alias.c: Change all uses of gen_rtx(FOO...) to gen_rtx_FOO...
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include <stdio.h>
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 #ifdef HAIFA
85 /* The main output of analyze_loop_iterations is placed here */
86
87 int *loop_can_insert_bct;
88
89 /* For each loop, determines whether some of its inner loops has used
90 count register */
91
92 int *loop_used_count_register;
93
94 /* loop parameters for arithmetic loops. These loops have a loop variable
95 which is initialized to loop_start_value, incremented in each iteration
96 by "loop_increment". At the end of the iteration the loop variable is
97 compared to the loop_comparison_value (using loop_comparison_code). */
98
99 rtx *loop_increment;
100 rtx *loop_comparison_value;
101 rtx *loop_start_value;
102 enum rtx_code *loop_comparison_code;
103 #endif /* HAIFA */
104
105 /* For each loop, keep track of its unrolling factor.
106 Potential values:
107 0: unrolled
108 1: not unrolled.
109 -1: completely unrolled
110 >0: holds the unroll exact factor. */
111 int *loop_unroll_factor;
112
113 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
114 really a loop (an insn outside the loop branches into it). */
115
116 static char *loop_invalid;
117
118 /* Indexed by loop number, links together all LABEL_REFs which refer to
119 code labels outside the loop. Used by routines that need to know all
120 loop exits, such as final_biv_value and final_giv_value.
121
122 This does not include loop exits due to return instructions. This is
123 because all bivs and givs are pseudos, and hence must be dead after a
124 return, so the presense of a return does not affect any of the
125 optimizations that use this info. It is simpler to just not include return
126 instructions on this list. */
127
128 rtx *loop_number_exit_labels;
129
130 /* Indexed by loop number, counts the number of LABEL_REFs on
131 loop_number_exit_labels for this loop and all loops nested inside it. */
132
133 int *loop_number_exit_count;
134
135 /* Holds the number of loop iterations. It is zero if the number could not be
136 calculated. Must be unsigned since the number of iterations can
137 be as high as 2^wordsize-1. For loops with a wider iterator, this number
138 will will be zero if the number of loop iterations is too large for an
139 unsigned integer to hold. */
140
141 unsigned HOST_WIDE_INT loop_n_iterations;
142
143 /* Nonzero if there is a subroutine call in the current loop. */
144
145 static int loop_has_call;
146
147 /* Nonzero if there is a volatile memory reference in the current
148 loop. */
149
150 static int loop_has_volatile;
151
152 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
153 current loop. A continue statement will generate a branch to
154 NEXT_INSN (loop_continue). */
155
156 static rtx loop_continue;
157
158 /* Indexed by register number, contains the number of times the reg
159 is set during the loop being scanned.
160 During code motion, a negative value indicates a reg that has been
161 made a candidate; in particular -2 means that it is an candidate that
162 we know is equal to a constant and -1 means that it is an candidate
163 not known equal to a constant.
164 After code motion, regs moved have 0 (which is accurate now)
165 while the failed candidates have the original number of times set.
166
167 Therefore, at all times, == 0 indicates an invariant register;
168 < 0 a conditionally invariant one. */
169
170 static int *n_times_set;
171
172 /* Original value of n_times_set; same except that this value
173 is not set negative for a reg whose sets have been made candidates
174 and not set to 0 for a reg that is moved. */
175
176 static int *n_times_used;
177
178 /* Index by register number, 1 indicates that the register
179 cannot be moved or strength reduced. */
180
181 static char *may_not_optimize;
182
183 /* Nonzero means reg N has already been moved out of one loop.
184 This reduces the desire to move it out of another. */
185
186 static char *moved_once;
187
188 /* Array of MEMs that are stored in this loop. If there are too many to fit
189 here, we just turn on unknown_address_altered. */
190
191 #define NUM_STORES 30
192 static rtx loop_store_mems[NUM_STORES];
193
194 /* Index of first available slot in above array. */
195 static int loop_store_mems_idx;
196
197 /* Nonzero if we don't know what MEMs were changed in the current loop.
198 This happens if the loop contains a call (in which case `loop_has_call'
199 will also be set) or if we store into more than NUM_STORES MEMs. */
200
201 static int unknown_address_altered;
202
203 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
204 static int num_movables;
205
206 /* Count of memory write instructions discovered in the loop. */
207 static int num_mem_sets;
208
209 /* Number of loops contained within the current one, including itself. */
210 static int loops_enclosed;
211
212 /* Bound on pseudo register number before loop optimization.
213 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
214 int max_reg_before_loop;
215
216 /* This obstack is used in product_cheap_p to allocate its rtl. It
217 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
218 If we used the same obstack that it did, we would be deallocating
219 that array. */
220
221 static struct obstack temp_obstack;
222
223 /* This is where the pointer to the obstack being used for RTL is stored. */
224
225 extern struct obstack *rtl_obstack;
226
227 #define obstack_chunk_alloc xmalloc
228 #define obstack_chunk_free free
229
230 extern char *oballoc ();
231 \f
232 /* During the analysis of a loop, a chain of `struct movable's
233 is made to record all the movable insns found.
