODE (mode))
1297 {
1298 register struct movable *m0 = 0;
1299
1300 /* Combine all the registers for extension from mode MODE.
1301 Don't combine any that are used outside this loop. */
1302 for (m = movables; m; m = m->next)
1303 if (m->partial && ! m->global
1304 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1305 {
1306 register struct movable *m1;
1307 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1308 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1309
1310 if (m0 == 0)
1311 {
1312 /* First one: don't check for overlap, just record it. */
1313 m0 = m;
1314 continue;
1315 }
1316
1317 /* Make sure they extend to the same mode.
1318 (Almost always true.) */
1319 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1320 continue;
1321
1322 /* We already have one: check for overlap with those
1323 already combined together. */
1324 for (m1 = movables; m1 != m; m1 = m1->next)
1325 if (m1 == m0 || (m1->partial && m1->match == m0))
1326 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1327 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1328 goto overlap;
1329
1330 /* No overlap: we can combine this with the others. */
1331 m0->lifetime += m->lifetime;
1332 m0->savings += m->savings;
1333 m->done = 1;
1334 m->match = m0;
1335
1336 overlap: ;
1337 }
1338 }
1339 }
1340 \f
1341 /* Return 1 if regs X and Y will become the same if moved. */
1342
1343 static int
1344 regs_match_p (x, y, movables)
1345 rtx x, y;
1346 struct movable *movables;
1347 {
1348 int xn = REGNO (x);
1349 int yn = REGNO (y);
1350 struct movable *mx, *my;
1351
1352 for (mx = movables; mx; mx = mx->next)
1353 if (mx->regno == xn)
1354 break;
1355
1356 for (my = movables; my; my = my->next)
1357 if (my->regno == yn)
1358 break;
1359
1360 return (mx && my
1361 && ((mx->match == my->match && mx->match != 0)
1362 || mx->match == my
1363 || mx == my->match));
1364 }
1365
1366 /* Return 1 if X and Y are identical-looking rtx's.
1367 This is the Lisp function EQUAL for rtx arguments.
1368
1369 If two registers are matching movables or a movable register and an
1370 equivalent constant, consider them equal. */
1371
1372 static int
1373 rtx_equal_for_loop_p (x, y, movables)
1374 rtx x, y;
1375 struct movable *movables;
1376 {
1377 register int i;
1378 register int j;
1379 register struct movable *m;
1380 register enum rtx_code code;
1381 register char *fmt;
1382
1383 if (x == y)
1384 return 1;
1385 if (x == 0 || y == 0)
1386 return 0;
1387
1388 code = GET_CODE (x);
1389
1390 /* If we have a register and a constant, they may sometimes be
1391 equal. */
1392 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1393 && CONSTANT_P (y))
1394 for (m = movables; m; m = m->next)
1395 if (m->move_insn && m->regno == REGNO (x)
1396 && rtx_equal_p (m->set_src, y))
1397 return 1;
1398
1399 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1400 && CONSTANT_P (x))
1401 for (m = movables; m; m = m->next)
1402 if (m->move_insn && m->regno == REGNO (y)
1403 && rtx_equal_p (m->set_src, x))
1404 return 1;
1405
1406 /* Otherwise, rtx's of different codes cannot be equal. */
1407 if (code != GET_CODE (y))
1408 return 0;
1409
1410 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1411 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1412
1413 if (GET_MODE (x) != GET_MODE (y))
1414 return 0;
1415
1416 /* These three types of rtx's can be compared nonrecursively. */
1417 if (code == REG)
1418 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1419
1420 if (code == LABEL_REF)
1421 return XEXP (x, 0) == XEXP (y, 0);
1422 if (code == SYMBOL_REF)
1423 return XSTR (x, 0) == XSTR (y, 0);
1424
1425 /* Compare the elements. If any pair of corresponding elements
1426 fail to match, return 0 for the whole things. */
1427
1428 fmt = GET_RTX_FORMAT (code);
1429 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1430 {
1431 switch (fmt[i])
1432 {
1433 case 'w':
1434 if (XWINT (x, i) != XWINT (y, i))
1435 return 0;
1436 break;
1437
1438 case 'i':
1439 if (XINT (x, i) != XINT (y, i))
1440 return 0;
1441 break;
1442
1443 case 'E':
1444 /* Two vectors must have the same length. */
1445 if (XVECLEN (x, i) != XVECLEN (y, i))
1446 return 0;
1447
1448 /* And the corresponding elements must match. */
1449 for (j = 0; j < XVECLEN (x, i); j++)
1450 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1451 return 0;
1452 break;
1453
1454 case 'e':
1455 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1456 return 0;
1457 break;
1458
1459 case 's':
1460 if (strcmp (XSTR (x, i), XSTR (y, i)))
1461 return 0;
1462 break;
1463
1464 case 'u':
1465 /* These are just backpointers, so they don't matter. */
1466 break;
1467
1468 case '0':
1469 break;
1470
1471 /* It is believed that rtx's at this level will never
1472 contain anything but integers and other rtx's,
1473 except for within LABEL_REFs and SYMBOL_REFs. */
1474 default:
1475 abort ();
1476 }
1477 }
1478 return 1;
1479 }
1480 \f
1481 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1482 insns in INSNS which use thet reference. */
1483
1484 static void
1485 add_label_notes (x, insns)
1486 rtx x;
1487 rtx insns;
1488 {
1489 enum rtx_code code = GET_CODE (x);
1490 int i, j;
1491 char *fmt;
1492 rtx insn;
1493
1494 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1495 {
1496 rtx next = next_real_insn (XEXP (x, 0));
1497
1498 /* Don't record labels that refer to dispatch tables.
1499 This is not necessary, since the tablejump references the same label.
1500 And if we did record them, flow.c would make worse code. */
1501 if (next == 0
1502 || ! (GET_CODE (next) == JUMP_INSN
1503 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1504 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1505 {
1506 for (insn = insns; insn; insn = NEXT_INSN (insn))
1507 if (reg_mentioned_p (XEXP (x, 0), insn))
1508 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1509 REG_NOTES (insn));
1510 }
1511 return;
1512 }
1513
1514 fmt = GET_RTX_FORMAT (code);
1515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1516 {
1517 if (fmt[i] == 'e')
1518 add_label_notes (XEXP (x, i), insns);
1519 else if (fmt[i] == 'E')
1520 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1521 add_label_notes (XVECEXP (x, i, j), insns);
1522 }
1523 }
1524 \f
1525 /* Scan MOVABLES, and move the insns that deserve to be moved.
1526 If two matching movables are combined, replace one reg with the
1527 other throughout. */
1528
1529 static void
1530 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1531 struct movable *movables;
1532 int threshold;
1533 int insn_count;
1534 rtx loop_start;
1535 rtx end;
1536 int nregs;
1537 {
1538 rtx new_start = 0;
1539 register struct movable *m;
1540 register rtx p;
1541 /* Map of pseudo-register replacements to handle combining
1542 when we move several insns that load the same value
1543 into different pseudo-registers. */
1544 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1545 char *already_moved = (char *) alloca (nregs);
1546
1547 bzero (already_moved, nregs);
1548 bzero ((char *) reg_map, nregs * sizeof (rtx));
1549
1550 num_movables = 0;
1551
1552 for (m = movables; m; m = m->next)
1553 {
1554 /* Describe this movable insn. */
1555
1556 if (loop_dump_stream)
1557 {
1558 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1559 INSN_UID (m->insn), m->regno, m->lifetime);
1560 if (m->consec > 0)
1561 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1562 if (m->cond)
1563 fprintf (loop_dump_stream, "cond ");
1564 if (m->force)
1565 fprintf (loop_dump_stream, "force ");
1566 if (m->global)
1567 fprintf (loop_dump_stream, "global ");
1568 if (m->done)
1569 fprintf (loop_dump_stream, "done ");
1570 if (m->move_insn)
1571 fprintf (loop_dump_stream, "move-insn ");
1572 if (m->match)
1573 fprintf (loop_dump_stream, "matches %d ",
1574 INSN_UID (m->match->insn));
1575 if (m->forces)
1576 fprintf (loop_dump_stream, "forces %d ",
1577 INSN_UID (m->forces->insn));
1578 }
1579
1580 /* Count movables. Value used in heuristics in strength_reduce. */
1581 num_movables++;
1582
1583 /* Ignore the insn if it's already done (it matched something else).
1584 Otherwise, see if it is now safe to move. */
1585
1586 if (!m->done
1587 && (! m->cond
1588 || (1 == invariant_p (m->set_src)
1589 && (m->dependencies == 0
1590 || 1 == invariant_p (m->dependencies))
1591 && (m->consec == 0
1592 || 1 == consec_sets_invariant_p (m->set_dest,
1593 m->consec + 1,
1594 m->insn))))
1595 && (! m->forces || m->forces->done))
1596 {
1597 register int regno;
1598 register rtx p;
1599 int savings = m->savings;
1600
1601 /* We have an insn that is safe to move.
1602 Compute its desirability. */
1603
1604 p = m->insn;
1605 regno = m->regno;
1606
1607 if (loop_dump_stream)
1608 fprintf (loop_dump_stream, "savings %d ", savings);
1609
1610 if (moved_once[regno])
1611 {
1612 insn_count *= 2;
1613
1614 if (loop_dump_stream)
1615 fprintf (loop_dump_stream, "halved since already moved ");
1616 }
1617
1618 /* An insn MUST be moved if we already moved something else
1619 which is safe only if this one is moved too: that is,
1620 if already_moved[REGNO] is nonzero. */
1621
1622 /* An insn is desirable to move if the new lifetime of the
1623 register is no more than THRESHOLD times the old lifetime.
1624 If it's not desirable, it means the loop is so big
1625 that moving won't speed things up much,
1626 and it is liable to make register usage worse. */
1627
1628 /* It is also desirable to move if it can be moved at no
1629 extra cost because something else was already moved. */
1630
1631 if (already_moved[regno]
1632 || (threshold * savings * m->lifetime) >= insn_count
1633 || (m->forces && m->forces->done
1634 && n_times_used[m->forces->regno] == 1))
1635 {
1636 int count;
1637 register struct movable *m1;
1638 rtx first;
1639
1640 /* Now move the insns that set the reg. */
1641
1642 if (m->partial && m->match)
1643 {
1644 rtx newpat, i1;
1645 rtx r1, r2;
1646 /* Find the end of this chain of matching regs.
1647 Thus, we load each reg in the chain from that one reg.
1648 And that reg is loaded with 0 directly,
1649 since it has ->match == 0. */
1650 for (m1 = m; m1->match; m1 = m1->match);
1651 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1652 SET_DEST (PATTERN (m1->insn)));
1653 i1 = emit_insn_before (newpat, loop_start);
1654
1655 /* Mark the moved, invariant reg as being allowed to
1656 share a hard reg with the other matching invariant. */
1657 REG_NOTES (i1) = REG_NOTES (m->insn);
1658 r1 = SET_DEST (PATTERN (m->insn));
1659 r2 = SET_DEST (PATTERN (m1->insn));
1660 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1661 gen_rtx (EXPR_LIST, VOIDmode, r2,
1662 regs_may_share));
1663 delete_insn (m->insn);
1664
1665 if (new_start == 0)
1666 new_start = i1;
1667
1668 if (loop_dump_stream)
1669 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1670 }
1671 /* If we are to re-generate the item being moved with a
1672 new move insn, first delete what we have and then emit
1673 the move insn before the loop. */
1674 else if (m->move_insn)
1675 {
1676 rtx i1, temp;
1677
1678 for (count = m->consec; count >= 0; count--)
1679 {
1680 /* If this is the first insn of a library call sequence,
1681 skip to the end. */
1682 if (GET_CODE (p) != NOTE
1683 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1684 p = XEXP (temp, 0);
1685
1686 /* If this is the last insn of a libcall sequence, then
1687 delete every insn in the sequence except the last.
1688 The last insn is handled in the normal manner. */
1689 if (GET_CODE (p) != NOTE
1690 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1691 {
1692 temp = XEXP (temp, 0);
1693 while (temp != p)
1694 temp = delete_insn (temp);
1695 }
1696
1697 p = delete_insn (p);
1698 while (p && GET_CODE (p) == NOTE)
1699 p = NEXT_INSN (p);
1700 }
1701
1702 start_sequence ();
1703 emit_move_insn (m->set_dest, m->set_src);
1704 temp = get_insns ();
1705 end_sequence ();
1706
1707 add_label_notes (m->set_src, temp);
1708
1709 i1 = emit_insns_before (temp, loop_start);
1710 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1711 REG_NOTES (i1)
1712 = gen_rtx (EXPR_LIST,
1713 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1714 m->set_src, REG_NOTES (i1));
1715
1716 if (loop_dump_stream)
1717 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1718
1719 /* The more regs we move, the less we like moving them. */
1720 threshold -= 3;
1721 }
1722 else
1723 {
1724 for (count = m->consec; count >= 0; count--)
1725 {
1726 rtx i1, temp;
1727
1728 /* If first insn of libcall sequence, skip to end. */
1729 /* Do this at start of loop, since p is guaranteed to
1730 be an insn here. */
1731 if (GET_CODE (p) != NOTE
1732 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1733 p = XEXP (temp, 0);
1734
1735 /* If last insn of libcall sequence, move all
1736 insns except the last before the loop. The last
1737 insn is handled in the normal manner. */
1738 if (GET_CODE (p) != NOTE
1739 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1740 {
1741 rtx fn_address = 0;
1742 rtx fn_reg = 0;
1743 rtx fn_address_insn = 0;
1744
1745 first = 0;
1746 for (temp = XEXP (temp, 0); temp != p;
1747 temp = NEXT_INSN (temp))
1748 {
1749 rtx body;
1750 rtx n;
1751 rtx next;
1752
1753 if (GET_CODE (temp) == NOTE)
1754 continue;
1755
1756 body = PATTERN (temp);
1757
1758 /* Find the next insn after TEMP,
1759 not counting USE or NOTE insns. */
1760 for (next = NEXT_INSN (temp); next != p;
1761 next = NEXT_INSN (next))
1762 if (! (GET_CODE (next) == INSN
1763 && GET_CODE (PATTERN (next)) == USE)
1764 && GET_CODE (next) != NOTE)
1765 break;
1766
1767 /* If that is the call, this may be the insn
1768 that loads the function address.
1769
1770 Extract the function address from the insn
1771 that loads it into a register.
1772 If this insn was cse'd, we get incorrect code.
1773
1774 So emit a new move insn that copies the
1775 function address into the register that the
1776 call insn will use. flow.c will delete any
1777 redundant stores that we have created. */
1778 if (GET_CODE (next) == CALL_INSN
1779 && GET_CODE (body) == SET
1780 && GET_CODE (SET_DEST (body)) == REG
1781 && (n = find_reg_note (temp, REG_EQUAL,
1782 NULL_RTX)))
1783 {
1784 fn_reg = SET_SRC (body);
1785 if (GET_CODE (fn_reg) != REG)
1786 fn_reg = SET_DEST (body);
1787 fn_address = XEXP (n, 0);
1788 fn_address_insn = temp;
1789 }
1790 /* We have the call insn.
1791 If it uses the register we suspect it might,
1792 load it with the correct address directly. */
1793 if (GET_CODE (temp) == CALL_INSN
1794 && fn_address != 0
1795 && reg_referenced_p (fn_reg, body))
1796 emit_insn_after (gen_move_insn (fn_reg,
1797 fn_address),
1798 fn_address_insn);
1799
1800 if (GET_CODE (temp) == CALL_INSN)
1801 {
1802 i1 = emit_call_insn_before (body, loop_start);
1803 /* Because the USAGE information potentially
1804 contains objects other than hard registers
1805 we need to copy it. */
1806 if (CALL_INSN_FUNCTION_USAGE (temp))
1807 CALL_INSN_FUNCTION_USAGE (i1)
1808 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1809 }
1810 else
1811 i1 = emit_insn_before (body, loop_start);
1812 if (first == 0)
1813 first = i1;
1814 if (temp == fn_address_insn)
1815 fn_address_insn = i1;
1816 REG_NOTES (i1) = REG_NOTES (temp);
1817 delete_insn (temp);
1818 }
1819 }
1820 if (m->savemode != VOIDmode)
1821 {
1822 /* P sets REG to zero; but we should clear only
1823 the bits that are not covered by the mode
1824 m->savemode. */
1825 rtx reg = m->set_dest;
1826 rtx sequence;
1827 rtx tem;
1828
1829 start_sequence ();
1830 tem = expand_binop
1831 (GET_MODE (reg), and_optab, reg,
1832 GEN_INT ((((HOST_WIDE_INT) 1
1833 << GET_MODE_BITSIZE (m->savemode)))
1834 - 1),
1835 reg, 1, OPTAB_LIB_WIDEN);
1836 if (tem == 0)
1837 abort ();
1838 if (tem != reg)
1839 emit_move_insn (reg, tem);
1840 sequence = gen_sequence ();
1841 end_sequence ();
1842 i1 = emit_insn_before (sequence, loop_start);
1843 }
1844 else if (GET_CODE (p) == CALL_INSN)
1845 {
1846 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1847 /* Because the USAGE information potentially
1848 contains objects other than hard registers
1849 we need to copy it. */
1850 if (CALL_INSN_FUNCTION_USAGE (p))
1851 CALL_INSN_FUNCTION_USAGE (i1)
1852 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1853 }
1854 else
1855 i1 = emit_insn_before (PATTERN (p), loop_start);
1856
1857 REG_NOTES (i1) = REG_NOTES (p);
1858
1859 /* If there is a REG_EQUAL note present whose value is
1860 not loop invariant, then delete it, since it may
1861 cause problems with later optimization passes.
1862 It is possible for cse to create such notes
1863 like this as a result of record_jump_cond. */
1864
1865 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1866 && ! invariant_p (XEXP (temp, 0)))
1867 remove_note (i1, temp);
1868
1869 if (new_start == 0)
1870 new_start = i1;
1871
1872 if (loop_dump_stream)
1873 fprintf (loop_dump_stream, " moved to %d",
1874 INSN_UID (i1));
1875
1876 #if 0
1877 /* This isn't needed because REG_NOTES is copied
1878 below and is wrong since P might be a PARALLEL. */
1879 if (REG_NOTES (i1) == 0
1880 && ! m->partial /* But not if it's a zero-extend clr. */
1881 && ! m->global /* and not if used outside the loop
1882 (since it might get set outside). */
1883 && CONSTANT_P (SET_SRC (PATTERN (p))))
1884 REG_NOTES (i1)
1885 = gen_rtx (EXPR_LIST, REG_EQUAL,
1886 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1887 #endif
1888
1889 /* If library call, now fix the REG_NOTES that contain
1890 insn pointers, namely REG_LIBCALL on FIRST
1891 and REG_RETVAL on I1. */
1892 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1893 {
1894 XEXP (temp, 0) = first;
1895 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1896 XEXP (temp, 0) = i1;
1897 }
1898
1899 delete_insn (p);
1900 do p = NEXT_INSN (p);
1901 while (p && GET_CODE (p) == NOTE);
1902 }
1903
1904 /* The more regs we move, the less we like moving them. */
1905 threshold -= 3;
1906 }
1907
1908 /* Any other movable that loads the same register
1909 MUST be moved. */
1910 already_moved[regno] = 1;
1911
1912 /* This reg has been moved out of one loop. */
1913 moved_once[regno] = 1;
1914
1915 /* The reg set here is now invariant. */
1916 if (! m->partial)
1917 n_times_set[regno] = 0;
1918
1919 m->done = 1;
1920
1921 /* Change the length-of-life info for the register
1922 to say it lives at least the full length of this loop.
1923 This will help guide optimizations in outer loops. */
1924
1925 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
1926 /* This is the old insn before all the moved insns.
1927 We can't use the moved insn because it is out of range
1928 in uid_luid. Only the old insns have luids. */
1929 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
1930 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
1931 REGNO_LAST_UID (regno) = INSN_UID (end);
1932
1933 /* Combine with this moved insn any other matching movables. */
1934
1935 if (! m->partial)
1936 for (m1 = movables; m1; m1 = m1->next)
1937 if (m1->match == m)
1938 {
1939 rtx temp;
1940
1941 /* Schedule the reg loaded by M1
1942 for replacement so that shares the reg of M.
1943 If the modes differ (only possible in restricted
1944 circumstances, make a SUBREG. */
1945 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1946 reg_map[m1->regno] = m->set_dest;
1947 else
1948 reg_map[m1->regno]
1949 = gen_lowpart_common (GET_MODE (m1->set_dest),
1950 m->set_dest);
1951
1952 /* Get rid of the matching insn
1953 and prevent further processing of it. */
1954 m1->done = 1;
1955
1956 /* if library call, delete all insn except last, which
1957 is deleted below */
1958 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1959 NULL_RTX))
1960 {
1961 for (temp = XEXP (temp, 0); temp != m1->insn;
1962 temp = NEXT_INSN (temp))
1963 delete_insn (temp);
1964 }
1965 delete_insn (m1->insn);
1966
1967 /* Any other movable that loads the same register
1968 MUST be moved. */
1969 already_moved[m1->regno] = 1;
1970
1971 /* The reg merged here is now invariant,
1972 if the reg it matches is invariant. */
1973 if (! m->partial)
1974 n_times_set[m1->regno] = 0;
1975 }
1976 }
1977 else if (loop_dump_stream)
1978 fprintf (loop_dump_stream, "not desirable");
1979 }
1980 else if (loop_dump_stream && !m->match)
1981 fprintf (loop_dump_stream, "not safe");
1982
1983 if (loop_dump_stream)
1984 fprintf (loop_dump_stream, "\n");
1985 }
1986
1987 if (new_start == 0)
1988 new_start = loop_start;
1989
1990 /* Go through all the instructions in the loop, making
1991 all the register substitutions scheduled in REG_MAP. */
1992 for (p = new_start; p != end; p = NEXT_INSN (p))
1993 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1994 || GET_CODE (p) == CALL_INSN)
1995 {
1996 replace_regs (PATTERN (p), reg_map, nregs, 0);
1997 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1998 INSN_CODE (p) = -1;
1999 }
2000 }
2001 \f
2002 #if 0
2003 /* Scan X and replace the address of any MEM in it with ADDR.
