regmove.c (optimize_reg_copy_1): Undo Aug 18 change.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51 #include "toplev.h"
52
53 /* Vector mapping INSN_UIDs to luids.
54 The luids are like uids but increase monotonically always.
55 We use them to see whether a jump comes from outside a given loop. */
56
57 int *uid_luid;
58
59 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
60 number the insn is contained in. */
61
62 int *uid_loop_num;
63
64 /* 1 + largest uid of any insn. */
65
66 int max_uid_for_loop;
67
68 /* 1 + luid of last insn. */
69
70 static int max_luid;
71
72 /* Number of loops detected in current function. Used as index to the
73 next few tables. */
74
75 static int max_loop_num;
76
77 /* Indexed by loop number, contains the first and last insn of each loop. */
78
79 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
80
81 /* For each loop, gives the containing loop number, -1 if none. */
82
83 int *loop_outer_loop;
84
85 #ifdef HAVE_decrement_and_branch_on_count
86 /* Records whether resource in use by inner loop. */
87
88 int *loop_used_count_register;
89 #endif /* HAVE_decrement_and_branch_on_count */
90
91 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
92 really a loop (an insn outside the loop branches into it). */
93
94 static char *loop_invalid;
95
96 /* Indexed by loop number, links together all LABEL_REFs which refer to
97 code labels outside the loop. Used by routines that need to know all
98 loop exits, such as final_biv_value and final_giv_value.
99
100 This does not include loop exits due to return instructions. This is
101 because all bivs and givs are pseudos, and hence must be dead after a
102 return, so the presense of a return does not affect any of the
103 optimizations that use this info. It is simpler to just not include return
104 instructions on this list. */
105
106 rtx *loop_number_exit_labels;
107
108 /* Indexed by loop number, counts the number of LABEL_REFs on
109 loop_number_exit_labels for this loop and all loops nested inside it. */
110
111 int *loop_number_exit_count;
112
113 /* Nonzero if there is a subroutine call in the current loop. */
114
115 static int loop_has_call;
116
117 /* Nonzero if there is a volatile memory reference in the current
118 loop. */
119
120 static int loop_has_volatile;
121
122 /* Nonzero if there is a tablejump in the current loop. */
123
124 static int loop_has_tablejump;
125
126 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
127 current loop. A continue statement will generate a branch to
128 NEXT_INSN (loop_continue). */
129
130 static rtx loop_continue;
131
132 /* Indexed by register number, contains the number of times the reg
133 is set during the loop being scanned.
134 During code motion, a negative value indicates a reg that has been
135 made a candidate; in particular -2 means that it is an candidate that
136 we know is equal to a constant and -1 means that it is an candidate
137 not known equal to a constant.
138 After code motion, regs moved have 0 (which is accurate now)
139 while the failed candidates have the original number of times set.
140
141 Therefore, at all times, == 0 indicates an invariant register;
142 < 0 a conditionally invariant one. */
143
144 static varray_type set_in_loop;
145
146 /* Original value of set_in_loop; same except that this value
147 is not set negative for a reg whose sets have been made candidates
148 and not set to 0 for a reg that is moved. */
149
150 static varray_type n_times_set;
151
152 /* Index by register number, 1 indicates that the register
153 cannot be moved or strength reduced. */
154
155 static varray_type may_not_optimize;
156
157 /* Nonzero means reg N has already been moved out of one loop.
158 This reduces the desire to move it out of another. */
159
160 static char *moved_once;
161
162 /* Array of MEMs that are stored in this loop. If there are too many to fit
163 here, we just turn on unknown_address_altered. */
164
165 #define NUM_STORES 30
166 static rtx loop_store_mems[NUM_STORES];
167
168 /* Index of first available slot in above array. */
169 static int loop_store_mems_idx;
170
171 typedef struct loop_mem_info {
172 rtx mem; /* The MEM itself. */
173 rtx reg; /* Corresponding pseudo, if any. */
174 int optimize; /* Nonzero if we can optimize access to this MEM. */
175 } loop_mem_info;
176
177 /* Array of MEMs that are used (read or written) in this loop, but
178 cannot be aliased by anything in this loop, except perhaps
179 themselves. In other words, if loop_mems[i] is altered during the
180 loop, it is altered by an expression that is rtx_equal_p to it. */
181
182 static loop_mem_info *loop_mems;
183
184 /* The index of the next available slot in LOOP_MEMS. */
185
186 static int loop_mems_idx;
187
188 /* The number of elements allocated in LOOP_MEMs. */
189
190 static int loop_mems_allocated;
191
192 /* Nonzero if we don't know what MEMs were changed in the current loop.
193 This happens if the loop contains a call (in which case `loop_has_call'
194 will also be set) or if we store into more than NUM_STORES MEMs. */
195
196 static int unknown_address_altered;
197
198 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
199 static int num_movables;
200
201 /* Count of memory write instructions discovered in the loop. */
202 static int num_mem_sets;
203
204 /* Number of loops contained within the current one, including itself. */
205 static int loops_enclosed;
206
207 /* Bound on pseudo register number before loop optimization.
208 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
209 int max_reg_before_loop;
210
211 /* This obstack is used in product_cheap_p to allocate its rtl. It
212 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
213 If we used the same obstack that it did, we would be deallocating
214 that array. */
215
216 static struct obstack temp_obstack;
217
218 /* This is where the pointer to the obstack being used for RTL is stored. */
219
220 extern struct obstack *rtl_obstack;
221
222 #define obstack_chunk_alloc xmalloc
223 #define obstack_chunk_free free
224 \f
225 /* During the analysis of a loop, a chain of `struct movable's
226 is made to record all the movable insns found.
227 Then the entire chain can be scanned to decide which to move. */
228
229 struct movable
230 {
231 rtx insn; /* A movable insn */
232 rtx set_src; /* The expression this reg is set from. */
233 rtx set_dest; /* The destination of this SET. */
234 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
235 of any registers used within the LIBCALL. */
236 int consec; /* Number of consecutive following insns
237 that must be moved with this one. */
238 int regno; /* The register it sets */
239 short lifetime; /* lifetime of that register;
240 may be adjusted when matching movables
241 that load the same value are found. */
242 short savings; /* Number of insns we can move for this reg,
243 including other movables that force this
244 or match this one. */
245 unsigned int cond : 1; /* 1 if only conditionally movable */
246 unsigned int force : 1; /* 1 means MUST move this insn */
247 unsigned int global : 1; /* 1 means reg is live outside this loop */
248 /* If PARTIAL is 1, GLOBAL means something different:
249 that the reg is live outside the range from where it is set
250 to the following label. */
251 unsigned int done : 1; /* 1 inhibits further processing of this */
252
253 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
254 In particular, moving it does not make it
255 invariant. */
256 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
257 load SRC, rather than copying INSN. */
258 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
259 first insn of a consecutive sets group. */
260 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
261 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
262 that we should avoid changing when clearing
263 the rest of the reg. */
264 struct movable *match; /* First entry for same value */
265 struct movable *forces; /* An insn that must be moved if this is */
266 struct movable *next;
267 };
268
269 static struct movable *the_movables;
270
271 FILE *loop_dump_stream;
272
273 /* Forward declarations. */
274
275 static void find_and_verify_loops PROTO((rtx));
276 static void mark_loop_jump PROTO((rtx, int));
277 static void prescan_loop PROTO((rtx, rtx));
278 static int reg_in_basic_block_p PROTO((rtx, rtx));
279 static int consec_sets_invariant_p PROTO((rtx, int, rtx));
280 static rtx libcall_other_reg PROTO((rtx, rtx));
281 static int labels_in_range_p PROTO((rtx, int));
282 static void count_one_set PROTO((rtx, rtx, varray_type, rtx *));
283
284 static void count_loop_regs_set PROTO((rtx, rtx, varray_type, varray_type,
285 int *, int));
286 static void note_addr_stored PROTO((rtx, rtx));
287 static int loop_reg_used_before_p PROTO((rtx, rtx, rtx, rtx, rtx));
288 static void scan_loop PROTO((rtx, rtx, int, int));
289 #if 0
290 static void replace_call_address PROTO((rtx, rtx, rtx));
291 #endif
292 static rtx skip_consec_insns PROTO((rtx, int));
293 static int libcall_benefit PROTO((rtx));
294 static void ignore_some_movables PROTO((struct movable *));
295 static void force_movables PROTO((struct movable *));
296 static void combine_movables PROTO((struct movable *, int));
297 static int regs_match_p PROTO((rtx, rtx, struct movable *));
298 static int rtx_equal_for_loop_p PROTO((rtx, rtx, struct movable *));
299 static void add_label_notes PROTO((rtx, rtx));
300 static void move_movables PROTO((struct movable *, int, int, rtx, rtx, int));
301 static int count_nonfixed_reads PROTO((rtx));
302 static void strength_reduce PROTO((rtx, rtx, rtx, int, rtx, rtx, int, int));
303 static void find_single_use_in_loop PROTO((rtx, rtx, varray_type));
304 static int valid_initial_value_p PROTO((rtx, rtx, int, rtx));
305 static void find_mem_givs PROTO((rtx, rtx, int, rtx, rtx));
306 static void record_biv PROTO((struct induction *, rtx, rtx, rtx, rtx, int, int));
307 static void check_final_value PROTO((struct induction *, rtx, rtx,
308 unsigned HOST_WIDE_INT));
309 static void record_giv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx, int, enum g_types, int, rtx *, rtx, rtx));
310 static void update_giv_derive PROTO((rtx));
311 static int basic_induction_var PROTO((rtx, enum machine_mode, rtx, rtx, rtx *, rtx *));
312 static rtx simplify_giv_expr PROTO((rtx, int *));
313 static int general_induction_var PROTO((rtx, rtx *, rtx *, rtx *, int, int *));
314 static int consec_sets_giv PROTO((int, rtx, rtx, rtx, rtx *, rtx *, rtx *));
315 static int check_dbra_loop PROTO((rtx, int, rtx, struct loop_info *));
316 static rtx express_from_1 PROTO((rtx, rtx, rtx));
317 static rtx express_from PROTO((struct induction *, struct induction *));
318 static rtx combine_givs_p PROTO((struct induction *, struct induction *));
319 static void combine_givs PROTO((struct iv_class *));
320 static int product_cheap_p PROTO((rtx, rtx));
321 static int maybe_eliminate_biv PROTO((struct iv_class *, rtx, rtx, int, int, int));
322 static int maybe_eliminate_biv_1 PROTO((rtx, rtx, struct iv_class *, int, rtx));
323 static int last_use_this_basic_block PROTO((rtx, rtx));
324 static void record_initial PROTO((rtx, rtx));
325 static void update_reg_last_use PROTO((rtx, rtx));
326 static rtx next_insn_in_loop PROTO((rtx, rtx, rtx, rtx));
327 static void load_mems_and_recount_loop_regs_set PROTO((rtx, rtx, rtx,
328 rtx, varray_type,
329 int *));
330 static void load_mems PROTO((rtx, rtx, rtx, rtx));
331 static int insert_loop_mem PROTO((rtx *, void *));
332 static int replace_loop_mem PROTO((rtx *, void *));
333 static int replace_label PROTO((rtx *, void *));
334
335 typedef struct rtx_and_int {
336 rtx r;
337 int i;
338 } rtx_and_int;
339
340 typedef struct rtx_pair {
341 rtx r1;
342 rtx r2;
343 } rtx_pair;
344
345 /* Nonzero iff INSN is between START and END, inclusive. */
346 #define INSN_IN_RANGE_P(INSN, START, END) \
347 (INSN_UID (INSN) < max_uid_for_loop \
348 && INSN_LUID (INSN) >= INSN_LUID (START) \
349 && INSN_LUID (INSN) <= INSN_LUID (END))
350
351 #ifdef HAVE_decrement_and_branch_on_count
352 /* Test whether BCT applicable and safe. */
353 static void insert_bct PROTO((rtx, rtx, struct loop_info *));
354
355 /* Auxiliary function that inserts the BCT pattern into the loop. */
356 static void instrument_loop_bct PROTO((rtx, rtx, rtx));
357 #endif /* HAVE_decrement_and_branch_on_count */
358
359 /* Indirect_jump_in_function is computed once per function. */
360 int indirect_jump_in_function = 0;
361 static int indirect_jump_in_function_p PROTO((rtx));
362
363 \f
364 /* Relative gain of eliminating various kinds of operations. */
365 static int add_cost;
366 #if 0
367 static int shift_cost;
368 static int mult_cost;
369 #endif
370
371 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
372 copy the value of the strength reduced giv to its original register. */
373 static int copy_cost;
374
375 /* Cost of using a register, to normalize the benefits of a giv. */
376 static int reg_address_cost;
377
378
379 void
380 init_loop ()
381 {
382 char *free_point = (char *) oballoc (1);
383 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
384
385 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
386
387 #ifdef ADDRESS_COST
388 reg_address_cost = ADDRESS_COST (reg);
389 #else
390 reg_address_cost = rtx_cost (reg, MEM);
391 #endif
392
393 /* We multiply by 2 to reconcile the difference in scale between
394 these two ways of computing costs. Otherwise the cost of a copy
395 will be far less than the cost of an add. */
396
397 copy_cost = 2 * 2;
398
399 /* Free the objects we just allocated. */
400 obfree (free_point);
401
402 /* Initialize the obstack used for rtl in product_cheap_p. */
403 gcc_obstack_init (&temp_obstack);
404 }
405 \f
406 /* Entry point of this file. Perform loop optimization
407 on the current function. F is the first insn of the function
408 and DUMPFILE is a stream for output of a trace of actions taken
409 (or 0 if none should be output). */
410
411 void
412 loop_optimize (f, dumpfile, unroll_p, bct_p)
413 /* f is the first instruction of a chain of insns for one function */
414 rtx f;
415 FILE *dumpfile;
416 int unroll_p, bct_p;
417 {
418 register rtx insn;
419 register int i;
420 rtx last_insn;
421
422 loop_dump_stream = dumpfile;
423
424 init_recog_no_volatile ();
425
426 max_reg_before_loop = max_reg_num ();
427
428 moved_once = (char *) alloca (max_reg_before_loop);
429 bzero (moved_once, max_reg_before_loop);
430
431 regs_may_share = 0;
432
433 /* Count the number of loops. */
434
435 max_loop_num = 0;
436 for (insn = f; insn; insn = NEXT_INSN (insn))
437 {
438 if (GET_CODE (insn) == NOTE
439 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
440 max_loop_num++;
441 }
442
443 /* Don't waste time if no loops. */
444 if (max_loop_num == 0)
445 return;
446
447 /* Get size to use for tables indexed by uids.
448 Leave some space for labels allocated by find_and_verify_loops. */
449 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
450
451 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
452 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
453
454 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
455 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
456
457 /* Allocate tables for recording each loop. We set each entry, so they need
458 not be zeroed. */
459 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
460 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
461 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
462 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
463 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
464 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
465
466 #ifdef HAVE_decrement_and_branch_on_count
467 /* Allocate for BCT optimization */
468 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
469 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
470 #endif /* HAVE_decrement_and_branch_on_count */
471
472 /* Find and process each loop.
473 First, find them, and record them in order of their beginnings. */
474 find_and_verify_loops (f);
475
476 /* Now find all register lifetimes. This must be done after
477 find_and_verify_loops, because it might reorder the insns in the
478 function. */
479 reg_scan (f, max_reg_num (), 1);
480
481 /* This must occur after reg_scan so that registers created by gcse
482 will have entries in the register tables.
483
484 We could have added a call to reg_scan after gcse_main in toplev.c,
485 but moving this call to init_alias_analysis is more efficient. */
486 init_alias_analysis ();
487
488 /* See if we went too far. */
489 if (get_max_uid () > max_uid_for_loop)
490 abort ();
491 /* Now reset it to the actual size we need. See above. */
492 max_uid_for_loop = get_max_uid () + 1;
493
494 /* Compute the mapping from uids to luids.
495 LUIDs are numbers assigned to insns, like uids,
496 except that luids increase monotonically through the code.
497 Don't assign luids to line-number NOTEs, so that the distance in luids
498 between two insns is not affected by -g. */
499
500 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
501 {
502 last_insn = insn;
503 if (GET_CODE (insn) != NOTE
504 || NOTE_LINE_NUMBER (insn) <= 0)
505 uid_luid[INSN_UID (insn)] = ++i;
506 else
507 /* Give a line number note the same luid as preceding insn. */
508 uid_luid[INSN_UID (insn)] = i;
509 }
510
511 max_luid = i + 1;
512
513 /* Don't leave gaps in uid_luid for insns that have been
514 deleted. It is possible that the first or last insn
515 using some register has been deleted by cross-jumping.
516 Make sure that uid_luid for that former insn's uid
517 points to the general area where that insn used to be. */
518 for (i = 0; i < max_uid_for_loop; i++)
519 {
520 uid_luid[0] = uid_luid[i];
521 if (uid_luid[0] != 0)
522 break;
523 }
524 for (i = 0; i < max_uid_for_loop; i++)
525 if (uid_luid[i] == 0)
526 uid_luid[i] = uid_luid[i - 1];
527
528 /* Create a mapping from loops to BLOCK tree nodes. */
529 if (unroll_p && write_symbols != NO_DEBUG)
530 find_loop_tree_blocks ();
531
532 /* Determine if the function has indirect jump. On some systems
533 this prevents low overhead loop instructions from being used. */
534 indirect_jump_in_function = indirect_jump_in_function_p (f);
535
536 /* Now scan the loops, last ones first, since this means inner ones are done
537 before outer ones. */
538 for (i = max_loop_num-1; i >= 0; i--)
539 if (! loop_invalid[i] && loop_number_loop_ends[i])
540 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
541 unroll_p, bct_p);
542
543 /* If debugging and unrolling loops, we must replicate the tree nodes
544 corresponding to the blocks inside the loop, so that the original one
545 to one mapping will remain. */
546 if (unroll_p && write_symbols != NO_DEBUG)
547 unroll_block_trees ();
548
549 end_alias_analysis ();
550 }
551 \f
552 /* Returns the next insn, in execution order, after INSN. START and
553 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
554 respectively. LOOP_TOP, if non-NULL, is the top of the loop in the
555 insn-stream; it is used with loops that are entered near the
556 bottom. */
557
558 static rtx
559 next_insn_in_loop (insn, start, end, loop_top)
560 rtx insn;
561 rtx start;
562 rtx end;
563 rtx loop_top;
564 {
565 insn = NEXT_INSN (insn);
566
567 if (insn == end)
568 {
569 if (loop_top)
570 /* Go to the top of the loop, and continue there. */
571 insn = loop_top;
572 else
573 /* We're done. */
574 insn = NULL_RTX;
575 }
576
577 if (insn == start)
578 /* We're done. */
579 insn = NULL_RTX;
580
581 return insn;
582 }
583
584 /* Optimize one loop whose start is LOOP_START and end is END.
585 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
586 NOTE_INSN_LOOP_END. */
587
588 /* ??? Could also move memory writes out of loops if the destination address
589 is invariant, the source is invariant, the memory write is not volatile,
590 and if we can prove that no read inside the loop can read this address
591 before the write occurs. If there is a read of this address after the
592 write, then we can also mark the memory read as invariant. */
593
594 static void
595 scan_loop (loop_start, end, unroll_p, bct_p)
596 rtx loop_start, end;
597 int unroll_p, bct_p;
598 {
599 register int i;
600 rtx p;
601 /* 1 if we are scanning insns that could be executed zero times. */
602 int maybe_never = 0;
603 /* 1 if we are scanning insns that might never be executed
604 due to a subroutine call which might exit before they are reached. */
605 int call_passed = 0;
606 /* For a rotated loop that is entered near the bottom,
607 this is the label at the top. Otherwise it is zero. */
608 rtx loop_top = 0;
609 /* Jump insn that enters the loop, or 0 if control drops in. */
610 rtx loop_entry_jump = 0;
611 /* Place in the loop where control enters. */
612 rtx scan_start;
613 /* Number of insns in the loop. */
614 int insn_count;
615 int in_libcall = 0;
616 int tem;
617 rtx temp;
618 /* The SET from an insn, if it is the only SET in the insn. */
619 rtx set, set1;
620 /* Chain describing insns movable in current loop. */
621 struct movable *movables = 0;
622 /* Last element in `movables' -- so we can add elements at the end. */
623 struct movable *last_movable = 0;
624 /* Ratio of extra register life span we can justify
625 for saving an instruction. More if loop doesn't call subroutines
626 since in that case saving an insn makes more difference
627 and more registers are available. */
628 int threshold;
629 /* If we have calls, contains the insn in which a register was used
630 if it was used exactly once; contains const0_rtx if it was used more
631 than once. */
632 varray_type reg_single_usage = 0;
633 /* Nonzero if we are scanning instructions in a sub-loop. */
634 int loop_depth = 0;
635 int nregs;
636
637 /* Determine whether this loop starts with a jump down to a test at
638 the end. This will occur for a small number of loops with a test
639 that is too complex to duplicate in front of the loop.
640
641 We search for the first insn or label in the loop, skipping NOTEs.
642 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
643 (because we might have a loop executed only once that contains a
644 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
645 (in case we have a degenerate loop).
646
647 Note that if we mistakenly think that a loop is entered at the top
648 when, in fact, it is entered at the exit test, the only effect will be
649 slightly poorer optimization. Making the opposite error can generate
650 incorrect code. Since very few loops now start with a jump to the
651 exit test, the code here to detect that case is very conservative. */
652
653 for (p = NEXT_INSN (loop_start);
654 p != end
655 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
656 && (GET_CODE (p) != NOTE
657 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
658 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
659 p = NEXT_INSN (p))
660 ;
661
662 scan_start = p;
663
664 /* Set up variables describing this loop. */
665 prescan_loop (loop_start, end);
666 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
667
668 /* If loop has a jump before the first label,
669 the true entry is the target of that jump.
670 Start scan from there.
671 But record in LOOP_TOP the place where the end-test jumps
672 back to so we can scan that after the end of the loop. */
673 if (GET_CODE (p) == JUMP_INSN)
674 {
675 loop_entry_jump = p;
676
677 /* Loop entry must be unconditional jump (and not a RETURN) */
678 if (simplejump_p (p)
679 && JUMP_LABEL (p) != 0
680 /* Check to see whether the jump actually
681 jumps out of the loop (meaning it's no loop).
682 This case can happen for things like
683 do {..} while (0). If this label was generated previously
684 by loop, we can't tell anything about it and have to reject
685 the loop. */
686 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, end))
687 {
688 loop_top = next_label (scan_start);
689 scan_start = JUMP_LABEL (p);
690 }
691 }
692
693 /* If SCAN_START was an insn created by loop, we don't know its luid
694 as required by loop_reg_used_before_p. So skip such loops. (This
695 test may never be true, but it's best to play it safe.)
696
697 Also, skip loops where we do not start scanning at a label. This
698 test also rejects loops starting with a JUMP_INSN that failed the
699 test above. */
700
701 if (INSN_UID (scan_start) >= max_uid_for_loop
702 || GET_CODE (scan_start) != CODE_LABEL)
703 {
704 if (loop_dump_stream)
705 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
706 INSN_UID (loop_start), INSN_UID (end));
707 return;
708 }
709
710 /* Count number of times each reg is set during this loop.
711 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
712 the setting of register I. If this loop has calls, set
713 VARRAY_RTX (reg_single_usage, I). */
714
715 /* Allocate extra space for REGS that might be created by
716 load_mems. We allocate a little extra slop as well, in the hopes
717 that even after the moving of movables creates some new registers
718 we won't have to reallocate these arrays. However, we do grow
719 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
720 nregs = max_reg_num () + loop_mems_idx + 16;
721 VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
722 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
723 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
724
725 if (loop_has_call)
726 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
727
728 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
729 may_not_optimize, reg_single_usage, &insn_count, nregs);
730
731 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
732 {
733 VARRAY_CHAR (may_not_optimize, i) = 1;
734 VARRAY_INT (set_in_loop, i) = 1;
735 }
736
737 #ifdef AVOID_CCMODE_COPIES
738 /* Don't try to move insns which set CC registers if we should not
739 create CCmode register copies. */
740 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
741 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
742 VARRAY_CHAR (may_not_optimize, i) = 1;
743 #endif
744
745 bcopy ((char *) &set_in_loop->data,
746 (char *) &n_times_set->data, nregs * sizeof (int));
747
748 if (loop_dump_stream)
749 {
750 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
751 INSN_UID (loop_start), INSN_UID (end), insn_count);
752 if (loop_continue)
753 fprintf (loop_dump_stream, "Continue at insn %d.\n",
754 INSN_UID (loop_continue));
755 }
756
757 /* Scan through the loop finding insns that are safe to move.
758 Set set_in_loop negative for the reg being set, so that
759 this reg will be considered invariant for subsequent insns.
760 We consider whether subsequent insns use the reg
761 in deciding whether it is worth actually moving.
762
763 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
764 and therefore it is possible that the insns we are scanning
765 would never be executed. At such times, we must make sure
766 that it is safe to execute the insn once instead of zero times.
767 When MAYBE_NEVER is 0, all insns will be executed at least once
768 so that is not a problem. */
769
770 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
771 p != NULL_RTX;
772 p = next_insn_in_loop (p, scan_start, end, loop_top))
773 {
774 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
775 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
776 in_libcall = 1;
777 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
778 && find_reg_note (p, REG_RETVAL, NULL_RTX))
779 in_libcall = 0;
780
781 if (GET_CODE (p) == INSN
782 && (set = single_set (p))
783 && GET_CODE (SET_DEST (set)) == REG
784 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
785 {
786 int tem1 = 0;
787 int tem2 = 0;
788 int move_insn = 0;
789 rtx src = SET_SRC (set);
790 rtx dependencies = 0;
791
792 /* Figure out what to use as a source of this insn. If a REG_EQUIV
793 note is given or if a REG_EQUAL note with a constant operand is
794 specified, use it as the source and mark that we should move
795 this insn by calling emit_move_insn rather that duplicating the
796 insn.
797
798 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
799 is present. */
800 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
801 if (temp)
802 src = XEXP (temp, 0), move_insn = 1;
803 else
804 {
805 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
806 if (temp && CONSTANT_P (XEXP (temp, 0)))
807 src = XEXP (temp, 0), move_insn = 1;
808 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
809 {
810 src = XEXP (temp, 0);
811 /* A libcall block can use regs that don't appear in
812 the equivalent expression. To move the libcall,
813 we must move those regs too. */
814 dependencies = libcall_other_reg (p, src);
815 }
816 }
817
818 /* Don't try to optimize a register that was made
819 by loop-optimization for an inner loop.
820 We don't know its life-span, so we can't compute the benefit. */
821 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
822 ;
823 else if (/* The set is not guaranteed to be executed one
824 the loop starts, or the value before the set is
825 needed before the set occurs... */
826 (maybe_never
827 || loop_reg_used_before_p (set, p, loop_start,
828 scan_start, end))
829 /* And the register is used in basic blocks other
830 than the one where it is set (meaning that
831 something after this point in the loop might
832 depend on its value before the set). */
833 && !reg_in_basic_block_p (p, SET_DEST (set)))
834 /* It is unsafe to move the set.
835
836 This code used to consider it OK to move a set of a variable
837 which was not created by the user and not used in an exit test.
838 That behavior is incorrect and was removed. */
839 ;
840 else if ((tem = invariant_p (src))
841 && (dependencies == 0
842 || (tem2 = invariant_p (dependencies)) != 0)
843 && (VARRAY_INT (set_in_loop,
844 REGNO (SET_DEST (set))) == 1
845 || (tem1
846 = consec_sets_invariant_p
847 (SET_DEST (set),
848 VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
849 p)))
850 /* If the insn can cause a trap (such as divide by zero),
851 can't move it unless it's guaranteed to be executed
852 once loop is entered. Even a function call might
853 prevent the trap insn from being reached
854 (since it might exit!) */
855 && ! ((maybe_never || call_passed)
856 && may_trap_p (src)))
857 {
858 register struct movable *m;
859 register int regno = REGNO (SET_DEST (set));
860
861 /* A potential lossage is where we have a case where two insns
862 can be combined as long as they are both in the loop, but
863 we move one of them outside the loop. For large loops,
864 this can lose. The most common case of this is the address
865 of a function being called.
866
867 Therefore, if this register is marked as being used exactly
868 once if we are in a loop with calls (a "large loop"), see if
869 we can replace the usage of this register with the source
870 of this SET. If we can, delete this insn.
871
872 Don't do this if P has a REG_RETVAL note or if we have
873 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
874
875 if (reg_single_usage && VARRAY_RTX (reg_single_usage, regno) != 0
876 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
877 && REGNO_FIRST_UID (regno) == INSN_UID (p)
878 && (REGNO_LAST_UID (regno)
879 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
880 && VARRAY_INT (set_in_loop, regno) == 1
881 && ! side_effects_p (SET_SRC (set))
882 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
883 && (! SMALL_REGISTER_CLASSES
884 || (! (GET_CODE (SET_SRC (set)) == REG
885 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
886 /* This test is not redundant; SET_SRC (set) might be
887 a call-clobbered register and the life of REGNO
888 might span a call. */
889 && ! modified_between_p (SET_SRC (set), p,
890 VARRAY_RTX
891 (reg_single_usage, regno))
892 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
893 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
894 VARRAY_RTX
895 (reg_single_usage, regno)))
896 {
897 /* Replace any usage in a REG_EQUAL note. Must copy the
898 new source, so that we don't get rtx sharing between the
899 SET_SOURCE and REG_NOTES of insn p. */
900 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
901 = replace_rtx (REG_NOTES (VARRAY_RTX
902 (reg_single_usage, regno)),
903 SET_DEST (set), copy_rtx (SET_SRC (set)));
904
905 PUT_CODE (p, NOTE);
906 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
907 NOTE_SOURCE_FILE (p) = 0;
908 VARRAY_INT (set_in_loop, regno) = 0;
909 continue;
910 }
911
912 m = (struct movable *) alloca (sizeof (struct movable));
913 m->next = 0;
914 m->insn = p;
915 m->set_src = src;
916 m->dependencies = dependencies;
917 m->set_dest = SET_DEST (set);
918 m->force = 0;
919 m->consec = VARRAY_INT (set_in_loop,
920 REGNO (SET_DEST (set))) - 1;
921 m->done = 0;
922 m->forces = 0;
923 m->partial = 0;
924 m->move_insn = move_insn;
925 m->move_insn_first = 0;
926 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
927 m->savemode = VOIDmode;
928 m->regno = regno;
929 /* Set M->cond if either invariant_p or consec_sets_invariant_p
930 returned 2 (only conditionally invariant). */
931 m->cond = ((tem | tem1 | tem2) > 1);
932 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
933 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
934 m->match = 0;
935 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
936 - uid_luid[REGNO_FIRST_UID (regno)]);
937 m->savings = VARRAY_INT (n_times_set, regno);
938 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
939 m->savings += libcall_benefit (p);
940 VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
941 /* Add M to the end of the chain MOVABLES. */
942 if (movables == 0)
943 movables = m;
944 else
945 last_movable->next = m;
946 last_movable = m;
947
948 if (m->consec > 0)
949 {
950 /* It is possible for the first instruction to have a
951 REG_EQUAL note but a non-invariant SET_SRC, so we must
952 remember the status of the first instruction in case
953 the last instruction doesn't have a REG_EQUAL note. */
954 m->move_insn_first = m->move_insn;
955
956 /* Skip this insn, not checking REG_LIBCALL notes. */
957 p = next_nonnote_insn (p);
958 /* Skip the consecutive insns, if there are any. */
959 p = skip_consec_insns (p, m->consec);
960 /* Back up to the last insn of the consecutive group. */
961 p = prev_nonnote_insn (p);
962
963 /* We must now reset m->move_insn, m->is_equiv, and possibly
964 m->set_src to correspond to the effects of all the
965 insns. */
966 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
967 if (temp)
968 m->set_src = XEXP (temp, 0), m->move_insn = 1;
969 else
970 {
971 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
972 if (temp && CONSTANT_P (XEXP (temp, 0)))
973 m->set_src = XEXP (temp, 0), m->move_insn = 1;
974 else
975 m->move_insn = 0;
976
977 }
978 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
979 }
980 }
981 /* If this register is always set within a STRICT_LOW_PART
982 or set to zero, then its high bytes are constant.
983 So clear them outside the loop and within the loop
984 just load the low bytes.
985 We must check that the machine has an instruction to do so.
986 Also, if the value loaded into the register
987 depends on the same register, this cannot be done. */
988 else if (SET_SRC (set) == const0_rtx
989 && GET_CODE (NEXT_INSN (p)) == INSN
990 && (set1 = single_set (NEXT_INSN (p)))
991 && GET_CODE (set1) == SET
992 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
993 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
994 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
995 == SET_DEST (set))
996 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
997 {
998 register int regno = REGNO (SET_DEST (set));
999 if (VARRAY_INT (set_in_loop, regno) == 2)
1000 {
1001 register struct movable *m;
1002 m = (struct movable *) alloca (sizeof (struct movable));
1003 m->next = 0;
1004 m->insn = p;
1005 m->set_dest = SET_DEST (set);
1006 m->dependencies = 0;
1007 m->force = 0;
1008 m->consec = 0;
1009 m->done = 0;
1010 m->forces = 0;
1011 m->move_insn = 0;
1012 m->move_insn_first = 0;
1013 m->partial = 1;
1014 /* If the insn may not be executed on some cycles,
1015 we can't clear the whole reg; clear just high part.
1016 Not even if the reg is used only within this loop.
1017 Consider this:
1018 while (1)
1019 while (s != t) {
1020 if (foo ()) x = *s;
1021 use (x);
1022 }
1023 Clearing x before the inner loop could clobber a value
1024 being saved from the last time around the outer loop.
1025 However, if the reg is not used outside this loop
1026 and all uses of the register are in the same
1027 basic block as the store, there is no problem.
1028
1029 If this insn was made by loop, we don't know its
1030 INSN_LUID and hence must make a conservative
1031 assumption. */
1032 m->global = (INSN_UID (p) >= max_uid_for_loop
1033 || (uid_luid[REGNO_LAST_UID (regno)]
1034 > INSN_LUID (end))
1035 || (uid_luid[REGNO_FIRST_UID (regno)]
1036 < INSN_LUID (p))
1037 || (labels_in_range_p
1038 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1039 if (maybe_never && m->global)
1040 m->savemode = GET_MODE (SET_SRC (set1));
1041 else
1042 m->savemode = VOIDmode;
1043 m->regno = regno;
1044 m->cond = 0;
1045 m->match = 0;
1046 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1047 - uid_luid[REGNO_FIRST_UID (regno)]);
1048 m->savings = 1;
1049 VARRAY_INT (set_in_loop, regno) = -1;
1050 /* Add M to the end of the chain MOVABLES. */
1051 if (movables == 0)
1052 movables = m;
1053 else
1054 last_movable->next = m;
1055 last_movable = m;
1056 }
1057 }
1058 }
1059 /* Past a call insn, we get to insns which might not be executed
1060 because the call might exit. This matters for insns that trap.
