loop.c (loop_unroll_factor): Move outside #ifdef HAIFA conditional.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include <stdio.h>
38 #include "config.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 #ifdef HAIFA
85 /* The main output of analyze_loop_iterations is placed here */
86
87 int *loop_can_insert_bct;
88
89 /* For each loop, determines whether some of its inner loops has used
90 count register */
91
92 int *loop_used_count_register;
93
94 /* loop parameters for arithmetic loops. These loops have a loop variable
95 which is initialized to loop_start_value, incremented in each iteration
96 by "loop_increment". At the end of the iteration the loop variable is
97 compared to the loop_comparison_value (using loop_comparison_code). */
98
99 rtx *loop_increment;
100 rtx *loop_comparison_value;
101 rtx *loop_start_value;
102 enum rtx_code *loop_comparison_code;
103 #endif /* HAIFA */
104
105 /* For each loop, keep track of its unrolling factor.
106 Potential values:
107 0: unrolled
108 1: not unrolled.
109 -1: completely unrolled
110 >0: holds the unroll exact factor. */
111 int *loop_unroll_factor;
112
113 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
114 really a loop (an insn outside the loop branches into it). */
115
116 static char *loop_invalid;
117
118 /* Indexed by loop number, links together all LABEL_REFs which refer to
119 code labels outside the loop. Used by routines that need to know all
120 loop exits, such as final_biv_value and final_giv_value.
121
122 This does not include loop exits due to return instructions. This is
123 because all bivs and givs are pseudos, and hence must be dead after a
124 return, so the presense of a return does not affect any of the
125 optimizations that use this info. It is simpler to just not include return
126 instructions on this list. */
127
128 rtx *loop_number_exit_labels;
129
130 /* Indexed by loop number, counts the number of LABEL_REFs on
131 loop_number_exit_labels for this loop and all loops nested inside it. */
132
133 int *loop_number_exit_count;
134
135 /* Holds the number of loop iterations. It is zero if the number could not be
136 calculated. Must be unsigned since the number of iterations can
137 be as high as 2^wordsize-1. For loops with a wider iterator, this number
138 will will be zero if the number of loop iterations is too large for an
139 unsigned integer to hold. */
140
141 unsigned HOST_WIDE_INT loop_n_iterations;
142
143 /* Nonzero if there is a subroutine call in the current loop. */
144
145 static int loop_has_call;
146
147 /* Nonzero if there is a volatile memory reference in the current
148 loop. */
149
150 static int loop_has_volatile;
151
152 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
153 current loop. A continue statement will generate a branch to
154 NEXT_INSN (loop_continue). */
155
156 static rtx loop_continue;
157
158 /* Indexed by register number, contains the number of times the reg
159 is set during the loop being scanned.
160 During code motion, a negative value indicates a reg that has been
161 made a candidate; in particular -2 means that it is an candidate that
162 we know is equal to a constant and -1 means that it is an candidate
163 not known equal to a constant.
164 After code motion, regs moved have 0 (which is accurate now)
165 while the failed candidates have the original number of times set.
166
167 Therefore, at all times, == 0 indicates an invariant register;
168 < 0 a conditionally invariant one. */
169
170 static int *n_times_set;
171
172 /* Original value of n_times_set; same except that this value
173 is not set negative for a reg whose sets have been made candidates
174 and not set to 0 for a reg that is moved. */
175
176 static int *n_times_used;
177
178 /* Index by register number, 1 indicates that the register
179 cannot be moved or strength reduced. */
180
181 static char *may_not_optimize;
182
183 /* Nonzero means reg N has already been moved out of one loop.
184 This reduces the desire to move it out of another. */
185
186 static char *moved_once;
187
188 /* Array of MEMs that are stored in this loop. If there are too many to fit
189 here, we just turn on unknown_address_altered. */
190
191 #define NUM_STORES 30
192 static rtx loop_store_mems[NUM_STORES];
193
194 /* Index of first available slot in above array. */
195 static int loop_store_mems_idx;
196
197 /* Nonzero if we don't know what MEMs were changed in the current loop.
198 This happens if the loop contains a call (in which case `loop_has_call'
199 will also be set) or if we store into more than NUM_STORES MEMs. */
200
201 static int unknown_address_altered;
202
203 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
204 static int num_movables;
205
206 /* Count of memory write instructions discovered in the loop. */
207 static int num_mem_sets;
208
209 /* Number of loops contained within the current one, including itself. */
210 static int loops_enclosed;
211
212 /* Bound on pseudo register number before loop optimization.
213 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
214 int max_reg_before_loop;
215
216 /* This obstack is used in product_cheap_p to allocate its rtl. It
217 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
218 If we used the same obstack that it did, we would be deallocating
219 that array. */
220
221 static struct obstack temp_obstack;
222
223 /* This is where the pointer to the obstack being used for RTL is stored. */
224
225 extern struct obstack *rtl_obstack;
226
227 #define obstack_chunk_alloc xmalloc
228 #define obstack_chunk_free free
229
230 extern char *oballoc ();
231 \f
232 /* During the analysis of a loop, a chain of `struct movable's
233 is made to record all the movable insns found.
234 Then the entire chain can be scanned to decide which to move. */
235
236 struct movable
237 {
238 rtx insn; /* A movable insn */
239 rtx set_src; /* The expression this reg is set from. */
240 rtx set_dest; /* The destination of this SET. */
241 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
242 of any registers used within the LIBCALL. */
243 int consec; /* Number of consecutive following insns
244 that must be moved with this one. */
245 int regno; /* The register it sets */
246 short lifetime; /* lifetime of that register;
247 may be adjusted when matching movables
248 that load the same value are found. */
249 short savings; /* Number of insns we can move for this reg,
250 including other movables that force this
251 or match this one. */
252 unsigned int cond : 1; /* 1 if only conditionally movable */
253 unsigned int force : 1; /* 1 means MUST move this insn */
254 unsigned int global : 1; /* 1 means reg is live outside this loop */
255 /* If PARTIAL is 1, GLOBAL means something different:
256 that the reg is live outside the range from where it is set
257 to the following label. */
258 unsigned int done : 1; /* 1 inhibits further processing of this */
259
260 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
261 In particular, moving it does not make it
262 invariant. */
263 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
264 load SRC, rather than copying INSN. */
265 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
266 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
267 that we should avoid changing when clearing
268 the rest of the reg. */
269 struct movable *match; /* First entry for same value */
270 struct movable *forces; /* An insn that must be moved if this is */
271 struct movable *next;
272 };
273
274 FILE *loop_dump_stream;
275
276 /* Forward declarations. */
277
278 static void find_and_verify_loops ();
279 static void mark_loop_jump ();
280 static void prescan_loop ();
281 static int reg_in_basic_block_p ();
282 static int consec_sets_invariant_p ();
283 static rtx libcall_other_reg ();
284 static int labels_in_range_p ();
285 static void count_loop_regs_set ();
286 static void note_addr_stored ();
287 static int loop_reg_used_before_p ();
288 static void scan_loop ();
289 static void replace_call_address ();
290 static rtx skip_consec_insns ();
291 static int libcall_benefit ();
292 static void ignore_some_movables ();
293 static void force_movables ();
294 static void combine_movables ();
295 static int rtx_equal_for_loop_p ();
296 static void move_movables ();
297 static void strength_reduce ();
298 static int valid_initial_value_p ();
299 static void find_mem_givs ();
300 static void record_biv ();
301 static void check_final_value ();
302 static void record_giv ();
303 static void update_giv_derive ();
304 static int basic_induction_var ();
305 static rtx simplify_giv_expr ();
306 static int general_induction_var ();
307 static int consec_sets_giv ();
308 static int check_dbra_loop ();
309 static rtx express_from ();
310 static int combine_givs_p ();
311 static void combine_givs ();
312 static int product_cheap_p ();
313 static int maybe_eliminate_biv ();
314 static int maybe_eliminate_biv_1 ();
315 static int last_use_this_basic_block ();
316 static void record_initial ();
317 static void update_reg_last_use ();
318
319 #ifdef HAIFA
320 /* This is extern from unroll.c */
321 void iteration_info ();
322
323 /* Two main functions for implementing bct:
324 first - to be called before loop unrolling, and the second - after */
325 static void analyze_loop_iterations ();
326 static void insert_bct ();
327
328 /* Auxiliary function that inserts the bct pattern into the loop */
329 static void instrument_loop_bct ();
330
331
332 int loop_number ();
333 #endif /* HAIFA */
334
335 /* Indirect_jump_in_function is computed once per function. */
336 int indirect_jump_in_function = 0;
337 static int indirect_jump_in_function_p ();
338
339 \f
340 /* Relative gain of eliminating various kinds of operations. */
341 int add_cost;
342 #if 0
343 int shift_cost;
344 int mult_cost;
345 #endif
346
347 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
348 copy the value of the strength reduced giv to its original register. */
349 int copy_cost;
350
351 void
352 init_loop ()
353 {
354 char *free_point = (char *) oballoc (1);
355 rtx reg = gen_rtx (REG, word_mode, LAST_VIRTUAL_REGISTER + 1);
356
357 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
358
359 /* We multiply by 2 to reconcile the difference in scale between
360 these two ways of computing costs. Otherwise the cost of a copy
361 will be far less than the cost of an add. */
362
363 copy_cost = 2 * 2;
364
365 /* Free the objects we just allocated. */
366 obfree (free_point);
367
368 /* Initialize the obstack used for rtl in product_cheap_p. */
369 gcc_obstack_init (&temp_obstack);
370 }
371 \f
372 /* Entry point of this file. Perform loop optimization
373 on the current function. F is the first insn of the function
374 and DUMPFILE is a stream for output of a trace of actions taken
375 (or 0 if none should be output). */
376
377 void
378 loop_optimize (f, dumpfile)
379 /* f is the first instruction of a chain of insns for one function */
380 rtx f;
381 FILE *dumpfile;
382 {
383 register rtx insn;
384 register int i;
385 rtx last_insn;
386
387 loop_dump_stream = dumpfile;
388
389 init_recog_no_volatile ();
390 init_alias_analysis ();
391
392 max_reg_before_loop = max_reg_num ();
393
394 moved_once = (char *) alloca (max_reg_before_loop);
395 bzero (moved_once, max_reg_before_loop);
396
397 regs_may_share = 0;
398
399 /* Count the number of loops. */
400
401 max_loop_num = 0;
402 for (insn = f; insn; insn = NEXT_INSN (insn))
403 {
404 if (GET_CODE (insn) == NOTE
405 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
406 max_loop_num++;
407 }
408
409 /* Don't waste time if no loops. */
410 if (max_loop_num == 0)
411 return;
412
413 /* Get size to use for tables indexed by uids.
414 Leave some space for labels allocated by find_and_verify_loops. */
415 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
416
417 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
418 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
419
420 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
421 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
422
423 /* Allocate tables for recording each loop. We set each entry, so they need
424 not be zeroed. */
425 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
426 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
427 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
428 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
429 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
430 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
431
432 /* This is initialized by the unrolling code, so we go ahead
433 and clear them just in case we are not performing loop
434 unrolling. */
435 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
436 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
437
438 #ifdef HAIFA
439 /* Allocate for BCT optimization */
440 loop_can_insert_bct = (int *) alloca (max_loop_num * sizeof (int));
441 bzero ((char *) loop_can_insert_bct, max_loop_num * sizeof (int));
442
443 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
444 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
445
446 loop_increment = (rtx *) alloca (max_loop_num * sizeof (rtx));
447 loop_comparison_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
448 loop_start_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
449 bzero ((char *) loop_increment, max_loop_num * sizeof (rtx));
450 bzero ((char *) loop_comparison_value, max_loop_num * sizeof (rtx));
451 bzero ((char *) loop_start_value, max_loop_num * sizeof (rtx));
452
453 loop_comparison_code
454 = (enum rtx_code *) alloca (max_loop_num * sizeof (enum rtx_code));
455 bzero ((char *) loop_comparison_code, max_loop_num * sizeof (enum rtx_code));
456 #endif /* HAIFA */
457
458 /* Find and process each loop.
459 First, find them, and record them in order of their beginnings. */
460 find_and_verify_loops (f);
461
462 /* Now find all register lifetimes. This must be done after
463 find_and_verify_loops, because it might reorder the insns in the
464 function. */
465 reg_scan (f, max_reg_num (), 1);
466
467 /* See if we went too far. */
468 if (get_max_uid () > max_uid_for_loop)
469 abort ();
470
471 /* Compute the mapping from uids to luids.
472 LUIDs are numbers assigned to insns, like uids,
473 except that luids increase monotonically through the code.
474 Don't assign luids to line-number NOTEs, so that the distance in luids
475 between two insns is not affected by -g. */
476
477 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
478 {
479 last_insn = insn;
480 if (GET_CODE (insn) != NOTE
481 || NOTE_LINE_NUMBER (insn) <= 0)
482 uid_luid[INSN_UID (insn)] = ++i;
483 else
484 /* Give a line number note the same luid as preceding insn. */
485 uid_luid[INSN_UID (insn)] = i;
486 }
487
488 max_luid = i + 1;
489
490 /* Don't leave gaps in uid_luid for insns that have been
491 deleted. It is possible that the first or last insn
492 using some register has been deleted by cross-jumping.
493 Make sure that uid_luid for that former insn's uid
494 points to the general area where that insn used to be. */
495 for (i = 0; i < max_uid_for_loop; i++)
496 {
497 uid_luid[0] = uid_luid[i];
498 if (uid_luid[0] != 0)
499 break;
500 }
501 for (i = 0; i < max_uid_for_loop; i++)
502 if (uid_luid[i] == 0)
503 uid_luid[i] = uid_luid[i - 1];
504
505 /* Create a mapping from loops to BLOCK tree nodes. */
506 if (flag_unroll_loops && write_symbols != NO_DEBUG)
507 find_loop_tree_blocks ();
508
509 /* Determine if the function has indirect jump. On some systems
510 this prevents low overhead loop instructions from being used. */
511 indirect_jump_in_function = indirect_jump_in_function_p (f);
512
513 /* Now scan the loops, last ones first, since this means inner ones are done
514 before outer ones. */
515 for (i = max_loop_num-1; i >= 0; i--)
516 if (! loop_invalid[i] && loop_number_loop_ends[i])
517 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
518 max_reg_num ());
519
520 /* If debugging and unrolling loops, we must replicate the tree nodes
521 corresponding to the blocks inside the loop, so that the original one
522 to one mapping will remain. */
523 if (flag_unroll_loops && write_symbols != NO_DEBUG)
524 unroll_block_trees ();
525 }
526 \f
527 /* Optimize one loop whose start is LOOP_START and end is END.
528 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
529 NOTE_INSN_LOOP_END. */
530
531 /* ??? Could also move memory writes out of loops if the destination address
532 is invariant, the source is invariant, the memory write is not volatile,
533 and if we can prove that no read inside the loop can read this address
534 before the write occurs. If there is a read of this address after the
535 write, then we can also mark the memory read as invariant. */
536
537 static void
538 scan_loop (loop_start, end, nregs)
539 rtx loop_start, end;
540 int nregs;
541 {
542 register int i;
543 register rtx p;
544 /* 1 if we are scanning insns that could be executed zero times. */
545 int maybe_never = 0;
546 /* 1 if we are scanning insns that might never be executed
547 due to a subroutine call which might exit before they are reached. */
548 int call_passed = 0;
549 /* For a rotated loop that is entered near the bottom,
550 this is the label at the top. Otherwise it is zero. */
551 rtx loop_top = 0;
552 /* Jump insn that enters the loop, or 0 if control drops in. */
553 rtx loop_entry_jump = 0;
554 /* Place in the loop where control enters. */
555 rtx scan_start;
556 /* Number of insns in the loop. */
557 int insn_count;
558 int in_libcall = 0;
559 int tem;
560 rtx temp;
561 /* The SET from an insn, if it is the only SET in the insn. */
562 rtx set, set1;
563 /* Chain describing insns movable in current loop. */
564 struct movable *movables = 0;
565 /* Last element in `movables' -- so we can add elements at the end. */
566 struct movable *last_movable = 0;
567 /* Ratio of extra register life span we can justify
568 for saving an instruction. More if loop doesn't call subroutines
569 since in that case saving an insn makes more difference
570 and more registers are available. */
571 int threshold;
572 /* If we have calls, contains the insn in which a register was used
573 if it was used exactly once; contains const0_rtx if it was used more
574 than once. */
575 rtx *reg_single_usage = 0;
576 /* Nonzero if we are scanning instructions in a sub-loop. */
577 int loop_depth = 0;
578
579 n_times_set = (int *) alloca (nregs * sizeof (int));
580 n_times_used = (int *) alloca (nregs * sizeof (int));
581 may_not_optimize = (char *) alloca (nregs);
582
583 /* Determine whether this loop starts with a jump down to a test at
584 the end. This will occur for a small number of loops with a test
585 that is too complex to duplicate in front of the loop.
586
587 We search for the first insn or label in the loop, skipping NOTEs.
588 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
589 (because we might have a loop executed only once that contains a
590 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
591 (in case we have a degenerate loop).
592
593 Note that if we mistakenly think that a loop is entered at the top
594 when, in fact, it is entered at the exit test, the only effect will be
595 slightly poorer optimization. Making the opposite error can generate
596 incorrect code. Since very few loops now start with a jump to the
597 exit test, the code here to detect that case is very conservative. */
598
599 for (p = NEXT_INSN (loop_start);
600 p != end
601 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
602 && (GET_CODE (p) != NOTE
603 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
604 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
605 p = NEXT_INSN (p))
606 ;
607
608 scan_start = p;
609
610 /* Set up variables describing this loop. */
611 prescan_loop (loop_start, end);
612 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
613
614 /* If loop has a jump before the first label,
615 the true entry is the target of that jump.
616 Start scan from there.
617 But record in LOOP_TOP the place where the end-test jumps
618 back to so we can scan that after the end of the loop. */
619 if (GET_CODE (p) == JUMP_INSN)
620 {
621 loop_entry_jump = p;
622
623 /* Loop entry must be unconditional jump (and not a RETURN) */
624 if (simplejump_p (p)
625 && JUMP_LABEL (p) != 0
626 /* Check to see whether the jump actually
627 jumps out of the loop (meaning it's no loop).
628 This case can happen for things like
629 do {..} while (0). If this label was generated previously
630 by loop, we can't tell anything about it and have to reject
631 the loop. */
632 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
633 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
634 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
635 {
636 loop_top = next_label (scan_start);
637 scan_start = JUMP_LABEL (p);
638 }
639 }
640
641 /* If SCAN_START was an insn created by loop, we don't know its luid
642 as required by loop_reg_used_before_p. So skip such loops. (This
643 test may never be true, but it's best to play it safe.)
644
645 Also, skip loops where we do not start scanning at a label. This
646 test also rejects loops starting with a JUMP_INSN that failed the
647 test above. */
648
649 if (INSN_UID (scan_start) >= max_uid_for_loop
650 || GET_CODE (scan_start) != CODE_LABEL)
651 {
652 if (loop_dump_stream)
653 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
654 INSN_UID (loop_start), INSN_UID (end));
655 return;
656 }
657
658 /* Count number of times each reg is set during this loop.
659 Set may_not_optimize[I] if it is not safe to move out
660 the setting of register I. If this loop has calls, set
661 reg_single_usage[I]. */
662
663 bzero ((char *) n_times_set, nregs * sizeof (int));
664 bzero (may_not_optimize, nregs);
665
666 if (loop_has_call)
667 {
668 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
669 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
670 }
671
672 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
673 may_not_optimize, reg_single_usage, &insn_count, nregs);
674
675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
676 may_not_optimize[i] = 1, n_times_set[i] = 1;
677 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
678
679 if (loop_dump_stream)
680 {
681 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
682 INSN_UID (loop_start), INSN_UID (end), insn_count);
683 if (loop_continue)
684 fprintf (loop_dump_stream, "Continue at insn %d.\n",
685 INSN_UID (loop_continue));
686 }
687
688 /* Scan through the loop finding insns that are safe to move.
689 Set n_times_set negative for the reg being set, so that
690 this reg will be considered invariant for subsequent insns.
691 We consider whether subsequent insns use the reg
692 in deciding whether it is worth actually moving.
693
694 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
695 and therefore it is possible that the insns we are scanning
696 would never be executed. At such times, we must make sure
697 that it is safe to execute the insn once instead of zero times.
698 When MAYBE_NEVER is 0, all insns will be executed at least once
699 so that is not a problem. */
700
701 p = scan_start;
702 while (1)
703 {
704 p = NEXT_INSN (p);
705 /* At end of a straight-in loop, we are done.
706 At end of a loop entered at the bottom, scan the top. */
707 if (p == scan_start)
708 break;
709 if (p == end)
710 {
711 if (loop_top != 0)
712 p = loop_top;
713 else
714 break;
715 if (p == scan_start)
716 break;
717 }
718
719 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
720 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
721 in_libcall = 1;
722 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
723 && find_reg_note (p, REG_RETVAL, NULL_RTX))
724 in_libcall = 0;
725
726 if (GET_CODE (p) == INSN
727 && (set = single_set (p))
728 && GET_CODE (SET_DEST (set)) == REG
729 && ! may_not_optimize[REGNO (SET_DEST (set))])
730 {
731 int tem1 = 0;
732 int tem2 = 0;
733 int move_insn = 0;
734 rtx src = SET_SRC (set);
735 rtx dependencies = 0;
736
737 /* Figure out what to use as a source of this insn. If a REG_EQUIV
738 note is given or if a REG_EQUAL note with a constant operand is
739 specified, use it as the source and mark that we should move
740 this insn by calling emit_move_insn rather that duplicating the
741 insn.
742
743 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
744 is present. */
745 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
746 if (temp)
747 src = XEXP (temp, 0), move_insn = 1;
748 else
749 {
750 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
751 if (temp && CONSTANT_P (XEXP (temp, 0)))
752 src = XEXP (temp, 0), move_insn = 1;
753 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
754 {
755 src = XEXP (temp, 0);
756 /* A libcall block can use regs that don't appear in
757 the equivalent expression. To move the libcall,
758 we must move those regs too. */
759 dependencies = libcall_other_reg (p, src);
760 }
761 }
762
763 /* Don't try to optimize a register that was made
764 by loop-optimization for an inner loop.
765 We don't know its life-span, so we can't compute the benefit. */
766 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
767 ;
768 /* In order to move a register, we need to have one of three cases:
769 (1) it is used only in the same basic block as the set
770 (2) it is not a user variable and it is not used in the
771 exit test (this can cause the variable to be used
772 before it is set just like a user-variable).
773 (3) the set is guaranteed to be executed once the loop starts,
774 and the reg is not used until after that. */
775 else if (! ((! maybe_never
776 && ! loop_reg_used_before_p (set, p, loop_start,
777 scan_start, end))
778 || (! REG_USERVAR_P (SET_DEST (set))
779 && ! REG_LOOP_TEST_P (SET_DEST (set)))
780 || reg_in_basic_block_p (p, SET_DEST (set))))
781 ;
782 else if ((tem = invariant_p (src))
783 && (dependencies == 0
784 || (tem2 = invariant_p (dependencies)) != 0)
785 && (n_times_set[REGNO (SET_DEST (set))] == 1
786 || (tem1
787 = consec_sets_invariant_p (SET_DEST (set),
788 n_times_set[REGNO (SET_DEST (set))],
789 p)))
790 /* If the insn can cause a trap (such as divide by zero),
791 can't move it unless it's guaranteed to be executed
792 once loop is entered. Even a function call might
793 prevent the trap insn from being reached
794 (since it might exit!) */
795 && ! ((maybe_never || call_passed)
796 && may_trap_p (src)))
797 {
798 register struct movable *m;
799 register int regno = REGNO (SET_DEST (set));
800
801 /* A potential lossage is where we have a case where two insns
802 can be combined as long as they are both in the loop, but
803 we move one of them outside the loop. For large loops,
804 this can lose. The most common case of this is the address
805 of a function being called.
806
807 Therefore, if this register is marked as being used exactly
808 once if we are in a loop with calls (a "large loop"), see if
809 we can replace the usage of this register with the source
810 of this SET. If we can, delete this insn.
811
812 Don't do this if P has a REG_RETVAL note or if we have
813 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
814
815 if (reg_single_usage && reg_single_usage[regno] != 0
816 && reg_single_usage[regno] != const0_rtx
817 && REGNO_FIRST_UID (regno) == INSN_UID (p)
818 && (REGNO_LAST_UID (regno)
819 == INSN_UID (reg_single_usage[regno]))
820 && n_times_set[REGNO (SET_DEST (set))] == 1
821 && ! side_effects_p (SET_SRC (set))
822 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
823 #ifdef SMALL_REGISTER_CLASSES
824 && ! (SMALL_REGISTER_CLASSES
825 && GET_CODE (SET_SRC (set)) == REG
826 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
827 #endif
828 /* This test is not redundant; SET_SRC (set) might be
829 a call-clobbered register and the life of REGNO
830 might span a call. */
831 && ! modified_between_p (SET_SRC (set), p,
832 reg_single_usage[regno])
833 && no_labels_between_p (p, reg_single_usage[regno])
834 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
835 reg_single_usage[regno]))
836 {
837 /* Replace any usage in a REG_EQUAL note. Must copy the
838 new source, so that we don't get rtx sharing between the
839 SET_SOURCE and REG_NOTES of insn p. */
840 REG_NOTES (reg_single_usage[regno])
841 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
842 SET_DEST (set), copy_rtx (SET_SRC (set)));
843
844 PUT_CODE (p, NOTE);
845 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
846 NOTE_SOURCE_FILE (p) = 0;
847 n_times_set[regno] = 0;
848 continue;
849 }
850
851 m = (struct movable *) alloca (sizeof (struct movable));
852 m->next = 0;
853 m->insn = p;
854 m->set_src = src;
855 m->dependencies = dependencies;
856 m->set_dest = SET_DEST (set);
857 m->force = 0;
858 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
859 m->done = 0;
860 m->forces = 0;
861 m->partial = 0;
862 m->move_insn = move_insn;
863 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
864 m->savemode = VOIDmode;
865 m->regno = regno;
866 /* Set M->cond if either invariant_p or consec_sets_invariant_p
867 returned 2 (only conditionally invariant). */
868 m->cond = ((tem | tem1 | tem2) > 1);
869 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
870 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
871 m->match = 0;
872 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
873 - uid_luid[REGNO_FIRST_UID (regno)]);
874 m->savings = n_times_used[regno];
875 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
876 m->savings += libcall_benefit (p);
877 n_times_set[regno] = move_insn ? -2 : -1;
878 /* Add M to the end of the chain MOVABLES. */
879 if (movables == 0)
880 movables = m;
881 else
882 last_movable->next = m;
883 last_movable = m;
884
885 if (m->consec > 0)
886 {
887 /* Skip this insn, not checking REG_LIBCALL notes. */
888 p = next_nonnote_insn (p);
889 /* Skip the consecutive insns, if there are any. */
890 p = skip_consec_insns (p, m->consec);
891 /* Back up to the last insn of the consecutive group. */
892 p = prev_nonnote_insn (p);
893
894 /* We must now reset m->move_insn, m->is_equiv, and possibly
895 m->set_src to correspond to the effects of all the
896 insns. */
897 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
898 if (temp)
899 m->set_src = XEXP (temp, 0), m->move_insn = 1;
900 else
901 {
902 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
903 if (temp && CONSTANT_P (XEXP (temp, 0)))
904 m->set_src = XEXP (temp, 0), m->move_insn = 1;
905 else
906 m->move_insn = 0;
907
908 }
909 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
910 }
911 }
912 /* If this register is always set within a STRICT_LOW_PART
913 or set to zero, then its high bytes are constant.
914 So clear them outside the loop and within the loop
915 just load the low bytes.
916 We must check that the machine has an instruction to do so.
917 Also, if the value loaded into the register
918 depends on the same register, this cannot be done. */
919 else if (SET_SRC (set) == const0_rtx
920 && GET_CODE (NEXT_INSN (p)) == INSN
921 && (set1 = single_set (NEXT_INSN (p)))
922 && GET_CODE (set1) == SET
923 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
924 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
925 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
926 == SET_DEST (set))
927 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
928 {
929 register int regno = REGNO (SET_DEST (set));
930 if (n_times_set[regno] == 2)
931 {
932 register struct movable *m;
933 m = (struct movable *) alloca (sizeof (struct movable));
934 m->next = 0;
935 m->insn = p;
936 m->set_dest = SET_DEST (set);
937 m->dependencies = 0;
938 m->force = 0;
939 m->consec = 0;
940 m->done = 0;
941 m->forces = 0;
942 m->move_insn = 0;
943 m->partial = 1;
944 /* If the insn may not be executed on some cycles,
945 we can't clear the whole reg; clear just high part.
946 Not even if the reg is used only within this loop.
947 Consider this:
948 while (1)
949 while (s != t) {
950 if (foo ()) x = *s;
951 use (x);
952 }
953 Clearing x before the inner loop could clobber a value
954 being saved from the last time around the outer loop.
955 However, if the reg is not used outside this loop
956 and all uses of the register are in the same
957 basic block as the store, there is no problem.
958
959 If this insn was made by loop, we don't know its
960 INSN_LUID and hence must make a conservative
961 assumption. */
962 m->global = (INSN_UID (p) >= max_uid_for_loop
963 || (uid_luid[REGNO_LAST_UID (regno)]
964 > INSN_LUID (end))
965 || (uid_luid[REGNO_FIRST_UID (regno)]
966 < INSN_LUID (p))
967 || (labels_in_range_p
968 (p, uid_luid[REGNO_FIRST_UID (regno)])));
969 if (maybe_never && m->global)
970 m->savemode = GET_MODE (SET_SRC (set1));
971 else
972 m->savemode = VOIDmode;
973 m->regno = regno;
974 m->cond = 0;
975 m->match = 0;
976 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
977 - uid_luid[REGNO_FIRST_UID (regno)]);
978 m->savings = 1;
979 n_times_set[regno] = -1;
980 /* Add M to the end of the chain MOVABLES. */
981 if (movables == 0)
982 movables = m;
983 else
984 last_movable->next = m;
985 last_movable = m;
986 }
987 }
988 }
989 /* Past a call insn, we get to insns which might not be executed
990 because the call might exit. This matters for insns that trap.