2004 REG is the address that MEM should have before the replacement. */
2005
2006 static void
2007 replace_call_address (x, reg, addr)
2008 rtx x, reg, addr;
2009 {
2010 register enum rtx_code code;
2011 register int i;
2012 register char *fmt;
2013
2014 if (x == 0)
2015 return;
2016 code = GET_CODE (x);
2017 switch (code)
2018 {
2019 case PC:
2020 case CC0:
2021 case CONST_INT:
2022 case CONST_DOUBLE:
2023 case CONST:
2024 case SYMBOL_REF:
2025 case LABEL_REF:
2026 case REG:
2027 return;
2028
2029 case SET:
2030 /* Short cut for very common case. */
2031 replace_call_address (XEXP (x, 1), reg, addr);
2032 return;
2033
2034 case CALL:
2035 /* Short cut for very common case. */
2036 replace_call_address (XEXP (x, 0), reg, addr);
2037 return;
2038
2039 case MEM:
2040 /* If this MEM uses a reg other than the one we expected,
2041 something is wrong. */
2042 if (XEXP (x, 0) != reg)
2043 abort ();
2044 XEXP (x, 0) = addr;
2045 return;
2046 }
2047
2048 fmt = GET_RTX_FORMAT (code);
2049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2050 {
2051 if (fmt[i] == 'e')
2052 replace_call_address (XEXP (x, i), reg, addr);
2053 if (fmt[i] == 'E')
2054 {
2055 register int j;
2056 for (j = 0; j < XVECLEN (x, i); j++)
2057 replace_call_address (XVECEXP (x, i, j), reg, addr);
2058 }
2059 }
2060 }
2061 #endif
2062 \f
2063 /* Return the number of memory refs to addresses that vary
2064 in the rtx X. */
2065
2066 static int
2067 count_nonfixed_reads (x)
2068 rtx x;
2069 {
2070 register enum rtx_code code;
2071 register int i;
2072 register char *fmt;
2073 int value;
2074
2075 if (x == 0)
2076 return 0;
2077
2078 code = GET_CODE (x);
2079 switch (code)
2080 {
2081 case PC:
2082 case CC0:
2083 case CONST_INT:
2084 case CONST_DOUBLE:
2085 case CONST:
2086 case SYMBOL_REF:
2087 case LABEL_REF:
2088 case REG:
2089 return 0;
2090
2091 case MEM:
2092 return ((invariant_p (XEXP (x, 0)) != 1)
2093 + count_nonfixed_reads (XEXP (x, 0)));
2094 }
2095
2096 value = 0;
2097 fmt = GET_RTX_FORMAT (code);
2098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2099 {
2100 if (fmt[i] == 'e')
2101 value += count_nonfixed_reads (XEXP (x, i));
2102 if (fmt[i] == 'E')
2103 {
2104 register int j;
2105 for (j = 0; j < XVECLEN (x, i); j++)
2106 value += count_nonfixed_reads (XVECEXP (x, i, j));
2107 }
2108 }
2109 return value;
2110 }
2111
2112 \f
2113 #if 0
2114 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2115 Replace it with an instruction to load just the low bytes
2116 if the machine supports such an instruction,
2117 and insert above LOOP_START an instruction to clear the register. */
2118
2119 static void
2120 constant_high_bytes (p, loop_start)
2121 rtx p, loop_start;
2122 {
2123 register rtx new;
2124 register int insn_code_number;
2125
2126 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2127 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2128
2129 new = gen_rtx (SET, VOIDmode,
2130 gen_rtx (STRICT_LOW_PART, VOIDmode,
2131 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2132 SET_DEST (PATTERN (p)),
2133 0)),
2134 XEXP (SET_SRC (PATTERN (p)), 0));
2135 insn_code_number = recog (new, p);
2136
2137 if (insn_code_number)
2138 {
2139 register int i;
2140
2141 /* Clear destination register before the loop. */
2142 emit_insn_before (gen_rtx (SET, VOIDmode,
2143 SET_DEST (PATTERN (p)),
2144 const0_rtx),
2145 loop_start);
2146
2147 /* Inside the loop, just load the low part. */
2148 PATTERN (p) = new;
2149 }
2150 }
2151 #endif
2152 \f
2153 /* Scan a loop setting the variables `unknown_address_altered',
2154 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2155 and `loop_has_volatile'.
2156 Also, fill in the array `loop_store_mems'. */
2157
2158 static void
2159 prescan_loop (start, end)
2160 rtx start, end;
2161 {
2162 register int level = 1;
2163 register rtx insn;
2164
2165 unknown_address_altered = 0;
2166 loop_has_call = 0;
2167 loop_has_volatile = 0;
2168 loop_store_mems_idx = 0;
2169
2170 num_mem_sets = 0;
2171 loops_enclosed = 1;
2172 loop_continue = 0;
2173
2174 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2175 insn = NEXT_INSN (insn))
2176 {
2177 if (GET_CODE (insn) == NOTE)
2178 {
2179 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2180 {
2181 ++level;
2182 /* Count number of loops contained in this one. */
2183 loops_enclosed++;
2184 }
2185 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2186 {
2187 --level;
2188 if (level == 0)
2189 {
2190 end = insn;
2191 break;
2192 }
2193 }
2194 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2195 {
2196 if (level == 1)
2197 loop_continue = insn;
2198 }
2199 }
2200 else if (GET_CODE (insn) == CALL_INSN)
2201 {
2202 unknown_address_altered = 1;
2203 loop_has_call = 1;
2204 }
2205 else
2206 {
2207 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2208 {
2209 if (volatile_refs_p (PATTERN (insn)))
2210 loop_has_volatile = 1;
2211
2212 note_stores (PATTERN (insn), note_addr_stored);
2213 }
2214 }
2215 }
2216 }
2217 \f
2218 /* Scan the function looking for loops. Record the start and end of each loop.
2219 Also mark as invalid loops any loops that contain a setjmp or are branched
2220 to from outside the loop. */
2221
2222 static void
2223 find_and_verify_loops (f)
2224 rtx f;
2225 {
2226 rtx insn, label;
2227 int current_loop = -1;
2228 int next_loop = -1;
2229 int loop;
2230
2231 /* If there are jumps to undefined labels,
2232 treat them as jumps out of any/all loops.
2233 This also avoids writing past end of tables when there are no loops. */
2234 uid_loop_num[0] = -1;
2235
2236 /* Find boundaries of loops, mark which loops are contained within
2237 loops, and invalidate loops that have setjmp. */
2238
2239 for (insn = f; insn; insn = NEXT_INSN (insn))
2240 {
2241 if (GET_CODE (insn) == NOTE)
2242 switch (NOTE_LINE_NUMBER (insn))
2243 {
2244 case NOTE_INSN_LOOP_BEG:
2245 loop_number_loop_starts[++next_loop] = insn;
2246 loop_number_loop_ends[next_loop] = 0;
2247 loop_outer_loop[next_loop] = current_loop;
2248 loop_invalid[next_loop] = 0;
2249 loop_number_exit_labels[next_loop] = 0;
2250 loop_number_exit_count[next_loop] = 0;
2251 current_loop = next_loop;
2252 break;
2253
2254 case NOTE_INSN_SETJMP:
2255 /* In this case, we must invalidate our current loop and any
2256 enclosing loop. */
2257 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2258 {
2259 loop_invalid[loop] = 1;
2260 if (loop_dump_stream)
2261 fprintf (loop_dump_stream,
2262 "\nLoop at %d ignored due to setjmp.\n",
2263 INSN_UID (loop_number_loop_starts[loop]));
2264 }
2265 break;
2266
2267 case NOTE_INSN_LOOP_END:
2268 if (current_loop == -1)
2269 abort ();
2270
2271 loop_number_loop_ends[current_loop] = insn;
2272 current_loop = loop_outer_loop[current_loop];
2273 break;
2274
2275 }
2276
2277 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2278 enclosing loop, but this doesn't matter. */
2279 uid_loop_num[INSN_UID (insn)] = current_loop;
2280 }
2281
2282 /* Any loop containing a label used in an initializer must be invalidated,
2283 because it can be jumped into from anywhere. */
2284
2285 for (label = forced_labels; label; label = XEXP (label, 1))
2286 {
2287 int loop_num;
2288
2289 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2290 loop_num != -1;
2291 loop_num = loop_outer_loop[loop_num])
2292 loop_invalid[loop_num] = 1;
2293 }
2294
2295 /* Any loop containing a label used for an exception handler must be
2296 invalidated, because it can be jumped into from anywhere. */
2297
2298 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2299 {
2300 int loop_num;
2301
2302 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2303 loop_num != -1;
2304 loop_num = loop_outer_loop[loop_num])
2305 loop_invalid[loop_num] = 1;
2306 }
2307
2308 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2309 loop that it is not contained within, that loop is marked invalid.
2310 If any INSN or CALL_INSN uses a label's address, then the loop containing
2311 that label is marked invalid, because it could be jumped into from
2312 anywhere.
2313
2314 Also look for blocks of code ending in an unconditional branch that
2315 exits the loop. If such a block is surrounded by a conditional
2316 branch around the block, move the block elsewhere (see below) and
2317 invert the jump to point to the code block. This may eliminate a
2318 label in our loop and will simplify processing by both us and a
2319 possible second cse pass. */
2320
2321 for (insn = f; insn; insn = NEXT_INSN (insn))
2322 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2323 {
2324 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2325
2326 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2327 {
2328 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2329 if (note)
2330 {
2331 int loop_num;
2332
2333 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2334 loop_num != -1;
2335 loop_num = loop_outer_loop[loop_num])
2336 loop_invalid[loop_num] = 1;
2337 }
2338 }
2339
2340 if (GET_CODE (insn) != JUMP_INSN)
2341 continue;
2342
2343 mark_loop_jump (PATTERN (insn), this_loop_num);
2344
2345 /* See if this is an unconditional branch outside the loop. */
2346 if (this_loop_num != -1
2347 && (GET_CODE (PATTERN (insn)) == RETURN
2348 || (simplejump_p (insn)
2349 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2350 != this_loop_num)))
2351 && get_max_uid () < max_uid_for_loop)
2352 {
2353 rtx p;
2354 rtx our_next = next_real_insn (insn);
2355 int dest_loop;
2356 int outer_loop = -1;
2357
2358 /* Go backwards until we reach the start of the loop, a label,
2359 or a JUMP_INSN. */
2360 for (p = PREV_INSN (insn);
2361 GET_CODE (p) != CODE_LABEL
2362 && ! (GET_CODE (p) == NOTE
2363 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2364 && GET_CODE (p) != JUMP_INSN;
2365 p = PREV_INSN (p))
2366 ;
2367
2368 /* Check for the case where we have a jump to an inner nested
2369 loop, and do not perform the optimization in that case. */
2370
2371 if (JUMP_LABEL (insn))
2372 {
2373 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2374 if (dest_loop != -1)
2375 {
2376 for (outer_loop = dest_loop; outer_loop != -1;
2377 outer_loop = loop_outer_loop[outer_loop])
2378 if (outer_loop == this_loop_num)
2379 break;
2380 }
2381 }
2382
2383 /* Make sure that the target of P is within the current loop. */
2384
2385 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2386 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2387 outer_loop = this_loop_num;
2388
2389 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2390 we have a block of code to try to move.
2391
2392 We look backward and then forward from the target of INSN
2393 to find a BARRIER at the same loop depth as the target.
2394 If we find such a BARRIER, we make a new label for the start
2395 of the block, invert the jump in P and point it to that label,
2396 and move the block of code to the spot we found. */
2397
2398 if (outer_loop == -1
2399 && GET_CODE (p) == JUMP_INSN
2400 && JUMP_LABEL (p) != 0
2401 /* Just ignore jumps to labels that were never emitted.
2402 These always indicate compilation errors. */
2403 && INSN_UID (JUMP_LABEL (p)) != 0
2404 && condjump_p (p)
2405 && ! simplejump_p (p)
2406 && next_real_insn (JUMP_LABEL (p)) == our_next)
2407 {
2408 rtx target
2409 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2410 int target_loop_num = uid_loop_num[INSN_UID (target)];
2411 rtx loc;
2412
2413 for (loc = target; loc; loc = PREV_INSN (loc))
2414 if (GET_CODE (loc) == BARRIER
2415 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2416 break;
2417
2418 if (loc == 0)
2419 for (loc = target; loc; loc = NEXT_INSN (loc))
2420 if (GET_CODE (loc) == BARRIER
2421 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2422 break;
2423
2424 if (loc)
2425 {
2426 rtx cond_label = JUMP_LABEL (p);
2427 rtx new_label = get_label_after (p);
2428
2429 /* Ensure our label doesn't go away. */
2430 LABEL_NUSES (cond_label)++;
2431
2432 /* Verify that uid_loop_num is large enough and that
2433 we can invert P. */
2434 if (invert_jump (p, new_label))
2435 {
2436 rtx q, r;
2437
2438 /* Include the BARRIER after INSN and copy the
2439 block after LOC. */
2440 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2441 reorder_insns (new_label, NEXT_INSN (insn), loc);
2442
2443 /* All those insns are now in TARGET_LOOP_NUM. */
2444 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2445 q = NEXT_INSN (q))
2446 uid_loop_num[INSN_UID (q)] = target_loop_num;
2447
2448 /* The label jumped to by INSN is no longer a loop exit.
2449 Unless INSN does not have a label (e.g., it is a
2450 RETURN insn), search loop_number_exit_labels to find
2451 its label_ref, and remove it. Also turn off
2452 LABEL_OUTSIDE_LOOP_P bit. */
2453 if (JUMP_LABEL (insn))
2454 {
2455 int loop_num;
2456
2457 for (q = 0,
2458 r = loop_number_exit_labels[this_loop_num];
2459 r; q = r, r = LABEL_NEXTREF (r))
2460 if (XEXP (r, 0) == JUMP_LABEL (insn))
2461 {
2462 LABEL_OUTSIDE_LOOP_P (r) = 0;
2463 if (q)
2464 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2465 else
2466 loop_number_exit_labels[this_loop_num]
2467 = LABEL_NEXTREF (r);
2468 break;
2469 }
2470
2471 for (loop_num = this_loop_num;
2472 loop_num != -1 && loop_num != target_loop_num;
2473 loop_num = loop_outer_loop[loop_num])
2474 loop_number_exit_count[loop_num]--;
2475
2476 /* If we didn't find it, then something is wrong. */
2477 if (! r)
2478 abort ();
2479 }
2480
2481 /* P is now a jump outside the loop, so it must be put
2482 in loop_number_exit_labels, and marked as such.
2483 The easiest way to do this is to just call
2484 mark_loop_jump again for P. */
2485 mark_loop_jump (PATTERN (p), this_loop_num);
2486
2487 /* If INSN now jumps to the insn after it,
2488 delete INSN. */
2489 if (JUMP_LABEL (insn) != 0
2490 && (next_real_insn (JUMP_LABEL (insn))
2491 == next_real_insn (insn)))
2492 delete_insn (insn);
2493 }
2494
2495 /* Continue the loop after where the conditional
2496 branch used to jump, since the only branch insn
2497 in the block (if it still remains) is an inter-loop
2498 branch and hence needs no processing. */
2499 insn = NEXT_INSN (cond_label);
2500
2501 if (--LABEL_NUSES (cond_label) == 0)
2502 delete_insn (cond_label);
2503
2504 /* This loop will be continued with NEXT_INSN (insn). */
2505 insn = PREV_INSN (insn);
2506 }
2507 }
2508 }
2509 }
2510 }
2511
2512 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2513 loops it is contained in, mark the target loop invalid.
2514
2515 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2516
2517 static void
2518 mark_loop_jump (x, loop_num)
2519 rtx x;
2520 int loop_num;
2521 {
2522 int dest_loop;
2523 int outer_loop;
2524 int i;
2525
2526 switch (GET_CODE (x))
2527 {
2528 case PC:
2529 case USE:
2530 case CLOBBER:
2531 case REG:
2532 case MEM:
2533 case CONST_INT:
2534 case CONST_DOUBLE:
2535 case RETURN:
2536 return;
2537
2538 case CONST:
2539 /* There could be a label reference in here. */
2540 mark_loop_jump (XEXP (x, 0), loop_num);
2541 return;
2542
2543 case PLUS:
2544 case MINUS:
2545 case MULT:
2546 mark_loop_jump (XEXP (x, 0), loop_num);
2547 mark_loop_jump (XEXP (x, 1), loop_num);
2548 return;
2549
2550 case SIGN_EXTEND:
2551 case ZERO_EXTEND:
2552 mark_loop_jump (XEXP (x, 0), loop_num);
2553 return;
2554
2555 case LABEL_REF:
2556 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2557
2558 /* Link together all labels that branch outside the loop. This
2559 is used by final_[bg]iv_value and the loop unrolling code. Also
2560 mark this LABEL_REF so we know that this branch should predict
2561 false. */
2562
2563 /* A check to make sure the label is not in an inner nested loop,
2564 since this does not count as a loop exit. */
2565 if (dest_loop != -1)
2566 {
2567 for (outer_loop = dest_loop; outer_loop != -1;
2568 outer_loop = loop_outer_loop[outer_loop])
2569 if (outer_loop == loop_num)
2570 break;
2571 }
2572 else
2573 outer_loop = -1;
2574
2575 if (loop_num != -1 && outer_loop == -1)
2576 {
2577 LABEL_OUTSIDE_LOOP_P (x) = 1;
2578 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2579 loop_number_exit_labels[loop_num] = x;
2580
2581 for (outer_loop = loop_num;
2582 outer_loop != -1 && outer_loop != dest_loop;
2583 outer_loop = loop_outer_loop[outer_loop])
2584 loop_number_exit_count[outer_loop]++;
2585 }
2586
2587 /* If this is inside a loop, but not in the current loop or one enclosed
2588 by it, it invalidates at least one loop. */
2589
2590 if (dest_loop == -1)
2591 return;
2592
2593 /* We must invalidate every nested loop containing the target of this
2594 label, except those that also contain the jump insn. */
2595
2596 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2597 {
2598 /* Stop when we reach a loop that also contains the jump insn. */
2599 for (outer_loop = loop_num; outer_loop != -1;
2600 outer_loop = loop_outer_loop[outer_loop])
2601 if (dest_loop == outer_loop)
2602 return;
2603
2604 /* If we get here, we know we need to invalidate a loop. */
2605 if (loop_dump_stream && ! loop_invalid[dest_loop])
2606 fprintf (loop_dump_stream,
2607 "\nLoop at %d ignored due to multiple entry points.\n",
2608 INSN_UID (loop_number_loop_starts[dest_loop]));
2609
2610 loop_invalid[dest_loop] = 1;
2611 }
2612 return;
2613
2614 case SET:
2615 /* If this is not setting pc, ignore. */
2616 if (SET_DEST (x) == pc_rtx)
2617 mark_loop_jump (SET_SRC (x), loop_num);
2618 return;
2619
2620 case IF_THEN_ELSE:
2621 mark_loop_jump (XEXP (x, 1), loop_num);
2622 mark_loop_jump (XEXP (x, 2), loop_num);
2623 return;
2624
2625 case PARALLEL:
2626 case ADDR_VEC:
2627 for (i = 0; i < XVECLEN (x, 0); i++)
2628 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2629 return;
2630
2631 case ADDR_DIFF_VEC:
2632 for (i = 0; i < XVECLEN (x, 1); i++)
2633 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2634 return;
2635
2636 default:
2637 /* Treat anything else (such as a symbol_ref)
2638 as a branch out of this loop, but not into any loop. */
2639
2640 if (loop_num != -1)
2641 {
2642 loop_number_exit_labels[loop_num] = x;
2643
2644 for (outer_loop = loop_num; outer_loop != -1;
2645 outer_loop = loop_outer_loop[outer_loop])
2646 loop_number_exit_count[outer_loop]++;
2647 }
2648 return;
2649 }
2650 }
2651 \f
2652 /* Return nonzero if there is a label in the range from
2653 insn INSN to and including the insn whose luid is END
2654 INSN must have an assigned luid (i.e., it must not have
2655 been previously created by loop.c). */
2656
2657 static int
2658 labels_in_range_p (insn, end)
2659 rtx insn;
2660 int end;
2661 {
2662 while (insn && INSN_LUID (insn) <= end)
2663 {
2664 if (GET_CODE (insn) == CODE_LABEL)
2665 return 1;
2666 insn = NEXT_INSN (insn);
2667 }
2668
2669 return 0;
2670 }
2671
2672 /* Record that a memory reference X is being set. */
2673
2674 static void
2675 note_addr_stored (x)
2676 rtx x;
2677 {
2678 register int i;
2679
2680 if (x == 0 || GET_CODE (x) != MEM)
2681 return;
2682
2683 /* Count number of memory writes.
2684 This affects heuristics in strength_reduce. */
2685 num_mem_sets++;
2686
2687 /* BLKmode MEM means all memory is clobbered. */
2688 if (GET_MODE (x) == BLKmode)
2689 unknown_address_altered = 1;
2690
2691 if (unknown_address_altered)
2692 return;
2693
2694 for (i = 0; i < loop_store_mems_idx; i++)
2695 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2696 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2697 {
2698 /* We are storing at the same address as previously noted. Save the
2699 wider reference. */
2700 if (GET_MODE_SIZE (GET_MODE (x))
2701 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2702 loop_store_mems[i] = x;
2703 break;
2704 }
2705
2706 if (i == NUM_STORES)
2707 unknown_address_altered = 1;
2708
2709 else if (i == loop_store_mems_idx)
2710 loop_store_mems[loop_store_mems_idx++] = x;
2711 }
2712 \f
2713 /* Return nonzero if the rtx X is invariant over the current loop.
2714
2715 The value is 2 if we refer to something only conditionally invariant.
2716
2717 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2718 Otherwise, a memory ref is invariant if it does not conflict with
2719 anything stored in `loop_store_mems'. */
2720
2721 int
2722 invariant_p (x)
2723 register rtx x;
2724 {
2725 register int i;
2726 register enum rtx_code code;
2727 register char *fmt;
2728 int conditional = 0;
2729
2730 if (x == 0)
2731 return 1;
2732 code = GET_CODE (x);
2733 switch (code)
2734 {
2735 case CONST_INT:
2736 case CONST_DOUBLE:
2737 case SYMBOL_REF:
2738 case CONST:
2739 return 1;
2740
2741 case LABEL_REF:
2742 /* A LABEL_REF is normally invariant, however, if we are unrolling
2743 loops, and this label is inside the loop, then it isn't invariant.