1061 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1062 so they don't count. */
1063 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1064 call_passed = 1;
1065 /* Past a label or a jump, we get to insns for which we
1066 can't count on whether or how many times they will be
1067 executed during each iteration. Therefore, we can
1068 only move out sets of trivial variables
1069 (those not used after the loop). */
1070 /* Similar code appears twice in strength_reduce. */
1071 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1072 /* If we enter the loop in the middle, and scan around to the
1073 beginning, don't set maybe_never for that. This must be an
1074 unconditional jump, otherwise the code at the top of the
1075 loop might never be executed. Unconditional jumps are
1076 followed a by barrier then loop end. */
1077 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1078 && NEXT_INSN (NEXT_INSN (p)) == end
1079 && simplejump_p (p)))
1080 maybe_never = 1;
1081 else if (GET_CODE (p) == NOTE)
1082 {
1083 /* At the virtual top of a converted loop, insns are again known to
1084 be executed: logically, the loop begins here even though the exit
1085 code has been duplicated. */
1086 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1087 maybe_never = call_passed = 0;
1088 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1089 loop_depth++;
1090 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1091 loop_depth--;
1092 }
1093 }
1094
1095 /* If one movable subsumes another, ignore that other. */
1096
1097 ignore_some_movables (movables);
1098
1099 /* For each movable insn, see if the reg that it loads
1100 leads when it dies right into another conditionally movable insn.
1101 If so, record that the second insn "forces" the first one,
1102 since the second can be moved only if the first is. */
1103
1104 force_movables (movables);
1105
1106 /* See if there are multiple movable insns that load the same value.
1107 If there are, make all but the first point at the first one
1108 through the `match' field, and add the priorities of them
1109 all together as the priority of the first. */
1110
1111 combine_movables (movables, nregs);
1112
1113 /* Now consider each movable insn to decide whether it is worth moving.
1114 Store 0 in set_in_loop for each reg that is moved.
1115
1116 Generally this increases code size, so do not move moveables when
1117 optimizing for code size. */
1118
1119 if (! optimize_size)
1120 move_movables (movables, threshold,
1121 insn_count, loop_start, end, nregs);
1122
1123 /* Now candidates that still are negative are those not moved.
1124 Change set_in_loop to indicate that those are not actually invariant. */
1125 for (i = 0; i < nregs; i++)
1126 if (VARRAY_INT (set_in_loop, i) < 0)
1127 VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
1128
1129 /* Now that we've moved some things out of the loop, we able to
1130 hoist even more memory references. There's no need to pass
1131 reg_single_usage this time, since we're done with it. */
1132 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top,
1133 loop_start, 0,
1134 &insn_count);
1135
1136 /* set_in_loop is still used by invariant_p, so we can't free it now. */
1137 VARRAY_FREE (reg_single_usage);
1138
1139 if (flag_strength_reduce)
1140 {
1141 the_movables = movables;
1142 strength_reduce (scan_start, end, loop_top,
1143 insn_count, loop_start, end, unroll_p, bct_p);
1144 }
1145
1146 VARRAY_FREE (set_in_loop);
1147 VARRAY_FREE (n_times_set);
1148 VARRAY_FREE (may_not_optimize);
1149 }
1150 \f
1151 /* Add elements to *OUTPUT to record all the pseudo-regs
1152 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1153
1154 void
1155 record_excess_regs (in_this, not_in_this, output)
1156 rtx in_this, not_in_this;
1157 rtx *output;
1158 {
1159 enum rtx_code code;
1160 char *fmt;
1161 int i;
1162
1163 code = GET_CODE (in_this);
1164
1165 switch (code)
1166 {
1167 case PC:
1168 case CC0:
1169 case CONST_INT:
1170 case CONST_DOUBLE:
1171 case CONST:
1172 case SYMBOL_REF:
1173 case LABEL_REF:
1174 return;
1175
1176 case REG:
1177 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1178 && ! reg_mentioned_p (in_this, not_in_this))
1179 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1180 return;
1181
1182 default:
1183 break;
1184 }
1185
1186 fmt = GET_RTX_FORMAT (code);
1187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1188 {
1189 int j;
1190
1191 switch (fmt[i])
1192 {
1193 case 'E':
1194 for (j = 0; j < XVECLEN (in_this, i); j++)
1195 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1196 break;
1197
1198 case 'e':
1199 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1200 break;
1201 }
1202 }
1203 }
1204 \f
1205 /* Check what regs are referred to in the libcall block ending with INSN,
1206 aside from those mentioned in the equivalent value.
1207 If there are none, return 0.
1208 If there are one or more, return an EXPR_LIST containing all of them. */
1209
1210 static rtx
1211 libcall_other_reg (insn, equiv)
1212 rtx insn, equiv;
1213 {
1214 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1215 rtx p = XEXP (note, 0);
1216 rtx output = 0;
1217
1218 /* First, find all the regs used in the libcall block
1219 that are not mentioned as inputs to the result. */
1220
1221 while (p != insn)
1222 {
1223 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1224 || GET_CODE (p) == CALL_INSN)
1225 record_excess_regs (PATTERN (p), equiv, &output);
1226 p = NEXT_INSN (p);
1227 }
1228
1229 return output;
1230 }
1231 \f
1232 /* Return 1 if all uses of REG
1233 are between INSN and the end of the basic block. */
1234
1235 static int
1236 reg_in_basic_block_p (insn, reg)
1237 rtx insn, reg;
1238 {
1239 int regno = REGNO (reg);
1240 rtx p;
1241
1242 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1243 return 0;
1244
1245 /* Search this basic block for the already recorded last use of the reg. */
1246 for (p = insn; p; p = NEXT_INSN (p))
1247 {
1248 switch (GET_CODE (p))
1249 {
1250 case NOTE:
1251 break;
1252
1253 case INSN:
1254 case CALL_INSN:
1255 /* Ordinary insn: if this is the last use, we win. */
1256 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1257 return 1;
1258 break;
1259
1260 case JUMP_INSN:
1261 /* Jump insn: if this is the last use, we win. */
1262 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1263 return 1;
1264 /* Otherwise, it's the end of the basic block, so we lose. */
1265 return 0;
1266
1267 case CODE_LABEL:
1268 case BARRIER:
1269 /* It's the end of the basic block, so we lose. */
1270 return 0;
1271
1272 default:
1273 break;
1274 }
1275 }
1276
1277 /* The "last use" doesn't follow the "first use"?? */
1278 abort ();
1279 }
1280 \f
1281 /* Compute the benefit of eliminating the insns in the block whose
1282 last insn is LAST. This may be a group of insns used to compute a
1283 value directly or can contain a library call. */
1284
1285 static int
1286 libcall_benefit (last)
1287 rtx last;
1288 {
1289 rtx insn;
1290 int benefit = 0;
1291
1292 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1293 insn != last; insn = NEXT_INSN (insn))
1294 {
1295 if (GET_CODE (insn) == CALL_INSN)
1296 benefit += 10; /* Assume at least this many insns in a library
1297 routine. */
1298 else if (GET_CODE (insn) == INSN
1299 && GET_CODE (PATTERN (insn)) != USE
1300 && GET_CODE (PATTERN (insn)) != CLOBBER)
1301 benefit++;
1302 }
1303
1304 return benefit;
1305 }
1306 \f
1307 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1308
1309 static rtx
1310 skip_consec_insns (insn, count)
1311 rtx insn;
1312 int count;
1313 {
1314 for (; count > 0; count--)
1315 {
1316 rtx temp;
1317
1318 /* If first insn of libcall sequence, skip to end. */
1319 /* Do this at start of loop, since INSN is guaranteed to
1320 be an insn here. */
1321 if (GET_CODE (insn) != NOTE
1322 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1323 insn = XEXP (temp, 0);
1324
1325 do insn = NEXT_INSN (insn);
1326 while (GET_CODE (insn) == NOTE);
1327 }
1328
1329 return insn;
1330 }
1331
1332 /* Ignore any movable whose insn falls within a libcall
1333 which is part of another movable.
1334 We make use of the fact that the movable for the libcall value
1335 was made later and so appears later on the chain. */
1336
1337 static void
1338 ignore_some_movables (movables)
1339 struct movable *movables;
1340 {
1341 register struct movable *m, *m1;
1342
1343 for (m = movables; m; m = m->next)
1344 {
1345 /* Is this a movable for the value of a libcall? */
1346 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1347 if (note)
1348 {
1349 rtx insn;
1350 /* Check for earlier movables inside that range,
1351 and mark them invalid. We cannot use LUIDs here because
1352 insns created by loop.c for prior loops don't have LUIDs.
1353 Rather than reject all such insns from movables, we just
1354 explicitly check each insn in the libcall (since invariant
1355 libcalls aren't that common). */
1356 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1357 for (m1 = movables; m1 != m; m1 = m1->next)
1358 if (m1->insn == insn)
1359 m1->done = 1;
1360 }
1361 }
1362 }
1363
1364 /* For each movable insn, see if the reg that it loads
1365 leads when it dies right into another conditionally movable insn.
1366 If so, record that the second insn "forces" the first one,
1367 since the second can be moved only if the first is. */
1368
1369 static void
1370 force_movables (movables)
1371 struct movable *movables;
1372 {
1373 register struct movable *m, *m1;
1374 for (m1 = movables; m1; m1 = m1->next)
1375 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1376 if (!m1->partial && !m1->done)
1377 {
1378 int regno = m1->regno;
1379 for (m = m1->next; m; m = m->next)
1380 /* ??? Could this be a bug? What if CSE caused the
1381 register of M1 to be used after this insn?
1382 Since CSE does not update regno_last_uid,
1383 this insn M->insn might not be where it dies.
1384 But very likely this doesn't matter; what matters is
1385 that M's reg is computed from M1's reg. */
1386 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1387 && !m->done)
1388 break;
1389 if (m != 0 && m->set_src == m1->set_dest
1390 /* If m->consec, m->set_src isn't valid. */
1391 && m->consec == 0)
1392 m = 0;
1393
1394 /* Increase the priority of the moving the first insn
1395 since it permits the second to be moved as well. */
1396 if (m != 0)
1397 {
1398 m->forces = m1;
1399 m1->lifetime += m->lifetime;
1400 m1->savings += m->savings;
1401 }
1402 }
1403 }
1404 \f
1405 /* Find invariant expressions that are equal and can be combined into
1406 one register. */
1407
1408 static void
1409 combine_movables (movables, nregs)
1410 struct movable *movables;
1411 int nregs;
1412 {
1413 register struct movable *m;
1414 char *matched_regs = (char *) alloca (nregs);
1415 enum machine_mode mode;
1416
1417 /* Regs that are set more than once are not allowed to match
1418 or be matched. I'm no longer sure why not. */
1419 /* Perhaps testing m->consec_sets would be more appropriate here? */
1420
1421 for (m = movables; m; m = m->next)
1422 if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
1423 {
1424 register struct movable *m1;
1425 int regno = m->regno;
1426
1427 bzero (matched_regs, nregs);
1428 matched_regs[regno] = 1;
1429
1430 /* We want later insns to match the first one. Don't make the first
1431 one match any later ones. So start this loop at m->next. */
1432 for (m1 = m->next; m1; m1 = m1->next)
1433 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
1434 /* A reg used outside the loop mustn't be eliminated. */
1435 && !m1->global
1436 /* A reg used for zero-extending mustn't be eliminated. */
1437 && !m1->partial
1438 && (matched_regs[m1->regno]
1439 ||
1440 (
1441 /* Can combine regs with different modes loaded from the
1442 same constant only if the modes are the same or
1443 if both are integer modes with M wider or the same
1444 width as M1. The check for integer is redundant, but
1445 safe, since the only case of differing destination
1446 modes with equal sources is when both sources are
1447 VOIDmode, i.e., CONST_INT. */
1448 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1449 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1450 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1451 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1452 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1453 /* See if the source of M1 says it matches M. */
1454 && ((GET_CODE (m1->set_src) == REG
1455 && matched_regs[REGNO (m1->set_src)])
1456 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1457 movables))))
1458 && ((m->dependencies == m1->dependencies)
1459 || rtx_equal_p (m->dependencies, m1->dependencies)))
1460 {
1461 m->lifetime += m1->lifetime;
1462 m->savings += m1->savings;
1463 m1->done = 1;
1464 m1->match = m;
1465 matched_regs[m1->regno] = 1;
1466 }
1467 }
1468
1469 /* Now combine the regs used for zero-extension.
1470 This can be done for those not marked `global'
1471 provided their lives don't overlap. */
1472
1473 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1474 mode = GET_MODE_WIDER_MODE (mode))
1475 {
1476 register struct movable *m0 = 0;
1477
1478 /* Combine all the registers for extension from mode MODE.
1479 Don't combine any that are used outside this loop. */
1480 for (m = movables; m; m = m->next)
1481 if (m->partial && ! m->global
1482 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1483 {
1484 register struct movable *m1;
1485 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1486 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1487
1488 if (m0 == 0)
1489 {
1490 /* First one: don't check for overlap, just record it. */
1491 m0 = m;
1492 continue;
1493 }
1494
1495 /* Make sure they extend to the same mode.
1496 (Almost always true.) */
1497 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1498 continue;
1499
1500 /* We already have one: check for overlap with those
1501 already combined together. */
1502 for (m1 = movables; m1 != m; m1 = m1->next)
1503 if (m1 == m0 || (m1->partial && m1->match == m0))
1504 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1505 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1506 goto overlap;
1507
1508 /* No overlap: we can combine this with the others. */
1509 m0->lifetime += m->lifetime;
1510 m0->savings += m->savings;
1511 m->done = 1;
1512 m->match = m0;
1513
1514 overlap: ;
1515 }
1516 }
1517 }
1518 \f
1519 /* Return 1 if regs X and Y will become the same if moved. */
1520
1521 static int
1522 regs_match_p (x, y, movables)
1523 rtx x, y;
1524 struct movable *movables;
1525 {
1526 int xn = REGNO (x);
1527 int yn = REGNO (y);
1528 struct movable *mx, *my;
1529
1530 for (mx = movables; mx; mx = mx->next)
1531 if (mx->regno == xn)
1532 break;
1533
1534 for (my = movables; my; my = my->next)
1535 if (my->regno == yn)
1536 break;
1537
1538 return (mx && my
1539 && ((mx->match == my->match && mx->match != 0)
1540 || mx->match == my
1541 || mx == my->match));
1542 }
1543
1544 /* Return 1 if X and Y are identical-looking rtx's.
1545 This is the Lisp function EQUAL for rtx arguments.
1546
1547 If two registers are matching movables or a movable register and an
1548 equivalent constant, consider them equal. */
1549
1550 static int
1551 rtx_equal_for_loop_p (x, y, movables)
1552 rtx x, y;
1553 struct movable *movables;
1554 {
1555 register int i;
1556 register int j;
1557 register struct movable *m;
1558 register enum rtx_code code;
1559 register char *fmt;
1560
1561 if (x == y)
1562 return 1;
1563 if (x == 0 || y == 0)
1564 return 0;
1565
1566 code = GET_CODE (x);
1567
1568 /* If we have a register and a constant, they may sometimes be
1569 equal. */
1570 if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
1571 && CONSTANT_P (y))
1572 {
1573 for (m = movables; m; m = m->next)
1574 if (m->move_insn && m->regno == REGNO (x)
1575 && rtx_equal_p (m->set_src, y))
1576 return 1;
1577 }
1578 else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
1579 && CONSTANT_P (x))
1580 {
1581 for (m = movables; m; m = m->next)
1582 if (m->move_insn && m->regno == REGNO (y)
1583 && rtx_equal_p (m->set_src, x))
1584 return 1;
1585 }
1586
1587 /* Otherwise, rtx's of different codes cannot be equal. */
1588 if (code != GET_CODE (y))
1589 return 0;
1590
1591 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1592 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1593
1594 if (GET_MODE (x) != GET_MODE (y))
1595 return 0;
1596
1597 /* These three types of rtx's can be compared nonrecursively. */
1598 if (code == REG)
1599 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1600
1601 if (code == LABEL_REF)
1602 return XEXP (x, 0) == XEXP (y, 0);
1603 if (code == SYMBOL_REF)
1604 return XSTR (x, 0) == XSTR (y, 0);
1605
1606 /* Compare the elements. If any pair of corresponding elements
1607 fail to match, return 0 for the whole things. */
1608
1609 fmt = GET_RTX_FORMAT (code);
1610 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1611 {
1612 switch (fmt[i])
1613 {
1614 case 'w':
1615 if (XWINT (x, i) != XWINT (y, i))
1616 return 0;
1617 break;
1618
1619 case 'i':
1620 if (XINT (x, i) != XINT (y, i))
1621 return 0;
1622 break;
1623
1624 case 'E':
1625 /* Two vectors must have the same length. */
1626 if (XVECLEN (x, i) != XVECLEN (y, i))
1627 return 0;
1628
1629 /* And the corresponding elements must match. */
1630 for (j = 0; j < XVECLEN (x, i); j++)
1631 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1632 return 0;
1633 break;
1634
1635 case 'e':
1636 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1637 return 0;
1638 break;
1639
1640 case 's':
1641 if (strcmp (XSTR (x, i), XSTR (y, i)))
1642 return 0;
1643 break;
1644
1645 case 'u':
1646 /* These are just backpointers, so they don't matter. */
1647 break;
1648
1649 case '0':
1650 break;
1651
1652 /* It is believed that rtx's at this level will never
1653 contain anything but integers and other rtx's,
1654 except for within LABEL_REFs and SYMBOL_REFs. */
1655 default:
1656 abort ();
1657 }
1658 }
1659 return 1;
1660 }
1661 \f
1662 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1663 insns in INSNS which use thet reference. */
1664
1665 static void
1666 add_label_notes (x, insns)
1667 rtx x;
1668 rtx insns;
1669 {
1670 enum rtx_code code = GET_CODE (x);
1671 int i, j;
1672 char *fmt;
1673 rtx insn;
1674
1675 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1676 {
1677 /* This code used to ignore labels that referred to dispatch tables to
1678 avoid flow generating (slighly) worse code.
1679
1680 We no longer ignore such label references (see LABEL_REF handling in
1681 mark_jump_label for additional information). */
1682 for (insn = insns; insn; insn = NEXT_INSN (insn))
1683 if (reg_mentioned_p (XEXP (x, 0), insn))
1684 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1685 REG_NOTES (insn));
1686 }
1687
1688 fmt = GET_RTX_FORMAT (code);
1689 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1690 {
1691 if (fmt[i] == 'e')
1692 add_label_notes (XEXP (x, i), insns);
1693 else if (fmt[i] == 'E')
1694 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1695 add_label_notes (XVECEXP (x, i, j), insns);
1696 }
1697 }
1698 \f
1699 /* Scan MOVABLES, and move the insns that deserve to be moved.
1700 If two matching movables are combined, replace one reg with the
1701 other throughout. */
1702
1703 static void
1704 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1705 struct movable *movables;
1706 int threshold;
1707 int insn_count;
1708 rtx loop_start;
1709 rtx end;
1710 int nregs;
1711 {
1712 rtx new_start = 0;
1713 register struct movable *m;
1714 register rtx p;
1715 /* Map of pseudo-register replacements to handle combining
1716 when we move several insns that load the same value
1717 into different pseudo-registers. */
1718 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1719 char *already_moved = (char *) alloca (nregs);
1720
1721 bzero (already_moved, nregs);
1722 bzero ((char *) reg_map, nregs * sizeof (rtx));
1723
1724 num_movables = 0;
1725
1726 for (m = movables; m; m = m->next)
1727 {
1728 /* Describe this movable insn. */
1729
1730 if (loop_dump_stream)
1731 {
1732 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1733 INSN_UID (m->insn), m->regno, m->lifetime);
1734 if (m->consec > 0)
1735 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1736 if (m->cond)
1737 fprintf (loop_dump_stream, "cond ");
1738 if (m->force)
1739 fprintf (loop_dump_stream, "force ");
1740 if (m->global)
1741 fprintf (loop_dump_stream, "global ");
1742 if (m->done)
1743 fprintf (loop_dump_stream, "done ");
1744 if (m->move_insn)
1745 fprintf (loop_dump_stream, "move-insn ");
1746 if (m->match)
1747 fprintf (loop_dump_stream, "matches %d ",
1748 INSN_UID (m->match->insn));
1749 if (m->forces)
1750 fprintf (loop_dump_stream, "forces %d ",
1751 INSN_UID (m->forces->insn));
1752 }
1753
1754 /* Count movables. Value used in heuristics in strength_reduce. */
1755 num_movables++;
1756
1757 /* Ignore the insn if it's already done (it matched something else).
1758 Otherwise, see if it is now safe to move. */
1759
1760 if (!m->done
1761 && (! m->cond
1762 || (1 == invariant_p (m->set_src)
1763 && (m->dependencies == 0
1764 || 1 == invariant_p (m->dependencies))
1765 && (m->consec == 0
1766 || 1 == consec_sets_invariant_p (m->set_dest,
1767 m->consec + 1,
1768 m->insn))))
1769 && (! m->forces || m->forces->done))
1770 {
1771 register int regno;
1772 register rtx p;
1773 int savings = m->savings;
1774
1775 /* We have an insn that is safe to move.
1776 Compute its desirability. */
1777
1778 p = m->insn;
1779 regno = m->regno;
1780
1781 if (loop_dump_stream)
1782 fprintf (loop_dump_stream, "savings %d ", savings);
1783
1784 if (moved_once[regno] && loop_dump_stream)
1785 fprintf (loop_dump_stream, "halved since already moved ");
1786
1787 /* An insn MUST be moved if we already moved something else
1788 which is safe only if this one is moved too: that is,
1789 if already_moved[REGNO] is nonzero. */
1790
1791 /* An insn is desirable to move if the new lifetime of the
1792 register is no more than THRESHOLD times the old lifetime.
1793 If it's not desirable, it means the loop is so big
1794 that moving won't speed things up much,
1795 and it is liable to make register usage worse. */
1796
1797 /* It is also desirable to move if it can be moved at no
1798 extra cost because something else was already moved. */
1799
1800 if (already_moved[regno]
1801 || flag_move_all_movables
1802 || (threshold * savings * m->lifetime) >=
1803 (moved_once[regno] ? insn_count * 2 : insn_count)
1804 || (m->forces && m->forces->done
1805 && VARRAY_INT (n_times_set, m->forces->regno) == 1))
1806 {
1807 int count;
1808 register struct movable *m1;
1809 rtx first;
1810
1811 /* Now move the insns that set the reg. */
1812
1813 if (m->partial && m->match)
1814 {
1815 rtx newpat, i1;
1816 rtx r1, r2;
1817 /* Find the end of this chain of matching regs.
1818 Thus, we load each reg in the chain from that one reg.
1819 And that reg is loaded with 0 directly,
1820 since it has ->match == 0. */
1821 for (m1 = m; m1->match; m1 = m1->match);
1822 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1823 SET_DEST (PATTERN (m1->insn)));
1824 i1 = emit_insn_before (newpat, loop_start);
1825
1826 /* Mark the moved, invariant reg as being allowed to
1827 share a hard reg with the other matching invariant. */
1828 REG_NOTES (i1) = REG_NOTES (m->insn);
1829 r1 = SET_DEST (PATTERN (m->insn));
1830 r2 = SET_DEST (PATTERN (m1->insn));
1831 regs_may_share
1832 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1833 gen_rtx_EXPR_LIST (VOIDmode, r2,
1834 regs_may_share));
1835 delete_insn (m->insn);
1836
1837 if (new_start == 0)
1838 new_start = i1;
1839
1840 if (loop_dump_stream)
1841 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1842 }
1843 /* If we are to re-generate the item being moved with a
1844 new move insn, first delete what we have and then emit
1845 the move insn before the loop. */
1846 else if (m->move_insn)
1847 {
1848 rtx i1, temp;
1849
1850 for (count = m->consec; count >= 0; count--)
1851 {
1852 /* If this is the first insn of a library call sequence,
1853 skip to the end. */
1854 if (GET_CODE (p) != NOTE
1855 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1856 p = XEXP (temp, 0);
1857
1858 /* If this is the last insn of a libcall sequence, then
1859 delete every insn in the sequence except the last.
1860 The last insn is handled in the normal manner. */
1861 if (GET_CODE (p) != NOTE
1862 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1863 {
1864 temp = XEXP (temp, 0);
1865 while (temp != p)
1866 temp = delete_insn (temp);
1867 }
1868
1869 temp = p;
1870 p = delete_insn (p);
1871
1872 /* simplify_giv_expr expects that it can walk the insns
1873 at m->insn forwards and see this old sequence we are
1874 tossing here. delete_insn does preserve the next
1875 pointers, but when we skip over a NOTE we must fix
1876 it up. Otherwise that code walks into the non-deleted
1877 insn stream. */
1878 while (p && GET_CODE (p) == NOTE)
1879 p = NEXT_INSN (temp) = NEXT_INSN (p);
1880 }
1881
1882 start_sequence ();
1883 emit_move_insn (m->set_dest, m->set_src);
1884 temp = get_insns ();
1885 end_sequence ();
1886
1887 add_label_notes (m->set_src, temp);
1888
1889 i1 = emit_insns_before (temp, loop_start);
1890 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1891 REG_NOTES (i1)
1892 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1893 m->set_src, REG_NOTES (i1));
1894
1895 if (loop_dump_stream)
1896 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1897
1898 /* The more regs we move, the less we like moving them. */
1899 threshold -= 3;
1900 }
1901 else
1902 {
1903 for (count = m->consec; count >= 0; count--)
1904 {
1905 rtx i1, temp;
1906
1907 /* If first insn of libcall sequence, skip to end. */
1908 /* Do this at start of loop, since p is guaranteed to
1909 be an insn here. */
1910 if (GET_CODE (p) != NOTE
1911 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1912 p = XEXP (temp, 0);
1913
1914 /* If last insn of libcall sequence, move all
1915 insns except the last before the loop. The last
1916 insn is handled in the normal manner. */
1917 if (GET_CODE (p) != NOTE
1918 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1919 {
1920 rtx fn_address = 0;
1921 rtx fn_reg = 0;
1922 rtx fn_address_insn = 0;
1923
1924 first = 0;
1925 for (temp = XEXP (temp, 0); temp != p;
1926 temp = NEXT_INSN (temp))
1927 {
1928 rtx body;
1929 rtx n;
1930 rtx next;
1931
1932 if (GET_CODE (temp) == NOTE)
1933 continue;
1934
1935 body = PATTERN (temp);
1936
1937 /* Find the next insn after TEMP,
1938 not counting USE or NOTE insns. */
1939 for (next = NEXT_INSN (temp); next != p;
1940 next = NEXT_INSN (next))
1941 if (! (GET_CODE (next) == INSN
1942 && GET_CODE (PATTERN (next)) == USE)
1943 && GET_CODE (next) != NOTE)
1944 break;
1945
1946 /* If that is the call, this may be the insn
1947 that loads the function address.
1948
1949 Extract the function address from the insn
1950 that loads it into a register.
1951 If this insn was cse'd, we get incorrect code.
1952
1953 So emit a new move insn that copies the
1954 function address into the register that the
1955 call insn will use. flow.c will delete any
1956 redundant stores that we have created. */
1957 if (GET_CODE (next) == CALL_INSN
1958 && GET_CODE (body) == SET
1959 && GET_CODE (SET_DEST (body)) == REG
1960 && (n = find_reg_note (temp, REG_EQUAL,
1961 NULL_RTX)))
1962 {
1963 fn_reg = SET_SRC (body);
1964 if (GET_CODE (fn_reg) != REG)
1965 fn_reg = SET_DEST (body);
1966 fn_address = XEXP (n, 0);
1967 fn_address_insn = temp;
1968 }
1969 /* We have the call insn.
1970 If it uses the register we suspect it might,
1971 load it with the correct address directly. */
1972 if (GET_CODE (temp) == CALL_INSN
1973 && fn_address != 0
1974 && reg_referenced_p (fn_reg, body))
1975 emit_insn_after (gen_move_insn (fn_reg,
1976 fn_address),
1977 fn_address_insn);
1978
1979 if (GET_CODE (temp) == CALL_INSN)
1980 {
1981 i1 = emit_call_insn_before (body, loop_start);
1982 /* Because the USAGE information potentially
1983 contains objects other than hard registers
1984 we need to copy it. */
1985 if (CALL_INSN_FUNCTION_USAGE (temp))
1986 CALL_INSN_FUNCTION_USAGE (i1)
1987 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1988 }
1989 else
1990 i1 = emit_insn_before (body, loop_start);
1991 if (first == 0)
1992 first = i1;
1993 if (temp == fn_address_insn)
1994 fn_address_insn = i1;
1995 REG_NOTES (i1) = REG_NOTES (temp);
1996 delete_insn (temp);
1997 }
1998 if (new_start == 0)
1999 new_start = first;
2000 }
2001 if (m->savemode != VOIDmode)
2002 {
2003 /* P sets REG to zero; but we should clear only
2004 the bits that are not covered by the mode
2005 m->savemode. */
2006 rtx reg = m->set_dest;
2007 rtx sequence;
2008 rtx tem;
2009
2010 start_sequence ();
2011 tem = expand_binop
2012 (GET_MODE (reg), and_optab, reg,
2013 GEN_INT ((((HOST_WIDE_INT) 1
2014 << GET_MODE_BITSIZE (m->savemode)))
2015 - 1),
2016 reg, 1, OPTAB_LIB_WIDEN);
2017 if (tem == 0)
2018 abort ();
2019 if (tem != reg)
2020 emit_move_insn (reg, tem);
2021 sequence = gen_sequence ();
2022 end_sequence ();
2023 i1 = emit_insn_before (sequence, loop_start);
2024 }
2025 else if (GET_CODE (p) == CALL_INSN)
2026 {
2027 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2028 /* Because the USAGE information potentially
2029 contains objects other than hard registers
2030 we need to copy it. */
2031 if (CALL_INSN_FUNCTION_USAGE (p))
2032 CALL_INSN_FUNCTION_USAGE (i1)
2033 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2034 }
2035 else if (count == m->consec && m->move_insn_first)
2036 {
2037 /* The SET_SRC might not be invariant, so we must
2038 use the REG_EQUAL note. */
2039 start_sequence ();
2040 emit_move_insn (m->set_dest, m->set_src);
2041 temp = get_insns ();
2042 end_sequence ();
2043
2044 add_label_notes (m->set_src, temp);
2045
2046 i1 = emit_insns_before (temp, loop_start);
2047 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2048 REG_NOTES (i1)
2049 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2050 : REG_EQUAL),
2051 m->set_src, REG_NOTES (i1));
2052 }
2053 else
2054 i1 = emit_insn_before (PATTERN (p), loop_start);
2055
2056 if (REG_NOTES (i1) == 0)
2057 {
2058 REG_NOTES (i1) = REG_NOTES (p);
2059
2060 /* If there is a REG_EQUAL note present whose value
2061 is not loop invariant, then delete it, since it
2062 may cause problems with later optimization passes.
2063 It is possible for cse to create such notes
2064 like this as a result of record_jump_cond. */
2065
2066 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2067 && ! invariant_p (XEXP (temp, 0)))
2068 remove_note (i1, temp);
2069 }
2070
2071 if (new_start == 0)
2072 new_start = i1;
2073
2074 if (loop_dump_stream)
2075 fprintf (loop_dump_stream, " moved to %d",
2076 INSN_UID (i1));
2077
2078 /* If library call, now fix the REG_NOTES that contain
2079 insn pointers, namely REG_LIBCALL on FIRST
2080 and REG_RETVAL on I1. */
2081 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2082 {
2083 XEXP (temp, 0) = first;
2084 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2085 XEXP (temp, 0) = i1;
2086 }
2087
2088 temp = p;
2089 delete_insn (p);
2090 p = NEXT_INSN (p);
2091
2092 /* simplify_giv_expr expects that it can walk the insns
2093 at m->insn forwards and see this old sequence we are
2094 tossing here. delete_insn does preserve the next
2095 pointers, but when we skip over a NOTE we must fix
2096 it up. Otherwise that code walks into the non-deleted
2097 insn stream. */
2098 while (p && GET_CODE (p) == NOTE)
2099 p = NEXT_INSN (temp) = NEXT_INSN (p);
2100 }
2101
2102 /* The more regs we move, the less we like moving them. */
2103 threshold -= 3;
2104 }
2105
2106 /* Any other movable that loads the same register
2107 MUST be moved. */
2108 already_moved[regno] = 1;
2109
2110 /* This reg has been moved out of one loop. */
2111 moved_once[regno] = 1;
2112
2113 /* The reg set here is now invariant. */
2114 if (! m->partial)
2115 VARRAY_INT (set_in_loop, regno) = 0;
2116
2117 m->done = 1;
2118
2119 /* Change the length-of-life info for the register
2120 to say it lives at least the full length of this loop.
2121 This will help guide optimizations in outer loops. */
2122
2123 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2124 /* This is the old insn before all the moved insns.
2125 We can't use the moved insn because it is out of range
2126 in uid_luid. Only the old insns have luids. */
2127 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2128 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2129 REGNO_LAST_UID (regno) = INSN_UID (end);
2130
2131 /* Combine with this moved insn any other matching movables. */
2132
2133 if (! m->partial)
2134 for (m1 = movables; m1; m1 = m1->next)
2135 if (m1->match == m)
2136 {
2137 rtx temp;
2138
2139 /* Schedule the reg loaded by M1
2140 for replacement so that shares the reg of M.