234 Then the entire chain can be scanned to decide which to move. */
235
236 struct movable
237 {
238 rtx insn; /* A movable insn */
239 rtx set_src; /* The expression this reg is set from. */
240 rtx set_dest; /* The destination of this SET. */
241 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
242 of any registers used within the LIBCALL. */
243 int consec; /* Number of consecutive following insns
244 that must be moved with this one. */
245 int regno; /* The register it sets */
246 short lifetime; /* lifetime of that register;
247 may be adjusted when matching movables
248 that load the same value are found. */
249 short savings; /* Number of insns we can move for this reg,
250 including other movables that force this
251 or match this one. */
252 unsigned int cond : 1; /* 1 if only conditionally movable */
253 unsigned int force : 1; /* 1 means MUST move this insn */
254 unsigned int global : 1; /* 1 means reg is live outside this loop */
255 /* If PARTIAL is 1, GLOBAL means something different:
256 that the reg is live outside the range from where it is set
257 to the following label. */
258 unsigned int done : 1; /* 1 inhibits further processing of this */
259
260 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
261 In particular, moving it does not make it
262 invariant. */
263 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
264 load SRC, rather than copying INSN. */
265 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
266 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
267 that we should avoid changing when clearing
268 the rest of the reg. */
269 struct movable *match; /* First entry for same value */
270 struct movable *forces; /* An insn that must be moved if this is */
271 struct movable *next;
272 };
273
274 FILE *loop_dump_stream;
275
276 /* Forward declarations. */
277
278 static void find_and_verify_loops ();
279 static void mark_loop_jump ();
280 static void prescan_loop ();
281 static int reg_in_basic_block_p ();
282 static int consec_sets_invariant_p ();
283 static rtx libcall_other_reg ();
284 static int labels_in_range_p ();
285 static void count_loop_regs_set ();
286 static void note_addr_stored ();
287 static int loop_reg_used_before_p ();
288 static void scan_loop ();
289 #if 0
290 static void replace_call_address ();
291 #endif
292 static rtx skip_consec_insns ();
293 static int libcall_benefit ();
294 static void ignore_some_movables ();
295 static void force_movables ();
296 static void combine_movables ();
297 static int rtx_equal_for_loop_p ();
298 static void move_movables ();
299 static void strength_reduce ();
300 static int valid_initial_value_p ();
301 static void find_mem_givs ();
302 static void record_biv ();
303 static void check_final_value ();
304 static void record_giv ();
305 static void update_giv_derive ();
306 static int basic_induction_var ();
307 static rtx simplify_giv_expr ();
308 static int general_induction_var ();
309 static int consec_sets_giv ();
310 static int check_dbra_loop ();
311 static rtx express_from ();
312 static int combine_givs_p ();
313 static void combine_givs ();
314 static int product_cheap_p ();
315 static int maybe_eliminate_biv ();
316 static int maybe_eliminate_biv_1 ();
317 static int last_use_this_basic_block ();
318 static void record_initial ();
319 static void update_reg_last_use ();
320
321 #ifdef HAIFA
322 /* This is extern from unroll.c */
323 void iteration_info ();
324
325 /* Two main functions for implementing bct:
326 first - to be called before loop unrolling, and the second - after */
327 static void analyze_loop_iterations ();
328 static void insert_bct ();
329
330 /* Auxiliary function that inserts the bct pattern into the loop */
331 static void instrument_loop_bct ();
332 #endif /* HAIFA */
333
334 /* Indirect_jump_in_function is computed once per function. */
335 int indirect_jump_in_function = 0;
336 static int indirect_jump_in_function_p ();
337
338 \f
339 /* Relative gain of eliminating various kinds of operations. */
340 int add_cost;
341 #if 0
342 int shift_cost;
343 int mult_cost;
344 #endif
345
346 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
347 copy the value of the strength reduced giv to its original register. */
348 int copy_cost;
349
350 void
351 init_loop ()
352 {
353 char *free_point = (char *) oballoc (1);
354 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
355
356 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
357
358 /* We multiply by 2 to reconcile the difference in scale between
359 these two ways of computing costs. Otherwise the cost of a copy
360 will be far less than the cost of an add. */
361
362 copy_cost = 2 * 2;
363
364 /* Free the objects we just allocated. */
365 obfree (free_point);
366
367 /* Initialize the obstack used for rtl in product_cheap_p. */
368 gcc_obstack_init (&temp_obstack);
369 }
370 \f
371 /* Entry point of this file. Perform loop optimization
372 on the current function. F is the first insn of the function
373 and DUMPFILE is a stream for output of a trace of actions taken
374 (or 0 if none should be output). */
375
376 void
377 loop_optimize (f, dumpfile, unroll_p)
378 /* f is the first instruction of a chain of insns for one function */
379 rtx f;
380 FILE *dumpfile;
381 int unroll_p;
382 {
383 register rtx insn;
384 register int i;
385 rtx last_insn;
386
387 loop_dump_stream = dumpfile;
388
389 init_recog_no_volatile ();
390 init_alias_analysis ();
391
392 max_reg_before_loop = max_reg_num ();
393
394 moved_once = (char *) alloca (max_reg_before_loop);
395 bzero (moved_once, max_reg_before_loop);
396
397 regs_may_share = 0;
398
399 /* Count the number of loops. */
400
401 max_loop_num = 0;
402 for (insn = f; insn; insn = NEXT_INSN (insn))
403 {
404 if (GET_CODE (insn) == NOTE
405 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
406 max_loop_num++;
407 }
408
409 /* Don't waste time if no loops. */
410 if (max_loop_num == 0)
411 return;
412
413 /* Get size to use for tables indexed by uids.
414 Leave some space for labels allocated by find_and_verify_loops. */
415 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
416
417 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
418 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
419
420 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
421 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
422
423 /* Allocate tables for recording each loop. We set each entry, so they need
424 not be zeroed. */
425 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
426 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
427 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
428 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
429 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
430 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
431
432 /* This is initialized by the unrolling code, so we go ahead
433 and clear them just in case we are not performing loop
434 unrolling. */
435 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
436 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
437
438 #ifdef HAIFA
439 /* Allocate for BCT optimization */
440 loop_can_insert_bct = (int *) alloca (max_loop_num * sizeof (int));
441 bzero ((char *) loop_can_insert_bct, max_loop_num * sizeof (int));
442
443 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
444 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
445
446 loop_increment = (rtx *) alloca (max_loop_num * sizeof (rtx));
447 loop_comparison_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
448 loop_start_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
449 bzero ((char *) loop_increment, max_loop_num * sizeof (rtx));
450 bzero ((char *) loop_comparison_value, max_loop_num * sizeof (rtx));
451 bzero ((char *) loop_start_value, max_loop_num * sizeof (rtx));
452
453 loop_comparison_code
454 = (enum rtx_code *) alloca (max_loop_num * sizeof (enum rtx_code));
455 bzero ((char *) loop_comparison_code, max_loop_num * sizeof (enum rtx_code));
456 #endif /* HAIFA */
457
458 /* Find and process each loop.