2744 This is because each unrolled copy of the loop body will have
2745 a copy of this label. If this was invariant, then an insn loading
2746 the address of this label into a register might get moved outside
2747 the loop, and then each loop body would end up using the same label.
2748
2749 We don't know the loop bounds here though, so just fail for all
2750 labels. */
2751 if (flag_unroll_loops)
2752 return 0;
2753 else
2754 return 1;
2755
2756 case PC:
2757 case CC0:
2758 case UNSPEC_VOLATILE:
2759 return 0;
2760
2761 case REG:
2762 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2763 since the reg might be set by initialization within the loop. */
2764
2765 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2766 || x == arg_pointer_rtx)
2767 && ! current_function_has_nonlocal_goto)
2768 return 1;
2769
2770 if (loop_has_call
2771 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2772 return 0;
2773
2774 if (n_times_set[REGNO (x)] < 0)
2775 return 2;
2776
2777 return n_times_set[REGNO (x)] == 0;
2778
2779 case MEM:
2780 /* Volatile memory references must be rejected. Do this before
2781 checking for read-only items, so that volatile read-only items
2782 will be rejected also. */
2783 if (MEM_VOLATILE_P (x))
2784 return 0;
2785
2786 /* Read-only items (such as constants in a constant pool) are
2787 invariant if their address is. */
2788 if (RTX_UNCHANGING_P (x))
2789 break;
2790
2791 /* If we filled the table (or had a subroutine call), any location
2792 in memory could have been clobbered. */
2793 if (unknown_address_altered)
2794 return 0;
2795
2796 /* See if there is any dependence between a store and this load. */
2797 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2798 if (true_dependence (loop_store_mems[i], x))
2799 return 0;
2800
2801 /* It's not invalidated by a store in memory
2802 but we must still verify the address is invariant. */
2803 break;
2804
2805 case ASM_OPERANDS:
2806 /* Don't mess with insns declared volatile. */
2807 if (MEM_VOLATILE_P (x))
2808 return 0;
2809 }
2810
2811 fmt = GET_RTX_FORMAT (code);
2812 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2813 {
2814 if (fmt[i] == 'e')
2815 {
2816 int tem = invariant_p (XEXP (x, i));
2817 if (tem == 0)
2818 return 0;
2819 if (tem == 2)
2820 conditional = 1;
2821 }
2822 else if (fmt[i] == 'E')
2823 {
2824 register int j;
2825 for (j = 0; j < XVECLEN (x, i); j++)
2826 {
2827 int tem = invariant_p (XVECEXP (x, i, j));
2828 if (tem == 0)
2829 return 0;
2830 if (tem == 2)
2831 conditional = 1;
2832 }
2833
2834 }
2835 }
2836
2837 return 1 + conditional;
2838 }
2839
2840 \f
2841 /* Return nonzero if all the insns in the loop that set REG
2842 are INSN and the immediately following insns,
2843 and if each of those insns sets REG in an invariant way
2844 (not counting uses of REG in them).
2845
2846 The value is 2 if some of these insns are only conditionally invariant.
2847
2848 We assume that INSN itself is the first set of REG
2849 and that its source is invariant. */
2850
2851 static int
2852 consec_sets_invariant_p (reg, n_sets, insn)
2853 int n_sets;
2854 rtx reg, insn;
2855 {
2856 register rtx p = insn;
2857 register int regno = REGNO (reg);
2858 rtx temp;
2859 /* Number of sets we have to insist on finding after INSN. */
2860 int count = n_sets - 1;
2861 int old = n_times_set[regno];
2862 int value = 0;
2863 int this;
2864
2865 /* If N_SETS hit the limit, we can't rely on its value. */
2866 if (n_sets == 127)
2867 return 0;
2868
2869 n_times_set[regno] = 0;
2870
2871 while (count > 0)
2872 {
2873 register enum rtx_code code;
2874 rtx set;
2875
2876 p = NEXT_INSN (p);
2877 code = GET_CODE (p);
2878
2879 /* If library call, skip to end of of it. */
2880 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2881 p = XEXP (temp, 0);
2882
2883 this = 0;
2884 if (code == INSN
2885 && (set = single_set (p))
2886 && GET_CODE (SET_DEST (set)) == REG
2887 && REGNO (SET_DEST (set)) == regno)
2888 {
2889 this = invariant_p (SET_SRC (set));
2890 if (this != 0)
2891 value |= this;
2892 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2893 {
2894 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2895 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2896 notes are OK. */
2897 this = (CONSTANT_P (XEXP (temp, 0))
2898 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2899 && invariant_p (XEXP (temp, 0))));
2900 if (this != 0)
2901 value |= this;
2902 }
2903 }
2904 if (this != 0)
2905 count--;
2906 else if (code != NOTE)
2907 {
2908 n_times_set[regno] = old;
2909 return 0;
2910 }
2911 }
2912
2913 n_times_set[regno] = old;
2914 /* If invariant_p ever returned 2, we return 2. */
2915 return 1 + (value & 2);
2916 }
2917
2918 #if 0
2919 /* I don't think this condition is sufficient to allow INSN
2920 to be moved, so we no longer test it. */
2921
2922 /* Return 1 if all insns in the basic block of INSN and following INSN
2923 that set REG are invariant according to TABLE. */
2924
2925 static int
2926 all_sets_invariant_p (reg, insn, table)
2927 rtx reg, insn;
2928 short *table;
2929 {
2930 register rtx p = insn;
2931 register int regno = REGNO (reg);
2932
2933 while (1)
2934 {
2935 register enum rtx_code code;
2936 p = NEXT_INSN (p);
2937 code = GET_CODE (p);
2938 if (code == CODE_LABEL || code == JUMP_INSN)
2939 return 1;
2940 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2941 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2942 && REGNO (SET_DEST (PATTERN (p))) == regno)
2943 {
2944 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2945 return 0;
2946 }
2947 }
2948 }
2949 #endif /* 0 */
2950 \f
2951 /* Look at all uses (not sets) of registers in X. For each, if it is
2952 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2953 a different insn, set USAGE[REGNO] to const0_rtx. */
2954
2955 static void
2956 find_single_use_in_loop (insn, x, usage)
2957 rtx insn;
2958 rtx x;
2959 rtx *usage;
2960 {
2961 enum rtx_code code = GET_CODE (x);
2962 char *fmt = GET_RTX_FORMAT (code);
2963 int i, j;
2964
2965 if (code == REG)
2966 usage[REGNO (x)]
2967 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2968 ? const0_rtx : insn;
2969
2970 else if (code == SET)
2971 {
2972 /* Don't count SET_DEST if it is a REG; otherwise count things
2973 in SET_DEST because if a register is partially modified, it won't
2974 show up as a potential movable so we don't care how USAGE is set
2975 for it. */
2976 if (GET_CODE (SET_DEST (x)) != REG)
2977 find_single_use_in_loop (insn, SET_DEST (x), usage);
2978 find_single_use_in_loop (insn, SET_SRC (x), usage);
2979 }
2980 else
2981 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2982 {
2983 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2984 find_single_use_in_loop (insn, XEXP (x, i), usage);
2985 else if (fmt[i] == 'E')
2986 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2987 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2988 }
2989 }
2990 \f
2991 /* Increment N_TIMES_SET at the index of each register
2992 that is modified by an insn between FROM and TO.
2993 If the value of an element of N_TIMES_SET becomes 127 or more,
2994 stop incrementing it, to avoid overflow.
2995
2996 Store in SINGLE_USAGE[I] the single insn in which register I is
2997 used, if it is only used once. Otherwise, it is set to 0 (for no
2998 uses) or const0_rtx for more than one use. This parameter may be zero,
2999 in which case this processing is not done.
3000
3001 Store in *COUNT_PTR the number of actual instruction
3002 in the loop. We use this to decide what is worth moving out. */
3003
3004 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3005 In that case, it is the insn that last set reg n. */
3006
3007 static void
3008 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3009 register rtx from, to;
3010 char *may_not_move;
3011 rtx *single_usage;
3012 int *count_ptr;
3013 int nregs;
3014 {
3015 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3016 register rtx insn;
3017 register int count = 0;
3018 register rtx dest;
3019
3020 bzero ((char *) last_set, nregs * sizeof (rtx));
3021 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3022 {
3023 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3024 {
3025 ++count;
3026
3027 /* If requested, record registers that have exactly one use. */
3028 if (single_usage)
3029 {
3030 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3031
3032 /* Include uses in REG_EQUAL notes. */
3033 if (REG_NOTES (insn))
3034 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3035 }
3036
3037 if (GET_CODE (PATTERN (insn)) == CLOBBER
3038 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3039 /* Don't move a reg that has an explicit clobber.
3040 We might do so sometimes, but it's not worth the pain. */
3041 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3042
3043 if (GET_CODE (PATTERN (insn)) == SET
3044 || GET_CODE (PATTERN (insn)) == CLOBBER)
3045 {
3046 dest = SET_DEST (PATTERN (insn));
3047 while (GET_CODE (dest) == SUBREG
3048 || GET_CODE (dest) == ZERO_EXTRACT
3049 || GET_CODE (dest) == SIGN_EXTRACT
3050 || GET_CODE (dest) == STRICT_LOW_PART)
3051 dest = XEXP (dest, 0);
3052 if (GET_CODE (dest) == REG)
3053 {
3054 register int regno = REGNO (dest);
3055 /* If this is the first setting of this reg
3056 in current basic block, and it was set before,
3057 it must be set in two basic blocks, so it cannot
3058 be moved out of the loop. */
3059 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3060 may_not_move[regno] = 1;
3061 /* If this is not first setting in current basic block,
3062 see if reg was used in between previous one and this.
3063 If so, neither one can be moved. */
3064 if (last_set[regno] != 0
3065 && reg_used_between_p (dest, last_set[regno], insn))
3066 may_not_move[regno] = 1;
3067 if (n_times_set[regno] < 127)
3068 ++n_times_set[regno];
3069 last_set[regno] = insn;
3070 }
3071 }
3072 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3073 {
3074 register int i;
3075 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3076 {
3077 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3078 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3079 /* Don't move a reg that has an explicit clobber.
3080 It's not worth the pain to try to do it correctly. */
3081 may_not_move[REGNO (XEXP (x, 0))] = 1;
3082
3083 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3084 {
3085 dest = SET_DEST (x);
3086 while (GET_CODE (dest) == SUBREG
3087 || GET_CODE (dest) == ZERO_EXTRACT
3088 || GET_CODE (dest) == SIGN_EXTRACT
3089 || GET_CODE (dest) == STRICT_LOW_PART)
3090 dest = XEXP (dest, 0);
3091 if (GET_CODE (dest) == REG)
3092 {
3093 register int regno = REGNO (dest);
3094 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3095 may_not_move[regno] = 1;
3096 if (last_set[regno] != 0
3097 && reg_used_between_p (dest, last_set[regno], insn))
3098 may_not_move[regno] = 1;
3099 if (n_times_set[regno] < 127)
3100 ++n_times_set[regno];
3101 last_set[regno] = insn;
3102 }
3103 }
3104 }
3105 }
3106 }
3107
3108 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3109 bzero ((char *) last_set, nregs * sizeof (rtx));
3110 }
3111 *count_ptr = count;
3112 }
3113 \f
3114 /* Given a loop that is bounded by LOOP_START and LOOP_END
3115 and that is entered at SCAN_START,
3116 return 1 if the register set in SET contained in insn INSN is used by
3117 any insn that precedes INSN in cyclic order starting
3118 from the loop entry point.
3119
3120 We don't want to use INSN_LUID here because if we restrict INSN to those
3121 that have a valid INSN_LUID, it means we cannot move an invariant out
3122 from an inner loop past two loops. */
3123
3124 static int
3125 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3126 rtx set, insn, loop_start, scan_start, loop_end;
3127 {
3128 rtx reg = SET_DEST (set);
3129 rtx p;
3130
3131 /* Scan forward checking for register usage. If we hit INSN, we
3132 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3133 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3134 {
3135 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3136 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3137 return 1;
3138
3139 if (p == loop_end)
3140 p = loop_start;
3141 }
3142
3143 return 0;
3144 }
3145 \f
3146 /* A "basic induction variable" or biv is a pseudo reg that is set
3147 (within this loop) only by incrementing or decrementing it. */
3148 /* A "general induction variable" or giv is a pseudo reg whose
3149 value is a linear function of a biv. */
3150
3151 /* Bivs are recognized by `basic_induction_var';
3152 Givs by `general_induct_var'. */
3153
3154 /* Indexed by register number, indicates whether or not register is an
3155 induction variable, and if so what type. */
3156
3157 enum iv_mode *reg_iv_type;
3158
3159 /* Indexed by register number, contains pointer to `struct induction'
3160 if register is an induction variable. This holds general info for
3161 all induction variables. */
3162
3163 struct induction **reg_iv_info;
3164
3165 /* Indexed by register number, contains pointer to `struct iv_class'
3166 if register is a basic induction variable. This holds info describing
3167 the class (a related group) of induction variables that the biv belongs
3168 to. */
3169
3170 struct iv_class **reg_biv_class;
3171
3172 /* The head of a list which links together (via the next field)
3173 every iv class for the current loop. */
3174
3175 struct iv_class *loop_iv_list;
3176
3177 /* Communication with routines called via `note_stores'. */
3178
3179 static rtx note_insn;
3180
3181 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3182
3183 static rtx addr_placeholder;
3184
3185 /* ??? Unfinished optimizations, and possible future optimizations,
3186 for the strength reduction code. */
3187
3188 /* ??? There is one more optimization you might be interested in doing: to
3189 allocate pseudo registers for frequently-accessed memory locations.
3190 If the same memory location is referenced each time around, it might
3191 be possible to copy it into a register before and out after.
3192 This is especially useful when the memory location is a variable which
3193 is in a stack slot because somewhere its address is taken. If the
3194 loop doesn't contain a function call and the variable isn't volatile,
3195 it is safe to keep the value in a register for the duration of the
3196 loop. One tricky thing is that the copying of the value back from the
3197 register has to be done on all exits from the loop. You need to check that
3198 all the exits from the loop go to the same place. */
3199
3200 /* ??? The interaction of biv elimination, and recognition of 'constant'
3201 bivs, may cause problems. */
3202
3203 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3204 performance problems.
3205
3206 Perhaps don't eliminate things that can be combined with an addressing
3207 mode. Find all givs that have the same biv, mult_val, and add_val;
3208 then for each giv, check to see if its only use dies in a following
3209 memory address. If so, generate a new memory address and check to see
3210 if it is valid. If it is valid, then store the modified memory address,
3211 otherwise, mark the giv as not done so that it will get its own iv. */
3212
3213 /* ??? Could try to optimize branches when it is known that a biv is always
3214 positive. */
3215
3216 /* ??? When replace a biv in a compare insn, we should replace with closest
3217 giv so that an optimized branch can still be recognized by the combiner,
3218 e.g. the VAX acb insn. */
3219
3220 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3221 was rerun in loop_optimize whenever a register was added or moved.
3222 Also, some of the optimizations could be a little less conservative. */
3223 \f
3224 /* Perform strength reduction and induction variable elimination. */
3225
3226 /* Pseudo registers created during this function will be beyond the last
3227 valid index in several tables including n_times_set and regno_last_uid.
3228 This does not cause a problem here, because the added registers cannot be
3229 givs outside of their loop, and hence will never be reconsidered.
3230 But scan_loop must check regnos to make sure they are in bounds. */
3231
3232 static void
3233 strength_reduce (scan_start, end, loop_top, insn_count,
3234 loop_start, loop_end)
3235 rtx scan_start;
3236 rtx end;
3237 rtx loop_top;
3238 int insn_count;
3239 rtx loop_start;
3240 rtx loop_end;
3241 {
3242 rtx p;
3243 rtx set;
3244 rtx inc_val;
3245 rtx mult_val;
3246 rtx dest_reg;
3247 /* This is 1 if current insn is not executed at least once for every loop
3248 iteration. */
3249 int not_every_iteration = 0;
3250 /* This is 1 if current insn may be executed more than once for every
3251 loop iteration. */
3252 int maybe_multiple = 0;
3253 /* Temporary list pointers for traversing loop_iv_list. */
3254 struct iv_class *bl, **backbl;
3255 /* Ratio of extra register life span we can justify
3256 for saving an instruction. More if loop doesn't call subroutines
3257 since in that case saving an insn makes more difference
3258 and more registers are available. */
3259 /* ??? could set this to last value of threshold in move_movables */
3260 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3261 /* Map of pseudo-register replacements. */
3262 rtx *reg_map;
3263 int call_seen;
3264 rtx test;
3265 rtx end_insert_before;
3266 int loop_depth = 0;
3267
3268 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3269 * sizeof (enum iv_mode *));
3270 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3271 reg_iv_info = (struct induction **)
3272 alloca (max_reg_before_loop * sizeof (struct induction *));
3273 bzero ((char *) reg_iv_info, (max_reg_before_loop
3274 * sizeof (struct induction *)));
3275 reg_biv_class = (struct iv_class **)
3276 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3277 bzero ((char *) reg_biv_class, (max_reg_before_loop
3278 * sizeof (struct iv_class *)));
3279
3280 loop_iv_list = 0;
3281 addr_placeholder = gen_reg_rtx (Pmode);
3282
3283 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3284 must be put before this insn, so that they will appear in the right
3285 order (i.e. loop order).
3286
3287 If loop_end is the end of the current function, then emit a
3288 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3289 dummy note insn. */
3290 if (NEXT_INSN (loop_end) != 0)
3291 end_insert_before = NEXT_INSN (loop_end);
3292 else
3293 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3294
3295 /* Scan through loop to find all possible bivs. */
3296
3297 p = scan_start;
3298 while (1)
3299 {
3300 p = NEXT_INSN (p);
3301 /* At end of a straight-in loop, we are done.
3302 At end of a loop entered at the bottom, scan the top. */
3303 if (p == scan_start)
3304 break;
3305 if (p == end)
3306 {
3307 if (loop_top != 0)
3308 p = loop_top;
3309 else
3310 break;
3311 if (p == scan_start)
3312 break;
3313 }
3314
3315 if (GET_CODE (p) == INSN
3316 && (set = single_set (p))
3317 && GET_CODE (SET_DEST (set)) == REG)
3318 {
3319 dest_reg = SET_DEST (set);
3320 if (REGNO (dest_reg) < max_reg_before_loop
3321 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3322 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3323 {
3324 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3325 dest_reg, p, &inc_val, &mult_val))
3326 {
3327 /* It is a possible basic induction variable.
3328 Create and initialize an induction structure for it. */
3329
3330 struct induction *v
3331 = (struct induction *) alloca (sizeof (struct induction));
3332
3333 record_biv (v, p, dest_reg, inc_val, mult_val,
3334 not_every_iteration, maybe_multiple);
3335 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3336 }
3337 else if (REGNO (dest_reg) < max_reg_before_loop)
3338 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3339 }
3340 }
3341
3342 /* Past CODE_LABEL, we get to insns that may be executed multiple
3343 times. The only way we can be sure that they can't is if every
3344 every jump insn between here and the end of the loop either
3345 returns, exits the loop, is a forward jump, or is a jump
3346 to the loop start. */
3347
3348 if (GET_CODE (p) == CODE_LABEL)
3349 {
3350 rtx insn = p;
3351
3352 maybe_multiple = 0;
3353
3354 while (1)
3355 {
3356 insn = NEXT_INSN (insn);
3357 if (insn == scan_start)
3358 break;
3359 if (insn == end)
3360 {
3361 if (loop_top != 0)
3362 insn = loop_top;
3363 else
3364 break;
3365 if (insn == scan_start)
3366 break;
3367 }
3368
3369 if (GET_CODE (insn) == JUMP_INSN
3370 && GET_CODE (PATTERN (insn)) != RETURN
3371 && (! condjump_p (insn)
3372 || (JUMP_LABEL (insn) != 0
3373 && JUMP_LABEL (insn) != scan_start
3374 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3375 || INSN_UID (insn) >= max_uid_for_loop
3376 || (INSN_LUID (JUMP_LABEL (insn))
3377 < INSN_LUID (insn))))))
3378 {
3379 maybe_multiple = 1;
3380 break;
3381 }
3382 }
3383 }
3384
3385 /* Past a jump, we get to insns for which we can't count
3386 on whether they will be executed during each iteration. */
3387 /* This code appears twice in strength_reduce. There is also similar
3388 code in scan_loop. */
3389 if (GET_CODE (p) == JUMP_INSN
3390 /* If we enter the loop in the middle, and scan around to the
3391 beginning, don't set not_every_iteration for that.
3392 This can be any kind of jump, since we want to know if insns
3393 will be executed if the loop is executed. */
3394 && ! (JUMP_LABEL (p) == loop_top
3395 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3396 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3397 {
3398 rtx label = 0;
3399
3400 /* If this is a jump outside the loop, then it also doesn't
3401 matter. Check to see if the target of this branch is on the
3402 loop_number_exits_labels list. */
3403
3404 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3405 label;
3406 label = LABEL_NEXTREF (label))
3407 if (XEXP (label, 0) == JUMP_LABEL (p))
3408 break;
3409
3410 if (! label)
3411 not_every_iteration = 1;
3412 }
3413
3414 else if (GET_CODE (p) == NOTE)
3415 {
3416 /* At the virtual top of a converted loop, insns are again known to
3417 be executed each iteration: logically, the loop begins here
3418 even though the exit code has been duplicated. */
3419 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3420 not_every_iteration = 0;
3421 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3422 loop_depth++;
3423 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3424 loop_depth--;
3425 }
3426
3427 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3428 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3429 or not an insn is known to be executed each iteration of the
3430 loop, whether or not any iterations are known to occur.