2141 If the modes differ (only possible in restricted
2142 circumstances, make a SUBREG. */
2143 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2144 reg_map[m1->regno] = m->set_dest;
2145 else
2146 reg_map[m1->regno]
2147 = gen_lowpart_common (GET_MODE (m1->set_dest),
2148 m->set_dest);
2149
2150 /* Get rid of the matching insn
2151 and prevent further processing of it. */
2152 m1->done = 1;
2153
2154 /* if library call, delete all insn except last, which
2155 is deleted below */
2156 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2157 NULL_RTX)))
2158 {
2159 for (temp = XEXP (temp, 0); temp != m1->insn;
2160 temp = NEXT_INSN (temp))
2161 delete_insn (temp);
2162 }
2163 delete_insn (m1->insn);
2164
2165 /* Any other movable that loads the same register
2166 MUST be moved. */
2167 already_moved[m1->regno] = 1;
2168
2169 /* The reg merged here is now invariant,
2170 if the reg it matches is invariant. */
2171 if (! m->partial)
2172 VARRAY_INT (set_in_loop, m1->regno) = 0;
2173 }
2174 }
2175 else if (loop_dump_stream)
2176 fprintf (loop_dump_stream, "not desirable");
2177 }
2178 else if (loop_dump_stream && !m->match)
2179 fprintf (loop_dump_stream, "not safe");
2180
2181 if (loop_dump_stream)
2182 fprintf (loop_dump_stream, "\n");
2183 }
2184
2185 if (new_start == 0)
2186 new_start = loop_start;
2187
2188 /* Go through all the instructions in the loop, making
2189 all the register substitutions scheduled in REG_MAP. */
2190 for (p = new_start; p != end; p = NEXT_INSN (p))
2191 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2192 || GET_CODE (p) == CALL_INSN)
2193 {
2194 replace_regs (PATTERN (p), reg_map, nregs, 0);
2195 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2196 INSN_CODE (p) = -1;
2197 }
2198 }
2199 \f
2200 #if 0
2201 /* Scan X and replace the address of any MEM in it with ADDR.
2202 REG is the address that MEM should have before the replacement. */
2203
2204 static void
2205 replace_call_address (x, reg, addr)
2206 rtx x, reg, addr;
2207 {
2208 register enum rtx_code code;
2209 register int i;
2210 register char *fmt;
2211
2212 if (x == 0)
2213 return;
2214 code = GET_CODE (x);
2215 switch (code)
2216 {
2217 case PC:
2218 case CC0:
2219 case CONST_INT:
2220 case CONST_DOUBLE:
2221 case CONST:
2222 case SYMBOL_REF:
2223 case LABEL_REF:
2224 case REG:
2225 return;
2226
2227 case SET:
2228 /* Short cut for very common case. */
2229 replace_call_address (XEXP (x, 1), reg, addr);
2230 return;
2231
2232 case CALL:
2233 /* Short cut for very common case. */
2234 replace_call_address (XEXP (x, 0), reg, addr);
2235 return;
2236
2237 case MEM:
2238 /* If this MEM uses a reg other than the one we expected,
2239 something is wrong. */
2240 if (XEXP (x, 0) != reg)
2241 abort ();
2242 XEXP (x, 0) = addr;
2243 return;
2244
2245 default:
2246 break;
2247 }
2248
2249 fmt = GET_RTX_FORMAT (code);
2250 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2251 {
2252 if (fmt[i] == 'e')
2253 replace_call_address (XEXP (x, i), reg, addr);
2254 if (fmt[i] == 'E')
2255 {
2256 register int j;
2257 for (j = 0; j < XVECLEN (x, i); j++)
2258 replace_call_address (XVECEXP (x, i, j), reg, addr);
2259 }
2260 }
2261 }
2262 #endif
2263 \f
2264 /* Return the number of memory refs to addresses that vary
2265 in the rtx X. */
2266
2267 static int
2268 count_nonfixed_reads (x)
2269 rtx x;
2270 {
2271 register enum rtx_code code;
2272 register int i;
2273 register char *fmt;
2274 int value;
2275
2276 if (x == 0)
2277 return 0;
2278
2279 code = GET_CODE (x);
2280 switch (code)
2281 {
2282 case PC:
2283 case CC0:
2284 case CONST_INT:
2285 case CONST_DOUBLE:
2286 case CONST:
2287 case SYMBOL_REF:
2288 case LABEL_REF:
2289 case REG:
2290 return 0;
2291
2292 case MEM:
2293 return ((invariant_p (XEXP (x, 0)) != 1)
2294 + count_nonfixed_reads (XEXP (x, 0)));
2295
2296 default:
2297 break;
2298 }
2299
2300 value = 0;
2301 fmt = GET_RTX_FORMAT (code);
2302 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2303 {
2304 if (fmt[i] == 'e')
2305 value += count_nonfixed_reads (XEXP (x, i));
2306 if (fmt[i] == 'E')
2307 {
2308 register int j;
2309 for (j = 0; j < XVECLEN (x, i); j++)
2310 value += count_nonfixed_reads (XVECEXP (x, i, j));
2311 }
2312 }
2313 return value;
2314 }
2315
2316 \f
2317 #if 0
2318 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2319 Replace it with an instruction to load just the low bytes
2320 if the machine supports such an instruction,
2321 and insert above LOOP_START an instruction to clear the register. */
2322
2323 static void
2324 constant_high_bytes (p, loop_start)
2325 rtx p, loop_start;
2326 {
2327 register rtx new;
2328 register int insn_code_number;
2329
2330 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2331 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2332
2333 new = gen_rtx_SET (VOIDmode,
2334 gen_rtx_STRICT_LOW_PART (VOIDmode,
2335 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2336 SET_DEST (PATTERN (p)),
2337 0)),
2338 XEXP (SET_SRC (PATTERN (p)), 0));
2339 insn_code_number = recog (new, p);
2340
2341 if (insn_code_number)
2342 {
2343 register int i;
2344
2345 /* Clear destination register before the loop. */
2346 emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
2347 const0_rtx),
2348 loop_start);
2349
2350 /* Inside the loop, just load the low part. */
2351 PATTERN (p) = new;
2352 }
2353 }
2354 #endif
2355 \f
2356 /* Scan a loop setting the variables `unknown_address_altered',
2357 `num_mem_sets', `loop_continue', `loops_enclosed', `loop_has_call',
2358 `loop_has_volatile', and `loop_has_tablejump'.
2359 Also, fill in the arrays `loop_mems' and `loop_store_mems'. */
2360
2361 static void
2362 prescan_loop (start, end)
2363 rtx start, end;
2364 {
2365 register int level = 1;
2366 rtx insn;
2367 int loop_has_multiple_exit_targets = 0;
2368 /* The label after END. Jumping here is just like falling off the
2369 end of the loop. We use next_nonnote_insn instead of next_label
2370 as a hedge against the (pathological) case where some actual insn
2371 might end up between the two. */
2372 rtx exit_target = next_nonnote_insn (end);
2373 if (exit_target == NULL_RTX || GET_CODE (exit_target) != CODE_LABEL)
2374 loop_has_multiple_exit_targets = 1;
2375
2376 unknown_address_altered = 0;
2377 loop_has_call = 0;
2378 loop_has_volatile = 0;
2379 loop_has_tablejump = 0;
2380 loop_store_mems_idx = 0;
2381 loop_mems_idx = 0;
2382
2383 num_mem_sets = 0;
2384 loops_enclosed = 1;
2385 loop_continue = 0;
2386
2387 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2388 insn = NEXT_INSN (insn))
2389 {
2390 if (GET_CODE (insn) == NOTE)
2391 {
2392 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2393 {
2394 ++level;
2395 /* Count number of loops contained in this one. */
2396 loops_enclosed++;
2397 }
2398 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2399 {
2400 --level;
2401 if (level == 0)
2402 {
2403 end = insn;
2404 break;
2405 }
2406 }
2407 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2408 {
2409 if (level == 1)
2410 loop_continue = insn;
2411 }
2412 }
2413 else if (GET_CODE (insn) == CALL_INSN)
2414 {
2415 if (! CONST_CALL_P (insn))
2416 unknown_address_altered = 1;
2417 loop_has_call = 1;
2418 }
2419 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2420 {
2421 rtx label1 = NULL_RTX;
2422 rtx label2 = NULL_RTX;
2423
2424 if (volatile_refs_p (PATTERN (insn)))
2425 loop_has_volatile = 1;
2426
2427 if (GET_CODE (insn) == JUMP_INSN
2428 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2429 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2430 loop_has_tablejump = 1;
2431
2432 note_stores (PATTERN (insn), note_addr_stored);
2433
2434 if (! loop_has_multiple_exit_targets
2435 && GET_CODE (insn) == JUMP_INSN
2436 && GET_CODE (PATTERN (insn)) == SET
2437 && SET_DEST (PATTERN (insn)) == pc_rtx)
2438 {
2439 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2440 {
2441 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2442 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2443 }
2444 else
2445 {
2446 label1 = SET_SRC (PATTERN (insn));
2447 }
2448
2449 do {
2450 if (label1 && label1 != pc_rtx)
2451 {
2452 if (GET_CODE (label1) != LABEL_REF)
2453 {
2454 /* Something tricky. */
2455 loop_has_multiple_exit_targets = 1;
2456 break;
2457 }
2458 else if (XEXP (label1, 0) != exit_target
2459 && LABEL_OUTSIDE_LOOP_P (label1))
2460 {
2461 /* A jump outside the current loop. */
2462 loop_has_multiple_exit_targets = 1;
2463 break;
2464 }
2465 }
2466
2467 label1 = label2;
2468 label2 = NULL_RTX;
2469 } while (label1);
2470 }
2471 }
2472 else if (GET_CODE (insn) == RETURN)
2473 loop_has_multiple_exit_targets = 1;
2474 }
2475
2476 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2477 if (/* We can't tell what MEMs are aliased by what. */
2478 !unknown_address_altered
2479 /* An exception thrown by a called function might land us
2480 anywhere. */
2481 && !loop_has_call
2482 /* We don't want loads for MEMs moved to a location before the
2483 one at which their stack memory becomes allocated. (Note
2484 that this is not a problem for malloc, etc., since those
2485 require actual function calls. */
2486 && !current_function_calls_alloca
2487 /* There are ways to leave the loop other than falling off the
2488 end. */
2489 && !loop_has_multiple_exit_targets)
2490 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2491 insn = NEXT_INSN (insn))
2492 for_each_rtx (&insn, insert_loop_mem, 0);
2493 }
2494 \f
2495 /* Scan the function looking for loops. Record the start and end of each loop.
2496 Also mark as invalid loops any loops that contain a setjmp or are branched
2497 to from outside the loop. */
2498
2499 static void
2500 find_and_verify_loops (f)
2501 rtx f;
2502 {
2503 rtx insn, label;
2504 int current_loop = -1;
2505 int next_loop = -1;
2506 int loop;
2507
2508 /* If there are jumps to undefined labels,
2509 treat them as jumps out of any/all loops.
2510 This also avoids writing past end of tables when there are no loops. */
2511 uid_loop_num[0] = -1;
2512
2513 /* Find boundaries of loops, mark which loops are contained within
2514 loops, and invalidate loops that have setjmp. */
2515
2516 for (insn = f; insn; insn = NEXT_INSN (insn))
2517 {
2518 if (GET_CODE (insn) == NOTE)
2519 switch (NOTE_LINE_NUMBER (insn))
2520 {
2521 case NOTE_INSN_LOOP_BEG:
2522 loop_number_loop_starts[++next_loop] = insn;
2523 loop_number_loop_ends[next_loop] = 0;
2524 loop_outer_loop[next_loop] = current_loop;
2525 loop_invalid[next_loop] = 0;
2526 loop_number_exit_labels[next_loop] = 0;
2527 loop_number_exit_count[next_loop] = 0;
2528 current_loop = next_loop;
2529 break;
2530
2531 case NOTE_INSN_SETJMP:
2532 /* In this case, we must invalidate our current loop and any
2533 enclosing loop. */
2534 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2535 {
2536 loop_invalid[loop] = 1;
2537 if (loop_dump_stream)
2538 fprintf (loop_dump_stream,
2539 "\nLoop at %d ignored due to setjmp.\n",
2540 INSN_UID (loop_number_loop_starts[loop]));
2541 }
2542 break;
2543
2544 case NOTE_INSN_LOOP_END:
2545 if (current_loop == -1)
2546 abort ();
2547
2548 loop_number_loop_ends[current_loop] = insn;
2549 current_loop = loop_outer_loop[current_loop];
2550 break;
2551
2552 default:
2553 break;
2554 }
2555
2556 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2557 enclosing loop, but this doesn't matter. */
2558 uid_loop_num[INSN_UID (insn)] = current_loop;
2559 }
2560
2561 /* Any loop containing a label used in an initializer must be invalidated,
2562 because it can be jumped into from anywhere. */
2563
2564 for (label = forced_labels; label; label = XEXP (label, 1))
2565 {
2566 int loop_num;
2567
2568 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2569 loop_num != -1;
2570 loop_num = loop_outer_loop[loop_num])
2571 loop_invalid[loop_num] = 1;
2572 }
2573
2574 /* Any loop containing a label used for an exception handler must be
2575 invalidated, because it can be jumped into from anywhere. */
2576
2577 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2578 {
2579 int loop_num;
2580
2581 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2582 loop_num != -1;
2583 loop_num = loop_outer_loop[loop_num])
2584 loop_invalid[loop_num] = 1;
2585 }
2586
2587 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2588 loop that it is not contained within, that loop is marked invalid.
2589 If any INSN or CALL_INSN uses a label's address, then the loop containing
2590 that label is marked invalid, because it could be jumped into from
2591 anywhere.
2592
2593 Also look for blocks of code ending in an unconditional branch that
2594 exits the loop. If such a block is surrounded by a conditional
2595 branch around the block, move the block elsewhere (see below) and
2596 invert the jump to point to the code block. This may eliminate a
2597 label in our loop and will simplify processing by both us and a
2598 possible second cse pass. */
2599
2600 for (insn = f; insn; insn = NEXT_INSN (insn))
2601 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2602 {
2603 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2604
2605 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2606 {
2607 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2608 if (note)
2609 {
2610 int loop_num;
2611
2612 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2613 loop_num != -1;
2614 loop_num = loop_outer_loop[loop_num])
2615 loop_invalid[loop_num] = 1;
2616 }
2617 }
2618
2619 if (GET_CODE (insn) != JUMP_INSN)
2620 continue;
2621
2622 mark_loop_jump (PATTERN (insn), this_loop_num);
2623
2624 /* See if this is an unconditional branch outside the loop. */
2625 if (this_loop_num != -1
2626 && (GET_CODE (PATTERN (insn)) == RETURN
2627 || (simplejump_p (insn)
2628 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2629 != this_loop_num)))
2630 && get_max_uid () < max_uid_for_loop)
2631 {
2632 rtx p;
2633 rtx our_next = next_real_insn (insn);
2634 int dest_loop;
2635 int outer_loop = -1;
2636
2637 /* Go backwards until we reach the start of the loop, a label,
2638 or a JUMP_INSN. */
2639 for (p = PREV_INSN (insn);
2640 GET_CODE (p) != CODE_LABEL
2641 && ! (GET_CODE (p) == NOTE
2642 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2643 && GET_CODE (p) != JUMP_INSN;
2644 p = PREV_INSN (p))
2645 ;
2646
2647 /* Check for the case where we have a jump to an inner nested
2648 loop, and do not perform the optimization in that case. */
2649
2650 if (JUMP_LABEL (insn))
2651 {
2652 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2653 if (dest_loop != -1)
2654 {
2655 for (outer_loop = dest_loop; outer_loop != -1;
2656 outer_loop = loop_outer_loop[outer_loop])
2657 if (outer_loop == this_loop_num)
2658 break;
2659 }
2660 }
2661
2662 /* Make sure that the target of P is within the current loop. */
2663
2664 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2665 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2666 outer_loop = this_loop_num;
2667
2668 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2669 we have a block of code to try to move.
2670
2671 We look backward and then forward from the target of INSN
2672 to find a BARRIER at the same loop depth as the target.
2673 If we find such a BARRIER, we make a new label for the start
2674 of the block, invert the jump in P and point it to that label,
2675 and move the block of code to the spot we found. */
2676
2677 if (outer_loop == -1
2678 && GET_CODE (p) == JUMP_INSN
2679 && JUMP_LABEL (p) != 0
2680 /* Just ignore jumps to labels that were never emitted.
2681 These always indicate compilation errors. */
2682 && INSN_UID (JUMP_LABEL (p)) != 0
2683 && condjump_p (p)
2684 && ! simplejump_p (p)
2685 && next_real_insn (JUMP_LABEL (p)) == our_next)
2686 {
2687 rtx target
2688 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2689 int target_loop_num = uid_loop_num[INSN_UID (target)];
2690 rtx loc;
2691
2692 for (loc = target; loc; loc = PREV_INSN (loc))
2693 if (GET_CODE (loc) == BARRIER
2694 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2695 break;
2696
2697 if (loc == 0)
2698 for (loc = target; loc; loc = NEXT_INSN (loc))
2699 if (GET_CODE (loc) == BARRIER
2700 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2701 break;
2702
2703 if (loc)
2704 {
2705 rtx cond_label = JUMP_LABEL (p);
2706 rtx new_label = get_label_after (p);
2707
2708 /* Ensure our label doesn't go away. */
2709 LABEL_NUSES (cond_label)++;
2710
2711 /* Verify that uid_loop_num is large enough and that
2712 we can invert P. */
2713 if (invert_jump (p, new_label))
2714 {
2715 rtx q, r;
2716
2717 /* If no suitable BARRIER was found, create a suitable
2718 one before TARGET. Since TARGET is a fall through
2719 path, we'll need to insert an jump around our block
2720 and a add a BARRIER before TARGET.
2721
2722 This creates an extra unconditional jump outside
2723 the loop. However, the benefits of removing rarely
2724 executed instructions from inside the loop usually
2725 outweighs the cost of the extra unconditional jump
2726 outside the loop. */
2727 if (loc == 0)
2728 {
2729 rtx temp;
2730
2731 temp = gen_jump (JUMP_LABEL (insn));
2732 temp = emit_jump_insn_before (temp, target);
2733 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2734 LABEL_NUSES (JUMP_LABEL (insn))++;
2735 loc = emit_barrier_before (target);
2736 }
2737
2738 /* Include the BARRIER after INSN and copy the
2739 block after LOC. */
2740 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2741 reorder_insns (new_label, NEXT_INSN (insn), loc);
2742
2743 /* All those insns are now in TARGET_LOOP_NUM. */
2744 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2745 q = NEXT_INSN (q))
2746 uid_loop_num[INSN_UID (q)] = target_loop_num;
2747
2748 /* The label jumped to by INSN is no longer a loop exit.
2749 Unless INSN does not have a label (e.g., it is a
2750 RETURN insn), search loop_number_exit_labels to find
2751 its label_ref, and remove it. Also turn off
2752 LABEL_OUTSIDE_LOOP_P bit. */
2753 if (JUMP_LABEL (insn))
2754 {
2755 int loop_num;
2756
2757 for (q = 0,
2758 r = loop_number_exit_labels[this_loop_num];
2759 r; q = r, r = LABEL_NEXTREF (r))
2760 if (XEXP (r, 0) == JUMP_LABEL (insn))
2761 {
2762 LABEL_OUTSIDE_LOOP_P (r) = 0;
2763 if (q)
2764 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2765 else
2766 loop_number_exit_labels[this_loop_num]
2767 = LABEL_NEXTREF (r);
2768 break;
2769 }
2770
2771 for (loop_num = this_loop_num;
2772 loop_num != -1 && loop_num != target_loop_num;
2773 loop_num = loop_outer_loop[loop_num])
2774 loop_number_exit_count[loop_num]--;
2775
2776 /* If we didn't find it, then something is wrong. */
2777 if (! r)
2778 abort ();
2779 }
2780
2781 /* P is now a jump outside the loop, so it must be put
2782 in loop_number_exit_labels, and marked as such.
2783 The easiest way to do this is to just call
2784 mark_loop_jump again for P. */
2785 mark_loop_jump (PATTERN (p), this_loop_num);
2786
2787 /* If INSN now jumps to the insn after it,
2788 delete INSN. */
2789 if (JUMP_LABEL (insn) != 0
2790 && (next_real_insn (JUMP_LABEL (insn))
2791 == next_real_insn (insn)))
2792 delete_insn (insn);
2793 }
2794
2795 /* Continue the loop after where the conditional
2796 branch used to jump, since the only branch insn
2797 in the block (if it still remains) is an inter-loop
2798 branch and hence needs no processing. */
2799 insn = NEXT_INSN (cond_label);
2800
2801 if (--LABEL_NUSES (cond_label) == 0)
2802 delete_insn (cond_label);
2803
2804 /* This loop will be continued with NEXT_INSN (insn). */
2805 insn = PREV_INSN (insn);
2806 }
2807 }
2808 }
2809 }
2810 }
2811
2812 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2813 loops it is contained in, mark the target loop invalid.
2814
2815 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2816
2817 static void
2818 mark_loop_jump (x, loop_num)
2819 rtx x;
2820 int loop_num;
2821 {
2822 int dest_loop;
2823 int outer_loop;
2824 int i;
2825
2826 switch (GET_CODE (x))
2827 {
2828 case PC:
2829 case USE:
2830 case CLOBBER:
2831 case REG:
2832 case MEM:
2833 case CONST_INT:
2834 case CONST_DOUBLE:
2835 case RETURN:
2836 return;
2837
2838 case CONST:
2839 /* There could be a label reference in here. */
2840 mark_loop_jump (XEXP (x, 0), loop_num);
2841 return;
2842
2843 case PLUS:
2844 case MINUS:
2845 case MULT:
2846 mark_loop_jump (XEXP (x, 0), loop_num);
2847 mark_loop_jump (XEXP (x, 1), loop_num);
2848 return;
2849
2850 case SIGN_EXTEND:
2851 case ZERO_EXTEND:
2852 mark_loop_jump (XEXP (x, 0), loop_num);
2853 return;
2854
2855 case LABEL_REF:
2856 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2857
2858 /* Link together all labels that branch outside the loop. This
2859 is used by final_[bg]iv_value and the loop unrolling code. Also
2860 mark this LABEL_REF so we know that this branch should predict
2861 false. */
2862
2863 /* A check to make sure the label is not in an inner nested loop,
2864 since this does not count as a loop exit. */
2865 if (dest_loop != -1)
2866 {
2867 for (outer_loop = dest_loop; outer_loop != -1;
2868 outer_loop = loop_outer_loop[outer_loop])
2869 if (outer_loop == loop_num)
2870 break;
2871 }
2872 else
2873 outer_loop = -1;
2874
2875 if (loop_num != -1 && outer_loop == -1)
2876 {
2877 LABEL_OUTSIDE_LOOP_P (x) = 1;
2878 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2879 loop_number_exit_labels[loop_num] = x;
2880
2881 for (outer_loop = loop_num;
2882 outer_loop != -1 && outer_loop != dest_loop;
2883 outer_loop = loop_outer_loop[outer_loop])
2884 loop_number_exit_count[outer_loop]++;
2885 }
2886
2887 /* If this is inside a loop, but not in the current loop or one enclosed
2888 by it, it invalidates at least one loop. */
2889
2890 if (dest_loop == -1)
2891 return;
2892
2893 /* We must invalidate every nested loop containing the target of this
2894 label, except those that also contain the jump insn. */
2895
2896 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2897 {
2898 /* Stop when we reach a loop that also contains the jump insn. */
2899 for (outer_loop = loop_num; outer_loop != -1;
2900 outer_loop = loop_outer_loop[outer_loop])
2901 if (dest_loop == outer_loop)
2902 return;
2903
2904 /* If we get here, we know we need to invalidate a loop. */
2905 if (loop_dump_stream && ! loop_invalid[dest_loop])
2906 fprintf (loop_dump_stream,
2907 "\nLoop at %d ignored due to multiple entry points.\n",
2908 INSN_UID (loop_number_loop_starts[dest_loop]));
2909
2910 loop_invalid[dest_loop] = 1;
2911 }
2912 return;
2913
2914 case SET:
2915 /* If this is not setting pc, ignore. */
2916 if (SET_DEST (x) == pc_rtx)
2917 mark_loop_jump (SET_SRC (x), loop_num);
2918 return;
2919
2920 case IF_THEN_ELSE:
2921 mark_loop_jump (XEXP (x, 1), loop_num);
2922 mark_loop_jump (XEXP (x, 2), loop_num);
2923 return;
2924
2925 case PARALLEL:
2926 case ADDR_VEC:
2927 for (i = 0; i < XVECLEN (x, 0); i++)
2928 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2929 return;
2930
2931 case ADDR_DIFF_VEC:
2932 for (i = 0; i < XVECLEN (x, 1); i++)
2933 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2934 return;
2935
2936 default:
2937 /* Treat anything else (such as a symbol_ref)
2938 as a branch out of this loop, but not into any loop. */
2939
2940 if (loop_num != -1)
2941 {
2942 #ifdef HAVE_decrement_and_branch_on_count
2943 LABEL_OUTSIDE_LOOP_P (x) = 1;
2944 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2945 #endif /* HAVE_decrement_and_branch_on_count */
2946
2947 loop_number_exit_labels[loop_num] = x;
2948
2949 for (outer_loop = loop_num; outer_loop != -1;
2950 outer_loop = loop_outer_loop[outer_loop])
2951 loop_number_exit_count[outer_loop]++;
2952 }
2953 return;
2954 }
2955 }
2956 \f
2957 /* Return nonzero if there is a label in the range from
2958 insn INSN to and including the insn whose luid is END
2959 INSN must have an assigned luid (i.e., it must not have
2960 been previously created by loop.c). */
2961
2962 static int
2963 labels_in_range_p (insn, end)
2964 rtx insn;
2965 int end;
2966 {
2967 while (insn && INSN_LUID (insn) <= end)
2968 {
2969 if (GET_CODE (insn) == CODE_LABEL)
2970 return 1;
2971 insn = NEXT_INSN (insn);
2972 }
2973
2974 return 0;
2975 }
2976
2977 /* Record that a memory reference X is being set. */
2978
2979 static void
2980 note_addr_stored (x, y)
2981 rtx x;
2982 rtx y ATTRIBUTE_UNUSED;
2983 {
2984 register int i;
2985
2986 if (x == 0 || GET_CODE (x) != MEM)
2987 return;
2988
2989 /* Count number of memory writes.
2990 This affects heuristics in strength_reduce. */
2991 num_mem_sets++;
2992
2993 /* BLKmode MEM means all memory is clobbered. */
2994 if (GET_MODE (x) == BLKmode)
2995 unknown_address_altered = 1;
2996
2997 if (unknown_address_altered)
2998 return;
2999
3000 for (i = 0; i < loop_store_mems_idx; i++)
3001 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
3002 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
3003 {
3004 /* We are storing at the same address as previously noted. Save the
3005 wider reference. */
3006 if (GET_MODE_SIZE (GET_MODE (x))
3007 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
3008 loop_store_mems[i] = x;
3009 break;
3010 }
3011
3012 if (i == NUM_STORES)
3013 unknown_address_altered = 1;
3014
3015 else if (i == loop_store_mems_idx)
3016 loop_store_mems[loop_store_mems_idx++] = x;
3017 }
3018 \f
3019 /* Return nonzero if the rtx X is invariant over the current loop.
3020
3021 The value is 2 if we refer to something only conditionally invariant.
3022
3023 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3024 Otherwise, a memory ref is invariant if it does not conflict with
3025 anything stored in `loop_store_mems'. */
3026
3027 int
3028 invariant_p (x)
3029 register rtx x;
3030 {
3031 register int i;
3032 register enum rtx_code code;
3033 register char *fmt;
3034 int conditional = 0;
3035
3036 if (x == 0)
3037 return 1;
3038 code = GET_CODE (x);
3039 switch (code)
3040 {
3041 case CONST_INT:
3042 case CONST_DOUBLE:
3043 case SYMBOL_REF:
3044 case CONST:
3045 return 1;
3046
3047 case LABEL_REF:
3048 /* A LABEL_REF is normally invariant, however, if we are unrolling
3049 loops, and this label is inside the loop, then it isn't invariant.
3050 This is because each unrolled copy of the loop body will have
3051 a copy of this label. If this was invariant, then an insn loading
3052 the address of this label into a register might get moved outside
3053 the loop, and then each loop body would end up using the same label.
3054
3055 We don't know the loop bounds here though, so just fail for all
3056 labels. */
3057 if (flag_unroll_loops)
3058 return 0;
3059 else
3060 return 1;
3061
3062 case PC:
3063 case CC0:
3064 case UNSPEC_VOLATILE:
3065 return 0;
3066
3067 case REG:
3068 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3069 since the reg might be set by initialization within the loop. */
3070
3071 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3072 || x == arg_pointer_rtx)
3073 && ! current_function_has_nonlocal_goto)
3074 return 1;
3075
3076 if (loop_has_call
3077 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3078 return 0;
3079
3080 if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
3081 return 2;
3082
3083 return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
3084
3085 case MEM:
3086 /* Volatile memory references must be rejected. Do this before
3087 checking for read-only items, so that volatile read-only items
3088 will be rejected also. */
3089 if (MEM_VOLATILE_P (x))
3090 return 0;
3091
3092 /* Read-only items (such as constants in a constant pool) are
3093 invariant if their address is. */
3094 if (RTX_UNCHANGING_P (x))
3095 break;
3096
3097 /* If we filled the table (or had a subroutine call), any location
3098 in memory could have been clobbered. */
3099 if (unknown_address_altered)
3100 return 0;
3101
3102 /* See if there is any dependence between a store and this load. */
3103 for (i = loop_store_mems_idx - 1; i >= 0; i--)
3104 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
3105 return 0;
3106
3107 /* It's not invalidated by a store in memory
3108 but we must still verify the address is invariant. */
3109 break;
3110
3111 case ASM_OPERANDS:
3112 /* Don't mess with insns declared volatile. */
3113 if (MEM_VOLATILE_P (x))
3114 return 0;
3115 break;
3116
3117 default:
3118 break;
3119 }
3120
3121 fmt = GET_RTX_FORMAT (code);
3122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3123 {
3124 if (fmt[i] == 'e')
3125 {
3126 int tem = invariant_p (XEXP (x, i));
3127 if (tem == 0)
3128 return 0;
3129 if (tem == 2)
3130 conditional = 1;
3131 }
3132 else if (fmt[i] == 'E')
3133 {
3134 register int j;
3135 for (j = 0; j < XVECLEN (x, i); j++)
3136 {
3137 int tem = invariant_p (XVECEXP (x, i, j));
3138 if (tem == 0)
3139 return 0;
3140 if (tem == 2)
3141 conditional = 1;
3142 }
3143
3144 }
3145 }
3146
3147 return 1 + conditional;
3148 }
3149
3150 \f
3151 /* Return nonzero if all the insns in the loop that set REG
3152 are INSN and the immediately following insns,
3153 and if each of those insns sets REG in an invariant way
3154 (not counting uses of REG in them).
3155
3156 The value is 2 if some of these insns are only conditionally invariant.
3157
3158 We assume that INSN itself is the first set of REG
3159 and that its source is invariant. */
3160
3161 static int
3162 consec_sets_invariant_p (reg, n_sets, insn)
3163 int n_sets;
3164 rtx reg, insn;
3165 {
3166 register rtx p = insn;
3167 register int regno = REGNO (reg);
3168 rtx temp;
3169 /* Number of sets we have to insist on finding after INSN. */
3170 int count = n_sets - 1;
3171 int old = VARRAY_INT (set_in_loop, regno);
3172 int value = 0;
3173 int this;
3174
3175 /* If N_SETS hit the limit, we can't rely on its value. */
3176 if (n_sets == 127)
3177 return 0;
3178
3179 VARRAY_INT (set_in_loop, regno) = 0;
3180
3181 while (count > 0)
3182 {
3183 register enum rtx_code code;
3184 rtx set;
3185
3186 p = NEXT_INSN (p);
3187 code = GET_CODE (p);
3188
3189 /* If library call, skip to end of it. */
3190 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3191 p = XEXP (temp, 0);
3192
3193 this = 0;
3194 if (code == INSN
3195 && (set = single_set (p))
3196 && GET_CODE (SET_DEST (set)) == REG
3197 && REGNO (SET_DEST (set)) == regno)
3198 {
3199 this = invariant_p (SET_SRC (set));
3200 if (this != 0)
3201 value |= this;
3202 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3203 {
3204 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3205 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3206 notes are OK. */
3207 this = (CONSTANT_P (XEXP (temp, 0))
3208 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3209 && invariant_p (XEXP (temp, 0))));
3210 if (this != 0)
3211 value |= this;
3212 }
3213 }
3214 if (this != 0)
3215 count--;
3216 else if (code != NOTE)
3217 {
3218 VARRAY_INT (set_in_loop, regno) = old;
3219 return 0;
3220 }
3221 }
3222
3223 VARRAY_INT (set_in_loop, regno) = old;
3224 /* If invariant_p ever returned 2, we return 2. */
3225 return 1 + (value & 2);
3226 }
3227
3228 #if 0
3229 /* I don't think this condition is sufficient to allow INSN
3230 to be moved, so we no longer test it. */
3231
3232 /* Return 1 if all insns in the basic block of INSN and following INSN
3233 that set REG are invariant according to TABLE. */
3234
3235 static int
3236 all_sets_invariant_p (reg, insn, table)
3237 rtx reg, insn;
3238 short *table;
3239 {
3240 register rtx p = insn;
3241 register int regno = REGNO (reg);
3242
3243 while (1)
3244 {
3245 register enum rtx_code code;
3246 p = NEXT_INSN (p);
3247 code = GET_CODE (p);
3248 if (code == CODE_LABEL || code == JUMP_INSN)
3249 return 1;
3250 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3251 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3252 && REGNO (SET_DEST (PATTERN (p))) == regno)
3253 {
3254 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3255 return 0;
3256 }
3257 }
3258 }
3259 #endif /* 0 */
3260 \f
3261 /* Look at all uses (not sets) of registers in X. For each, if it is
3262 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3263 a different insn, set USAGE[REGNO] to const0_rtx. */
3264
3265 static void
3266 find_single_use_in_loop (insn, x, usage)
3267 rtx insn;
3268 rtx x;
3269 varray_type usage;
3270 {
3271 enum rtx_code code = GET_CODE (x);
3272 char *fmt = GET_RTX_FORMAT (code);
3273 int i, j;
3274
3275 if (code == REG)
3276 VARRAY_RTX (usage, REGNO (x))
3277 = (VARRAY_RTX (usage, REGNO (x)) != 0
3278 && VARRAY_RTX (usage, REGNO (x)) != insn)
3279 ? const0_rtx : insn;
3280
3281 else if (code == SET)
3282 {
3283 /* Don't count SET_DEST if it is a REG; otherwise count things
3284 in SET_DEST because if a register is partially modified, it won't
3285 show up as a potential movable so we don't care how USAGE is set
3286 for it. */
3287 if (GET_CODE (SET_DEST (x)) != REG)
3288 find_single_use_in_loop (insn, SET_DEST (x), usage);
3289 find_single_use_in_loop (insn, SET_SRC (x), usage);
3290 }
3291 else
3292 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3293 {
3294 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3295 find_single_use_in_loop (insn, XEXP (x, i), usage);
3296 else if (fmt[i] == 'E')
3297 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3298 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3299 }
3300 }
3301 \f
3302 /* Count and record any set in X which is contained in INSN. Update
3303 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3304
3305 static void
3306 count_one_set (insn, x, may_not_move, last_set)
3307 rtx insn, x;
3308 varray_type may_not_move;
3309 rtx *last_set;
3310 {
3311 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3312 /* Don't move a reg that has an explicit clobber.