459 First, find them, and record them in order of their beginnings. */
460 find_and_verify_loops (f);
461
462 /* Now find all register lifetimes. This must be done after
463 find_and_verify_loops, because it might reorder the insns in the
464 function. */
465 reg_scan (f, max_reg_num (), 1);
466
467 /* See if we went too far. */
468 if (get_max_uid () > max_uid_for_loop)
469 abort ();
470
471 /* Compute the mapping from uids to luids.
472 LUIDs are numbers assigned to insns, like uids,
473 except that luids increase monotonically through the code.
474 Don't assign luids to line-number NOTEs, so that the distance in luids
475 between two insns is not affected by -g. */
476
477 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
478 {
479 last_insn = insn;
480 if (GET_CODE (insn) != NOTE
481 || NOTE_LINE_NUMBER (insn) <= 0)
482 uid_luid[INSN_UID (insn)] = ++i;
483 else
484 /* Give a line number note the same luid as preceding insn. */
485 uid_luid[INSN_UID (insn)] = i;
486 }
487
488 max_luid = i + 1;
489
490 /* Don't leave gaps in uid_luid for insns that have been
491 deleted. It is possible that the first or last insn
492 using some register has been deleted by cross-jumping.
493 Make sure that uid_luid for that former insn's uid
494 points to the general area where that insn used to be. */
495 for (i = 0; i < max_uid_for_loop; i++)
496 {
497 uid_luid[0] = uid_luid[i];
498 if (uid_luid[0] != 0)
499 break;
500 }
501 for (i = 0; i < max_uid_for_loop; i++)
502 if (uid_luid[i] == 0)
503 uid_luid[i] = uid_luid[i - 1];
504
505 /* Create a mapping from loops to BLOCK tree nodes. */
506 if (unroll_p && write_symbols != NO_DEBUG)
507 find_loop_tree_blocks ();
508
509 /* Determine if the function has indirect jump. On some systems
510 this prevents low overhead loop instructions from being used. */
511 indirect_jump_in_function = indirect_jump_in_function_p (f);
512
513 /* Now scan the loops, last ones first, since this means inner ones are done
514 before outer ones. */
515 for (i = max_loop_num-1; i >= 0; i--)
516 if (! loop_invalid[i] && loop_number_loop_ends[i])
517 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
518 max_reg_num (), unroll_p);
519
520 /* If debugging and unrolling loops, we must replicate the tree nodes
521 corresponding to the blocks inside the loop, so that the original one
522 to one mapping will remain. */
523 if (unroll_p && write_symbols != NO_DEBUG)
524 unroll_block_trees ();
525 }
526 \f
527 /* Optimize one loop whose start is LOOP_START and end is END.
528 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
529 NOTE_INSN_LOOP_END. */
530
531 /* ??? Could also move memory writes out of loops if the destination address
532 is invariant, the source is invariant, the memory write is not volatile,
533 and if we can prove that no read inside the loop can read this address
534 before the write occurs. If there is a read of this address after the
535 write, then we can also mark the memory read as invariant. */
536
537 static void
538 scan_loop (loop_start, end, nregs, unroll_p)
539 rtx loop_start, end;
540 int nregs;
541 int unroll_p;
542 {
543 register int i;
544 register rtx p;
545 /* 1 if we are scanning insns that could be executed zero times. */
546 int maybe_never = 0;
547 /* 1 if we are scanning insns that might never be executed
548 due to a subroutine call which might exit before they are reached. */
549 int call_passed = 0;
550 /* For a rotated loop that is entered near the bottom,
551 this is the label at the top. Otherwise it is zero. */
552 rtx loop_top = 0;
553 /* Jump insn that enters the loop, or 0 if control drops in. */
554 rtx loop_entry_jump = 0;
555 /* Place in the loop where control enters. */
556 rtx scan_start;
557 /* Number of insns in the loop. */
558 int insn_count;
559 int in_libcall = 0;
560 int tem;
561 rtx temp;
562 /* The SET from an insn, if it is the only SET in the insn. */
563 rtx set, set1;
564 /* Chain describing insns movable in current loop. */
565 struct movable *movables = 0;
566 /* Last element in `movables' -- so we can add elements at the end. */
567 struct movable *last_movable = 0;
568 /* Ratio of extra register life span we can justify
569 for saving an instruction. More if loop doesn't call subroutines
570 since in that case saving an insn makes more difference
571 and more registers are available. */
572 int threshold;
573 /* If we have calls, contains the insn in which a register was used
574 if it was used exactly once; contains const0_rtx if it was used more
575 than once. */
576 rtx *reg_single_usage = 0;
577 /* Nonzero if we are scanning instructions in a sub-loop. */
578 int loop_depth = 0;
579
580 n_times_set = (int *) alloca (nregs * sizeof (int));
581 n_times_used = (int *) alloca (nregs * sizeof (int));
582 may_not_optimize = (char *) alloca (nregs);
583
584 /* Determine whether this loop starts with a jump down to a test at
585 the end. This will occur for a small number of loops with a test
586 that is too complex to duplicate in front of the loop.
587
588 We search for the first insn or label in the loop, skipping NOTEs.
589 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
590 (because we might have a loop executed only once that contains a
591 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
592 (in case we have a degenerate loop).