3431
3432 Therefore, if we have just passed a label and have no more labels
3433 between here and the test insn of the loop, we know these insns
3434 will be executed each iteration. */
3435
3436 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3437 && no_labels_between_p (p, loop_end))
3438 not_every_iteration = 0;
3439 }
3440
3441 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3442 Make a sanity check against n_times_set. */
3443 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3444 {
3445 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3446 /* Above happens if register modified by subreg, etc. */
3447 /* Make sure it is not recognized as a basic induction var: */
3448 || n_times_set[bl->regno] != bl->biv_count
3449 /* If never incremented, it is invariant that we decided not to
3450 move. So leave it alone. */
3451 || ! bl->incremented)
3452 {
3453 if (loop_dump_stream)
3454 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3455 bl->regno,
3456 (reg_iv_type[bl->regno] != BASIC_INDUCT
3457 ? "not induction variable"
3458 : (! bl->incremented ? "never incremented"
3459 : "count error")));
3460
3461 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3462 *backbl = bl->next;
3463 }
3464 else
3465 {
3466 backbl = &bl->next;
3467
3468 if (loop_dump_stream)
3469 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3470 }
3471 }
3472
3473 /* Exit if there are no bivs. */
3474 if (! loop_iv_list)
3475 {
3476 /* Can still unroll the loop anyways, but indicate that there is no
3477 strength reduction info available. */
3478 if (flag_unroll_loops)
3479 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3480
3481 return;
3482 }
3483
3484 /* Find initial value for each biv by searching backwards from loop_start,
3485 halting at first label. Also record any test condition. */
3486
3487 call_seen = 0;
3488 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3489 {
3490 note_insn = p;
3491
3492 if (GET_CODE (p) == CALL_INSN)
3493 call_seen = 1;
3494
3495 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3496 || GET_CODE (p) == CALL_INSN)
3497 note_stores (PATTERN (p), record_initial);
3498
3499 /* Record any test of a biv that branches around the loop if no store
3500 between it and the start of loop. We only care about tests with
3501 constants and registers and only certain of those. */
3502 if (GET_CODE (p) == JUMP_INSN
3503 && JUMP_LABEL (p) != 0
3504 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3505 && (test = get_condition_for_loop (p)) != 0
3506 && GET_CODE (XEXP (test, 0)) == REG
3507 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3508 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3509 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3510 && bl->init_insn == 0)
3511 {
3512 /* If an NE test, we have an initial value! */
3513 if (GET_CODE (test) == NE)
3514 {
3515 bl->init_insn = p;
3516 bl->init_set = gen_rtx (SET, VOIDmode,
3517 XEXP (test, 0), XEXP (test, 1));
3518 }
3519 else
3520 bl->initial_test = test;
3521 }
3522 }
3523
3524 /* Look at the each biv and see if we can say anything better about its
3525 initial value from any initializing insns set up above. (This is done
3526 in two passes to avoid missing SETs in a PARALLEL.) */
3527 for (bl = loop_iv_list; bl; bl = bl->next)
3528 {
3529 rtx src;
3530
3531 if (! bl->init_insn)
3532 continue;
3533
3534 src = SET_SRC (bl->init_set);
3535
3536 if (loop_dump_stream)
3537 fprintf (loop_dump_stream,
3538 "Biv %d initialized at insn %d: initial value ",
3539 bl->regno, INSN_UID (bl->init_insn));
3540
3541 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3542 || GET_MODE (src) == VOIDmode)
3543 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3544 {
3545 bl->initial_value = src;
3546
3547 if (loop_dump_stream)
3548 {
3549 if (GET_CODE (src) == CONST_INT)
3550 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3551 else
3552 {
3553 print_rtl (loop_dump_stream, src);
3554 fprintf (loop_dump_stream, "\n");
3555 }
3556 }
3557 }
3558 else
3559 {
3560 /* Biv initial value is not simple move,
3561 so let it keep initial value of "itself". */
3562
3563 if (loop_dump_stream)
3564 fprintf (loop_dump_stream, "is complex\n");
3565 }
3566 }
3567
3568 /* Search the loop for general induction variables. */
3569
3570 /* A register is a giv if: it is only set once, it is a function of a
3571 biv and a constant (or invariant), and it is not a biv. */
3572
3573 not_every_iteration = 0;
3574 loop_depth = 0;
3575 p = scan_start;
3576 while (1)
3577 {
3578 p = NEXT_INSN (p);
3579 /* At end of a straight-in loop, we are done.
3580 At end of a loop entered at the bottom, scan the top. */
3581 if (p == scan_start)
3582 break;
3583 if (p == end)
3584 {
3585 if (loop_top != 0)
3586 p = loop_top;
3587 else
3588 break;
3589 if (p == scan_start)
3590 break;
3591 }
3592
3593 /* Look for a general induction variable in a register. */
3594 if (GET_CODE (p) == INSN
3595 && (set = single_set (p))
3596 && GET_CODE (SET_DEST (set)) == REG
3597 && ! may_not_optimize[REGNO (SET_DEST (set))])
3598 {
3599 rtx src_reg;
3600 rtx add_val;
3601 rtx mult_val;
3602 int benefit;
3603 rtx regnote = 0;
3604
3605 dest_reg = SET_DEST (set);
3606 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3607 continue;
3608
3609 if (/* SET_SRC is a giv. */
3610 ((benefit = general_induction_var (SET_SRC (set),
3611 &src_reg, &add_val,
3612 &mult_val))
3613 /* Equivalent expression is a giv. */
3614 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3615 && (benefit = general_induction_var (XEXP (regnote, 0),
3616 &src_reg,
3617 &add_val, &mult_val))))
3618 /* Don't try to handle any regs made by loop optimization.
3619 We have nothing on them in regno_first_uid, etc. */
3620 && REGNO (dest_reg) < max_reg_before_loop
3621 /* Don't recognize a BASIC_INDUCT_VAR here. */
3622 && dest_reg != src_reg
3623 /* This must be the only place where the register is set. */
3624 && (n_times_set[REGNO (dest_reg)] == 1
3625 /* or all sets must be consecutive and make a giv. */
3626 || (benefit = consec_sets_giv (benefit, p,
3627 src_reg, dest_reg,
3628 &add_val, &mult_val))))
3629 {
3630 int count;
3631 struct induction *v
3632 = (struct induction *) alloca (sizeof (struct induction));
3633 rtx temp;
3634
3635 /* If this is a library call, increase benefit. */
3636 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3637 benefit += libcall_benefit (p);
3638
3639 /* Skip the consecutive insns, if there are any. */
3640 for (count = n_times_set[REGNO (dest_reg)] - 1;
3641 count > 0; count--)
3642 {
3643 /* If first insn of libcall sequence, skip to end.
3644 Do this at start of loop, since INSN is guaranteed to
3645 be an insn here. */
3646 if (GET_CODE (p) != NOTE
3647 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3648 p = XEXP (temp, 0);
3649
3650 do p = NEXT_INSN (p);
3651 while (GET_CODE (p) == NOTE);
3652 }
3653
3654 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3655 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3656 loop_end);
3657
3658 }
3659 }
3660
3661 #ifndef DONT_REDUCE_ADDR
3662 /* Look for givs which are memory addresses. */
3663 /* This resulted in worse code on a VAX 8600. I wonder if it
3664 still does. */
3665 if (GET_CODE (p) == INSN)
3666 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3667 loop_end);
3668 #endif
3669
3670 /* Update the status of whether giv can derive other givs. This can
3671 change when we pass a label or an insn that updates a biv. */
3672 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3673 || GET_CODE (p) == CODE_LABEL)
3674 update_giv_derive (p);
3675
3676 /* Past a jump, we get to insns for which we can't count
3677 on whether they will be executed during each iteration. */
3678 /* This code appears twice in strength_reduce. There is also similar
3679 code in scan_loop. */
3680 if (GET_CODE (p) == JUMP_INSN
3681 /* If we enter the loop in the middle, and scan around to the
3682 beginning, don't set not_every_iteration for that.
3683 This can be any kind of jump, since we want to know if insns
3684 will be executed if the loop is executed. */
3685 && ! (JUMP_LABEL (p) == loop_top
3686 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3687 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3688 {
3689 rtx label = 0;
3690
3691 /* If this is a jump outside the loop, then it also doesn't
3692 matter. Check to see if the target of this branch is on the
3693 loop_number_exits_labels list. */
3694
3695 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3696 label;
3697 label = LABEL_NEXTREF (label))
3698 if (XEXP (label, 0) == JUMP_LABEL (p))
3699 break;
3700
3701 if (! label)
3702 not_every_iteration = 1;
3703 }
3704
3705 else if (GET_CODE (p) == NOTE)
3706 {
3707 /* At the virtual top of a converted loop, insns are again known to
3708 be executed each iteration: logically, the loop begins here
3709 even though the exit code has been duplicated. */
3710 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3711 not_every_iteration = 0;
3712 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3713 loop_depth++;
3714 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3715 loop_depth--;
3716 }
3717
3718 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3719 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3720 or not an insn is known to be executed each iteration of the
3721 loop, whether or not any iterations are known to occur.
3722
3723 Therefore, if we have just passed a label and have no more labels
3724 between here and the test insn of the loop, we know these insns
3725 will be executed each iteration. */
3726
3727 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3728 && no_labels_between_p (p, loop_end))
3729 not_every_iteration = 0;
3730 }
3731
3732 /* Try to calculate and save the number of loop iterations. This is
3733 set to zero if the actual number can not be calculated. This must
3734 be called after all giv's have been identified, since otherwise it may
3735 fail if the iteration variable is a giv. */
3736
3737 loop_n_iterations = loop_iterations (loop_start, loop_end);
3738
3739 /* Now for each giv for which we still don't know whether or not it is
3740 replaceable, check to see if it is replaceable because its final value
3741 can be calculated. This must be done after loop_iterations is called,
3742 so that final_giv_value will work correctly. */
3743
3744 for (bl = loop_iv_list; bl; bl = bl->next)
3745 {
3746 struct induction *v;
3747
3748 for (v = bl->giv; v; v = v->next_iv)
3749 if (! v->replaceable && ! v->not_replaceable)
3750 check_final_value (v, loop_start, loop_end);
3751 }
3752
3753 /* Try to prove that the loop counter variable (if any) is always
3754 nonnegative; if so, record that fact with a REG_NONNEG note
3755 so that "decrement and branch until zero" insn can be used. */
3756 check_dbra_loop (loop_end, insn_count, loop_start);
3757
3758 /* Create reg_map to hold substitutions for replaceable giv regs. */
3759 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3760 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3761
3762 /* Examine each iv class for feasibility of strength reduction/induction
3763 variable elimination. */
3764
3765 for (bl = loop_iv_list; bl; bl = bl->next)
3766 {
3767 struct induction *v;
3768 int benefit;
3769 int all_reduced;
3770 rtx final_value = 0;
3771
3772 /* Test whether it will be possible to eliminate this biv
3773 provided all givs are reduced. This is possible if either
3774 the reg is not used outside the loop, or we can compute
3775 what its final value will be.
3776
3777 For architectures with a decrement_and_branch_until_zero insn,
3778 don't do this if we put a REG_NONNEG note on the endtest for
3779 this biv. */
3780
3781 /* Compare against bl->init_insn rather than loop_start.
3782 We aren't concerned with any uses of the biv between
3783 init_insn and loop_start since these won't be affected
3784 by the value of the biv elsewhere in the function, so
3785 long as init_insn doesn't use the biv itself.
3786 March 14, 1989 -- self@bayes.arc.nasa.gov */
3787
3788 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3789 && bl->init_insn
3790 && INSN_UID (bl->init_insn) < max_uid_for_loop
3791 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3792 #ifdef HAVE_decrement_and_branch_until_zero
3793 && ! bl->nonneg
3794 #endif
3795 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3796 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3797 #ifdef HAVE_decrement_and_branch_until_zero
3798 && ! bl->nonneg
3799 #endif
3800 ))
3801 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3802 threshold, insn_count);
3803 else
3804 {
3805 if (loop_dump_stream)
3806 {
3807 fprintf (loop_dump_stream,
3808 "Cannot eliminate biv %d.\n",
3809 bl->regno);
3810 fprintf (loop_dump_stream,
3811 "First use: insn %d, last use: insn %d.\n",
3812 REGNO_FIRST_UID (bl->regno),
3813 REGNO_LAST_UID (bl->regno));
3814 }
3815 }
3816
3817 /* Combine all giv's for this iv_class. */
3818 combine_givs (bl);
3819
3820 /* This will be true at the end, if all givs which depend on this
3821 biv have been strength reduced.
3822 We can't (currently) eliminate the biv unless this is so. */
3823 all_reduced = 1;
3824
3825 /* Check each giv in this class to see if we will benefit by reducing
3826 it. Skip giv's combined with others. */
3827 for (v = bl->giv; v; v = v->next_iv)
3828 {
3829 struct induction *tv;
3830
3831 if (v->ignore || v->same)
3832 continue;
3833
3834 benefit = v->benefit;
3835
3836 /* Reduce benefit if not replaceable, since we will insert
3837 a move-insn to replace the insn that calculates this giv.
3838 Don't do this unless the giv is a user variable, since it
3839 will often be marked non-replaceable because of the duplication
3840 of the exit code outside the loop. In such a case, the copies
3841 we insert are dead and will be deleted. So they don't have
3842 a cost. Similar situations exist. */
3843 /* ??? The new final_[bg]iv_value code does a much better job
3844 of finding replaceable giv's, and hence this code may no longer
3845 be necessary. */
3846 if (! v->replaceable && ! bl->eliminable
3847 && REG_USERVAR_P (v->dest_reg))
3848 benefit -= copy_cost;
3849
3850 /* Decrease the benefit to count the add-insns that we will
3851 insert to increment the reduced reg for the giv. */
3852 benefit -= add_cost * bl->biv_count;
3853
3854 /* Decide whether to strength-reduce this giv or to leave the code
3855 unchanged (recompute it from the biv each time it is used).
3856 This decision can be made independently for each giv. */
3857
3858 #ifdef AUTO_INC_DEC
3859 /* Attempt to guess whether autoincrement will handle some of the
3860 new add insns; if so, increase BENEFIT (undo the subtraction of
3861 add_cost that was done above). */
3862 if (v->giv_type == DEST_ADDR
3863 && GET_CODE (v->mult_val) == CONST_INT)
3864 {
3865 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
3866 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3867 benefit += add_cost * bl->biv_count;
3868 #endif
3869 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
3870 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3871 benefit += add_cost * bl->biv_count;
3872 #endif
3873 }
3874 #endif
3875
3876 /* If an insn is not to be strength reduced, then set its ignore
3877 flag, and clear all_reduced. */
3878
3879 /* A giv that depends on a reversed biv must be reduced if it is
3880 used after the loop exit, otherwise, it would have the wrong
3881 value after the loop exit. To make it simple, just reduce all
3882 of such giv's whether or not we know they are used after the loop
3883 exit. */
3884
3885 if (v->lifetime * threshold * benefit < insn_count
3886 && ! bl->reversed)
3887 {
3888 if (loop_dump_stream)
3889 fprintf (loop_dump_stream,
3890 "giv of insn %d not worth while, %d vs %d.\n",
3891 INSN_UID (v->insn),
3892 v->lifetime * threshold * benefit, insn_count);
3893 v->ignore = 1;
3894 all_reduced = 0;
3895 }
3896 else
3897 {
3898 /* Check that we can increment the reduced giv without a
3899 multiply insn. If not, reject it. */
3900
3901 for (tv = bl->biv; tv; tv = tv->next_iv)
3902 if (tv->mult_val == const1_rtx
3903 && ! product_cheap_p (tv->add_val, v->mult_val))
3904 {
3905 if (loop_dump_stream)
3906 fprintf (loop_dump_stream,
3907 "giv of insn %d: would need a multiply.\n",
3908 INSN_UID (v->insn));
3909 v->ignore = 1;
3910 all_reduced = 0;
3911 break;
3912 }
3913 }
3914 }
3915
3916 /* Reduce each giv that we decided to reduce. */
3917
3918 for (v = bl->giv; v; v = v->next_iv)
3919 {
3920 struct induction *tv;
3921 if (! v->ignore && v->same == 0)
3922 {
3923 int auto_inc_opt = 0;
3924
3925 v->new_reg = gen_reg_rtx (v->mode);
3926
3927 #ifdef AUTO_INC_DEC
3928 /* If the target has auto-increment addressing modes, and
3929 this is an address giv, then try to put the increment
3930 immediately after its use, so that flow can create an
3931 auto-increment addressing mode. */
3932 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
3933 && bl->biv->always_executed && ! bl->biv->maybe_multiple
3934 /* We don't handle reversed biv's because bl->biv->insn
3935 does not have a valid INSN_LUID. */
3936 && ! bl->reversed
3937 && v->always_executed && ! v->maybe_multiple)
3938 {
3939 /* If other giv's have been combined with this one, then
3940 this will work only if all uses of the other giv's occur
3941 before this giv's insn. This is difficult to check.
3942
3943 We simplify this by looking for the common case where
3944 there is one DEST_REG giv, and this giv's insn is the
3945 last use of the dest_reg of that DEST_REG giv. If the
3946 the increment occurs after the address giv, then we can
3947 perform the optimization. (Otherwise, the increment
3948 would have to go before other_giv, and we would not be
3949 able to combine it with the address giv to get an
3950 auto-inc address.) */
3951 if (v->combined_with)
3952 {
3953 struct induction *other_giv = 0;
3954
3955 for (tv = bl->giv; tv; tv = tv->next_iv)
3956 if (tv->same == v)
3957 {
3958 if (other_giv)
3959 break;
3960 else
3961 other_giv = tv;
3962 }
3963 if (! tv && other_giv
3964 && REGNO (other_giv->dest_reg) <= max_reg_before_loop
3965 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
3966 == INSN_UID (v->insn))
3967 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
3968 auto_inc_opt = 1;
3969 }
3970 /* Check for case where increment is before the the address
3971 giv. */
3972 else if (INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn))
3973 auto_inc_opt = -1;
3974 else
3975 auto_inc_opt = 1;
3976
3977 #ifdef HAVE_cc0
3978 {
3979 rtx prev;
3980
3981 /* We can't put an insn immediately after one setting
3982 cc0, or immediately before one using cc0. */
3983 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
3984 || (auto_inc_opt == -1
3985 && (prev = prev_nonnote_insn (v->insn)) != 0
3986 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
3987 && sets_cc0_p (PATTERN (prev))))
3988 auto_inc_opt = 0;
3989 }
3990 #endif
3991
3992 if (auto_inc_opt)
3993 v->auto_inc_opt = 1;
3994 }
3995 #endif
3996
3997 /* For each place where the biv is incremented, add an insn
3998 to increment the new, reduced reg for the giv. */
3999 for (tv = bl->biv; tv; tv = tv->next_iv)
4000 {
4001 rtx insert_before;
4002
4003 if (! auto_inc_opt)
4004 insert_before = tv->insn;
4005 else if (auto_inc_opt == 1)
4006 insert_before = NEXT_INSN (v->insn);
4007 else
4008 insert_before = v->insn;
4009
4010 if (tv->mult_val == const1_rtx)
4011 emit_iv_add_mult (tv->add_val, v->mult_val,
4012 v->new_reg, v->new_reg, insert_before);
4013 else /* tv->mult_val == const0_rtx */
4014 /* A multiply is acceptable here
4015 since this is presumed to be seldom executed. */
4016 emit_iv_add_mult (tv->add_val, v->mult_val,
4017 v->add_val, v->new_reg, insert_before);
4018 }
4019
4020 /* Add code at loop start to initialize giv's reduced reg. */
4021
4022 emit_iv_add_mult (bl->initial_value, v->mult_val,
4023 v->add_val, v->new_reg, loop_start);
4024 }
4025 }
4026
4027 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4028 as not reduced.
4029
4030 For each giv register that can be reduced now: if replaceable,
4031 substitute reduced reg wherever the old giv occurs;
4032 else add new move insn "giv_reg = reduced_reg".
4033
4034 Also check for givs whose first use is their definition and whose
4035 last use is the definition of another giv. If so, it is likely
4036 dead and should not be used to eliminate a biv. */
4037 for (v = bl->giv; v; v = v->next_iv)
4038 {
4039 if (v->same && v->same->ignore)
4040 v->ignore = 1;
4041
4042 if (v->ignore)
4043 continue;
4044
4045 if (v->giv_type == DEST_REG
4046 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4047 {
4048 struct induction *v1;
4049
4050 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4051 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4052 v->maybe_dead = 1;
4053 }
4054
4055 /* Update expression if this was combined, in case other giv was
4056 replaced. */
4057 if (v->same)
4058 v->new_reg = replace_rtx (v->new_reg,
4059 v->same->dest_reg, v->same->new_reg);
4060
4061 if (v->giv_type == DEST_ADDR)
4062 /* Store reduced reg as the address in the memref where we found
4063 this giv. */
4064 validate_change (v->insn, v->location, v->new_reg, 0);
4065 else if (v->replaceable)
4066 {
4067 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4068
4069 #if 0
4070 /* I can no longer duplicate the original problem. Perhaps
4071 this is unnecessary now? */
4072
4073 /* Replaceable; it isn't strictly necessary to delete the old
4074 insn and emit a new one, because v->dest_reg is now dead.
4075
4076 However, especially when unrolling loops, the special
4077 handling for (set REG0 REG1) in the second cse pass may
4078 make v->dest_reg live again. To avoid this problem, emit
4079 an insn to set the original giv reg from the reduced giv.
4080 We can not delete the original insn, since it may be part
4081 of a LIBCALL, and the code in flow that eliminates dead
4082 libcalls will fail if it is deleted. */
4083 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4084 v->insn);
4085 #endif
4086 }
4087 else
4088 {
4089 /* Not replaceable; emit an insn to set the original giv reg from
4090 the reduced giv, same as above. */
4091 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4092 v->insn);
4093 }
4094
4095 /* When a loop is reversed, givs which depend on the reversed
4096 biv, and which are live outside the loop, must be set to their
4097 correct final value. This insn is only needed if the giv is
4098 not replaceable. The correct final value is the same as the
4099 value that the giv starts the reversed loop with. */
4100 if (bl->reversed && ! v->replaceable)
4101 emit_iv_add_mult (bl->initial_value, v->mult_val,
4102 v->add_val, v->dest_reg, end_insert_before);
4103 else if (v->final_value)
4104 {
4105 rtx insert_before;
4106
4107 /* If the loop has multiple exits, emit the insn before the
4108 loop to ensure that it will always be executed no matter
4109 how the loop exits. Otherwise, emit the insn after the loop,
4110 since this is slightly more efficient. */
4111 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4112 insert_before = loop_start;
4113 else
4114 insert_before = end_insert_before;
4115 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4116 insert_before);
4117
4118 #if 0
4119 /* If the insn to set the final value of the giv was emitted
4120 before the loop, then we must delete the insn inside the loop
4121 that sets it. If this is a LIBCALL, then we must delete
4122 every insn in the libcall. Note, however, that
4123 final_giv_value will only succeed when there are multiple
4124 exits if the giv is dead at each exit, hence it does not
4125 matter that the original insn remains because it is dead
4126 anyways. */
4127 /* Delete the insn inside the loop that sets the giv since
4128 the giv is now set before (or after) the loop. */
4129 delete_insn (v->insn);
4130 #endif
4131 }
4132
4133 if (loop_dump_stream)
4134 {
4135 fprintf (loop_dump_stream, "giv at %d reduced to ",
4136 INSN_UID (v->insn));
4137 print_rtl (loop_dump_stream, v->new_reg);
4138 fprintf (loop_dump_stream, "\n");
4139 }
4140 }
4141
4142 /* All the givs based on the biv bl have been reduced if they
4143 merit it. */
4144
4145 /* For each giv not marked as maybe dead that has been combined with a
4146 second giv, clear any "maybe dead" mark on that second giv.