991 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
992 so they don't count. */
993 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
994 call_passed = 1;
995 /* Past a label or a jump, we get to insns for which we
996 can't count on whether or how many times they will be
997 executed during each iteration. Therefore, we can
998 only move out sets of trivial variables
999 (those not used after the loop). */
1000 /* Similar code appears twice in strength_reduce. */
1001 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1002 /* If we enter the loop in the middle, and scan around to the
1003 beginning, don't set maybe_never for that. This must be an
1004 unconditional jump, otherwise the code at the top of the
1005 loop might never be executed. Unconditional jumps are
1006 followed a by barrier then loop end. */
1007 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1008 && NEXT_INSN (NEXT_INSN (p)) == end
1009 && simplejump_p (p)))
1010 maybe_never = 1;
1011 else if (GET_CODE (p) == NOTE)
1012 {
1013 /* At the virtual top of a converted loop, insns are again known to
1014 be executed: logically, the loop begins here even though the exit
1015 code has been duplicated. */
1016 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1017 maybe_never = call_passed = 0;
1018 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1019 loop_depth++;
1020 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1021 loop_depth--;
1022 }
1023 }
1024
1025 /* If one movable subsumes another, ignore that other. */
1026
1027 ignore_some_movables (movables);
1028
1029 /* For each movable insn, see if the reg that it loads
1030 leads when it dies right into another conditionally movable insn.
1031 If so, record that the second insn "forces" the first one,
1032 since the second can be moved only if the first is. */
1033
1034 force_movables (movables);
1035
1036 /* See if there are multiple movable insns that load the same value.
1037 If there are, make all but the first point at the first one
1038 through the `match' field, and add the priorities of them
1039 all together as the priority of the first. */
1040
1041 combine_movables (movables, nregs);
1042
1043 /* Now consider each movable insn to decide whether it is worth moving.
1044 Store 0 in n_times_set for each reg that is moved. */
1045
1046 move_movables (movables, threshold,
1047 insn_count, loop_start, end, nregs);
1048
1049 /* Now candidates that still are negative are those not moved.
1050 Change n_times_set to indicate that those are not actually invariant. */
1051 for (i = 0; i < nregs; i++)
1052 if (n_times_set[i] < 0)
1053 n_times_set[i] = n_times_used[i];
1054
1055 if (flag_strength_reduce)
1056 strength_reduce (scan_start, end, loop_top,
1057 insn_count, loop_start, end);
1058 }
1059 \f
1060 /* Add elements to *OUTPUT to record all the pseudo-regs
1061 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1062
1063 void
1064 record_excess_regs (in_this, not_in_this, output)
1065 rtx in_this, not_in_this;
1066 rtx *output;
1067 {
1068 enum rtx_code code;
1069 char *fmt;
1070 int i;
1071
1072 code = GET_CODE (in_this);
1073
1074 switch (code)
1075 {
1076 case PC:
1077 case CC0:
1078 case CONST_INT:
1079 case CONST_DOUBLE:
1080 case CONST:
1081 case SYMBOL_REF:
1082 case LABEL_REF:
1083 return;
1084
1085 case REG:
1086 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1087 && ! reg_mentioned_p (in_this, not_in_this))
1088 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
1089 return;
1090 }
1091
1092 fmt = GET_RTX_FORMAT (code);
1093 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1094 {
1095 int j;
1096
1097 switch (fmt[i])
1098 {
1099 case 'E':
1100 for (j = 0; j < XVECLEN (in_this, i); j++)
1101 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1102 break;
1103
1104 case 'e':
1105 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1106 break;
1107 }
1108 }
1109 }
1110 \f
1111 /* Check what regs are referred to in the libcall block ending with INSN,
1112 aside from those mentioned in the equivalent value.
1113 If there are none, return 0.
1114 If there are one or more, return an EXPR_LIST containing all of them. */
1115
1116 static rtx
1117 libcall_other_reg (insn, equiv)
1118 rtx insn, equiv;
1119 {
1120 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1121 rtx p = XEXP (note, 0);
1122 rtx output = 0;
1123
1124 /* First, find all the regs used in the libcall block
1125 that are not mentioned as inputs to the result. */
1126
1127 while (p != insn)
1128 {
1129 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1130 || GET_CODE (p) == CALL_INSN)
1131 record_excess_regs (PATTERN (p), equiv, &output);
1132 p = NEXT_INSN (p);
1133 }
1134
1135 return output;
1136 }
1137 \f
1138 /* Return 1 if all uses of REG
1139 are between INSN and the end of the basic block. */
1140
1141 static int
1142 reg_in_basic_block_p (insn, reg)
1143 rtx insn, reg;
1144 {
1145 int regno = REGNO (reg);
1146 rtx p;
1147
1148 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1149 return 0;
1150
1151 /* Search this basic block for the already recorded last use of the reg. */
1152 for (p = insn; p; p = NEXT_INSN (p))
1153 {
1154 switch (GET_CODE (p))
1155 {
1156 case NOTE:
1157 break;
1158
1159 case INSN:
1160 case CALL_INSN:
1161 /* Ordinary insn: if this is the last use, we win. */
1162 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1163 return 1;
1164 break;
1165
1166 case JUMP_INSN:
1167 /* Jump insn: if this is the last use, we win. */
1168 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1169 return 1;
1170 /* Otherwise, it's the end of the basic block, so we lose. */
1171 return 0;
1172
1173 case CODE_LABEL:
1174 case BARRIER:
1175 /* It's the end of the basic block, so we lose. */
1176 return 0;
1177 }
1178 }
1179
1180 /* The "last use" doesn't follow the "first use"?? */
1181 abort ();
1182 }
1183 \f
1184 /* Compute the benefit of eliminating the insns in the block whose
1185 last insn is LAST. This may be a group of insns used to compute a
1186 value directly or can contain a library call. */
1187
1188 static int
1189 libcall_benefit (last)
1190 rtx last;
1191 {
1192 rtx insn;
1193 int benefit = 0;
1194
1195 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1196 insn != last; insn = NEXT_INSN (insn))
1197 {
1198 if (GET_CODE (insn) == CALL_INSN)
1199 benefit += 10; /* Assume at least this many insns in a library
1200 routine. */
1201 else if (GET_CODE (insn) == INSN
1202 && GET_CODE (PATTERN (insn)) != USE
1203 && GET_CODE (PATTERN (insn)) != CLOBBER)
1204 benefit++;
1205 }
1206
1207 return benefit;
1208 }
1209 \f
1210 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1211
1212 static rtx
1213 skip_consec_insns (insn, count)
1214 rtx insn;
1215 int count;
1216 {
1217 for (; count > 0; count--)
1218 {
1219 rtx temp;
1220
1221 /* If first insn of libcall sequence, skip to end. */
1222 /* Do this at start of loop, since INSN is guaranteed to
1223 be an insn here. */
1224 if (GET_CODE (insn) != NOTE
1225 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1226 insn = XEXP (temp, 0);
1227
1228 do insn = NEXT_INSN (insn);
1229 while (GET_CODE (insn) == NOTE);
1230 }
1231
1232 return insn;
1233 }
1234
1235 /* Ignore any movable whose insn falls within a libcall
1236 which is part of another movable.
1237 We make use of the fact that the movable for the libcall value
1238 was made later and so appears later on the chain. */
1239
1240 static void
1241 ignore_some_movables (movables)
1242 struct movable *movables;
1243 {
1244 register struct movable *m, *m1;
1245
1246 for (m = movables; m; m = m->next)
1247 {
1248 /* Is this a movable for the value of a libcall? */
1249 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1250 if (note)
1251 {
1252 rtx insn;
1253 /* Check for earlier movables inside that range,
1254 and mark them invalid. We cannot use LUIDs here because
1255 insns created by loop.c for prior loops don't have LUIDs.
1256 Rather than reject all such insns from movables, we just
1257 explicitly check each insn in the libcall (since invariant
1258 libcalls aren't that common). */
1259 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1260 for (m1 = movables; m1 != m; m1 = m1->next)
1261 if (m1->insn == insn)
1262 m1->done = 1;
1263 }
1264 }
1265 }
1266
1267 /* For each movable insn, see if the reg that it loads
1268 leads when it dies right into another conditionally movable insn.
1269 If so, record that the second insn "forces" the first one,
1270 since the second can be moved only if the first is. */
1271
1272 static void
1273 force_movables (movables)
1274 struct movable *movables;
1275 {
1276 register struct movable *m, *m1;
1277 for (m1 = movables; m1; m1 = m1->next)
1278 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1279 if (!m1->partial && !m1->done)
1280 {
1281 int regno = m1->regno;
1282 for (m = m1->next; m; m = m->next)
1283 /* ??? Could this be a bug? What if CSE caused the
1284 register of M1 to be used after this insn?
1285 Since CSE does not update regno_last_uid,
1286 this insn M->insn might not be where it dies.
1287 But very likely this doesn't matter; what matters is
1288 that M's reg is computed from M1's reg. */
1289 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1290 && !m->done)
1291 break;
1292 if (m != 0 && m->set_src == m1->set_dest
1293 /* If m->consec, m->set_src isn't valid. */
1294 && m->consec == 0)
1295 m = 0;
1296
1297 /* Increase the priority of the moving the first insn
1298 since it permits the second to be moved as well. */
1299 if (m != 0)
1300 {
1301 m->forces = m1;
1302 m1->lifetime += m->lifetime;
1303 m1->savings += m1->savings;
1304 }
1305 }
1306 }
1307 \f
1308 /* Find invariant expressions that are equal and can be combined into
1309 one register. */
1310
1311 static void
1312 combine_movables (movables, nregs)
1313 struct movable *movables;
1314 int nregs;
1315 {
1316 register struct movable *m;
1317 char *matched_regs = (char *) alloca (nregs);
1318 enum machine_mode mode;
1319
1320 /* Regs that are set more than once are not allowed to match
1321 or be matched. I'm no longer sure why not. */
1322 /* Perhaps testing m->consec_sets would be more appropriate here? */
1323
1324 for (m = movables; m; m = m->next)
1325 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1326 {
1327 register struct movable *m1;
1328 int regno = m->regno;
1329
1330 bzero (matched_regs, nregs);
1331 matched_regs[regno] = 1;
1332
1333 /* We want later insns to match the first one. Don't make the first
1334 one match any later ones. So start this loop at m->next. */
1335 for (m1 = m->next; m1; m1 = m1->next)
1336 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1337 /* A reg used outside the loop mustn't be eliminated. */
1338 && !m1->global
1339 /* A reg used for zero-extending mustn't be eliminated. */
1340 && !m1->partial
1341 && (matched_regs[m1->regno]
1342 ||
1343 (
1344 /* Can combine regs with different modes loaded from the
1345 same constant only if the modes are the same or
1346 if both are integer modes with M wider or the same
1347 width as M1. The check for integer is redundant, but
1348 safe, since the only case of differing destination
1349 modes with equal sources is when both sources are
1350 VOIDmode, i.e., CONST_INT. */
1351 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1352 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1353 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1354 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1355 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1356 /* See if the source of M1 says it matches M. */
1357 && ((GET_CODE (m1->set_src) == REG
1358 && matched_regs[REGNO (m1->set_src)])
1359 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1360 movables))))
1361 && ((m->dependencies == m1->dependencies)
1362 || rtx_equal_p (m->dependencies, m1->dependencies)))
1363 {
1364 m->lifetime += m1->lifetime;
1365 m->savings += m1->savings;
1366 m1->done = 1;
1367 m1->match = m;
1368 matched_regs[m1->regno] = 1;
1369 }
1370 }
1371
1372 /* Now combine the regs used for zero-extension.
1373 This can be done for those not marked `global'
1374 provided their lives don't overlap. */
1375
1376 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1377 mode = GET_MODE_WIDER_MODE (mode))
1378 {
1379 register struct movable *m0 = 0;
1380
1381 /* Combine all the registers for extension from mode MODE.
1382 Don't combine any that are used outside this loop. */
1383 for (m = movables; m; m = m->next)
1384 if (m->partial && ! m->global
1385 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1386 {
1387 register struct movable *m1;
1388 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1389 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1390
1391 if (m0 == 0)
1392 {
1393 /* First one: don't check for overlap, just record it. */
1394 m0 = m;
1395 continue;
1396 }
1397
1398 /* Make sure they extend to the same mode.
1399 (Almost always true.) */
1400 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1401 continue;
1402
1403 /* We already have one: check for overlap with those
1404 already combined together. */
1405 for (m1 = movables; m1 != m; m1 = m1->next)
1406 if (m1 == m0 || (m1->partial && m1->match == m0))
1407 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1408 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1409 goto overlap;
1410
1411 /* No overlap: we can combine this with the others. */
1412 m0->lifetime += m->lifetime;
1413 m0->savings += m->savings;
1414 m->done = 1;
1415 m->match = m0;
1416
1417 overlap: ;
1418 }
1419 }
1420 }
1421 \f
1422 /* Return 1 if regs X and Y will become the same if moved. */
1423
1424 static int
1425 regs_match_p (x, y, movables)
1426 rtx x, y;
1427 struct movable *movables;
1428 {
1429 int xn = REGNO (x);
1430 int yn = REGNO (y);
1431 struct movable *mx, *my;
1432
1433 for (mx = movables; mx; mx = mx->next)
1434 if (mx->regno == xn)
1435 break;
1436
1437 for (my = movables; my; my = my->next)
1438 if (my->regno == yn)
1439 break;
1440
1441 return (mx && my
1442 && ((mx->match == my->match && mx->match != 0)
1443 || mx->match == my
1444 || mx == my->match));
1445 }
1446
1447 /* Return 1 if X and Y are identical-looking rtx's.
1448 This is the Lisp function EQUAL for rtx arguments.
1449
1450 If two registers are matching movables or a movable register and an
1451 equivalent constant, consider them equal. */
1452
1453 static int
1454 rtx_equal_for_loop_p (x, y, movables)
1455 rtx x, y;
1456 struct movable *movables;
1457 {
1458 register int i;
1459 register int j;
1460 register struct movable *m;
1461 register enum rtx_code code;
1462 register char *fmt;
1463
1464 if (x == y)
1465 return 1;
1466 if (x == 0 || y == 0)
1467 return 0;
1468
1469 code = GET_CODE (x);
1470
1471 /* If we have a register and a constant, they may sometimes be
1472 equal. */
1473 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1474 && CONSTANT_P (y))
1475 for (m = movables; m; m = m->next)
1476 if (m->move_insn && m->regno == REGNO (x)
1477 && rtx_equal_p (m->set_src, y))
1478 return 1;
1479
1480 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1481 && CONSTANT_P (x))
1482 for (m = movables; m; m = m->next)
1483 if (m->move_insn && m->regno == REGNO (y)
1484 && rtx_equal_p (m->set_src, x))
1485 return 1;
1486
1487 /* Otherwise, rtx's of different codes cannot be equal. */
1488 if (code != GET_CODE (y))
1489 return 0;
1490
1491 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1492 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1493
1494 if (GET_MODE (x) != GET_MODE (y))
1495 return 0;
1496
1497 /* These three types of rtx's can be compared nonrecursively. */
1498 if (code == REG)
1499 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1500
1501 if (code == LABEL_REF)
1502 return XEXP (x, 0) == XEXP (y, 0);
1503 if (code == SYMBOL_REF)
1504 return XSTR (x, 0) == XSTR (y, 0);
1505
1506 /* Compare the elements. If any pair of corresponding elements
1507 fail to match, return 0 for the whole things. */
1508
1509 fmt = GET_RTX_FORMAT (code);
1510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1511 {
1512 switch (fmt[i])
1513 {
1514 case 'w':
1515 if (XWINT (x, i) != XWINT (y, i))
1516 return 0;
1517 break;
1518
1519 case 'i':
1520 if (XINT (x, i) != XINT (y, i))
1521 return 0;
1522 break;
1523
1524 case 'E':
1525 /* Two vectors must have the same length. */
1526 if (XVECLEN (x, i) != XVECLEN (y, i))
1527 return 0;
1528
1529 /* And the corresponding elements must match. */
1530 for (j = 0; j < XVECLEN (x, i); j++)
1531 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1532 return 0;
1533 break;
1534
1535 case 'e':
1536 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1537 return 0;
1538 break;
1539
1540 case 's':
1541 if (strcmp (XSTR (x, i), XSTR (y, i)))
1542 return 0;
1543 break;
1544
1545 case 'u':
1546 /* These are just backpointers, so they don't matter. */
1547 break;
1548
1549 case '0':
1550 break;
1551
1552 /* It is believed that rtx's at this level will never
1553 contain anything but integers and other rtx's,
1554 except for within LABEL_REFs and SYMBOL_REFs. */
1555 default:
1556 abort ();
1557 }
1558 }
1559 return 1;
1560 }
1561 \f
1562 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1563 insns in INSNS which use thet reference. */
1564
1565 static void
1566 add_label_notes (x, insns)
1567 rtx x;
1568 rtx insns;
1569 {
1570 enum rtx_code code = GET_CODE (x);
1571 int i, j;
1572 char *fmt;
1573 rtx insn;
1574
1575 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1576 {
1577 rtx next = next_real_insn (XEXP (x, 0));
1578
1579 /* Don't record labels that refer to dispatch tables.
1580 This is not necessary, since the tablejump references the same label.
1581 And if we did record them, flow.c would make worse code. */
1582 if (next == 0
1583 || ! (GET_CODE (next) == JUMP_INSN
1584 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1585 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1586 {
1587 for (insn = insns; insn; insn = NEXT_INSN (insn))
1588 if (reg_mentioned_p (XEXP (x, 0), insn))
1589 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1590 REG_NOTES (insn));
1591 }
1592 return;
1593 }
1594
1595 fmt = GET_RTX_FORMAT (code);
1596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1597 {
1598 if (fmt[i] == 'e')
1599 add_label_notes (XEXP (x, i), insns);
1600 else if (fmt[i] == 'E')
1601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1602 add_label_notes (XVECEXP (x, i, j), insns);
1603 }
1604 }
1605 \f
1606 /* Scan MOVABLES, and move the insns that deserve to be moved.
1607 If two matching movables are combined, replace one reg with the
1608 other throughout. */
1609
1610 static void
1611 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1612 struct movable *movables;
1613 int threshold;
1614 int insn_count;
1615 rtx loop_start;
1616 rtx end;
1617 int nregs;
1618 {
1619 rtx new_start = 0;
1620 register struct movable *m;
1621 register rtx p;
1622 /* Map of pseudo-register replacements to handle combining
1623 when we move several insns that load the same value
1624 into different pseudo-registers. */
1625 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1626 char *already_moved = (char *) alloca (nregs);
1627
1628 bzero (already_moved, nregs);
1629 bzero ((char *) reg_map, nregs * sizeof (rtx));
1630
1631 num_movables = 0;
1632
1633 for (m = movables; m; m = m->next)
1634 {
1635 /* Describe this movable insn. */
1636
1637 if (loop_dump_stream)
1638 {
1639 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1640 INSN_UID (m->insn), m->regno, m->lifetime);
1641 if (m->consec > 0)
1642 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1643 if (m->cond)
1644 fprintf (loop_dump_stream, "cond ");
1645 if (m->force)
1646 fprintf (loop_dump_stream, "force ");
1647 if (m->global)
1648 fprintf (loop_dump_stream, "global ");
1649 if (m->done)
1650 fprintf (loop_dump_stream, "done ");
1651 if (m->move_insn)
1652 fprintf (loop_dump_stream, "move-insn ");
1653 if (m->match)
1654 fprintf (loop_dump_stream, "matches %d ",
1655 INSN_UID (m->match->insn));
1656 if (m->forces)
1657 fprintf (loop_dump_stream, "forces %d ",
1658 INSN_UID (m->forces->insn));
1659 }
1660
1661 /* Count movables. Value used in heuristics in strength_reduce. */
1662 num_movables++;
1663
1664 /* Ignore the insn if it's already done (it matched something else).
1665 Otherwise, see if it is now safe to move. */
1666
1667 if (!m->done
1668 && (! m->cond
1669 || (1 == invariant_p (m->set_src)
1670 && (m->dependencies == 0
1671 || 1 == invariant_p (m->dependencies))
1672 && (m->consec == 0
1673 || 1 == consec_sets_invariant_p (m->set_dest,
1674 m->consec + 1,
1675 m->insn))))
1676 && (! m->forces || m->forces->done))
1677 {
1678 register int regno;
1679 register rtx p;
1680 int savings = m->savings;
1681
1682 /* We have an insn that is safe to move.
1683 Compute its desirability. */
1684
1685 p = m->insn;
1686 regno = m->regno;
1687
1688 if (loop_dump_stream)
1689 fprintf (loop_dump_stream, "savings %d ", savings);
1690
1691 if (moved_once[regno])
1692 {
1693 insn_count *= 2;
1694
1695 if (loop_dump_stream)
1696 fprintf (loop_dump_stream, "halved since already moved ");
1697 }
1698
1699 /* An insn MUST be moved if we already moved something else
1700 which is safe only if this one is moved too: that is,
1701 if already_moved[REGNO] is nonzero. */
1702
1703 /* An insn is desirable to move if the new lifetime of the
1704 register is no more than THRESHOLD times the old lifetime.
1705 If it's not desirable, it means the loop is so big
1706 that moving won't speed things up much,
1707 and it is liable to make register usage worse. */
1708
1709 /* It is also desirable to move if it can be moved at no
1710 extra cost because something else was already moved. */
1711
1712 if (already_moved[regno]
1713 || flag_move_all_movables
1714 || (threshold * savings * m->lifetime) >= insn_count
1715 || (m->forces && m->forces->done
1716 && n_times_used[m->forces->regno] == 1))
1717 {
1718 int count;
1719 register struct movable *m1;
1720 rtx first;
1721
1722 /* Now move the insns that set the reg. */
1723
1724 if (m->partial && m->match)
1725 {
1726 rtx newpat, i1;
1727 rtx r1, r2;
1728 /* Find the end of this chain of matching regs.
1729 Thus, we load each reg in the chain from that one reg.
1730 And that reg is loaded with 0 directly,
1731 since it has ->match == 0. */
1732 for (m1 = m; m1->match; m1 = m1->match);
1733 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1734 SET_DEST (PATTERN (m1->insn)));
1735 i1 = emit_insn_before (newpat, loop_start);
1736
1737 /* Mark the moved, invariant reg as being allowed to
1738 share a hard reg with the other matching invariant. */
1739 REG_NOTES (i1) = REG_NOTES (m->insn);
1740 r1 = SET_DEST (PATTERN (m->insn));
1741 r2 = SET_DEST (PATTERN (m1->insn));
1742 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1743 gen_rtx (EXPR_LIST, VOIDmode, r2,
1744 regs_may_share));
1745 delete_insn (m->insn);
1746
1747 if (new_start == 0)
1748 new_start = i1;
1749
1750 if (loop_dump_stream)
1751 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1752 }
1753 /* If we are to re-generate the item being moved with a
1754 new move insn, first delete what we have and then emit
1755 the move insn before the loop. */
1756 else if (m->move_insn)
1757 {
1758 rtx i1, temp;
1759
1760 for (count = m->consec; count >= 0; count--)
1761 {
1762 /* If this is the first insn of a library call sequence,
1763 skip to the end. */
1764 if (GET_CODE (p) != NOTE
1765 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1766 p = XEXP (temp, 0);
1767
1768 /* If this is the last insn of a libcall sequence, then
1769 delete every insn in the sequence except the last.
1770 The last insn is handled in the normal manner. */
1771 if (GET_CODE (p) != NOTE
1772 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1773 {
1774 temp = XEXP (temp, 0);
1775 while (temp != p)
1776 temp = delete_insn (temp);
1777 }
1778
1779 p = delete_insn (p);
1780 while (p && GET_CODE (p) == NOTE)
1781 p = NEXT_INSN (p);
1782 }
1783
1784 start_sequence ();
1785 emit_move_insn (m->set_dest, m->set_src);
1786 temp = get_insns ();
1787 end_sequence ();
1788
1789 add_label_notes (m->set_src, temp);
1790
1791 i1 = emit_insns_before (temp, loop_start);
1792 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1793 REG_NOTES (i1)
1794 = gen_rtx (EXPR_LIST,
1795 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1796 m->set_src, REG_NOTES (i1));
1797
1798 if (loop_dump_stream)
1799 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1800
1801 /* The more regs we move, the less we like moving them. */
1802 threshold -= 3;
1803 }
1804 else
1805 {
1806 for (count = m->consec; count >= 0; count--)
1807 {
1808 rtx i1, temp;
1809
1810 /* If first insn of libcall sequence, skip to end. */
1811 /* Do this at start of loop, since p is guaranteed to
1812 be an insn here. */
1813 if (GET_CODE (p) != NOTE
1814 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1815 p = XEXP (temp, 0);
1816
1817 /* If last insn of libcall sequence, move all
1818 insns except the last before the loop. The last
1819 insn is handled in the normal manner. */
1820 if (GET_CODE (p) != NOTE
1821 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1822 {
1823 rtx fn_address = 0;
1824 rtx fn_reg = 0;
1825 rtx fn_address_insn = 0;
1826
1827 first = 0;
1828 for (temp = XEXP (temp, 0); temp != p;
1829 temp = NEXT_INSN (temp))
1830 {
1831 rtx body;
1832 rtx n;
1833 rtx next;
1834
1835 if (GET_CODE (temp) == NOTE)
1836 continue;
1837
1838 body = PATTERN (temp);
1839
1840 /* Find the next insn after TEMP,
1841 not counting USE or NOTE insns. */
1842 for (next = NEXT_INSN (temp); next != p;
1843 next = NEXT_INSN (next))
1844 if (! (GET_CODE (next) == INSN
1845 && GET_CODE (PATTERN (next)) == USE)
1846 && GET_CODE (next) != NOTE)
1847 break;
1848
1849 /* If that is the call, this may be the insn
1850 that loads the function address.
1851
1852 Extract the function address from the insn
1853 that loads it into a register.
1854 If this insn was cse'd, we get incorrect code.
1855
1856 So emit a new move insn that copies the
1857 function address into the register that the
1858 call insn will use. flow.c will delete any
1859 redundant stores that we have created. */
1860 if (GET_CODE (next) == CALL_INSN
1861 && GET_CODE (body) == SET
1862 && GET_CODE (SET_DEST (body)) == REG
1863 && (n = find_reg_note (temp, REG_EQUAL,
1864 NULL_RTX)))
1865 {
1866 fn_reg = SET_SRC (body);
1867 if (GET_CODE (fn_reg) != REG)
1868 fn_reg = SET_DEST (body);
1869 fn_address = XEXP (n, 0);
1870 fn_address_insn = temp;
1871 }
1872 /* We have the call insn.
1873 If it uses the register we suspect it might,
1874 load it with the correct address directly. */
1875 if (GET_CODE (temp) == CALL_INSN
1876 && fn_address != 0
1877 && reg_referenced_p (fn_reg, body))
1878 emit_insn_after (gen_move_insn (fn_reg,
1879 fn_address),
1880 fn_address_insn);
1881
1882 if (GET_CODE (temp) == CALL_INSN)
1883 {
1884 i1 = emit_call_insn_before (body, loop_start);
1885 /* Because the USAGE information potentially
1886 contains objects other than hard registers
1887 we need to copy it. */
1888 if (CALL_INSN_FUNCTION_USAGE (temp))
1889 CALL_INSN_FUNCTION_USAGE (i1)
1890 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1891 }
1892 else
1893 i1 = emit_insn_before (body, loop_start);
1894 if (first == 0)
1895 first = i1;
1896 if (temp == fn_address_insn)
1897 fn_address_insn = i1;
1898 REG_NOTES (i1) = REG_NOTES (temp);
1899 delete_insn (temp);
1900 }
1901 }
1902 if (m->savemode != VOIDmode)
1903 {
1904 /* P sets REG to zero; but we should clear only
1905 the bits that are not covered by the mode
1906 m->savemode. */
1907 rtx reg = m->set_dest;
1908 rtx sequence;
1909 rtx tem;
1910
1911 start_sequence ();
1912 tem = expand_binop
1913 (GET_MODE (reg), and_optab, reg,
1914 GEN_INT ((((HOST_WIDE_INT) 1
1915 << GET_MODE_BITSIZE (m->savemode)))
1916 - 1),
1917 reg, 1, OPTAB_LIB_WIDEN);
1918 if (tem == 0)
1919 abort ();
1920 if (tem != reg)
1921 emit_move_insn (reg, tem);
1922 sequence = gen_sequence ();
1923 end_sequence ();
1924 i1 = emit_insn_before (sequence, loop_start);
1925 }
1926 else if (GET_CODE (p) == CALL_INSN)
1927 {
1928 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1929 /* Because the USAGE information potentially
1930 contains objects other than hard registers
1931 we need to copy it. */
1932 if (CALL_INSN_FUNCTION_USAGE (p))
1933 CALL_INSN_FUNCTION_USAGE (i1)
1934 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1935 }
1936 else
1937 i1 = emit_insn_before (PATTERN (p), loop_start);
1938
1939 REG_NOTES (i1) = REG_NOTES (p);
1940
1941 /* If there is a REG_EQUAL note present whose value is
1942 not loop invariant, then delete it, since it may
1943 cause problems with later optimization passes.
1944 It is possible for cse to create such notes
1945 like this as a result of record_jump_cond. */
1946
1947 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1948 && ! invariant_p (XEXP (temp, 0)))
1949 remove_note (i1, temp);
1950
1951 if (new_start == 0)
1952 new_start = i1;
1953
1954 if (loop_dump_stream)
1955 fprintf (loop_dump_stream, " moved to %d",
1956 INSN_UID (i1));
1957
1958 #if 0
1959 /* This isn't needed because REG_NOTES is copied
1960 below and is wrong since P might be a PARALLEL. */
1961 if (REG_NOTES (i1) == 0
1962 && ! m->partial /* But not if it's a zero-extend clr. */
1963 && ! m->global /* and not if used outside the loop
1964 (since it might get set outside). */
1965 && CONSTANT_P (SET_SRC (PATTERN (p))))
1966 REG_NOTES (i1)
1967 = gen_rtx (EXPR_LIST, REG_EQUAL,
1968 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1969 #endif
1970
1971 /* If library call, now fix the REG_NOTES that contain
1972 insn pointers, namely REG_LIBCALL on FIRST
1973 and REG_RETVAL on I1. */
1974 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1975 {
1976 XEXP (temp, 0) = first;
1977 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1978 XEXP (temp, 0) = i1;
1979 }
1980
1981 delete_insn (p);
1982 do p = NEXT_INSN (p);
1983 while (p && GET_CODE (p) == NOTE);
1984 }
1985
1986 /* The more regs we move, the less we like moving them. */
1987 threshold -= 3;
1988 }
1989
1990 /* Any other movable that loads the same register
1991 MUST be moved. */
1992 already_moved[regno] = 1;
1993
1994 /* This reg has been moved out of one loop. */
1995 moved_once[regno] = 1;
1996
1997 /* The reg set here is now invariant. */
1998 if (! m->partial)
1999 n_times_set[regno] = 0;
2000
2001 m->done = 1;
2002
2003 /* Change the length-of-life info for the register
2004 to say it lives at least the full length of this loop.