593
594 Note that if we mistakenly think that a loop is entered at the top
595 when, in fact, it is entered at the exit test, the only effect will be
596 slightly poorer optimization. Making the opposite error can generate
597 incorrect code. Since very few loops now start with a jump to the
598 exit test, the code here to detect that case is very conservative. */
599
600 for (p = NEXT_INSN (loop_start);
601 p != end
602 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
603 && (GET_CODE (p) != NOTE
604 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
605 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
606 p = NEXT_INSN (p))
607 ;
608
609 scan_start = p;
610
611 /* Set up variables describing this loop. */
612 prescan_loop (loop_start, end);
613 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
614
615 /* If loop has a jump before the first label,
616 the true entry is the target of that jump.
617 Start scan from there.
618 But record in LOOP_TOP the place where the end-test jumps
619 back to so we can scan that after the end of the loop. */
620 if (GET_CODE (p) == JUMP_INSN)
621 {
622 loop_entry_jump = p;
623
624 /* Loop entry must be unconditional jump (and not a RETURN) */
625 if (simplejump_p (p)
626 && JUMP_LABEL (p) != 0
627 /* Check to see whether the jump actually
628 jumps out of the loop (meaning it's no loop).
629 This case can happen for things like
630 do {..} while (0). If this label was generated previously
631 by loop, we can't tell anything about it and have to reject
632 the loop. */
633 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
634 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
635 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
636 {
637 loop_top = next_label (scan_start);
638 scan_start = JUMP_LABEL (p);
639 }
640 }
641
642 /* If SCAN_START was an insn created by loop, we don't know its luid
643 as required by loop_reg_used_before_p. So skip such loops. (This
644 test may never be true, but it's best to play it safe.)
645
646 Also, skip loops where we do not start scanning at a label. This
647 test also rejects loops starting with a JUMP_INSN that failed the
648 test above. */
649
650 if (INSN_UID (scan_start) >= max_uid_for_loop
651 || GET_CODE (scan_start) != CODE_LABEL)
652 {
653 if (loop_dump_stream)
654 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
655 INSN_UID (loop_start), INSN_UID (end));
656 return;
657 }
658
659 /* Count number of times each reg is set during this loop.
660 Set may_not_optimize[I] if it is not safe to move out
661 the setting of register I. If this loop has calls, set
662 reg_single_usage[I]. */
663
664 bzero ((char *) n_times_set, nregs * sizeof (int));
665 bzero (may_not_optimize, nregs);
666
667 if (loop_has_call)
668 {
669 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
670 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
671 }
672
673 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
674 may_not_optimize, reg_single_usage, &insn_count, nregs);
675
676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
677 may_not_optimize[i] = 1, n_times_set[i] = 1;
678 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
679
680 if (loop_dump_stream)
681 {
682 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
683 INSN_UID (loop_start), INSN_UID (end), insn_count);
684 if (loop_continue)
685 fprintf (loop_dump_stream, "Continue at insn %d.\n",
686 INSN_UID (loop_continue));
687 }
688
689 /* Scan through the loop finding insns that are safe to move.
690 Set n_times_set negative for the reg being set, so that
691 this reg will be considered invariant for subsequent insns.
692 We consider whether subsequent insns use the reg
693 in deciding whether it is worth actually moving.
694
695 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
696 and therefore it is possible that the insns we are scanning
697 would never be executed. At such times, we must make sure
698 that it is safe to execute the insn once instead of zero times.
699 When MAYBE_NEVER is 0, all insns will be executed at least once
700 so that is not a problem. */
701
702 p = scan_start;
703 while (1)
704 {
705 p = NEXT_INSN (p);
706 /* At end of a straight-in loop, we are done.
707 At end of a loop entered at the bottom, scan the top. */
708 if (p == scan_start)
709 break;
710 if (p == end)
711 {
712 if (loop_top != 0)
713 p = loop_top;
714 else
715 break;
716 if (p == scan_start)
717 break;
718 }
719
720 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
721 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
722 in_libcall = 1;
723 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
724 && find_reg_note (p, REG_RETVAL, NULL_RTX))
725 in_libcall = 0;
726
727 if (GET_CODE (p) == INSN
728 && (set = single_set (p))
729 && GET_CODE (SET_DEST (set)) == REG
730 && ! may_not_optimize[REGNO (SET_DEST (set))])
731 {
732 int tem1 = 0;
733 int tem2 = 0;
734 int move_insn = 0;
735 rtx src = SET_SRC (set);
736 rtx dependencies = 0;
737
738 /* Figure out what to use as a source of this insn. If a REG_EQUIV
739 note is given or if a REG_EQUAL note with a constant operand is
740 specified, use it as the source and mark that we should move
741 this insn by calling emit_move_insn rather that duplicating the
742 insn.
743
744 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
745 is present. */
746 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
747 if (temp)
748 src = XEXP (temp, 0), move_insn = 1;
749 else
750 {
751 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
752 if (temp && CONSTANT_P (XEXP (temp, 0)))
753 src = XEXP (temp, 0), move_insn = 1;
754 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
755 {
756 src = XEXP (temp, 0);
757 /* A libcall block can use regs that don't appear in
758 the equivalent expression. To move the libcall,
759 we must move those regs too. */
760 dependencies = libcall_other_reg (p, src);
761 }
762 }
763
764 /* Don't try to optimize a register that was made
765 by loop-optimization for an inner loop.
766 We don't know its life-span, so we can't compute the benefit. */
767 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
768 ;
769 /* In order to move a register, we need to have one of three cases:
770 (1) it is used only in the same basic block as the set
771 (2) it is not a user variable and it is not used in the
772 exit test (this can cause the variable to be used
773 before it is set just like a user-variable).