4147 v->new_reg will either be or refer to the register of the giv it
4148 combined with.
4149
4150 Doing this clearing avoids problems in biv elimination where a
4151 giv's new_reg is a complex value that can't be put in the insn but
4152 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4153 Since the register will be used in either case, we'd prefer it be
4154 used from the simpler giv. */
4155
4156 for (v = bl->giv; v; v = v->next_iv)
4157 if (! v->maybe_dead && v->same)
4158 v->same->maybe_dead = 0;
4159
4160 /* Try to eliminate the biv, if it is a candidate.
4161 This won't work if ! all_reduced,
4162 since the givs we planned to use might not have been reduced.
4163
4164 We have to be careful that we didn't initially think we could eliminate
4165 this biv because of a giv that we now think may be dead and shouldn't
4166 be used as a biv replacement.
4167
4168 Also, there is the possibility that we may have a giv that looks
4169 like it can be used to eliminate a biv, but the resulting insn
4170 isn't valid. This can happen, for example, on the 88k, where a
4171 JUMP_INSN can compare a register only with zero. Attempts to
4172 replace it with a compare with a constant will fail.
4173
4174 Note that in cases where this call fails, we may have replaced some
4175 of the occurrences of the biv with a giv, but no harm was done in
4176 doing so in the rare cases where it can occur. */
4177
4178 if (all_reduced == 1 && bl->eliminable
4179 && maybe_eliminate_biv (bl, loop_start, end, 1,
4180 threshold, insn_count))
4181
4182 {
4183 /* ?? If we created a new test to bypass the loop entirely,
4184 or otherwise drop straight in, based on this test, then
4185 we might want to rewrite it also. This way some later
4186 pass has more hope of removing the initialization of this
4187 biv entirely. */
4188
4189 /* If final_value != 0, then the biv may be used after loop end
4190 and we must emit an insn to set it just in case.
4191
4192 Reversed bivs already have an insn after the loop setting their
4193 value, so we don't need another one. We can't calculate the
4194 proper final value for such a biv here anyways. */
4195 if (final_value != 0 && ! bl->reversed)
4196 {
4197 rtx insert_before;
4198
4199 /* If the loop has multiple exits, emit the insn before the
4200 loop to ensure that it will always be executed no matter
4201 how the loop exits. Otherwise, emit the insn after the
4202 loop, since this is slightly more efficient. */
4203 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4204 insert_before = loop_start;
4205 else
4206 insert_before = end_insert_before;
4207
4208 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4209 end_insert_before);
4210 }
4211
4212 #if 0
4213 /* Delete all of the instructions inside the loop which set
4214 the biv, as they are all dead. If is safe to delete them,
4215 because an insn setting a biv will never be part of a libcall. */
4216 /* However, deleting them will invalidate the regno_last_uid info,
4217 so keeping them around is more convenient. Final_biv_value
4218 will only succeed when there are multiple exits if the biv
4219 is dead at each exit, hence it does not matter that the original
4220 insn remains, because it is dead anyways. */
4221 for (v = bl->biv; v; v = v->next_iv)
4222 delete_insn (v->insn);
4223 #endif
4224
4225 if (loop_dump_stream)
4226 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4227 bl->regno);
4228 }
4229 }
4230
4231 /* Go through all the instructions in the loop, making all the
4232 register substitutions scheduled in REG_MAP. */
4233
4234 for (p = loop_start; p != end; p = NEXT_INSN (p))
4235 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4236 || GET_CODE (p) == CALL_INSN)
4237 {
4238 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4239 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4240 INSN_CODE (p) = -1;
4241 }
4242
4243 /* Unroll loops from within strength reduction so that we can use the
4244 induction variable information that strength_reduce has already
4245 collected. */
4246
4247 if (flag_unroll_loops)
4248 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4249
4250 if (loop_dump_stream)
4251 fprintf (loop_dump_stream, "\n");
4252 }
4253 \f
4254 /* Return 1 if X is a valid source for an initial value (or as value being
4255 compared against in an initial test).
4256
4257 X must be either a register or constant and must not be clobbered between
4258 the current insn and the start of the loop.
4259
4260 INSN is the insn containing X. */
4261
4262 static int
4263 valid_initial_value_p (x, insn, call_seen, loop_start)
4264 rtx x;
4265 rtx insn;
4266 int call_seen;
4267 rtx loop_start;
4268 {
4269 if (CONSTANT_P (x))
4270 return 1;
4271
4272 /* Only consider pseudos we know about initialized in insns whose luids
4273 we know. */
4274 if (GET_CODE (x) != REG
4275 || REGNO (x) >= max_reg_before_loop)
4276 return 0;
4277
4278 /* Don't use call-clobbered registers across a call which clobbers it. On
4279 some machines, don't use any hard registers at all. */
4280 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4281 && (
4282 #ifdef SMALL_REGISTER_CLASSES
4283 SMALL_REGISTER_CLASSES
4284 #else
4285 0
4286 #endif
4287 || (call_used_regs[REGNO (x)] && call_seen))
4288 )
4289 return 0;
4290
4291 /* Don't use registers that have been clobbered before the start of the
4292 loop. */
4293 if (reg_set_between_p (x, insn, loop_start))
4294 return 0;
4295
4296 return 1;
4297 }
4298 \f
4299 /* Scan X for memory refs and check each memory address
4300 as a possible giv. INSN is the insn whose pattern X comes from.
4301 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4302 every loop iteration. */
4303
4304 static void
4305 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4306 rtx x;
4307 rtx insn;
4308 int not_every_iteration;
4309 rtx loop_start, loop_end;
4310 {
4311 register int i, j;
4312 register enum rtx_code code;
4313 register char *fmt;
4314
4315 if (x == 0)
4316 return;
4317
4318 code = GET_CODE (x);
4319 switch (code)
4320 {
4321 case REG:
4322 case CONST_INT:
4323 case CONST:
4324 case CONST_DOUBLE:
4325 case SYMBOL_REF:
4326 case LABEL_REF:
4327 case PC:
4328 case CC0:
4329 case ADDR_VEC:
4330 case ADDR_DIFF_VEC:
4331 case USE:
4332 case CLOBBER:
4333 return;
4334
4335 case MEM:
4336 {
4337 rtx src_reg;
4338 rtx add_val;
4339 rtx mult_val;
4340 int benefit;
4341
4342 benefit = general_induction_var (XEXP (x, 0),
4343 &src_reg, &add_val, &mult_val);
4344
4345 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4346 Such a giv isn't useful. */
4347 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4348 {
4349 /* Found one; record it. */
4350 struct induction *v
4351 = (struct induction *) oballoc (sizeof (struct induction));
4352
4353 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4354 add_val, benefit, DEST_ADDR, not_every_iteration,
4355 &XEXP (x, 0), loop_start, loop_end);
4356
4357 v->mem_mode = GET_MODE (x);
4358 }
4359 return;
4360 }
4361 }
4362
4363 /* Recursively scan the subexpressions for other mem refs. */
4364
4365 fmt = GET_RTX_FORMAT (code);
4366 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4367 if (fmt[i] == 'e')
4368 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4369 loop_end);
4370 else if (fmt[i] == 'E')
4371 for (j = 0; j < XVECLEN (x, i); j++)
4372 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4373 loop_start, loop_end);
4374 }
4375 \f
4376 /* Fill in the data about one biv update.
4377 V is the `struct induction' in which we record the biv. (It is
4378 allocated by the caller, with alloca.)
4379 INSN is the insn that sets it.
4380 DEST_REG is the biv's reg.
4381
4382 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4383 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4384 being set to INC_VAL.
4385
4386 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4387 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4388 can be executed more than once per iteration. If MAYBE_MULTIPLE
4389 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4390 executed exactly once per iteration. */
4391
4392 static void
4393 record_biv (v, insn, dest_reg, inc_val, mult_val,
4394 not_every_iteration, maybe_multiple)
4395 struct induction *v;
4396 rtx insn;
4397 rtx dest_reg;
4398 rtx inc_val;
4399 rtx mult_val;
4400 int not_every_iteration;
4401 int maybe_multiple;
4402 {
4403 struct iv_class *bl;
4404
4405 v->insn = insn;
4406 v->src_reg = dest_reg;
4407 v->dest_reg = dest_reg;
4408 v->mult_val = mult_val;
4409 v->add_val = inc_val;
4410 v->mode = GET_MODE (dest_reg);
4411 v->always_computable = ! not_every_iteration;
4412 v->always_executed = ! not_every_iteration;
4413 v->maybe_multiple = maybe_multiple;
4414
4415 /* Add this to the reg's iv_class, creating a class
4416 if this is the first incrementation of the reg. */
4417
4418 bl = reg_biv_class[REGNO (dest_reg)];
4419 if (bl == 0)
4420 {
4421 /* Create and initialize new iv_class. */
4422
4423 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4424
4425 bl->regno = REGNO (dest_reg);
4426 bl->biv = 0;
4427 bl->giv = 0;
4428 bl->biv_count = 0;
4429 bl->giv_count = 0;
4430
4431 /* Set initial value to the reg itself. */
4432 bl->initial_value = dest_reg;
4433 /* We haven't seen the initializing insn yet */
4434 bl->init_insn = 0;
4435 bl->init_set = 0;
4436 bl->initial_test = 0;
4437 bl->incremented = 0;
4438 bl->eliminable = 0;
4439 bl->nonneg = 0;
4440 bl->reversed = 0;
4441 bl->total_benefit = 0;
4442
4443 /* Add this class to loop_iv_list. */
4444 bl->next = loop_iv_list;
4445 loop_iv_list = bl;
4446
4447 /* Put it in the array of biv register classes. */
4448 reg_biv_class[REGNO (dest_reg)] = bl;
4449 }
4450
4451 /* Update IV_CLASS entry for this biv. */
4452 v->next_iv = bl->biv;
4453 bl->biv = v;
4454 bl->biv_count++;
4455 if (mult_val == const1_rtx)
4456 bl->incremented = 1;
4457
4458 if (loop_dump_stream)
4459 {
4460 fprintf (loop_dump_stream,
4461 "Insn %d: possible biv, reg %d,",
4462 INSN_UID (insn), REGNO (dest_reg));
4463 if (GET_CODE (inc_val) == CONST_INT)
4464 fprintf (loop_dump_stream, " const = %d\n",
4465 INTVAL (inc_val));
4466 else
4467 {
4468 fprintf (loop_dump_stream, " const = ");
4469 print_rtl (loop_dump_stream, inc_val);
4470 fprintf (loop_dump_stream, "\n");
4471 }
4472 }
4473 }
4474 \f
4475 /* Fill in the data about one giv.
4476 V is the `struct induction' in which we record the giv. (It is
4477 allocated by the caller, with alloca.)
4478 INSN is the insn that sets it.
4479 BENEFIT estimates the savings from deleting this insn.
4480 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4481 into a register or is used as a memory address.
4482
4483 SRC_REG is the biv reg which the giv is computed from.
4484 DEST_REG is the giv's reg (if the giv is stored in a reg).
4485 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4486 LOCATION points to the place where this giv's value appears in INSN. */
4487
4488 static void
4489 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4490 type, not_every_iteration, location, loop_start, loop_end)
4491 struct induction *v;
4492 rtx insn;
4493 rtx src_reg;
4494 rtx dest_reg;
4495 rtx mult_val, add_val;
4496 int benefit;
4497 enum g_types type;
4498 int not_every_iteration;
4499 rtx *location;
4500 rtx loop_start, loop_end;
4501 {
4502 struct induction *b;
4503 struct iv_class *bl;
4504 rtx set = single_set (insn);
4505 rtx p;
4506
4507 v->insn = insn;
4508 v->src_reg = src_reg;
4509 v->giv_type = type;
4510 v->dest_reg = dest_reg;
4511 v->mult_val = mult_val;
4512 v->add_val = add_val;
4513 v->benefit = benefit;
4514 v->location = location;
4515 v->cant_derive = 0;
4516 v->combined_with = 0;
4517 v->maybe_multiple = 0;
4518 v->maybe_dead = 0;
4519 v->derive_adjustment = 0;
4520 v->same = 0;
4521 v->ignore = 0;
4522 v->new_reg = 0;
4523 v->final_value = 0;
4524 v->same_insn = 0;
4525 v->auto_inc_opt = 0;
4526
4527 /* The v->always_computable field is used in update_giv_derive, to
4528 determine whether a giv can be used to derive another giv. For a
4529 DEST_REG giv, INSN computes a new value for the giv, so its value
4530 isn't computable if INSN insn't executed every iteration.
4531 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4532 it does not compute a new value. Hence the value is always computable
4533 regardless of whether INSN is executed each iteration. */
4534
4535 if (type == DEST_ADDR)
4536 v->always_computable = 1;
4537 else
4538 v->always_computable = ! not_every_iteration;
4539
4540 v->always_executed = ! not_every_iteration;
4541
4542 if (type == DEST_ADDR)
4543 {
4544 v->mode = GET_MODE (*location);
4545 v->lifetime = 1;
4546 v->times_used = 1;
4547 }
4548 else /* type == DEST_REG */
4549 {
4550 v->mode = GET_MODE (SET_DEST (set));
4551
4552 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4553 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4554
4555 v->times_used = n_times_used[REGNO (dest_reg)];
4556
4557 /* If the lifetime is zero, it means that this register is
4558 really a dead store. So mark this as a giv that can be
4559 ignored. This will not prevent the biv from being eliminated. */
4560 if (v->lifetime == 0)
4561 v->ignore = 1;
4562
4563 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4564 reg_iv_info[REGNO (dest_reg)] = v;
4565 }
4566
4567 /* Add the giv to the class of givs computed from one biv. */
4568
4569 bl = reg_biv_class[REGNO (src_reg)];
4570 if (bl)
4571 {
4572 v->next_iv = bl->giv;
4573 bl->giv = v;
4574 /* Don't count DEST_ADDR. This is supposed to count the number of
4575 insns that calculate givs. */
4576 if (type == DEST_REG)
4577 bl->giv_count++;
4578 bl->total_benefit += benefit;
4579 }
4580 else
4581 /* Fatal error, biv missing for this giv? */
4582 abort ();
4583
4584 if (type == DEST_ADDR)
4585 v->replaceable = 1;
4586 else
4587 {
4588 /* The giv can be replaced outright by the reduced register only if all
4589 of the following conditions are true:
4590 - the insn that sets the giv is always executed on any iteration
4591 on which the giv is used at all
4592 (there are two ways to deduce this:
4593 either the insn is executed on every iteration,
4594 or all uses follow that insn in the same basic block),
4595 - the giv is not used outside the loop
4596 - no assignments to the biv occur during the giv's lifetime. */
4597
4598 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4599 /* Previous line always fails if INSN was moved by loop opt. */
4600 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4601 && (! not_every_iteration
4602 || last_use_this_basic_block (dest_reg, insn)))
4603 {
4604 /* Now check that there are no assignments to the biv within the
4605 giv's lifetime. This requires two separate checks. */
4606
4607 /* Check each biv update, and fail if any are between the first
4608 and last use of the giv.
4609
4610 If this loop contains an inner loop that was unrolled, then
4611 the insn modifying the biv may have been emitted by the loop
4612 unrolling code, and hence does not have a valid luid. Just
4613 mark the biv as not replaceable in this case. It is not very
4614 useful as a biv, because it is used in two different loops.
4615 It is very unlikely that we would be able to optimize the giv
4616 using this biv anyways. */
4617
4618 v->replaceable = 1;
4619 for (b = bl->biv; b; b = b->next_iv)
4620 {
4621 if (INSN_UID (b->insn) >= max_uid_for_loop
4622 || ((uid_luid[INSN_UID (b->insn)]
4623 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4624 && (uid_luid[INSN_UID (b->insn)]
4625 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4626 {
4627 v->replaceable = 0;
4628 v->not_replaceable = 1;
4629 break;
4630 }
4631 }
4632
4633 /* If there are any backwards branches that go from after the
4634 biv update to before it, then this giv is not replaceable. */
4635 if (v->replaceable)
4636 for (b = bl->biv; b; b = b->next_iv)
4637 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4638 {
4639 v->replaceable = 0;
4640 v->not_replaceable = 1;
4641 break;
4642 }
4643 }
4644 else
4645 {
4646 /* May still be replaceable, we don't have enough info here to
4647 decide. */
4648 v->replaceable = 0;
4649 v->not_replaceable = 0;
4650 }
4651 }
4652
4653 if (loop_dump_stream)
4654 {
4655 if (type == DEST_REG)
4656 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4657 INSN_UID (insn), REGNO (dest_reg));
4658 else
4659 fprintf (loop_dump_stream, "Insn %d: dest address",
4660 INSN_UID (insn));
4661
4662 fprintf (loop_dump_stream, " src reg %d benefit %d",
4663 REGNO (src_reg), v->benefit);
4664 fprintf (loop_dump_stream, " used %d lifetime %d",
4665 v->times_used, v->lifetime);
4666
4667 if (v->replaceable)
4668 fprintf (loop_dump_stream, " replaceable");
4669
4670 if (GET_CODE (mult_val) == CONST_INT)
4671 fprintf (loop_dump_stream, " mult %d",
4672 INTVAL (mult_val));
4673 else
4674 {
4675 fprintf (loop_dump_stream, " mult ");
4676 print_rtl (loop_dump_stream, mult_val);
4677 }
4678
4679 if (GET_CODE (add_val) == CONST_INT)
4680 fprintf (loop_dump_stream, " add %d",
4681 INTVAL (add_val));
4682 else
4683 {
4684 fprintf (loop_dump_stream, " add ");
4685 print_rtl (loop_dump_stream, add_val);
4686 }
4687 }
4688
4689 if (loop_dump_stream)
4690 fprintf (loop_dump_stream, "\n");
4691
4692 }
4693
4694
4695 /* All this does is determine whether a giv can be made replaceable because
4696 its final value can be calculated. This code can not be part of record_giv
4697 above, because final_giv_value requires that the number of loop iterations
4698 be known, and that can not be accurately calculated until after all givs
4699 have been identified. */
4700
4701 static void
4702 check_final_value (v, loop_start, loop_end)
4703 struct induction *v;
4704 rtx loop_start, loop_end;
4705 {
4706 struct iv_class *bl;
4707 rtx final_value = 0;
4708
4709 bl = reg_biv_class[REGNO (v->src_reg)];
4710
4711 /* DEST_ADDR givs will never reach here, because they are always marked
4712 replaceable above in record_giv. */
4713
4714 /* The giv can be replaced outright by the reduced register only if all
4715 of the following conditions are true:
4716 - the insn that sets the giv is always executed on any iteration
4717 on which the giv is used at all
4718 (there are two ways to deduce this:
4719 either the insn is executed on every iteration,
4720 or all uses follow that insn in the same basic block),
4721 - its final value can be calculated (this condition is different
4722 than the one above in record_giv)
4723 - no assignments to the biv occur during the giv's lifetime. */
4724
4725 #if 0
4726 /* This is only called now when replaceable is known to be false. */
4727 /* Clear replaceable, so that it won't confuse final_giv_value. */
4728 v->replaceable = 0;
4729 #endif
4730
4731 if ((final_value = final_giv_value (v, loop_start, loop_end))
4732 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4733 {
4734 int biv_increment_seen = 0;
4735 rtx p = v->insn;
4736 rtx last_giv_use;
4737
4738 v->replaceable = 1;
4739
4740 /* When trying to determine whether or not a biv increment occurs
4741 during the lifetime of the giv, we can ignore uses of the variable
4742 outside the loop because final_value is true. Hence we can not
4743 use regno_last_uid and regno_first_uid as above in record_giv. */
4744
4745 /* Search the loop to determine whether any assignments to the
4746 biv occur during the giv's lifetime. Start with the insn
4747 that sets the giv, and search around the loop until we come
4748 back to that insn again.
4749
4750 Also fail if there is a jump within the giv's lifetime that jumps
4751 to somewhere outside the lifetime but still within the loop. This
4752 catches spaghetti code where the execution order is not linear, and
4753 hence the above test fails. Here we assume that the giv lifetime
4754 does not extend from one iteration of the loop to the next, so as
4755 to make the test easier. Since the lifetime isn't known yet,
4756 this requires two loops. See also record_giv above. */
4757
4758 last_giv_use = v->insn;
4759
4760 while (1)
4761 {
4762 p = NEXT_INSN (p);
4763 if (p == loop_end)
4764 p = NEXT_INSN (loop_start);
4765 if (p == v->insn)
4766 break;
4767
4768 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4769 || GET_CODE (p) == CALL_INSN)
4770 {
4771 if (biv_increment_seen)
4772 {
4773 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4774 {
4775 v->replaceable = 0;
4776 v->not_replaceable = 1;
4777 break;
4778 }
4779 }
4780 else if (GET_CODE (PATTERN (p)) == SET
4781 && SET_DEST (PATTERN (p)) == v->src_reg)
4782 biv_increment_seen = 1;
4783 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4784 last_giv_use = p;
4785 }
4786 }
4787
4788 /* Now that the lifetime of the giv is known, check for branches
4789 from within the lifetime to outside the lifetime if it is still
4790 replaceable. */
4791
4792 if (v->replaceable)
4793 {
4794 p = v->insn;
4795 while (1)
4796 {
4797 p = NEXT_INSN (p);
4798 if (p == loop_end)
4799 p = NEXT_INSN (loop_start);
4800 if (p == last_giv_use)
4801 break;
4802
4803 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4804 && LABEL_NAME (JUMP_LABEL (p))
4805 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4806 || (INSN_UID (v->insn) >= max_uid_for_loop)
4807 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4808 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4809 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4810 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4811 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4812 {
4813 v->replaceable = 0;
4814 v->not_replaceable = 1;
4815
4816 if (loop_dump_stream)
4817 fprintf (loop_dump_stream,
4818 "Found branch outside giv lifetime.\n");
4819
4820 break;
4821 }
4822 }
4823 }
4824
4825 /* If it is replaceable, then save the final value. */
4826 if (v->replaceable)
4827 v->final_value = final_value;
4828 }
4829
4830 if (loop_dump_stream && v->replaceable)
4831 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4832 INSN_UID (v->insn), REGNO (v->dest_reg));
4833 }
4834 \f
4835 /* Update the status of whether a giv can derive other givs.