3313 It's not worth the pain to try to do it correctly. */
3314 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3315
3316 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3317 {
3318 rtx dest = SET_DEST (x);
3319 while (GET_CODE (dest) == SUBREG
3320 || GET_CODE (dest) == ZERO_EXTRACT
3321 || GET_CODE (dest) == SIGN_EXTRACT
3322 || GET_CODE (dest) == STRICT_LOW_PART)
3323 dest = XEXP (dest, 0);
3324 if (GET_CODE (dest) == REG)
3325 {
3326 register int regno = REGNO (dest);
3327 /* If this is the first setting of this reg
3328 in current basic block, and it was set before,
3329 it must be set in two basic blocks, so it cannot
3330 be moved out of the loop. */
3331 if (VARRAY_INT (set_in_loop, regno) > 0
3332 && last_set[regno] == 0)
3333 VARRAY_CHAR (may_not_move, regno) = 1;
3334 /* If this is not first setting in current basic block,
3335 see if reg was used in between previous one and this.
3336 If so, neither one can be moved. */
3337 if (last_set[regno] != 0
3338 && reg_used_between_p (dest, last_set[regno], insn))
3339 VARRAY_CHAR (may_not_move, regno) = 1;
3340 if (VARRAY_INT (set_in_loop, regno) < 127)
3341 ++VARRAY_INT (set_in_loop, regno);
3342 last_set[regno] = insn;
3343 }
3344 }
3345 }
3346
3347 /* Increment SET_IN_LOOP at the index of each register
3348 that is modified by an insn between FROM and TO.
3349 If the value of an element of SET_IN_LOOP becomes 127 or more,
3350 stop incrementing it, to avoid overflow.
3351
3352 Store in SINGLE_USAGE[I] the single insn in which register I is
3353 used, if it is only used once. Otherwise, it is set to 0 (for no
3354 uses) or const0_rtx for more than one use. This parameter may be zero,
3355 in which case this processing is not done.
3356
3357 Store in *COUNT_PTR the number of actual instruction
3358 in the loop. We use this to decide what is worth moving out. */
3359
3360 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3361 In that case, it is the insn that last set reg n. */
3362
3363 static void
3364 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3365 register rtx from, to;
3366 varray_type may_not_move;
3367 varray_type single_usage;
3368 int *count_ptr;
3369 int nregs;
3370 {
3371 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3372 register rtx insn;
3373 register int count = 0;
3374
3375 bzero ((char *) last_set, nregs * sizeof (rtx));
3376 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3377 {
3378 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3379 {
3380 ++count;
3381
3382 /* If requested, record registers that have exactly one use. */
3383 if (single_usage)
3384 {
3385 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3386
3387 /* Include uses in REG_EQUAL notes. */
3388 if (REG_NOTES (insn))
3389 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3390 }
3391
3392 if (GET_CODE (PATTERN (insn)) == SET
3393 || GET_CODE (PATTERN (insn)) == CLOBBER)
3394 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3395 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3396 {
3397 register int i;
3398 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3399 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3400 may_not_move, last_set);
3401 }
3402 }
3403
3404 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3405 bzero ((char *) last_set, nregs * sizeof (rtx));
3406 }
3407 *count_ptr = count;
3408 }
3409 \f
3410 /* Given a loop that is bounded by LOOP_START and LOOP_END
3411 and that is entered at SCAN_START,
3412 return 1 if the register set in SET contained in insn INSN is used by
3413 any insn that precedes INSN in cyclic order starting
3414 from the loop entry point.
3415
3416 We don't want to use INSN_LUID here because if we restrict INSN to those
3417 that have a valid INSN_LUID, it means we cannot move an invariant out
3418 from an inner loop past two loops. */
3419
3420 static int
3421 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3422 rtx set, insn, loop_start, scan_start, loop_end;
3423 {
3424 rtx reg = SET_DEST (set);
3425 rtx p;
3426
3427 /* Scan forward checking for register usage. If we hit INSN, we
3428 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3429 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3430 {
3431 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3432 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3433 return 1;
3434
3435 if (p == loop_end)
3436 p = loop_start;
3437 }
3438
3439 return 0;
3440 }
3441 \f
3442 /* A "basic induction variable" or biv is a pseudo reg that is set
3443 (within this loop) only by incrementing or decrementing it. */
3444 /* A "general induction variable" or giv is a pseudo reg whose
3445 value is a linear function of a biv. */
3446
3447 /* Bivs are recognized by `basic_induction_var';
3448 Givs by `general_induction_var'. */
3449
3450 /* Indexed by register number, indicates whether or not register is an
3451 induction variable, and if so what type. */
3452
3453 enum iv_mode *reg_iv_type;
3454
3455 /* Indexed by register number, contains pointer to `struct induction'
3456 if register is an induction variable. This holds general info for
3457 all induction variables. */
3458
3459 struct induction **reg_iv_info;
3460
3461 /* Indexed by register number, contains pointer to `struct iv_class'
3462 if register is a basic induction variable. This holds info describing
3463 the class (a related group) of induction variables that the biv belongs
3464 to. */
3465
3466 struct iv_class **reg_biv_class;
3467
3468 /* The head of a list which links together (via the next field)
3469 every iv class for the current loop. */
3470
3471 struct iv_class *loop_iv_list;
3472
3473 /* Communication with routines called via `note_stores'. */
3474
3475 static rtx note_insn;
3476
3477 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3478
3479 static rtx addr_placeholder;
3480
3481 /* ??? Unfinished optimizations, and possible future optimizations,
3482 for the strength reduction code. */
3483
3484 /* ??? The interaction of biv elimination, and recognition of 'constant'
3485 bivs, may cause problems. */
3486
3487 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3488 performance problems.
3489
3490 Perhaps don't eliminate things that can be combined with an addressing
3491 mode. Find all givs that have the same biv, mult_val, and add_val;
3492 then for each giv, check to see if its only use dies in a following
3493 memory address. If so, generate a new memory address and check to see
3494 if it is valid. If it is valid, then store the modified memory address,
3495 otherwise, mark the giv as not done so that it will get its own iv. */
3496
3497 /* ??? Could try to optimize branches when it is known that a biv is always
3498 positive. */
3499
3500 /* ??? When replace a biv in a compare insn, we should replace with closest
3501 giv so that an optimized branch can still be recognized by the combiner,
3502 e.g. the VAX acb insn. */
3503
3504 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3505 was rerun in loop_optimize whenever a register was added or moved.
3506 Also, some of the optimizations could be a little less conservative. */
3507 \f
3508 /* Perform strength reduction and induction variable elimination.
3509
3510 Pseudo registers created during this function will be beyond the last
3511 valid index in several tables including n_times_set and regno_last_uid.
3512 This does not cause a problem here, because the added registers cannot be
3513 givs outside of their loop, and hence will never be reconsidered.
3514 But scan_loop must check regnos to make sure they are in bounds.
3515
3516 SCAN_START is the first instruction in the loop, as the loop would
3517 actually be executed. END is the NOTE_INSN_LOOP_END. LOOP_TOP is
3518 the first instruction in the loop, as it is layed out in the
3519 instruction stream. LOOP_START is the NOTE_INSN_LOOP_BEG. */
3520
3521 static void
3522 strength_reduce (scan_start, end, loop_top, insn_count,
3523 loop_start, loop_end, unroll_p, bct_p)
3524 rtx scan_start;
3525 rtx end;
3526 rtx loop_top;
3527 int insn_count;
3528 rtx loop_start;
3529 rtx loop_end;
3530 int unroll_p, bct_p ATTRIBUTE_UNUSED;
3531 {
3532 rtx p;
3533 rtx set;
3534 rtx inc_val;
3535 rtx mult_val;
3536 rtx dest_reg;
3537 /* This is 1 if current insn is not executed at least once for every loop
3538 iteration. */
3539 int not_every_iteration = 0;
3540 /* This is 1 if current insn may be executed more than once for every
3541 loop iteration. */
3542 int maybe_multiple = 0;
3543 /* Temporary list pointers for traversing loop_iv_list. */
3544 struct iv_class *bl, **backbl;
3545 /* Ratio of extra register life span we can justify
3546 for saving an instruction. More if loop doesn't call subroutines
3547 since in that case saving an insn makes more difference
3548 and more registers are available. */
3549 /* ??? could set this to last value of threshold in move_movables */
3550 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3551 /* Map of pseudo-register replacements. */
3552 rtx *reg_map;
3553 int call_seen;
3554 rtx test;
3555 rtx end_insert_before;
3556 int loop_depth = 0;
3557 struct loop_info loop_iteration_info;
3558 struct loop_info *loop_info = &loop_iteration_info;
3559
3560 /* If scan_start points to the loop exit test, we have to be wary of
3561 subversive use of gotos inside expression statements. */
3562 if (prev_nonnote_insn (scan_start) != prev_nonnote_insn (loop_start))
3563 maybe_multiple = back_branch_in_range_p (scan_start, loop_start, loop_end);
3564
3565 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3566 * sizeof (enum iv_mode));
3567 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode));
3568 reg_iv_info = (struct induction **)
3569 alloca (max_reg_before_loop * sizeof (struct induction *));
3570 bzero ((char *) reg_iv_info, (max_reg_before_loop
3571 * sizeof (struct induction *)));
3572 reg_biv_class = (struct iv_class **)
3573 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3574 bzero ((char *) reg_biv_class, (max_reg_before_loop
3575 * sizeof (struct iv_class *)));
3576
3577 loop_iv_list = 0;
3578 addr_placeholder = gen_reg_rtx (Pmode);
3579
3580 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3581 must be put before this insn, so that they will appear in the right
3582 order (i.e. loop order).
3583
3584 If loop_end is the end of the current function, then emit a
3585 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3586 dummy note insn. */
3587 if (NEXT_INSN (loop_end) != 0)
3588 end_insert_before = NEXT_INSN (loop_end);
3589 else
3590 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3591
3592 /* Scan through loop to find all possible bivs. */
3593
3594 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
3595 p != NULL_RTX;
3596 p = next_insn_in_loop (p, scan_start, end, loop_top))
3597 {
3598 if (GET_CODE (p) == INSN
3599 && (set = single_set (p))
3600 && GET_CODE (SET_DEST (set)) == REG)
3601 {
3602 dest_reg = SET_DEST (set);
3603 if (REGNO (dest_reg) < max_reg_before_loop
3604 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3605 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3606 {
3607 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3608 dest_reg, p, &inc_val, &mult_val))
3609 {
3610 /* It is a possible basic induction variable.
3611 Create and initialize an induction structure for it. */
3612
3613 struct induction *v
3614 = (struct induction *) alloca (sizeof (struct induction));
3615
3616 record_biv (v, p, dest_reg, inc_val, mult_val,
3617 not_every_iteration, maybe_multiple);
3618 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3619 }
3620 else if (REGNO (dest_reg) < max_reg_before_loop)
3621 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3622 }
3623 }
3624
3625 /* Past CODE_LABEL, we get to insns that may be executed multiple
3626 times. The only way we can be sure that they can't is if every
3627 jump insn between here and the end of the loop either
3628 returns, exits the loop, is a jump to a location that is still
3629 behind the label, or is a jump to the loop start. */
3630
3631 if (GET_CODE (p) == CODE_LABEL)
3632 {
3633 rtx insn = p;
3634
3635 maybe_multiple = 0;
3636
3637 while (1)
3638 {
3639 insn = NEXT_INSN (insn);
3640 if (insn == scan_start)
3641 break;
3642 if (insn == end)
3643 {
3644 if (loop_top != 0)
3645 insn = loop_top;
3646 else
3647 break;
3648 if (insn == scan_start)
3649 break;
3650 }
3651
3652 if (GET_CODE (insn) == JUMP_INSN
3653 && GET_CODE (PATTERN (insn)) != RETURN
3654 && (! condjump_p (insn)
3655 || (JUMP_LABEL (insn) != 0
3656 && JUMP_LABEL (insn) != scan_start
3657 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3658 || (INSN_UID (p) < max_uid_for_loop
3659 ? (INSN_LUID (JUMP_LABEL (insn))
3660 <= INSN_LUID (p))
3661 : (INSN_UID (insn) >= max_uid_for_loop
3662 || (INSN_LUID (JUMP_LABEL (insn))
3663 < INSN_LUID (insn))))))))
3664 {
3665 maybe_multiple = 1;
3666 break;
3667 }
3668 }
3669 }
3670
3671 /* Past a jump, we get to insns for which we can't count
3672 on whether they will be executed during each iteration. */
3673 /* This code appears twice in strength_reduce. There is also similar
3674 code in scan_loop. */
3675 if (GET_CODE (p) == JUMP_INSN
3676 /* If we enter the loop in the middle, and scan around to the
3677 beginning, don't set not_every_iteration for that.
3678 This can be any kind of jump, since we want to know if insns
3679 will be executed if the loop is executed. */
3680 && ! (JUMP_LABEL (p) == loop_top
3681 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3682 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3683 {
3684 rtx label = 0;
3685
3686 /* If this is a jump outside the loop, then it also doesn't
3687 matter. Check to see if the target of this branch is on the
3688 loop_number_exits_labels list. */
3689
3690 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3691 label;
3692 label = LABEL_NEXTREF (label))
3693 if (XEXP (label, 0) == JUMP_LABEL (p))
3694 break;
3695
3696 if (! label)
3697 not_every_iteration = 1;
3698 }
3699
3700 else if (GET_CODE (p) == NOTE)
3701 {
3702 /* At the virtual top of a converted loop, insns are again known to
3703 be executed each iteration: logically, the loop begins here
3704 even though the exit code has been duplicated. */
3705 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3706 not_every_iteration = 0;
3707 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3708 loop_depth++;
3709 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3710 loop_depth--;
3711 }
3712
3713 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3714 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3715 or not an insn is known to be executed each iteration of the
3716 loop, whether or not any iterations are known to occur.
3717
3718 Therefore, if we have just passed a label and have no more labels
3719 between here and the test insn of the loop, we know these insns
3720 will be executed each iteration. */
3721
3722 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3723 && no_labels_between_p (p, loop_end))
3724 not_every_iteration = 0;
3725 }
3726
3727 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3728 Make a sanity check against n_times_set. */
3729 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3730 {
3731 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3732 /* Above happens if register modified by subreg, etc. */
3733 /* Make sure it is not recognized as a basic induction var: */
3734 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3735 /* If never incremented, it is invariant that we decided not to
3736 move. So leave it alone. */
3737 || ! bl->incremented)
3738 {
3739 if (loop_dump_stream)
3740 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3741 bl->regno,
3742 (reg_iv_type[bl->regno] != BASIC_INDUCT
3743 ? "not induction variable"
3744 : (! bl->incremented ? "never incremented"
3745 : "count error")));
3746
3747 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3748 *backbl = bl->next;
3749 }
3750 else
3751 {
3752 backbl = &bl->next;
3753
3754 if (loop_dump_stream)
3755 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3756 }
3757 }
3758
3759 /* Exit if there are no bivs. */
3760 if (! loop_iv_list)
3761 {
3762 /* Can still unroll the loop anyways, but indicate that there is no
3763 strength reduction info available. */
3764 if (unroll_p)
3765 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
3766 loop_info, 0);
3767
3768 return;
3769 }
3770
3771 /* Find initial value for each biv by searching backwards from loop_start,
3772 halting at first label. Also record any test condition. */
3773
3774 call_seen = 0;
3775 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3776 {
3777 note_insn = p;
3778
3779 if (GET_CODE (p) == CALL_INSN)
3780 call_seen = 1;
3781
3782 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3783 || GET_CODE (p) == CALL_INSN)
3784 note_stores (PATTERN (p), record_initial);
3785
3786 /* Record any test of a biv that branches around the loop if no store
3787 between it and the start of loop. We only care about tests with
3788 constants and registers and only certain of those. */
3789 if (GET_CODE (p) == JUMP_INSN
3790 && JUMP_LABEL (p) != 0
3791 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3792 && (test = get_condition_for_loop (p)) != 0
3793 && GET_CODE (XEXP (test, 0)) == REG
3794 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3795 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3796 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3797 && bl->init_insn == 0)
3798 {
3799 /* If an NE test, we have an initial value! */
3800 if (GET_CODE (test) == NE)
3801 {
3802 bl->init_insn = p;
3803 bl->init_set = gen_rtx_SET (VOIDmode,
3804 XEXP (test, 0), XEXP (test, 1));
3805 }
3806 else
3807 bl->initial_test = test;
3808 }
3809 }
3810
3811 /* Look at the each biv and see if we can say anything better about its
3812 initial value from any initializing insns set up above. (This is done
3813 in two passes to avoid missing SETs in a PARALLEL.) */
3814 for (bl = loop_iv_list; bl; bl = bl->next)
3815 {
3816 rtx src;
3817 rtx note;
3818
3819 if (! bl->init_insn)
3820 continue;
3821
3822 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3823 is a constant, use the value of that. */
3824 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3825 && CONSTANT_P (XEXP (note, 0)))
3826 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3827 && CONSTANT_P (XEXP (note, 0))))
3828 src = XEXP (note, 0);
3829 else
3830 src = SET_SRC (bl->init_set);
3831
3832 if (loop_dump_stream)
3833 fprintf (loop_dump_stream,
3834 "Biv %d initialized at insn %d: initial value ",
3835 bl->regno, INSN_UID (bl->init_insn));
3836
3837 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3838 || GET_MODE (src) == VOIDmode)
3839 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3840 {
3841 bl->initial_value = src;
3842
3843 if (loop_dump_stream)
3844 {
3845 if (GET_CODE (src) == CONST_INT)
3846 {
3847 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
3848 fputc ('\n', loop_dump_stream);
3849 }
3850 else
3851 {
3852 print_rtl (loop_dump_stream, src);
3853 fprintf (loop_dump_stream, "\n");
3854 }
3855 }
3856 }
3857 else
3858 {
3859 /* Biv initial value is not simple move,
3860 so let it keep initial value of "itself". */
3861
3862 if (loop_dump_stream)
3863 fprintf (loop_dump_stream, "is complex\n");
3864 }
3865 }
3866
3867 /* Search the loop for general induction variables. */
3868
3869 /* A register is a giv if: it is only set once, it is a function of a
3870 biv and a constant (or invariant), and it is not a biv. */
3871
3872 not_every_iteration = 0;
3873 loop_depth = 0;
3874 p = scan_start;
3875 while (1)
3876 {
3877 p = NEXT_INSN (p);
3878 /* At end of a straight-in loop, we are done.
3879 At end of a loop entered at the bottom, scan the top. */
3880 if (p == scan_start)
3881 break;
3882 if (p == end)
3883 {
3884 if (loop_top != 0)
3885 p = loop_top;
3886 else
3887 break;
3888 if (p == scan_start)
3889 break;
3890 }
3891
3892 /* Look for a general induction variable in a register. */
3893 if (GET_CODE (p) == INSN
3894 && (set = single_set (p))
3895 && GET_CODE (SET_DEST (set)) == REG
3896 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
3897 {
3898 rtx src_reg;
3899 rtx add_val;
3900 rtx mult_val;
3901 int benefit;
3902 rtx regnote = 0;
3903 rtx last_consec_insn;
3904
3905 dest_reg = SET_DEST (set);
3906 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3907 continue;
3908
3909 if (/* SET_SRC is a giv. */
3910 (general_induction_var (SET_SRC (set), &src_reg, &add_val,
3911 &mult_val, 0, &benefit)
3912 /* Equivalent expression is a giv. */
3913 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3914 && general_induction_var (XEXP (regnote, 0), &src_reg,
3915 &add_val, &mult_val, 0,
3916 &benefit)))
3917 /* Don't try to handle any regs made by loop optimization.
3918 We have nothing on them in regno_first_uid, etc. */
3919 && REGNO (dest_reg) < max_reg_before_loop
3920 /* Don't recognize a BASIC_INDUCT_VAR here. */
3921 && dest_reg != src_reg
3922 /* This must be the only place where the register is set. */
3923 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
3924 /* or all sets must be consecutive and make a giv. */
3925 || (benefit = consec_sets_giv (benefit, p,
3926 src_reg, dest_reg,
3927 &add_val, &mult_val,
3928 &last_consec_insn))))
3929 {
3930 struct induction *v
3931 = (struct induction *) alloca (sizeof (struct induction));
3932
3933 /* If this is a library call, increase benefit. */
3934 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3935 benefit += libcall_benefit (p);
3936
3937 /* Skip the consecutive insns, if there are any. */
3938 if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
3939 p = last_consec_insn;
3940
3941 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3942 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3943 loop_end);
3944
3945 }
3946 }
3947
3948 #ifndef DONT_REDUCE_ADDR
3949 /* Look for givs which are memory addresses. */
3950 /* This resulted in worse code on a VAX 8600. I wonder if it
3951 still does. */
3952 if (GET_CODE (p) == INSN)
3953 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3954 loop_end);
3955 #endif
3956
3957 /* Update the status of whether giv can derive other givs. This can
3958 change when we pass a label or an insn that updates a biv. */
3959 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3960 || GET_CODE (p) == CODE_LABEL)
3961 update_giv_derive (p);
3962
3963 /* Past a jump, we get to insns for which we can't count
3964 on whether they will be executed during each iteration. */
3965 /* This code appears twice in strength_reduce. There is also similar
3966 code in scan_loop. */
3967 if (GET_CODE (p) == JUMP_INSN
3968 /* If we enter the loop in the middle, and scan around to the
3969 beginning, don't set not_every_iteration for that.
3970 This can be any kind of jump, since we want to know if insns
3971 will be executed if the loop is executed. */
3972 && ! (JUMP_LABEL (p) == loop_top
3973 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3974 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3975 {
3976 rtx label = 0;
3977
3978 /* If this is a jump outside the loop, then it also doesn't
3979 matter. Check to see if the target of this branch is on the
3980 loop_number_exits_labels list. */
3981
3982 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3983 label;
3984 label = LABEL_NEXTREF (label))
3985 if (XEXP (label, 0) == JUMP_LABEL (p))
3986 break;
3987
3988 if (! label)
3989 not_every_iteration = 1;
3990 }
3991
3992 else if (GET_CODE (p) == NOTE)
3993 {
3994 /* At the virtual top of a converted loop, insns are again known to
3995 be executed each iteration: logically, the loop begins here
3996 even though the exit code has been duplicated. */
3997 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3998 not_every_iteration = 0;
3999 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4000 loop_depth++;
4001 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4002 loop_depth--;
4003 }
4004
4005 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4006 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4007 or not an insn is known to be executed each iteration of the
4008 loop, whether or not any iterations are known to occur.
4009
4010 Therefore, if we have just passed a label and have no more labels
4011 between here and the test insn of the loop, we know these insns
4012 will be executed each iteration. */
4013
4014 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
4015 && no_labels_between_p (p, loop_end))
4016 not_every_iteration = 0;
4017 }
4018
4019 /* Try to calculate and save the number of loop iterations. This is
4020 set to zero if the actual number can not be calculated. This must
4021 be called after all giv's have been identified, since otherwise it may
4022 fail if the iteration variable is a giv. */
4023
4024 loop_iterations (loop_start, loop_end, loop_info);
4025
4026 /* Now for each giv for which we still don't know whether or not it is
4027 replaceable, check to see if it is replaceable because its final value
4028 can be calculated. This must be done after loop_iterations is called,
4029 so that final_giv_value will work correctly. */
4030
4031 for (bl = loop_iv_list; bl; bl = bl->next)
4032 {
4033 struct induction *v;
4034
4035 for (v = bl->giv; v; v = v->next_iv)
4036 if (! v->replaceable && ! v->not_replaceable)
4037 check_final_value (v, loop_start, loop_end, loop_info->n_iterations);
4038 }
4039
4040 /* Try to prove that the loop counter variable (if any) is always
4041 nonnegative; if so, record that fact with a REG_NONNEG note
4042 so that "decrement and branch until zero" insn can be used. */
4043 check_dbra_loop (loop_end, insn_count, loop_start, loop_info);
4044
4045 /* Create reg_map to hold substitutions for replaceable giv regs. */
4046 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
4047 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
4048
4049 /* Examine each iv class for feasibility of strength reduction/induction
4050 variable elimination. */
4051
4052 for (bl = loop_iv_list; bl; bl = bl->next)
4053 {
4054 struct induction *v;
4055 int benefit;
4056 int all_reduced;
4057 rtx final_value = 0;
4058
4059 /* Test whether it will be possible to eliminate this biv
4060 provided all givs are reduced. This is possible if either
4061 the reg is not used outside the loop, or we can compute
4062 what its final value will be.
4063
4064 For architectures with a decrement_and_branch_until_zero insn,
4065 don't do this if we put a REG_NONNEG note on the endtest for
4066 this biv. */
4067
4068 /* Compare against bl->init_insn rather than loop_start.
4069 We aren't concerned with any uses of the biv between
4070 init_insn and loop_start since these won't be affected
4071 by the value of the biv elsewhere in the function, so
4072 long as init_insn doesn't use the biv itself.
4073 March 14, 1989 -- self@bayes.arc.nasa.gov */
4074
4075 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4076 && bl->init_insn
4077 && INSN_UID (bl->init_insn) < max_uid_for_loop
4078 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4079 #ifdef HAVE_decrement_and_branch_until_zero
4080 && ! bl->nonneg
4081 #endif
4082 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4083 || ((final_value = final_biv_value (bl, loop_start, loop_end,
4084 loop_info->n_iterations))
4085 #ifdef HAVE_decrement_and_branch_until_zero
4086 && ! bl->nonneg
4087 #endif
4088 ))
4089 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
4090 threshold, insn_count);
4091 else
4092 {
4093 if (loop_dump_stream)
4094 {
4095 fprintf (loop_dump_stream,
4096 "Cannot eliminate biv %d.\n",
4097 bl->regno);
4098 fprintf (loop_dump_stream,
4099 "First use: insn %d, last use: insn %d.\n",
4100 REGNO_FIRST_UID (bl->regno),
4101 REGNO_LAST_UID (bl->regno));
4102 }
4103 }
4104
4105 /* Combine all giv's for this iv_class. */
4106 combine_givs (bl);
4107
4108 /* This will be true at the end, if all givs which depend on this
4109 biv have been strength reduced.
4110 We can't (currently) eliminate the biv unless this is so. */
4111 all_reduced = 1;
4112
4113 /* Check each giv in this class to see if we will benefit by reducing
4114 it. Skip giv's combined with others. */
4115 for (v = bl->giv; v; v = v->next_iv)
4116 {
4117 struct induction *tv;
4118
4119 if (v->ignore || v->same)
4120 continue;
4121
4122 benefit = v->benefit;
4123
4124 /* Reduce benefit if not replaceable, since we will insert
4125 a move-insn to replace the insn that calculates this giv.
4126 Don't do this unless the giv is a user variable, since it
4127 will often be marked non-replaceable because of the duplication
4128 of the exit code outside the loop. In such a case, the copies
4129 we insert are dead and will be deleted. So they don't have
4130 a cost. Similar situations exist. */
4131 /* ??? The new final_[bg]iv_value code does a much better job
4132 of finding replaceable giv's, and hence this code may no longer
4133 be necessary. */
4134 if (! v->replaceable && ! bl->eliminable
4135 && REG_USERVAR_P (v->dest_reg))
4136 benefit -= copy_cost;
4137
4138 /* Decrease the benefit to count the add-insns that we will
4139 insert to increment the reduced reg for the giv. */
4140 benefit -= add_cost * bl->biv_count;
4141
4142 /* Decide whether to strength-reduce this giv or to leave the code
4143 unchanged (recompute it from the biv each time it is used).
4144 This decision can be made independently for each giv. */
4145
4146 #ifdef AUTO_INC_DEC
4147 /* Attempt to guess whether autoincrement will handle some of the
4148 new add insns; if so, increase BENEFIT (undo the subtraction of
4149 add_cost that was done above). */
4150 if (v->giv_type == DEST_ADDR
4151 && GET_CODE (v->mult_val) == CONST_INT)
4152 {
4153 if (HAVE_POST_INCREMENT
4154 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4155 benefit += add_cost * bl->biv_count;
4156 else if (HAVE_PRE_INCREMENT
4157 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4158 benefit += add_cost * bl->biv_count;
4159 else if (HAVE_POST_DECREMENT
4160 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4161 benefit += add_cost * bl->biv_count;
4162 else if (HAVE_PRE_DECREMENT
4163 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4164 benefit += add_cost * bl->biv_count;
4165 }
4166 #endif
4167
4168 /* If an insn is not to be strength reduced, then set its ignore
4169 flag, and clear all_reduced. */
4170
4171 /* A giv that depends on a reversed biv must be reduced if it is
4172 used after the loop exit, otherwise, it would have the wrong
4173 value after the loop exit. To make it simple, just reduce all
4174 of such giv's whether or not we know they are used after the loop
4175 exit. */
4176
4177 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4178 && ! bl->reversed )
4179 {
4180 if (loop_dump_stream)
4181 fprintf (loop_dump_stream,
4182 "giv of insn %d not worth while, %d vs %d.\n",
4183 INSN_UID (v->insn),
4184 v->lifetime * threshold * benefit, insn_count);
4185 v->ignore = 1;
4186 all_reduced = 0;
4187 }
4188 else
4189 {
4190 /* Check that we can increment the reduced giv without a
4191 multiply insn. If not, reject it. */
4192
4193 for (tv = bl->biv; tv; tv = tv->next_iv)
4194 if (tv->mult_val == const1_rtx
4195 && ! product_cheap_p (tv->add_val, v->mult_val))
4196 {
4197 if (loop_dump_stream)
4198 fprintf (loop_dump_stream,
4199 "giv of insn %d: would need a multiply.\n",
4200 INSN_UID (v->insn));
4201 v->ignore = 1;
4202 all_reduced = 0;
4203 break;
4204 }
4205 }
4206 }
4207
4208 /* Reduce each giv that we decided to reduce. */
4209
4210 for (v = bl->giv; v; v = v->next_iv)
4211 {
4212 struct induction *tv;
4213 if (! v->ignore && v->same == 0)
4214 {
4215 int auto_inc_opt = 0;
4216
4217 v->new_reg = gen_reg_rtx (v->mode);
4218
4219 #ifdef AUTO_INC_DEC
4220 /* If the target has auto-increment addressing modes, and
4221 this is an address giv, then try to put the increment
4222 immediately after its use, so that flow can create an
4223 auto-increment addressing mode. */
4224 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4225 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4226 /* We don't handle reversed biv's because bl->biv->insn
4227 does not have a valid INSN_LUID. */
4228 && ! bl->reversed
4229 && v->always_executed && ! v->maybe_multiple
4230 && INSN_UID (v->insn) < max_uid_for_loop)
4231 {
4232 /* If other giv's have been combined with this one, then
4233 this will work only if all uses of the other giv's occur
4234 before this giv's insn. This is difficult to check.
4235
4236 We simplify this by looking for the common case where
4237 there is one DEST_REG giv, and this giv's insn is the
4238 last use of the dest_reg of that DEST_REG giv. If the
4239 increment occurs after the address giv, then we can
4240 perform the optimization. (Otherwise, the increment
4241 would have to go before other_giv, and we would not be
4242 able to combine it with the address giv to get an
4243 auto-inc address.) */
4244 if (v->combined_with)
4245 {
4246 struct induction *other_giv = 0;
4247
4248 for (tv = bl->giv; tv; tv = tv->next_iv)
4249 if (tv->same == v)
4250 {
4251 if (other_giv)
4252 break;
4253 else
4254 other_giv = tv;
4255 }
4256 if (! tv && other_giv
4257 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4258 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4259 == INSN_UID (v->insn))
4260 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4261 auto_inc_opt = 1;
4262 }
4263 /* Check for case where increment is before the address
4264 giv. Do this test in "loop order". */
4265 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4266 && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4267 || (INSN_LUID (bl->biv->insn)
4268 > INSN_LUID (scan_start))))
4269 || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4270 && (INSN_LUID (scan_start)
4271 < INSN_LUID (bl->biv->insn))))
4272 auto_inc_opt = -1;
4273 else
4274 auto_inc_opt = 1;
4275
4276 #ifdef HAVE_cc0
4277 {
4278 rtx prev;
4279
4280 /* We can't put an insn immediately after one setting
4281 cc0, or immediately before one using cc0. */
4282 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4283 || (auto_inc_opt == -1
4284 && (prev = prev_nonnote_insn (v->insn)) != 0
4285 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4286 && sets_cc0_p (PATTERN (prev))))
4287 auto_inc_opt = 0;
4288 }
4289 #endif
4290
4291 if (auto_inc_opt)
4292 v->auto_inc_opt = 1;
4293 }
4294 #endif
4295
4296 /* For each place where the biv is incremented, add an insn
4297 to increment the new, reduced reg for the giv. */
4298 for (tv = bl->biv; tv; tv = tv->next_iv)
4299 {
4300 rtx insert_before;
4301
4302 if (! auto_inc_opt)
4303 insert_before = tv->insn;
4304 else if (auto_inc_opt == 1)
4305 insert_before = NEXT_INSN (v->insn);
4306 else
4307 insert_before = v->insn;
4308
4309 if (tv->mult_val == const1_rtx)
4310 emit_iv_add_mult (tv->add_val, v->mult_val,
4311 v->new_reg, v->new_reg, insert_before);
4312 else /* tv->mult_val == const0_rtx */
4313 /* A multiply is acceptable here
4314 since this is presumed to be seldom executed. */
4315 emit_iv_add_mult (tv->add_val, v->mult_val,
4316 v->add_val, v->new_reg, insert_before);
4317 }
4318
4319 /* Add code at loop start to initialize giv's reduced reg. */
4320
4321 emit_iv_add_mult (bl->initial_value, v->mult_val,
4322 v->add_val, v->new_reg, loop_start);
4323 }
4324 }
4325
4326 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4327 as not reduced.
4328
4329 For each giv register that can be reduced now: if replaceable,
4330 substitute reduced reg wherever the old giv occurs;
4331 else add new move insn "giv_reg = reduced_reg".