774 (3) the set is guaranteed to be executed once the loop starts,
775 and the reg is not used until after that. */
776 else if (! ((! maybe_never
777 && ! loop_reg_used_before_p (set, p, loop_start,
778 scan_start, end))
779 || (! REG_USERVAR_P (SET_DEST (set))
780 && ! REG_LOOP_TEST_P (SET_DEST (set)))
781 || reg_in_basic_block_p (p, SET_DEST (set))))
782 ;
783 else if ((tem = invariant_p (src))
784 && (dependencies == 0
785 || (tem2 = invariant_p (dependencies)) != 0)
786 && (n_times_set[REGNO (SET_DEST (set))] == 1
787 || (tem1
788 = consec_sets_invariant_p (SET_DEST (set),
789 n_times_set[REGNO (SET_DEST (set))],
790 p)))
791 /* If the insn can cause a trap (such as divide by zero),
792 can't move it unless it's guaranteed to be executed
793 once loop is entered. Even a function call might
794 prevent the trap insn from being reached
795 (since it might exit!) */
796 && ! ((maybe_never || call_passed)
797 && may_trap_p (src)))
798 {
799 register struct movable *m;
800 register int regno = REGNO (SET_DEST (set));
801
802 /* A potential lossage is where we have a case where two insns
803 can be combined as long as they are both in the loop, but
804 we move one of them outside the loop. For large loops,
805 this can lose. The most common case of this is the address
806 of a function being called.
807
808 Therefore, if this register is marked as being used exactly
809 once if we are in a loop with calls (a "large loop"), see if
810 we can replace the usage of this register with the source
811 of this SET. If we can, delete this insn.
812
813 Don't do this if P has a REG_RETVAL note or if we have
814 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
815
816 if (reg_single_usage && reg_single_usage[regno] != 0
817 && reg_single_usage[regno] != const0_rtx
818 && REGNO_FIRST_UID (regno) == INSN_UID (p)
819 && (REGNO_LAST_UID (regno)
820 == INSN_UID (reg_single_usage[regno]))
821 && n_times_set[REGNO (SET_DEST (set))] == 1
822 && ! side_effects_p (SET_SRC (set))
823 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
824 && (! SMALL_REGISTER_CLASSES
825 || (! (GET_CODE (SET_SRC (set)) == REG
826 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
827 /* This test is not redundant; SET_SRC (set) might be
828 a call-clobbered register and the life of REGNO
829 might span a call. */
830 && ! modified_between_p (SET_SRC (set), p,
831 reg_single_usage[regno])
832 && no_labels_between_p (p, reg_single_usage[regno])
833 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
834 reg_single_usage[regno]))
835 {
836 /* Replace any usage in a REG_EQUAL note. Must copy the
837 new source, so that we don't get rtx sharing between the
838 SET_SOURCE and REG_NOTES of insn p. */
839 REG_NOTES (reg_single_usage[regno])
840 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
841 SET_DEST (set), copy_rtx (SET_SRC (set)));
842
843 PUT_CODE (p, NOTE);
844 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
845 NOTE_SOURCE_FILE (p) = 0;
846 n_times_set[regno] = 0;
847 continue;
848 }
849
850 m = (struct movable *) alloca (sizeof (struct movable));
851 m->next = 0;
852 m->insn = p;
853 m->set_src = src;
854 m->dependencies = dependencies;
855 m->set_dest = SET_DEST (set);
856 m->force = 0;
857 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
858 m->done = 0;
859 m->forces = 0;
860 m->partial = 0;
861 m->move_insn = move_insn;
862 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
863 m->savemode = VOIDmode;
864 m->regno = regno;
865 /* Set M->cond if either invariant_p or consec_sets_invariant_p
866 returned 2 (only conditionally invariant). */
867 m->cond = ((tem | tem1 | tem2) > 1);
868 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
869 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
870 m->match = 0;
871 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
872 - uid_luid[REGNO_FIRST_UID (regno)]);
873 m->savings = n_times_used[regno];
874 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
875 m->savings += libcall_benefit (p);
876 n_times_set[regno] = move_insn ? -2 : -1;
877 /* Add M to the end of the chain MOVABLES. */
878 if (movables == 0)
879 movables = m;
880 else
881 last_movable->next = m;
882 last_movable = m;
883
884 if (m->consec > 0)
885 {
886 /* Skip this insn, not checking REG_LIBCALL notes. */
887 p = next_nonnote_insn (p);
888 /* Skip the consecutive insns, if there are any. */
889 p = skip_consec_insns (p, m->consec);
890 /* Back up to the last insn of the consecutive group. */
891 p = prev_nonnote_insn (p);
892
893 /* We must now reset m->move_insn, m->is_equiv, and possibly
894 m->set_src to correspond to the effects of all the
895 insns. */
896 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
897 if (temp)
898 m->set_src = XEXP (temp, 0), m->move_insn = 1;
899 else
900 {
901 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
902 if (temp && CONSTANT_P (XEXP (temp, 0)))
903 m->set_src = XEXP (temp, 0), m->move_insn = 1;
904 else
905 m->move_insn = 0;
906
907 }
908 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
909 }
910 }
911 /* If this register is always set within a STRICT_LOW_PART
912 or set to zero, then its high bytes are constant.
913 So clear them outside the loop and within the loop
914 just load the low bytes.