4836
4837 We need to do something special if there is or may be an update to the biv
4838 between the time the giv is defined and the time it is used to derive
4839 another giv.
4840
4841 In addition, a giv that is only conditionally set is not allowed to
4842 derive another giv once a label has been passed.
4843
4844 The cases we look at are when a label or an update to a biv is passed. */
4845
4846 static void
4847 update_giv_derive (p)
4848 rtx p;
4849 {
4850 struct iv_class *bl;
4851 struct induction *biv, *giv;
4852 rtx tem;
4853 int dummy;
4854
4855 /* Search all IV classes, then all bivs, and finally all givs.
4856
4857 There are three cases we are concerned with. First we have the situation
4858 of a giv that is only updated conditionally. In that case, it may not
4859 derive any givs after a label is passed.
4860
4861 The second case is when a biv update occurs, or may occur, after the
4862 definition of a giv. For certain biv updates (see below) that are
4863 known to occur between the giv definition and use, we can adjust the
4864 giv definition. For others, or when the biv update is conditional,
4865 we must prevent the giv from deriving any other givs. There are two
4866 sub-cases within this case.
4867
4868 If this is a label, we are concerned with any biv update that is done
4869 conditionally, since it may be done after the giv is defined followed by
4870 a branch here (actually, we need to pass both a jump and a label, but
4871 this extra tracking doesn't seem worth it).
4872
4873 If this is a jump, we are concerned about any biv update that may be
4874 executed multiple times. We are actually only concerned about
4875 backward jumps, but it is probably not worth performing the test
4876 on the jump again here.
4877
4878 If this is a biv update, we must adjust the giv status to show that a
4879 subsequent biv update was performed. If this adjustment cannot be done,
4880 the giv cannot derive further givs. */
4881
4882 for (bl = loop_iv_list; bl; bl = bl->next)
4883 for (biv = bl->biv; biv; biv = biv->next_iv)
4884 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4885 || biv->insn == p)
4886 {
4887 for (giv = bl->giv; giv; giv = giv->next_iv)
4888 {
4889 /* If cant_derive is already true, there is no point in
4890 checking all of these conditions again. */
4891 if (giv->cant_derive)
4892 continue;
4893
4894 /* If this giv is conditionally set and we have passed a label,
4895 it cannot derive anything. */
4896 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4897 giv->cant_derive = 1;
4898
4899 /* Skip givs that have mult_val == 0, since
4900 they are really invariants. Also skip those that are
4901 replaceable, since we know their lifetime doesn't contain
4902 any biv update. */
4903 else if (giv->mult_val == const0_rtx || giv->replaceable)
4904 continue;
4905
4906 /* The only way we can allow this giv to derive another
4907 is if this is a biv increment and we can form the product
4908 of biv->add_val and giv->mult_val. In this case, we will
4909 be able to compute a compensation. */
4910 else if (biv->insn == p)
4911 {
4912 tem = 0;
4913
4914 if (biv->mult_val == const1_rtx)
4915 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4916 biv->add_val,
4917 giv->mult_val),
4918 &dummy);
4919
4920 if (tem && giv->derive_adjustment)
4921 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4922 giv->derive_adjustment),
4923 &dummy);
4924 if (tem)
4925 giv->derive_adjustment = tem;
4926 else
4927 giv->cant_derive = 1;
4928 }
4929 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4930 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4931 giv->cant_derive = 1;
4932 }
4933 }
4934 }
4935 \f
4936 /* Check whether an insn is an increment legitimate for a basic induction var.
4937 X is the source of insn P, or a part of it.
4938 MODE is the mode in which X should be interpreted.
4939
4940 DEST_REG is the putative biv, also the destination of the insn.
4941 We accept patterns of these forms:
4942 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4943 REG = INVARIANT + REG
4944
4945 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4946 and store the additive term into *INC_VAL.
4947
4948 If X is an assignment of an invariant into DEST_REG, we set
4949 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4950
4951 We also want to detect a BIV when it corresponds to a variable
4952 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4953 of the variable may be a PLUS that adds a SUBREG of that variable to
4954 an invariant and then sign- or zero-extends the result of the PLUS
4955 into the variable.
4956
4957 Most GIVs in such cases will be in the promoted mode, since that is the
4958 probably the natural computation mode (and almost certainly the mode
4959 used for addresses) on the machine. So we view the pseudo-reg containing
4960 the variable as the BIV, as if it were simply incremented.
4961
4962 Note that treating the entire pseudo as a BIV will result in making
4963 simple increments to any GIVs based on it. However, if the variable
4964 overflows in its declared mode but not its promoted mode, the result will
4965 be incorrect. This is acceptable if the variable is signed, since
4966 overflows in such cases are undefined, but not if it is unsigned, since
4967 those overflows are defined. So we only check for SIGN_EXTEND and
4968 not ZERO_EXTEND.
4969
4970 If we cannot find a biv, we return 0. */
4971
4972 static int
4973 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
4974 register rtx x;
4975 enum machine_mode mode;
4976 rtx p;
4977 rtx dest_reg;
4978 rtx *inc_val;
4979 rtx *mult_val;
4980 {
4981 register enum rtx_code code;
4982 rtx arg;
4983 rtx insn, set = 0;
4984
4985 code = GET_CODE (x);
4986 switch (code)
4987 {
4988 case PLUS:
4989 if (XEXP (x, 0) == dest_reg
4990 || (GET_CODE (XEXP (x, 0)) == SUBREG
4991 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4992 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4993 arg = XEXP (x, 1);
4994 else if (XEXP (x, 1) == dest_reg
4995 || (GET_CODE (XEXP (x, 1)) == SUBREG
4996 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4997 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
4998 arg = XEXP (x, 0);
4999 else
5000 return 0;
5001
5002 if (invariant_p (arg) != 1)
5003 return 0;
5004
5005 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5006 *mult_val = const1_rtx;
5007 return 1;
5008
5009 case SUBREG:
5010 /* If this is a SUBREG for a promoted variable, check the inner
5011 value. */
5012 if (SUBREG_PROMOTED_VAR_P (x))
5013 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5014 dest_reg, p, inc_val, mult_val);
5015 return 0;
5016
5017 case REG:
5018 /* If this register is assigned in the previous insn, look at its
5019 source, but don't go outside the loop or past a label. */
5020
5021 for (insn = PREV_INSN (p);
5022 (insn && GET_CODE (insn) == NOTE
5023 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5024 insn = PREV_INSN (insn))
5025 ;
5026
5027 if (insn)
5028 set = single_set (insn);
5029
5030 if (set != 0
5031 && (SET_DEST (set) == x
5032 || (GET_CODE (SET_DEST (set)) == SUBREG
5033 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5034 <= UNITS_PER_WORD)
5035 && SUBREG_REG (SET_DEST (set)) == x)))
5036 return basic_induction_var (SET_SRC (set),
5037 (GET_MODE (SET_SRC (set)) == VOIDmode
5038 ? GET_MODE (x)
5039 : GET_MODE (SET_SRC (set))),
5040 dest_reg, insn,
5041 inc_val, mult_val);
5042 /* ... fall through ... */
5043
5044 /* Can accept constant setting of biv only when inside inner most loop.
5045 Otherwise, a biv of an inner loop may be incorrectly recognized
5046 as a biv of the outer loop,
5047 causing code to be moved INTO the inner loop. */
5048 case MEM:
5049 if (invariant_p (x) != 1)
5050 return 0;
5051 case CONST_INT:
5052 case SYMBOL_REF:
5053 case CONST:
5054 if (loops_enclosed == 1)
5055 {
5056 /* Possible bug here? Perhaps we don't know the mode of X. */
5057 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5058 *mult_val = const0_rtx;
5059 return 1;
5060 }
5061 else
5062 return 0;
5063
5064 case SIGN_EXTEND:
5065 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5066 dest_reg, p, inc_val, mult_val);
5067 case ASHIFTRT:
5068 /* Similar, since this can be a sign extension. */
5069 for (insn = PREV_INSN (p);
5070 (insn && GET_CODE (insn) == NOTE
5071 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5072 insn = PREV_INSN (insn))
5073 ;
5074
5075 if (insn)
5076 set = single_set (insn);
5077
5078 if (set && SET_DEST (set) == XEXP (x, 0)
5079 && GET_CODE (XEXP (x, 1)) == CONST_INT
5080 && INTVAL (XEXP (x, 1)) >= 0
5081 && GET_CODE (SET_SRC (set)) == ASHIFT
5082 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5083 return basic_induction_var (XEXP (SET_SRC (set), 0),
5084 GET_MODE (XEXP (x, 0)),
5085 dest_reg, insn, inc_val, mult_val);
5086 return 0;
5087
5088 default:
5089 return 0;
5090 }
5091 }
5092 \f
5093 /* A general induction variable (giv) is any quantity that is a linear
5094 function of a basic induction variable,
5095 i.e. giv = biv * mult_val + add_val.
5096 The coefficients can be any loop invariant quantity.
5097 A giv need not be computed directly from the biv;
5098 it can be computed by way of other givs. */
5099
5100 /* Determine whether X computes a giv.
5101 If it does, return a nonzero value
5102 which is the benefit from eliminating the computation of X;
5103 set *SRC_REG to the register of the biv that it is computed from;
5104 set *ADD_VAL and *MULT_VAL to the coefficients,
5105 such that the value of X is biv * mult + add; */
5106
5107 static int
5108 general_induction_var (x, src_reg, add_val, mult_val)
5109 rtx x;
5110 rtx *src_reg;
5111 rtx *add_val;
5112 rtx *mult_val;
5113 {
5114 rtx orig_x = x;
5115 int benefit = 0;
5116 char *storage;
5117
5118 /* If this is an invariant, forget it, it isn't a giv. */
5119 if (invariant_p (x) == 1)
5120 return 0;
5121
5122 /* See if the expression could be a giv and get its form.
5123 Mark our place on the obstack in case we don't find a giv. */
5124 storage = (char *) oballoc (0);
5125 x = simplify_giv_expr (x, &benefit);
5126 if (x == 0)
5127 {
5128 obfree (storage);
5129 return 0;
5130 }
5131
5132 switch (GET_CODE (x))
5133 {
5134 case USE:
5135 case CONST_INT:
5136 /* Since this is now an invariant and wasn't before, it must be a giv
5137 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5138 with. */
5139 *src_reg = loop_iv_list->biv->dest_reg;
5140 *mult_val = const0_rtx;
5141 *add_val = x;
5142 break;
5143
5144 case REG:
5145 /* This is equivalent to a BIV. */
5146 *src_reg = x;
5147 *mult_val = const1_rtx;
5148 *add_val = const0_rtx;
5149 break;
5150
5151 case PLUS:
5152 /* Either (plus (biv) (invar)) or
5153 (plus (mult (biv) (invar_1)) (invar_2)). */
5154 if (GET_CODE (XEXP (x, 0)) == MULT)
5155 {
5156 *src_reg = XEXP (XEXP (x, 0), 0);
5157 *mult_val = XEXP (XEXP (x, 0), 1);
5158 }
5159 else
5160 {
5161 *src_reg = XEXP (x, 0);
5162 *mult_val = const1_rtx;
5163 }
5164 *add_val = XEXP (x, 1);
5165 break;
5166
5167 case MULT:
5168 /* ADD_VAL is zero. */
5169 *src_reg = XEXP (x, 0);
5170 *mult_val = XEXP (x, 1);
5171 *add_val = const0_rtx;
5172 break;
5173
5174 default:
5175 abort ();
5176 }
5177
5178 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5179 unless they are CONST_INT). */
5180 if (GET_CODE (*add_val) == USE)
5181 *add_val = XEXP (*add_val, 0);
5182 if (GET_CODE (*mult_val) == USE)
5183 *mult_val = XEXP (*mult_val, 0);
5184
5185 benefit += rtx_cost (orig_x, SET);
5186
5187 /* Always return some benefit if this is a giv so it will be detected
5188 as such. This allows elimination of bivs that might otherwise
5189 not be eliminated. */
5190 return benefit == 0 ? 1 : benefit;
5191 }
5192 \f
5193 /* Given an expression, X, try to form it as a linear function of a biv.
5194 We will canonicalize it to be of the form
5195 (plus (mult (BIV) (invar_1))
5196 (invar_2))
5197 with possible degeneracies.
5198
5199 The invariant expressions must each be of a form that can be used as a
5200 machine operand. We surround then with a USE rtx (a hack, but localized
5201 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5202 routine; it is the caller's responsibility to strip them.
5203
5204 If no such canonicalization is possible (i.e., two biv's are used or an
5205 expression that is neither invariant nor a biv or giv), this routine
5206 returns 0.
5207
5208 For a non-zero return, the result will have a code of CONST_INT, USE,
5209 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5210
5211 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5212
5213 static rtx
5214 simplify_giv_expr (x, benefit)
5215 rtx x;
5216 int *benefit;
5217 {
5218 enum machine_mode mode = GET_MODE (x);
5219 rtx arg0, arg1;
5220 rtx tem;
5221
5222 /* If this is not an integer mode, or if we cannot do arithmetic in this
5223 mode, this can't be a giv. */
5224 if (mode != VOIDmode
5225 && (GET_MODE_CLASS (mode) != MODE_INT
5226 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5227 return 0;
5228
5229 switch (GET_CODE (x))
5230 {
5231 case PLUS:
5232 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5233 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5234 if (arg0 == 0 || arg1 == 0)
5235 return 0;
5236
5237 /* Put constant last, CONST_INT last if both constant. */
5238 if ((GET_CODE (arg0) == USE
5239 || GET_CODE (arg0) == CONST_INT)
5240 && GET_CODE (arg1) != CONST_INT)
5241 tem = arg0, arg0 = arg1, arg1 = tem;
5242
5243 /* Handle addition of zero, then addition of an invariant. */
5244 if (arg1 == const0_rtx)
5245 return arg0;
5246 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5247 switch (GET_CODE (arg0))
5248 {
5249 case CONST_INT:
5250 case USE:
5251 /* Both invariant. Only valid if sum is machine operand.
5252 First strip off possible USE on first operand. */
5253 if (GET_CODE (arg0) == USE)
5254 arg0 = XEXP (arg0, 0);
5255
5256 tem = 0;
5257 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5258 {
5259 tem = plus_constant (arg0, INTVAL (arg1));
5260 if (GET_CODE (tem) != CONST_INT)
5261 tem = gen_rtx (USE, mode, tem);
5262 }
5263
5264 return tem;
5265
5266 case REG:
5267 case MULT:
5268 /* biv + invar or mult + invar. Return sum. */
5269 return gen_rtx (PLUS, mode, arg0, arg1);
5270
5271 case PLUS:
5272 /* (a + invar_1) + invar_2. Associate. */
5273 return simplify_giv_expr (gen_rtx (PLUS, mode,
5274 XEXP (arg0, 0),
5275 gen_rtx (PLUS, mode,
5276 XEXP (arg0, 1), arg1)),
5277 benefit);
5278
5279 default:
5280 abort ();
5281 }
5282
5283 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5284 MULT to reduce cases. */
5285 if (GET_CODE (arg0) == REG)
5286 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5287 if (GET_CODE (arg1) == REG)
5288 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5289
5290 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5291 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5292 Recurse to associate the second PLUS. */
5293 if (GET_CODE (arg1) == MULT)
5294 tem = arg0, arg0 = arg1, arg1 = tem;
5295
5296 if (GET_CODE (arg1) == PLUS)
5297 return simplify_giv_expr (gen_rtx (PLUS, mode,
5298 gen_rtx (PLUS, mode,
5299 arg0, XEXP (arg1, 0)),
5300 XEXP (arg1, 1)),
5301 benefit);
5302
5303 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5304 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5305 abort ();
5306
5307 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5308 return 0;
5309
5310 return simplify_giv_expr (gen_rtx (MULT, mode,
5311 XEXP (arg0, 0),
5312 gen_rtx (PLUS, mode,
5313 XEXP (arg0, 1),
5314 XEXP (arg1, 1))),
5315 benefit);
5316
5317 case MINUS:
5318 /* Handle "a - b" as "a + b * (-1)". */
5319 return simplify_giv_expr (gen_rtx (PLUS, mode,
5320 XEXP (x, 0),
5321 gen_rtx (MULT, mode,
5322 XEXP (x, 1), constm1_rtx)),
5323 benefit);
5324
5325 case MULT:
5326 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5327 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5328 if (arg0 == 0 || arg1 == 0)
5329 return 0;
5330
5331 /* Put constant last, CONST_INT last if both constant. */
5332 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5333 && GET_CODE (arg1) != CONST_INT)
5334 tem = arg0, arg0 = arg1, arg1 = tem;
5335
5336 /* If second argument is not now constant, not giv. */
5337 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5338 return 0;
5339
5340 /* Handle multiply by 0 or 1. */
5341 if (arg1 == const0_rtx)
5342 return const0_rtx;
5343
5344 else if (arg1 == const1_rtx)
5345 return arg0;
5346
5347 switch (GET_CODE (arg0))
5348 {
5349 case REG:
5350 /* biv * invar. Done. */
5351 return gen_rtx (MULT, mode, arg0, arg1);
5352
5353 case CONST_INT:
5354 /* Product of two constants. */
5355 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5356
5357 case USE:
5358 /* invar * invar. Not giv. */
5359 return 0;
5360
5361 case MULT:
5362 /* (a * invar_1) * invar_2. Associate. */
5363 return simplify_giv_expr (gen_rtx (MULT, mode,
5364 XEXP (arg0, 0),
5365 gen_rtx (MULT, mode,
5366 XEXP (arg0, 1), arg1)),
5367 benefit);
5368
5369 case PLUS:
5370 /* (a + invar_1) * invar_2. Distribute. */
5371 return simplify_giv_expr (gen_rtx (PLUS, mode,
5372 gen_rtx (MULT, mode,
5373 XEXP (arg0, 0), arg1),
5374 gen_rtx (MULT, mode,
5375 XEXP (arg0, 1), arg1)),
5376 benefit);
5377
5378 default:
5379 abort ();
5380 }
5381
5382 case ASHIFT:
5383 /* Shift by constant is multiply by power of two. */
5384 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5385 return 0;
5386
5387 return simplify_giv_expr (gen_rtx (MULT, mode,
5388 XEXP (x, 0),
5389 GEN_INT ((HOST_WIDE_INT) 1
5390 << INTVAL (XEXP (x, 1)))),
5391 benefit);
5392
5393 case NEG:
5394 /* "-a" is "a * (-1)" */
5395 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5396 benefit);
5397
5398 case NOT:
5399 /* "~a" is "-a - 1". Silly, but easy. */
5400 return simplify_giv_expr (gen_rtx (MINUS, mode,
5401 gen_rtx (NEG, mode, XEXP (x, 0)),
5402 const1_rtx),
5403 benefit);
5404
5405 case USE:
5406 /* Already in proper form for invariant. */
5407 return x;
5408
5409 case REG:
5410 /* If this is a new register, we can't deal with it. */
5411 if (REGNO (x) >= max_reg_before_loop)
5412 return 0;
5413
5414 /* Check for biv or giv. */
5415 switch (reg_iv_type[REGNO (x)])
5416 {
5417 case BASIC_INDUCT:
5418 return x;
5419 case GENERAL_INDUCT:
5420 {
5421 struct induction *v = reg_iv_info[REGNO (x)];
5422
5423 /* Form expression from giv and add benefit. Ensure this giv
5424 can derive another and subtract any needed adjustment if so. */
5425 *benefit += v->benefit;
5426 if (v->cant_derive)
5427 return 0;
5428
5429 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5430 v->src_reg, v->mult_val),
5431 v->add_val);
5432 if (v->derive_adjustment)
5433 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5434 return simplify_giv_expr (tem, benefit);
5435 }
5436 }
5437
5438 /* Fall through to general case. */
5439 default:
5440 /* If invariant, return as USE (unless CONST_INT).
5441 Otherwise, not giv. */
5442 if (GET_CODE (x) == USE)
5443 x = XEXP (x, 0);
5444
5445 if (invariant_p (x) == 1)
5446 {
5447 if (GET_CODE (x) == CONST_INT)
5448 return x;
5449 else
5450 return gen_rtx (USE, mode, x);
5451 }
5452 else
5453 return 0;
5454 }
5455 }
5456 \f
5457 /* Help detect a giv that is calculated by several consecutive insns;
5458 for example,
5459 giv = biv * M
5460 giv = giv + A
5461 The caller has already identified the first insn P as having a giv as dest;
5462 we check that all other insns that set the same register follow
5463 immediately after P, that they alter nothing else,
5464 and that the result of the last is still a giv.
5465
5466 The value is 0 if the reg set in P is not really a giv.
5467 Otherwise, the value is the amount gained by eliminating
5468 all the consecutive insns that compute the value.
5469
5470 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5471 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5472
5473 The coefficients of the ultimate giv value are stored in
5474 *MULT_VAL and *ADD_VAL. */
5475
5476 static int
5477 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5478 add_val, mult_val)
5479 int first_benefit;
5480 rtx p;
5481 rtx src_reg;
5482 rtx dest_reg;
5483 rtx *add_val;
5484 rtx *mult_val;
5485 {
5486 int count;
5487 enum rtx_code code;
5488 int benefit;
5489 rtx temp;
5490 rtx set;
5491
5492 /* Indicate that this is a giv so that we can update the value produced in
5493 each insn of the multi-insn sequence.