2005 This will help guide optimizations in outer loops. */
2006
2007 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2008 /* This is the old insn before all the moved insns.
2009 We can't use the moved insn because it is out of range
2010 in uid_luid. Only the old insns have luids. */
2011 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2012 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2013 REGNO_LAST_UID (regno) = INSN_UID (end);
2014
2015 /* Combine with this moved insn any other matching movables. */
2016
2017 if (! m->partial)
2018 for (m1 = movables; m1; m1 = m1->next)
2019 if (m1->match == m)
2020 {
2021 rtx temp;
2022
2023 /* Schedule the reg loaded by M1
2024 for replacement so that shares the reg of M.
2025 If the modes differ (only possible in restricted
2026 circumstances, make a SUBREG. */
2027 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2028 reg_map[m1->regno] = m->set_dest;
2029 else
2030 reg_map[m1->regno]
2031 = gen_lowpart_common (GET_MODE (m1->set_dest),
2032 m->set_dest);
2033
2034 /* Get rid of the matching insn
2035 and prevent further processing of it. */
2036 m1->done = 1;
2037
2038 /* if library call, delete all insn except last, which
2039 is deleted below */
2040 if (temp = find_reg_note (m1->insn, REG_RETVAL,
2041 NULL_RTX))
2042 {
2043 for (temp = XEXP (temp, 0); temp != m1->insn;
2044 temp = NEXT_INSN (temp))
2045 delete_insn (temp);
2046 }
2047 delete_insn (m1->insn);
2048
2049 /* Any other movable that loads the same register
2050 MUST be moved. */
2051 already_moved[m1->regno] = 1;
2052
2053 /* The reg merged here is now invariant,
2054 if the reg it matches is invariant. */
2055 if (! m->partial)
2056 n_times_set[m1->regno] = 0;
2057 }
2058 }
2059 else if (loop_dump_stream)
2060 fprintf (loop_dump_stream, "not desirable");
2061 }
2062 else if (loop_dump_stream && !m->match)
2063 fprintf (loop_dump_stream, "not safe");
2064
2065 if (loop_dump_stream)
2066 fprintf (loop_dump_stream, "\n");
2067 }
2068
2069 if (new_start == 0)
2070 new_start = loop_start;
2071
2072 /* Go through all the instructions in the loop, making
2073 all the register substitutions scheduled in REG_MAP. */
2074 for (p = new_start; p != end; p = NEXT_INSN (p))
2075 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2076 || GET_CODE (p) == CALL_INSN)
2077 {
2078 replace_regs (PATTERN (p), reg_map, nregs, 0);
2079 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2080 INSN_CODE (p) = -1;
2081 }
2082 }
2083 \f
2084 #if 0
2085 /* Scan X and replace the address of any MEM in it with ADDR.
2086 REG is the address that MEM should have before the replacement. */
2087
2088 static void
2089 replace_call_address (x, reg, addr)
2090 rtx x, reg, addr;
2091 {
2092 register enum rtx_code code;
2093 register int i;
2094 register char *fmt;
2095
2096 if (x == 0)
2097 return;
2098 code = GET_CODE (x);
2099 switch (code)
2100 {
2101 case PC:
2102 case CC0:
2103 case CONST_INT:
2104 case CONST_DOUBLE:
2105 case CONST:
2106 case SYMBOL_REF:
2107 case LABEL_REF:
2108 case REG:
2109 return;
2110
2111 case SET:
2112 /* Short cut for very common case. */
2113 replace_call_address (XEXP (x, 1), reg, addr);
2114 return;
2115
2116 case CALL:
2117 /* Short cut for very common case. */
2118 replace_call_address (XEXP (x, 0), reg, addr);
2119 return;
2120
2121 case MEM:
2122 /* If this MEM uses a reg other than the one we expected,
2123 something is wrong. */
2124 if (XEXP (x, 0) != reg)
2125 abort ();
2126 XEXP (x, 0) = addr;
2127 return;
2128 }
2129
2130 fmt = GET_RTX_FORMAT (code);
2131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2132 {
2133 if (fmt[i] == 'e')
2134 replace_call_address (XEXP (x, i), reg, addr);
2135 if (fmt[i] == 'E')
2136 {
2137 register int j;
2138 for (j = 0; j < XVECLEN (x, i); j++)
2139 replace_call_address (XVECEXP (x, i, j), reg, addr);
2140 }
2141 }
2142 }
2143 #endif
2144 \f
2145 /* Return the number of memory refs to addresses that vary
2146 in the rtx X. */
2147
2148 static int
2149 count_nonfixed_reads (x)
2150 rtx x;
2151 {
2152 register enum rtx_code code;
2153 register int i;
2154 register char *fmt;
2155 int value;
2156
2157 if (x == 0)
2158 return 0;
2159
2160 code = GET_CODE (x);
2161 switch (code)
2162 {
2163 case PC:
2164 case CC0:
2165 case CONST_INT:
2166 case CONST_DOUBLE:
2167 case CONST:
2168 case SYMBOL_REF:
2169 case LABEL_REF:
2170 case REG:
2171 return 0;
2172
2173 case MEM:
2174 return ((invariant_p (XEXP (x, 0)) != 1)
2175 + count_nonfixed_reads (XEXP (x, 0)));
2176 }
2177
2178 value = 0;
2179 fmt = GET_RTX_FORMAT (code);
2180 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2181 {
2182 if (fmt[i] == 'e')
2183 value += count_nonfixed_reads (XEXP (x, i));
2184 if (fmt[i] == 'E')
2185 {
2186 register int j;
2187 for (j = 0; j < XVECLEN (x, i); j++)
2188 value += count_nonfixed_reads (XVECEXP (x, i, j));
2189 }
2190 }
2191 return value;
2192 }
2193
2194 \f
2195 #if 0
2196 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2197 Replace it with an instruction to load just the low bytes
2198 if the machine supports such an instruction,
2199 and insert above LOOP_START an instruction to clear the register. */
2200
2201 static void
2202 constant_high_bytes (p, loop_start)
2203 rtx p, loop_start;
2204 {
2205 register rtx new;
2206 register int insn_code_number;
2207
2208 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2209 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2210
2211 new = gen_rtx (SET, VOIDmode,
2212 gen_rtx (STRICT_LOW_PART, VOIDmode,
2213 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2214 SET_DEST (PATTERN (p)),
2215 0)),
2216 XEXP (SET_SRC (PATTERN (p)), 0));
2217 insn_code_number = recog (new, p);
2218
2219 if (insn_code_number)
2220 {
2221 register int i;
2222
2223 /* Clear destination register before the loop. */
2224 emit_insn_before (gen_rtx (SET, VOIDmode,
2225 SET_DEST (PATTERN (p)),
2226 const0_rtx),
2227 loop_start);
2228
2229 /* Inside the loop, just load the low part. */
2230 PATTERN (p) = new;
2231 }
2232 }
2233 #endif
2234 \f
2235 /* Scan a loop setting the variables `unknown_address_altered',
2236 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2237 and `loop_has_volatile'.
2238 Also, fill in the array `loop_store_mems'. */
2239
2240 static void
2241 prescan_loop (start, end)
2242 rtx start, end;
2243 {
2244 register int level = 1;
2245 register rtx insn;
2246
2247 unknown_address_altered = 0;
2248 loop_has_call = 0;
2249 loop_has_volatile = 0;
2250 loop_store_mems_idx = 0;
2251
2252 num_mem_sets = 0;
2253 loops_enclosed = 1;
2254 loop_continue = 0;
2255
2256 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2257 insn = NEXT_INSN (insn))
2258 {
2259 if (GET_CODE (insn) == NOTE)
2260 {
2261 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2262 {
2263 ++level;
2264 /* Count number of loops contained in this one. */
2265 loops_enclosed++;
2266 }
2267 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2268 {
2269 --level;
2270 if (level == 0)
2271 {
2272 end = insn;
2273 break;
2274 }
2275 }
2276 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2277 {
2278 if (level == 1)
2279 loop_continue = insn;
2280 }
2281 }
2282 else if (GET_CODE (insn) == CALL_INSN)
2283 {
2284 if (! CONST_CALL_P (insn))
2285 unknown_address_altered = 1;
2286 loop_has_call = 1;
2287 }
2288 else
2289 {
2290 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2291 {
2292 if (volatile_refs_p (PATTERN (insn)))
2293 loop_has_volatile = 1;
2294
2295 note_stores (PATTERN (insn), note_addr_stored);
2296 }
2297 }
2298 }
2299 }
2300 \f
2301 /* Scan the function looking for loops. Record the start and end of each loop.
2302 Also mark as invalid loops any loops that contain a setjmp or are branched
2303 to from outside the loop. */
2304
2305 static void
2306 find_and_verify_loops (f)
2307 rtx f;
2308 {
2309 rtx insn, label;
2310 int current_loop = -1;
2311 int next_loop = -1;
2312 int loop;
2313
2314 /* If there are jumps to undefined labels,
2315 treat them as jumps out of any/all loops.
2316 This also avoids writing past end of tables when there are no loops. */
2317 uid_loop_num[0] = -1;
2318
2319 /* Find boundaries of loops, mark which loops are contained within
2320 loops, and invalidate loops that have setjmp. */
2321
2322 for (insn = f; insn; insn = NEXT_INSN (insn))
2323 {
2324 if (GET_CODE (insn) == NOTE)
2325 switch (NOTE_LINE_NUMBER (insn))
2326 {
2327 case NOTE_INSN_LOOP_BEG:
2328 loop_number_loop_starts[++next_loop] = insn;
2329 loop_number_loop_ends[next_loop] = 0;
2330 loop_outer_loop[next_loop] = current_loop;
2331 loop_invalid[next_loop] = 0;
2332 loop_number_exit_labels[next_loop] = 0;
2333 loop_number_exit_count[next_loop] = 0;
2334 current_loop = next_loop;
2335 break;
2336
2337 case NOTE_INSN_SETJMP:
2338 /* In this case, we must invalidate our current loop and any
2339 enclosing loop. */
2340 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2341 {
2342 loop_invalid[loop] = 1;
2343 if (loop_dump_stream)
2344 fprintf (loop_dump_stream,
2345 "\nLoop at %d ignored due to setjmp.\n",
2346 INSN_UID (loop_number_loop_starts[loop]));
2347 }
2348 break;
2349
2350 case NOTE_INSN_LOOP_END:
2351 if (current_loop == -1)
2352 abort ();
2353
2354 loop_number_loop_ends[current_loop] = insn;
2355 current_loop = loop_outer_loop[current_loop];
2356 break;
2357
2358 }
2359
2360 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2361 enclosing loop, but this doesn't matter. */
2362 uid_loop_num[INSN_UID (insn)] = current_loop;
2363 }
2364
2365 /* Any loop containing a label used in an initializer must be invalidated,
2366 because it can be jumped into from anywhere. */
2367
2368 for (label = forced_labels; label; label = XEXP (label, 1))
2369 {
2370 int loop_num;
2371
2372 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2373 loop_num != -1;
2374 loop_num = loop_outer_loop[loop_num])
2375 loop_invalid[loop_num] = 1;
2376 }
2377
2378 /* Any loop containing a label used for an exception handler must be
2379 invalidated, because it can be jumped into from anywhere. */
2380
2381 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2382 {
2383 int loop_num;
2384
2385 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2386 loop_num != -1;
2387 loop_num = loop_outer_loop[loop_num])
2388 loop_invalid[loop_num] = 1;
2389 }
2390
2391 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2392 loop that it is not contained within, that loop is marked invalid.
2393 If any INSN or CALL_INSN uses a label's address, then the loop containing
2394 that label is marked invalid, because it could be jumped into from
2395 anywhere.
2396
2397 Also look for blocks of code ending in an unconditional branch that
2398 exits the loop. If such a block is surrounded by a conditional
2399 branch around the block, move the block elsewhere (see below) and
2400 invert the jump to point to the code block. This may eliminate a
2401 label in our loop and will simplify processing by both us and a
2402 possible second cse pass. */
2403
2404 for (insn = f; insn; insn = NEXT_INSN (insn))
2405 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2406 {
2407 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2408
2409 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2410 {
2411 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2412 if (note)
2413 {
2414 int loop_num;
2415
2416 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2417 loop_num != -1;
2418 loop_num = loop_outer_loop[loop_num])
2419 loop_invalid[loop_num] = 1;
2420 }
2421 }
2422
2423 if (GET_CODE (insn) != JUMP_INSN)
2424 continue;
2425
2426 mark_loop_jump (PATTERN (insn), this_loop_num);
2427
2428 /* See if this is an unconditional branch outside the loop. */
2429 if (this_loop_num != -1
2430 && (GET_CODE (PATTERN (insn)) == RETURN
2431 || (simplejump_p (insn)
2432 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2433 != this_loop_num)))
2434 && get_max_uid () < max_uid_for_loop)
2435 {
2436 rtx p;
2437 rtx our_next = next_real_insn (insn);
2438 int dest_loop;
2439 int outer_loop = -1;
2440
2441 /* Go backwards until we reach the start of the loop, a label,
2442 or a JUMP_INSN. */
2443 for (p = PREV_INSN (insn);
2444 GET_CODE (p) != CODE_LABEL
2445 && ! (GET_CODE (p) == NOTE
2446 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2447 && GET_CODE (p) != JUMP_INSN;
2448 p = PREV_INSN (p))
2449 ;
2450
2451 /* Check for the case where we have a jump to an inner nested
2452 loop, and do not perform the optimization in that case. */
2453
2454 if (JUMP_LABEL (insn))
2455 {
2456 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2457 if (dest_loop != -1)
2458 {
2459 for (outer_loop = dest_loop; outer_loop != -1;
2460 outer_loop = loop_outer_loop[outer_loop])
2461 if (outer_loop == this_loop_num)
2462 break;
2463 }
2464 }
2465
2466 /* Make sure that the target of P is within the current loop. */
2467
2468 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2469 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2470 outer_loop = this_loop_num;
2471
2472 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2473 we have a block of code to try to move.
2474
2475 We look backward and then forward from the target of INSN
2476 to find a BARRIER at the same loop depth as the target.
2477 If we find such a BARRIER, we make a new label for the start
2478 of the block, invert the jump in P and point it to that label,
2479 and move the block of code to the spot we found. */
2480
2481 if (outer_loop == -1
2482 && GET_CODE (p) == JUMP_INSN
2483 && JUMP_LABEL (p) != 0
2484 /* Just ignore jumps to labels that were never emitted.
2485 These always indicate compilation errors. */
2486 && INSN_UID (JUMP_LABEL (p)) != 0
2487 && condjump_p (p)
2488 && ! simplejump_p (p)
2489 && next_real_insn (JUMP_LABEL (p)) == our_next)
2490 {
2491 rtx target
2492 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2493 int target_loop_num = uid_loop_num[INSN_UID (target)];
2494 rtx loc;
2495
2496 for (loc = target; loc; loc = PREV_INSN (loc))
2497 if (GET_CODE (loc) == BARRIER
2498 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2499 break;
2500
2501 if (loc == 0)
2502 for (loc = target; loc; loc = NEXT_INSN (loc))
2503 if (GET_CODE (loc) == BARRIER
2504 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2505 break;
2506
2507 if (loc)
2508 {
2509 rtx cond_label = JUMP_LABEL (p);
2510 rtx new_label = get_label_after (p);
2511
2512 /* Ensure our label doesn't go away. */
2513 LABEL_NUSES (cond_label)++;
2514
2515 /* Verify that uid_loop_num is large enough and that
2516 we can invert P. */
2517 if (invert_jump (p, new_label))
2518 {
2519 rtx q, r;
2520
2521 /* Include the BARRIER after INSN and copy the
2522 block after LOC. */
2523 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2524 reorder_insns (new_label, NEXT_INSN (insn), loc);
2525
2526 /* All those insns are now in TARGET_LOOP_NUM. */
2527 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2528 q = NEXT_INSN (q))
2529 uid_loop_num[INSN_UID (q)] = target_loop_num;
2530
2531 /* The label jumped to by INSN is no longer a loop exit.
2532 Unless INSN does not have a label (e.g., it is a
2533 RETURN insn), search loop_number_exit_labels to find
2534 its label_ref, and remove it. Also turn off
2535 LABEL_OUTSIDE_LOOP_P bit. */
2536 if (JUMP_LABEL (insn))
2537 {
2538 int loop_num;
2539
2540 for (q = 0,
2541 r = loop_number_exit_labels[this_loop_num];
2542 r; q = r, r = LABEL_NEXTREF (r))
2543 if (XEXP (r, 0) == JUMP_LABEL (insn))
2544 {
2545 LABEL_OUTSIDE_LOOP_P (r) = 0;
2546 if (q)
2547 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2548 else
2549 loop_number_exit_labels[this_loop_num]
2550 = LABEL_NEXTREF (r);
2551 break;
2552 }
2553
2554 for (loop_num = this_loop_num;
2555 loop_num != -1 && loop_num != target_loop_num;
2556 loop_num = loop_outer_loop[loop_num])
2557 loop_number_exit_count[loop_num]--;
2558
2559 /* If we didn't find it, then something is wrong. */
2560 if (! r)
2561 abort ();
2562 }
2563
2564 /* P is now a jump outside the loop, so it must be put
2565 in loop_number_exit_labels, and marked as such.
2566 The easiest way to do this is to just call
2567 mark_loop_jump again for P. */
2568 mark_loop_jump (PATTERN (p), this_loop_num);
2569
2570 /* If INSN now jumps to the insn after it,
2571 delete INSN. */
2572 if (JUMP_LABEL (insn) != 0
2573 && (next_real_insn (JUMP_LABEL (insn))
2574 == next_real_insn (insn)))
2575 delete_insn (insn);
2576 }
2577
2578 /* Continue the loop after where the conditional
2579 branch used to jump, since the only branch insn
2580 in the block (if it still remains) is an inter-loop
2581 branch and hence needs no processing. */
2582 insn = NEXT_INSN (cond_label);
2583
2584 if (--LABEL_NUSES (cond_label) == 0)
2585 delete_insn (cond_label);
2586
2587 /* This loop will be continued with NEXT_INSN (insn). */
2588 insn = PREV_INSN (insn);
2589 }
2590 }
2591 }
2592 }
2593 }
2594
2595 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2596 loops it is contained in, mark the target loop invalid.
2597
2598 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2599
2600 static void
2601 mark_loop_jump (x, loop_num)
2602 rtx x;
2603 int loop_num;
2604 {
2605 int dest_loop;
2606 int outer_loop;
2607 int i;
2608
2609 switch (GET_CODE (x))
2610 {
2611 case PC:
2612 case USE:
2613 case CLOBBER:
2614 case REG:
2615 case MEM:
2616 case CONST_INT:
2617 case CONST_DOUBLE:
2618 case RETURN:
2619 return;
2620
2621 case CONST:
2622 /* There could be a label reference in here. */
2623 mark_loop_jump (XEXP (x, 0), loop_num);
2624 return;
2625
2626 case PLUS:
2627 case MINUS:
2628 case MULT:
2629 mark_loop_jump (XEXP (x, 0), loop_num);
2630 mark_loop_jump (XEXP (x, 1), loop_num);
2631 return;
2632
2633 case SIGN_EXTEND:
2634 case ZERO_EXTEND:
2635 mark_loop_jump (XEXP (x, 0), loop_num);
2636 return;
2637
2638 case LABEL_REF:
2639 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2640
2641 /* Link together all labels that branch outside the loop. This
2642 is used by final_[bg]iv_value and the loop unrolling code. Also
2643 mark this LABEL_REF so we know that this branch should predict
2644 false. */
2645
2646 /* A check to make sure the label is not in an inner nested loop,
2647 since this does not count as a loop exit. */
2648 if (dest_loop != -1)
2649 {
2650 for (outer_loop = dest_loop; outer_loop != -1;
2651 outer_loop = loop_outer_loop[outer_loop])
2652 if (outer_loop == loop_num)
2653 break;
2654 }
2655 else
2656 outer_loop = -1;
2657
2658 if (loop_num != -1 && outer_loop == -1)
2659 {
2660 LABEL_OUTSIDE_LOOP_P (x) = 1;
2661 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2662 loop_number_exit_labels[loop_num] = x;
2663
2664 for (outer_loop = loop_num;
2665 outer_loop != -1 && outer_loop != dest_loop;
2666 outer_loop = loop_outer_loop[outer_loop])
2667 loop_number_exit_count[outer_loop]++;
2668 }
2669
2670 /* If this is inside a loop, but not in the current loop or one enclosed
2671 by it, it invalidates at least one loop. */
2672
2673 if (dest_loop == -1)
2674 return;
2675
2676 /* We must invalidate every nested loop containing the target of this
2677 label, except those that also contain the jump insn. */
2678
2679 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2680 {
2681 /* Stop when we reach a loop that also contains the jump insn. */
2682 for (outer_loop = loop_num; outer_loop != -1;
2683 outer_loop = loop_outer_loop[outer_loop])
2684 if (dest_loop == outer_loop)
2685 return;
2686
2687 /* If we get here, we know we need to invalidate a loop. */
2688 if (loop_dump_stream && ! loop_invalid[dest_loop])
2689 fprintf (loop_dump_stream,
2690 "\nLoop at %d ignored due to multiple entry points.\n",
2691 INSN_UID (loop_number_loop_starts[dest_loop]));
2692
2693 loop_invalid[dest_loop] = 1;
2694 }
2695 return;
2696
2697 case SET:
2698 /* If this is not setting pc, ignore. */
2699 if (SET_DEST (x) == pc_rtx)
2700 mark_loop_jump (SET_SRC (x), loop_num);
2701 return;
2702
2703 case IF_THEN_ELSE:
2704 mark_loop_jump (XEXP (x, 1), loop_num);
2705 mark_loop_jump (XEXP (x, 2), loop_num);
2706 return;
2707
2708 case PARALLEL:
2709 case ADDR_VEC:
2710 for (i = 0; i < XVECLEN (x, 0); i++)
2711 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2712 return;
2713
2714 case ADDR_DIFF_VEC:
2715 for (i = 0; i < XVECLEN (x, 1); i++)
2716 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2717 return;
2718
2719 default:
2720 /* Treat anything else (such as a symbol_ref)
2721 as a branch out of this loop, but not into any loop. */
2722
2723 if (loop_num != -1)
2724 {
2725 #ifdef HAIFA
2726 LABEL_OUTSIDE_LOOP_P (x) = 1;
2727 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2728 #endif /* HAIFA */
2729
2730 loop_number_exit_labels[loop_num] = x;
2731
2732 for (outer_loop = loop_num; outer_loop != -1;
2733 outer_loop = loop_outer_loop[outer_loop])
2734 loop_number_exit_count[outer_loop]++;
2735 }
2736 return;
2737 }
2738 }
2739 \f
2740 /* Return nonzero if there is a label in the range from
2741 insn INSN to and including the insn whose luid is END
2742 INSN must have an assigned luid (i.e., it must not have
2743 been previously created by loop.c). */
2744
2745 static int
2746 labels_in_range_p (insn, end)
2747 rtx insn;
2748 int end;
2749 {
2750 while (insn && INSN_LUID (insn) <= end)
2751 {
2752 if (GET_CODE (insn) == CODE_LABEL)
2753 return 1;
2754 insn = NEXT_INSN (insn);
2755 }
2756
2757 return 0;
2758 }
2759
2760 /* Record that a memory reference X is being set. */
2761
2762 static void
2763 note_addr_stored (x)
2764 rtx x;
2765 {
2766 register int i;
2767
2768 if (x == 0 || GET_CODE (x) != MEM)
2769 return;
2770
2771 /* Count number of memory writes.
2772 This affects heuristics in strength_reduce. */
2773 num_mem_sets++;
2774
2775 /* BLKmode MEM means all memory is clobbered. */
2776 if (GET_MODE (x) == BLKmode)
2777 unknown_address_altered = 1;
2778
2779 if (unknown_address_altered)
2780 return;
2781
2782 for (i = 0; i < loop_store_mems_idx; i++)
2783 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2784 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2785 {
2786 /* We are storing at the same address as previously noted. Save the
2787 wider reference. */
2788 if (GET_MODE_SIZE (GET_MODE (x))
2789 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2790 loop_store_mems[i] = x;
2791 break;
2792 }
2793
2794 if (i == NUM_STORES)
2795 unknown_address_altered = 1;
2796
2797 else if (i == loop_store_mems_idx)
2798 loop_store_mems[loop_store_mems_idx++] = x;
2799 }
2800 \f
2801 /* Return nonzero if the rtx X is invariant over the current loop.
2802
2803 The value is 2 if we refer to something only conditionally invariant.
2804
2805 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2806 Otherwise, a memory ref is invariant if it does not conflict with
2807 anything stored in `loop_store_mems'. */
2808
2809 int
2810 invariant_p (x)
2811 register rtx x;
2812 {
2813 register int i;
2814 register enum rtx_code code;
2815 register char *fmt;
2816 int conditional = 0;
2817
2818 if (x == 0)
2819 return 1;
2820 code = GET_CODE (x);
2821 switch (code)
2822 {
2823 case CONST_INT:
2824 case CONST_DOUBLE:
2825 case SYMBOL_REF:
2826 case CONST:
2827 return 1;
2828
2829 case LABEL_REF:
2830 /* A LABEL_REF is normally invariant, however, if we are unrolling
2831 loops, and this label is inside the loop, then it isn't invariant.
2832 This is because each unrolled copy of the loop body will have
2833 a copy of this label. If this was invariant, then an insn loading
2834 the address of this label into a register might get moved outside
2835 the loop, and then each loop body would end up using the same label.
2836
2837 We don't know the loop bounds here though, so just fail for all
2838 labels. */
2839 if (flag_unroll_loops)
2840 return 0;
2841 else
2842 return 1;
2843
2844 case PC:
2845 case CC0:
2846 case UNSPEC_VOLATILE:
2847 return 0;
2848
2849 case REG:
2850 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2851 since the reg might be set by initialization within the loop. */
2852
2853 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2854 || x == arg_pointer_rtx)
2855 && ! current_function_has_nonlocal_goto)
2856 return 1;
2857
2858 if (loop_has_call
2859 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2860 return 0;
2861
2862 if (n_times_set[REGNO (x)] < 0)
2863 return 2;
2864
2865 return n_times_set[REGNO (x)] == 0;
2866
2867 case MEM:
2868 /* Volatile memory references must be rejected. Do this before
2869 checking for read-only items, so that volatile read-only items
2870 will be rejected also. */
2871 if (MEM_VOLATILE_P (x))
2872 return 0;
2873
2874 /* Read-only items (such as constants in a constant pool) are
2875 invariant if their address is. */
2876 if (RTX_UNCHANGING_P (x))
2877 break;
2878
2879 /* If we filled the table (or had a subroutine call), any location
2880 in memory could have been clobbered. */
2881 if (unknown_address_altered)
2882 return 0;
2883
2884 /* See if there is any dependence between a store and this load. */
2885 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2886 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2887 return 0;
2888
2889 /* It's not invalidated by a store in memory
2890 but we must still verify the address is invariant. */
2891 break;
2892
2893 case ASM_OPERANDS:
2894 /* Don't mess with insns declared volatile. */
2895 if (MEM_VOLATILE_P (x))
2896 return 0;
2897 }
2898
2899 fmt = GET_RTX_FORMAT (code);
2900 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2901 {
2902 if (fmt[i] == 'e')
2903 {
2904 int tem = invariant_p (XEXP (x, i));
2905 if (tem == 0)
2906 return 0;
2907 if (tem == 2)
2908 conditional = 1;
2909 }
2910 else if (fmt[i] == 'E')
2911 {
2912 register int j;
2913 for (j = 0; j < XVECLEN (x, i); j++)
2914 {
2915 int tem = invariant_p (XVECEXP (x, i, j));
2916 if (tem == 0)
2917 return 0;
2918 if (tem == 2)
2919 conditional = 1;
2920 }
2921
2922 }
2923 }
2924
2925 return 1 + conditional;
2926 }
2927
2928 \f
2929 /* Return nonzero if all the insns in the loop that set REG
2930 are INSN and the immediately following insns,
2931 and if each of those insns sets REG in an invariant way
2932 (not counting uses of REG in them).