915 We must check that the machine has an instruction to do so.
916 Also, if the value loaded into the register
917 depends on the same register, this cannot be done. */
918 else if (SET_SRC (set) == const0_rtx
919 && GET_CODE (NEXT_INSN (p)) == INSN
920 && (set1 = single_set (NEXT_INSN (p)))
921 && GET_CODE (set1) == SET
922 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
923 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
924 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
925 == SET_DEST (set))
926 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
927 {
928 register int regno = REGNO (SET_DEST (set));
929 if (n_times_set[regno] == 2)
930 {
931 register struct movable *m;
932 m = (struct movable *) alloca (sizeof (struct movable));
933 m->next = 0;
934 m->insn = p;
935 m->set_dest = SET_DEST (set);
936 m->dependencies = 0;
937 m->force = 0;
938 m->consec = 0;
939 m->done = 0;
940 m->forces = 0;
941 m->move_insn = 0;
942 m->partial = 1;
943 /* If the insn may not be executed on some cycles,
944 we can't clear the whole reg; clear just high part.
945 Not even if the reg is used only within this loop.
946 Consider this:
947 while (1)
948 while (s != t) {
949 if (foo ()) x = *s;
950 use (x);
951 }
952 Clearing x before the inner loop could clobber a value
953 being saved from the last time around the outer loop.
954 However, if the reg is not used outside this loop
955 and all uses of the register are in the same
956 basic block as the store, there is no problem.
957
958 If this insn was made by loop, we don't know its
959 INSN_LUID and hence must make a conservative
960 assumption. */
961 m->global = (INSN_UID (p) >= max_uid_for_loop
962 || (uid_luid[REGNO_LAST_UID (regno)]
963 > INSN_LUID (end))
964 || (uid_luid[REGNO_FIRST_UID (regno)]
965 < INSN_LUID (p))
966 || (labels_in_range_p
967 (p, uid_luid[REGNO_FIRST_UID (regno)])));
968 if (maybe_never && m->global)
969 m->savemode = GET_MODE (SET_SRC (set1));
970 else
971 m->savemode = VOIDmode;
972 m->regno = regno;
973 m->cond = 0;
974 m->match = 0;
975 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
976 - uid_luid[REGNO_FIRST_UID (regno)]);
977 m->savings = 1;
978 n_times_set[regno] = -1;
979 /* Add M to the end of the chain MOVABLES. */
980 if (movables == 0)
981 movables = m;
982 else
983 last_movable->next = m;
984 last_movable = m;
985 }
986 }
987 }
988 /* Past a call insn, we get to insns which might not be executed
989 because the call might exit. This matters for insns that trap.
990 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
991 so they don't count. */
992 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
993 call_passed = 1;
994 /* Past a label or a jump, we get to insns for which we
995 can't count on whether or how many times they will be
996 executed during each iteration. Therefore, we can
997 only move out sets of trivial variables
998 (those not used after the loop). */
999 /* Similar code appears twice in strength_reduce. */
1000 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1001 /* If we enter the loop in the middle, and scan around to the
1002 beginning, don't set maybe_never for that. This must be an
1003 unconditional jump, otherwise the code at the top of the
1004 loop might never be executed. Unconditional jumps are
1005 followed a by barrier then loop end. */
1006 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1007 && NEXT_INSN (NEXT_INSN (p)) == end
1008 && simplejump_p (p)))
1009 maybe_never = 1;
1010 else if (GET_CODE (p) == NOTE)
1011 {
1012 /* At the virtual top of a converted loop, insns are again known to
1013 be executed: logically, the loop begins here even though the exit
1014 code has been duplicated. */
1015 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1016 maybe_never = call_passed = 0;
1017 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1018 loop_depth++;
1019 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1020 loop_depth--;
1021 }
1022 }
1023
1024 /* If one movable subsumes another, ignore that other. */
1025
1026 ignore_some_movables (movables);
1027
1028 /* For each movable insn, see if the reg that it loads
1029 leads when it dies right into another conditionally movable insn.
1030 If so, record that the second insn "forces" the first one,
1031 since the second can be moved only if the first is. */
1032
1033 force_movables (movables);
1034
1035 /* See if there are multiple movable insns that load the same value.
1036 If there are, make all but the first point at the first one
1037 through the `match' field, and add the priorities of them
1038 all together as the priority of the first. */
1039
1040 combine_movables (movables, nregs);
1041
1042 /* Now consider each movable insn to decide whether it is worth moving.
1043 Store 0 in n_times_set for each reg that is moved. */
1044
1045 move_movables (movables, threshold,
1046 insn_count, loop_start, end, nregs);
1047
1048 /* Now candidates that still are negative are those not moved.
1049 Change n_times_set to indicate that those are not actually invariant. */
1050 for (i = 0; i < nregs; i++)
1051 if (n_times_set[i] < 0)
1052 n_times_set[i] = n_times_used[i];
1053
1054 if (flag_strength_reduce)
1055 strength_reduce (scan_start, end, loop_top,
1056 insn_count, loop_start, end, unroll_p);
1057 }
1058 \f
1059 /* Add elements to *OUTPUT to record all the pseudo-regs
1060 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1061
1062 void
1063 record_excess_regs (in_this, not_in_this, output)
1064 rtx in_this, not_in_this;
1065 rtx *output;
1066 {
1067 enum rtx_code code;
1068 char *fmt;
1069 int i;
1070
1071 code = GET_CODE (in_this);
1072
1073 switch (code)
1074 {
1075 case PC:
1076 case CC0:
1077 case CONST_INT:
1078 case CONST_DOUBLE:
1079 case CONST:
1080 case SYMBOL_REF:
1081 case LABEL_REF:
1082 return;
1083
1084 case REG:
1085 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1086 && ! reg_mentioned_p (in_this, not_in_this))
1087 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1088 return;
1089
1090 default:
1091 break;
1092 }
1093
1094 fmt = GET_RTX_FORMAT (code);
1095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1096 {
1097 int j;
1098
1099 switch (fmt[i])
1100 {
1101 case 'E':
1102 for (j = 0; j < XVECLEN (in_this, i); j++)
1103 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1104 break;
1105
1106 case 'e':
1107 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1108 break;
1109 }
1110 }
1111 }
1112 \f
1113 /* Check what regs are referred to in the libcall block ending with INSN,
1114 aside from those mentioned in the equivalent value.