4332
4333 Also check for givs whose first use is their definition and whose
4334 last use is the definition of another giv. If so, it is likely
4335 dead and should not be used to eliminate a biv. */
4336 for (v = bl->giv; v; v = v->next_iv)
4337 {
4338 if (v->same && v->same->ignore)
4339 v->ignore = 1;
4340
4341 if (v->ignore)
4342 continue;
4343
4344 if (v->giv_type == DEST_REG
4345 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4346 {
4347 struct induction *v1;
4348
4349 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4350 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4351 v->maybe_dead = 1;
4352 }
4353
4354 /* Update expression if this was combined, in case other giv was
4355 replaced. */
4356 if (v->same)
4357 v->new_reg = replace_rtx (v->new_reg,
4358 v->same->dest_reg, v->same->new_reg);
4359
4360 if (v->giv_type == DEST_ADDR)
4361 /* Store reduced reg as the address in the memref where we found
4362 this giv. */
4363 validate_change (v->insn, v->location, v->new_reg, 0);
4364 else if (v->replaceable)
4365 {
4366 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4367
4368 #if 0
4369 /* I can no longer duplicate the original problem. Perhaps
4370 this is unnecessary now? */
4371
4372 /* Replaceable; it isn't strictly necessary to delete the old
4373 insn and emit a new one, because v->dest_reg is now dead.
4374
4375 However, especially when unrolling loops, the special
4376 handling for (set REG0 REG1) in the second cse pass may
4377 make v->dest_reg live again. To avoid this problem, emit
4378 an insn to set the original giv reg from the reduced giv.
4379 We can not delete the original insn, since it may be part
4380 of a LIBCALL, and the code in flow that eliminates dead
4381 libcalls will fail if it is deleted. */
4382 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4383 v->insn);
4384 #endif
4385 }
4386 else
4387 {
4388 /* Not replaceable; emit an insn to set the original giv reg from
4389 the reduced giv, same as above. */
4390 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4391 v->insn);
4392 }
4393
4394 /* When a loop is reversed, givs which depend on the reversed
4395 biv, and which are live outside the loop, must be set to their
4396 correct final value. This insn is only needed if the giv is
4397 not replaceable. The correct final value is the same as the
4398 value that the giv starts the reversed loop with. */
4399 if (bl->reversed && ! v->replaceable)
4400 emit_iv_add_mult (bl->initial_value, v->mult_val,
4401 v->add_val, v->dest_reg, end_insert_before);
4402 else if (v->final_value)
4403 {
4404 rtx insert_before;
4405
4406 /* If the loop has multiple exits, emit the insn before the
4407 loop to ensure that it will always be executed no matter
4408 how the loop exits. Otherwise, emit the insn after the loop,
4409 since this is slightly more efficient. */
4410 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4411 insert_before = loop_start;
4412 else
4413 insert_before = end_insert_before;
4414 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4415 insert_before);
4416
4417 #if 0
4418 /* If the insn to set the final value of the giv was emitted
4419 before the loop, then we must delete the insn inside the loop
4420 that sets it. If this is a LIBCALL, then we must delete
4421 every insn in the libcall. Note, however, that
4422 final_giv_value will only succeed when there are multiple
4423 exits if the giv is dead at each exit, hence it does not
4424 matter that the original insn remains because it is dead
4425 anyways. */
4426 /* Delete the insn inside the loop that sets the giv since
4427 the giv is now set before (or after) the loop. */
4428 delete_insn (v->insn);
4429 #endif
4430 }
4431
4432 if (loop_dump_stream)
4433 {
4434 fprintf (loop_dump_stream, "giv at %d reduced to ",
4435 INSN_UID (v->insn));
4436 print_rtl (loop_dump_stream, v->new_reg);
4437 fprintf (loop_dump_stream, "\n");
4438 }
4439 }
4440
4441 /* All the givs based on the biv bl have been reduced if they
4442 merit it. */
4443
4444 /* For each giv not marked as maybe dead that has been combined with a
4445 second giv, clear any "maybe dead" mark on that second giv.
4446 v->new_reg will either be or refer to the register of the giv it
4447 combined with.
4448
4449 Doing this clearing avoids problems in biv elimination where a
4450 giv's new_reg is a complex value that can't be put in the insn but
4451 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4452 Since the register will be used in either case, we'd prefer it be
4453 used from the simpler giv. */
4454
4455 for (v = bl->giv; v; v = v->next_iv)
4456 if (! v->maybe_dead && v->same)
4457 v->same->maybe_dead = 0;
4458
4459 /* Try to eliminate the biv, if it is a candidate.
4460 This won't work if ! all_reduced,
4461 since the givs we planned to use might not have been reduced.
4462
4463 We have to be careful that we didn't initially think we could eliminate
4464 this biv because of a giv that we now think may be dead and shouldn't
4465 be used as a biv replacement.
4466
4467 Also, there is the possibility that we may have a giv that looks
4468 like it can be used to eliminate a biv, but the resulting insn
4469 isn't valid. This can happen, for example, on the 88k, where a
4470 JUMP_INSN can compare a register only with zero. Attempts to
4471 replace it with a compare with a constant will fail.
4472
4473 Note that in cases where this call fails, we may have replaced some
4474 of the occurrences of the biv with a giv, but no harm was done in
4475 doing so in the rare cases where it can occur. */
4476
4477 if (all_reduced == 1 && bl->eliminable
4478 && maybe_eliminate_biv (bl, loop_start, end, 1,
4479 threshold, insn_count))
4480
4481 {
4482 /* ?? If we created a new test to bypass the loop entirely,
4483 or otherwise drop straight in, based on this test, then
4484 we might want to rewrite it also. This way some later
4485 pass has more hope of removing the initialization of this
4486 biv entirely. */
4487
4488 /* If final_value != 0, then the biv may be used after loop end
4489 and we must emit an insn to set it just in case.
4490
4491 Reversed bivs already have an insn after the loop setting their
4492 value, so we don't need another one. We can't calculate the
4493 proper final value for such a biv here anyways. */
4494 if (final_value != 0 && ! bl->reversed)
4495 {
4496 rtx insert_before;
4497
4498 /* If the loop has multiple exits, emit the insn before the
4499 loop to ensure that it will always be executed no matter
4500 how the loop exits. Otherwise, emit the insn after the
4501 loop, since this is slightly more efficient. */
4502 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4503 insert_before = loop_start;
4504 else
4505 insert_before = end_insert_before;
4506
4507 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4508 end_insert_before);
4509 }
4510
4511 #if 0
4512 /* Delete all of the instructions inside the loop which set
4513 the biv, as they are all dead. If is safe to delete them,
4514 because an insn setting a biv will never be part of a libcall. */
4515 /* However, deleting them will invalidate the regno_last_uid info,
4516 so keeping them around is more convenient. Final_biv_value
4517 will only succeed when there are multiple exits if the biv
4518 is dead at each exit, hence it does not matter that the original
4519 insn remains, because it is dead anyways. */
4520 for (v = bl->biv; v; v = v->next_iv)
4521 delete_insn (v->insn);
4522 #endif
4523
4524 if (loop_dump_stream)
4525 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4526 bl->regno);
4527 }
4528 }
4529
4530 /* Go through all the instructions in the loop, making all the
4531 register substitutions scheduled in REG_MAP. */
4532
4533 for (p = loop_start; p != end; p = NEXT_INSN (p))
4534 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4535 || GET_CODE (p) == CALL_INSN)
4536 {
4537 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4538 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4539 INSN_CODE (p) = -1;
4540 }
4541
4542 /* Unroll loops from within strength reduction so that we can use the
4543 induction variable information that strength_reduce has already
4544 collected. */
4545
4546 if (unroll_p)
4547 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
4548 loop_info, 1);
4549
4550 #ifdef HAVE_decrement_and_branch_on_count
4551 /* Instrument the loop with BCT insn. */
4552 if (HAVE_decrement_and_branch_on_count && bct_p
4553 && flag_branch_on_count_reg)
4554 insert_bct (loop_start, loop_end, loop_info);
4555 #endif /* HAVE_decrement_and_branch_on_count */
4556
4557 if (loop_dump_stream)
4558 fprintf (loop_dump_stream, "\n");
4559 }
4560 \f
4561 /* Return 1 if X is a valid source for an initial value (or as value being
4562 compared against in an initial test).
4563
4564 X must be either a register or constant and must not be clobbered between
4565 the current insn and the start of the loop.
4566
4567 INSN is the insn containing X. */
4568
4569 static int
4570 valid_initial_value_p (x, insn, call_seen, loop_start)
4571 rtx x;
4572 rtx insn;
4573 int call_seen;
4574 rtx loop_start;
4575 {
4576 if (CONSTANT_P (x))
4577 return 1;
4578
4579 /* Only consider pseudos we know about initialized in insns whose luids
4580 we know. */
4581 if (GET_CODE (x) != REG
4582 || REGNO (x) >= max_reg_before_loop)
4583 return 0;
4584
4585 /* Don't use call-clobbered registers across a call which clobbers it. On
4586 some machines, don't use any hard registers at all. */
4587 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4588 && (SMALL_REGISTER_CLASSES
4589 || (call_used_regs[REGNO (x)] && call_seen)))
4590 return 0;
4591
4592 /* Don't use registers that have been clobbered before the start of the
4593 loop. */
4594 if (reg_set_between_p (x, insn, loop_start))
4595 return 0;
4596
4597 return 1;
4598 }
4599 \f
4600 /* Scan X for memory refs and check each memory address
4601 as a possible giv. INSN is the insn whose pattern X comes from.
4602 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4603 every loop iteration. */
4604
4605 static void
4606 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4607 rtx x;
4608 rtx insn;
4609 int not_every_iteration;
4610 rtx loop_start, loop_end;
4611 {
4612 register int i, j;
4613 register enum rtx_code code;
4614 register char *fmt;
4615
4616 if (x == 0)
4617 return;
4618
4619 code = GET_CODE (x);
4620 switch (code)
4621 {
4622 case REG:
4623 case CONST_INT:
4624 case CONST:
4625 case CONST_DOUBLE:
4626 case SYMBOL_REF:
4627 case LABEL_REF:
4628 case PC:
4629 case CC0:
4630 case ADDR_VEC:
4631 case ADDR_DIFF_VEC:
4632 case USE:
4633 case CLOBBER:
4634 return;
4635
4636 case MEM:
4637 {
4638 rtx src_reg;
4639 rtx add_val;
4640 rtx mult_val;
4641 int benefit;
4642
4643 /* This code used to disable creating GIVs with mult_val == 1 and
4644 add_val == 0. However, this leads to lost optimizations when
4645 it comes time to combine a set of related DEST_ADDR GIVs, since
4646 this one would not be seen. */
4647
4648 if (general_induction_var (XEXP (x, 0), &src_reg, &add_val,
4649 &mult_val, 1, &benefit))
4650 {
4651 /* Found one; record it. */
4652 struct induction *v
4653 = (struct induction *) oballoc (sizeof (struct induction));
4654
4655 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4656 add_val, benefit, DEST_ADDR, not_every_iteration,
4657 &XEXP (x, 0), loop_start, loop_end);
4658
4659 v->mem_mode = GET_MODE (x);
4660 }
4661 }
4662 return;
4663
4664 default:
4665 break;
4666 }
4667
4668 /* Recursively scan the subexpressions for other mem refs. */
4669
4670 fmt = GET_RTX_FORMAT (code);
4671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4672 if (fmt[i] == 'e')
4673 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4674 loop_end);
4675 else if (fmt[i] == 'E')
4676 for (j = 0; j < XVECLEN (x, i); j++)
4677 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4678 loop_start, loop_end);
4679 }
4680 \f
4681 /* Fill in the data about one biv update.
4682 V is the `struct induction' in which we record the biv. (It is
4683 allocated by the caller, with alloca.)
4684 INSN is the insn that sets it.
4685 DEST_REG is the biv's reg.
4686
4687 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4688 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4689 being set to INC_VAL.
4690
4691 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4692 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4693 can be executed more than once per iteration. If MAYBE_MULTIPLE
4694 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4695 executed exactly once per iteration. */
4696
4697 static void
4698 record_biv (v, insn, dest_reg, inc_val, mult_val,
4699 not_every_iteration, maybe_multiple)
4700 struct induction *v;
4701 rtx insn;
4702 rtx dest_reg;
4703 rtx inc_val;
4704 rtx mult_val;
4705 int not_every_iteration;
4706 int maybe_multiple;
4707 {
4708 struct iv_class *bl;
4709
4710 v->insn = insn;
4711 v->src_reg = dest_reg;
4712 v->dest_reg = dest_reg;
4713 v->mult_val = mult_val;
4714 v->add_val = inc_val;
4715 v->mode = GET_MODE (dest_reg);
4716 v->always_computable = ! not_every_iteration;
4717 v->always_executed = ! not_every_iteration;
4718 v->maybe_multiple = maybe_multiple;
4719
4720 /* Add this to the reg's iv_class, creating a class
4721 if this is the first incrementation of the reg. */
4722
4723 bl = reg_biv_class[REGNO (dest_reg)];
4724 if (bl == 0)
4725 {
4726 /* Create and initialize new iv_class. */
4727
4728 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4729
4730 bl->regno = REGNO (dest_reg);
4731 bl->biv = 0;
4732 bl->giv = 0;
4733 bl->biv_count = 0;
4734 bl->giv_count = 0;
4735
4736 /* Set initial value to the reg itself. */
4737 bl->initial_value = dest_reg;
4738 /* We haven't seen the initializing insn yet */
4739 bl->init_insn = 0;
4740 bl->init_set = 0;
4741 bl->initial_test = 0;
4742 bl->incremented = 0;
4743 bl->eliminable = 0;
4744 bl->nonneg = 0;
4745 bl->reversed = 0;
4746 bl->total_benefit = 0;
4747
4748 /* Add this class to loop_iv_list. */
4749 bl->next = loop_iv_list;
4750 loop_iv_list = bl;
4751
4752 /* Put it in the array of biv register classes. */
4753 reg_biv_class[REGNO (dest_reg)] = bl;
4754 }
4755
4756 /* Update IV_CLASS entry for this biv. */
4757 v->next_iv = bl->biv;
4758 bl->biv = v;
4759 bl->biv_count++;
4760 if (mult_val == const1_rtx)
4761 bl->incremented = 1;
4762
4763 if (loop_dump_stream)
4764 {
4765 fprintf (loop_dump_stream,
4766 "Insn %d: possible biv, reg %d,",
4767 INSN_UID (insn), REGNO (dest_reg));
4768 if (GET_CODE (inc_val) == CONST_INT)
4769 {
4770 fprintf (loop_dump_stream, " const =");
4771 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
4772 fputc ('\n', loop_dump_stream);
4773 }
4774 else
4775 {
4776 fprintf (loop_dump_stream, " const = ");
4777 print_rtl (loop_dump_stream, inc_val);
4778 fprintf (loop_dump_stream, "\n");
4779 }
4780 }
4781 }
4782 \f
4783 /* Fill in the data about one giv.
4784 V is the `struct induction' in which we record the giv. (It is
4785 allocated by the caller, with alloca.)
4786 INSN is the insn that sets it.
4787 BENEFIT estimates the savings from deleting this insn.
4788 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4789 into a register or is used as a memory address.
4790
4791 SRC_REG is the biv reg which the giv is computed from.
4792 DEST_REG is the giv's reg (if the giv is stored in a reg).
4793 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4794 LOCATION points to the place where this giv's value appears in INSN. */
4795
4796 static void
4797 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4798 type, not_every_iteration, location, loop_start, loop_end)
4799 struct induction *v;
4800 rtx insn;
4801 rtx src_reg;
4802 rtx dest_reg;
4803 rtx mult_val, add_val;
4804 int benefit;
4805 enum g_types type;
4806 int not_every_iteration;
4807 rtx *location;
4808 rtx loop_start, loop_end;
4809 {
4810 struct induction *b;
4811 struct iv_class *bl;
4812 rtx set = single_set (insn);
4813
4814 v->insn = insn;
4815 v->src_reg = src_reg;
4816 v->giv_type = type;
4817 v->dest_reg = dest_reg;
4818 v->mult_val = mult_val;
4819 v->add_val = add_val;
4820 v->benefit = benefit;
4821 v->location = location;
4822 v->cant_derive = 0;
4823 v->combined_with = 0;
4824 v->maybe_multiple = 0;
4825 v->maybe_dead = 0;
4826 v->derive_adjustment = 0;
4827 v->same = 0;
4828 v->ignore = 0;
4829 v->new_reg = 0;
4830 v->final_value = 0;
4831 v->same_insn = 0;
4832 v->auto_inc_opt = 0;
4833 v->unrolled = 0;
4834 v->shared = 0;
4835
4836 /* The v->always_computable field is used in update_giv_derive, to
4837 determine whether a giv can be used to derive another giv. For a
4838 DEST_REG giv, INSN computes a new value for the giv, so its value
4839 isn't computable if INSN insn't executed every iteration.
4840 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4841 it does not compute a new value. Hence the value is always computable
4842 regardless of whether INSN is executed each iteration. */
4843
4844 if (type == DEST_ADDR)
4845 v->always_computable = 1;
4846 else
4847 v->always_computable = ! not_every_iteration;
4848
4849 v->always_executed = ! not_every_iteration;
4850
4851 if (type == DEST_ADDR)
4852 {
4853 v->mode = GET_MODE (*location);
4854 v->lifetime = 1;
4855 }
4856 else /* type == DEST_REG */
4857 {
4858 v->mode = GET_MODE (SET_DEST (set));
4859
4860 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4861 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4862
4863 /* If the lifetime is zero, it means that this register is
4864 really a dead store. So mark this as a giv that can be
4865 ignored. This will not prevent the biv from being eliminated. */
4866 if (v->lifetime == 0)
4867 v->ignore = 1;
4868
4869 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4870 reg_iv_info[REGNO (dest_reg)] = v;
4871 }
4872
4873 /* Add the giv to the class of givs computed from one biv. */
4874
4875 bl = reg_biv_class[REGNO (src_reg)];
4876 if (bl)
4877 {
4878 v->next_iv = bl->giv;
4879 bl->giv = v;
4880 /* Don't count DEST_ADDR. This is supposed to count the number of
4881 insns that calculate givs. */
4882 if (type == DEST_REG)
4883 bl->giv_count++;
4884 bl->total_benefit += benefit;
4885 }
4886 else
4887 /* Fatal error, biv missing for this giv? */
4888 abort ();
4889
4890 if (type == DEST_ADDR)
4891 v->replaceable = 1;
4892 else
4893 {
4894 /* The giv can be replaced outright by the reduced register only if all
4895 of the following conditions are true:
4896 - the insn that sets the giv is always executed on any iteration
4897 on which the giv is used at all
4898 (there are two ways to deduce this:
4899 either the insn is executed on every iteration,
4900 or all uses follow that insn in the same basic block),
4901 - the giv is not used outside the loop
4902 - no assignments to the biv occur during the giv's lifetime. */
4903
4904 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4905 /* Previous line always fails if INSN was moved by loop opt. */
4906 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4907 && (! not_every_iteration
4908 || last_use_this_basic_block (dest_reg, insn)))
4909 {
4910 /* Now check that there are no assignments to the biv within the
4911 giv's lifetime. This requires two separate checks. */
4912
4913 /* Check each biv update, and fail if any are between the first
4914 and last use of the giv.
4915
4916 If this loop contains an inner loop that was unrolled, then
4917 the insn modifying the biv may have been emitted by the loop
4918 unrolling code, and hence does not have a valid luid. Just
4919 mark the biv as not replaceable in this case. It is not very
4920 useful as a biv, because it is used in two different loops.
4921 It is very unlikely that we would be able to optimize the giv
4922 using this biv anyways. */
4923
4924 v->replaceable = 1;
4925 for (b = bl->biv; b; b = b->next_iv)
4926 {
4927 if (INSN_UID (b->insn) >= max_uid_for_loop
4928 || ((uid_luid[INSN_UID (b->insn)]
4929 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4930 && (uid_luid[INSN_UID (b->insn)]
4931 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4932 {
4933 v->replaceable = 0;
4934 v->not_replaceable = 1;
4935 break;
4936 }
4937 }
4938
4939 /* If there are any backwards branches that go from after the
4940 biv update to before it, then this giv is not replaceable. */
4941 if (v->replaceable)
4942 for (b = bl->biv; b; b = b->next_iv)
4943 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4944 {
4945 v->replaceable = 0;
4946 v->not_replaceable = 1;
4947 break;
4948 }
4949 }
4950 else
4951 {
4952 /* May still be replaceable, we don't have enough info here to
4953 decide. */
4954 v->replaceable = 0;
4955 v->not_replaceable = 0;
4956 }
4957 }
4958
4959 /* Record whether the add_val contains a const_int, for later use by
4960 combine_givs. */
4961 {
4962 rtx tem = add_val;
4963
4964 v->no_const_addval = 1;
4965 if (tem == const0_rtx)
4966 ;
4967 else if (GET_CODE (tem) == CONST_INT)
4968 v->no_const_addval = 0;
4969 else if (GET_CODE (tem) == PLUS)
4970 {
4971 while (1)
4972 {
4973 if (GET_CODE (XEXP (tem, 0)) == PLUS)
4974 tem = XEXP (tem, 0);
4975 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
4976 tem = XEXP (tem, 1);
4977 else
4978 break;
4979 }
4980 if (GET_CODE (XEXP (tem, 1)) == CONST_INT)
4981 v->no_const_addval = 0;
4982 }
4983 }
4984
4985 if (loop_dump_stream)
4986 {
4987 if (type == DEST_REG)
4988 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4989 INSN_UID (insn), REGNO (dest_reg));
4990 else
4991 fprintf (loop_dump_stream, "Insn %d: dest address",
4992 INSN_UID (insn));
4993
4994 fprintf (loop_dump_stream, " src reg %d benefit %d",
4995 REGNO (src_reg), v->benefit);
4996 fprintf (loop_dump_stream, " lifetime %d",
4997 v->lifetime);
4998
4999 if (v->replaceable)
5000 fprintf (loop_dump_stream, " replaceable");
5001
5002 if (v->no_const_addval)
5003 fprintf (loop_dump_stream, " ncav");
5004
5005 if (GET_CODE (mult_val) == CONST_INT)
5006 {
5007 fprintf (loop_dump_stream, " mult ");
5008 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5009 }
5010 else
5011 {
5012 fprintf (loop_dump_stream, " mult ");
5013 print_rtl (loop_dump_stream, mult_val);
5014 }
5015
5016 if (GET_CODE (add_val) == CONST_INT)
5017 {
5018 fprintf (loop_dump_stream, " add ");
5019 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5020 }
5021 else
5022 {
5023 fprintf (loop_dump_stream, " add ");
5024 print_rtl (loop_dump_stream, add_val);
5025 }
5026 }
5027
5028 if (loop_dump_stream)
5029 fprintf (loop_dump_stream, "\n");
5030
5031 }
5032
5033
5034 /* All this does is determine whether a giv can be made replaceable because
5035 its final value can be calculated. This code can not be part of record_giv
5036 above, because final_giv_value requires that the number of loop iterations
5037 be known, and that can not be accurately calculated until after all givs
5038 have been identified. */
5039
5040 static void
5041 check_final_value (v, loop_start, loop_end, n_iterations)
5042 struct induction *v;
5043 rtx loop_start, loop_end;
5044 unsigned HOST_WIDE_INT n_iterations;
5045 {
5046 struct iv_class *bl;
5047 rtx final_value = 0;
5048
5049 bl = reg_biv_class[REGNO (v->src_reg)];
5050
5051 /* DEST_ADDR givs will never reach here, because they are always marked
5052 replaceable above in record_giv. */
5053
5054 /* The giv can be replaced outright by the reduced register only if all
5055 of the following conditions are true:
5056 - the insn that sets the giv is always executed on any iteration
5057 on which the giv is used at all
5058 (there are two ways to deduce this:
5059 either the insn is executed on every iteration,
5060 or all uses follow that insn in the same basic block),
5061 - its final value can be calculated (this condition is different
5062 than the one above in record_giv)
5063 - no assignments to the biv occur during the giv's lifetime. */
5064
5065 #if 0
5066 /* This is only called now when replaceable is known to be false. */
5067 /* Clear replaceable, so that it won't confuse final_giv_value. */
5068 v->replaceable = 0;
5069 #endif
5070
5071 if ((final_value = final_giv_value (v, loop_start, loop_end, n_iterations))
5072 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5073 {
5074 int biv_increment_seen = 0;
5075 rtx p = v->insn;
5076 rtx last_giv_use;
5077
5078 v->replaceable = 1;
5079
5080 /* When trying to determine whether or not a biv increment occurs
5081 during the lifetime of the giv, we can ignore uses of the variable
5082 outside the loop because final_value is true. Hence we can not
5083 use regno_last_uid and regno_first_uid as above in record_giv. */
5084
5085 /* Search the loop to determine whether any assignments to the
5086 biv occur during the giv's lifetime. Start with the insn
5087 that sets the giv, and search around the loop until we come
5088 back to that insn again.
5089
5090 Also fail if there is a jump within the giv's lifetime that jumps
5091 to somewhere outside the lifetime but still within the loop. This
5092 catches spaghetti code where the execution order is not linear, and
5093 hence the above test fails. Here we assume that the giv lifetime
5094 does not extend from one iteration of the loop to the next, so as
5095 to make the test easier. Since the lifetime isn't known yet,
5096 this requires two loops. See also record_giv above. */
5097
5098 last_giv_use = v->insn;
5099
5100 while (1)
5101 {
5102 p = NEXT_INSN (p);
5103 if (p == loop_end)
5104 p = NEXT_INSN (loop_start);
5105 if (p == v->insn)
5106 break;
5107
5108 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5109 || GET_CODE (p) == CALL_INSN)
5110 {
5111 if (biv_increment_seen)
5112 {
5113 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5114 {
5115 v->replaceable = 0;
5116 v->not_replaceable = 1;
5117 break;
5118 }
5119 }
5120 else if (reg_set_p (v->src_reg, PATTERN (p)))
5121 biv_increment_seen = 1;
5122 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5123 last_giv_use = p;
5124 }
5125 }
5126
5127 /* Now that the lifetime of the giv is known, check for branches
5128 from within the lifetime to outside the lifetime if it is still
5129 replaceable. */
5130
5131 if (v->replaceable)
5132 {
5133 p = v->insn;
5134 while (1)
5135 {
5136 p = NEXT_INSN (p);
5137 if (p == loop_end)
5138 p = NEXT_INSN (loop_start);
5139 if (p == last_giv_use)
5140 break;
5141
5142 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5143 && LABEL_NAME (JUMP_LABEL (p))
5144 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
5145 || (INSN_UID (v->insn) >= max_uid_for_loop)
5146 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
5147 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
5148 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
5149 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
5150 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
5151 {
5152 v->replaceable = 0;
5153 v->not_replaceable = 1;
5154
5155 if (loop_dump_stream)
5156 fprintf (loop_dump_stream,
5157 "Found branch outside giv lifetime.\n");
5158
5159 break;
5160 }
5161 }
5162 }
5163
5164 /* If it is replaceable, then save the final value. */
5165 if (v->replaceable)
5166 v->final_value = final_value;
5167 }
5168
5169 if (loop_dump_stream && v->replaceable)
5170 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5171 INSN_UID (v->insn), REGNO (v->dest_reg));
5172 }
5173 \f
5174 /* Update the status of whether a giv can derive other givs.
5175
5176 We need to do something special if there is or may be an update to the biv
5177 between the time the giv is defined and the time it is used to derive
5178 another giv.
5179
5180 In addition, a giv that is only conditionally set is not allowed to
5181 derive another giv once a label has been passed.
5182
5183 The cases we look at are when a label or an update to a biv is passed. */
5184
5185 static void
5186 update_giv_derive (p)
5187 rtx p;
5188 {
5189 struct iv_class *bl;
5190 struct induction *biv, *giv;
5191 rtx tem;
5192 int dummy;
5193
5194 /* Search all IV classes, then all bivs, and finally all givs.
5195
5196 There are three cases we are concerned with. First we have the situation
5197 of a giv that is only updated conditionally. In that case, it may not
5198 derive any givs after a label is passed.
5199
5200 The second case is when a biv update occurs, or may occur, after the
5201 definition of a giv. For certain biv updates (see below) that are
5202 known to occur between the giv definition and use, we can adjust the
5203 giv definition. For others, or when the biv update is conditional,
5204 we must prevent the giv from deriving any other givs. There are two
5205 sub-cases within this case.
5206
5207 If this is a label, we are concerned with any biv update that is done
5208 conditionally, since it may be done after the giv is defined followed by
5209 a branch here (actually, we need to pass both a jump and a label, but
5210 this extra tracking doesn't seem worth it).
5211
5212 If this is a jump, we are concerned about any biv update that may be
5213 executed multiple times. We are actually only concerned about
5214 backward jumps, but it is probably not worth performing the test
5215 on the jump again here.
5216
5217 If this is a biv update, we must adjust the giv status to show that a
5218 subsequent biv update was performed. If this adjustment cannot be done,
5219 the giv cannot derive further givs. */
5220
5221 for (bl = loop_iv_list; bl; bl = bl->next)
5222 for (biv = bl->biv; biv; biv = biv->next_iv)
5223 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5224 || biv->insn == p)
5225 {
5226 for (giv = bl->giv; giv; giv = giv->next_iv)
5227 {
5228 /* If cant_derive is already true, there is no point in
5229 checking all of these conditions again. */
5230 if (giv->cant_derive)
5231 continue;
5232
5233 /* If this giv is conditionally set and we have passed a label,
5234 it cannot derive anything. */
5235 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5236 giv->cant_derive = 1;
5237
5238 /* Skip givs that have mult_val == 0, since
5239 they are really invariants. Also skip those that are
5240 replaceable, since we know their lifetime doesn't contain
5241 any biv update. */
5242 else if (giv->mult_val == const0_rtx || giv->replaceable)
5243 continue;
5244
5245 /* The only way we can allow this giv to derive another
5246 is if this is a biv increment and we can form the product
5247 of biv->add_val and giv->mult_val. In this case, we will
5248 be able to compute a compensation. */
5249 else if (biv->insn == p)
5250 {
5251 tem = 0;
5252
5253 if (biv->mult_val == const1_rtx)
5254 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5255 biv->add_val,
5256 giv->mult_val),
5257 &dummy);
5258
5259 if (tem && giv->derive_adjustment)
5260 tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
5261 giv->derive_adjustment),
5262 &dummy);
5263 if (tem)
5264 giv->derive_adjustment = tem;
5265 else
5266 giv->cant_derive = 1;
5267 }
5268 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5269 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5270 giv->cant_derive = 1;
5271 }
5272 }
5273 }
5274 \f
5275 /* Check whether an insn is an increment legitimate for a basic induction var.
5276 X is the source of insn P, or a part of it.
5277 MODE is the mode in which X should be interpreted.
5278
5279 DEST_REG is the putative biv, also the destination of the insn.
5280 We accept patterns of these forms:
5281 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5282 REG = INVARIANT + REG
5283
5284 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5285 and store the additive term into *INC_VAL.
5286
5287 If X is an assignment of an invariant into DEST_REG, we set
5288 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5289
5290 We also want to detect a BIV when it corresponds to a variable
5291 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5292 of the variable may be a PLUS that adds a SUBREG of that variable to
5293 an invariant and then sign- or zero-extends the result of the PLUS
5294 into the variable.
5295
5296 Most GIVs in such cases will be in the promoted mode, since that is the
5297 probably the natural computation mode (and almost certainly the mode
5298 used for addresses) on the machine. So we view the pseudo-reg containing
5299 the variable as the BIV, as if it were simply incremented.
5300
5301 Note that treating the entire pseudo as a BIV will result in making
5302 simple increments to any GIVs based on it. However, if the variable
5303 overflows in its declared mode but not its promoted mode, the result will
5304 be incorrect. This is acceptable if the variable is signed, since
5305 overflows in such cases are undefined, but not if it is unsigned, since
5306 those overflows are defined. So we only check for SIGN_EXTEND and
5307 not ZERO_EXTEND.
5308
5309 If we cannot find a biv, we return 0. */
5310
5311 static int
5312 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5313 register rtx x;
5314 enum machine_mode mode;
5315 rtx p;
5316 rtx dest_reg;
5317 rtx *inc_val;
5318 rtx *mult_val;
5319 {
5320 register enum rtx_code code;
5321 rtx arg;
5322 rtx insn, set = 0;
5323
5324 code = GET_CODE (x);
5325 switch (code)
5326 {
5327 case PLUS:
5328 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5329 || (GET_CODE (XEXP (x, 0)) == SUBREG
5330 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5331 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5332 arg = XEXP (x, 1);
5333 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5334 || (GET_CODE (XEXP (x, 1)) == SUBREG
5335 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5336 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5337 arg = XEXP (x, 0);
5338 else
5339 return 0;
5340
5341 if (invariant_p (arg) != 1)
5342 return 0;
5343
5344 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5345 *mult_val = const1_rtx;
5346 return 1;
5347
5348 case SUBREG:
5349 /* If this is a SUBREG for a promoted variable, check the inner
5350 value. */
5351 if (SUBREG_PROMOTED_VAR_P (x))
5352 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5353 dest_reg, p, inc_val, mult_val);
5354 return 0;
5355
5356 case REG:
5357 /* If this register is assigned in a previous insn, look at its
5358 source, but don't go outside the loop or past a label. */
5359
5360 insn = p;
5361 while (1)
5362 {
5363 do {
5364 insn = PREV_INSN (insn);
5365 } while (insn && GET_CODE (insn) == NOTE
5366 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5367
5368 if (!insn)
5369 break;
5370 set = single_set (insn);
5371 if (set == 0)
5372 break;
5373
5374 if ((SET_DEST (set) == x
5375 || (GET_CODE (SET_DEST (set)) == SUBREG
5376 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5377 <= UNITS_PER_WORD)
5378 && SUBREG_REG (SET_DEST (set)) == x))
5379 && basic_induction_var (SET_SRC (set),
5380 (GET_MODE (SET_SRC (set)) == VOIDmode
5381 ? GET_MODE (x)
5382 : GET_MODE (SET_SRC (set))),
5383 dest_reg, insn,
5384 inc_val, mult_val))
5385 return 1;
5386 }
5387 /* ... fall through ... */
5388
5389 /* Can accept constant setting of biv only when inside inner most loop.