2933
2934 The value is 2 if some of these insns are only conditionally invariant.
2935
2936 We assume that INSN itself is the first set of REG
2937 and that its source is invariant. */
2938
2939 static int
2940 consec_sets_invariant_p (reg, n_sets, insn)
2941 int n_sets;
2942 rtx reg, insn;
2943 {
2944 register rtx p = insn;
2945 register int regno = REGNO (reg);
2946 rtx temp;
2947 /* Number of sets we have to insist on finding after INSN. */
2948 int count = n_sets - 1;
2949 int old = n_times_set[regno];
2950 int value = 0;
2951 int this;
2952
2953 /* If N_SETS hit the limit, we can't rely on its value. */
2954 if (n_sets == 127)
2955 return 0;
2956
2957 n_times_set[regno] = 0;
2958
2959 while (count > 0)
2960 {
2961 register enum rtx_code code;
2962 rtx set;
2963
2964 p = NEXT_INSN (p);
2965 code = GET_CODE (p);
2966
2967 /* If library call, skip to end of of it. */
2968 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2969 p = XEXP (temp, 0);
2970
2971 this = 0;
2972 if (code == INSN
2973 && (set = single_set (p))
2974 && GET_CODE (SET_DEST (set)) == REG
2975 && REGNO (SET_DEST (set)) == regno)
2976 {
2977 this = invariant_p (SET_SRC (set));
2978 if (this != 0)
2979 value |= this;
2980 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2981 {
2982 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2983 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2984 notes are OK. */
2985 this = (CONSTANT_P (XEXP (temp, 0))
2986 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2987 && invariant_p (XEXP (temp, 0))));
2988 if (this != 0)
2989 value |= this;
2990 }
2991 }
2992 if (this != 0)
2993 count--;
2994 else if (code != NOTE)
2995 {
2996 n_times_set[regno] = old;
2997 return 0;
2998 }
2999 }
3000
3001 n_times_set[regno] = old;
3002 /* If invariant_p ever returned 2, we return 2. */
3003 return 1 + (value & 2);
3004 }
3005
3006 #if 0
3007 /* I don't think this condition is sufficient to allow INSN
3008 to be moved, so we no longer test it. */
3009
3010 /* Return 1 if all insns in the basic block of INSN and following INSN
3011 that set REG are invariant according to TABLE. */
3012
3013 static int
3014 all_sets_invariant_p (reg, insn, table)
3015 rtx reg, insn;
3016 short *table;
3017 {
3018 register rtx p = insn;
3019 register int regno = REGNO (reg);
3020
3021 while (1)
3022 {
3023 register enum rtx_code code;
3024 p = NEXT_INSN (p);
3025 code = GET_CODE (p);
3026 if (code == CODE_LABEL || code == JUMP_INSN)
3027 return 1;
3028 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3029 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3030 && REGNO (SET_DEST (PATTERN (p))) == regno)
3031 {
3032 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3033 return 0;
3034 }
3035 }
3036 }
3037 #endif /* 0 */
3038 \f
3039 /* Look at all uses (not sets) of registers in X. For each, if it is
3040 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3041 a different insn, set USAGE[REGNO] to const0_rtx. */
3042
3043 static void
3044 find_single_use_in_loop (insn, x, usage)
3045 rtx insn;
3046 rtx x;
3047 rtx *usage;
3048 {
3049 enum rtx_code code = GET_CODE (x);
3050 char *fmt = GET_RTX_FORMAT (code);
3051 int i, j;
3052
3053 if (code == REG)
3054 usage[REGNO (x)]
3055 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
3056 ? const0_rtx : insn;
3057
3058 else if (code == SET)
3059 {
3060 /* Don't count SET_DEST if it is a REG; otherwise count things
3061 in SET_DEST because if a register is partially modified, it won't
3062 show up as a potential movable so we don't care how USAGE is set
3063 for it. */
3064 if (GET_CODE (SET_DEST (x)) != REG)
3065 find_single_use_in_loop (insn, SET_DEST (x), usage);
3066 find_single_use_in_loop (insn, SET_SRC (x), usage);
3067 }
3068 else
3069 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3070 {
3071 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3072 find_single_use_in_loop (insn, XEXP (x, i), usage);
3073 else if (fmt[i] == 'E')
3074 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3075 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3076 }
3077 }
3078 \f
3079 /* Increment N_TIMES_SET at the index of each register
3080 that is modified by an insn between FROM and TO.
3081 If the value of an element of N_TIMES_SET becomes 127 or more,
3082 stop incrementing it, to avoid overflow.
3083
3084 Store in SINGLE_USAGE[I] the single insn in which register I is
3085 used, if it is only used once. Otherwise, it is set to 0 (for no
3086 uses) or const0_rtx for more than one use. This parameter may be zero,
3087 in which case this processing is not done.
3088
3089 Store in *COUNT_PTR the number of actual instruction
3090 in the loop. We use this to decide what is worth moving out. */
3091
3092 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3093 In that case, it is the insn that last set reg n. */
3094
3095 static void
3096 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3097 register rtx from, to;
3098 char *may_not_move;
3099 rtx *single_usage;
3100 int *count_ptr;
3101 int nregs;
3102 {
3103 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3104 register rtx insn;
3105 register int count = 0;
3106 register rtx dest;
3107
3108 bzero ((char *) last_set, nregs * sizeof (rtx));
3109 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3110 {
3111 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3112 {
3113 ++count;
3114
3115 /* If requested, record registers that have exactly one use. */
3116 if (single_usage)
3117 {
3118 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3119
3120 /* Include uses in REG_EQUAL notes. */
3121 if (REG_NOTES (insn))
3122 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3123 }
3124
3125 if (GET_CODE (PATTERN (insn)) == CLOBBER
3126 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3127 /* Don't move a reg that has an explicit clobber.
3128 We might do so sometimes, but it's not worth the pain. */
3129 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3130
3131 if (GET_CODE (PATTERN (insn)) == SET
3132 || GET_CODE (PATTERN (insn)) == CLOBBER)
3133 {
3134 dest = SET_DEST (PATTERN (insn));
3135 while (GET_CODE (dest) == SUBREG
3136 || GET_CODE (dest) == ZERO_EXTRACT
3137 || GET_CODE (dest) == SIGN_EXTRACT
3138 || GET_CODE (dest) == STRICT_LOW_PART)
3139 dest = XEXP (dest, 0);
3140 if (GET_CODE (dest) == REG)
3141 {
3142 register int regno = REGNO (dest);
3143 /* If this is the first setting of this reg
3144 in current basic block, and it was set before,
3145 it must be set in two basic blocks, so it cannot
3146 be moved out of the loop. */
3147 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3148 may_not_move[regno] = 1;
3149 /* If this is not first setting in current basic block,
3150 see if reg was used in between previous one and this.
3151 If so, neither one can be moved. */
3152 if (last_set[regno] != 0
3153 && reg_used_between_p (dest, last_set[regno], insn))
3154 may_not_move[regno] = 1;
3155 if (n_times_set[regno] < 127)
3156 ++n_times_set[regno];
3157 last_set[regno] = insn;
3158 }
3159 }
3160 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3161 {
3162 register int i;
3163 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3164 {
3165 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3166 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3167 /* Don't move a reg that has an explicit clobber.
3168 It's not worth the pain to try to do it correctly. */
3169 may_not_move[REGNO (XEXP (x, 0))] = 1;
3170
3171 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3172 {
3173 dest = SET_DEST (x);
3174 while (GET_CODE (dest) == SUBREG
3175 || GET_CODE (dest) == ZERO_EXTRACT
3176 || GET_CODE (dest) == SIGN_EXTRACT
3177 || GET_CODE (dest) == STRICT_LOW_PART)
3178 dest = XEXP (dest, 0);
3179 if (GET_CODE (dest) == REG)
3180 {
3181 register int regno = REGNO (dest);
3182 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3183 may_not_move[regno] = 1;
3184 if (last_set[regno] != 0
3185 && reg_used_between_p (dest, last_set[regno], insn))
3186 may_not_move[regno] = 1;
3187 if (n_times_set[regno] < 127)
3188 ++n_times_set[regno];
3189 last_set[regno] = insn;
3190 }
3191 }
3192 }
3193 }
3194 }
3195
3196 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3197 bzero ((char *) last_set, nregs * sizeof (rtx));
3198 }
3199 *count_ptr = count;
3200 }
3201 \f
3202 /* Given a loop that is bounded by LOOP_START and LOOP_END
3203 and that is entered at SCAN_START,
3204 return 1 if the register set in SET contained in insn INSN is used by
3205 any insn that precedes INSN in cyclic order starting
3206 from the loop entry point.
3207
3208 We don't want to use INSN_LUID here because if we restrict INSN to those
3209 that have a valid INSN_LUID, it means we cannot move an invariant out
3210 from an inner loop past two loops. */
3211
3212 static int
3213 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3214 rtx set, insn, loop_start, scan_start, loop_end;
3215 {
3216 rtx reg = SET_DEST (set);
3217 rtx p;
3218
3219 /* Scan forward checking for register usage. If we hit INSN, we
3220 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3221 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3222 {
3223 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3224 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3225 return 1;
3226
3227 if (p == loop_end)
3228 p = loop_start;
3229 }
3230
3231 return 0;
3232 }
3233 \f
3234 /* A "basic induction variable" or biv is a pseudo reg that is set
3235 (within this loop) only by incrementing or decrementing it. */
3236 /* A "general induction variable" or giv is a pseudo reg whose
3237 value is a linear function of a biv. */
3238
3239 /* Bivs are recognized by `basic_induction_var';
3240 Givs by `general_induct_var'. */
3241
3242 /* Indexed by register number, indicates whether or not register is an
3243 induction variable, and if so what type. */
3244
3245 enum iv_mode *reg_iv_type;
3246
3247 /* Indexed by register number, contains pointer to `struct induction'
3248 if register is an induction variable. This holds general info for
3249 all induction variables. */
3250
3251 struct induction **reg_iv_info;
3252
3253 /* Indexed by register number, contains pointer to `struct iv_class'
3254 if register is a basic induction variable. This holds info describing
3255 the class (a related group) of induction variables that the biv belongs
3256 to. */
3257
3258 struct iv_class **reg_biv_class;
3259
3260 /* The head of a list which links together (via the next field)
3261 every iv class for the current loop. */
3262
3263 struct iv_class *loop_iv_list;
3264
3265 /* Communication with routines called via `note_stores'. */
3266
3267 static rtx note_insn;
3268
3269 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3270
3271 static rtx addr_placeholder;
3272
3273 /* ??? Unfinished optimizations, and possible future optimizations,
3274 for the strength reduction code. */
3275
3276 /* ??? There is one more optimization you might be interested in doing: to
3277 allocate pseudo registers for frequently-accessed memory locations.
3278 If the same memory location is referenced each time around, it might
3279 be possible to copy it into a register before and out after.
3280 This is especially useful when the memory location is a variable which
3281 is in a stack slot because somewhere its address is taken. If the
3282 loop doesn't contain a function call and the variable isn't volatile,
3283 it is safe to keep the value in a register for the duration of the
3284 loop. One tricky thing is that the copying of the value back from the
3285 register has to be done on all exits from the loop. You need to check that
3286 all the exits from the loop go to the same place. */
3287
3288 /* ??? The interaction of biv elimination, and recognition of 'constant'
3289 bivs, may cause problems. */
3290
3291 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3292 performance problems.
3293
3294 Perhaps don't eliminate things that can be combined with an addressing
3295 mode. Find all givs that have the same biv, mult_val, and add_val;
3296 then for each giv, check to see if its only use dies in a following
3297 memory address. If so, generate a new memory address and check to see
3298 if it is valid. If it is valid, then store the modified memory address,
3299 otherwise, mark the giv as not done so that it will get its own iv. */
3300
3301 /* ??? Could try to optimize branches when it is known that a biv is always
3302 positive. */
3303
3304 /* ??? When replace a biv in a compare insn, we should replace with closest
3305 giv so that an optimized branch can still be recognized by the combiner,
3306 e.g. the VAX acb insn. */
3307
3308 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3309 was rerun in loop_optimize whenever a register was added or moved.
3310 Also, some of the optimizations could be a little less conservative. */
3311 \f
3312 /* Perform strength reduction and induction variable elimination. */
3313
3314 /* Pseudo registers created during this function will be beyond the last
3315 valid index in several tables including n_times_set and regno_last_uid.
3316 This does not cause a problem here, because the added registers cannot be
3317 givs outside of their loop, and hence will never be reconsidered.
3318 But scan_loop must check regnos to make sure they are in bounds. */
3319
3320 static void
3321 strength_reduce (scan_start, end, loop_top, insn_count,
3322 loop_start, loop_end)
3323 rtx scan_start;
3324 rtx end;
3325 rtx loop_top;
3326 int insn_count;
3327 rtx loop_start;
3328 rtx loop_end;
3329 {
3330 rtx p;
3331 rtx set;
3332 rtx inc_val;
3333 rtx mult_val;
3334 rtx dest_reg;
3335 /* This is 1 if current insn is not executed at least once for every loop
3336 iteration. */
3337 int not_every_iteration = 0;
3338 /* This is 1 if current insn may be executed more than once for every
3339 loop iteration. */
3340 int maybe_multiple = 0;
3341 /* Temporary list pointers for traversing loop_iv_list. */
3342 struct iv_class *bl, **backbl;
3343 /* Ratio of extra register life span we can justify
3344 for saving an instruction. More if loop doesn't call subroutines
3345 since in that case saving an insn makes more difference
3346 and more registers are available. */
3347 /* ??? could set this to last value of threshold in move_movables */
3348 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3349 /* Map of pseudo-register replacements. */
3350 rtx *reg_map;
3351 int call_seen;
3352 rtx test;
3353 rtx end_insert_before;
3354 int loop_depth = 0;
3355
3356 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3357 * sizeof (enum iv_mode *));
3358 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3359 reg_iv_info = (struct induction **)
3360 alloca (max_reg_before_loop * sizeof (struct induction *));
3361 bzero ((char *) reg_iv_info, (max_reg_before_loop
3362 * sizeof (struct induction *)));
3363 reg_biv_class = (struct iv_class **)
3364 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3365 bzero ((char *) reg_biv_class, (max_reg_before_loop
3366 * sizeof (struct iv_class *)));
3367
3368 loop_iv_list = 0;
3369 addr_placeholder = gen_reg_rtx (Pmode);
3370
3371 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3372 must be put before this insn, so that they will appear in the right
3373 order (i.e. loop order).
3374
3375 If loop_end is the end of the current function, then emit a
3376 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3377 dummy note insn. */
3378 if (NEXT_INSN (loop_end) != 0)
3379 end_insert_before = NEXT_INSN (loop_end);
3380 else
3381 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3382
3383 /* Scan through loop to find all possible bivs. */
3384
3385 p = scan_start;
3386 while (1)
3387 {
3388 p = NEXT_INSN (p);
3389 /* At end of a straight-in loop, we are done.
3390 At end of a loop entered at the bottom, scan the top. */
3391 if (p == scan_start)
3392 break;
3393 if (p == end)
3394 {
3395 if (loop_top != 0)
3396 p = loop_top;
3397 else
3398 break;
3399 if (p == scan_start)
3400 break;
3401 }
3402
3403 if (GET_CODE (p) == INSN
3404 && (set = single_set (p))
3405 && GET_CODE (SET_DEST (set)) == REG)
3406 {
3407 dest_reg = SET_DEST (set);
3408 if (REGNO (dest_reg) < max_reg_before_loop
3409 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3410 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3411 {
3412 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3413 dest_reg, p, &inc_val, &mult_val))
3414 {
3415 /* It is a possible basic induction variable.
3416 Create and initialize an induction structure for it. */
3417
3418 struct induction *v
3419 = (struct induction *) alloca (sizeof (struct induction));
3420
3421 record_biv (v, p, dest_reg, inc_val, mult_val,
3422 not_every_iteration, maybe_multiple);
3423 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3424 }
3425 else if (REGNO (dest_reg) < max_reg_before_loop)
3426 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3427 }
3428 }
3429
3430 /* Past CODE_LABEL, we get to insns that may be executed multiple
3431 times. The only way we can be sure that they can't is if every
3432 every jump insn between here and the end of the loop either
3433 returns, exits the loop, is a forward jump, or is a jump
3434 to the loop start. */
3435
3436 if (GET_CODE (p) == CODE_LABEL)
3437 {
3438 rtx insn = p;
3439
3440 maybe_multiple = 0;
3441
3442 while (1)
3443 {
3444 insn = NEXT_INSN (insn);
3445 if (insn == scan_start)
3446 break;
3447 if (insn == end)
3448 {
3449 if (loop_top != 0)
3450 insn = loop_top;
3451 else
3452 break;
3453 if (insn == scan_start)
3454 break;
3455 }
3456
3457 if (GET_CODE (insn) == JUMP_INSN
3458 && GET_CODE (PATTERN (insn)) != RETURN
3459 && (! condjump_p (insn)
3460 || (JUMP_LABEL (insn) != 0
3461 && JUMP_LABEL (insn) != scan_start
3462 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3463 || INSN_UID (insn) >= max_uid_for_loop
3464 || (INSN_LUID (JUMP_LABEL (insn))
3465 < INSN_LUID (insn))))))
3466 {
3467 maybe_multiple = 1;
3468 break;
3469 }
3470 }
3471 }
3472
3473 /* Past a jump, we get to insns for which we can't count
3474 on whether they will be executed during each iteration. */
3475 /* This code appears twice in strength_reduce. There is also similar
3476 code in scan_loop. */
3477 if (GET_CODE (p) == JUMP_INSN
3478 /* If we enter the loop in the middle, and scan around to the
3479 beginning, don't set not_every_iteration for that.
3480 This can be any kind of jump, since we want to know if insns
3481 will be executed if the loop is executed. */
3482 && ! (JUMP_LABEL (p) == loop_top
3483 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3484 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3485 {
3486 rtx label = 0;
3487
3488 /* If this is a jump outside the loop, then it also doesn't
3489 matter. Check to see if the target of this branch is on the
3490 loop_number_exits_labels list. */
3491
3492 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3493 label;
3494 label = LABEL_NEXTREF (label))
3495 if (XEXP (label, 0) == JUMP_LABEL (p))
3496 break;
3497
3498 if (! label)
3499 not_every_iteration = 1;
3500 }
3501
3502 else if (GET_CODE (p) == NOTE)
3503 {
3504 /* At the virtual top of a converted loop, insns are again known to
3505 be executed each iteration: logically, the loop begins here
3506 even though the exit code has been duplicated. */
3507 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3508 not_every_iteration = 0;
3509 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3510 loop_depth++;
3511 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3512 loop_depth--;
3513 }
3514
3515 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3516 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3517 or not an insn is known to be executed each iteration of the
3518 loop, whether or not any iterations are known to occur.
3519
3520 Therefore, if we have just passed a label and have no more labels
3521 between here and the test insn of the loop, we know these insns
3522 will be executed each iteration. */
3523
3524 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3525 && no_labels_between_p (p, loop_end))
3526 not_every_iteration = 0;
3527 }
3528
3529 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3530 Make a sanity check against n_times_set. */
3531 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3532 {
3533 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3534 /* Above happens if register modified by subreg, etc. */
3535 /* Make sure it is not recognized as a basic induction var: */
3536 || n_times_set[bl->regno] != bl->biv_count
3537 /* If never incremented, it is invariant that we decided not to
3538 move. So leave it alone. */
3539 || ! bl->incremented)
3540 {
3541 if (loop_dump_stream)
3542 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3543 bl->regno,
3544 (reg_iv_type[bl->regno] != BASIC_INDUCT
3545 ? "not induction variable"
3546 : (! bl->incremented ? "never incremented"
3547 : "count error")));
3548
3549 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3550 *backbl = bl->next;
3551 }
3552 else
3553 {
3554 backbl = &bl->next;
3555
3556 if (loop_dump_stream)
3557 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3558 }
3559 }
3560
3561 /* Exit if there are no bivs. */
3562 if (! loop_iv_list)
3563 {
3564 /* Can still unroll the loop anyways, but indicate that there is no
3565 strength reduction info available. */
3566 if (flag_unroll_loops)
3567 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3568
3569 return;
3570 }
3571
3572 /* Find initial value for each biv by searching backwards from loop_start,
3573 halting at first label. Also record any test condition. */
3574
3575 call_seen = 0;
3576 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3577 {
3578 note_insn = p;
3579
3580 if (GET_CODE (p) == CALL_INSN)
3581 call_seen = 1;
3582
3583 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3584 || GET_CODE (p) == CALL_INSN)
3585 note_stores (PATTERN (p), record_initial);
3586
3587 /* Record any test of a biv that branches around the loop if no store
3588 between it and the start of loop. We only care about tests with
3589 constants and registers and only certain of those. */
3590 if (GET_CODE (p) == JUMP_INSN
3591 && JUMP_LABEL (p) != 0
3592 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3593 && (test = get_condition_for_loop (p)) != 0
3594 && GET_CODE (XEXP (test, 0)) == REG
3595 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3596 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3597 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3598 && bl->init_insn == 0)
3599 {
3600 /* If an NE test, we have an initial value! */
3601 if (GET_CODE (test) == NE)
3602 {
3603 bl->init_insn = p;
3604 bl->init_set = gen_rtx (SET, VOIDmode,
3605 XEXP (test, 0), XEXP (test, 1));
3606 }
3607 else
3608 bl->initial_test = test;
3609 }
3610 }
3611
3612 /* Look at the each biv and see if we can say anything better about its
3613 initial value from any initializing insns set up above. (This is done
3614 in two passes to avoid missing SETs in a PARALLEL.) */
3615 for (bl = loop_iv_list; bl; bl = bl->next)
3616 {
3617 rtx src;
3618
3619 if (! bl->init_insn)
3620 continue;
3621
3622 src = SET_SRC (bl->init_set);
3623
3624 if (loop_dump_stream)
3625 fprintf (loop_dump_stream,
3626 "Biv %d initialized at insn %d: initial value ",
3627 bl->regno, INSN_UID (bl->init_insn));
3628
3629 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3630 || GET_MODE (src) == VOIDmode)
3631 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3632 {
3633 bl->initial_value = src;
3634
3635 if (loop_dump_stream)
3636 {
3637 if (GET_CODE (src) == CONST_INT)
3638 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3639 else
3640 {
3641 print_rtl (loop_dump_stream, src);
3642 fprintf (loop_dump_stream, "\n");
3643 }
3644 }
3645 }
3646 else
3647 {
3648 /* Biv initial value is not simple move,
3649 so let it keep initial value of "itself". */
3650
3651 if (loop_dump_stream)
3652 fprintf (loop_dump_stream, "is complex\n");
3653 }
3654 }
3655
3656 /* Search the loop for general induction variables. */
3657
3658 /* A register is a giv if: it is only set once, it is a function of a
3659 biv and a constant (or invariant), and it is not a biv. */
3660
3661 not_every_iteration = 0;
3662 loop_depth = 0;
3663 p = scan_start;
3664 while (1)
3665 {
3666 p = NEXT_INSN (p);
3667 /* At end of a straight-in loop, we are done.
3668 At end of a loop entered at the bottom, scan the top. */
3669 if (p == scan_start)
3670 break;
3671 if (p == end)
3672 {
3673 if (loop_top != 0)
3674 p = loop_top;
3675 else
3676 break;
3677 if (p == scan_start)
3678 break;
3679 }
3680
3681 /* Look for a general induction variable in a register. */
3682 if (GET_CODE (p) == INSN
3683 && (set = single_set (p))
3684 && GET_CODE (SET_DEST (set)) == REG
3685 && ! may_not_optimize[REGNO (SET_DEST (set))])
3686 {
3687 rtx src_reg;
3688 rtx add_val;
3689 rtx mult_val;
3690 int benefit;
3691 rtx regnote = 0;
3692
3693 dest_reg = SET_DEST (set);
3694 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3695 continue;
3696
3697 if (/* SET_SRC is a giv. */
3698 ((benefit = general_induction_var (SET_SRC (set),
3699 &src_reg, &add_val,
3700 &mult_val))
3701 /* Equivalent expression is a giv. */
3702 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3703 && (benefit = general_induction_var (XEXP (regnote, 0),
3704 &src_reg,
3705 &add_val, &mult_val))))
3706 /* Don't try to handle any regs made by loop optimization.
3707 We have nothing on them in regno_first_uid, etc. */
3708 && REGNO (dest_reg) < max_reg_before_loop
3709 /* Don't recognize a BASIC_INDUCT_VAR here. */
3710 && dest_reg != src_reg
3711 /* This must be the only place where the register is set. */
3712 && (n_times_set[REGNO (dest_reg)] == 1
3713 /* or all sets must be consecutive and make a giv. */
3714 || (benefit = consec_sets_giv (benefit, p,
3715 src_reg, dest_reg,
3716 &add_val, &mult_val))))
3717 {
3718 int count;
3719 struct induction *v
3720 = (struct induction *) alloca (sizeof (struct induction));
3721 rtx temp;
3722
3723 /* If this is a library call, increase benefit. */
3724 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3725 benefit += libcall_benefit (p);
3726
3727 /* Skip the consecutive insns, if there are any. */
3728 for (count = n_times_set[REGNO (dest_reg)] - 1;
3729 count > 0; count--)
3730 {
3731 /* If first insn of libcall sequence, skip to end.
3732 Do this at start of loop, since INSN is guaranteed to
3733 be an insn here. */
3734 if (GET_CODE (p) != NOTE
3735 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3736 p = XEXP (temp, 0);
3737
3738 do p = NEXT_INSN (p);
3739 while (GET_CODE (p) == NOTE);
3740 }
3741
3742 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3743 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3744 loop_end);
3745
3746 }
3747 }
3748
3749 #ifndef DONT_REDUCE_ADDR
3750 /* Look for givs which are memory addresses. */
3751 /* This resulted in worse code on a VAX 8600. I wonder if it
3752 still does. */
3753 if (GET_CODE (p) == INSN)
3754 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3755 loop_end);
3756 #endif
3757
3758 /* Update the status of whether giv can derive other givs. This can
3759 change when we pass a label or an insn that updates a biv. */
3760 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3761 || GET_CODE (p) == CODE_LABEL)
3762 update_giv_derive (p);
3763
3764 /* Past a jump, we get to insns for which we can't count
3765 on whether they will be executed during each iteration. */
3766 /* This code appears twice in strength_reduce. There is also similar
3767 code in scan_loop. */
3768 if (GET_CODE (p) == JUMP_INSN
3769 /* If we enter the loop in the middle, and scan around to the
3770 beginning, don't set not_every_iteration for that.
3771 This can be any kind of jump, since we want to know if insns
3772 will be executed if the loop is executed. */
3773 && ! (JUMP_LABEL (p) == loop_top
3774 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3775 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3776 {
3777 rtx label = 0;
3778
3779 /* If this is a jump outside the loop, then it also doesn't
3780 matter. Check to see if the target of this branch is on the
3781 loop_number_exits_labels list. */
3782
3783 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3784 label;
3785 label = LABEL_NEXTREF (label))
3786 if (XEXP (label, 0) == JUMP_LABEL (p))
3787 break;
3788
3789 if (! label)
3790 not_every_iteration = 1;
3791 }
3792
3793 else if (GET_CODE (p) == NOTE)
3794 {
3795 /* At the virtual top of a converted loop, insns are again known to
3796 be executed each iteration: logically, the loop begins here
3797 even though the exit code has been duplicated. */
3798 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3799 not_every_iteration = 0;
3800 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3801 loop_depth++;
3802 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3803 loop_depth--;
3804 }
3805
3806 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3807 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3808 or not an insn is known to be executed each iteration of the
3809 loop, whether or not any iterations are known to occur.
3810
3811 Therefore, if we have just passed a label and have no more labels
3812 between here and the test insn of the loop, we know these insns
3813 will be executed each iteration. */
3814
3815 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3816 && no_labels_between_p (p, loop_end))
3817 not_every_iteration = 0;
3818 }
3819
3820 /* Try to calculate and save the number of loop iterations. This is
3821 set to zero if the actual number can not be calculated. This must
3822 be called after all giv's have been identified, since otherwise it may
3823 fail if the iteration variable is a giv. */
3824
3825 loop_n_iterations = loop_iterations (loop_start, loop_end);
3826
3827 /* Now for each giv for which we still don't know whether or not it is
3828 replaceable, check to see if it is replaceable because its final value
3829 can be calculated. This must be done after loop_iterations is called,
3830 so that final_giv_value will work correctly. */
3831
3832 for (bl = loop_iv_list; bl; bl = bl->next)
3833 {
3834 struct induction *v;
3835
3836 for (v = bl->giv; v; v = v->next_iv)
3837 if (! v->replaceable && ! v->not_replaceable)
3838 check_final_value (v, loop_start, loop_end);
3839 }
3840
3841 /* Try to prove that the loop counter variable (if any) is always
3842 nonnegative; if so, record that fact with a REG_NONNEG note
3843 so that "decrement and branch until zero" insn can be used. */
3844 check_dbra_loop (loop_end, insn_count, loop_start);
3845
3846 #ifdef HAIFA
3847 /* record loop-variables relevant for BCT optimization before unrolling
3848 the loop. Unrolling may update part of this information, and the
3849 correct data will be used for generating the BCT. */
3850 #ifdef HAVE_decrement_and_branch_on_count
3851 if (HAVE_decrement_and_branch_on_count)
3852 analyze_loop_iterations (loop_start, loop_end);
3853 #endif
3854 #endif /* HAIFA */
3855
3856 /* Create reg_map to hold substitutions for replaceable giv regs. */
3857 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3858 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3859
3860 /* Examine each iv class for feasibility of strength reduction/induction
3861 variable elimination. */
3862
3863 for (bl = loop_iv_list; bl; bl = bl->next)
3864 {
3865 struct induction *v;
3866 int benefit;
3867 int all_reduced;
3868 rtx final_value = 0;
3869
3870 /* Test whether it will be possible to eliminate this biv
3871 provided all givs are reduced. This is possible if either
3872 the reg is not used outside the loop, or we can compute
3873 what its final value will be.
3874
3875 For architectures with a decrement_and_branch_until_zero insn,
3876 don't do this if we put a REG_NONNEG note on the endtest for
3877 this biv. */
3878
3879 /* Compare against bl->init_insn rather than loop_start.
3880 We aren't concerned with any uses of the biv between
3881 init_insn and loop_start since these won't be affected
3882 by the value of the biv elsewhere in the function, so
3883 long as init_insn doesn't use the biv itself.
3884 March 14, 1989 -- self@bayes.arc.nasa.gov */
3885
3886 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3887 && bl->init_insn
3888 && INSN_UID (bl->init_insn) < max_uid_for_loop
3889 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3890 #ifdef HAVE_decrement_and_branch_until_zero
3891 && ! bl->nonneg
3892 #endif
3893 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3894 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3895 #ifdef HAVE_decrement_and_branch_until_zero
3896 && ! bl->nonneg
3897 #endif
3898 ))
3899 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3900 threshold, insn_count);
3901 else
3902 {
3903 if (loop_dump_stream)
3904 {
3905 fprintf (loop_dump_stream,
3906 "Cannot eliminate biv %d.\n",
3907 bl->regno);
3908 fprintf (loop_dump_stream,
3909 "First use: insn %d, last use: insn %d.\n",
3910 REGNO_FIRST_UID (bl->regno),
3911 REGNO_LAST_UID (bl->regno));
3912 }
3913 }
3914
3915 /* Combine all giv's for this iv_class. */
3916 combine_givs (bl);
3917
3918 /* This will be true at the end, if all givs which depend on this
3919 biv have been strength reduced.