1115 If there are none, return 0.
1116 If there are one or more, return an EXPR_LIST containing all of them. */
1117
1118 static rtx
1119 libcall_other_reg (insn, equiv)
1120 rtx insn, equiv;
1121 {
1122 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1123 rtx p = XEXP (note, 0);
1124 rtx output = 0;
1125
1126 /* First, find all the regs used in the libcall block
1127 that are not mentioned as inputs to the result. */
1128
1129 while (p != insn)
1130 {
1131 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1132 || GET_CODE (p) == CALL_INSN)
1133 record_excess_regs (PATTERN (p), equiv, &output);
1134 p = NEXT_INSN (p);
1135 }
1136
1137 return output;
1138 }
1139 \f
1140 /* Return 1 if all uses of REG
1141 are between INSN and the end of the basic block. */
1142
1143 static int
1144 reg_in_basic_block_p (insn, reg)
1145 rtx insn, reg;
1146 {
1147 int regno = REGNO (reg);
1148 rtx p;
1149
1150 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1151 return 0;
1152
1153 /* Search this basic block for the already recorded last use of the reg. */
1154 for (p = insn; p; p = NEXT_INSN (p))
1155 {
1156 switch (GET_CODE (p))
1157 {
1158 case NOTE:
1159 break;
1160
1161 case INSN:
1162 case CALL_INSN:
1163 /* Ordinary insn: if this is the last use, we win. */
1164 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1165 return 1;
1166 break;
1167
1168 case JUMP_INSN:
1169 /* Jump insn: if this is the last use, we win. */
1170 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1171 return 1;
1172 /* Otherwise, it's the end of the basic block, so we lose. */
1173 return 0;
1174
1175 case CODE_LABEL:
1176 case BARRIER:
1177 /* It's the end of the basic block, so we lose. */
1178 return 0;
1179
1180 default:
1181 break;
1182 }
1183 }
1184
1185 /* The "last use" doesn't follow the "first use"?? */
1186 abort ();
1187 }
1188 \f
1189 /* Compute the benefit of eliminating the insns in the block whose
1190 last insn is LAST. This may be a group of insns used to compute a
1191 value directly or can contain a library call. */
1192
1193 static int
1194 libcall_benefit (last)
1195 rtx last;
1196 {
1197 rtx insn;
1198 int benefit = 0;
1199
1200 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1201 insn != last; insn = NEXT_INSN (insn))
1202 {
1203 if (GET_CODE (insn) == CALL_INSN)
1204 benefit += 10; /* Assume at least this many insns in a library
1205 routine. */
1206 else if (GET_CODE (insn) == INSN
1207 && GET_CODE (PATTERN (insn)) != USE
1208 && GET_CODE (PATTERN (insn)) != CLOBBER)
1209 benefit++;
1210 }
1211
1212 return benefit;
1213 }
1214 \f
1215 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1216
1217 static rtx
1218 skip_consec_insns (insn, count)
1219 rtx insn;
1220 int count;
1221 {
1222 for (; count > 0; count--)
1223 {
1224 rtx temp;
1225
1226 /* If first insn of libcall sequence, skip to end. */
1227 /* Do this at start of loop, since INSN is guaranteed to
1228 be an insn here. */
1229 if (GET_CODE (insn) != NOTE
1230 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1231 insn = XEXP (temp, 0);
1232
1233 do insn = NEXT_INSN (insn);
1234 while (GET_CODE (insn) == NOTE);
1235 }
1236
1237 return insn;
1238 }
1239
1240 /* Ignore any movable whose insn falls within a libcall
1241 which is part of another movable.
1242 We make use of the fact that the movable for the libcall value
1243 was made later and so appears later on the chain. */
1244
1245 static void
1246 ignore_some_movables (movables)
1247 struct movable *movables;
1248 {
1249 register struct movable *m, *m1;
1250
1251 for (m = movables; m; m = m->next)
1252 {
1253 /* Is this a movable for the value of a libcall? */
1254 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1255 if (note)
1256 {
1257 rtx insn;
1258 /* Check for earlier movables inside that range,
1259 and mark them invalid. We cannot use LUIDs here because
1260 insns created by loop.c for prior loops don't have LUIDs.
1261 Rather than reject all such insns from movables, we just
1262 explicitly check each insn in the libcall (since invariant
1263 libcalls aren't that common). */
1264 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1265 for (m1 = movables; m1 != m; m1 = m1->next)
1266 if (m1->insn == insn)
1267 m1->done = 1;
1268 }
1269 }
1270 }
1271
1272 /* For each movable insn, see if the reg that it loads
1273 leads when it dies right into another conditionally movable insn.
1274 If so, record that the second insn "forces" the first one,
1275 since the second can be moved only if the first is. */
1276
1277 static void
1278 force_movables (movables)
1279 struct movable *movables;
1280 {
1281 register struct movable *m, *m1;
1282 for (m1 = movables; m1; m1 = m1->next)
1283 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1284 if (!m1->partial && !m1->done)
1285 {
1286 int regno = m1->regno;
1287 for (m = m1->next; m; m = m->next)
1288 /* ??? Could this be a bug? What if CSE caused the
1289 register of M1 to be used after this insn?
1290 Since CSE does not update regno_last_uid,
1291 this insn M->insn might not be where it dies.