5390 Otherwise, a biv of an inner loop may be incorrectly recognized
5391 as a biv of the outer loop,
5392 causing code to be moved INTO the inner loop. */
5393 case MEM:
5394 if (invariant_p (x) != 1)
5395 return 0;
5396 case CONST_INT:
5397 case SYMBOL_REF:
5398 case CONST:
5399 /* convert_modes aborts if we try to convert to or from CCmode, so just
5400 exclude that case. It is very unlikely that a condition code value
5401 would be a useful iterator anyways. */
5402 if (loops_enclosed == 1
5403 && GET_MODE_CLASS (mode) != MODE_CC
5404 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
5405 {
5406 /* Possible bug here? Perhaps we don't know the mode of X. */
5407 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5408 *mult_val = const0_rtx;
5409 return 1;
5410 }
5411 else
5412 return 0;
5413
5414 case SIGN_EXTEND:
5415 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5416 dest_reg, p, inc_val, mult_val);
5417
5418 case ASHIFTRT:
5419 /* Similar, since this can be a sign extension. */
5420 for (insn = PREV_INSN (p);
5421 (insn && GET_CODE (insn) == NOTE
5422 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5423 insn = PREV_INSN (insn))
5424 ;
5425
5426 if (insn)
5427 set = single_set (insn);
5428
5429 if (set && SET_DEST (set) == XEXP (x, 0)
5430 && GET_CODE (XEXP (x, 1)) == CONST_INT
5431 && INTVAL (XEXP (x, 1)) >= 0
5432 && GET_CODE (SET_SRC (set)) == ASHIFT
5433 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5434 return basic_induction_var (XEXP (SET_SRC (set), 0),
5435 GET_MODE (XEXP (x, 0)),
5436 dest_reg, insn, inc_val, mult_val);
5437 return 0;
5438
5439 default:
5440 return 0;
5441 }
5442 }
5443 \f
5444 /* A general induction variable (giv) is any quantity that is a linear
5445 function of a basic induction variable,
5446 i.e. giv = biv * mult_val + add_val.
5447 The coefficients can be any loop invariant quantity.
5448 A giv need not be computed directly from the biv;
5449 it can be computed by way of other givs. */
5450
5451 /* Determine whether X computes a giv.
5452 If it does, return a nonzero value
5453 which is the benefit from eliminating the computation of X;
5454 set *SRC_REG to the register of the biv that it is computed from;
5455 set *ADD_VAL and *MULT_VAL to the coefficients,
5456 such that the value of X is biv * mult + add; */
5457
5458 static int
5459 general_induction_var (x, src_reg, add_val, mult_val, is_addr, pbenefit)
5460 rtx x;
5461 rtx *src_reg;
5462 rtx *add_val;
5463 rtx *mult_val;
5464 int is_addr;
5465 int *pbenefit;
5466 {
5467 rtx orig_x = x;
5468 char *storage;
5469
5470 /* If this is an invariant, forget it, it isn't a giv. */
5471 if (invariant_p (x) == 1)
5472 return 0;
5473
5474 /* See if the expression could be a giv and get its form.
5475 Mark our place on the obstack in case we don't find a giv. */
5476 storage = (char *) oballoc (0);
5477 *pbenefit = 0;
5478 x = simplify_giv_expr (x, pbenefit);
5479 if (x == 0)
5480 {
5481 obfree (storage);
5482 return 0;
5483 }
5484
5485 switch (GET_CODE (x))
5486 {
5487 case USE:
5488 case CONST_INT:
5489 /* Since this is now an invariant and wasn't before, it must be a giv
5490 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5491 with. */
5492 *src_reg = loop_iv_list->biv->dest_reg;
5493 *mult_val = const0_rtx;
5494 *add_val = x;
5495 break;
5496
5497 case REG:
5498 /* This is equivalent to a BIV. */
5499 *src_reg = x;
5500 *mult_val = const1_rtx;
5501 *add_val = const0_rtx;
5502 break;
5503
5504 case PLUS:
5505 /* Either (plus (biv) (invar)) or
5506 (plus (mult (biv) (invar_1)) (invar_2)). */
5507 if (GET_CODE (XEXP (x, 0)) == MULT)
5508 {
5509 *src_reg = XEXP (XEXP (x, 0), 0);
5510 *mult_val = XEXP (XEXP (x, 0), 1);
5511 }
5512 else
5513 {
5514 *src_reg = XEXP (x, 0);
5515 *mult_val = const1_rtx;
5516 }
5517 *add_val = XEXP (x, 1);
5518 break;
5519
5520 case MULT:
5521 /* ADD_VAL is zero. */
5522 *src_reg = XEXP (x, 0);
5523 *mult_val = XEXP (x, 1);
5524 *add_val = const0_rtx;
5525 break;
5526
5527 default:
5528 abort ();
5529 }
5530
5531 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5532 unless they are CONST_INT). */
5533 if (GET_CODE (*add_val) == USE)
5534 *add_val = XEXP (*add_val, 0);
5535 if (GET_CODE (*mult_val) == USE)
5536 *mult_val = XEXP (*mult_val, 0);
5537
5538 if (is_addr)
5539 {
5540 #ifdef ADDRESS_COST
5541 *pbenefit += ADDRESS_COST (orig_x) - reg_address_cost;
5542 #else
5543 *pbenefit += rtx_cost (orig_x, MEM) - reg_address_cost;
5544 #endif
5545 }
5546 else
5547 *pbenefit += rtx_cost (orig_x, SET);
5548
5549 /* Always return true if this is a giv so it will be detected as such,
5550 even if the benefit is zero or negative. This allows elimination
5551 of bivs that might otherwise not be eliminated. */
5552 return 1;
5553 }
5554 \f
5555 /* Given an expression, X, try to form it as a linear function of a biv.
5556 We will canonicalize it to be of the form
5557 (plus (mult (BIV) (invar_1))
5558 (invar_2))
5559 with possible degeneracies.
5560
5561 The invariant expressions must each be of a form that can be used as a
5562 machine operand. We surround then with a USE rtx (a hack, but localized
5563 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5564 routine; it is the caller's responsibility to strip them.
5565
5566 If no such canonicalization is possible (i.e., two biv's are used or an
5567 expression that is neither invariant nor a biv or giv), this routine
5568 returns 0.
5569
5570 For a non-zero return, the result will have a code of CONST_INT, USE,
5571 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5572
5573 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5574
5575 static rtx sge_plus PROTO ((enum machine_mode, rtx, rtx));
5576 static rtx sge_plus_constant PROTO ((rtx, rtx));
5577
5578 static rtx
5579 simplify_giv_expr (x, benefit)
5580 rtx x;
5581 int *benefit;
5582 {
5583 enum machine_mode mode = GET_MODE (x);
5584 rtx arg0, arg1;
5585 rtx tem;
5586
5587 /* If this is not an integer mode, or if we cannot do arithmetic in this
5588 mode, this can't be a giv. */
5589 if (mode != VOIDmode
5590 && (GET_MODE_CLASS (mode) != MODE_INT
5591 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5592 return NULL_RTX;
5593
5594 switch (GET_CODE (x))
5595 {
5596 case PLUS:
5597 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5598 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5599 if (arg0 == 0 || arg1 == 0)
5600 return NULL_RTX;
5601
5602 /* Put constant last, CONST_INT last if both constant. */
5603 if ((GET_CODE (arg0) == USE
5604 || GET_CODE (arg0) == CONST_INT)
5605 && ! ((GET_CODE (arg0) == USE
5606 && GET_CODE (arg1) == USE)
5607 || GET_CODE (arg1) == CONST_INT))
5608 tem = arg0, arg0 = arg1, arg1 = tem;
5609
5610 /* Handle addition of zero, then addition of an invariant. */
5611 if (arg1 == const0_rtx)
5612 return arg0;
5613 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5614 switch (GET_CODE (arg0))
5615 {
5616 case CONST_INT:
5617 case USE:
5618 /* Adding two invariants must result in an invariant, so enclose
5619 addition operation inside a USE and return it. */
5620 if (GET_CODE (arg0) == USE)
5621 arg0 = XEXP (arg0, 0);
5622 if (GET_CODE (arg1) == USE)
5623 arg1 = XEXP (arg1, 0);
5624
5625 if (GET_CODE (arg0) == CONST_INT)
5626 tem = arg0, arg0 = arg1, arg1 = tem;
5627 if (GET_CODE (arg1) == CONST_INT)
5628 tem = sge_plus_constant (arg0, arg1);
5629 else
5630 tem = sge_plus (mode, arg0, arg1);
5631
5632 if (GET_CODE (tem) != CONST_INT)
5633 tem = gen_rtx_USE (mode, tem);
5634 return tem;
5635
5636 case REG:
5637 case MULT:
5638 /* biv + invar or mult + invar. Return sum. */
5639 return gen_rtx_PLUS (mode, arg0, arg1);
5640
5641 case PLUS:
5642 /* (a + invar_1) + invar_2. Associate. */
5643 return simplify_giv_expr (
5644 gen_rtx_PLUS (mode, XEXP (arg0, 0),
5645 gen_rtx_PLUS (mode, XEXP (arg0, 1), arg1)),
5646 benefit);
5647
5648 default:
5649 abort ();
5650 }
5651
5652 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5653 MULT to reduce cases. */
5654 if (GET_CODE (arg0) == REG)
5655 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
5656 if (GET_CODE (arg1) == REG)
5657 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
5658
5659 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5660 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5661 Recurse to associate the second PLUS. */
5662 if (GET_CODE (arg1) == MULT)
5663 tem = arg0, arg0 = arg1, arg1 = tem;
5664
5665 if (GET_CODE (arg1) == PLUS)
5666 return simplify_giv_expr (gen_rtx_PLUS (mode,
5667 gen_rtx_PLUS (mode, arg0,
5668 XEXP (arg1, 0)),
5669 XEXP (arg1, 1)),
5670 benefit);
5671
5672 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5673 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5674 return NULL_RTX;
5675
5676 if (!rtx_equal_p (arg0, arg1))
5677 return NULL_RTX;
5678
5679 return simplify_giv_expr (gen_rtx_MULT (mode,
5680 XEXP (arg0, 0),
5681 gen_rtx_PLUS (mode,
5682 XEXP (arg0, 1),
5683 XEXP (arg1, 1))),
5684 benefit);
5685
5686 case MINUS:
5687 /* Handle "a - b" as "a + b * (-1)". */
5688 return simplify_giv_expr (gen_rtx_PLUS (mode,
5689 XEXP (x, 0),
5690 gen_rtx_MULT (mode, XEXP (x, 1),
5691 constm1_rtx)),
5692 benefit);
5693
5694 case MULT:
5695 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5696 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5697 if (arg0 == 0 || arg1 == 0)
5698 return NULL_RTX;
5699
5700 /* Put constant last, CONST_INT last if both constant. */
5701 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5702 && GET_CODE (arg1) != CONST_INT)
5703 tem = arg0, arg0 = arg1, arg1 = tem;
5704
5705 /* If second argument is not now constant, not giv. */
5706 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5707 return NULL_RTX;
5708
5709 /* Handle multiply by 0 or 1. */
5710 if (arg1 == const0_rtx)
5711 return const0_rtx;
5712
5713 else if (arg1 == const1_rtx)
5714 return arg0;
5715
5716 switch (GET_CODE (arg0))
5717 {
5718 case REG:
5719 /* biv * invar. Done. */
5720 return gen_rtx_MULT (mode, arg0, arg1);
5721
5722 case CONST_INT:
5723 /* Product of two constants. */
5724 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5725
5726 case USE:
5727 /* invar * invar. It is a giv, but very few of these will
5728 actually pay off, so limit to simple registers. */
5729 if (GET_CODE (arg1) != CONST_INT)
5730 return NULL_RTX;
5731
5732 arg0 = XEXP (arg0, 0);
5733 if (GET_CODE (arg0) == REG)
5734 tem = gen_rtx_MULT (mode, arg0, arg1);
5735 else if (GET_CODE (arg0) == MULT
5736 && GET_CODE (XEXP (arg0, 0)) == REG
5737 && GET_CODE (XEXP (arg0, 1)) == CONST_INT)
5738 {
5739 tem = gen_rtx_MULT (mode, XEXP (arg0, 0),
5740 GEN_INT (INTVAL (XEXP (arg0, 1))
5741 * INTVAL (arg1)));
5742 }
5743 else
5744 return NULL_RTX;
5745 return gen_rtx_USE (mode, tem);
5746
5747 case MULT:
5748 /* (a * invar_1) * invar_2. Associate. */
5749 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
5750 gen_rtx_MULT (mode,
5751 XEXP (arg0, 1),
5752 arg1)),
5753 benefit);
5754
5755 case PLUS:
5756 /* (a + invar_1) * invar_2. Distribute. */
5757 return simplify_giv_expr (gen_rtx_PLUS (mode,
5758 gen_rtx_MULT (mode,
5759 XEXP (arg0, 0),
5760 arg1),
5761 gen_rtx_MULT (mode,
5762 XEXP (arg0, 1),
5763 arg1)),
5764 benefit);
5765
5766 default:
5767 abort ();
5768 }
5769
5770 case ASHIFT:
5771 /* Shift by constant is multiply by power of two. */
5772 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5773 return 0;
5774
5775 return simplify_giv_expr (gen_rtx_MULT (mode,
5776 XEXP (x, 0),
5777 GEN_INT ((HOST_WIDE_INT) 1
5778 << INTVAL (XEXP (x, 1)))),
5779 benefit);
5780
5781 case NEG:
5782 /* "-a" is "a * (-1)" */
5783 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
5784 benefit);
5785
5786 case NOT:
5787 /* "~a" is "-a - 1". Silly, but easy. */
5788 return simplify_giv_expr (gen_rtx_MINUS (mode,
5789 gen_rtx_NEG (mode, XEXP (x, 0)),
5790 const1_rtx),
5791 benefit);
5792
5793 case USE:
5794 /* Already in proper form for invariant. */
5795 return x;
5796
5797 case REG:
5798 /* If this is a new register, we can't deal with it. */
5799 if (REGNO (x) >= max_reg_before_loop)
5800 return 0;
5801
5802 /* Check for biv or giv. */
5803 switch (reg_iv_type[REGNO (x)])
5804 {
5805 case BASIC_INDUCT:
5806 return x;
5807 case GENERAL_INDUCT:
5808 {
5809 struct induction *v = reg_iv_info[REGNO (x)];
5810
5811 /* Form expression from giv and add benefit. Ensure this giv
5812 can derive another and subtract any needed adjustment if so. */
5813 *benefit += v->benefit;
5814 if (v->cant_derive)
5815 return 0;
5816
5817 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
5818 v->mult_val),
5819 v->add_val);
5820 if (v->derive_adjustment)
5821 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
5822 return simplify_giv_expr (tem, benefit);
5823 }
5824
5825 default:
5826 /* If it isn't an induction variable, and it is invariant, we
5827 may be able to simplify things further by looking through
5828 the bits we just moved outside the loop. */
5829 if (invariant_p (x) == 1)
5830 {
5831 struct movable *m;
5832
5833 for (m = the_movables; m ; m = m->next)
5834 if (rtx_equal_p (x, m->set_dest))
5835 {
5836 /* Ok, we found a match. Substitute and simplify. */
5837
5838 /* If we match another movable, we must use that, as
5839 this one is going away. */
5840 if (m->match)
5841 return simplify_giv_expr (m->match->set_dest, benefit);
5842
5843 /* If consec is non-zero, this is a member of a group of
5844 instructions that were moved together. We handle this
5845 case only to the point of seeking to the last insn and
5846 looking for a REG_EQUAL. Fail if we don't find one. */
5847 if (m->consec != 0)
5848 {
5849 int i = m->consec;
5850 tem = m->insn;
5851 do { tem = NEXT_INSN (tem); } while (--i > 0);
5852
5853 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
5854 if (tem)
5855 tem = XEXP (tem, 0);
5856 }
5857 else
5858 {
5859 tem = single_set (m->insn);
5860 if (tem)
5861 tem = SET_SRC (tem);
5862 }
5863
5864 if (tem)
5865 {
5866 /* What we are most interested in is pointer
5867 arithmetic on invariants -- only take
5868 patterns we may be able to do something with. */
5869 if (GET_CODE (tem) == PLUS
5870 || GET_CODE (tem) == MULT
5871 || GET_CODE (tem) == ASHIFT
5872 || GET_CODE (tem) == CONST_INT
5873 || GET_CODE (tem) == SYMBOL_REF)
5874 {
5875 tem = simplify_giv_expr (tem, benefit);
5876 if (tem)
5877 return tem;
5878 }
5879 else if (GET_CODE (tem) == CONST
5880 && GET_CODE (XEXP (tem, 0)) == PLUS
5881 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
5882 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
5883 {
5884 tem = simplify_giv_expr (XEXP (tem, 0), benefit);
5885 if (tem)
5886 return tem;
5887 }
5888 }
5889 break;
5890 }
5891 }
5892 break;
5893 }
5894
5895 /* Fall through to general case. */
5896 default:
5897 /* If invariant, return as USE (unless CONST_INT).
5898 Otherwise, not giv. */
5899 if (GET_CODE (x) == USE)
5900 x = XEXP (x, 0);
5901
5902 if (invariant_p (x) == 1)
5903 {
5904 if (GET_CODE (x) == CONST_INT)
5905 return x;
5906 if (GET_CODE (x) == CONST
5907 && GET_CODE (XEXP (x, 0)) == PLUS
5908 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
5909 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
5910 x = XEXP (x, 0);
5911 return gen_rtx_USE (mode, x);
5912 }
5913 else
5914 return 0;
5915 }
5916 }
5917
5918 /* This routine folds invariants such that there is only ever one
5919 CONST_INT in the summation. It is only used by simplify_giv_expr. */
5920
5921 static rtx
5922 sge_plus_constant (x, c)
5923 rtx x, c;
5924 {
5925 if (GET_CODE (x) == CONST_INT)
5926 return GEN_INT (INTVAL (x) + INTVAL (c));
5927 else if (GET_CODE (x) != PLUS)
5928 return gen_rtx_PLUS (GET_MODE (x), x, c);
5929 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5930 {
5931 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
5932 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
5933 }
5934 else if (GET_CODE (XEXP (x, 0)) == PLUS
5935 || GET_CODE (XEXP (x, 1)) != PLUS)
5936 {
5937 return gen_rtx_PLUS (GET_MODE (x),
5938 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
5939 }
5940 else
5941 {
5942 return gen_rtx_PLUS (GET_MODE (x),
5943 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
5944 }
5945 }
5946
5947 static rtx
5948 sge_plus (mode, x, y)
5949 enum machine_mode mode;
5950 rtx x, y;
5951 {
5952 while (GET_CODE (y) == PLUS)
5953 {
5954 rtx a = XEXP (y, 0);
5955 if (GET_CODE (a) == CONST_INT)
5956 x = sge_plus_constant (x, a);
5957 else
5958 x = gen_rtx_PLUS (mode, x, a);
5959 y = XEXP (y, 1);
5960 }
5961 if (GET_CODE (y) == CONST_INT)
5962 x = sge_plus_constant (x, y);
5963 else
5964 x = gen_rtx_PLUS (mode, x, y);
5965 return x;
5966 }
5967 \f
5968 /* Help detect a giv that is calculated by several consecutive insns;
5969 for example,
5970 giv = biv * M
5971 giv = giv + A
5972 The caller has already identified the first insn P as having a giv as dest;
5973 we check that all other insns that set the same register follow
5974 immediately after P, that they alter nothing else,
5975 and that the result of the last is still a giv.
5976
5977 The value is 0 if the reg set in P is not really a giv.
5978 Otherwise, the value is the amount gained by eliminating
5979 all the consecutive insns that compute the value.
5980
5981 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5982 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5983
5984 The coefficients of the ultimate giv value are stored in
5985 *MULT_VAL and *ADD_VAL. */
5986
5987 static int
5988 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5989 add_val, mult_val, last_consec_insn)
5990 int first_benefit;
5991 rtx p;
5992 rtx src_reg;
5993 rtx dest_reg;
5994 rtx *add_val;
5995 rtx *mult_val;
5996 rtx *last_consec_insn;
5997 {
5998 int count;
5999 enum rtx_code code;
6000 int benefit;
6001 rtx temp;
6002 rtx set;
6003
6004 /* Indicate that this is a giv so that we can update the value produced in
6005 each insn of the multi-insn sequence.
6006
6007 This induction structure will be used only by the call to
6008 general_induction_var below, so we can allocate it on our stack.
6009 If this is a giv, our caller will replace the induct var entry with
6010 a new induction structure. */
6011 struct induction *v
6012 = (struct induction *) alloca (sizeof (struct induction));
6013 v->src_reg = src_reg;
6014 v->mult_val = *mult_val;
6015 v->add_val = *add_val;
6016 v->benefit = first_benefit;
6017 v->cant_derive = 0;
6018 v->derive_adjustment = 0;
6019
6020 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
6021 reg_iv_info[REGNO (dest_reg)] = v;
6022
6023 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6024
6025 while (count > 0)
6026 {
6027 p = NEXT_INSN (p);
6028 code = GET_CODE (p);
6029
6030 /* If libcall, skip to end of call sequence. */
6031 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6032 p = XEXP (temp, 0);
6033
6034 if (code == INSN
6035 && (set = single_set (p))
6036 && GET_CODE (SET_DEST (set)) == REG
6037 && SET_DEST (set) == dest_reg
6038 && (general_induction_var (SET_SRC (set), &src_reg,
6039 add_val, mult_val, 0, &benefit)
6040 /* Giv created by equivalent expression. */
6041 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6042 && general_induction_var (XEXP (temp, 0), &src_reg,
6043 add_val, mult_val, 0, &benefit)))
6044 && src_reg == v->src_reg)
6045 {
6046 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6047 benefit += libcall_benefit (p);
6048
6049 count--;
6050 v->mult_val = *mult_val;
6051 v->add_val = *add_val;
6052 v->benefit = benefit;
6053 }
6054 else if (code != NOTE)
6055 {
6056 /* Allow insns that set something other than this giv to a
6057 constant. Such insns are needed on machines which cannot
6058 include long constants and should not disqualify a giv. */
6059 if (code == INSN
6060 && (set = single_set (p))
6061 && SET_DEST (set) != dest_reg
6062 && CONSTANT_P (SET_SRC (set)))
6063 continue;
6064
6065 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
6066 return 0;
6067 }
6068 }
6069
6070 *last_consec_insn = p;
6071 return v->benefit;
6072 }
6073 \f
6074 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6075 represented by G1. If no such expression can be found, or it is clear that
6076 it cannot possibly be a valid address, 0 is returned.
6077
6078 To perform the computation, we note that
6079 G1 = x * v + a and
6080 G2 = y * v + b
6081 where `v' is the biv.
6082
6083 So G2 = (y/b) * G1 + (b - a*y/x).
6084
6085 Note that MULT = y/x.
6086
6087 Update: A and B are now allowed to be additive expressions such that
6088 B contains all variables in A. That is, computing B-A will not require
6089 subtracting variables. */
6090
6091 static rtx
6092 express_from_1 (a, b, mult)
6093 rtx a, b, mult;
6094 {
6095 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6096
6097 if (mult == const0_rtx)
6098 return b;
6099
6100 /* If MULT is not 1, we cannot handle A with non-constants, since we
6101 would then be required to subtract multiples of the registers in A.
6102 This is theoretically possible, and may even apply to some Fortran
6103 constructs, but it is a lot of work and we do not attempt it here. */
6104
6105 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6106 return NULL_RTX;
6107
6108 /* In general these structures are sorted top to bottom (down the PLUS
6109 chain), but not left to right across the PLUS. If B is a higher
6110 order giv than A, we can strip one level and recurse. If A is higher
6111 order, we'll eventually bail out, but won't know that until the end.
6112 If they are the same, we'll strip one level around this loop. */
6113
6114 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6115 {
6116 rtx ra, rb, oa, ob, tmp;
6117
6118 ra = XEXP (a, 0), oa = XEXP (a, 1);
6119 if (GET_CODE (ra) == PLUS)
6120 tmp = ra, ra = oa, oa = tmp;
6121
6122 rb = XEXP (b, 0), ob = XEXP (b, 1);
6123 if (GET_CODE (rb) == PLUS)
6124 tmp = rb, rb = ob, ob = tmp;
6125
6126 if (rtx_equal_p (ra, rb))
6127 /* We matched: remove one reg completely. */
6128 a = oa, b = ob;
6129 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6130 /* An alternate match. */
6131 a = oa, b = rb;
6132 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6133 /* An alternate match. */
6134 a = ra, b = ob;
6135 else
6136 {
6137 /* Indicates an extra register in B. Strip one level from B and
6138 recurse, hoping B was the higher order expression. */
6139 ob = express_from_1 (a, ob, mult);
6140 if (ob == NULL_RTX)
6141 return NULL_RTX;
6142 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6143 }
6144 }
6145
6146 /* Here we are at the last level of A, go through the cases hoping to
6147 get rid of everything but a constant. */
6148
6149 if (GET_CODE (a) == PLUS)
6150 {
6151 rtx ra, oa;
6152
6153 ra = XEXP (a, 0), oa = XEXP (a, 1);
6154 if (rtx_equal_p (oa, b))
6155 oa = ra;
6156 else if (!rtx_equal_p (ra, b))
6157 return NULL_RTX;
6158
6159 if (GET_CODE (oa) != CONST_INT)
6160 return NULL_RTX;
6161
6162 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6163 }
6164 else if (GET_CODE (a) == CONST_INT)
6165 {
6166 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6167 }
6168 else if (GET_CODE (b) == PLUS)
6169 {
6170 if (rtx_equal_p (a, XEXP (b, 0)))
6171 return XEXP (b, 1);
6172 else if (rtx_equal_p (a, XEXP (b, 1)))
6173 return XEXP (b, 0);
6174 else
6175 return NULL_RTX;
6176 }
6177 else if (rtx_equal_p (a, b))
6178 return const0_rtx;
6179
6180 return NULL_RTX;
6181 }
6182
6183 static rtx
6184 express_from (g1, g2)
6185 struct induction *g1, *g2;
6186 {
6187 rtx mult, add;
6188
6189 /* The value that G1 will be multiplied by must be a constant integer. Also,
6190 the only chance we have of getting a valid address is if b*c/a (see above
6191 for notation) is also an integer. */
6192 if (GET_CODE (g1->mult_val) == CONST_INT
6193 && GET_CODE (g2->mult_val) == CONST_INT)
6194 {
6195 if (g1->mult_val == const0_rtx
6196 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6197 return NULL_RTX;
6198 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6199 }
6200 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6201 mult = const1_rtx;
6202 else
6203 {
6204 /* ??? Find out if the one is a multiple of the other? */
6205 return NULL_RTX;
6206 }
6207
6208 add = express_from_1 (g1->add_val, g2->add_val, mult);
6209 if (add == NULL_RTX)
6210 return NULL_RTX;
6211
6212 /* Form simplified final result. */
6213 if (mult == const0_rtx)
6214 return add;
6215 else if (mult == const1_rtx)
6216 mult = g1->dest_reg;
6217 else
6218 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6219
6220 if (add == const0_rtx)
6221 return mult;
6222 else
6223 {
6224 if (GET_CODE (add) == PLUS
6225 && CONSTANT_P (XEXP (add, 1)))
6226 {
6227 rtx tem = XEXP (add, 1);
6228 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6229 add = tem;
6230 }
6231
6232 return gen_rtx_PLUS (g2->mode, mult, add);
6233 }
6234
6235 }
6236 \f
6237 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6238 represented by G1. This indicates that G2 should be combined with G1 and
6239 that G2 can use (either directly or via an address expression) a register
6240 used to represent G1. */
6241
6242 static rtx
6243 combine_givs_p (g1, g2)
6244 struct induction *g1, *g2;
6245 {
6246 rtx tem = express_from (g1, g2);
6247
6248 /* If these givs are identical, they can be combined. We use the results
6249 of express_from because the addends are not in a canonical form, so
6250 rtx_equal_p is a weaker test. */
6251 if (tem == g1->dest_reg)
6252 {
6253 return g1->dest_reg;
6254 }
6255
6256 /* If G2 can be expressed as a function of G1 and that function is valid
6257 as an address and no more expensive than using a register for G2,
6258 the expression of G2 in terms of G1 can be used. */
6259 if (tem != NULL_RTX
6260 && g2->giv_type == DEST_ADDR
6261 && memory_address_p (g2->mem_mode, tem)
6262 /* ??? Looses, especially with -fforce-addr, where *g2->location
6263 will always be a register, and so anything more complicated
6264 gets discarded. */
6265 #if 0
6266 #ifdef ADDRESS_COST
6267 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6268 #else
6269 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6270 #endif
6271 #endif
6272 )
6273 {
6274 return tem;
6275 }
6276
6277 return NULL_RTX;
6278 }
6279 \f
6280 struct combine_givs_stats
6281 {
6282 int giv_number;
6283 int total_benefit;
6284 };
6285
6286 static int
6287 cmp_combine_givs_stats (x, y)
6288 struct combine_givs_stats *x, *y;
6289 {
6290 int d;
6291 d = y->total_benefit - x->total_benefit;
6292 /* Stabilize the sort. */
6293 if (!d)
6294 d = x->giv_number - y->giv_number;
6295 return d;
6296 }
6297
6298 /* If one of these givs is a DEST_REG that was used by the other giv,
6299 this is actually a single use. Return 0 if this is not
6300 the case, -1 if g1 is the DEST_REG involved, and 1 if it was g2. */
6301
6302 static int
6303 combine_givs_used_by_other (g1, g2)
6304 struct induction *g1, *g2;
6305 {
6306 if (g1->giv_type == DEST_REG
6307 && reg_mentioned_p (g1->dest_reg, PATTERN (g2->insn)))
6308 return -1;
6309
6310 if (g2->giv_type == DEST_REG
6311 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
6312 return 1;
6313
6314 return 0;
6315 }
6316
6317 static int
6318 combine_givs_benefit_from (g1, g2)
6319 struct induction *g1, *g2;
6320 {
6321 int tmp = combine_givs_used_by_other (g1, g2);
6322 if (tmp < 0)
6323 return 0;
6324 else if (tmp > 0)
6325 return g2->benefit - g1->benefit;
6326 else
6327 return g2->benefit;
6328 }
6329
6330 /* Check all pairs of givs for iv_class BL and see if any can be combined with
6331 any other. If so, point SAME to the giv combined with and set NEW_REG to
6332 be an expression (in terms of the other giv's DEST_REG) equivalent to the
6333 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
6334
6335 static void
6336 combine_givs (bl)
6337 struct iv_class *bl;
6338 {
6339 struct induction *g1, *g2, **giv_array;
6340 int i, j, k, giv_count;
6341 struct combine_givs_stats *stats;
6342 rtx *can_combine;
6343
6344 /* Count givs, because bl->giv_count is incorrect here. */
6345 giv_count = 0;
6346 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6347 if (!g1->ignore)
6348 giv_count++;
6349
6350 giv_array
6351 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
6352 i = 0;
6353 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6354 if (!g1->ignore)
6355 giv_array[i++] = g1;
6356
6357 stats = (struct combine_givs_stats *) alloca (giv_count * sizeof (*stats));
6358 bzero ((char *) stats, giv_count * sizeof (*stats));
6359
6360 can_combine = (rtx *) alloca (giv_count * giv_count * sizeof(rtx));
6361 bzero ((char *) can_combine, giv_count * giv_count * sizeof(rtx));
6362
6363 for (i = 0; i < giv_count; i++)
6364 {
6365 int this_benefit;
6366
6367 g1 = giv_array[i];
6368
6369 this_benefit = g1->benefit;
6370 /* Add an additional weight for zero addends. */
6371 if (g1->no_const_addval)
6372 this_benefit += 1;
6373 for (j = 0; j < giv_count; j++)
6374 {
6375 rtx this_combine;
6376
6377 g2 = giv_array[j];
6378 if (g1 != g2
6379 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
6380 {
6381 can_combine[i*giv_count + j] = this_combine;
6382 this_benefit += combine_givs_benefit_from (g1, g2);
6383 /* Add an additional weight for being reused more times. */
6384 this_benefit += 3;
6385 }
6386 }
6387 stats[i].giv_number = i;
6388 stats[i].total_benefit = this_benefit;
6389 }
6390
6391 /* Iterate, combining until we can't. */
6392 restart:
6393 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
6394
6395 if (loop_dump_stream)
6396 {
6397 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
6398 for (k = 0; k < giv_count; k++)
6399 {
6400 g1 = giv_array[stats[k].giv_number];
6401 if (!g1->combined_with && !g1->same)
6402 fprintf (loop_dump_stream, " {%d, %d}",
6403 INSN_UID (giv_array[stats[k].giv_number]->insn),
6404 stats[k].total_benefit);
6405 }
6406 putc ('\n', loop_dump_stream);
6407 }
6408
6409 for (k = 0; k < giv_count; k++)
6410 {
6411 int g1_add_benefit = 0;
6412
6413 i = stats[k].giv_number;
6414 g1 = giv_array[i];
6415
6416 /* If it has already been combined, skip. */
6417 if (g1->combined_with || g1->same)
6418 continue;
6419
6420 for (j = 0; j < giv_count; j++)
6421 {
6422 g2 = giv_array[j];
6423 if (g1 != g2 && can_combine[i*giv_count + j]
6424 /* If it has already been combined, skip. */
6425 && ! g2->same && ! g2->combined_with)
6426 {
6427 int l;
6428
6429 g2->new_reg = can_combine[i*giv_count + j];
6430 g2->same = g1;
6431 g1->combined_with = 1;
6432 g1->lifetime += g2->lifetime;
6433
6434 g1_add_benefit += combine_givs_benefit_from (g1, g2);
6435
6436 /* ??? The new final_[bg]iv_value code does a much better job
6437 of finding replaceable giv's, and hence this code may no
6438 longer be necessary. */
6439 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
6440 g1_add_benefit -= copy_cost;
6441
6442 /* To help optimize the next set of combinations, remove
6443 this giv from the benefits of other potential mates. */
6444 for (l = 0; l < giv_count; ++l)
6445 {
6446 int m = stats[l].giv_number;
6447 if (can_combine[m*giv_count + j])
6448 {
6449 /* Remove additional weight for being reused. */
6450 stats[l].total_benefit -= 3 +
6451 combine_givs_benefit_from (giv_array[m], g2);
6452 }
6453 }
6454
6455 if (loop_dump_stream)
6456 fprintf (loop_dump_stream,
6457 "giv at %d combined with giv at %d\n",
6458 INSN_UID (g2->insn), INSN_UID (g1->insn));
6459 }
6460 }
6461
6462 /* To help optimize the next set of combinations, remove
6463 this giv from the benefits of other potential mates. */
6464 if (g1->combined_with)
6465 {
6466 for (j = 0; j < giv_count; ++j)
6467 {
6468 int m = stats[j].giv_number;
6469 if (can_combine[m*giv_count + j])
6470 {
6471 /* Remove additional weight for being reused. */
6472 stats[j].total_benefit -= 3 +
6473 combine_givs_benefit_from (giv_array[m], g1);
6474 }
6475 }
6476
6477 g1->benefit += g1_add_benefit;
6478
6479 /* We've finished with this giv, and everything it touched.