3920 We can't (currently) eliminate the biv unless this is so. */
3921 all_reduced = 1;
3922
3923 /* Check each giv in this class to see if we will benefit by reducing
3924 it. Skip giv's combined with others. */
3925 for (v = bl->giv; v; v = v->next_iv)
3926 {
3927 struct induction *tv;
3928
3929 if (v->ignore || v->same)
3930 continue;
3931
3932 benefit = v->benefit;
3933
3934 /* Reduce benefit if not replaceable, since we will insert
3935 a move-insn to replace the insn that calculates this giv.
3936 Don't do this unless the giv is a user variable, since it
3937 will often be marked non-replaceable because of the duplication
3938 of the exit code outside the loop. In such a case, the copies
3939 we insert are dead and will be deleted. So they don't have
3940 a cost. Similar situations exist. */
3941 /* ??? The new final_[bg]iv_value code does a much better job
3942 of finding replaceable giv's, and hence this code may no longer
3943 be necessary. */
3944 if (! v->replaceable && ! bl->eliminable
3945 && REG_USERVAR_P (v->dest_reg))
3946 benefit -= copy_cost;
3947
3948 /* Decrease the benefit to count the add-insns that we will
3949 insert to increment the reduced reg for the giv. */
3950 benefit -= add_cost * bl->biv_count;
3951
3952 /* Decide whether to strength-reduce this giv or to leave the code
3953 unchanged (recompute it from the biv each time it is used).
3954 This decision can be made independently for each giv. */
3955
3956 #ifdef AUTO_INC_DEC
3957 /* Attempt to guess whether autoincrement will handle some of the
3958 new add insns; if so, increase BENEFIT (undo the subtraction of
3959 add_cost that was done above). */
3960 if (v->giv_type == DEST_ADDR
3961 && GET_CODE (v->mult_val) == CONST_INT)
3962 {
3963 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
3964 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3965 benefit += add_cost * bl->biv_count;
3966 #endif
3967 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
3968 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3969 benefit += add_cost * bl->biv_count;
3970 #endif
3971 }
3972 #endif
3973
3974 /* If an insn is not to be strength reduced, then set its ignore
3975 flag, and clear all_reduced. */
3976
3977 /* A giv that depends on a reversed biv must be reduced if it is
3978 used after the loop exit, otherwise, it would have the wrong
3979 value after the loop exit. To make it simple, just reduce all
3980 of such giv's whether or not we know they are used after the loop
3981 exit. */
3982
3983 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
3984 && ! bl->reversed )
3985 {
3986 if (loop_dump_stream)
3987 fprintf (loop_dump_stream,
3988 "giv of insn %d not worth while, %d vs %d.\n",
3989 INSN_UID (v->insn),
3990 v->lifetime * threshold * benefit, insn_count);
3991 v->ignore = 1;
3992 all_reduced = 0;
3993 }
3994 else
3995 {
3996 /* Check that we can increment the reduced giv without a
3997 multiply insn. If not, reject it. */
3998
3999 for (tv = bl->biv; tv; tv = tv->next_iv)
4000 if (tv->mult_val == const1_rtx
4001 && ! product_cheap_p (tv->add_val, v->mult_val))
4002 {
4003 if (loop_dump_stream)
4004 fprintf (loop_dump_stream,
4005 "giv of insn %d: would need a multiply.\n",
4006 INSN_UID (v->insn));
4007 v->ignore = 1;
4008 all_reduced = 0;
4009 break;
4010 }
4011 }
4012 }
4013
4014 /* Reduce each giv that we decided to reduce. */
4015
4016 for (v = bl->giv; v; v = v->next_iv)
4017 {
4018 struct induction *tv;
4019 if (! v->ignore && v->same == 0)
4020 {
4021 int auto_inc_opt = 0;
4022
4023 v->new_reg = gen_reg_rtx (v->mode);
4024
4025 #ifdef AUTO_INC_DEC
4026 /* If the target has auto-increment addressing modes, and
4027 this is an address giv, then try to put the increment
4028 immediately after its use, so that flow can create an
4029 auto-increment addressing mode. */
4030 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4031 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4032 /* We don't handle reversed biv's because bl->biv->insn
4033 does not have a valid INSN_LUID. */
4034 && ! bl->reversed
4035 && v->always_executed && ! v->maybe_multiple)
4036 {
4037 /* If other giv's have been combined with this one, then
4038 this will work only if all uses of the other giv's occur
4039 before this giv's insn. This is difficult to check.
4040
4041 We simplify this by looking for the common case where
4042 there is one DEST_REG giv, and this giv's insn is the
4043 last use of the dest_reg of that DEST_REG giv. If the
4044 the increment occurs after the address giv, then we can
4045 perform the optimization. (Otherwise, the increment
4046 would have to go before other_giv, and we would not be
4047 able to combine it with the address giv to get an
4048 auto-inc address.) */
4049 if (v->combined_with)
4050 {
4051 struct induction *other_giv = 0;
4052
4053 for (tv = bl->giv; tv; tv = tv->next_iv)
4054 if (tv->same == v)
4055 {
4056 if (other_giv)
4057 break;
4058 else
4059 other_giv = tv;
4060 }
4061 if (! tv && other_giv
4062 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4063 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4064 == INSN_UID (v->insn))
4065 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4066 auto_inc_opt = 1;
4067 }
4068 /* Check for case where increment is before the the address
4069 giv. */
4070 else if (INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn))
4071 auto_inc_opt = -1;
4072 else
4073 auto_inc_opt = 1;
4074
4075 #ifdef HAVE_cc0
4076 {
4077 rtx prev;
4078
4079 /* We can't put an insn immediately after one setting
4080 cc0, or immediately before one using cc0. */
4081 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4082 || (auto_inc_opt == -1
4083 && (prev = prev_nonnote_insn (v->insn)) != 0
4084 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4085 && sets_cc0_p (PATTERN (prev))))
4086 auto_inc_opt = 0;
4087 }
4088 #endif
4089
4090 if (auto_inc_opt)
4091 v->auto_inc_opt = 1;
4092 }
4093 #endif
4094
4095 /* For each place where the biv is incremented, add an insn
4096 to increment the new, reduced reg for the giv. */
4097 for (tv = bl->biv; tv; tv = tv->next_iv)
4098 {
4099 rtx insert_before;
4100
4101 if (! auto_inc_opt)
4102 insert_before = tv->insn;
4103 else if (auto_inc_opt == 1)
4104 insert_before = NEXT_INSN (v->insn);
4105 else
4106 insert_before = v->insn;
4107
4108 if (tv->mult_val == const1_rtx)
4109 emit_iv_add_mult (tv->add_val, v->mult_val,
4110 v->new_reg, v->new_reg, insert_before);
4111 else /* tv->mult_val == const0_rtx */
4112 /* A multiply is acceptable here
4113 since this is presumed to be seldom executed. */
4114 emit_iv_add_mult (tv->add_val, v->mult_val,
4115 v->add_val, v->new_reg, insert_before);
4116 }
4117
4118 /* Add code at loop start to initialize giv's reduced reg. */
4119
4120 emit_iv_add_mult (bl->initial_value, v->mult_val,
4121 v->add_val, v->new_reg, loop_start);
4122 }
4123 }
4124
4125 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4126 as not reduced.
4127
4128 For each giv register that can be reduced now: if replaceable,
4129 substitute reduced reg wherever the old giv occurs;
4130 else add new move insn "giv_reg = reduced_reg".
4131
4132 Also check for givs whose first use is their definition and whose
4133 last use is the definition of another giv. If so, it is likely
4134 dead and should not be used to eliminate a biv. */
4135 for (v = bl->giv; v; v = v->next_iv)
4136 {
4137 if (v->same && v->same->ignore)
4138 v->ignore = 1;
4139
4140 if (v->ignore)
4141 continue;
4142
4143 if (v->giv_type == DEST_REG
4144 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4145 {
4146 struct induction *v1;
4147
4148 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4149 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4150 v->maybe_dead = 1;
4151 }
4152
4153 /* Update expression if this was combined, in case other giv was
4154 replaced. */
4155 if (v->same)
4156 v->new_reg = replace_rtx (v->new_reg,
4157 v->same->dest_reg, v->same->new_reg);
4158
4159 if (v->giv_type == DEST_ADDR)
4160 /* Store reduced reg as the address in the memref where we found
4161 this giv. */
4162 validate_change (v->insn, v->location, v->new_reg, 0);
4163 else if (v->replaceable)
4164 {
4165 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4166
4167 #if 0
4168 /* I can no longer duplicate the original problem. Perhaps
4169 this is unnecessary now? */
4170
4171 /* Replaceable; it isn't strictly necessary to delete the old
4172 insn and emit a new one, because v->dest_reg is now dead.
4173
4174 However, especially when unrolling loops, the special
4175 handling for (set REG0 REG1) in the second cse pass may
4176 make v->dest_reg live again. To avoid this problem, emit
4177 an insn to set the original giv reg from the reduced giv.
4178 We can not delete the original insn, since it may be part
4179 of a LIBCALL, and the code in flow that eliminates dead
4180 libcalls will fail if it is deleted. */
4181 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4182 v->insn);
4183 #endif
4184 }
4185 else
4186 {
4187 /* Not replaceable; emit an insn to set the original giv reg from
4188 the reduced giv, same as above. */
4189 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4190 v->insn);
4191 }
4192
4193 /* When a loop is reversed, givs which depend on the reversed
4194 biv, and which are live outside the loop, must be set to their
4195 correct final value. This insn is only needed if the giv is
4196 not replaceable. The correct final value is the same as the
4197 value that the giv starts the reversed loop with. */
4198 if (bl->reversed && ! v->replaceable)
4199 emit_iv_add_mult (bl->initial_value, v->mult_val,
4200 v->add_val, v->dest_reg, end_insert_before);
4201 else if (v->final_value)
4202 {
4203 rtx insert_before;
4204
4205 /* If the loop has multiple exits, emit the insn before the
4206 loop to ensure that it will always be executed no matter
4207 how the loop exits. Otherwise, emit the insn after the loop,
4208 since this is slightly more efficient. */
4209 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4210 insert_before = loop_start;
4211 else
4212 insert_before = end_insert_before;
4213 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4214 insert_before);
4215
4216 #if 0
4217 /* If the insn to set the final value of the giv was emitted
4218 before the loop, then we must delete the insn inside the loop
4219 that sets it. If this is a LIBCALL, then we must delete
4220 every insn in the libcall. Note, however, that
4221 final_giv_value will only succeed when there are multiple
4222 exits if the giv is dead at each exit, hence it does not
4223 matter that the original insn remains because it is dead
4224 anyways. */
4225 /* Delete the insn inside the loop that sets the giv since
4226 the giv is now set before (or after) the loop. */
4227 delete_insn (v->insn);
4228 #endif
4229 }
4230
4231 if (loop_dump_stream)
4232 {
4233 fprintf (loop_dump_stream, "giv at %d reduced to ",
4234 INSN_UID (v->insn));
4235 print_rtl (loop_dump_stream, v->new_reg);
4236 fprintf (loop_dump_stream, "\n");
4237 }
4238 }
4239
4240 /* All the givs based on the biv bl have been reduced if they
4241 merit it. */
4242
4243 /* For each giv not marked as maybe dead that has been combined with a
4244 second giv, clear any "maybe dead" mark on that second giv.
4245 v->new_reg will either be or refer to the register of the giv it
4246 combined with.
4247
4248 Doing this clearing avoids problems in biv elimination where a
4249 giv's new_reg is a complex value that can't be put in the insn but
4250 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4251 Since the register will be used in either case, we'd prefer it be
4252 used from the simpler giv. */
4253
4254 for (v = bl->giv; v; v = v->next_iv)
4255 if (! v->maybe_dead && v->same)
4256 v->same->maybe_dead = 0;
4257
4258 /* Try to eliminate the biv, if it is a candidate.
4259 This won't work if ! all_reduced,
4260 since the givs we planned to use might not have been reduced.
4261
4262 We have to be careful that we didn't initially think we could eliminate
4263 this biv because of a giv that we now think may be dead and shouldn't
4264 be used as a biv replacement.
4265
4266 Also, there is the possibility that we may have a giv that looks
4267 like it can be used to eliminate a biv, but the resulting insn
4268 isn't valid. This can happen, for example, on the 88k, where a
4269 JUMP_INSN can compare a register only with zero. Attempts to
4270 replace it with a compare with a constant will fail.
4271
4272 Note that in cases where this call fails, we may have replaced some
4273 of the occurrences of the biv with a giv, but no harm was done in
4274 doing so in the rare cases where it can occur. */
4275
4276 if (all_reduced == 1 && bl->eliminable
4277 && maybe_eliminate_biv (bl, loop_start, end, 1,
4278 threshold, insn_count))
4279
4280 {
4281 /* ?? If we created a new test to bypass the loop entirely,
4282 or otherwise drop straight in, based on this test, then
4283 we might want to rewrite it also. This way some later
4284 pass has more hope of removing the initialization of this
4285 biv entirely. */
4286
4287 /* If final_value != 0, then the biv may be used after loop end
4288 and we must emit an insn to set it just in case.
4289
4290 Reversed bivs already have an insn after the loop setting their
4291 value, so we don't need another one. We can't calculate the
4292 proper final value for such a biv here anyways. */
4293 if (final_value != 0 && ! bl->reversed)
4294 {
4295 rtx insert_before;
4296
4297 /* If the loop has multiple exits, emit the insn before the
4298 loop to ensure that it will always be executed no matter
4299 how the loop exits. Otherwise, emit the insn after the
4300 loop, since this is slightly more efficient. */
4301 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4302 insert_before = loop_start;
4303 else
4304 insert_before = end_insert_before;
4305
4306 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4307 end_insert_before);
4308 }
4309
4310 #if 0
4311 /* Delete all of the instructions inside the loop which set
4312 the biv, as they are all dead. If is safe to delete them,
4313 because an insn setting a biv will never be part of a libcall. */
4314 /* However, deleting them will invalidate the regno_last_uid info,
4315 so keeping them around is more convenient. Final_biv_value
4316 will only succeed when there are multiple exits if the biv
4317 is dead at each exit, hence it does not matter that the original
4318 insn remains, because it is dead anyways. */
4319 for (v = bl->biv; v; v = v->next_iv)
4320 delete_insn (v->insn);
4321 #endif
4322
4323 if (loop_dump_stream)
4324 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4325 bl->regno);
4326 }
4327 }
4328
4329 /* Go through all the instructions in the loop, making all the
4330 register substitutions scheduled in REG_MAP. */
4331
4332 for (p = loop_start; p != end; p = NEXT_INSN (p))
4333 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4334 || GET_CODE (p) == CALL_INSN)
4335 {
4336 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4337 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4338 INSN_CODE (p) = -1;
4339 }
4340
4341 /* Unroll loops from within strength reduction so that we can use the
4342 induction variable information that strength_reduce has already
4343 collected. */
4344
4345 if (flag_unroll_loops)
4346 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4347
4348 #ifdef HAIFA
4349 /* instrument the loop with bct insn */
4350 #ifdef HAVE_decrement_and_branch_on_count
4351 if (HAVE_decrement_and_branch_on_count)
4352 insert_bct (loop_start, loop_end);
4353 #endif
4354 #endif /* HAIFA */
4355
4356 if (loop_dump_stream)
4357 fprintf (loop_dump_stream, "\n");
4358 }
4359 \f
4360 /* Return 1 if X is a valid source for an initial value (or as value being
4361 compared against in an initial test).
4362
4363 X must be either a register or constant and must not be clobbered between
4364 the current insn and the start of the loop.
4365
4366 INSN is the insn containing X. */
4367
4368 static int
4369 valid_initial_value_p (x, insn, call_seen, loop_start)
4370 rtx x;
4371 rtx insn;
4372 int call_seen;
4373 rtx loop_start;
4374 {
4375 if (CONSTANT_P (x))
4376 return 1;
4377
4378 /* Only consider pseudos we know about initialized in insns whose luids
4379 we know. */
4380 if (GET_CODE (x) != REG
4381 || REGNO (x) >= max_reg_before_loop)
4382 return 0;
4383
4384 /* Don't use call-clobbered registers across a call which clobbers it. On
4385 some machines, don't use any hard registers at all. */
4386 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4387 && (
4388 #ifdef SMALL_REGISTER_CLASSES
4389 SMALL_REGISTER_CLASSES
4390 #else
4391 0
4392 #endif
4393 || (call_used_regs[REGNO (x)] && call_seen))
4394 )
4395 return 0;
4396
4397 /* Don't use registers that have been clobbered before the start of the
4398 loop. */
4399 if (reg_set_between_p (x, insn, loop_start))
4400 return 0;
4401
4402 return 1;
4403 }
4404 \f
4405 /* Scan X for memory refs and check each memory address
4406 as a possible giv. INSN is the insn whose pattern X comes from.
4407 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4408 every loop iteration. */
4409
4410 static void
4411 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4412 rtx x;
4413 rtx insn;
4414 int not_every_iteration;
4415 rtx loop_start, loop_end;
4416 {
4417 register int i, j;
4418 register enum rtx_code code;
4419 register char *fmt;
4420
4421 if (x == 0)
4422 return;
4423
4424 code = GET_CODE (x);
4425 switch (code)
4426 {
4427 case REG:
4428 case CONST_INT:
4429 case CONST:
4430 case CONST_DOUBLE:
4431 case SYMBOL_REF:
4432 case LABEL_REF:
4433 case PC:
4434 case CC0:
4435 case ADDR_VEC:
4436 case ADDR_DIFF_VEC:
4437 case USE:
4438 case CLOBBER:
4439 return;
4440
4441 case MEM:
4442 {
4443 rtx src_reg;
4444 rtx add_val;
4445 rtx mult_val;
4446 int benefit;
4447
4448 benefit = general_induction_var (XEXP (x, 0),
4449 &src_reg, &add_val, &mult_val);
4450
4451 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4452 Such a giv isn't useful. */
4453 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4454 {
4455 /* Found one; record it. */
4456 struct induction *v
4457 = (struct induction *) oballoc (sizeof (struct induction));
4458
4459 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4460 add_val, benefit, DEST_ADDR, not_every_iteration,
4461 &XEXP (x, 0), loop_start, loop_end);
4462
4463 v->mem_mode = GET_MODE (x);
4464 }
4465 return;
4466 }
4467 }
4468
4469 /* Recursively scan the subexpressions for other mem refs. */
4470
4471 fmt = GET_RTX_FORMAT (code);
4472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4473 if (fmt[i] == 'e')
4474 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4475 loop_end);
4476 else if (fmt[i] == 'E')
4477 for (j = 0; j < XVECLEN (x, i); j++)
4478 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4479 loop_start, loop_end);
4480 }
4481 \f
4482 /* Fill in the data about one biv update.
4483 V is the `struct induction' in which we record the biv. (It is
4484 allocated by the caller, with alloca.)
4485 INSN is the insn that sets it.
4486 DEST_REG is the biv's reg.
4487
4488 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4489 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4490 being set to INC_VAL.
4491
4492 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4493 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4494 can be executed more than once per iteration. If MAYBE_MULTIPLE
4495 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4496 executed exactly once per iteration. */
4497
4498 static void
4499 record_biv (v, insn, dest_reg, inc_val, mult_val,
4500 not_every_iteration, maybe_multiple)
4501 struct induction *v;
4502 rtx insn;
4503 rtx dest_reg;
4504 rtx inc_val;
4505 rtx mult_val;
4506 int not_every_iteration;
4507 int maybe_multiple;
4508 {
4509 struct iv_class *bl;
4510
4511 v->insn = insn;
4512 v->src_reg = dest_reg;
4513 v->dest_reg = dest_reg;
4514 v->mult_val = mult_val;
4515 v->add_val = inc_val;
4516 v->mode = GET_MODE (dest_reg);
4517 v->always_computable = ! not_every_iteration;
4518 v->always_executed = ! not_every_iteration;
4519 v->maybe_multiple = maybe_multiple;
4520
4521 /* Add this to the reg's iv_class, creating a class
4522 if this is the first incrementation of the reg. */
4523
4524 bl = reg_biv_class[REGNO (dest_reg)];
4525 if (bl == 0)
4526 {
4527 /* Create and initialize new iv_class. */
4528
4529 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4530
4531 bl->regno = REGNO (dest_reg);
4532 bl->biv = 0;
4533 bl->giv = 0;
4534 bl->biv_count = 0;
4535 bl->giv_count = 0;
4536
4537 /* Set initial value to the reg itself. */
4538 bl->initial_value = dest_reg;
4539 /* We haven't seen the initializing insn yet */
4540 bl->init_insn = 0;
4541 bl->init_set = 0;
4542 bl->initial_test = 0;
4543 bl->incremented = 0;
4544 bl->eliminable = 0;
4545 bl->nonneg = 0;
4546 bl->reversed = 0;
4547 bl->total_benefit = 0;
4548
4549 /* Add this class to loop_iv_list. */
4550 bl->next = loop_iv_list;
4551 loop_iv_list = bl;
4552
4553 /* Put it in the array of biv register classes. */
4554 reg_biv_class[REGNO (dest_reg)] = bl;
4555 }
4556
4557 /* Update IV_CLASS entry for this biv. */
4558 v->next_iv = bl->biv;
4559 bl->biv = v;
4560 bl->biv_count++;
4561 if (mult_val == const1_rtx)
4562 bl->incremented = 1;
4563
4564 if (loop_dump_stream)
4565 {
4566 fprintf (loop_dump_stream,
4567 "Insn %d: possible biv, reg %d,",
4568 INSN_UID (insn), REGNO (dest_reg));
4569 if (GET_CODE (inc_val) == CONST_INT)
4570 fprintf (loop_dump_stream, " const = %d\n",
4571 INTVAL (inc_val));
4572 else
4573 {
4574 fprintf (loop_dump_stream, " const = ");
4575 print_rtl (loop_dump_stream, inc_val);
4576 fprintf (loop_dump_stream, "\n");
4577 }
4578 }
4579 }
4580 \f
4581 /* Fill in the data about one giv.
4582 V is the `struct induction' in which we record the giv. (It is
4583 allocated by the caller, with alloca.)
4584 INSN is the insn that sets it.
4585 BENEFIT estimates the savings from deleting this insn.
4586 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4587 into a register or is used as a memory address.
4588
4589 SRC_REG is the biv reg which the giv is computed from.
4590 DEST_REG is the giv's reg (if the giv is stored in a reg).
4591 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4592 LOCATION points to the place where this giv's value appears in INSN. */
4593
4594 static void
4595 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4596 type, not_every_iteration, location, loop_start, loop_end)
4597 struct induction *v;
4598 rtx insn;
4599 rtx src_reg;
4600 rtx dest_reg;
4601 rtx mult_val, add_val;
4602 int benefit;
4603 enum g_types type;
4604 int not_every_iteration;
4605 rtx *location;
4606 rtx loop_start, loop_end;
4607 {
4608 struct induction *b;
4609 struct iv_class *bl;
4610 rtx set = single_set (insn);
4611 rtx p;
4612
4613 v->insn = insn;
4614 v->src_reg = src_reg;
4615 v->giv_type = type;
4616 v->dest_reg = dest_reg;
4617 v->mult_val = mult_val;
4618 v->add_val = add_val;
4619 v->benefit = benefit;
4620 v->location = location;
4621 v->cant_derive = 0;
4622 v->combined_with = 0;
4623 v->maybe_multiple = 0;
4624 v->maybe_dead = 0;
4625 v->derive_adjustment = 0;
4626 v->same = 0;
4627 v->ignore = 0;
4628 v->new_reg = 0;
4629 v->final_value = 0;
4630 v->same_insn = 0;
4631 v->auto_inc_opt = 0;
4632 v->unrolled = 0;
4633 v->shared = 0;
4634
4635 /* The v->always_computable field is used in update_giv_derive, to
4636 determine whether a giv can be used to derive another giv. For a
4637 DEST_REG giv, INSN computes a new value for the giv, so its value
4638 isn't computable if INSN insn't executed every iteration.
4639 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4640 it does not compute a new value. Hence the value is always computable
4641 regardless of whether INSN is executed each iteration. */
4642
4643 if (type == DEST_ADDR)
4644 v->always_computable = 1;
4645 else
4646 v->always_computable = ! not_every_iteration;
4647
4648 v->always_executed = ! not_every_iteration;
4649
4650 if (type == DEST_ADDR)
4651 {
4652 v->mode = GET_MODE (*location);
4653 v->lifetime = 1;
4654 v->times_used = 1;
4655 }
4656 else /* type == DEST_REG */
4657 {
4658 v->mode = GET_MODE (SET_DEST (set));
4659
4660 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4661 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4662
4663 v->times_used = n_times_used[REGNO (dest_reg)];
4664
4665 /* If the lifetime is zero, it means that this register is
4666 really a dead store. So mark this as a giv that can be
4667 ignored. This will not prevent the biv from being eliminated. */
4668 if (v->lifetime == 0)
4669 v->ignore = 1;
4670
4671 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4672 reg_iv_info[REGNO (dest_reg)] = v;
4673 }
4674
4675 /* Add the giv to the class of givs computed from one biv. */
4676
4677 bl = reg_biv_class[REGNO (src_reg)];
4678 if (bl)
4679 {
4680 v->next_iv = bl->giv;
4681 bl->giv = v;
4682 /* Don't count DEST_ADDR. This is supposed to count the number of
4683 insns that calculate givs. */
4684 if (type == DEST_REG)
4685 bl->giv_count++;
4686 bl->total_benefit += benefit;
4687 }
4688 else
4689 /* Fatal error, biv missing for this giv? */
4690 abort ();
4691
4692 if (type == DEST_ADDR)
4693 v->replaceable = 1;
4694 else
4695 {
4696 /* The giv can be replaced outright by the reduced register only if all
4697 of the following conditions are true:
4698 - the insn that sets the giv is always executed on any iteration
4699 on which the giv is used at all
4700 (there are two ways to deduce this:
4701 either the insn is executed on every iteration,
4702 or all uses follow that insn in the same basic block),
4703 - the giv is not used outside the loop
4704 - no assignments to the biv occur during the giv's lifetime. */
4705
4706 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4707 /* Previous line always fails if INSN was moved by loop opt. */
4708 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4709 && (! not_every_iteration
4710 || last_use_this_basic_block (dest_reg, insn)))
4711 {
4712 /* Now check that there are no assignments to the biv within the
4713 giv's lifetime. This requires two separate checks. */
4714
4715 /* Check each biv update, and fail if any are between the first
4716 and last use of the giv.
4717
4718 If this loop contains an inner loop that was unrolled, then
4719 the insn modifying the biv may have been emitted by the loop
4720 unrolling code, and hence does not have a valid luid. Just
4721 mark the biv as not replaceable in this case. It is not very
4722 useful as a biv, because it is used in two different loops.
4723 It is very unlikely that we would be able to optimize the giv
4724 using this biv anyways. */
4725
4726 v->replaceable = 1;
4727 for (b = bl->biv; b; b = b->next_iv)
4728 {
4729 if (INSN_UID (b->insn) >= max_uid_for_loop
4730 || ((uid_luid[INSN_UID (b->insn)]
4731 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4732 && (uid_luid[INSN_UID (b->insn)]
4733 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4734 {
4735 v->replaceable = 0;
4736 v->not_replaceable = 1;
4737 break;
4738 }
4739 }
4740
4741 /* If there are any backwards branches that go from after the
4742 biv update to before it, then this giv is not replaceable. */
4743 if (v->replaceable)
4744 for (b = bl->biv; b; b = b->next_iv)
4745 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4746 {
4747 v->replaceable = 0;
4748 v->not_replaceable = 1;
4749 break;
4750 }
4751 }
4752 else
4753 {
4754 /* May still be replaceable, we don't have enough info here to
4755 decide. */
4756 v->replaceable = 0;
4757 v->not_replaceable = 0;
4758 }
4759 }
4760
4761 if (loop_dump_stream)
4762 {
4763 if (type == DEST_REG)
4764 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4765 INSN_UID (insn), REGNO (dest_reg));
4766 else
4767 fprintf (loop_dump_stream, "Insn %d: dest address",
4768 INSN_UID (insn));
4769
4770 fprintf (loop_dump_stream, " src reg %d benefit %d",
4771 REGNO (src_reg), v->benefit);
4772 fprintf (loop_dump_stream, " used %d lifetime %d",
4773 v->times_used, v->lifetime);
4774
4775 if (v->replaceable)
4776 fprintf (loop_dump_stream, " replaceable");
4777
4778 if (GET_CODE (mult_val) == CONST_INT)
4779 fprintf (loop_dump_stream, " mult %d",
4780 INTVAL (mult_val));
4781 else
4782 {
4783 fprintf (loop_dump_stream, " mult ");
4784 print_rtl (loop_dump_stream, mult_val);
4785 }
4786
4787 if (GET_CODE (add_val) == CONST_INT)
4788 fprintf (loop_dump_stream, " add %d",
4789 INTVAL (add_val));
4790 else
4791 {
4792 fprintf (loop_dump_stream, " add ");
4793 print_rtl (loop_dump_stream, add_val);
4794 }
4795 }
4796
4797 if (loop_dump_stream)
4798 fprintf (loop_dump_stream, "\n");
4799
4800 }
4801
4802
4803 /* All this does is determine whether a giv can be made replaceable because
4804 its final value can be calculated. This code can not be part of record_giv
4805 above, because final_giv_value requires that the number of loop iterations
4806 be known, and that can not be accurately calculated until after all givs
4807 have been identified. */
4808
4809 static void
4810 check_final_value (v, loop_start, loop_end)
4811 struct induction *v;
4812 rtx loop_start, loop_end;
4813 {
4814 struct iv_class *bl;
4815 rtx final_value = 0;
4816
4817 bl = reg_biv_class[REGNO (v->src_reg)];
4818
4819 /* DEST_ADDR givs will never reach here, because they are always marked
4820 replaceable above in record_giv. */
4821
4822 /* The giv can be replaced outright by the reduced register only if all
4823 of the following conditions are true:
4824 - the insn that sets the giv is always executed on any iteration
4825 on which the giv is used at all
4826 (there are two ways to deduce this:
4827 either the insn is executed on every iteration,
4828 or all uses follow that insn in the same basic block),
4829 - its final value can be calculated (this condition is different
4830 than the one above in record_giv)
4831 - no assignments to the biv occur during the giv's lifetime. */
4832
4833 #if 0
4834 /* This is only called now when replaceable is known to be false. */
4835 /* Clear replaceable, so that it won't confuse final_giv_value. */
4836 v->replaceable = 0;
4837 #endif
4838
4839 if ((final_value = final_giv_value (v, loop_start, loop_end))
4840 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4841 {
4842 int biv_increment_seen = 0;
4843 rtx p = v->insn;
4844 rtx last_giv_use;
4845
4846 v->replaceable = 1;
4847
4848 /* When trying to determine whether or not a biv increment occurs
4849 during the lifetime of the giv, we can ignore uses of the variable
4850 outside the loop because final_value is true. Hence we can not
4851 use regno_last_uid and regno_first_uid as above in record_giv. */
4852
4853 /* Search the loop to determine whether any assignments to the
4854 biv occur during the giv's lifetime. Start with the insn
4855 that sets the giv, and search around the loop until we come
4856 back to that insn again.