5494
5495 This induction structure will be used only by the call to
5496 general_induction_var below, so we can allocate it on our stack.
5497 If this is a giv, our caller will replace the induct var entry with
5498 a new induction structure. */
5499 struct induction *v
5500 = (struct induction *) alloca (sizeof (struct induction));
5501 v->src_reg = src_reg;
5502 v->mult_val = *mult_val;
5503 v->add_val = *add_val;
5504 v->benefit = first_benefit;
5505 v->cant_derive = 0;
5506 v->derive_adjustment = 0;
5507
5508 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5509 reg_iv_info[REGNO (dest_reg)] = v;
5510
5511 count = n_times_set[REGNO (dest_reg)] - 1;
5512
5513 while (count > 0)
5514 {
5515 p = NEXT_INSN (p);
5516 code = GET_CODE (p);
5517
5518 /* If libcall, skip to end of call sequence. */
5519 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5520 p = XEXP (temp, 0);
5521
5522 if (code == INSN
5523 && (set = single_set (p))
5524 && GET_CODE (SET_DEST (set)) == REG
5525 && SET_DEST (set) == dest_reg
5526 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5527 add_val, mult_val))
5528 /* Giv created by equivalent expression. */
5529 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5530 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5531 add_val, mult_val))))
5532 && src_reg == v->src_reg)
5533 {
5534 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5535 benefit += libcall_benefit (p);
5536
5537 count--;
5538 v->mult_val = *mult_val;
5539 v->add_val = *add_val;
5540 v->benefit = benefit;
5541 }
5542 else if (code != NOTE)
5543 {
5544 /* Allow insns that set something other than this giv to a
5545 constant. Such insns are needed on machines which cannot
5546 include long constants and should not disqualify a giv. */
5547 if (code == INSN
5548 && (set = single_set (p))
5549 && SET_DEST (set) != dest_reg
5550 && CONSTANT_P (SET_SRC (set)))
5551 continue;
5552
5553 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5554 return 0;
5555 }
5556 }
5557
5558 return v->benefit;
5559 }
5560 \f
5561 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5562 represented by G1. If no such expression can be found, or it is clear that
5563 it cannot possibly be a valid address, 0 is returned.
5564
5565 To perform the computation, we note that
5566 G1 = a * v + b and
5567 G2 = c * v + d
5568 where `v' is the biv.
5569
5570 So G2 = (c/a) * G1 + (d - b*c/a) */
5571
5572 #ifdef ADDRESS_COST
5573 static rtx
5574 express_from (g1, g2)
5575 struct induction *g1, *g2;
5576 {
5577 rtx mult, add;
5578
5579 /* The value that G1 will be multiplied by must be a constant integer. Also,
5580 the only chance we have of getting a valid address is if b*c/a (see above
5581 for notation) is also an integer. */
5582 if (GET_CODE (g1->mult_val) != CONST_INT
5583 || GET_CODE (g2->mult_val) != CONST_INT
5584 || GET_CODE (g1->add_val) != CONST_INT
5585 || g1->mult_val == const0_rtx
5586 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5587 return 0;
5588
5589 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5590 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5591
5592 /* Form simplified final result. */
5593 if (mult == const0_rtx)
5594 return add;
5595 else if (mult == const1_rtx)
5596 mult = g1->dest_reg;
5597 else
5598 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5599
5600 if (add == const0_rtx)
5601 return mult;
5602 else
5603 return gen_rtx (PLUS, g2->mode, mult, add);
5604 }
5605 #endif
5606 \f
5607 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5608 (either directly or via an address expression) a register used to represent
5609 G1. Set g2->new_reg to a represtation of G1 (normally just
5610 g1->dest_reg). */
5611
5612 static int
5613 combine_givs_p (g1, g2)
5614 struct induction *g1, *g2;
5615 {
5616 rtx tem;
5617
5618 /* If these givs are identical, they can be combined. */
5619 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5620 && rtx_equal_p (g1->add_val, g2->add_val))
5621 {
5622 g2->new_reg = g1->dest_reg;
5623 return 1;
5624 }
5625
5626 #ifdef ADDRESS_COST
5627 /* If G2 can be expressed as a function of G1 and that function is valid
5628 as an address and no more expensive than using a register for G2,
5629 the expression of G2 in terms of G1 can be used. */
5630 if (g2->giv_type == DEST_ADDR
5631 && (tem = express_from (g1, g2)) != 0
5632 && memory_address_p (g2->mem_mode, tem)
5633 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5634 {
5635 g2->new_reg = tem;
5636 return 1;
5637 }
5638 #endif
5639
5640 return 0;
5641 }
5642 \f
5643 #ifdef GIV_SORT_CRITERION
5644 /* Compare two givs and sort the most desirable one for combinations first.
5645 This is used only in one qsort call below. */
5646
5647 static int
5648 giv_sort (x, y)
5649 struct induction **x, **y;
5650 {
5651 GIV_SORT_CRITERION (*x, *y);
5652
5653 return 0;
5654 }
5655 #endif
5656
5657 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5658 any other. If so, point SAME to the giv combined with and set NEW_REG to
5659 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5660 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5661
5662 static void
5663 combine_givs (bl)
5664 struct iv_class *bl;
5665 {
5666 struct induction *g1, *g2, **giv_array, *temp_iv;
5667 int i, j, giv_count, pass;
5668
5669 /* Count givs, because bl->giv_count is incorrect here. */
5670 giv_count = 0;
5671 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5672 giv_count++;
5673
5674 giv_array
5675 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5676 i = 0;
5677 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5678 giv_array[i++] = g1;
5679
5680 #ifdef GIV_SORT_CRITERION
5681 /* Sort the givs if GIV_SORT_CRITERION is defined.
5682 This is usually defined for processors which lack
5683 negative register offsets so more givs may be combined. */
5684
5685 if (loop_dump_stream)
5686 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5687
5688 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5689 #endif
5690
5691 for (i = 0; i < giv_count; i++)
5692 {
5693 g1 = giv_array[i];
5694 for (pass = 0; pass <= 1; pass++)
5695 for (j = 0; j < giv_count; j++)
5696 {
5697 g2 = giv_array[j];
5698 if (g1 != g2
5699 /* First try to combine with replaceable givs, then all givs. */
5700 && (g1->replaceable || pass == 1)
5701 /* If either has already been combined or is to be ignored, can't
5702 combine. */
5703 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5704 /* If something has been based on G2, G2 cannot itself be based
5705 on something else. */
5706 && ! g2->combined_with
5707 && combine_givs_p (g1, g2))
5708 {
5709 /* g2->new_reg set by `combine_givs_p' */
5710 g2->same = g1;
5711 g1->combined_with = 1;
5712
5713 /* If one of these givs is a DEST_REG that was only used
5714 once, by the other giv, this is actually a single use.
5715 The DEST_REG has the correct cost, while the other giv
5716 counts the REG use too often. */
5717 if (g2->giv_type == DEST_REG
5718 && n_times_used[REGNO (g2->dest_reg)] == 1
5719 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5720 g1->benefit = g2->benefit;
5721 else if (g1->giv_type != DEST_REG
5722 || n_times_used[REGNO (g1->dest_reg)] != 1
5723 || ! reg_mentioned_p (g1->dest_reg,
5724 PATTERN (g2->insn)))
5725 {
5726 g1->benefit += g2->benefit;
5727 g1->times_used += g2->times_used;
5728 }
5729 /* ??? The new final_[bg]iv_value code does a much better job
5730 of finding replaceable giv's, and hence this code may no
5731 longer be necessary. */
5732 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5733 g1->benefit -= copy_cost;
5734 g1->lifetime += g2->lifetime;
5735
5736 if (loop_dump_stream)
5737 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5738 INSN_UID (g2->insn), INSN_UID (g1->insn));
5739 }
5740 }
5741 }
5742 }
5743 \f
5744 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5745
5746 void
5747 emit_iv_add_mult (b, m, a, reg, insert_before)
5748 rtx b; /* initial value of basic induction variable */
5749 rtx m; /* multiplicative constant */
5750 rtx a; /* additive constant */
5751 rtx reg; /* destination register */
5752 rtx insert_before;
5753 {
5754 rtx seq;
5755 rtx result;
5756
5757 /* Prevent unexpected sharing of these rtx. */
5758 a = copy_rtx (a);
5759 b = copy_rtx (b);
5760
5761 /* Increase the lifetime of any invariants moved further in code. */
5762 update_reg_last_use (a, insert_before);
5763 update_reg_last_use (b, insert_before);
5764 update_reg_last_use (m, insert_before);
5765
5766 start_sequence ();
5767 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5768 if (reg != result)
5769 emit_move_insn (reg, result);
5770 seq = gen_sequence ();
5771 end_sequence ();
5772
5773 emit_insn_before (seq, insert_before);
5774 }
5775 \f
5776 /* Test whether A * B can be computed without
5777 an actual multiply insn. Value is 1 if so. */
5778
5779 static int
5780 product_cheap_p (a, b)
5781 rtx a;
5782 rtx b;
5783 {
5784 int i;
5785 rtx tmp;
5786 struct obstack *old_rtl_obstack = rtl_obstack;
5787 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5788 int win = 1;
5789
5790 /* If only one is constant, make it B. */
5791 if (GET_CODE (a) == CONST_INT)
5792 tmp = a, a = b, b = tmp;
5793
5794 /* If first constant, both constant, so don't need multiply. */
5795 if (GET_CODE (a) == CONST_INT)
5796 return 1;
5797
5798 /* If second not constant, neither is constant, so would need multiply. */
5799 if (GET_CODE (b) != CONST_INT)
5800 return 0;
5801
5802 /* One operand is constant, so might not need multiply insn. Generate the
5803 code for the multiply and see if a call or multiply, or long sequence
5804 of insns is generated. */
5805
5806 rtl_obstack = &temp_obstack;
5807 start_sequence ();
5808 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5809 tmp = gen_sequence ();
5810 end_sequence ();
5811
5812 if (GET_CODE (tmp) == SEQUENCE)
5813 {
5814 if (XVEC (tmp, 0) == 0)
5815 win = 1;
5816 else if (XVECLEN (tmp, 0) > 3)
5817 win = 0;
5818 else
5819 for (i = 0; i < XVECLEN (tmp, 0); i++)
5820 {
5821 rtx insn = XVECEXP (tmp, 0, i);
5822
5823 if (GET_CODE (insn) != INSN
5824 || (GET_CODE (PATTERN (insn)) == SET
5825 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5826 || (GET_CODE (PATTERN (insn)) == PARALLEL
5827 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5828 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5829 {
5830 win = 0;
5831 break;
5832 }
5833 }
5834 }
5835 else if (GET_CODE (tmp) == SET
5836 && GET_CODE (SET_SRC (tmp)) == MULT)
5837 win = 0;
5838 else if (GET_CODE (tmp) == PARALLEL
5839 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5840 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5841 win = 0;
5842
5843 /* Free any storage we obtained in generating this multiply and restore rtl
5844 allocation to its normal obstack. */
5845 obstack_free (&temp_obstack, storage);
5846 rtl_obstack = old_rtl_obstack;
5847
5848 return win;
5849 }
5850 \f
5851 /* Check to see if loop can be terminated by a "decrement and branch until
5852 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5853 Also try reversing an increment loop to a decrement loop
5854 to see if the optimization can be performed.
5855 Value is nonzero if optimization was performed. */
5856
5857 /* This is useful even if the architecture doesn't have such an insn,
5858 because it might change a loops which increments from 0 to n to a loop
5859 which decrements from n to 0. A loop that decrements to zero is usually
5860 faster than one that increments from zero. */
5861
5862 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5863 such as approx_final_value, biv_total_increment, loop_iterations, and
5864 final_[bg]iv_value. */
5865
5866 static int
5867 check_dbra_loop (loop_end, insn_count, loop_start)
5868 rtx loop_end;
5869 int insn_count;
5870 rtx loop_start;
5871 {
5872 struct iv_class *bl;
5873 rtx reg;
5874 rtx jump_label;
5875 rtx final_value;
5876 rtx start_value;
5877 rtx new_add_val;
5878 rtx comparison;
5879 rtx before_comparison;
5880 rtx p;
5881
5882 /* If last insn is a conditional branch, and the insn before tests a
5883 register value, try to optimize it. Otherwise, we can't do anything. */
5884
5885 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5886 if (comparison == 0)
5887 return 0;
5888
5889 /* Check all of the bivs to see if the compare uses one of them.
5890 Skip biv's set more than once because we can't guarantee that
5891 it will be zero on the last iteration. Also skip if the biv is
5892 used between its update and the test insn. */
5893
5894 for (bl = loop_iv_list; bl; bl = bl->next)
5895 {
5896 if (bl->biv_count == 1
5897 && bl->biv->dest_reg == XEXP (comparison, 0)
5898 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5899 PREV_INSN (PREV_INSN (loop_end))))
5900 break;
5901 }
5902
5903 if (! bl)
5904 return 0;
5905
5906 /* Look for the case where the basic induction variable is always
5907 nonnegative, and equals zero on the last iteration.
5908 In this case, add a reg_note REG_NONNEG, which allows the
5909 m68k DBRA instruction to be used. */
5910
5911 if (((GET_CODE (comparison) == GT
5912 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5913 && INTVAL (XEXP (comparison, 1)) == -1)
5914 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5915 && GET_CODE (bl->biv->add_val) == CONST_INT
5916 && INTVAL (bl->biv->add_val) < 0)
5917 {
5918 /* Initial value must be greater than 0,
5919 init_val % -dec_value == 0 to ensure that it equals zero on
5920 the last iteration */
5921
5922 if (GET_CODE (bl->initial_value) == CONST_INT
5923 && INTVAL (bl->initial_value) > 0
5924 && (INTVAL (bl->initial_value)
5925 % (-INTVAL (bl->biv->add_val))) == 0)
5926 {
5927 /* register always nonnegative, add REG_NOTE to branch */
5928 REG_NOTES (PREV_INSN (loop_end))
5929 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5930 REG_NOTES (PREV_INSN (loop_end)));
5931 bl->nonneg = 1;
5932
5933 return 1;
5934 }
5935
5936 /* If the decrement is 1 and the value was tested as >= 0 before
5937 the loop, then we can safely optimize. */
5938 for (p = loop_start; p; p = PREV_INSN (p))
5939 {
5940 if (GET_CODE (p) == CODE_LABEL)
5941 break;
5942 if (GET_CODE (p) != JUMP_INSN)
5943 continue;
5944
5945 before_comparison = get_condition_for_loop (p);
5946 if (before_comparison
5947 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5948 && GET_CODE (before_comparison) == LT
5949 && XEXP (before_comparison, 1) == const0_rtx
5950 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5951 && INTVAL (bl->biv->add_val) == -1)
5952 {
5953 REG_NOTES (PREV_INSN (loop_end))
5954 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5955 REG_NOTES (PREV_INSN (loop_end)));
5956 bl->nonneg = 1;
5957
5958 return 1;
5959 }
5960 }
5961 }
5962 else if (num_mem_sets <= 1)
5963 {
5964 /* Try to change inc to dec, so can apply above optimization. */
5965 /* Can do this if:
5966 all registers modified are induction variables or invariant,
5967 all memory references have non-overlapping addresses
5968 (obviously true if only one write)
5969 allow 2 insns for the compare/jump at the end of the loop. */
5970 /* Also, we must avoid any instructions which use both the reversed
5971 biv and another biv. Such instructions will fail if the loop is
5972 reversed. We meet this condition by requiring that either
5973 no_use_except_counting is true, or else that there is only
5974 one biv. */
5975 int num_nonfixed_reads = 0;
5976 /* 1 if the iteration var is used only to count iterations. */
5977 int no_use_except_counting = 0;
5978 /* 1 if the loop has no memory store, or it has a single memory store
5979 which is reversible. */
5980 int reversible_mem_store = 1;
5981
5982 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5983 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5984 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5985
5986 if (bl->giv_count == 0
5987 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
5988 {
5989 rtx bivreg = regno_reg_rtx[bl->regno];
5990
5991 /* If there are no givs for this biv, and the only exit is the
5992 fall through at the end of the the loop, then
5993 see if perhaps there are no uses except to count. */
5994 no_use_except_counting = 1;
5995 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5996 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5997 {
5998 rtx set = single_set (p);
5999
6000 if (set && GET_CODE (SET_DEST (set)) == REG
6001 && REGNO (SET_DEST (set)) == bl->regno)
6002 /* An insn that sets the biv is okay. */
6003 ;
6004 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6005 || p == prev_nonnote_insn (loop_end))
6006 /* Don't bother about the end test. */
6007 ;
6008 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6009 /* Any other use of the biv is no good. */
6010 {
6011 no_use_except_counting = 0;
6012 break;
6013 }
6014 }
6015 }
6016
6017 /* If the loop has a single store, and the destination address is
6018 invariant, then we can't reverse the loop, because this address
6019 might then have the wrong value at loop exit.
6020 This would work if the source was invariant also, however, in that
6021 case, the insn should have been moved out of the loop. */
6022
6023 if (num_mem_sets == 1)
6024 reversible_mem_store
6025 = (! unknown_address_altered
6026 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6027
6028 /* This code only acts for innermost loops. Also it simplifies
6029 the memory address check by only reversing loops with
6030 zero or one memory access.
6031 Two memory accesses could involve parts of the same array,
6032 and that can't be reversed. */
6033
6034 if (num_nonfixed_reads <= 1
6035 && !loop_has_call
6036 && !loop_has_volatile
6037 && reversible_mem_store
6038 && (no_use_except_counting
6039 || ((bl->giv_count + bl->biv_count + num_mem_sets
6040 + num_movables + 2 == insn_count)
6041 && (bl == loop_iv_list && bl->next == 0))))
6042 {
6043 rtx tem;
6044
6045 /* Loop can be reversed. */
6046 if (loop_dump_stream)
6047 fprintf (loop_dump_stream, "Can reverse loop\n");
6048
6049 /* Now check other conditions:
6050 initial_value must be zero,
6051 final_value % add_val == 0, so that when reversed, the
6052 biv will be zero on the last iteration.
6053
6054 This test can probably be improved since +/- 1 in the constant
6055 can be obtained by changing LT to LE and vice versa; this is
6056 confusing. */
6057
6058 if (comparison && bl->initial_value == const0_rtx
6059 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6060 /* LE gets turned into LT */
6061 && GET_CODE (comparison) == LT
6062 && (INTVAL (XEXP (comparison, 1))
6063 % INTVAL (bl->biv->add_val)) == 0)
6064 {
6065 /* Register will always be nonnegative, with value
6066 0 on last iteration if loop reversed */
6067
6068 /* Save some info needed to produce the new insns. */
6069 reg = bl->biv->dest_reg;
6070 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6071 if (jump_label == pc_rtx)
6072 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6073 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6074
6075 final_value = XEXP (comparison, 1);
6076 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6077 - INTVAL (bl->biv->add_val));
6078
6079 /* Initialize biv to start_value before loop start.
6080 The old initializing insn will be deleted as a
6081 dead store by flow.c. */
6082 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6083
6084 /* Add insn to decrement register, and delete insn
6085 that incremented the register. */
6086 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6087 bl->biv->insn);
6088 delete_insn (bl->biv->insn);
6089
6090 /* Update biv info to reflect its new status. */
6091 bl->biv->insn = p;
6092 bl->initial_value = start_value;
6093 bl->biv->add_val = new_add_val;
6094
6095 /* Inc LABEL_NUSES so that delete_insn will
6096 not delete the label. */
6097 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6098
6099 /* Emit an insn after the end of the loop to set the biv's
6100 proper exit value if it is used anywhere outside the loop. */
6101 if ((REGNO_LAST_UID (bl->regno)
6102 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6103 || ! bl->init_insn
6104 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6105 emit_insn_after (gen_move_insn (reg, final_value),
6106 loop_end);
6107
6108 /* Delete compare/branch at end of loop. */
6109 delete_insn (PREV_INSN (loop_end));
6110 delete_insn (PREV_INSN (loop_end));
6111
6112 /* Add new compare/branch insn at end of loop. */
6113 start_sequence ();
6114 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6115 GET_MODE (reg), 0, 0);
6116 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6117 tem = gen_sequence ();
6118 end_sequence ();
6119 emit_jump_insn_before (tem, loop_end);
6120
6121 for (tem = PREV_INSN (loop_end);
6122 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6123 ;
6124 if (tem)
6125 {
6126 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6127
6128 /* Increment of LABEL_NUSES done above. */
6129 /* Register is now always nonnegative,
6130 so add REG_NONNEG note to the branch. */
6131 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6132 REG_NOTES (tem));
6133 }
6134
6135 bl->nonneg = 1;
6136
6137 /* Mark that this biv has been reversed. Each giv which depends
6138 on this biv, and which is also live past the end of the loop
6139 will have to be fixed up. */
6140
6141 bl->reversed = 1;
6142
6143 if (loop_dump_stream)
6144 fprintf (loop_dump_stream,
6145 "Reversed loop and added reg_nonneg\n");
6146
6147 return 1;
6148 }
6149 }
6150 }
6151
6152 return 0;
6153 }
6154 \f
6155 /* Verify whether the biv BL appears to be eliminable,
6156 based on the insns in the loop that refer to it.
6157 LOOP_START is the first insn of the loop, and END is the end insn.
6158
6159 If ELIMINATE_P is non-zero, actually do the elimination.
6160
6161 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6162 determine whether invariant insns should be placed inside or at the
6163 start of the loop. */
6164
6165 static int
6166 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6167 struct iv_class *bl;
6168 rtx loop_start;
6169 rtx end;
6170 int eliminate_p;
6171 int threshold, insn_count;
6172 {
6173 rtx reg = bl->biv->dest_reg;
6174 rtx p;
6175
6176 /* Scan all insns in the loop, stopping if we find one that uses the
6177 biv in a way that we cannot eliminate. */
6178
6179 for (p = loop_start; p != end; p = NEXT_INSN (p))
6180 {
6181 enum rtx_code code = GET_CODE (p);
6182 rtx where = threshold >= insn_count ? loop_start : p;
6183
6184 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6185 && reg_mentioned_p (reg, PATTERN (p))
6186 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6187 {
6188 if (loop_dump_stream)
6189 fprintf (loop_dump_stream,
6190 "Cannot eliminate biv %d: biv used in insn %d.\n",
6191 bl->regno, INSN_UID (p));
6192 break;
6193 }
6194 }
6195
6196 if (p == end)
6197 {
6198 if (loop_dump_stream)
6199 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6200 bl->regno, eliminate_p ? "was" : "can be");
6201 return 1;
6202 }
6203
6204 return 0;
6205 }
6206 \f
6207 /* If BL appears in X (part of the pattern of INSN), see if we can
6208 eliminate its use. If so, return 1. If not, return 0.