6480 Restart the combination so that proper weights for the
6481 rest of the givs are properly taken into account. */
6482 /* ??? Ideally we would compact the arrays at this point, so
6483 as to not cover old ground. But sanely compacting
6484 can_combine is tricky. */
6485 goto restart;
6486 }
6487 }
6488 }
6489 \f
6490 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
6491
6492 void
6493 emit_iv_add_mult (b, m, a, reg, insert_before)
6494 rtx b; /* initial value of basic induction variable */
6495 rtx m; /* multiplicative constant */
6496 rtx a; /* additive constant */
6497 rtx reg; /* destination register */
6498 rtx insert_before;
6499 {
6500 rtx seq;
6501 rtx result;
6502
6503 /* Prevent unexpected sharing of these rtx. */
6504 a = copy_rtx (a);
6505 b = copy_rtx (b);
6506
6507 /* Increase the lifetime of any invariants moved further in code. */
6508 update_reg_last_use (a, insert_before);
6509 update_reg_last_use (b, insert_before);
6510 update_reg_last_use (m, insert_before);
6511
6512 start_sequence ();
6513 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
6514 if (reg != result)
6515 emit_move_insn (reg, result);
6516 seq = gen_sequence ();
6517 end_sequence ();
6518
6519 emit_insn_before (seq, insert_before);
6520
6521 /* It is entirely possible that the expansion created lots of new
6522 registers. Iterate over the sequence we just created and
6523 record them all. */
6524
6525 if (GET_CODE (seq) == SEQUENCE)
6526 {
6527 int i;
6528 for (i = 0; i < XVECLEN (seq, 0); ++i)
6529 {
6530 rtx set = single_set (XVECEXP (seq, 0, i));
6531 if (set && GET_CODE (SET_DEST (set)) == REG)
6532 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
6533 }
6534 }
6535 else if (GET_CODE (seq) == SET
6536 && GET_CODE (SET_DEST (seq)) == REG)
6537 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
6538 }
6539 \f
6540 /* Test whether A * B can be computed without
6541 an actual multiply insn. Value is 1 if so. */
6542
6543 static int
6544 product_cheap_p (a, b)
6545 rtx a;
6546 rtx b;
6547 {
6548 int i;
6549 rtx tmp;
6550 struct obstack *old_rtl_obstack = rtl_obstack;
6551 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
6552 int win = 1;
6553
6554 /* If only one is constant, make it B. */
6555 if (GET_CODE (a) == CONST_INT)
6556 tmp = a, a = b, b = tmp;
6557
6558 /* If first constant, both constant, so don't need multiply. */
6559 if (GET_CODE (a) == CONST_INT)
6560 return 1;
6561
6562 /* If second not constant, neither is constant, so would need multiply. */
6563 if (GET_CODE (b) != CONST_INT)
6564 return 0;
6565
6566 /* One operand is constant, so might not need multiply insn. Generate the
6567 code for the multiply and see if a call or multiply, or long sequence
6568 of insns is generated. */
6569
6570 rtl_obstack = &temp_obstack;
6571 start_sequence ();
6572 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
6573 tmp = gen_sequence ();
6574 end_sequence ();
6575
6576 if (GET_CODE (tmp) == SEQUENCE)
6577 {
6578 if (XVEC (tmp, 0) == 0)
6579 win = 1;
6580 else if (XVECLEN (tmp, 0) > 3)
6581 win = 0;
6582 else
6583 for (i = 0; i < XVECLEN (tmp, 0); i++)
6584 {
6585 rtx insn = XVECEXP (tmp, 0, i);
6586
6587 if (GET_CODE (insn) != INSN
6588 || (GET_CODE (PATTERN (insn)) == SET
6589 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
6590 || (GET_CODE (PATTERN (insn)) == PARALLEL
6591 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
6592 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
6593 {
6594 win = 0;
6595 break;
6596 }
6597 }
6598 }
6599 else if (GET_CODE (tmp) == SET
6600 && GET_CODE (SET_SRC (tmp)) == MULT)
6601 win = 0;
6602 else if (GET_CODE (tmp) == PARALLEL
6603 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
6604 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
6605 win = 0;
6606
6607 /* Free any storage we obtained in generating this multiply and restore rtl
6608 allocation to its normal obstack. */
6609 obstack_free (&temp_obstack, storage);
6610 rtl_obstack = old_rtl_obstack;
6611
6612 return win;
6613 }
6614 \f
6615 /* Check to see if loop can be terminated by a "decrement and branch until
6616 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
6617 Also try reversing an increment loop to a decrement loop
6618 to see if the optimization can be performed.
6619 Value is nonzero if optimization was performed. */
6620
6621 /* This is useful even if the architecture doesn't have such an insn,
6622 because it might change a loops which increments from 0 to n to a loop
6623 which decrements from n to 0. A loop that decrements to zero is usually
6624 faster than one that increments from zero. */
6625
6626 /* ??? This could be rewritten to use some of the loop unrolling procedures,
6627 such as approx_final_value, biv_total_increment, loop_iterations, and
6628 final_[bg]iv_value. */
6629
6630 static int
6631 check_dbra_loop (loop_end, insn_count, loop_start, loop_info)
6632 rtx loop_end;
6633 int insn_count;
6634 rtx loop_start;
6635 struct loop_info *loop_info;
6636 {
6637 struct iv_class *bl;
6638 rtx reg;
6639 rtx jump_label;
6640 rtx final_value;
6641 rtx start_value;
6642 rtx new_add_val;
6643 rtx comparison;
6644 rtx before_comparison;
6645 rtx p;
6646 rtx jump;
6647 rtx first_compare;
6648 int compare_and_branch;
6649
6650 /* If last insn is a conditional branch, and the insn before tests a
6651 register value, try to optimize it. Otherwise, we can't do anything. */
6652
6653 jump = PREV_INSN (loop_end);
6654 comparison = get_condition_for_loop (jump);
6655 if (comparison == 0)
6656 return 0;
6657
6658 /* Try to compute whether the compare/branch at the loop end is one or
6659 two instructions. */
6660 get_condition (jump, &first_compare);
6661 if (first_compare == jump)
6662 compare_and_branch = 1;
6663 else if (first_compare == prev_nonnote_insn (jump))
6664 compare_and_branch = 2;
6665 else
6666 return 0;
6667
6668 /* Check all of the bivs to see if the compare uses one of them.
6669 Skip biv's set more than once because we can't guarantee that
6670 it will be zero on the last iteration. Also skip if the biv is
6671 used between its update and the test insn. */
6672
6673 for (bl = loop_iv_list; bl; bl = bl->next)
6674 {
6675 if (bl->biv_count == 1
6676 && bl->biv->dest_reg == XEXP (comparison, 0)
6677 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6678 first_compare))
6679 break;
6680 }
6681
6682 if (! bl)
6683 return 0;
6684
6685 /* Look for the case where the basic induction variable is always
6686 nonnegative, and equals zero on the last iteration.
6687 In this case, add a reg_note REG_NONNEG, which allows the
6688 m68k DBRA instruction to be used. */
6689
6690 if (((GET_CODE (comparison) == GT
6691 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6692 && INTVAL (XEXP (comparison, 1)) == -1)
6693 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6694 && GET_CODE (bl->biv->add_val) == CONST_INT
6695 && INTVAL (bl->biv->add_val) < 0)
6696 {
6697 /* Initial value must be greater than 0,
6698 init_val % -dec_value == 0 to ensure that it equals zero on
6699 the last iteration */
6700
6701 if (GET_CODE (bl->initial_value) == CONST_INT
6702 && INTVAL (bl->initial_value) > 0
6703 && (INTVAL (bl->initial_value)
6704 % (-INTVAL (bl->biv->add_val))) == 0)
6705 {
6706 /* register always nonnegative, add REG_NOTE to branch */
6707 REG_NOTES (PREV_INSN (loop_end))
6708 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6709 REG_NOTES (PREV_INSN (loop_end)));
6710 bl->nonneg = 1;
6711
6712 return 1;
6713 }
6714
6715 /* If the decrement is 1 and the value was tested as >= 0 before
6716 the loop, then we can safely optimize. */
6717 for (p = loop_start; p; p = PREV_INSN (p))
6718 {
6719 if (GET_CODE (p) == CODE_LABEL)
6720 break;
6721 if (GET_CODE (p) != JUMP_INSN)
6722 continue;
6723
6724 before_comparison = get_condition_for_loop (p);
6725 if (before_comparison
6726 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6727 && GET_CODE (before_comparison) == LT
6728 && XEXP (before_comparison, 1) == const0_rtx
6729 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6730 && INTVAL (bl->biv->add_val) == -1)
6731 {
6732 REG_NOTES (PREV_INSN (loop_end))
6733 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6734 REG_NOTES (PREV_INSN (loop_end)));
6735 bl->nonneg = 1;
6736
6737 return 1;
6738 }
6739 }
6740 }
6741 else if (INTVAL (bl->biv->add_val) > 0)
6742 {
6743 /* Try to change inc to dec, so can apply above optimization. */
6744 /* Can do this if:
6745 all registers modified are induction variables or invariant,
6746 all memory references have non-overlapping addresses
6747 (obviously true if only one write)
6748 allow 2 insns for the compare/jump at the end of the loop. */
6749 /* Also, we must avoid any instructions which use both the reversed
6750 biv and another biv. Such instructions will fail if the loop is
6751 reversed. We meet this condition by requiring that either
6752 no_use_except_counting is true, or else that there is only
6753 one biv. */
6754 int num_nonfixed_reads = 0;
6755 /* 1 if the iteration var is used only to count iterations. */
6756 int no_use_except_counting = 0;
6757 /* 1 if the loop has no memory store, or it has a single memory store
6758 which is reversible. */
6759 int reversible_mem_store = 1;
6760
6761 if (bl->giv_count == 0
6762 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6763 {
6764 rtx bivreg = regno_reg_rtx[bl->regno];
6765
6766 /* If there are no givs for this biv, and the only exit is the
6767 fall through at the end of the loop, then
6768 see if perhaps there are no uses except to count. */
6769 no_use_except_counting = 1;
6770 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6771 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6772 {
6773 rtx set = single_set (p);
6774
6775 if (set && GET_CODE (SET_DEST (set)) == REG
6776 && REGNO (SET_DEST (set)) == bl->regno)
6777 /* An insn that sets the biv is okay. */
6778 ;
6779 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6780 || p == prev_nonnote_insn (loop_end))
6781 /* Don't bother about the end test. */
6782 ;
6783 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6784 {
6785 no_use_except_counting = 0;
6786 break;
6787 }
6788 }
6789 }
6790
6791 if (no_use_except_counting)
6792 ; /* no need to worry about MEMs. */
6793 else if (num_mem_sets <= 1)
6794 {
6795 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6796 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6797 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6798
6799 /* If the loop has a single store, and the destination address is
6800 invariant, then we can't reverse the loop, because this address
6801 might then have the wrong value at loop exit.
6802 This would work if the source was invariant also, however, in that
6803 case, the insn should have been moved out of the loop. */
6804
6805 if (num_mem_sets == 1)
6806 reversible_mem_store
6807 = (! unknown_address_altered
6808 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6809 }
6810 else
6811 return 0;
6812
6813 /* This code only acts for innermost loops. Also it simplifies
6814 the memory address check by only reversing loops with
6815 zero or one memory access.
6816 Two memory accesses could involve parts of the same array,
6817 and that can't be reversed.
6818 If the biv is used only for counting, than we don't need to worry
6819 about all these things. */
6820
6821 if ((num_nonfixed_reads <= 1
6822 && !loop_has_call
6823 && !loop_has_volatile
6824 && reversible_mem_store
6825 && (bl->giv_count + bl->biv_count + num_mem_sets
6826 + num_movables + compare_and_branch == insn_count)
6827 && (bl == loop_iv_list && bl->next == 0))
6828 || no_use_except_counting)
6829 {
6830 rtx tem;
6831
6832 /* Loop can be reversed. */
6833 if (loop_dump_stream)
6834 fprintf (loop_dump_stream, "Can reverse loop\n");
6835
6836 /* Now check other conditions:
6837
6838 The increment must be a constant, as must the initial value,
6839 and the comparison code must be LT.
6840
6841 This test can probably be improved since +/- 1 in the constant
6842 can be obtained by changing LT to LE and vice versa; this is
6843 confusing. */
6844
6845 if (comparison
6846 /* for constants, LE gets turned into LT */
6847 && (GET_CODE (comparison) == LT
6848 || (GET_CODE (comparison) == LE
6849 && no_use_except_counting)))
6850 {
6851 HOST_WIDE_INT add_val, add_adjust, comparison_val;
6852 rtx initial_value, comparison_value;
6853 int nonneg = 0;
6854 enum rtx_code cmp_code;
6855 int comparison_const_width;
6856 unsigned HOST_WIDE_INT comparison_sign_mask;
6857
6858 add_val = INTVAL (bl->biv->add_val);
6859 comparison_value = XEXP (comparison, 1);
6860 if (GET_MODE (comparison_value) == VOIDmode)
6861 comparison_const_width
6862 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
6863 else
6864 comparison_const_width
6865 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
6866 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
6867 comparison_const_width = HOST_BITS_PER_WIDE_INT;
6868 comparison_sign_mask
6869 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
6870
6871 /* If the comparison value is not a loop invariant, then we
6872 can not reverse this loop.
6873
6874 ??? If the insns which initialize the comparison value as
6875 a whole compute an invariant result, then we could move
6876 them out of the loop and proceed with loop reversal. */
6877 if (!invariant_p (comparison_value))
6878 return 0;
6879
6880 if (GET_CODE (comparison_value) == CONST_INT)
6881 comparison_val = INTVAL (comparison_value);
6882 initial_value = bl->initial_value;
6883
6884 /* Normalize the initial value if it is an integer and
6885 has no other use except as a counter. This will allow
6886 a few more loops to be reversed. */
6887 if (no_use_except_counting
6888 && GET_CODE (comparison_value) == CONST_INT
6889 && GET_CODE (initial_value) == CONST_INT)
6890 {
6891 comparison_val = comparison_val - INTVAL (bl->initial_value);
6892 /* The code below requires comparison_val to be a multiple
6893 of add_val in order to do the loop reversal, so
6894 round up comparison_val to a multiple of add_val.
6895 Since comparison_value is constant, we know that the
6896 current comparison code is LT. */
6897 comparison_val = comparison_val + add_val - 1;
6898 comparison_val
6899 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
6900 /* We postpone overflow checks for COMPARISON_VAL here;
6901 even if there is an overflow, we might still be able to
6902 reverse the loop, if converting the loop exit test to
6903 NE is possible. */
6904 initial_value = const0_rtx;
6905 }
6906
6907 /* First check if we can do a vanilla loop reversal. */
6908 if (initial_value == const0_rtx
6909 /* If we have a decrement_and_branch_on_count, prefer
6910 the NE test, since this will allow that instruction to
6911 be generated. Note that we must use a vanilla loop
6912 reversal if the biv is used to calculate a giv or has
6913 a non-counting use. */
6914 #if ! defined (HAVE_decrement_and_branch_until_zero) && defined (HAVE_decrement_and_branch_on_count)
6915 && (! (add_val == 1 && loop_info->vtop
6916 && (bl->biv_count == 0
6917 || no_use_except_counting)))
6918 #endif
6919 && GET_CODE (comparison_value) == CONST_INT
6920 /* Now do postponed overflow checks on COMPARISON_VAL. */
6921 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
6922 & comparison_sign_mask))
6923 {
6924 /* Register will always be nonnegative, with value
6925 0 on last iteration */
6926 add_adjust = add_val;
6927 nonneg = 1;
6928 cmp_code = GE;
6929 }
6930 else if (add_val == 1 && loop_info->vtop
6931 && (bl->biv_count == 0
6932 || no_use_except_counting))
6933 {
6934 add_adjust = 0;
6935 cmp_code = NE;
6936 }
6937 else
6938 return 0;
6939
6940 if (GET_CODE (comparison) == LE)
6941 add_adjust -= add_val;
6942
6943 /* If the initial value is not zero, or if the comparison
6944 value is not an exact multiple of the increment, then we
6945 can not reverse this loop. */
6946 if (initial_value == const0_rtx
6947 && GET_CODE (comparison_value) == CONST_INT)
6948 {
6949 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
6950 return 0;
6951 }
6952 else
6953 {
6954 if (! no_use_except_counting || add_val != 1)
6955 return 0;
6956 }
6957
6958 final_value = comparison_value;
6959
6960 /* Reset these in case we normalized the initial value
6961 and comparison value above. */
6962 if (GET_CODE (comparison_value) == CONST_INT
6963 && GET_CODE (initial_value) == CONST_INT)
6964 {
6965 comparison_value = GEN_INT (comparison_val);
6966 final_value
6967 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
6968 }
6969 bl->initial_value = initial_value;
6970
6971 /* Save some info needed to produce the new insns. */
6972 reg = bl->biv->dest_reg;
6973 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6974 if (jump_label == pc_rtx)
6975 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6976 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6977
6978 /* Set start_value; if this is not a CONST_INT, we need
6979 to generate a SUB.
6980 Initialize biv to start_value before loop start.
6981 The old initializing insn will be deleted as a
6982 dead store by flow.c. */
6983 if (initial_value == const0_rtx
6984 && GET_CODE (comparison_value) == CONST_INT)
6985 {
6986 start_value = GEN_INT (comparison_val - add_adjust);
6987 emit_insn_before (gen_move_insn (reg, start_value),
6988 loop_start);
6989 }
6990 else if (GET_CODE (initial_value) == CONST_INT)
6991 {
6992 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
6993 enum machine_mode mode = GET_MODE (reg);
6994 enum insn_code icode
6995 = add_optab->handlers[(int) mode].insn_code;
6996 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
6997 || ! ((*insn_operand_predicate[icode][1])
6998 (comparison_value, mode))
6999 || ! (*insn_operand_predicate[icode][2]) (offset, mode))
7000 return 0;
7001 start_value
7002 = gen_rtx_PLUS (mode, comparison_value, offset);
7003 emit_insn_before ((GEN_FCN (icode)
7004 (reg, comparison_value, offset)),
7005 loop_start);
7006 if (GET_CODE (comparison) == LE)
7007 final_value = gen_rtx_PLUS (mode, comparison_value,
7008 GEN_INT (add_val));
7009 }
7010 else if (! add_adjust)
7011 {
7012 enum machine_mode mode = GET_MODE (reg);
7013 enum insn_code icode
7014 = sub_optab->handlers[(int) mode].insn_code;
7015 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
7016 || ! ((*insn_operand_predicate[icode][1])
7017 (comparison_value, mode))
7018 || ! ((*insn_operand_predicate[icode][2])
7019 (initial_value, mode)))
7020 return 0;
7021 start_value
7022 = gen_rtx_MINUS (mode, comparison_value, initial_value);
7023 emit_insn_before ((GEN_FCN (icode)
7024 (reg, comparison_value, initial_value)),
7025 loop_start);
7026 }
7027 else
7028 /* We could handle the other cases too, but it'll be
7029 better to have a testcase first. */
7030 return 0;
7031
7032 /* We may not have a single insn which can increment a reg, so
7033 create a sequence to hold all the insns from expand_inc. */
7034 start_sequence ();
7035 expand_inc (reg, new_add_val);
7036 tem = gen_sequence ();
7037 end_sequence ();
7038
7039 p = emit_insn_before (tem, bl->biv->insn);
7040 delete_insn (bl->biv->insn);
7041
7042 /* Update biv info to reflect its new status. */
7043 bl->biv->insn = p;
7044 bl->initial_value = start_value;
7045 bl->biv->add_val = new_add_val;
7046
7047 /* Update loop info. */
7048 loop_info->initial_value = reg;
7049 loop_info->initial_equiv_value = reg;
7050 loop_info->final_value = const0_rtx;
7051 loop_info->final_equiv_value = const0_rtx;
7052 loop_info->comparison_value = const0_rtx;
7053 loop_info->comparison_code = cmp_code;
7054 loop_info->increment = new_add_val;
7055
7056 /* Inc LABEL_NUSES so that delete_insn will
7057 not delete the label. */
7058 LABEL_NUSES (XEXP (jump_label, 0)) ++;
7059
7060 /* Emit an insn after the end of the loop to set the biv's
7061 proper exit value if it is used anywhere outside the loop. */
7062 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
7063 || ! bl->init_insn
7064 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
7065 emit_insn_after (gen_move_insn (reg, final_value),
7066 loop_end);
7067
7068 /* Delete compare/branch at end of loop. */
7069 delete_insn (PREV_INSN (loop_end));
7070 if (compare_and_branch == 2)
7071 delete_insn (first_compare);
7072
7073 /* Add new compare/branch insn at end of loop. */
7074 start_sequence ();
7075 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
7076 GET_MODE (reg), 0, 0,
7077 XEXP (jump_label, 0));
7078 tem = gen_sequence ();
7079 end_sequence ();
7080 emit_jump_insn_before (tem, loop_end);
7081
7082 for (tem = PREV_INSN (loop_end);
7083 tem && GET_CODE (tem) != JUMP_INSN;
7084 tem = PREV_INSN (tem))
7085 ;
7086
7087 if (tem)
7088 JUMP_LABEL (tem) = XEXP (jump_label, 0);
7089
7090 if (nonneg)
7091 {
7092 if (tem)
7093 {
7094 /* Increment of LABEL_NUSES done above. */
7095 /* Register is now always nonnegative,
7096 so add REG_NONNEG note to the branch. */
7097 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7098 REG_NOTES (tem));
7099 }
7100 bl->nonneg = 1;
7101 }
7102
7103 /* Mark that this biv has been reversed. Each giv which depends
7104 on this biv, and which is also live past the end of the loop
7105 will have to be fixed up. */
7106
7107 bl->reversed = 1;
7108
7109 if (loop_dump_stream)
7110 fprintf (loop_dump_stream,
7111 "Reversed loop and added reg_nonneg\n");
7112
7113 return 1;
7114 }
7115 }
7116 }
7117
7118 return 0;
7119 }
7120 \f
7121 /* Verify whether the biv BL appears to be eliminable,
7122 based on the insns in the loop that refer to it.
7123 LOOP_START is the first insn of the loop, and END is the end insn.
7124
7125 If ELIMINATE_P is non-zero, actually do the elimination.
7126
7127 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
7128 determine whether invariant insns should be placed inside or at the
7129 start of the loop. */
7130
7131 static int
7132 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
7133 struct iv_class *bl;
7134 rtx loop_start;
7135 rtx end;
7136 int eliminate_p;
7137 int threshold, insn_count;
7138 {
7139 rtx reg = bl->biv->dest_reg;
7140 rtx p;
7141
7142 /* Scan all insns in the loop, stopping if we find one that uses the
7143 biv in a way that we cannot eliminate. */
7144
7145 for (p = loop_start; p != end; p = NEXT_INSN (p))
7146 {
7147 enum rtx_code code = GET_CODE (p);
7148 rtx where = threshold >= insn_count ? loop_start : p;
7149
7150 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
7151 && reg_mentioned_p (reg, PATTERN (p))
7152 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
7153 {
7154 if (loop_dump_stream)
7155 fprintf (loop_dump_stream,
7156 "Cannot eliminate biv %d: biv used in insn %d.\n",
7157 bl->regno, INSN_UID (p));
7158 break;
7159 }
7160 }
7161
7162 if (p == end)
7163 {
7164 if (loop_dump_stream)
7165 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
7166 bl->regno, eliminate_p ? "was" : "can be");
7167 return 1;
7168 }
7169
7170 return 0;
7171 }
7172 \f
7173 /* If BL appears in X (part of the pattern of INSN), see if we can
7174 eliminate its use. If so, return 1. If not, return 0.
7175
7176 If BIV does not appear in X, return 1.
7177
7178 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
7179 where extra insns should be added. Depending on how many items have been
7180 moved out of the loop, it will either be before INSN or at the start of
7181 the loop. */
7182
7183 static int
7184 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
7185 rtx x, insn;
7186 struct iv_class *bl;
7187 int eliminate_p;
7188 rtx where;
7189 {
7190 enum rtx_code code = GET_CODE (x);
7191 rtx reg = bl->biv->dest_reg;
7192 enum machine_mode mode = GET_MODE (reg);
7193 struct induction *v;
7194 rtx arg, tem;
7195 #ifdef HAVE_cc0
7196 rtx new;
7197 #endif
7198 int arg_operand;
7199 char *fmt;
7200 int i, j;
7201
7202 switch (code)
7203 {
7204 case REG:
7205 /* If we haven't already been able to do something with this BIV,
7206 we can't eliminate it. */
7207 if (x == reg)
7208 return 0;
7209 return 1;
7210
7211 case SET:
7212 /* If this sets the BIV, it is not a problem. */
7213 if (SET_DEST (x) == reg)
7214 return 1;
7215
7216 /* If this is an insn that defines a giv, it is also ok because
7217 it will go away when the giv is reduced. */
7218 for (v = bl->giv; v; v = v->next_iv)
7219 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
7220 return 1;
7221
7222 #ifdef HAVE_cc0
7223 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
7224 {
7225 /* Can replace with any giv that was reduced and
7226 that has (MULT_VAL != 0) and (ADD_VAL == 0).
7227 Require a constant for MULT_VAL, so we know it's nonzero.
7228 ??? We disable this optimization to avoid potential
7229 overflows. */
7230
7231 for (v = bl->giv; v; v = v->next_iv)
7232 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
7233 && v->add_val == const0_rtx
7234 && ! v->ignore && ! v->maybe_dead && v->always_computable
7235 && v->mode == mode
7236 && 0)
7237 {
7238 /* If the giv V had the auto-inc address optimization applied
7239 to it, and INSN occurs between the giv insn and the biv
7240 insn, then we must adjust the value used here.
7241 This is rare, so we don't bother to do so. */
7242 if (v->auto_inc_opt
7243 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7244 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7245 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7246 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7247 continue;
7248
7249 if (! eliminate_p)
7250 return 1;
7251
7252 /* If the giv has the opposite direction of change,
7253 then reverse the comparison. */
7254 if (INTVAL (v->mult_val) < 0)
7255 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
7256 const0_rtx, v->new_reg);
7257 else
7258 new = v->new_reg;
7259
7260 /* We can probably test that giv's reduced reg. */
7261 if (validate_change (insn, &SET_SRC (x), new, 0))
7262 return 1;
7263 }
7264
7265 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
7266 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
7267 Require a constant for MULT_VAL, so we know it's nonzero.
7268 ??? Do this only if ADD_VAL is a pointer to avoid a potential
7269 overflow problem. */
7270
7271 for (v = bl->giv; v; v = v->next_iv)
7272 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
7273 && ! v->ignore && ! v->maybe_dead && v->always_computable
7274 && v->mode == mode
7275 && (GET_CODE (v->add_val) == SYMBOL_REF
7276 || GET_CODE (v->add_val) == LABEL_REF
7277 || GET_CODE (v->add_val) == CONST
7278 || (GET_CODE (v->add_val) == REG
7279 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
7280 {
7281 /* If the giv V had the auto-inc address optimization applied
7282 to it, and INSN occurs between the giv insn and the biv
7283 insn, then we must adjust the value used here.
7284 This is rare, so we don't bother to do so. */
7285 if (v->auto_inc_opt
7286 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7287 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7288 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7289 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7290 continue;
7291
7292 if (! eliminate_p)
7293 return 1;
7294
7295 /* If the giv has the opposite direction of change,
7296 then reverse the comparison. */
7297 if (INTVAL (v->mult_val) < 0)
7298 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
7299 v->new_reg);
7300 else
7301 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
7302 copy_rtx (v->add_val));
7303
7304 /* Replace biv with the giv's reduced register. */
7305 update_reg_last_use (v->add_val, insn);
7306 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
7307 return 1;
7308
7309 /* Insn doesn't support that constant or invariant. Copy it
7310 into a register (it will be a loop invariant.) */
7311 tem = gen_reg_rtx (GET_MODE (v->new_reg));
7312
7313 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
7314 where);
7315
7316 /* Substitute the new register for its invariant value in
7317 the compare expression. */
7318 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
7319 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
7320 return 1;
7321 }
7322 }
7323 #endif
7324 break;
7325
7326 case COMPARE:
7327 case EQ: case NE:
7328 case GT: case GE: case GTU: case GEU:
7329 case LT: case LE: case LTU: case LEU:
7330 /* See if either argument is the biv. */
7331 if (XEXP (x, 0) == reg)
7332 arg = XEXP (x, 1), arg_operand = 1;
7333 else if (XEXP (x, 1) == reg)
7334 arg = XEXP (x, 0), arg_operand = 0;
7335 else
7336 break;
7337
7338 if (CONSTANT_P (arg))
7339 {
7340 /* First try to replace with any giv that has constant positive
7341 mult_val and constant add_val. We might be able to support
7342 negative mult_val, but it seems complex to do it in general. */
7343
7344 for (v = bl->giv; v; v = v->next_iv)
7345 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
7346 && (GET_CODE (v->add_val) == SYMBOL_REF
7347 || GET_CODE (v->add_val) == LABEL_REF
7348 || GET_CODE (v->add_val) == CONST
7349 || (GET_CODE (v->add_val) == REG
7350 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
7351 && ! v->ignore && ! v->maybe_dead && v->always_computable
7352 && v->mode == mode)
7353 {
7354 /* If the giv V had the auto-inc address optimization applied
7355 to it, and INSN occurs between the giv insn and the biv
7356 insn, then we must adjust the value used here.
7357 This is rare, so we don't bother to do so. */
7358 if (v->auto_inc_opt
7359 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7360 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7361 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7362 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7363 continue;
7364
7365 if (! eliminate_p)
7366 return 1;
7367
7368 /* Replace biv with the giv's reduced reg. */
7369 XEXP (x, 1-arg_operand) = v->new_reg;
7370
7371 /* If all constants are actually constant integers and
7372 the derived constant can be directly placed in the COMPARE,
7373 do so. */
7374 if (GET_CODE (arg) == CONST_INT
7375 && GET_CODE (v->mult_val) == CONST_INT
7376 && GET_CODE (v->add_val) == CONST_INT
7377 && validate_change (insn, &XEXP (x, arg_operand),
7378 GEN_INT (INTVAL (arg)
7379 * INTVAL (v->mult_val)
7380 + INTVAL (v->add_val)), 0))
7381 return 1;
7382
7383 /* Otherwise, load it into a register. */
7384 tem = gen_reg_rtx (mode);
7385 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
7386 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
7387 return 1;
7388
7389 /* If that failed, put back the change we made above. */
7390 XEXP (x, 1-arg_operand) = reg;
7391 }
7392
7393 /* Look for giv with positive constant mult_val and nonconst add_val.
7394 Insert insns to calculate new compare value.
7395 ??? Turn this off due to possible overflow. */
7396
7397 for (v = bl->giv; v; v = v->next_iv)
7398 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
7399 && ! v->ignore && ! v->maybe_dead && v->always_computable
7400 && v->mode == mode
7401 && 0)
7402 {
7403 rtx tem;
7404
7405 /* If the giv V had the auto-inc address optimization applied
7406 to it, and INSN occurs between the giv insn and the biv
7407 insn, then we must adjust the value used here.
7408 This is rare, so we don't bother to do so. */
7409 if (v->auto_inc_opt
7410 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7411 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7412 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7413 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7414 continue;
7415
7416 if (! eliminate_p)
7417 return 1;
7418
7419 tem = gen_reg_rtx (mode);
7420
7421 /* Replace biv with giv's reduced register. */
7422 validate_change (insn, &XEXP (x, 1 - arg_operand),
7423 v->new_reg, 1);
7424
7425 /* Compute value to compare against. */
7426 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
7427 /* Use it in this insn. */
7428 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
7429 if (apply_change_group ())
7430 return 1;
7431 }
7432 }
7433 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
7434 {
7435 if (invariant_p (arg) == 1)
7436 {
7437 /* Look for giv with constant positive mult_val and nonconst
7438 add_val. Insert insns to compute new compare value.
7439 ??? Turn this off due to possible overflow. */
7440
7441 for (v = bl->giv; v; v = v->next_iv)
7442 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
7443 && ! v->ignore && ! v->maybe_dead && v->always_computable
7444 && v->mode == mode
7445 && 0)
7446 {
7447 rtx tem;
7448
7449 /* If the giv V had the auto-inc address optimization applied
7450 to it, and INSN occurs between the giv insn and the biv
7451 insn, then we must adjust the value used here.
7452 This is rare, so we don't bother to do so. */
7453 if (v->auto_inc_opt
7454 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7455 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7456 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7457 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7458 continue;
7459
7460 if (! eliminate_p)
7461 return 1;
7462
7463 tem = gen_reg_rtx (mode);
7464
7465 /* Replace biv with giv's reduced register. */
7466 validate_change (insn, &XEXP (x, 1 - arg_operand),
7467 v->new_reg, 1);
7468
7469 /* Compute value to compare against. */
7470 emit_iv_add_mult (arg, v->mult_val, v->add_val,
7471 tem, where);
7472 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
7473 if (apply_change_group ())
7474 return 1;
7475 }
7476 }
7477
7478 /* This code has problems. Basically, you can't know when
7479 seeing if we will eliminate BL, whether a particular giv
7480 of ARG will be reduced. If it isn't going to be reduced,
7481 we can't eliminate BL. We can try forcing it to be reduced,
7482 but that can generate poor code.
7483
7484 The problem is that the benefit of reducing TV, below should
7485 be increased if BL can actually be eliminated, but this means
7486 we might have to do a topological sort of the order in which
7487 we try to process biv. It doesn't seem worthwhile to do
7488 this sort of thing now. */
7489
7490 #if 0
7491 /* Otherwise the reg compared with had better be a biv. */
7492 if (GET_CODE (arg) != REG
7493 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
7494 return 0;
7495
7496 /* Look for a pair of givs, one for each biv,
7497 with identical coefficients. */
7498 for (v = bl->giv; v; v = v->next_iv)
7499 {
7500 struct induction *tv;
7501
7502 if (v->ignore || v->maybe_dead || v->mode != mode)
7503 continue;
7504
7505 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
7506 if (! tv->ignore && ! tv->maybe_dead
7507 && rtx_equal_p (tv->mult_val, v->mult_val)
7508 && rtx_equal_p (tv->add_val, v->add_val)
7509 && tv->mode == mode)
7510 {
7511 /* If the giv V had the auto-inc address optimization applied
7512 to it, and INSN occurs between the giv insn and the biv
7513 insn, then we must adjust the value used here.