4857
4858 Also fail if there is a jump within the giv's lifetime that jumps
4859 to somewhere outside the lifetime but still within the loop. This
4860 catches spaghetti code where the execution order is not linear, and
4861 hence the above test fails. Here we assume that the giv lifetime
4862 does not extend from one iteration of the loop to the next, so as
4863 to make the test easier. Since the lifetime isn't known yet,
4864 this requires two loops. See also record_giv above. */
4865
4866 last_giv_use = v->insn;
4867
4868 while (1)
4869 {
4870 p = NEXT_INSN (p);
4871 if (p == loop_end)
4872 p = NEXT_INSN (loop_start);
4873 if (p == v->insn)
4874 break;
4875
4876 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4877 || GET_CODE (p) == CALL_INSN)
4878 {
4879 if (biv_increment_seen)
4880 {
4881 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4882 {
4883 v->replaceable = 0;
4884 v->not_replaceable = 1;
4885 break;
4886 }
4887 }
4888 else if (reg_set_p (v->src_reg, PATTERN (p)))
4889 biv_increment_seen = 1;
4890 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4891 last_giv_use = p;
4892 }
4893 }
4894
4895 /* Now that the lifetime of the giv is known, check for branches
4896 from within the lifetime to outside the lifetime if it is still
4897 replaceable. */
4898
4899 if (v->replaceable)
4900 {
4901 p = v->insn;
4902 while (1)
4903 {
4904 p = NEXT_INSN (p);
4905 if (p == loop_end)
4906 p = NEXT_INSN (loop_start);
4907 if (p == last_giv_use)
4908 break;
4909
4910 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4911 && LABEL_NAME (JUMP_LABEL (p))
4912 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4913 || (INSN_UID (v->insn) >= max_uid_for_loop)
4914 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4915 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4916 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4917 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4918 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4919 {
4920 v->replaceable = 0;
4921 v->not_replaceable = 1;
4922
4923 if (loop_dump_stream)
4924 fprintf (loop_dump_stream,
4925 "Found branch outside giv lifetime.\n");
4926
4927 break;
4928 }
4929 }
4930 }
4931
4932 /* If it is replaceable, then save the final value. */
4933 if (v->replaceable)
4934 v->final_value = final_value;
4935 }
4936
4937 if (loop_dump_stream && v->replaceable)
4938 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4939 INSN_UID (v->insn), REGNO (v->dest_reg));
4940 }
4941 \f
4942 /* Update the status of whether a giv can derive other givs.
4943
4944 We need to do something special if there is or may be an update to the biv
4945 between the time the giv is defined and the time it is used to derive
4946 another giv.
4947
4948 In addition, a giv that is only conditionally set is not allowed to
4949 derive another giv once a label has been passed.
4950
4951 The cases we look at are when a label or an update to a biv is passed. */
4952
4953 static void
4954 update_giv_derive (p)
4955 rtx p;
4956 {
4957 struct iv_class *bl;
4958 struct induction *biv, *giv;
4959 rtx tem;
4960 int dummy;
4961
4962 /* Search all IV classes, then all bivs, and finally all givs.
4963
4964 There are three cases we are concerned with. First we have the situation
4965 of a giv that is only updated conditionally. In that case, it may not
4966 derive any givs after a label is passed.
4967
4968 The second case is when a biv update occurs, or may occur, after the
4969 definition of a giv. For certain biv updates (see below) that are
4970 known to occur between the giv definition and use, we can adjust the
4971 giv definition. For others, or when the biv update is conditional,
4972 we must prevent the giv from deriving any other givs. There are two
4973 sub-cases within this case.
4974
4975 If this is a label, we are concerned with any biv update that is done
4976 conditionally, since it may be done after the giv is defined followed by
4977 a branch here (actually, we need to pass both a jump and a label, but
4978 this extra tracking doesn't seem worth it).
4979
4980 If this is a jump, we are concerned about any biv update that may be
4981 executed multiple times. We are actually only concerned about
4982 backward jumps, but it is probably not worth performing the test
4983 on the jump again here.
4984
4985 If this is a biv update, we must adjust the giv status to show that a
4986 subsequent biv update was performed. If this adjustment cannot be done,
4987 the giv cannot derive further givs. */
4988
4989 for (bl = loop_iv_list; bl; bl = bl->next)
4990 for (biv = bl->biv; biv; biv = biv->next_iv)
4991 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4992 || biv->insn == p)
4993 {
4994 for (giv = bl->giv; giv; giv = giv->next_iv)
4995 {
4996 /* If cant_derive is already true, there is no point in
4997 checking all of these conditions again. */
4998 if (giv->cant_derive)
4999 continue;
5000
5001 /* If this giv is conditionally set and we have passed a label,
5002 it cannot derive anything. */
5003 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5004 giv->cant_derive = 1;
5005
5006 /* Skip givs that have mult_val == 0, since
5007 they are really invariants. Also skip those that are
5008 replaceable, since we know their lifetime doesn't contain
5009 any biv update. */
5010 else if (giv->mult_val == const0_rtx || giv->replaceable)
5011 continue;
5012
5013 /* The only way we can allow this giv to derive another
5014 is if this is a biv increment and we can form the product
5015 of biv->add_val and giv->mult_val. In this case, we will
5016 be able to compute a compensation. */
5017 else if (biv->insn == p)
5018 {
5019 tem = 0;
5020
5021 if (biv->mult_val == const1_rtx)
5022 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
5023 biv->add_val,
5024 giv->mult_val),
5025 &dummy);
5026
5027 if (tem && giv->derive_adjustment)
5028 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
5029 giv->derive_adjustment),
5030 &dummy);
5031 if (tem)
5032 giv->derive_adjustment = tem;
5033 else
5034 giv->cant_derive = 1;
5035 }
5036 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5037 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5038 giv->cant_derive = 1;
5039 }
5040 }
5041 }
5042 \f
5043 /* Check whether an insn is an increment legitimate for a basic induction var.
5044 X is the source of insn P, or a part of it.
5045 MODE is the mode in which X should be interpreted.
5046
5047 DEST_REG is the putative biv, also the destination of the insn.
5048 We accept patterns of these forms:
5049 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5050 REG = INVARIANT + REG
5051
5052 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5053 and store the additive term into *INC_VAL.
5054
5055 If X is an assignment of an invariant into DEST_REG, we set
5056 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5057
5058 We also want to detect a BIV when it corresponds to a variable
5059 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5060 of the variable may be a PLUS that adds a SUBREG of that variable to
5061 an invariant and then sign- or zero-extends the result of the PLUS
5062 into the variable.
5063
5064 Most GIVs in such cases will be in the promoted mode, since that is the
5065 probably the natural computation mode (and almost certainly the mode
5066 used for addresses) on the machine. So we view the pseudo-reg containing
5067 the variable as the BIV, as if it were simply incremented.
5068
5069 Note that treating the entire pseudo as a BIV will result in making
5070 simple increments to any GIVs based on it. However, if the variable
5071 overflows in its declared mode but not its promoted mode, the result will
5072 be incorrect. This is acceptable if the variable is signed, since
5073 overflows in such cases are undefined, but not if it is unsigned, since
5074 those overflows are defined. So we only check for SIGN_EXTEND and
5075 not ZERO_EXTEND.
5076
5077 If we cannot find a biv, we return 0. */
5078
5079 static int
5080 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5081 register rtx x;
5082 enum machine_mode mode;
5083 rtx p;
5084 rtx dest_reg;
5085 rtx *inc_val;
5086 rtx *mult_val;
5087 {
5088 register enum rtx_code code;
5089 rtx arg;
5090 rtx insn, set = 0;
5091
5092 code = GET_CODE (x);
5093 switch (code)
5094 {
5095 case PLUS:
5096 if (XEXP (x, 0) == dest_reg
5097 || (GET_CODE (XEXP (x, 0)) == SUBREG
5098 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5099 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5100 arg = XEXP (x, 1);
5101 else if (XEXP (x, 1) == dest_reg
5102 || (GET_CODE (XEXP (x, 1)) == SUBREG
5103 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5104 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5105 arg = XEXP (x, 0);
5106 else
5107 return 0;
5108
5109 if (invariant_p (arg) != 1)
5110 return 0;
5111
5112 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5113 *mult_val = const1_rtx;
5114 return 1;
5115
5116 case SUBREG:
5117 /* If this is a SUBREG for a promoted variable, check the inner
5118 value. */
5119 if (SUBREG_PROMOTED_VAR_P (x))
5120 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5121 dest_reg, p, inc_val, mult_val);
5122 return 0;
5123
5124 case REG:
5125 /* If this register is assigned in the previous insn, look at its
5126 source, but don't go outside the loop or past a label. */
5127
5128 for (insn = PREV_INSN (p);
5129 (insn && GET_CODE (insn) == NOTE
5130 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5131 insn = PREV_INSN (insn))
5132 ;
5133
5134 if (insn)
5135 set = single_set (insn);
5136
5137 if (set != 0
5138 && (SET_DEST (set) == x
5139 || (GET_CODE (SET_DEST (set)) == SUBREG
5140 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5141 <= UNITS_PER_WORD)
5142 && SUBREG_REG (SET_DEST (set)) == x)))
5143 return basic_induction_var (SET_SRC (set),
5144 (GET_MODE (SET_SRC (set)) == VOIDmode
5145 ? GET_MODE (x)
5146 : GET_MODE (SET_SRC (set))),
5147 dest_reg, insn,
5148 inc_val, mult_val);
5149 /* ... fall through ... */
5150
5151 /* Can accept constant setting of biv only when inside inner most loop.
5152 Otherwise, a biv of an inner loop may be incorrectly recognized
5153 as a biv of the outer loop,
5154 causing code to be moved INTO the inner loop. */
5155 case MEM:
5156 if (invariant_p (x) != 1)
5157 return 0;
5158 case CONST_INT:
5159 case SYMBOL_REF:
5160 case CONST:
5161 if (loops_enclosed == 1)
5162 {
5163 /* Possible bug here? Perhaps we don't know the mode of X. */
5164 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5165 *mult_val = const0_rtx;
5166 return 1;
5167 }
5168 else
5169 return 0;
5170
5171 case SIGN_EXTEND:
5172 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5173 dest_reg, p, inc_val, mult_val);
5174 case ASHIFTRT:
5175 /* Similar, since this can be a sign extension. */
5176 for (insn = PREV_INSN (p);
5177 (insn && GET_CODE (insn) == NOTE
5178 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5179 insn = PREV_INSN (insn))
5180 ;
5181
5182 if (insn)
5183 set = single_set (insn);
5184
5185 if (set && SET_DEST (set) == XEXP (x, 0)
5186 && GET_CODE (XEXP (x, 1)) == CONST_INT
5187 && INTVAL (XEXP (x, 1)) >= 0
5188 && GET_CODE (SET_SRC (set)) == ASHIFT
5189 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5190 return basic_induction_var (XEXP (SET_SRC (set), 0),
5191 GET_MODE (XEXP (x, 0)),
5192 dest_reg, insn, inc_val, mult_val);
5193 return 0;
5194
5195 default:
5196 return 0;
5197 }
5198 }
5199 \f
5200 /* A general induction variable (giv) is any quantity that is a linear
5201 function of a basic induction variable,
5202 i.e. giv = biv * mult_val + add_val.
5203 The coefficients can be any loop invariant quantity.
5204 A giv need not be computed directly from the biv;
5205 it can be computed by way of other givs. */
5206
5207 /* Determine whether X computes a giv.
5208 If it does, return a nonzero value
5209 which is the benefit from eliminating the computation of X;
5210 set *SRC_REG to the register of the biv that it is computed from;
5211 set *ADD_VAL and *MULT_VAL to the coefficients,
5212 such that the value of X is biv * mult + add; */
5213
5214 static int
5215 general_induction_var (x, src_reg, add_val, mult_val)
5216 rtx x;
5217 rtx *src_reg;
5218 rtx *add_val;
5219 rtx *mult_val;
5220 {
5221 rtx orig_x = x;
5222 int benefit = 0;
5223 char *storage;
5224
5225 /* If this is an invariant, forget it, it isn't a giv. */
5226 if (invariant_p (x) == 1)
5227 return 0;
5228
5229 /* See if the expression could be a giv and get its form.
5230 Mark our place on the obstack in case we don't find a giv. */
5231 storage = (char *) oballoc (0);
5232 x = simplify_giv_expr (x, &benefit);
5233 if (x == 0)
5234 {
5235 obfree (storage);
5236 return 0;
5237 }
5238
5239 switch (GET_CODE (x))
5240 {
5241 case USE:
5242 case CONST_INT:
5243 /* Since this is now an invariant and wasn't before, it must be a giv
5244 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5245 with. */
5246 *src_reg = loop_iv_list->biv->dest_reg;
5247 *mult_val = const0_rtx;
5248 *add_val = x;
5249 break;
5250
5251 case REG:
5252 /* This is equivalent to a BIV. */
5253 *src_reg = x;
5254 *mult_val = const1_rtx;
5255 *add_val = const0_rtx;
5256 break;
5257
5258 case PLUS:
5259 /* Either (plus (biv) (invar)) or
5260 (plus (mult (biv) (invar_1)) (invar_2)). */
5261 if (GET_CODE (XEXP (x, 0)) == MULT)
5262 {
5263 *src_reg = XEXP (XEXP (x, 0), 0);
5264 *mult_val = XEXP (XEXP (x, 0), 1);
5265 }
5266 else
5267 {
5268 *src_reg = XEXP (x, 0);
5269 *mult_val = const1_rtx;
5270 }
5271 *add_val = XEXP (x, 1);
5272 break;
5273
5274 case MULT:
5275 /* ADD_VAL is zero. */
5276 *src_reg = XEXP (x, 0);
5277 *mult_val = XEXP (x, 1);
5278 *add_val = const0_rtx;
5279 break;
5280
5281 default:
5282 abort ();
5283 }
5284
5285 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5286 unless they are CONST_INT). */
5287 if (GET_CODE (*add_val) == USE)
5288 *add_val = XEXP (*add_val, 0);
5289 if (GET_CODE (*mult_val) == USE)
5290 *mult_val = XEXP (*mult_val, 0);
5291
5292 benefit += rtx_cost (orig_x, SET);
5293
5294 /* Always return some benefit if this is a giv so it will be detected
5295 as such. This allows elimination of bivs that might otherwise
5296 not be eliminated. */
5297 return benefit == 0 ? 1 : benefit;
5298 }
5299 \f
5300 /* Given an expression, X, try to form it as a linear function of a biv.
5301 We will canonicalize it to be of the form
5302 (plus (mult (BIV) (invar_1))
5303 (invar_2))
5304 with possible degeneracies.
5305
5306 The invariant expressions must each be of a form that can be used as a
5307 machine operand. We surround then with a USE rtx (a hack, but localized
5308 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5309 routine; it is the caller's responsibility to strip them.
5310
5311 If no such canonicalization is possible (i.e., two biv's are used or an
5312 expression that is neither invariant nor a biv or giv), this routine
5313 returns 0.
5314
5315 For a non-zero return, the result will have a code of CONST_INT, USE,
5316 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5317
5318 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5319
5320 static rtx
5321 simplify_giv_expr (x, benefit)
5322 rtx x;
5323 int *benefit;
5324 {
5325 enum machine_mode mode = GET_MODE (x);
5326 rtx arg0, arg1;
5327 rtx tem;
5328
5329 /* If this is not an integer mode, or if we cannot do arithmetic in this
5330 mode, this can't be a giv. */
5331 if (mode != VOIDmode
5332 && (GET_MODE_CLASS (mode) != MODE_INT
5333 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5334 return 0;
5335
5336 switch (GET_CODE (x))
5337 {
5338 case PLUS:
5339 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5340 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5341 if (arg0 == 0 || arg1 == 0)
5342 return 0;
5343
5344 /* Put constant last, CONST_INT last if both constant. */
5345 if ((GET_CODE (arg0) == USE
5346 || GET_CODE (arg0) == CONST_INT)
5347 && GET_CODE (arg1) != CONST_INT)
5348 tem = arg0, arg0 = arg1, arg1 = tem;
5349
5350 /* Handle addition of zero, then addition of an invariant. */
5351 if (arg1 == const0_rtx)
5352 return arg0;
5353 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5354 switch (GET_CODE (arg0))
5355 {
5356 case CONST_INT:
5357 case USE:
5358 /* Both invariant. Only valid if sum is machine operand.
5359 First strip off possible USE on first operand. */
5360 if (GET_CODE (arg0) == USE)
5361 arg0 = XEXP (arg0, 0);
5362
5363 tem = 0;
5364 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5365 {
5366 tem = plus_constant (arg0, INTVAL (arg1));
5367 if (GET_CODE (tem) != CONST_INT)
5368 tem = gen_rtx (USE, mode, tem);
5369 }
5370
5371 return tem;
5372
5373 case REG:
5374 case MULT:
5375 /* biv + invar or mult + invar. Return sum. */
5376 return gen_rtx (PLUS, mode, arg0, arg1);
5377
5378 case PLUS:
5379 /* (a + invar_1) + invar_2. Associate. */
5380 return simplify_giv_expr (gen_rtx (PLUS, mode,
5381 XEXP (arg0, 0),
5382 gen_rtx (PLUS, mode,
5383 XEXP (arg0, 1), arg1)),
5384 benefit);
5385
5386 default:
5387 abort ();
5388 }
5389
5390 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5391 MULT to reduce cases. */
5392 if (GET_CODE (arg0) == REG)
5393 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5394 if (GET_CODE (arg1) == REG)
5395 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5396
5397 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5398 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5399 Recurse to associate the second PLUS. */
5400 if (GET_CODE (arg1) == MULT)
5401 tem = arg0, arg0 = arg1, arg1 = tem;
5402
5403 if (GET_CODE (arg1) == PLUS)
5404 return simplify_giv_expr (gen_rtx (PLUS, mode,
5405 gen_rtx (PLUS, mode,
5406 arg0, XEXP (arg1, 0)),
5407 XEXP (arg1, 1)),
5408 benefit);
5409
5410 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5411 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5412 abort ();
5413
5414 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5415 return 0;
5416
5417 return simplify_giv_expr (gen_rtx (MULT, mode,
5418 XEXP (arg0, 0),
5419 gen_rtx (PLUS, mode,
5420 XEXP (arg0, 1),
5421 XEXP (arg1, 1))),
5422 benefit);
5423
5424 case MINUS:
5425 /* Handle "a - b" as "a + b * (-1)". */
5426 return simplify_giv_expr (gen_rtx (PLUS, mode,
5427 XEXP (x, 0),
5428 gen_rtx (MULT, mode,
5429 XEXP (x, 1), constm1_rtx)),
5430 benefit);
5431
5432 case MULT:
5433 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5434 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5435 if (arg0 == 0 || arg1 == 0)
5436 return 0;
5437
5438 /* Put constant last, CONST_INT last if both constant. */
5439 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5440 && GET_CODE (arg1) != CONST_INT)
5441 tem = arg0, arg0 = arg1, arg1 = tem;
5442
5443 /* If second argument is not now constant, not giv. */
5444 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5445 return 0;
5446
5447 /* Handle multiply by 0 or 1. */
5448 if (arg1 == const0_rtx)
5449 return const0_rtx;
5450
5451 else if (arg1 == const1_rtx)
5452 return arg0;
5453
5454 switch (GET_CODE (arg0))
5455 {
5456 case REG:
5457 /* biv * invar. Done. */
5458 return gen_rtx (MULT, mode, arg0, arg1);
5459
5460 case CONST_INT:
5461 /* Product of two constants. */
5462 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5463
5464 case USE:
5465 /* invar * invar. Not giv. */
5466 return 0;
5467
5468 case MULT:
5469 /* (a * invar_1) * invar_2. Associate. */
5470 return simplify_giv_expr (gen_rtx (MULT, mode,
5471 XEXP (arg0, 0),
5472 gen_rtx (MULT, mode,
5473 XEXP (arg0, 1), arg1)),
5474 benefit);
5475
5476 case PLUS:
5477 /* (a + invar_1) * invar_2. Distribute. */
5478 return simplify_giv_expr (gen_rtx (PLUS, mode,
5479 gen_rtx (MULT, mode,
5480 XEXP (arg0, 0), arg1),
5481 gen_rtx (MULT, mode,
5482 XEXP (arg0, 1), arg1)),
5483 benefit);
5484
5485 default:
5486 abort ();
5487 }
5488
5489 case ASHIFT:
5490 /* Shift by constant is multiply by power of two. */
5491 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5492 return 0;
5493
5494 return simplify_giv_expr (gen_rtx (MULT, mode,
5495 XEXP (x, 0),
5496 GEN_INT ((HOST_WIDE_INT) 1
5497 << INTVAL (XEXP (x, 1)))),
5498 benefit);
5499
5500 case NEG:
5501 /* "-a" is "a * (-1)" */
5502 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5503 benefit);
5504
5505 case NOT:
5506 /* "~a" is "-a - 1". Silly, but easy. */
5507 return simplify_giv_expr (gen_rtx (MINUS, mode,
5508 gen_rtx (NEG, mode, XEXP (x, 0)),
5509 const1_rtx),
5510 benefit);
5511
5512 case USE:
5513 /* Already in proper form for invariant. */
5514 return x;
5515
5516 case REG:
5517 /* If this is a new register, we can't deal with it. */
5518 if (REGNO (x) >= max_reg_before_loop)
5519 return 0;
5520
5521 /* Check for biv or giv. */
5522 switch (reg_iv_type[REGNO (x)])
5523 {
5524 case BASIC_INDUCT:
5525 return x;
5526 case GENERAL_INDUCT:
5527 {
5528 struct induction *v = reg_iv_info[REGNO (x)];
5529
5530 /* Form expression from giv and add benefit. Ensure this giv
5531 can derive another and subtract any needed adjustment if so. */
5532 *benefit += v->benefit;
5533 if (v->cant_derive)
5534 return 0;
5535
5536 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5537 v->src_reg, v->mult_val),
5538 v->add_val);
5539 if (v->derive_adjustment)
5540 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5541 return simplify_giv_expr (tem, benefit);
5542 }
5543 }
5544
5545 /* Fall through to general case. */
5546 default:
5547 /* If invariant, return as USE (unless CONST_INT).
5548 Otherwise, not giv. */
5549 if (GET_CODE (x) == USE)
5550 x = XEXP (x, 0);
5551
5552 if (invariant_p (x) == 1)
5553 {
5554 if (GET_CODE (x) == CONST_INT)
5555 return x;
5556 else
5557 return gen_rtx (USE, mode, x);
5558 }
5559 else
5560 return 0;
5561 }
5562 }
5563 \f
5564 /* Help detect a giv that is calculated by several consecutive insns;
5565 for example,
5566 giv = biv * M
5567 giv = giv + A
5568 The caller has already identified the first insn P as having a giv as dest;
5569 we check that all other insns that set the same register follow
5570 immediately after P, that they alter nothing else,
5571 and that the result of the last is still a giv.
5572
5573 The value is 0 if the reg set in P is not really a giv.
5574 Otherwise, the value is the amount gained by eliminating
5575 all the consecutive insns that compute the value.
5576
5577 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5578 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5579
5580 The coefficients of the ultimate giv value are stored in
5581 *MULT_VAL and *ADD_VAL. */
5582
5583 static int
5584 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5585 add_val, mult_val)
5586 int first_benefit;
5587 rtx p;
5588 rtx src_reg;
5589 rtx dest_reg;
5590 rtx *add_val;
5591 rtx *mult_val;
5592 {
5593 int count;
5594 enum rtx_code code;
5595 int benefit;
5596 rtx temp;
5597 rtx set;
5598
5599 /* Indicate that this is a giv so that we can update the value produced in
5600 each insn of the multi-insn sequence.
5601
5602 This induction structure will be used only by the call to
5603 general_induction_var below, so we can allocate it on our stack.
5604 If this is a giv, our caller will replace the induct var entry with
5605 a new induction structure. */
5606 struct induction *v
5607 = (struct induction *) alloca (sizeof (struct induction));
5608 v->src_reg = src_reg;
5609 v->mult_val = *mult_val;
5610 v->add_val = *add_val;
5611 v->benefit = first_benefit;
5612 v->cant_derive = 0;
5613 v->derive_adjustment = 0;
5614
5615 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5616 reg_iv_info[REGNO (dest_reg)] = v;
5617
5618 count = n_times_set[REGNO (dest_reg)] - 1;
5619
5620 while (count > 0)
5621 {
5622 p = NEXT_INSN (p);
5623 code = GET_CODE (p);
5624
5625 /* If libcall, skip to end of call sequence. */
5626 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5627 p = XEXP (temp, 0);
5628
5629 if (code == INSN
5630 && (set = single_set (p))
5631 && GET_CODE (SET_DEST (set)) == REG
5632 && SET_DEST (set) == dest_reg
5633 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5634 add_val, mult_val))
5635 /* Giv created by equivalent expression. */
5636 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5637 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5638 add_val, mult_val))))
5639 && src_reg == v->src_reg)
5640 {
5641 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5642 benefit += libcall_benefit (p);
5643
5644 count--;
5645 v->mult_val = *mult_val;
5646 v->add_val = *add_val;
5647 v->benefit = benefit;
5648 }
5649 else if (code != NOTE)
5650 {
5651 /* Allow insns that set something other than this giv to a
5652 constant. Such insns are needed on machines which cannot
5653 include long constants and should not disqualify a giv. */
5654 if (code == INSN
5655 && (set = single_set (p))
5656 && SET_DEST (set) != dest_reg
5657 && CONSTANT_P (SET_SRC (set)))
5658 continue;
5659
5660 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5661 return 0;
5662 }
5663 }
5664
5665 return v->benefit;
5666 }
5667 \f
5668 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5669 represented by G1. If no such expression can be found, or it is clear that
5670 it cannot possibly be a valid address, 0 is returned.
5671
5672 To perform the computation, we note that
5673 G1 = a * v + b and
5674 G2 = c * v + d
5675 where `v' is the biv.
5676
5677 So G2 = (c/a) * G1 + (d - b*c/a) */
5678
5679 #ifdef ADDRESS_COST
5680 static rtx
5681 express_from (g1, g2)
5682 struct induction *g1, *g2;
5683 {
5684 rtx mult, add;
5685
5686 /* The value that G1 will be multiplied by must be a constant integer. Also,
5687 the only chance we have of getting a valid address is if b*c/a (see above
5688 for notation) is also an integer. */
5689 if (GET_CODE (g1->mult_val) != CONST_INT
5690 || GET_CODE (g2->mult_val) != CONST_INT
5691 || GET_CODE (g1->add_val) != CONST_INT
5692 || g1->mult_val == const0_rtx
5693 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5694 return 0;
5695
5696 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5697 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5698
5699 /* Form simplified final result. */
5700 if (mult == const0_rtx)
5701 return add;
5702 else if (mult == const1_rtx)
5703 mult = g1->dest_reg;
5704 else
5705 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5706
5707 if (add == const0_rtx)
5708 return mult;
5709 else
5710 return gen_rtx (PLUS, g2->mode, mult, add);
5711 }
5712 #endif
5713 \f
5714 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5715 (either directly or via an address expression) a register used to represent
5716 G1. Set g2->new_reg to a represtation of G1 (normally just
5717 g1->dest_reg). */
5718
5719 static int
5720 combine_givs_p (g1, g2)
5721 struct induction *g1, *g2;
5722 {
5723 rtx tem;
5724
5725 /* If these givs are identical, they can be combined. */
5726 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5727 && rtx_equal_p (g1->add_val, g2->add_val))
5728 {
5729 g2->new_reg = g1->dest_reg;
5730 return 1;
5731 }
5732
5733 #ifdef ADDRESS_COST
5734 /* If G2 can be expressed as a function of G1 and that function is valid
5735 as an address and no more expensive than using a register for G2,
5736 the expression of G2 in terms of G1 can be used. */
5737 if (g2->giv_type == DEST_ADDR
5738 && (tem = express_from (g1, g2)) != 0
5739 && memory_address_p (g2->mem_mode, tem)
5740 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5741 {
5742 g2->new_reg = tem;
5743 return 1;
5744 }
5745 #endif
5746
5747 return 0;
5748 }
5749 \f
5750 #ifdef GIV_SORT_CRITERION
5751 /* Compare two givs and sort the most desirable one for combinations first.
5752 This is used only in one qsort call below. */
5753
5754 static int
5755 giv_sort (x, y)
5756 struct induction **x, **y;
5757 {
5758 GIV_SORT_CRITERION (*x, *y);
5759
5760 return 0;
5761 }
5762 #endif
5763
5764 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5765 any other. If so, point SAME to the giv combined with and set NEW_REG to
5766 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5767 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5768
5769 static void
5770 combine_givs (bl)
5771 struct iv_class *bl;
5772 {
5773 struct induction *g1, *g2, **giv_array, *temp_iv;
5774 int i, j, giv_count, pass;
5775
5776 /* Count givs, because bl->giv_count is incorrect here. */
5777 giv_count = 0;
5778 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5779 giv_count++;
5780
5781 giv_array
5782 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5783 i = 0;
5784 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5785 giv_array[i++] = g1;
5786
5787 #ifdef GIV_SORT_CRITERION
5788 /* Sort the givs if GIV_SORT_CRITERION is defined.