6209
6210 If BIV does not appear in X, return 1.
6211
6212 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6213 where extra insns should be added. Depending on how many items have been
6214 moved out of the loop, it will either be before INSN or at the start of
6215 the loop. */
6216
6217 static int
6218 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6219 rtx x, insn;
6220 struct iv_class *bl;
6221 int eliminate_p;
6222 rtx where;
6223 {
6224 enum rtx_code code = GET_CODE (x);
6225 rtx reg = bl->biv->dest_reg;
6226 enum machine_mode mode = GET_MODE (reg);
6227 struct induction *v;
6228 rtx arg, new, tem;
6229 int arg_operand;
6230 char *fmt;
6231 int i, j;
6232
6233 switch (code)
6234 {
6235 case REG:
6236 /* If we haven't already been able to do something with this BIV,
6237 we can't eliminate it. */
6238 if (x == reg)
6239 return 0;
6240 return 1;
6241
6242 case SET:
6243 /* If this sets the BIV, it is not a problem. */
6244 if (SET_DEST (x) == reg)
6245 return 1;
6246
6247 /* If this is an insn that defines a giv, it is also ok because
6248 it will go away when the giv is reduced. */
6249 for (v = bl->giv; v; v = v->next_iv)
6250 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6251 return 1;
6252
6253 #ifdef HAVE_cc0
6254 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6255 {
6256 /* Can replace with any giv that was reduced and
6257 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6258 Require a constant for MULT_VAL, so we know it's nonzero.
6259 ??? We disable this optimization to avoid potential
6260 overflows. */
6261
6262 for (v = bl->giv; v; v = v->next_iv)
6263 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6264 && v->add_val == const0_rtx
6265 && ! v->ignore && ! v->maybe_dead && v->always_computable
6266 && v->mode == mode
6267 && 0)
6268 {
6269 /* If the giv V had the auto-inc address optimization applied
6270 to it, and INSN occurs between the giv insn and the biv
6271 insn, then we must adjust the value used here.
6272 This is rare, so we don't bother to do so. */
6273 if (v->auto_inc_opt
6274 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6275 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6276 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6277 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6278 continue;
6279
6280 if (! eliminate_p)
6281 return 1;
6282
6283 /* If the giv has the opposite direction of change,
6284 then reverse the comparison. */
6285 if (INTVAL (v->mult_val) < 0)
6286 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
6287 const0_rtx, v->new_reg);
6288 else
6289 new = v->new_reg;
6290
6291 /* We can probably test that giv's reduced reg. */
6292 if (validate_change (insn, &SET_SRC (x), new, 0))
6293 return 1;
6294 }
6295
6296 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6297 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6298 Require a constant for MULT_VAL, so we know it's nonzero.
6299 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6300 overflow problem. */
6301
6302 for (v = bl->giv; v; v = v->next_iv)
6303 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6304 && ! v->ignore && ! v->maybe_dead && v->always_computable
6305 && v->mode == mode
6306 && (GET_CODE (v->add_val) == SYMBOL_REF
6307 || GET_CODE (v->add_val) == LABEL_REF
6308 || GET_CODE (v->add_val) == CONST
6309 || (GET_CODE (v->add_val) == REG
6310 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6311 {
6312 /* If the giv V had the auto-inc address optimization applied
6313 to it, and INSN occurs between the giv insn and the biv
6314 insn, then we must adjust the value used here.
6315 This is rare, so we don't bother to do so. */
6316 if (v->auto_inc_opt
6317 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6318 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6319 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6320 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6321 continue;
6322
6323 if (! eliminate_p)
6324 return 1;
6325
6326 /* If the giv has the opposite direction of change,
6327 then reverse the comparison. */
6328 if (INTVAL (v->mult_val) < 0)
6329 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
6330 v->new_reg);
6331 else
6332 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
6333 copy_rtx (v->add_val));
6334
6335 /* Replace biv with the giv's reduced register. */
6336 update_reg_last_use (v->add_val, insn);
6337 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6338 return 1;
6339
6340 /* Insn doesn't support that constant or invariant. Copy it
6341 into a register (it will be a loop invariant.) */
6342 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6343
6344 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6345 where);
6346
6347 /* Substitute the new register for its invariant value in
6348 the compare expression. */
6349 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6350 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6351 return 1;
6352 }
6353 }
6354 #endif
6355 break;
6356
6357 case COMPARE:
6358 case EQ: case NE:
6359 case GT: case GE: case GTU: case GEU:
6360 case LT: case LE: case LTU: case LEU:
6361 /* See if either argument is the biv. */
6362 if (XEXP (x, 0) == reg)
6363 arg = XEXP (x, 1), arg_operand = 1;
6364 else if (XEXP (x, 1) == reg)
6365 arg = XEXP (x, 0), arg_operand = 0;
6366 else
6367 break;
6368
6369 if (CONSTANT_P (arg))
6370 {
6371 /* First try to replace with any giv that has constant positive
6372 mult_val and constant add_val. We might be able to support
6373 negative mult_val, but it seems complex to do it in general. */
6374
6375 for (v = bl->giv; v; v = v->next_iv)
6376 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6377 && (GET_CODE (v->add_val) == SYMBOL_REF
6378 || GET_CODE (v->add_val) == LABEL_REF
6379 || GET_CODE (v->add_val) == CONST
6380 || (GET_CODE (v->add_val) == REG
6381 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6382 && ! v->ignore && ! v->maybe_dead && v->always_computable
6383 && v->mode == mode)
6384 {
6385 /* If the giv V had the auto-inc address optimization applied
6386 to it, and INSN occurs between the giv insn and the biv
6387 insn, then we must adjust the value used here.
6388 This is rare, so we don't bother to do so. */
6389 if (v->auto_inc_opt
6390 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6391 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6392 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6393 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6394 continue;
6395
6396 if (! eliminate_p)
6397 return 1;
6398
6399 /* Replace biv with the giv's reduced reg. */
6400 XEXP (x, 1-arg_operand) = v->new_reg;
6401
6402 /* If all constants are actually constant integers and
6403 the derived constant can be directly placed in the COMPARE,
6404 do so. */
6405 if (GET_CODE (arg) == CONST_INT
6406 && GET_CODE (v->mult_val) == CONST_INT
6407 && GET_CODE (v->add_val) == CONST_INT
6408 && validate_change (insn, &XEXP (x, arg_operand),
6409 GEN_INT (INTVAL (arg)
6410 * INTVAL (v->mult_val)
6411 + INTVAL (v->add_val)), 0))
6412 return 1;
6413
6414 /* Otherwise, load it into a register. */
6415 tem = gen_reg_rtx (mode);
6416 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6417 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6418 return 1;
6419
6420 /* If that failed, put back the change we made above. */
6421 XEXP (x, 1-arg_operand) = reg;
6422 }
6423
6424 /* Look for giv with positive constant mult_val and nonconst add_val.
6425 Insert insns to calculate new compare value.
6426 ??? Turn this off due to possible overflow. */
6427
6428 for (v = bl->giv; v; v = v->next_iv)
6429 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6430 && ! v->ignore && ! v->maybe_dead && v->always_computable
6431 && v->mode == mode
6432 && 0)
6433 {
6434 rtx tem;
6435
6436 /* If the giv V had the auto-inc address optimization applied
6437 to it, and INSN occurs between the giv insn and the biv
6438 insn, then we must adjust the value used here.
6439 This is rare, so we don't bother to do so. */
6440 if (v->auto_inc_opt
6441 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6442 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6443 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6444 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6445 continue;
6446
6447 if (! eliminate_p)
6448 return 1;
6449
6450 tem = gen_reg_rtx (mode);
6451
6452 /* Replace biv with giv's reduced register. */
6453 validate_change (insn, &XEXP (x, 1 - arg_operand),
6454 v->new_reg, 1);
6455
6456 /* Compute value to compare against. */
6457 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6458 /* Use it in this insn. */
6459 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6460 if (apply_change_group ())
6461 return 1;
6462 }
6463 }
6464 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6465 {
6466 if (invariant_p (arg) == 1)
6467 {
6468 /* Look for giv with constant positive mult_val and nonconst
6469 add_val. Insert insns to compute new compare value.
6470 ??? Turn this off due to possible overflow. */
6471
6472 for (v = bl->giv; v; v = v->next_iv)
6473 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6474 && ! v->ignore && ! v->maybe_dead && v->always_computable
6475 && v->mode == mode
6476 && 0)
6477 {
6478 rtx tem;
6479
6480 /* If the giv V had the auto-inc address optimization applied
6481 to it, and INSN occurs between the giv insn and the biv
6482 insn, then we must adjust the value used here.
6483 This is rare, so we don't bother to do so. */
6484 if (v->auto_inc_opt
6485 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6486 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6487 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6488 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6489 continue;
6490
6491 if (! eliminate_p)
6492 return 1;
6493
6494 tem = gen_reg_rtx (mode);
6495
6496 /* Replace biv with giv's reduced register. */
6497 validate_change (insn, &XEXP (x, 1 - arg_operand),
6498 v->new_reg, 1);
6499
6500 /* Compute value to compare against. */
6501 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6502 tem, where);
6503 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6504 if (apply_change_group ())
6505 return 1;
6506 }
6507 }
6508
6509 /* This code has problems. Basically, you can't know when
6510 seeing if we will eliminate BL, whether a particular giv
6511 of ARG will be reduced. If it isn't going to be reduced,
6512 we can't eliminate BL. We can try forcing it to be reduced,
6513 but that can generate poor code.
6514
6515 The problem is that the benefit of reducing TV, below should
6516 be increased if BL can actually be eliminated, but this means
6517 we might have to do a topological sort of the order in which
6518 we try to process biv. It doesn't seem worthwhile to do
6519 this sort of thing now. */
6520
6521 #if 0
6522 /* Otherwise the reg compared with had better be a biv. */
6523 if (GET_CODE (arg) != REG
6524 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6525 return 0;
6526
6527 /* Look for a pair of givs, one for each biv,
6528 with identical coefficients. */
6529 for (v = bl->giv; v; v = v->next_iv)
6530 {
6531 struct induction *tv;
6532
6533 if (v->ignore || v->maybe_dead || v->mode != mode)
6534 continue;
6535
6536 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6537 if (! tv->ignore && ! tv->maybe_dead
6538 && rtx_equal_p (tv->mult_val, v->mult_val)
6539 && rtx_equal_p (tv->add_val, v->add_val)
6540 && tv->mode == mode)
6541 {
6542 /* If the giv V had the auto-inc address optimization applied
6543 to it, and INSN occurs between the giv insn and the biv
6544 insn, then we must adjust the value used here.
6545 This is rare, so we don't bother to do so. */
6546 if (v->auto_inc_opt
6547 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6548 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6549 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6550 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6551 continue;
6552
6553 if (! eliminate_p)
6554 return 1;
6555
6556 /* Replace biv with its giv's reduced reg. */
6557 XEXP (x, 1-arg_operand) = v->new_reg;
6558 /* Replace other operand with the other giv's
6559 reduced reg. */
6560 XEXP (x, arg_operand) = tv->new_reg;
6561 return 1;
6562 }
6563 }
6564 #endif
6565 }
6566
6567 /* If we get here, the biv can't be eliminated. */
6568 return 0;
6569
6570 case MEM:
6571 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6572 biv is used in it, since it will be replaced. */
6573 for (v = bl->giv; v; v = v->next_iv)
6574 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6575 return 1;
6576 break;
6577 }
6578
6579 /* See if any subexpression fails elimination. */
6580 fmt = GET_RTX_FORMAT (code);
6581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6582 {
6583 switch (fmt[i])
6584 {
6585 case 'e':
6586 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6587 eliminate_p, where))
6588 return 0;
6589 break;
6590
6591 case 'E':
6592 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6593 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6594 eliminate_p, where))
6595 return 0;
6596 break;
6597 }
6598 }
6599
6600 return 1;
6601 }
6602 \f
6603 /* Return nonzero if the last use of REG
6604 is in an insn following INSN in the same basic block. */
6605
6606 static int
6607 last_use_this_basic_block (reg, insn)
6608 rtx reg;
6609 rtx insn;
6610 {
6611 rtx n;
6612 for (n = insn;
6613 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6614 n = NEXT_INSN (n))
6615 {
6616 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6617 return 1;
6618 }
6619 return 0;
6620 }
6621 \f
6622 /* Called via `note_stores' to record the initial value of a biv. Here we
6623 just record the location of the set and process it later. */
6624
6625 static void
6626 record_initial (dest, set)
6627 rtx dest;
6628 rtx set;
6629 {
6630 struct iv_class *bl;
6631
6632 if (GET_CODE (dest) != REG
6633 || REGNO (dest) >= max_reg_before_loop
6634 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6635 return;
6636
6637 bl = reg_biv_class[REGNO (dest)];
6638
6639 /* If this is the first set found, record it. */
6640 if (bl->init_insn == 0)
6641 {
6642 bl->init_insn = note_insn;
6643 bl->init_set = set;
6644 }
6645 }
6646 \f
6647 /* If any of the registers in X are "old" and currently have a last use earlier
6648 than INSN, update them to have a last use of INSN. Their actual last use
6649 will be the previous insn but it will not have a valid uid_luid so we can't
6650 use it. */
6651
6652 static void
6653 update_reg_last_use (x, insn)
6654 rtx x;
6655 rtx insn;
6656 {
6657 /* Check for the case where INSN does not have a valid luid. In this case,
6658 there is no need to modify the regno_last_uid, as this can only happen
6659 when code is inserted after the loop_end to set a pseudo's final value,
6660 and hence this insn will never be the last use of x. */
6661 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6662 && INSN_UID (insn) < max_uid_for_loop
6663 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6664 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6665 else
6666 {
6667 register int i, j;
6668 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6669 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6670 {
6671 if (fmt[i] == 'e')
6672 update_reg_last_use (XEXP (x, i), insn);
6673 else if (fmt[i] == 'E')
6674 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6675 update_reg_last_use (XVECEXP (x, i, j), insn);
6676 }
6677 }
6678 }
6679 \f
6680 /* Given a jump insn JUMP, return the condition that will cause it to branch
6681 to its JUMP_LABEL. If the condition cannot be understood, or is an
6682 inequality floating-point comparison which needs to be reversed, 0 will
6683 be returned.
6684
6685 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6686 insn used in locating the condition was found. If a replacement test
6687 of the condition is desired, it should be placed in front of that
6688 insn and we will be sure that the inputs are still valid.
6689
6690 The condition will be returned in a canonical form to simplify testing by
6691 callers. Specifically:
6692
6693 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6694 (2) Both operands will be machine operands; (cc0) will have been replaced.
6695 (3) If an operand is a constant, it will be the second operand.
6696 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6697 for GE, GEU, and LEU. */
6698
6699 rtx
6700 get_condition (jump, earliest)
6701 rtx jump;
6702 rtx *earliest;
6703 {
6704 enum rtx_code code;
6705 rtx prev = jump;
6706 rtx set;
6707 rtx tem;
6708 rtx op0, op1;
6709 int reverse_code = 0;
6710 int did_reverse_condition = 0;
6711
6712 /* If this is not a standard conditional jump, we can't parse it. */
6713 if (GET_CODE (jump) != JUMP_INSN
6714 || ! condjump_p (jump) || simplejump_p (jump))
6715 return 0;
6716
6717 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6718 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6719 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6720
6721 if (earliest)
6722 *earliest = jump;
6723
6724 /* If this branches to JUMP_LABEL when the condition is false, reverse
6725 the condition. */
6726 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6727 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6728 code = reverse_condition (code), did_reverse_condition ^= 1;
6729
6730 /* If we are comparing a register with zero, see if the register is set
6731 in the previous insn to a COMPARE or a comparison operation. Perform
6732 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6733 in cse.c */
6734
6735 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6736 {
6737 /* Set non-zero when we find something of interest. */
6738 rtx x = 0;
6739
6740 #ifdef HAVE_cc0
6741 /* If comparison with cc0, import actual comparison from compare
6742 insn. */
6743 if (op0 == cc0_rtx)
6744 {
6745 if ((prev = prev_nonnote_insn (prev)) == 0
6746 || GET_CODE (prev) != INSN
6747 || (set = single_set (prev)) == 0
6748 || SET_DEST (set) != cc0_rtx)
6749 return 0;
6750
6751 op0 = SET_SRC (set);
6752 op1 = CONST0_RTX (GET_MODE (op0));
6753 if (earliest)
6754 *earliest = prev;
6755 }
6756 #endif
6757
6758 /* If this is a COMPARE, pick up the two things being compared. */
6759 if (GET_CODE (op0) == COMPARE)
6760 {
6761 op1 = XEXP (op0, 1);
6762 op0 = XEXP (op0, 0);
6763 continue;
6764 }
6765 else if (GET_CODE (op0) != REG)
6766 break;
6767
6768 /* Go back to the previous insn. Stop if it is not an INSN. We also
6769 stop if it isn't a single set or if it has a REG_INC note because
6770 we don't want to bother dealing with it. */
6771
6772 if ((prev = prev_nonnote_insn (prev)) == 0
6773 || GET_CODE (prev) != INSN
6774 || FIND_REG_INC_NOTE (prev, 0)
6775 || (set = single_set (prev)) == 0)
6776 break;
6777
6778 /* If this is setting OP0, get what it sets it to if it looks
6779 relevant. */
6780 if (rtx_equal_p (SET_DEST (set), op0))
6781 {
6782 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6783
6784 if ((GET_CODE (SET_SRC (set)) == COMPARE
6785 || (((code == NE
6786 || (code == LT
6787 && GET_MODE_CLASS (inner_mode) == MODE_INT
6788 && (GET_MODE_BITSIZE (inner_mode)
6789 <= HOST_BITS_PER_WIDE_INT)
6790 && (STORE_FLAG_VALUE
6791 & ((HOST_WIDE_INT) 1
6792 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6793 #ifdef FLOAT_STORE_FLAG_VALUE
6794 || (code == LT
6795 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6796 && FLOAT_STORE_FLAG_VALUE < 0)
6797 #endif
6798 ))
6799 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6800 x = SET_SRC (set);
6801 else if (((code == EQ
6802 || (code == GE
6803 && (GET_MODE_BITSIZE (inner_mode)
6804 <= HOST_BITS_PER_WIDE_INT)
6805 && GET_MODE_CLASS (inner_mode) == MODE_INT
6806 && (STORE_FLAG_VALUE
6807 & ((HOST_WIDE_INT) 1
6808 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6809 #ifdef FLOAT_STORE_FLAG_VALUE
6810 || (code == GE
6811 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6812 && FLOAT_STORE_FLAG_VALUE < 0)
6813 #endif
6814 ))
6815 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6816 {
6817 /* We might have reversed a LT to get a GE here. But this wasn't
6818 actually the comparison of data, so we don't flag that we
6819 have had to reverse the condition. */
6820 did_reverse_condition ^= 1;
6821 reverse_code = 1;
6822 x = SET_SRC (set);
6823 }
6824 else
6825 break;
6826 }
6827
6828 else if (reg_set_p (op0, prev))
6829 /* If this sets OP0, but not directly, we have to give up. */
6830 break;
6831
6832 if (x)
6833 {
6834 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6835 code = GET_CODE (x);
6836 if (reverse_code)
6837 {
6838 code = reverse_condition (code);
6839 did_reverse_condition ^= 1;
6840 reverse_code = 0;
6841 }
6842
6843 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6844 if (earliest)
6845 *earliest = prev;
6846 }
6847 }
6848
6849 /* If constant is first, put it last. */
6850 if (CONSTANT_P (op0))
6851 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6852
6853 /* If OP0 is the result of a comparison, we weren't able to find what
6854 was really being compared, so fail. */
6855 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6856 return 0;
6857
6858 /* Canonicalize any ordered comparison with integers involving equality
6859 if we can do computations in the relevant mode and we do not
6860 overflow. */
6861
6862 if (GET_CODE (op1) == CONST_INT
6863 && GET_MODE (op0) != VOIDmode
6864 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6865 {
6866 HOST_WIDE_INT const_val = INTVAL (op1);
6867 unsigned HOST_WIDE_INT uconst_val = const_val;
6868 unsigned HOST_WIDE_INT max_val
6869 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6870
6871 switch (code)
6872 {
6873 case LE:
6874 if (const_val != max_val >> 1)
6875 code = LT, op1 = GEN_INT (const_val + 1);
6876 break;
6877
6878 case GE:
6879 if (const_val
6880 != (((HOST_WIDE_INT) 1
6881 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6882 code = GT, op1 = GEN_INT (const_val - 1);
6883 break;
6884
6885 case LEU:
6886 if (uconst_val != max_val)
6887 code = LTU, op1 = GEN_INT (uconst_val + 1);
6888 break;
6889
6890 case GEU:
6891 if (uconst_val != 0)
6892 code = GTU, op1 = GEN_INT (uconst_val - 1);
6893 break;
6894 }
6895 }
6896
6897 /* If this was floating-point and we reversed anything other than an
6898 EQ or NE, return zero. */
6899 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6900 && did_reverse_condition && code != NE && code != EQ
6901 && ! flag_fast_math
6902 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6903 return 0;
6904
6905 #ifdef HAVE_cc0
6906 /* Never return CC0; return zero instead. */
6907 if (op0 == cc0_rtx)
6908 return 0;
6909 #endif
6910
6911 return gen_rtx (code, VOIDmode, op0, op1);
6912 }
6913
6914 /* Similar to above routine, except that we also put an invariant last
6915 unless both operands are invariants. */
6916
6917 rtx
6918 get_condition_for_loop (x)
6919 rtx x;
6920 {
6921 rtx comparison = get_condition (x, NULL_PTR);
6922
6923 if (comparison == 0
6924 || ! invariant_p (XEXP (comparison, 0))
6925 || invariant_p (XEXP (comparison, 1)))
6926 return comparison;
6927
6928 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6929 XEXP (comparison, 1), XEXP (comparison, 0));
6930 }