7514 This is rare, so we don't bother to do so. */
7515 if (v->auto_inc_opt
7516 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7517 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7518 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7519 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7520 continue;
7521
7522 if (! eliminate_p)
7523 return 1;
7524
7525 /* Replace biv with its giv's reduced reg. */
7526 XEXP (x, 1-arg_operand) = v->new_reg;
7527 /* Replace other operand with the other giv's
7528 reduced reg. */
7529 XEXP (x, arg_operand) = tv->new_reg;
7530 return 1;
7531 }
7532 }
7533 #endif
7534 }
7535
7536 /* If we get here, the biv can't be eliminated. */
7537 return 0;
7538
7539 case MEM:
7540 /* If this address is a DEST_ADDR giv, it doesn't matter if the
7541 biv is used in it, since it will be replaced. */
7542 for (v = bl->giv; v; v = v->next_iv)
7543 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
7544 return 1;
7545 break;
7546
7547 default:
7548 break;
7549 }
7550
7551 /* See if any subexpression fails elimination. */
7552 fmt = GET_RTX_FORMAT (code);
7553 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7554 {
7555 switch (fmt[i])
7556 {
7557 case 'e':
7558 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
7559 eliminate_p, where))
7560 return 0;
7561 break;
7562
7563 case 'E':
7564 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7565 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
7566 eliminate_p, where))
7567 return 0;
7568 break;
7569 }
7570 }
7571
7572 return 1;
7573 }
7574 \f
7575 /* Return nonzero if the last use of REG
7576 is in an insn following INSN in the same basic block. */
7577
7578 static int
7579 last_use_this_basic_block (reg, insn)
7580 rtx reg;
7581 rtx insn;
7582 {
7583 rtx n;
7584 for (n = insn;
7585 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
7586 n = NEXT_INSN (n))
7587 {
7588 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
7589 return 1;
7590 }
7591 return 0;
7592 }
7593 \f
7594 /* Called via `note_stores' to record the initial value of a biv. Here we
7595 just record the location of the set and process it later. */
7596
7597 static void
7598 record_initial (dest, set)
7599 rtx dest;
7600 rtx set;
7601 {
7602 struct iv_class *bl;
7603
7604 if (GET_CODE (dest) != REG
7605 || REGNO (dest) >= max_reg_before_loop
7606 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
7607 return;
7608
7609 bl = reg_biv_class[REGNO (dest)];
7610
7611 /* If this is the first set found, record it. */
7612 if (bl->init_insn == 0)
7613 {
7614 bl->init_insn = note_insn;
7615 bl->init_set = set;
7616 }
7617 }
7618 \f
7619 /* If any of the registers in X are "old" and currently have a last use earlier
7620 than INSN, update them to have a last use of INSN. Their actual last use
7621 will be the previous insn but it will not have a valid uid_luid so we can't
7622 use it. */
7623
7624 static void
7625 update_reg_last_use (x, insn)
7626 rtx x;
7627 rtx insn;
7628 {
7629 /* Check for the case where INSN does not have a valid luid. In this case,
7630 there is no need to modify the regno_last_uid, as this can only happen
7631 when code is inserted after the loop_end to set a pseudo's final value,
7632 and hence this insn will never be the last use of x. */
7633 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
7634 && INSN_UID (insn) < max_uid_for_loop
7635 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
7636 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
7637 else
7638 {
7639 register int i, j;
7640 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
7641 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
7642 {
7643 if (fmt[i] == 'e')
7644 update_reg_last_use (XEXP (x, i), insn);
7645 else if (fmt[i] == 'E')
7646 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7647 update_reg_last_use (XVECEXP (x, i, j), insn);
7648 }
7649 }
7650 }
7651 \f
7652 /* Given a jump insn JUMP, return the condition that will cause it to branch
7653 to its JUMP_LABEL. If the condition cannot be understood, or is an
7654 inequality floating-point comparison which needs to be reversed, 0 will
7655 be returned.
7656
7657 If EARLIEST is non-zero, it is a pointer to a place where the earliest
7658 insn used in locating the condition was found. If a replacement test
7659 of the condition is desired, it should be placed in front of that
7660 insn and we will be sure that the inputs are still valid.
7661
7662 The condition will be returned in a canonical form to simplify testing by
7663 callers. Specifically:
7664
7665 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
7666 (2) Both operands will be machine operands; (cc0) will have been replaced.
7667 (3) If an operand is a constant, it will be the second operand.
7668 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
7669 for GE, GEU, and LEU. */
7670
7671 rtx
7672 get_condition (jump, earliest)
7673 rtx jump;
7674 rtx *earliest;
7675 {
7676 enum rtx_code code;
7677 rtx prev = jump;
7678 rtx set;
7679 rtx tem;
7680 rtx op0, op1;
7681 int reverse_code = 0;
7682 int did_reverse_condition = 0;
7683 enum machine_mode mode;
7684
7685 /* If this is not a standard conditional jump, we can't parse it. */
7686 if (GET_CODE (jump) != JUMP_INSN
7687 || ! condjump_p (jump) || simplejump_p (jump))
7688 return 0;
7689
7690 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
7691 mode = GET_MODE (XEXP (SET_SRC (PATTERN (jump)), 0));
7692 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
7693 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
7694
7695 if (earliest)
7696 *earliest = jump;
7697
7698 /* If this branches to JUMP_LABEL when the condition is false, reverse
7699 the condition. */
7700 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
7701 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
7702 code = reverse_condition (code), did_reverse_condition ^= 1;
7703
7704 /* If we are comparing a register with zero, see if the register is set
7705 in the previous insn to a COMPARE or a comparison operation. Perform
7706 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
7707 in cse.c */
7708
7709 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
7710 {
7711 /* Set non-zero when we find something of interest. */
7712 rtx x = 0;
7713
7714 #ifdef HAVE_cc0
7715 /* If comparison with cc0, import actual comparison from compare
7716 insn. */
7717 if (op0 == cc0_rtx)
7718 {
7719 if ((prev = prev_nonnote_insn (prev)) == 0
7720 || GET_CODE (prev) != INSN
7721 || (set = single_set (prev)) == 0
7722 || SET_DEST (set) != cc0_rtx)
7723 return 0;
7724
7725 op0 = SET_SRC (set);
7726 op1 = CONST0_RTX (GET_MODE (op0));
7727 if (earliest)
7728 *earliest = prev;
7729 }
7730 #endif
7731
7732 /* If this is a COMPARE, pick up the two things being compared. */
7733 if (GET_CODE (op0) == COMPARE)
7734 {
7735 op1 = XEXP (op0, 1);
7736 op0 = XEXP (op0, 0);
7737 continue;
7738 }
7739 else if (GET_CODE (op0) != REG)
7740 break;
7741
7742 /* Go back to the previous insn. Stop if it is not an INSN. We also
7743 stop if it isn't a single set or if it has a REG_INC note because
7744 we don't want to bother dealing with it. */
7745
7746 if ((prev = prev_nonnote_insn (prev)) == 0
7747 || GET_CODE (prev) != INSN
7748 || FIND_REG_INC_NOTE (prev, 0)
7749 || (set = single_set (prev)) == 0)
7750 break;
7751
7752 /* If this is setting OP0, get what it sets it to if it looks
7753 relevant. */
7754 if (rtx_equal_p (SET_DEST (set), op0))
7755 {
7756 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
7757
7758 /* ??? We may not combine comparisons done in a CCmode with
7759 comparisons not done in a CCmode. This is to aid targets
7760 like Alpha that have an IEEE compliant EQ instruction, and
7761 a non-IEEE compliant BEQ instruction. The use of CCmode is
7762 actually artificial, simply to prevent the combination, but
7763 should not affect other platforms.
7764
7765 However, we must allow VOIDmode comparisons to match either
7766 CCmode or non-CCmode comparison, because some ports have
7767 modeless comparisons inside branch patterns.
7768
7769 ??? This mode check should perhaps look more like the mode check
7770 in simplify_comparison in combine. */
7771
7772 if ((GET_CODE (SET_SRC (set)) == COMPARE
7773 || (((code == NE
7774 || (code == LT
7775 && GET_MODE_CLASS (inner_mode) == MODE_INT
7776 && (GET_MODE_BITSIZE (inner_mode)
7777 <= HOST_BITS_PER_WIDE_INT)
7778 && (STORE_FLAG_VALUE
7779 & ((HOST_WIDE_INT) 1
7780 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7781 #ifdef FLOAT_STORE_FLAG_VALUE
7782 || (code == LT
7783 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7784 && FLOAT_STORE_FLAG_VALUE < 0)
7785 #endif
7786 ))
7787 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
7788 && (((GET_MODE_CLASS (mode) == MODE_CC)
7789 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
7790 || mode == VOIDmode || inner_mode == VOIDmode))
7791 x = SET_SRC (set);
7792 else if (((code == EQ
7793 || (code == GE
7794 && (GET_MODE_BITSIZE (inner_mode)
7795 <= HOST_BITS_PER_WIDE_INT)
7796 && GET_MODE_CLASS (inner_mode) == MODE_INT
7797 && (STORE_FLAG_VALUE
7798 & ((HOST_WIDE_INT) 1
7799 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7800 #ifdef FLOAT_STORE_FLAG_VALUE
7801 || (code == GE
7802 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7803 && FLOAT_STORE_FLAG_VALUE < 0)
7804 #endif
7805 ))
7806 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
7807 && (((GET_MODE_CLASS (mode) == MODE_CC)
7808 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
7809 || mode == VOIDmode || inner_mode == VOIDmode))
7810
7811 {
7812 /* We might have reversed a LT to get a GE here. But this wasn't
7813 actually the comparison of data, so we don't flag that we
7814 have had to reverse the condition. */
7815 did_reverse_condition ^= 1;
7816 reverse_code = 1;
7817 x = SET_SRC (set);
7818 }
7819 else
7820 break;
7821 }
7822
7823 else if (reg_set_p (op0, prev))
7824 /* If this sets OP0, but not directly, we have to give up. */
7825 break;
7826
7827 if (x)
7828 {
7829 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
7830 code = GET_CODE (x);
7831 if (reverse_code)
7832 {
7833 code = reverse_condition (code);
7834 did_reverse_condition ^= 1;
7835 reverse_code = 0;
7836 }
7837
7838 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
7839 if (earliest)
7840 *earliest = prev;
7841 }
7842 }
7843
7844 /* If constant is first, put it last. */
7845 if (CONSTANT_P (op0))
7846 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
7847
7848 /* If OP0 is the result of a comparison, we weren't able to find what
7849 was really being compared, so fail. */
7850 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
7851 return 0;
7852
7853 /* Canonicalize any ordered comparison with integers involving equality
7854 if we can do computations in the relevant mode and we do not
7855 overflow. */
7856
7857 if (GET_CODE (op1) == CONST_INT
7858 && GET_MODE (op0) != VOIDmode
7859 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
7860 {
7861 HOST_WIDE_INT const_val = INTVAL (op1);
7862 unsigned HOST_WIDE_INT uconst_val = const_val;
7863 unsigned HOST_WIDE_INT max_val
7864 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
7865
7866 switch (code)
7867 {
7868 case LE:
7869 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
7870 code = LT, op1 = GEN_INT (const_val + 1);
7871 break;
7872
7873 /* When cross-compiling, const_val might be sign-extended from
7874 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
7875 case GE:
7876 if ((HOST_WIDE_INT) (const_val & max_val)
7877 != (((HOST_WIDE_INT) 1
7878 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7879 code = GT, op1 = GEN_INT (const_val - 1);
7880 break;
7881
7882 case LEU:
7883 if (uconst_val < max_val)
7884 code = LTU, op1 = GEN_INT (uconst_val + 1);
7885 break;
7886
7887 case GEU:
7888 if (uconst_val != 0)
7889 code = GTU, op1 = GEN_INT (uconst_val - 1);
7890 break;
7891
7892 default:
7893 break;
7894 }
7895 }
7896
7897 /* If this was floating-point and we reversed anything other than an
7898 EQ or NE, return zero. */
7899 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7900 && did_reverse_condition && code != NE && code != EQ
7901 && ! flag_fast_math
7902 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7903 return 0;
7904
7905 #ifdef HAVE_cc0
7906 /* Never return CC0; return zero instead. */
7907 if (op0 == cc0_rtx)
7908 return 0;
7909 #endif
7910
7911 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
7912 }
7913
7914 /* Similar to above routine, except that we also put an invariant last
7915 unless both operands are invariants. */
7916
7917 rtx
7918 get_condition_for_loop (x)
7919 rtx x;
7920 {
7921 rtx comparison = get_condition (x, NULL_PTR);
7922
7923 if (comparison == 0
7924 || ! invariant_p (XEXP (comparison, 0))
7925 || invariant_p (XEXP (comparison, 1)))
7926 return comparison;
7927
7928 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
7929 XEXP (comparison, 1), XEXP (comparison, 0));
7930 }
7931
7932 #ifdef HAVE_decrement_and_branch_on_count
7933 /* Instrument loop for insertion of bct instruction. We distinguish between
7934 loops with compile-time bounds and those with run-time bounds.
7935 Information from loop_iterations() is used to compute compile-time bounds.
7936 Run-time bounds should use loop preconditioning, but currently ignored.
7937 */
7938
7939 static void
7940 insert_bct (loop_start, loop_end, loop_info)
7941 rtx loop_start, loop_end;
7942 struct loop_info *loop_info;
7943 {
7944 int i;
7945 unsigned HOST_WIDE_INT n_iterations;
7946
7947 int increment_direction, compare_direction;
7948
7949 /* If the loop condition is <= or >=, the number of iteration
7950 is 1 more than the range of the bounds of the loop. */
7951 int add_iteration = 0;
7952
7953 enum machine_mode loop_var_mode = word_mode;
7954
7955 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7956
7957 /* It's impossible to instrument a competely unrolled loop. */
7958 if (loop_info->unroll_number == -1)
7959 return;
7960
7961 /* Make sure that the count register is not in use. */
7962 if (loop_used_count_register [loop_num])
7963 {
7964 if (loop_dump_stream)
7965 fprintf (loop_dump_stream,
7966 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
7967 loop_num);
7968 return;
7969 }
7970
7971 /* Make sure that the function has no indirect jumps. */
7972 if (indirect_jump_in_function)
7973 {
7974 if (loop_dump_stream)
7975 fprintf (loop_dump_stream,
7976 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
7977 loop_num);
7978 return;
7979 }
7980
7981 /* Make sure that the last loop insn is a conditional jump. */
7982 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7983 || ! condjump_p (PREV_INSN (loop_end))
7984 || simplejump_p (PREV_INSN (loop_end)))
7985 {
7986 if (loop_dump_stream)
7987 fprintf (loop_dump_stream,
7988 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
7989 loop_num);
7990 return;
7991 }
7992
7993 /* Make sure that the loop does not contain a function call
7994 (the count register might be altered by the called function). */
7995 if (loop_has_call)
7996 {
7997 if (loop_dump_stream)
7998 fprintf (loop_dump_stream,
7999 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
8000 loop_num);
8001 return;
8002 }
8003
8004 /* Make sure that the loop does not jump via a table.
8005 (the count register might be used to perform the branch on table). */
8006 if (loop_has_tablejump)
8007 {
8008 if (loop_dump_stream)
8009 fprintf (loop_dump_stream,
8010 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
8011 loop_num);
8012 return;
8013 }
8014
8015 /* Account for loop unrolling in instrumented iteration count. */
8016 if (loop_info->unroll_number > 1)
8017 n_iterations = loop_info->n_iterations / loop_info->unroll_number;
8018 else
8019 n_iterations = loop_info->n_iterations;
8020
8021 if (n_iterations != 0 && n_iterations < 3)
8022 {
8023 /* Allow an enclosing outer loop to benefit if possible. */
8024 if (loop_dump_stream)
8025 fprintf (loop_dump_stream,
8026 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
8027 loop_num);
8028 return;
8029 }
8030
8031 /* Try to instrument the loop. */
8032
8033 /* Handle the simpler case, where the bounds are known at compile time. */
8034 if (n_iterations > 0)
8035 {
8036 /* Mark all enclosing loops that they cannot use count register. */
8037 for (i = loop_num; i != -1; i = loop_outer_loop[i])
8038 loop_used_count_register[i] = 1;
8039 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
8040 return;
8041 }
8042
8043 /* Handle the more complex case, that the bounds are NOT known
8044 at compile time. In this case we generate run_time calculation
8045 of the number of iterations. */
8046
8047 if (loop_info->iteration_var == 0)
8048 {
8049 if (loop_dump_stream)
8050 fprintf (loop_dump_stream,
8051 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
8052 loop_num);
8053 return;
8054 }
8055
8056 if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
8057 || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
8058 {
8059 if (loop_dump_stream)
8060 fprintf (loop_dump_stream,
8061 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
8062 loop_num);
8063 return;
8064 }
8065
8066 /* With runtime bounds, if the compare is of the form '!=' we give up */
8067 if (loop_info->comparison_code == NE)
8068 {
8069 if (loop_dump_stream)
8070 fprintf (loop_dump_stream,
8071 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
8072 loop_num);
8073 return;
8074 }
8075 /* Use common loop preconditioning code instead. */
8076 #if 0
8077 else
8078 {
8079 /* We rely on the existence of run-time guard to ensure that the
8080 loop executes at least once. */
8081 rtx sequence;
8082 rtx iterations_num_reg;
8083
8084 unsigned HOST_WIDE_INT increment_value_abs
8085 = INTVAL (increment) * increment_direction;
8086
8087 /* make sure that the increment is a power of two, otherwise (an
8088 expensive) divide is needed. */
8089 if (exact_log2 (increment_value_abs) == -1)
8090 {
8091 if (loop_dump_stream)
8092 fprintf (loop_dump_stream,
8093 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
8094 return;
8095 }
8096
8097 /* compute the number of iterations */
8098 start_sequence ();
8099 {
8100 rtx temp_reg;
8101
8102 /* Again, the number of iterations is calculated by:
8103 ;
8104 ; compare-val - initial-val + (increment -1) + additional-iteration
8105 ; num_iterations = -----------------------------------------------------------------
8106 ; increment
8107 */
8108 /* ??? Do we have to call copy_rtx here before passing rtx to
8109 expand_binop? */
8110 if (compare_direction > 0)
8111 {
8112 /* <, <= :the loop variable is increasing */
8113 temp_reg = expand_binop (loop_var_mode, sub_optab,
8114 comparison_value, initial_value,
8115 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8116 }
8117 else
8118 {
8119 temp_reg = expand_binop (loop_var_mode, sub_optab,
8120 initial_value, comparison_value,
8121 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8122 }
8123
8124 if (increment_value_abs - 1 + add_iteration != 0)
8125 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
8126 GEN_INT (increment_value_abs - 1
8127 + add_iteration),
8128 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8129
8130 if (increment_value_abs != 1)
8131 {
8132 /* ??? This will generate an expensive divide instruction for
8133 most targets. The original authors apparently expected this
8134 to be a shift, since they test for power-of-2 divisors above,
8135 but just naively generating a divide instruction will not give
8136 a shift. It happens to work for the PowerPC target because
8137 the rs6000.md file has a divide pattern that emits shifts.
8138 It will probably not work for any other target. */
8139 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
8140 temp_reg,
8141 GEN_INT (increment_value_abs),
8142 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8143 }
8144 else
8145 iterations_num_reg = temp_reg;
8146 }
8147 sequence = gen_sequence ();
8148 end_sequence ();
8149 emit_insn_before (sequence, loop_start);
8150 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
8151 }
8152
8153 return;
8154 #endif /* Complex case */
8155 }
8156
8157 /* Instrument loop by inserting a bct in it as follows:
8158 1. A new counter register is created.
8159 2. In the head of the loop the new variable is initialized to the value
8160 passed in the loop_num_iterations parameter.
8161 3. At the end of the loop, comparison of the register with 0 is generated.
8162 The created comparison follows the pattern defined for the
8163 decrement_and_branch_on_count insn, so this insn will be generated.
8164 4. The branch on the old variable are deleted. The compare must remain
8165 because it might be used elsewhere. If the loop-variable or condition
8166 register are used elsewhere, they will be eliminated by flow. */
8167
8168 static void
8169 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
8170 rtx loop_start, loop_end;
8171 rtx loop_num_iterations;
8172 {
8173 rtx counter_reg;
8174 rtx start_label;
8175 rtx sequence;
8176
8177 if (HAVE_decrement_and_branch_on_count)
8178 {
8179 if (loop_dump_stream)
8180 {
8181 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
8182 if (GET_CODE (loop_num_iterations) == CONST_INT)
8183 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
8184 INTVAL (loop_num_iterations));
8185 else
8186 fputs ("runtime", loop_dump_stream);
8187 fputs (" iterations)", loop_dump_stream);
8188 }
8189
8190 /* Discard original jump to continue loop. Original compare result
8191 may still be live, so it cannot be discarded explicitly. */
8192 delete_insn (PREV_INSN (loop_end));
8193
8194 /* Insert the label which will delimit the start of the loop. */
8195 start_label = gen_label_rtx ();
8196 emit_label_after (start_label, loop_start);
8197
8198 /* Insert initialization of the count register into the loop header. */
8199 start_sequence ();
8200 counter_reg = gen_reg_rtx (word_mode);
8201 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
8202 sequence = gen_sequence ();
8203 end_sequence ();
8204 emit_insn_before (sequence, loop_start);
8205
8206 /* Insert new comparison on the count register instead of the
8207 old one, generating the needed BCT pattern (that will be
8208 later recognized by assembly generation phase). */
8209 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
8210 start_label),
8211 loop_end);
8212 LABEL_NUSES (start_label)++;
8213 }
8214
8215 }
8216 #endif /* HAVE_decrement_and_branch_on_count */
8217
8218 /* Scan the function and determine whether it has indirect (computed) jumps.
8219
8220 This is taken mostly from flow.c; similar code exists elsewhere
8221 in the compiler. It may be useful to put this into rtlanal.c. */
8222 static int
8223 indirect_jump_in_function_p (start)
8224 rtx start;
8225 {
8226 rtx insn;
8227
8228 for (insn = start; insn; insn = NEXT_INSN (insn))
8229 if (computed_jump_p (insn))
8230 return 1;
8231
8232 return 0;
8233 }
8234
8235 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
8236 documentation for LOOP_MEMS for the definition of `appropriate'.
8237 This function is called from prescan_loop via for_each_rtx. */
8238
8239 static int
8240 insert_loop_mem (mem, data)
8241 rtx *mem;
8242 void *data ATTRIBUTE_UNUSED;
8243 {
8244 int i;
8245 rtx m = *mem;
8246
8247 if (m == NULL_RTX)
8248 return 0;
8249
8250 switch (GET_CODE (m))
8251 {
8252 case MEM:
8253 break;
8254
8255 case CONST_DOUBLE:
8256 /* We're not interested in the MEM associated with a
8257 CONST_DOUBLE, so there's no need to traverse into this. */
8258 return -1;
8259
8260 default:
8261 /* This is not a MEM. */
8262 return 0;
8263 }
8264
8265 /* See if we've already seen this MEM. */
8266 for (i = 0; i < loop_mems_idx; ++i)
8267 if (rtx_equal_p (m, loop_mems[i].mem))
8268 {
8269 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
8270 /* The modes of the two memory accesses are different. If
8271 this happens, something tricky is going on, and we just
8272 don't optimize accesses to this MEM. */
8273 loop_mems[i].optimize = 0;
8274
8275 return 0;
8276 }
8277
8278 /* Resize the array, if necessary. */
8279 if (loop_mems_idx == loop_mems_allocated)
8280 {
8281 if (loop_mems_allocated != 0)
8282 loop_mems_allocated *= 2;
8283 else
8284 loop_mems_allocated = 32;
8285
8286 loop_mems = (loop_mem_info*)
8287 xrealloc (loop_mems,
8288 loop_mems_allocated * sizeof (loop_mem_info));
8289 }
8290
8291 /* Actually insert the MEM. */
8292 loop_mems[loop_mems_idx].mem = m;
8293 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
8294 because we can't put it in a register. We still store it in the
8295 table, though, so that if we see the same address later, but in a
8296 non-BLK mode, we'll not think we can optimize it at that point. */
8297 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
8298 loop_mems[loop_mems_idx].reg = NULL_RTX;
8299 ++loop_mems_idx;
8300
8301 return 0;
8302 }
8303
8304 /* Like load_mems, but also ensures that SET_IN_LOOP,
8305 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
8306 values after load_mems. */
8307
8308 static void
8309 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top, start,
8310 reg_single_usage, insn_count)
8311 rtx scan_start;
8312 rtx end;
8313 rtx loop_top;
8314 rtx start;
8315 varray_type reg_single_usage;
8316 int *insn_count;
8317 {
8318 int nregs = max_reg_num ();
8319
8320 load_mems (scan_start, end, loop_top, start);
8321
8322 /* Recalculate set_in_loop and friends since load_mems may have
8323 created new registers. */
8324 if (max_reg_num () > nregs)
8325 {
8326 int i;
8327 int old_nregs;
8328
8329 old_nregs = nregs;
8330 nregs = max_reg_num ();
8331
8332 if ((unsigned) nregs > set_in_loop->num_elements)
8333 {
8334 /* Grow all the arrays. */
8335 VARRAY_GROW (set_in_loop, nregs);
8336 VARRAY_GROW (n_times_set, nregs);
8337 VARRAY_GROW (may_not_optimize, nregs);
8338 if (reg_single_usage)
8339 VARRAY_GROW (reg_single_usage, nregs);
8340 }
8341 /* Clear the arrays */
8342 bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
8343 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
8344 if (reg_single_usage)
8345 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
8346
8347 count_loop_regs_set (loop_top ? loop_top : start, end,
8348 may_not_optimize, reg_single_usage,
8349 insn_count, nregs);
8350
8351 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8352 {
8353 VARRAY_CHAR (may_not_optimize, i) = 1;
8354 VARRAY_INT (set_in_loop, i) = 1;
8355 }
8356
8357 #ifdef AVOID_CCMODE_COPIES
8358 /* Don't try to move insns which set CC registers if we should not
8359 create CCmode register copies. */
8360 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
8361 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
8362 VARRAY_CHAR (may_not_optimize, i) = 1;
8363 #endif
8364
8365 /* Set n_times_set for the new registers. */
8366 bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
8367 (char *) (&n_times_set->data.i[0] + old_nregs),
8368 (nregs - old_nregs) * sizeof (int));
8369 }
8370 }
8371
8372 /* Move MEMs into registers for the duration of the loop. SCAN_START
8373 is the first instruction in the loop (as it is executed). The
8374 other parameters are as for next_insn_in_loop. */
8375
8376 static void
8377 load_mems (scan_start, end, loop_top, start)
8378 rtx scan_start;
8379 rtx end;
8380 rtx loop_top;
8381 rtx start;
8382 {
8383 int maybe_never = 0;
8384 int i;
8385 rtx p;
8386 rtx label = NULL_RTX;
8387 rtx end_label;
8388
8389 if (loop_mems_idx > 0)
8390 {
8391 /* Nonzero if the next instruction may never be executed. */
8392 int next_maybe_never = 0;
8393
8394 /* Check to see if it's possible that some instructions in the
8395 loop are never executed. */
8396 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
8397 p != NULL_RTX && !maybe_never;
8398 p = next_insn_in_loop (p, scan_start, end, loop_top))
8399 {
8400 if (GET_CODE (p) == CODE_LABEL)
8401 maybe_never = 1;
8402 else if (GET_CODE (p) == JUMP_INSN
8403 /* If we enter the loop in the middle, and scan
8404 around to the beginning, don't set maybe_never
8405 for that. This must be an unconditional jump,
8406 otherwise the code at the top of the loop might
8407 never be executed. Unconditional jumps are
8408 followed a by barrier then loop end. */
8409 && ! (GET_CODE (p) == JUMP_INSN
8410 && JUMP_LABEL (p) == loop_top
8411 && NEXT_INSN (NEXT_INSN (p)) == end
8412 && simplejump_p (p)))
8413 {
8414 if (!condjump_p (p))
8415 /* Something complicated. */
8416 maybe_never = 1;
8417 else
8418 /* If there are any more instructions in the loop, they
8419 might not be reached. */
8420 next_maybe_never = 1;
8421 }
8422 else if (next_maybe_never)
8423 maybe_never = 1;
8424 }
8425
8426 /* Actually move the MEMs. */
8427 for (i = 0; i < loop_mems_idx; ++i)
8428 {
8429 int j;
8430 int written = 0;
8431 rtx reg;
8432 rtx mem = loop_mems[i].mem;
8433
8434 if (MEM_VOLATILE_P (mem)
8435 || invariant_p (XEXP (mem, 0)) != 1)
8436 /* There's no telling whether or not MEM is modified. */
8437 loop_mems[i].optimize = 0;
8438
8439 /* Go through the MEMs written to in the loop to see if this
8440 one is aliased by one of them. */
8441 for (j = 0; j < loop_store_mems_idx; ++j)
8442 {
8443 if (rtx_equal_p (mem, loop_store_mems[j]))
8444 written = 1;
8445 else if (true_dependence (loop_store_mems[j], VOIDmode,
8446 mem, rtx_varies_p))
8447 {
8448 /* MEM is indeed aliased by this store. */
8449 loop_mems[i].optimize = 0;
8450 break;
8451 }
8452 }
8453
8454 /* If this MEM is written to, we must be sure that there
8455 are no reads from another MEM that aliases this one. */
8456 if (loop_mems[i].optimize && written)
8457 {
8458 int j;
8459
8460 for (j = 0; j < loop_mems_idx; ++j)
8461 {
8462 if (j == i)
8463 continue;
8464 else if (true_dependence (mem,
8465 VOIDmode,
8466 loop_mems[j].mem,
8467 rtx_varies_p))
8468 {
8469 /* It's not safe to hoist loop_mems[i] out of
8470 the loop because writes to it might not be
8471 seen by reads from loop_mems[j]. */
8472 loop_mems[i].optimize = 0;
8473 break;
8474 }
8475 }
8476 }
8477
8478 if (maybe_never && may_trap_p (mem))
8479 /* We can't access the MEM outside the loop; it might
8480 cause a trap that wouldn't have happened otherwise. */
8481 loop_mems[i].optimize = 0;
8482
8483 if (!loop_mems[i].optimize)
8484 /* We thought we were going to lift this MEM out of the
8485 loop, but later discovered that we could not. */
8486 continue;
8487
8488 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
8489 order to keep scan_loop from moving stores to this MEM
8490 out of the loop just because this REG is neither a
8491 user-variable nor used in the loop test. */
8492 reg = gen_reg_rtx (GET_MODE (mem));
8493 REG_USERVAR_P (reg) = 1;
8494 loop_mems[i].reg = reg;
8495
8496 /* Now, replace all references to the MEM with the
8497 corresponding pesudos. */
8498 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
8499 p != NULL_RTX;
8500 p = next_insn_in_loop (p, scan_start, end, loop_top))
8501 {
8502 rtx_and_int ri;
8503 ri.r = p;
8504 ri.i = i;
8505 for_each_rtx (&p, replace_loop_mem, &ri);
8506 }
8507
8508 if (!apply_change_group ())
8509 /* We couldn't replace all occurrences of the MEM. */
8510 loop_mems[i].optimize = 0;
8511 else
8512 {
8513 rtx set;
8514
8515 /* Load the memory immediately before START, which is
8516 the NOTE_LOOP_BEG. */
8517 set = gen_rtx_SET (GET_MODE (reg), reg, mem);
8518 emit_insn_before (set, start);
8519
8520 if (written)
8521 {
8522 if (label == NULL_RTX)
8523 {
8524 /* We must compute the former
8525 right-after-the-end label before we insert
8526 the new one. */
8527 end_label = next_label (end);
8528 label = gen_label_rtx ();
8529 emit_label_after (label, end);
8530 }
8531
8532 /* Store the memory immediately after END, which is
8533 the NOTE_LOOP_END. */
8534 set = gen_rtx_SET (GET_MODE (reg), copy_rtx (mem), reg);
8535 emit_insn_after (set, label);
8536 }
8537
8538 if (loop_dump_stream)
8539 {
8540 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
8541 REGNO (reg), (written ? "r/w" : "r/o"));
8542 print_rtl (loop_dump_stream, mem);
8543 fputc ('\n', loop_dump_stream);
8544 }
8545 }
8546 }
8547 }
8548
8549 if (label != NULL_RTX)
8550 {
8551 /* Now, we need to replace all references to the previous exit
8552 label with the new one. */
8553 rtx_pair rr;
8554 rr.r1 = end_label;
8555 rr.r2 = label;
8556
8557 for (p = start; p != end; p = NEXT_INSN (p))
8558 {
8559 for_each_rtx (&p, replace_label, &rr);
8560
8561 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
8562 field. This is not handled by for_each_rtx because it doesn't
8563 handle unprinted ('0') fields. We need to update JUMP_LABEL
8564 because the immediately following unroll pass will use it.
8565 replace_label would not work anyways, because that only handles
8566 LABEL_REFs. */
8567 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
8568 JUMP_LABEL (p) = label;
8569 }
8570 }
8571 }
8572
8573 /* Replace MEM with its associated pseudo register. This function is
8574 called from load_mems via for_each_rtx. DATA is actually an
8575 rtx_and_int * describing the instruction currently being scanned
8576 and the MEM we are currently replacing. */
8577
8578 static int
8579 replace_loop_mem (mem, data)
8580 rtx *mem;
8581 void *data;
8582 {
8583 rtx_and_int *ri;
8584 rtx insn;
8585 int i;
8586 rtx m = *mem;
8587
8588 if (m == NULL_RTX)
8589 return 0;
8590
8591 switch (GET_CODE (m))
8592 {
8593 case MEM:
8594 break;
8595
8596 case CONST_DOUBLE:
8597 /* We're not interested in the MEM associated with a
8598 CONST_DOUBLE, so there's no need to traverse into one. */
8599 return -1;
8600
8601 default:
8602 /* This is not a MEM. */
8603 return 0;
8604 }
8605
8606 ri = (rtx_and_int*) data;
8607 i = ri->i;
8608
8609 if (!rtx_equal_p (loop_mems[i].mem, m))
8610 /* This is not the MEM we are currently replacing. */
8611 return 0;
8612
8613 insn = ri->r;
8614
8615 /* Actually replace the MEM. */
8616 validate_change (insn, mem, loop_mems[i].reg, 1);
8617
8618 return 0;
8619 }
8620
8621 /* Replace occurrences of the old exit label for the loop with the new
8622 one. DATA is an rtx_pair containing the old and new labels,
8623 respectively. */
8624
8625 static int
8626 replace_label (x, data)
8627 rtx *x;
8628 void *data;
8629 {
8630 rtx l = *x;
8631 rtx old_label = ((rtx_pair*) data)->r1;
8632 rtx new_label = ((rtx_pair*) data)->r2;
8633
8634 if (l == NULL_RTX)
8635 return 0;
8636
8637 if (GET_CODE (l) != LABEL_REF)
8638 return 0;
8639
8640 if (XEXP (l, 0) != old_label)
8641 return 0;
8642
8643 XEXP (l, 0) = new_label;
8644 ++LABEL_NUSES (new_label);
8645 --LABEL_NUSES (old_label);
8646
8647 return 0;
8648 }
8649