5789 This is usually defined for processors which lack
5790 negative register offsets so more givs may be combined. */
5791
5792 if (loop_dump_stream)
5793 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5794
5795 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5796 #endif
5797
5798 for (i = 0; i < giv_count; i++)
5799 {
5800 g1 = giv_array[i];
5801 for (pass = 0; pass <= 1; pass++)
5802 for (j = 0; j < giv_count; j++)
5803 {
5804 g2 = giv_array[j];
5805 if (g1 != g2
5806 /* First try to combine with replaceable givs, then all givs. */
5807 && (g1->replaceable || pass == 1)
5808 /* If either has already been combined or is to be ignored, can't
5809 combine. */
5810 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5811 /* If something has been based on G2, G2 cannot itself be based
5812 on something else. */
5813 && ! g2->combined_with
5814 && combine_givs_p (g1, g2))
5815 {
5816 /* g2->new_reg set by `combine_givs_p' */
5817 g2->same = g1;
5818 g1->combined_with = 1;
5819
5820 /* If one of these givs is a DEST_REG that was only used
5821 once, by the other giv, this is actually a single use.
5822 The DEST_REG has the correct cost, while the other giv
5823 counts the REG use too often. */
5824 if (g2->giv_type == DEST_REG
5825 && n_times_used[REGNO (g2->dest_reg)] == 1
5826 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5827 g1->benefit = g2->benefit;
5828 else if (g1->giv_type != DEST_REG
5829 || n_times_used[REGNO (g1->dest_reg)] != 1
5830 || ! reg_mentioned_p (g1->dest_reg,
5831 PATTERN (g2->insn)))
5832 {
5833 g1->benefit += g2->benefit;
5834 g1->times_used += g2->times_used;
5835 }
5836 /* ??? The new final_[bg]iv_value code does a much better job
5837 of finding replaceable giv's, and hence this code may no
5838 longer be necessary. */
5839 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5840 g1->benefit -= copy_cost;
5841 g1->lifetime += g2->lifetime;
5842
5843 if (loop_dump_stream)
5844 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5845 INSN_UID (g2->insn), INSN_UID (g1->insn));
5846 }
5847 }
5848 }
5849 }
5850 \f
5851 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5852
5853 void
5854 emit_iv_add_mult (b, m, a, reg, insert_before)
5855 rtx b; /* initial value of basic induction variable */
5856 rtx m; /* multiplicative constant */
5857 rtx a; /* additive constant */
5858 rtx reg; /* destination register */
5859 rtx insert_before;
5860 {
5861 rtx seq;
5862 rtx result;
5863
5864 /* Prevent unexpected sharing of these rtx. */
5865 a = copy_rtx (a);
5866 b = copy_rtx (b);
5867
5868 /* Increase the lifetime of any invariants moved further in code. */
5869 update_reg_last_use (a, insert_before);
5870 update_reg_last_use (b, insert_before);
5871 update_reg_last_use (m, insert_before);
5872
5873 start_sequence ();
5874 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5875 if (reg != result)
5876 emit_move_insn (reg, result);
5877 seq = gen_sequence ();
5878 end_sequence ();
5879
5880 emit_insn_before (seq, insert_before);
5881
5882 record_base_value (REGNO (reg), b);
5883 }
5884 \f
5885 /* Test whether A * B can be computed without
5886 an actual multiply insn. Value is 1 if so. */
5887
5888 static int
5889 product_cheap_p (a, b)
5890 rtx a;
5891 rtx b;
5892 {
5893 int i;
5894 rtx tmp;
5895 struct obstack *old_rtl_obstack = rtl_obstack;
5896 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5897 int win = 1;
5898
5899 /* If only one is constant, make it B. */
5900 if (GET_CODE (a) == CONST_INT)
5901 tmp = a, a = b, b = tmp;
5902
5903 /* If first constant, both constant, so don't need multiply. */
5904 if (GET_CODE (a) == CONST_INT)
5905 return 1;
5906
5907 /* If second not constant, neither is constant, so would need multiply. */
5908 if (GET_CODE (b) != CONST_INT)
5909 return 0;
5910
5911 /* One operand is constant, so might not need multiply insn. Generate the
5912 code for the multiply and see if a call or multiply, or long sequence
5913 of insns is generated. */
5914
5915 rtl_obstack = &temp_obstack;
5916 start_sequence ();
5917 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5918 tmp = gen_sequence ();
5919 end_sequence ();
5920
5921 if (GET_CODE (tmp) == SEQUENCE)
5922 {
5923 if (XVEC (tmp, 0) == 0)
5924 win = 1;
5925 else if (XVECLEN (tmp, 0) > 3)
5926 win = 0;
5927 else
5928 for (i = 0; i < XVECLEN (tmp, 0); i++)
5929 {
5930 rtx insn = XVECEXP (tmp, 0, i);
5931
5932 if (GET_CODE (insn) != INSN
5933 || (GET_CODE (PATTERN (insn)) == SET
5934 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5935 || (GET_CODE (PATTERN (insn)) == PARALLEL
5936 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5937 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5938 {
5939 win = 0;
5940 break;
5941 }
5942 }
5943 }
5944 else if (GET_CODE (tmp) == SET
5945 && GET_CODE (SET_SRC (tmp)) == MULT)
5946 win = 0;
5947 else if (GET_CODE (tmp) == PARALLEL
5948 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5949 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5950 win = 0;
5951
5952 /* Free any storage we obtained in generating this multiply and restore rtl
5953 allocation to its normal obstack. */
5954 obstack_free (&temp_obstack, storage);
5955 rtl_obstack = old_rtl_obstack;
5956
5957 return win;
5958 }
5959 \f
5960 /* Check to see if loop can be terminated by a "decrement and branch until
5961 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5962 Also try reversing an increment loop to a decrement loop
5963 to see if the optimization can be performed.
5964 Value is nonzero if optimization was performed. */
5965
5966 /* This is useful even if the architecture doesn't have such an insn,
5967 because it might change a loops which increments from 0 to n to a loop
5968 which decrements from n to 0. A loop that decrements to zero is usually
5969 faster than one that increments from zero. */
5970
5971 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5972 such as approx_final_value, biv_total_increment, loop_iterations, and
5973 final_[bg]iv_value. */
5974
5975 static int
5976 check_dbra_loop (loop_end, insn_count, loop_start)
5977 rtx loop_end;
5978 int insn_count;
5979 rtx loop_start;
5980 {
5981 struct iv_class *bl;
5982 rtx reg;
5983 rtx jump_label;
5984 rtx final_value;
5985 rtx start_value;
5986 rtx new_add_val;
5987 rtx comparison;
5988 rtx before_comparison;
5989 rtx p;
5990
5991 /* If last insn is a conditional branch, and the insn before tests a
5992 register value, try to optimize it. Otherwise, we can't do anything. */
5993
5994 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5995 if (comparison == 0)
5996 return 0;
5997
5998 /* Check all of the bivs to see if the compare uses one of them.
5999 Skip biv's set more than once because we can't guarantee that
6000 it will be zero on the last iteration. Also skip if the biv is
6001 used between its update and the test insn. */
6002
6003 for (bl = loop_iv_list; bl; bl = bl->next)
6004 {
6005 if (bl->biv_count == 1
6006 && bl->biv->dest_reg == XEXP (comparison, 0)
6007 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6008 PREV_INSN (PREV_INSN (loop_end))))
6009 break;
6010 }
6011
6012 if (! bl)
6013 return 0;
6014
6015 /* Look for the case where the basic induction variable is always
6016 nonnegative, and equals zero on the last iteration.
6017 In this case, add a reg_note REG_NONNEG, which allows the
6018 m68k DBRA instruction to be used. */
6019
6020 if (((GET_CODE (comparison) == GT
6021 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6022 && INTVAL (XEXP (comparison, 1)) == -1)
6023 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6024 && GET_CODE (bl->biv->add_val) == CONST_INT
6025 && INTVAL (bl->biv->add_val) < 0)
6026 {
6027 /* Initial value must be greater than 0,
6028 init_val % -dec_value == 0 to ensure that it equals zero on
6029 the last iteration */
6030
6031 if (GET_CODE (bl->initial_value) == CONST_INT
6032 && INTVAL (bl->initial_value) > 0
6033 && (INTVAL (bl->initial_value)
6034 % (-INTVAL (bl->biv->add_val))) == 0)
6035 {
6036 /* register always nonnegative, add REG_NOTE to branch */
6037 REG_NOTES (PREV_INSN (loop_end))
6038 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6039 REG_NOTES (PREV_INSN (loop_end)));
6040 bl->nonneg = 1;
6041
6042 return 1;
6043 }
6044
6045 /* If the decrement is 1 and the value was tested as >= 0 before
6046 the loop, then we can safely optimize. */
6047 for (p = loop_start; p; p = PREV_INSN (p))
6048 {
6049 if (GET_CODE (p) == CODE_LABEL)
6050 break;
6051 if (GET_CODE (p) != JUMP_INSN)
6052 continue;
6053
6054 before_comparison = get_condition_for_loop (p);
6055 if (before_comparison
6056 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6057 && GET_CODE (before_comparison) == LT
6058 && XEXP (before_comparison, 1) == const0_rtx
6059 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6060 && INTVAL (bl->biv->add_val) == -1)
6061 {
6062 REG_NOTES (PREV_INSN (loop_end))
6063 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6064 REG_NOTES (PREV_INSN (loop_end)));
6065 bl->nonneg = 1;
6066
6067 return 1;
6068 }
6069 }
6070 }
6071 else if (num_mem_sets <= 1)
6072 {
6073 /* Try to change inc to dec, so can apply above optimization. */
6074 /* Can do this if:
6075 all registers modified are induction variables or invariant,
6076 all memory references have non-overlapping addresses
6077 (obviously true if only one write)
6078 allow 2 insns for the compare/jump at the end of the loop. */
6079 /* Also, we must avoid any instructions which use both the reversed
6080 biv and another biv. Such instructions will fail if the loop is
6081 reversed. We meet this condition by requiring that either
6082 no_use_except_counting is true, or else that there is only
6083 one biv. */
6084 int num_nonfixed_reads = 0;
6085 /* 1 if the iteration var is used only to count iterations. */
6086 int no_use_except_counting = 0;
6087 /* 1 if the loop has no memory store, or it has a single memory store
6088 which is reversible. */
6089 int reversible_mem_store = 1;
6090
6091 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6092 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6093 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6094
6095 if (bl->giv_count == 0
6096 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6097 {
6098 rtx bivreg = regno_reg_rtx[bl->regno];
6099
6100 /* If there are no givs for this biv, and the only exit is the
6101 fall through at the end of the the loop, then
6102 see if perhaps there are no uses except to count. */
6103 no_use_except_counting = 1;
6104 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6105 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6106 {
6107 rtx set = single_set (p);
6108
6109 if (set && GET_CODE (SET_DEST (set)) == REG
6110 && REGNO (SET_DEST (set)) == bl->regno)
6111 /* An insn that sets the biv is okay. */
6112 ;
6113 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6114 || p == prev_nonnote_insn (loop_end))
6115 /* Don't bother about the end test. */
6116 ;
6117 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6118 /* Any other use of the biv is no good. */
6119 {
6120 no_use_except_counting = 0;
6121 break;
6122 }
6123 }
6124 }
6125
6126 /* If the loop has a single store, and the destination address is
6127 invariant, then we can't reverse the loop, because this address
6128 might then have the wrong value at loop exit.
6129 This would work if the source was invariant also, however, in that
6130 case, the insn should have been moved out of the loop. */
6131
6132 if (num_mem_sets == 1)
6133 reversible_mem_store
6134 = (! unknown_address_altered
6135 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6136
6137 /* This code only acts for innermost loops. Also it simplifies
6138 the memory address check by only reversing loops with
6139 zero or one memory access.
6140 Two memory accesses could involve parts of the same array,
6141 and that can't be reversed. */
6142
6143 if (num_nonfixed_reads <= 1
6144 && !loop_has_call
6145 && !loop_has_volatile
6146 && reversible_mem_store
6147 && (no_use_except_counting
6148 || ((bl->giv_count + bl->biv_count + num_mem_sets
6149 + num_movables + 2 == insn_count)
6150 && (bl == loop_iv_list && bl->next == 0))))
6151 {
6152 rtx tem;
6153
6154 /* Loop can be reversed. */
6155 if (loop_dump_stream)
6156 fprintf (loop_dump_stream, "Can reverse loop\n");
6157
6158 /* Now check other conditions:
6159 initial_value must be zero,
6160 final_value % add_val == 0, so that when reversed, the
6161 biv will be zero on the last iteration.
6162
6163 This test can probably be improved since +/- 1 in the constant
6164 can be obtained by changing LT to LE and vice versa; this is
6165 confusing. */
6166
6167 if (comparison && bl->initial_value == const0_rtx
6168 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6169 /* LE gets turned into LT */
6170 && GET_CODE (comparison) == LT
6171 && (INTVAL (XEXP (comparison, 1))
6172 % INTVAL (bl->biv->add_val)) == 0)
6173 {
6174 /* Register will always be nonnegative, with value
6175 0 on last iteration if loop reversed */
6176
6177 /* Save some info needed to produce the new insns. */
6178 reg = bl->biv->dest_reg;
6179 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6180 if (jump_label == pc_rtx)
6181 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6182 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6183
6184 final_value = XEXP (comparison, 1);
6185 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6186 - INTVAL (bl->biv->add_val));
6187
6188 /* Initialize biv to start_value before loop start.
6189 The old initializing insn will be deleted as a
6190 dead store by flow.c. */
6191 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6192
6193 /* Add insn to decrement register, and delete insn
6194 that incremented the register. */
6195 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6196 bl->biv->insn);
6197 delete_insn (bl->biv->insn);
6198
6199 /* Update biv info to reflect its new status. */
6200 bl->biv->insn = p;
6201 bl->initial_value = start_value;
6202 bl->biv->add_val = new_add_val;
6203
6204 /* Inc LABEL_NUSES so that delete_insn will
6205 not delete the label. */
6206 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6207
6208 /* Emit an insn after the end of the loop to set the biv's
6209 proper exit value if it is used anywhere outside the loop. */
6210 if ((REGNO_LAST_UID (bl->regno)
6211 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6212 || ! bl->init_insn
6213 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6214 emit_insn_after (gen_move_insn (reg, final_value),
6215 loop_end);
6216
6217 /* Delete compare/branch at end of loop. */
6218 delete_insn (PREV_INSN (loop_end));
6219 delete_insn (PREV_INSN (loop_end));
6220
6221 /* Add new compare/branch insn at end of loop. */
6222 start_sequence ();
6223 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6224 GET_MODE (reg), 0, 0);
6225 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6226 tem = gen_sequence ();
6227 end_sequence ();
6228 emit_jump_insn_before (tem, loop_end);
6229
6230 for (tem = PREV_INSN (loop_end);
6231 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6232 ;
6233 if (tem)
6234 {
6235 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6236
6237 /* Increment of LABEL_NUSES done above. */
6238 /* Register is now always nonnegative,
6239 so add REG_NONNEG note to the branch. */
6240 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6241 REG_NOTES (tem));
6242 }
6243
6244 bl->nonneg = 1;
6245
6246 /* Mark that this biv has been reversed. Each giv which depends
6247 on this biv, and which is also live past the end of the loop
6248 will have to be fixed up. */
6249
6250 bl->reversed = 1;
6251
6252 if (loop_dump_stream)
6253 fprintf (loop_dump_stream,
6254 "Reversed loop and added reg_nonneg\n");
6255
6256 return 1;
6257 }
6258 }
6259 }
6260
6261 return 0;
6262 }
6263 \f
6264 /* Verify whether the biv BL appears to be eliminable,
6265 based on the insns in the loop that refer to it.
6266 LOOP_START is the first insn of the loop, and END is the end insn.
6267
6268 If ELIMINATE_P is non-zero, actually do the elimination.
6269
6270 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6271 determine whether invariant insns should be placed inside or at the
6272 start of the loop. */
6273
6274 static int
6275 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6276 struct iv_class *bl;
6277 rtx loop_start;
6278 rtx end;
6279 int eliminate_p;
6280 int threshold, insn_count;
6281 {
6282 rtx reg = bl->biv->dest_reg;
6283 rtx p;
6284
6285 /* Scan all insns in the loop, stopping if we find one that uses the
6286 biv in a way that we cannot eliminate. */
6287
6288 for (p = loop_start; p != end; p = NEXT_INSN (p))
6289 {
6290 enum rtx_code code = GET_CODE (p);
6291 rtx where = threshold >= insn_count ? loop_start : p;
6292
6293 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6294 && reg_mentioned_p (reg, PATTERN (p))
6295 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6296 {
6297 if (loop_dump_stream)
6298 fprintf (loop_dump_stream,
6299 "Cannot eliminate biv %d: biv used in insn %d.\n",
6300 bl->regno, INSN_UID (p));
6301 break;
6302 }
6303 }
6304
6305 if (p == end)
6306 {
6307 if (loop_dump_stream)
6308 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6309 bl->regno, eliminate_p ? "was" : "can be");
6310 return 1;
6311 }
6312
6313 return 0;
6314 }
6315 \f
6316 /* If BL appears in X (part of the pattern of INSN), see if we can
6317 eliminate its use. If so, return 1. If not, return 0.
6318
6319 If BIV does not appear in X, return 1.
6320
6321 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6322 where extra insns should be added. Depending on how many items have been
6323 moved out of the loop, it will either be before INSN or at the start of
6324 the loop. */
6325
6326 static int
6327 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6328 rtx x, insn;
6329 struct iv_class *bl;
6330 int eliminate_p;
6331 rtx where;
6332 {
6333 enum rtx_code code = GET_CODE (x);
6334 rtx reg = bl->biv->dest_reg;
6335 enum machine_mode mode = GET_MODE (reg);
6336 struct induction *v;
6337 rtx arg, new, tem;
6338 int arg_operand;
6339 char *fmt;
6340 int i, j;
6341
6342 switch (code)
6343 {
6344 case REG:
6345 /* If we haven't already been able to do something with this BIV,
6346 we can't eliminate it. */
6347 if (x == reg)
6348 return 0;
6349 return 1;
6350
6351 case SET:
6352 /* If this sets the BIV, it is not a problem. */
6353 if (SET_DEST (x) == reg)
6354 return 1;
6355
6356 /* If this is an insn that defines a giv, it is also ok because
6357 it will go away when the giv is reduced. */
6358 for (v = bl->giv; v; v = v->next_iv)
6359 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6360 return 1;
6361
6362 #ifdef HAVE_cc0
6363 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6364 {
6365 /* Can replace with any giv that was reduced and
6366 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6367 Require a constant for MULT_VAL, so we know it's nonzero.
6368 ??? We disable this optimization to avoid potential
6369 overflows. */
6370
6371 for (v = bl->giv; v; v = v->next_iv)
6372 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6373 && v->add_val == const0_rtx
6374 && ! v->ignore && ! v->maybe_dead && v->always_computable
6375 && v->mode == mode
6376 && 0)
6377 {
6378 /* If the giv V had the auto-inc address optimization applied
6379 to it, and INSN occurs between the giv insn and the biv
6380 insn, then we must adjust the value used here.
6381 This is rare, so we don't bother to do so. */
6382 if (v->auto_inc_opt
6383 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6384 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6385 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6386 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6387 continue;
6388
6389 if (! eliminate_p)
6390 return 1;
6391
6392 /* If the giv has the opposite direction of change,
6393 then reverse the comparison. */
6394 if (INTVAL (v->mult_val) < 0)
6395 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
6396 const0_rtx, v->new_reg);
6397 else
6398 new = v->new_reg;
6399
6400 /* We can probably test that giv's reduced reg. */
6401 if (validate_change (insn, &SET_SRC (x), new, 0))
6402 return 1;
6403 }
6404
6405 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6406 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6407 Require a constant for MULT_VAL, so we know it's nonzero.
6408 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6409 overflow problem. */
6410
6411 for (v = bl->giv; v; v = v->next_iv)
6412 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6413 && ! v->ignore && ! v->maybe_dead && v->always_computable
6414 && v->mode == mode
6415 && (GET_CODE (v->add_val) == SYMBOL_REF
6416 || GET_CODE (v->add_val) == LABEL_REF
6417 || GET_CODE (v->add_val) == CONST
6418 || (GET_CODE (v->add_val) == REG
6419 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6420 {
6421 /* If the giv V had the auto-inc address optimization applied
6422 to it, and INSN occurs between the giv insn and the biv
6423 insn, then we must adjust the value used here.
6424 This is rare, so we don't bother to do so. */
6425 if (v->auto_inc_opt
6426 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6427 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6428 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6429 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6430 continue;
6431
6432 if (! eliminate_p)
6433 return 1;
6434
6435 /* If the giv has the opposite direction of change,
6436 then reverse the comparison. */
6437 if (INTVAL (v->mult_val) < 0)
6438 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
6439 v->new_reg);
6440 else
6441 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
6442 copy_rtx (v->add_val));
6443
6444 /* Replace biv with the giv's reduced register. */
6445 update_reg_last_use (v->add_val, insn);
6446 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6447 return 1;
6448
6449 /* Insn doesn't support that constant or invariant. Copy it
6450 into a register (it will be a loop invariant.) */
6451 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6452
6453 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6454 where);
6455
6456 /* Substitute the new register for its invariant value in
6457 the compare expression. */
6458 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6459 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6460 return 1;
6461 }
6462 }
6463 #endif
6464 break;
6465
6466 case COMPARE:
6467 case EQ: case NE:
6468 case GT: case GE: case GTU: case GEU:
6469 case LT: case LE: case LTU: case LEU:
6470 /* See if either argument is the biv. */
6471 if (XEXP (x, 0) == reg)
6472 arg = XEXP (x, 1), arg_operand = 1;
6473 else if (XEXP (x, 1) == reg)
6474 arg = XEXP (x, 0), arg_operand = 0;
6475 else
6476 break;
6477
6478 if (CONSTANT_P (arg))
6479 {
6480 /* First try to replace with any giv that has constant positive
6481 mult_val and constant add_val. We might be able to support
6482 negative mult_val, but it seems complex to do it in general. */
6483
6484 for (v = bl->giv; v; v = v->next_iv)
6485 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6486 && (GET_CODE (v->add_val) == SYMBOL_REF
6487 || GET_CODE (v->add_val) == LABEL_REF
6488 || GET_CODE (v->add_val) == CONST
6489 || (GET_CODE (v->add_val) == REG
6490 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6491 && ! v->ignore && ! v->maybe_dead && v->always_computable
6492 && v->mode == mode)
6493 {
6494 /* If the giv V had the auto-inc address optimization applied
6495 to it, and INSN occurs between the giv insn and the biv
6496 insn, then we must adjust the value used here.
6497 This is rare, so we don't bother to do so. */
6498 if (v->auto_inc_opt
6499 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6500 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6501 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6502 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6503 continue;
6504
6505 if (! eliminate_p)
6506 return 1;
6507
6508 /* Replace biv with the giv's reduced reg. */
6509 XEXP (x, 1-arg_operand) = v->new_reg;
6510
6511 /* If all constants are actually constant integers and
6512 the derived constant can be directly placed in the COMPARE,
6513 do so. */
6514 if (GET_CODE (arg) == CONST_INT
6515 && GET_CODE (v->mult_val) == CONST_INT
6516 && GET_CODE (v->add_val) == CONST_INT
6517 && validate_change (insn, &XEXP (x, arg_operand),
6518 GEN_INT (INTVAL (arg)
6519 * INTVAL (v->mult_val)
6520 + INTVAL (v->add_val)), 0))
6521 return 1;
6522
6523 /* Otherwise, load it into a register. */
6524 tem = gen_reg_rtx (mode);
6525 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6526 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6527 return 1;
6528
6529 /* If that failed, put back the change we made above. */
6530 XEXP (x, 1-arg_operand) = reg;
6531 }
6532
6533 /* Look for giv with positive constant mult_val and nonconst add_val.
6534 Insert insns to calculate new compare value.
6535 ??? Turn this off due to possible overflow. */
6536
6537 for (v = bl->giv; v; v = v->next_iv)
6538 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6539 && ! v->ignore && ! v->maybe_dead && v->always_computable
6540 && v->mode == mode
6541 && 0)
6542 {
6543 rtx tem;
6544
6545 /* If the giv V had the auto-inc address optimization applied
6546 to it, and INSN occurs between the giv insn and the biv
6547 insn, then we must adjust the value used here.
6548 This is rare, so we don't bother to do so. */
6549 if (v->auto_inc_opt
6550 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6551 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6552 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6553 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6554 continue;
6555
6556 if (! eliminate_p)
6557 return 1;
6558
6559 tem = gen_reg_rtx (mode);
6560
6561 /* Replace biv with giv's reduced register. */
6562 validate_change (insn, &XEXP (x, 1 - arg_operand),
6563 v->new_reg, 1);
6564
6565 /* Compute value to compare against. */
6566 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6567 /* Use it in this insn. */
6568 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6569 if (apply_change_group ())
6570 return 1;
6571 }
6572 }
6573 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6574 {
6575 if (invariant_p (arg) == 1)
6576 {
6577 /* Look for giv with constant positive mult_val and nonconst
6578 add_val. Insert insns to compute new compare value.
6579 ??? Turn this off due to possible overflow. */
6580
6581 for (v = bl->giv; v; v = v->next_iv)
6582 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6583 && ! v->ignore && ! v->maybe_dead && v->always_computable
6584 && v->mode == mode
6585 && 0)
6586 {
6587 rtx tem;
6588
6589 /* If the giv V had the auto-inc address optimization applied
6590 to it, and INSN occurs between the giv insn and the biv
6591 insn, then we must adjust the value used here.
6592 This is rare, so we don't bother to do so. */
6593 if (v->auto_inc_opt
6594 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6595 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6596 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6597 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6598 continue;
6599
6600 if (! eliminate_p)
6601 return 1;
6602
6603 tem = gen_reg_rtx (mode);
6604
6605 /* Replace biv with giv's reduced register. */
6606 validate_change (insn, &XEXP (x, 1 - arg_operand),
6607 v->new_reg, 1);
6608
6609 /* Compute value to compare against. */
6610 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6611 tem, where);
6612 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6613 if (apply_change_group ())
6614 return 1;
6615 }
6616 }
6617
6618 /* This code has problems. Basically, you can't know when
6619 seeing if we will eliminate BL, whether a particular giv
6620 of ARG will be reduced. If it isn't going to be reduced,
6621 we can't eliminate BL. We can try forcing it to be reduced,
6622 but that can generate poor code.
6623
6624 The problem is that the benefit of reducing TV, below should
6625 be increased if BL can actually be eliminated, but this means
6626 we might have to do a topological sort of the order in which
6627 we try to process biv. It doesn't seem worthwhile to do
6628 this sort of thing now. */
6629
6630 #if 0
6631 /* Otherwise the reg compared with had better be a biv. */
6632 if (GET_CODE (arg) != REG
6633 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6634 return 0;
6635
6636 /* Look for a pair of givs, one for each biv,
6637 with identical coefficients. */
6638 for (v = bl->giv; v; v = v->next_iv)
6639 {
6640 struct induction *tv;
6641
6642 if (v->ignore || v->maybe_dead || v->mode != mode)
6643 continue;
6644
6645 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6646 if (! tv->ignore && ! tv->maybe_dead
6647 && rtx_equal_p (tv->mult_val, v->mult_val)
6648 && rtx_equal_p (tv->add_val, v->add_val)
6649 && tv->mode == mode)
6650 {
6651 /* If the giv V had the auto-inc address optimization applied
6652 to it, and INSN occurs between the giv insn and the biv
6653 insn, then we must adjust the value used here.
6654 This is rare, so we don't bother to do so. */
6655 if (v->auto_inc_opt
6656 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6657 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6658 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6659 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6660 continue;
6661
6662 if (! eliminate_p)
6663 return 1;
6664
6665 /* Replace biv with its giv's reduced reg. */
6666 XEXP (x, 1-arg_operand) = v->new_reg;
6667 /* Replace other operand with the other giv's
6668 reduced reg. */
6669 XEXP (x, arg_operand) = tv->new_reg;
6670 return 1;
6671 }
6672 }
6673 #endif
6674 }
6675
6676 /* If we get here, the biv can't be eliminated. */
6677 return 0;
6678
6679 case MEM:
6680 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6681 biv is used in it, since it will be replaced. */
6682 for (v = bl->giv; v; v = v->next_iv)
6683 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6684 return 1;
6685 break;
6686 }
6687
6688 /* See if any subexpression fails elimination. */
6689 fmt = GET_RTX_FORMAT (code);
6690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6691 {
6692 switch (fmt[i])
6693 {
6694 case 'e':
6695 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6696 eliminate_p, where))
6697 return 0;
6698 break;
6699
6700 case 'E':
6701 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6702 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6703 eliminate_p, where))
6704 return 0;
6705 break;
6706 }
6707 }
6708
6709 return 1;
6710 }
6711 \f
6712 /* Return nonzero if the last use of REG
6713 is in an insn following INSN in the same basic block. */
6714
6715 static int
6716 last_use_this_basic_block (reg, insn)
6717 rtx reg;
6718 rtx insn;
6719 {
6720 rtx n;
6721 for (n = insn;
6722 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6723 n = NEXT_INSN (n))
6724 {
6725 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6726 return 1;
6727 }
6728 return 0;
6729 }
6730 \f
6731 /* Called via `note_stores' to record the initial value of a biv. Here we
6732 just record the location of the set and process it later. */
6733
6734 static void
6735 record_initial (dest, set)
6736 rtx dest;
6737 rtx set;
6738 {
6739 struct iv_class *bl;
6740
6741 if (GET_CODE (dest) != REG
6742 || REGNO (dest) >= max_reg_before_loop
6743 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6744 return;
6745
6746 bl = reg_biv_class[REGNO (dest)];
6747
6748 /* If this is the first set found, record it. */
6749 if (bl->init_insn == 0)
6750 {
6751 bl->init_insn = note_insn;
6752 bl->init_set = set;
6753 }
6754 }
6755 \f
6756 /* If any of the registers in X are "old" and currently have a last use earlier
6757 than INSN, update them to have a last use of INSN. Their actual last use
6758 will be the previous insn but it will not have a valid uid_luid so we can't
6759 use it. */
6760
6761 static void
6762 update_reg_last_use (x, insn)
6763 rtx x;
6764 rtx insn;
6765 {
6766 /* Check for the case where INSN does not have a valid luid. In this case,
6767 there is no need to modify the regno_last_uid, as this can only happen
6768 when code is inserted after the loop_end to set a pseudo's final value,
6769 and hence this insn will never be the last use of x. */
6770 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6771 && INSN_UID (insn) < max_uid_for_loop
6772 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6773 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6774 else
6775 {
6776 register int i, j;
6777 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6778 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6779 {
6780 if (fmt[i] == 'e')
6781 update_reg_last_use (XEXP (x, i), insn);
6782 else if (fmt[i] == 'E')
6783 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6784 update_reg_last_use (XVECEXP (x, i, j), insn);
6785 }
6786 }
6787 }
6788 \f
6789 /* Given a jump insn JUMP, return the condition that will cause it to branch
6790 to its JUMP_LABEL. If the condition cannot be understood, or is an
6791 inequality floating-point comparison which needs to be reversed, 0 will
6792 be returned.
6793
6794 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6795 insn used in locating the condition was found. If a replacement test
6796 of the condition is desired, it should be placed in front of that
6797 insn and we will be sure that the inputs are still valid.
6798
6799 The condition will be returned in a canonical form to simplify testing by
6800 callers. Specifically:
6801
6802 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6803 (2) Both operands will be machine operands; (cc0) will have been replaced.
6804 (3) If an operand is a constant, it will be the second operand.
6805 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6806 for GE, GEU, and LEU. */
6807
6808 rtx
6809 get_condition (jump, earliest)
6810 rtx jump;
6811 rtx *earliest;
6812 {
6813 enum rtx_code code;
6814 rtx prev = jump;
6815 rtx set;
6816 rtx tem;
6817 rtx op0, op1;
6818 int reverse_code = 0;
6819 int did_reverse_condition = 0;
6820
6821 /* If this is not a standard conditional jump, we can't parse it. */
6822 if (GET_CODE (jump) != JUMP_INSN
6823 || ! condjump_p (jump) || simplejump_p (jump))
6824 return 0;
6825
6826 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6827 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6828 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6829
6830 if (earliest)
6831 *earliest = jump;
6832
6833 /* If this branches to JUMP_LABEL when the condition is false, reverse
6834 the condition. */
6835 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6836 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6837 code = reverse_condition (code), did_reverse_condition ^= 1;
6838
6839 /* If we are comparing a register with zero, see if the register is set
6840 in the previous insn to a COMPARE or a comparison operation. Perform
6841 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6842 in cse.c */
6843
6844 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6845 {
6846 /* Set non-zero when we find something of interest. */
6847 rtx x = 0;
6848
6849 #ifdef HAVE_cc0
6850 /* If comparison with cc0, import actual comparison from compare
6851 insn. */
6852 if (op0 == cc0_rtx)
6853 {
6854 if ((prev = prev_nonnote_insn (prev)) == 0
6855 || GET_CODE (prev) != INSN
6856 || (set = single_set (prev)) == 0
6857 || SET_DEST (set) != cc0_rtx)
6858 return 0;
6859
6860 op0 = SET_SRC (set);
6861 op1 = CONST0_RTX (GET_MODE (op0));
6862 if (earliest)
6863 *earliest = prev;
6864 }
6865 #endif
6866
6867 /* If this is a COMPARE, pick up the two things being compared. */
6868 if (GET_CODE (op0) == COMPARE)
6869 {
6870 op1 = XEXP (op0, 1);
6871 op0 = XEXP (op0, 0);
6872 continue;
6873 }
6874 else if (GET_CODE (op0) != REG)
6875 break;
6876
6877 /* Go back to the previous insn. Stop if it is not an INSN. We also
6878 stop if it isn't a single set or if it has a REG_INC note because
6879 we don't want to bother dealing with it. */
6880
6881 if ((prev = prev_nonnote_insn (prev)) == 0
6882 || GET_CODE (prev) != INSN
6883 || FIND_REG_INC_NOTE (prev, 0)
6884 || (set = single_set (prev)) == 0)
6885 break;
6886
6887 /* If this is setting OP0, get what it sets it to if it looks
6888 relevant. */
6889 if (rtx_equal_p (SET_DEST (set), op0))
6890 {
6891 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6892
6893 if ((GET_CODE (SET_SRC (set)) == COMPARE
6894 || (((code == NE
6895 || (code == LT
6896 && GET_MODE_CLASS (inner_mode) == MODE_INT
6897 && (GET_MODE_BITSIZE (inner_mode)
6898 <= HOST_BITS_PER_WIDE_INT)
6899 && (STORE_FLAG_VALUE
6900 & ((HOST_WIDE_INT) 1
6901 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6902 #ifdef FLOAT_STORE_FLAG_VALUE
6903 || (code == LT
6904 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6905 && FLOAT_STORE_FLAG_VALUE < 0)
6906 #endif
6907 ))
6908 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6909 x = SET_SRC (set);
6910 else if (((code == EQ
6911 || (code == GE
6912 && (GET_MODE_BITSIZE (inner_mode)
6913 <= HOST_BITS_PER_WIDE_INT)
6914 && GET_MODE_CLASS (inner_mode) == MODE_INT
6915 && (STORE_FLAG_VALUE
6916 & ((HOST_WIDE_INT) 1
6917 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6918 #ifdef FLOAT_STORE_FLAG_VALUE
6919 || (code == GE
6920 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6921 && FLOAT_STORE_FLAG_VALUE < 0)
6922 #endif
6923 ))
6924 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6925 {
6926 /* We might have reversed a LT to get a GE here. But this wasn't
6927 actually the comparison of data, so we don't flag that we
6928 have had to reverse the condition. */
6929 did_reverse_condition ^= 1;
6930 reverse_code = 1;
6931 x = SET_SRC (set);
6932 }
6933 else
6934 break;
6935 }
6936
6937 else if (reg_set_p (op0, prev))
6938 /* If this sets OP0, but not directly, we have to give up. */
6939 break;
6940
6941 if (x)
6942 {
6943 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6944 code = GET_CODE (x);
6945 if (reverse_code)
6946 {
6947 code = reverse_condition (code);
6948 did_reverse_condition ^= 1;
6949 reverse_code = 0;
6950 }
6951
6952 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6953 if (earliest)
6954 *earliest = prev;
6955 }
6956 }
6957
6958 /* If constant is first, put it last. */
6959 if (CONSTANT_P (op0))
6960 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6961
6962 /* If OP0 is the result of a comparison, we weren't able to find what
6963 was really being compared, so fail. */
6964 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6965 return 0;
6966
6967 /* Canonicalize any ordered comparison with integers involving equality
6968 if we can do computations in the relevant mode and we do not
6969 overflow. */
6970
6971 if (GET_CODE (op1) == CONST_INT
6972 && GET_MODE (op0) != VOIDmode
6973 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6974 {
6975 HOST_WIDE_INT const_val = INTVAL (op1);
6976 unsigned HOST_WIDE_INT uconst_val = const_val;
6977 unsigned HOST_WIDE_INT max_val
6978 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6979
6980 switch (code)
6981 {
6982 case LE:
6983 if (const_val != max_val >> 1)
6984 code = LT, op1 = GEN_INT (const_val + 1);
6985 break;
6986
6987 case GE:
6988 if (const_val
6989 != (((HOST_WIDE_INT) 1
6990 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6991 code = GT, op1 = GEN_INT (const_val - 1);
6992 break;
6993
6994 case LEU:
6995 if (uconst_val != max_val)
6996 code = LTU, op1 = GEN_INT (uconst_val + 1);
6997 break;
6998
6999 case GEU:
7000 if (uconst_val != 0)
7001 code = GTU, op1 = GEN_INT (uconst_val - 1);
7002 break;
7003 }
7004 }
7005
7006 /* If this was floating-point and we reversed anything other than an
7007 EQ or NE, return zero. */
7008 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7009 && did_reverse_condition && code != NE && code != EQ
7010 && ! flag_fast_math
7011 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7012 return 0;
7013
7014 #ifdef HAVE_cc0
7015 /* Never return CC0; return zero instead. */
7016 if (op0 == cc0_rtx)
7017 return 0;
7018 #endif
7019
7020 return gen_rtx (code, VOIDmode, op0, op1);
7021 }
7022
7023 /* Similar to above routine, except that we also put an invariant last
7024 unless both operands are invariants. */
7025
7026 rtx
7027 get_condition_for_loop (x)
7028 rtx x;
7029 {
7030 rtx comparison = get_condition (x, NULL_PTR);
7031
7032 if (comparison == 0
7033 || ! invariant_p (XEXP (comparison, 0))
7034 || invariant_p (XEXP (comparison, 1)))
7035 return comparison;
7036
7037 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
7038 XEXP (comparison, 1), XEXP (comparison, 0));
7039 }
7040
7041 #ifdef HAIFA
7042 /* Analyze a loop in order to instrument it with the use of count register.
7043 loop_start and loop_end are the first and last insns of the loop.
7044 This function works in cooperation with insert_bct ().
7045 loop_can_insert_bct[loop_num] is set according to whether the optimization
7046 is applicable to the loop. When it is applicable, the following variables
7047 are also set:
7048 loop_start_value[loop_num]
7049 loop_comparison_value[loop_num]
7050 loop_increment[loop_num]
7051 loop_comparison_code[loop_num] */
7052
7053 static
7054 void analyze_loop_iterations (loop_start, loop_end)
7055 rtx loop_start, loop_end;
7056 {
7057 rtx comparison, comparison_value;
7058 rtx iteration_var, initial_value, increment;
7059 enum rtx_code comparison_code;
7060
7061 rtx last_loop_insn;
7062 rtx insn;
7063 int i;
7064
7065 /* loop_variable mode */
7066 enum machine_mode original_mode;
7067
7068 /* find the number of the loop */
7069 int loop_num = loop_number (loop_start, loop_end);
7070
7071 /* we change our mind only when we are sure that loop will be instrumented */
7072 loop_can_insert_bct[loop_num] = 0;
7073
7074 /* is the optimization suppressed. */
7075 if ( !flag_branch_on_count_reg )
7076 return;
7077
7078 /* make sure that count-reg is not in use */
7079 if (loop_used_count_register[loop_num]){
7080 if (loop_dump_stream)
7081 fprintf (loop_dump_stream,
7082 "analyze_loop_iterations %d: BCT instrumentation failed: count register already in use\n",
7083 loop_num);
7084 return;
7085 }
7086
7087 /* make sure that the function has no indirect jumps. */
7088 if (indirect_jump_in_function){
7089 if (loop_dump_stream)
7090 fprintf (loop_dump_stream,
7091 "analyze_loop_iterations %d: BCT instrumentation failed: indirect jump in function\n",
7092 loop_num);
7093 return;
7094 }
7095
7096 /* make sure that the last loop insn is a conditional jump */
7097 last_loop_insn = PREV_INSN (loop_end);
7098 if (GET_CODE (last_loop_insn) != JUMP_INSN || !condjump_p (last_loop_insn)) {
7099 if (loop_dump_stream)
7100 fprintf (loop_dump_stream,
7101 "analyze_loop_iterations %d: BCT instrumentation failed: invalid jump at loop end\n",
7102 loop_num);
7103 return;
7104 }
7105
7106 /* First find the iteration variable. If the last insn is a conditional
7107 branch, and the insn preceding it tests a register value, make that
7108 register the iteration variable. */
7109
7110 /* We used to use prev_nonnote_insn here, but that fails because it might
7111 accidentally get the branch for a contained loop if the branch for this
7112 loop was deleted. We can only trust branches immediately before the
7113 loop_end. */
7114
7115 comparison = get_condition_for_loop (last_loop_insn);
7116 /* ??? Get_condition may switch position of induction variable and
7117 invariant register when it canonicalizes the comparison. */
7118
7119 if (comparison == 0) {
7120 if (loop_dump_stream)
7121 fprintf (loop_dump_stream,
7122 "analyze_loop_iterations %d: BCT instrumentation failed: comparison not found\n",
7123 loop_num);
7124 return;
7125 }
7126
7127 comparison_code = GET_CODE (comparison);
7128 iteration_var = XEXP (comparison, 0);
7129 comparison_value = XEXP (comparison, 1);
7130
7131 original_mode = GET_MODE (iteration_var);
7132 if (GET_MODE_CLASS (original_mode) != MODE_INT
7133 || GET_MODE_SIZE (original_mode) != UNITS_PER_WORD) {
7134 if (loop_dump_stream)
7135 fprintf (loop_dump_stream,
7136 "analyze_loop_iterations %d: BCT Instrumentation failed: loop variable not integer\n",
7137 loop_num);
7138 return;
7139 }
7140
7141 /* get info about loop bounds and increment */
7142 iteration_info (iteration_var, &initial_value, &increment,
7143 loop_start, loop_end);
7144
7145 /* make sure that all required loop data were found */
7146 if (!(initial_value && increment && comparison_value
7147 && invariant_p (comparison_value) && invariant_p (increment)
7148 && ! indirect_jump_in_function))
7149 {
7150 if (loop_dump_stream) {
7151 fprintf (loop_dump_stream,
7152 "analyze_loop_iterations %d: BCT instrumentation failed because of wrong loop: ", loop_num);
7153 if (!(initial_value && increment && comparison_value)) {
7154 fprintf (loop_dump_stream, "\tbounds not available: ");
7155 if ( ! initial_value )
7156 fprintf (loop_dump_stream, "initial ");
7157 if ( ! increment )
7158 fprintf (loop_dump_stream, "increment ");
7159 if ( ! comparison_value )
7160 fprintf (loop_dump_stream, "comparison ");
7161 fprintf (loop_dump_stream, "\n");
7162 }
7163 if (!invariant_p (comparison_value) || !invariant_p (increment))
7164 fprintf (loop_dump_stream, "\tloop bounds not invariant\n");
7165 }
7166 return;
7167 }
7168
7169 /* make sure that the increment is constant */
7170 if (GET_CODE (increment) != CONST_INT) {
7171 if (loop_dump_stream)
7172 fprintf (loop_dump_stream,
7173 "analyze_loop_iterations %d: instrumentation failed: not arithmetic loop\n",
7174 loop_num);
7175 return;
7176 }
7177
7178 /* make sure that the loop contains neither function call, nor jump on table.
7179 (the count register might be altered by the called function, and might
7180 be used for a branch on table). */
7181 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn)) {
7182 if (GET_CODE (insn) == CALL_INSN){
7183 if (loop_dump_stream)
7184 fprintf (loop_dump_stream,
7185 "analyze_loop_iterations %d: BCT instrumentation failed: function call in the loop\n",
7186 loop_num);
7187 return;
7188 }
7189
7190 if (GET_CODE (insn) == JUMP_INSN
7191 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
7192 || GET_CODE (PATTERN (insn)) == ADDR_VEC)){
7193 if (loop_dump_stream)
7194 fprintf (loop_dump_stream,
7195 "analyze_loop_iterations %d: BCT instrumentation failed: computed branch in the loop\n",
7196 loop_num);
7197 return;
7198 }
7199 }
7200
7201 /* At this point, we are sure that the loop can be instrumented with BCT.
7202 Some of the loops, however, will not be instrumented - the final decision
7203 is taken by insert_bct () */
7204 if (loop_dump_stream)
7205 fprintf (loop_dump_stream,
7206 "analyze_loop_iterations: loop (luid =%d) can be BCT instrumented.\n",
7207 loop_num);
7208
7209 /* mark all enclosing loops that they cannot use count register */
7210 /* ???: In fact, since insert_bct may decide not to instrument this loop,
7211 marking here may prevent instrumenting an enclosing loop that could
7212 actually be instrumented. But since this is rare, it is safer to mark
7213 here in case the order of calling (analyze/insert)_bct would be changed. */
7214 for (i=loop_num; i != -1; i = loop_outer_loop[i])
7215 loop_used_count_register[i] = 1;
7216
7217 /* Set data structures which will be used by the instrumentation phase */
7218 loop_start_value[loop_num] = initial_value;
7219 loop_comparison_value[loop_num] = comparison_value;
7220 loop_increment[loop_num] = increment;
7221 loop_comparison_code[loop_num] = comparison_code;
7222 loop_can_insert_bct[loop_num] = 1;
7223 }
7224
7225
7226 /* instrument loop for insertion of bct instruction. We distinguish between
7227 loops with compile-time bounds, to those with run-time bounds. The loop
7228 behaviour is analized according to the following characteristics/variables:
7229 ; Input variables:
7230 ; comparison-value: the value to which the iteration counter is compared.
7231 ; initial-value: iteration-counter initial value.
7232 ; increment: iteration-counter increment.
7233 ; Computed variables:
7234 ; increment-direction: the sign of the increment.
7235 ; compare-direction: '1' for GT, GTE, '-1' for LT, LTE, '0' for NE.
7236 ; range-direction: sign (comparison-value - initial-value)
7237 We give up on the following cases:
7238 ; loop variable overflow.
7239 ; run-time loop bounds with comparison code NE.
7240 */
7241
7242 static void
7243 insert_bct (loop_start, loop_end)
7244 rtx loop_start, loop_end;
7245 {
7246 rtx initial_value, comparison_value, increment;
7247 enum rtx_code comparison_code;
7248
7249 int increment_direction, compare_direction;
7250 int unsigned_p = 0;
7251
7252 /* if the loop condition is <= or >=, the number of iteration
7253 is 1 more than the range of the bounds of the loop */
7254 int add_iteration = 0;
7255
7256 /* the only machine mode we work with - is the integer of the size that the
7257 machine has */
7258 enum machine_mode loop_var_mode = SImode;
7259
7260 int loop_num = loop_number (loop_start, loop_end);
7261
7262 /* get loop-variables. No need to check that these are valid - already
7263 checked in analyze_loop_iterations (). */
7264 comparison_code = loop_comparison_code[loop_num];
7265 initial_value = loop_start_value[loop_num];
7266 comparison_value = loop_comparison_value[loop_num];
7267 increment = loop_increment[loop_num];
7268
7269 /* check analyze_loop_iterations decision for this loop. */
7270 if (! loop_can_insert_bct[loop_num]){
7271 if (loop_dump_stream)
7272 fprintf (loop_dump_stream,
7273 "insert_bct: [%d] - was decided not to instrument by analyze_loop_iterations ()\n",
7274 loop_num);
7275 return;
7276 }
7277
7278 /* It's impossible to instrument a competely unrolled loop. */
7279 if (loop_unroll_factor [loop_num] == -1)
7280 return;
7281
7282 /* make sure that the last loop insn is a conditional jump .
7283 This check is repeated from analyze_loop_iterations (),
7284 because unrolling might have changed that. */
7285 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7286 || !condjump_p (PREV_INSN (loop_end))) {
7287 if (loop_dump_stream)
7288 fprintf (loop_dump_stream,
7289 "insert_bct: not instrumenting BCT because of invalid branch\n");
7290 return;
7291 }
7292
7293 /* fix increment in case loop was unrolled. */
7294 if (loop_unroll_factor [loop_num] > 1)
7295 increment = GEN_INT ( INTVAL (increment) * loop_unroll_factor [loop_num] );
7296
7297 /* determine properties and directions of the loop */
7298 increment_direction = (INTVAL (increment) > 0) ? 1:-1;
7299 switch ( comparison_code ) {
7300 case LEU:
7301 unsigned_p = 1;
7302 /* fallthrough */
7303 case LE:
7304 compare_direction = 1;
7305 add_iteration = 1;
7306 break;
7307 case GEU:
7308 unsigned_p = 1;
7309 /* fallthrough */
7310 case GE:
7311 compare_direction = -1;
7312 add_iteration = 1;
7313 break;
7314 case EQ:
7315 /* in this case we cannot know the number of iterations */
7316 if (loop_dump_stream)
7317 fprintf (loop_dump_stream,
7318 "insert_bct: %d: loop cannot be instrumented: == in condition\n",
7319 loop_num);
7320 return;
7321 case LTU:
7322 unsigned_p = 1;
7323 /* fallthrough */
7324 case LT:
7325 compare_direction = 1;
7326 break;
7327 case GTU:
7328 unsigned_p = 1;
7329 /* fallthrough */
7330 case GT:
7331 compare_direction = -1;
7332 break;
7333 case NE:
7334 compare_direction = 0;
7335 break;
7336 default:
7337 abort ();
7338 }
7339
7340
7341 /* make sure that the loop does not end by an overflow */
7342 if (compare_direction != increment_direction) {
7343 if (loop_dump_stream)
7344 fprintf (loop_dump_stream,
7345 "insert_bct: %d: loop cannot be instrumented: terminated by overflow\n",
7346 loop_num);
7347 return;
7348 }
7349
7350 /* try to instrument the loop. */
7351
7352 /* Handle the simpler case, where the bounds are known at compile time. */
7353 if (GET_CODE (initial_value) == CONST_INT && GET_CODE (comparison_value) == CONST_INT)
7354 {
7355 int n_iterations;
7356 int increment_value_abs = INTVAL (increment) * increment_direction;
7357
7358 /* check the relation between compare-val and initial-val */
7359 int difference = INTVAL (comparison_value) - INTVAL (initial_value);
7360 int range_direction = (difference > 0) ? 1 : -1;
7361
7362 /* make sure the loop executes enough iterations to gain from BCT */
7363 if (difference > -3 && difference < 3) {
7364 if (loop_dump_stream)
7365 fprintf (loop_dump_stream,
7366 "insert_bct: loop %d not BCT instrumented: too small iteration count.\n",
7367 loop_num);
7368 return;
7369 }
7370
7371 /* make sure that the loop executes at least once */
7372 if ((range_direction == 1 && compare_direction == -1)
7373 || (range_direction == -1 && compare_direction == 1))
7374 {
7375 if (loop_dump_stream)
7376 fprintf (loop_dump_stream,
7377 "insert_bct: loop %d: does not iterate even once. Not instrumenting.\n",
7378 loop_num);
7379 return;
7380 }
7381
7382 /* make sure that the loop does not end by an overflow (in compile time
7383 bounds we must have an additional check for overflow, because here
7384 we also support the compare code of 'NE'. */
7385 if (comparison_code == NE
7386 && increment_direction != range_direction) {
7387 if (loop_dump_stream)
7388 fprintf (loop_dump_stream,
7389 "insert_bct (compile time bounds): %d: loop not instrumented: terminated by overflow\n",
7390 loop_num);
7391 return;
7392 }
7393
7394 /* Determine the number of iterations by:
7395 ;
7396 ; compare-val - initial-val + (increment -1) + additional-iteration
7397 ; num_iterations = -----------------------------------------------------------------
7398 ; increment
7399 */
7400 difference = (range_direction > 0) ? difference : -difference;
7401 #if 0
7402 fprintf (stderr, "difference is: %d\n", difference); /* @*/
7403 fprintf (stderr, "increment_value_abs is: %d\n", increment_value_abs); /* @*/
7404 fprintf (stderr, "add_iteration is: %d\n", add_iteration); /* @*/
7405 fprintf (stderr, "INTVAL (comparison_value) is: %d\n", INTVAL (comparison_value)); /* @*/
7406 fprintf (stderr, "INTVAL (initial_value) is: %d\n", INTVAL (initial_value)); /* @*/
7407 #endif
7408
7409 if (increment_value_abs == 0) {
7410 fprintf (stderr, "insert_bct: error: increment == 0 !!!\n");
7411 abort ();
7412 }
7413 n_iterations = (difference + increment_value_abs - 1 + add_iteration)
7414 / increment_value_abs;
7415
7416 #if 0
7417 fprintf (stderr, "number of iterations is: %d\n", n_iterations); /* @*/
7418 #endif
7419 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
7420
7421 /* Done with this loop. */
7422 return;
7423 }
7424
7425 /* Handle the more complex case, that the bounds are NOT known at compile time. */
7426 /* In this case we generate run_time calculation of the number of iterations */
7427
7428 /* With runtime bounds, if the compare is of the form '!=' we give up */
7429 if (comparison_code == NE) {
7430 if (loop_dump_stream)
7431 fprintf (loop_dump_stream,
7432 "insert_bct: fail for loop %d: runtime bounds with != comparison\n",
7433 loop_num);
7434 return;
7435 }
7436
7437 else {
7438 /* We rely on the existence of run-time guard to ensure that the
7439 loop executes at least once. */
7440 rtx sequence;
7441 rtx iterations_num_reg;
7442
7443 int increment_value_abs = INTVAL (increment) * increment_direction;
7444
7445 /* make sure that the increment is a power of two, otherwise (an
7446 expensive) divide is needed. */
7447 if (exact_log2 (increment_value_abs) == -1)
7448 {
7449 if (loop_dump_stream)
7450 fprintf (loop_dump_stream,
7451 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
7452 return;
7453 }
7454
7455 /* compute the number of iterations */
7456 start_sequence ();
7457 {
7458 /* CYGNUS LOCAL: HAIFA bug fix */
7459 rtx temp_reg;
7460
7461 /* Again, the number of iterations is calculated by:
7462 ;
7463 ; compare-val - initial-val + (increment -1) + additional-iteration
7464 ; num_iterations = -----------------------------------------------------------------
7465 ; increment
7466 */
7467 /* ??? Do we have to call copy_rtx here before passing rtx to
7468 expand_binop? */
7469 if (compare_direction > 0) {
7470 /* <, <= :the loop variable is increasing */
7471 temp_reg = expand_binop (loop_var_mode, sub_optab, comparison_value,
7472 initial_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7473 }
7474 else {
7475 temp_reg = expand_binop (loop_var_mode, sub_optab, initial_value,
7476 comparison_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7477 }
7478
7479 if (increment_value_abs - 1 + add_iteration != 0)
7480 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
7481 GEN_INT (increment_value_abs - 1 + add_iteration),
7482 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7483
7484 if (increment_value_abs != 1)
7485 {
7486 /* ??? This will generate an expensive divide instruction for
7487 most targets. The original authors apparently expected this
7488 to be a shift, since they test for power-of-2 divisors above,
7489 but just naively generating a divide instruction will not give
7490 a shift. It happens to work for the PowerPC target because
7491 the rs6000.md file has a divide pattern that emits shifts.
7492 It will probably not work for any other target. */
7493 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
7494 temp_reg,
7495 GEN_INT (increment_value_abs),
7496 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7497 }
7498 else
7499 iterations_num_reg = temp_reg;
7500 /* END CYGNUS LOCAL: HAIFA bug fix */
7501 }
7502 sequence = gen_sequence ();
7503 end_sequence ();
7504 emit_insn_before (sequence, loop_start);
7505 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
7506 }
7507 }
7508
7509 /* instrument loop by inserting a bct in it. This is done in the following way:
7510 1. A new register is created and assigned the hard register number of the count
7511 register.
7512 2. In the head of the loop the new variable is initialized by the value passed in the
7513 loop_num_iterations parameter.
7514 3. At the end of the loop, comparison of the register with 0 is generated.
7515 The created comparison follows the pattern defined for the
7516 decrement_and_branch_on_count insn, so this insn will be generated in assembly
7517 generation phase.
7518 4. The compare&branch on the old variable is deleted. So, if the loop-variable was
7519 not used elsewhere, it will be eliminated by data-flow analisys. */
7520
7521 static void
7522 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
7523 rtx loop_start, loop_end;
7524 rtx loop_num_iterations;
7525 {
7526 rtx temp_reg1, temp_reg2;
7527 rtx start_label;
7528
7529 rtx sequence;
7530 enum machine_mode loop_var_mode = SImode;
7531
7532 #ifdef HAVE_decrement_and_branch_on_count
7533 if (HAVE_decrement_and_branch_on_count)
7534 {
7535 if (loop_dump_stream)
7536 fprintf (loop_dump_stream, "Loop: Inserting BCT\n");
7537
7538 /* eliminate the check on the old variable */
7539 delete_insn (PREV_INSN (loop_end));
7540 delete_insn (PREV_INSN (loop_end));
7541
7542 /* insert the label which will delimit the start of the loop */
7543 start_label = gen_label_rtx ();
7544 emit_label_after (start_label, loop_start);
7545
7546 /* insert initialization of the count register into the loop header */
7547 start_sequence ();
7548 temp_reg1 = gen_reg_rtx (loop_var_mode);
7549 emit_insn (gen_move_insn (temp_reg1, loop_num_iterations));
7550
7551 /* this will be count register */
7552 temp_reg2 = gen_rtx (REG, loop_var_mode, COUNT_REGISTER_REGNUM);
7553 /* we have to move the value to the count register from an GPR
7554 because rtx pointed to by loop_num_iterations could contain
7555 expression which cannot be moved into count register */
7556 emit_insn (gen_move_insn (temp_reg2, temp_reg1));
7557
7558 sequence = gen_sequence ();
7559 end_sequence ();
7560 emit_insn_after (sequence, loop_start);
7561
7562 /* insert new comparison on the count register instead of the
7563 old one, generating the needed BCT pattern (that will be
7564 later recognized by assembly generation phase). */
7565 emit_jump_insn_before (gen_decrement_and_branch_on_count (temp_reg2, start_label),
7566 loop_end);
7567 LABEL_NUSES (start_label)++;
7568 }
7569
7570 #endif /* HAVE_decrement_and_branch_on_count */
7571 }
7572
7573 /* calculate the uid of the given loop */
7574 int
7575 loop_number (loop_start, loop_end)
7576 rtx loop_start, loop_end;
7577 {
7578 int loop_num = -1;
7579
7580 /* assume that this insn contains the LOOP_START
7581 note, so it will not be changed by the loop unrolling */
7582 loop_num = uid_loop_num[INSN_UID (loop_start)];
7583 /* sanity check - should never happen */
7584 if (loop_num == -1)
7585 abort ();
7586
7587 return loop_num;
7588 }
7589 #endif /* HAIFA */
7590
7591 /* Scan the function and determine whether it has indirect (computed) jumps.
7592
7593 This is taken mostly from flow.c; similar code exists elsewhere
7594 in the compiler. It may be useful to put this into rtlanal.c. */
7595 static int
7596 indirect_jump_in_function_p (start)
7597 rtx start;
7598 {
7599 rtx insn;
7600 int is_indirect_jump = 0;
7601
7602 for (insn = start; insn; insn = NEXT_INSN (insn))
7603 if (computed_jump_p (insn))
7604 return 1;
7605 }
7606 /* END CYGNUS LOCAL haifa */