1292 But very likely this doesn't matter; what matters is
1293 that M's reg is computed from M1's reg. */
1294 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1295 && !m->done)
1296 break;
1297 if (m != 0 && m->set_src == m1->set_dest
1298 /* If m->consec, m->set_src isn't valid. */
1299 && m->consec == 0)
1300 m = 0;
1301
1302 /* Increase the priority of the moving the first insn
1303 since it permits the second to be moved as well. */
1304 if (m != 0)
1305 {
1306 m->forces = m1;
1307 m1->lifetime += m->lifetime;
1308 m1->savings += m1->savings;
1309 }
1310 }
1311 }
1312 \f
1313 /* Find invariant expressions that are equal and can be combined into
1314 one register. */
1315
1316 static void
1317 combine_movables (movables, nregs)
1318 struct movable *movables;
1319 int nregs;
1320 {
1321 register struct movable *m;
1322 char *matched_regs = (char *) alloca (nregs);
1323 enum machine_mode mode;
1324
1325 /* Regs that are set more than once are not allowed to match
1326 or be matched. I'm no longer sure why not. */
1327 /* Perhaps testing m->consec_sets would be more appropriate here? */
1328
1329 for (m = movables; m; m = m->next)
1330 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1331 {
1332 register struct movable *m1;
1333 int regno = m->regno;
1334
1335 bzero (matched_regs, nregs);
1336 matched_regs[regno] = 1;
1337
1338 /* We want later insns to match the first one. Don't make the first
1339 one match any later ones. So start this loop at m->next. */
1340 for (m1 = m->next; m1; m1 = m1->next)
1341 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1342 /* A reg used outside the loop mustn't be eliminated. */
1343 && !m1->global
1344 /* A reg used for zero-extending mustn't be eliminated. */
1345 && !m1->partial
1346 && (matched_regs[m1->regno]
1347 ||
1348 (
1349 /* Can combine regs with different modes loaded from the
1350 same constant only if the modes are the same or
1351 if both are integer modes with M wider or the same
1352 width as M1. The check for integer is redundant, but
1353 safe, since the only case of differing destination
1354 modes with equal sources is when both sources are
1355 VOIDmode, i.e., CONST_INT. */
1356 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1357 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1358 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1359 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1360 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1361 /* See if the source of M1 says it matches M. */
1362 && ((GET_CODE (m1->set_src) == REG
1363 && matched_regs[REGNO (m1->set_src)])
1364 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1365 movables))))
1366 && ((m->dependencies == m1->dependencies)
1367 || rtx_equal_p (m->dependencies, m1->dependencies)))
1368 {
1369 m->lifetime += m1->lifetime;
1370 m->savings += m1->savings;
1371 m1->done = 1;
1372 m1->match = m;
1373 matched_regs[m1->regno] = 1;
1374 }
1375 }
1376
1377 /* Now combine the regs used for zero-extension.
1378 This can be done for those not marked `global'
1379 provided their lives don't overlap. */
1380
1381 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1382 mode = GET_MODE_WIDER_MODE (mode))
1383 {
1384 register struct movable *m0 = 0;
1385
1386 /* Combine all the registers for extension from mode MODE.
1387 Don't combine any that are used outside this loop. */
1388 for (m = movables; m; m = m->next)
1389 if (m->partial && ! m->global
1390 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1391 {
1392 register struct movable *m1;
1393 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1394 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1395
1396 if (m0 == 0)
1397 {
1398 /* First one: don't check for overlap, just record it. */
1399 m0 = m;
1400 continue;
1401 }
1402
1403 /* Make sure they extend to the same mode.
1404 (Almost always true.) */
1405 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1406 continue;
1407
1408 /* We already have one: check for overlap with those
1409 already combined together. */
1410 for (m1 = movables; m1 != m; m1 = m1->next)
1411 if (m1 == m0 || (m1->partial && m1->match == m0))
1412 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1413 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1414 goto overlap;
1415
1416 /* No overlap: we can combine this with the others. */
1417 m0->lifetime += m->lifetime;
1418 m0->savings += m->savings;
1419 m->done = 1;
1420 m->match = m0;
1421
1422 overlap: ;
1423 }
1424 }
1425 }
1426 \f
1427 /* Return 1 if regs X and Y will become the same if moved. */
1428
1429 static int
1430 regs_match_p (x, y, movables)
1431 rtx x, y;
1432 struct movable *movables;
1433 {
1434 int xn = REGNO (x);
1435 int yn = REGNO (y);
1436 struct movable *mx, *my;
1437
1438 for (mx = movables; mx; mx = mx->next)
1439 if (mx->regno == xn)
1440 break;
1441
1442 for (my = movables; my; my = my->next)
1443 if (my->regno == yn)
1444 break;
1445
1446 return (mx && my
1447 && ((mx->match == my->match && mx->match != 0)
1448 || mx->match == my
1449 || mx == my->match));
1450 }
1451
1452 /* Return 1 if X and Y are identical-looking rtx's.
1453 This is the Lisp function EQUAL for rtx arguments.
1454
1455 If two registers are matching movables or a movable register and an
1456 equivalent constant, consider them equal. */
1457
1458 static int
1459 rtx_equal_for_loop_p (x, y, movables)
1460 rtx x, y;
1461 struct movable *movables;
1462 {
1463 register int i;
1464 register int j;
1465 register struct movable *m;
1466 register enum rtx_code code;
1467 register char *fmt;
1468
1469 if (x == y)
1470 return 1;
1471 if (x == 0 || y == 0)
1472 return 0;
1473
1474 code = GET_CODE (x);
1475
1476 /* If we have a register and a constant, they may sometimes be
1477 equal. */
1478 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1479 && CONSTANT_P (y))
1480 for (m = movables; m; m = m->next)
1481 if (m->move_insn && m->regno == REGNO (x)
1482 && rtx_equal_p (m->set_src, y))
1483 return 1;
1484
1485 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1486 && CONSTANT_P (x))
1487 for (m = movables; m; m = m->next)
1488 if (m->move_insn && m->regno == REGNO (y)
1489 && rtx_equal_p (m->set_src, x))
1490 return 1;
1491
1492 /* Otherwise, rtx's of different codes cannot be equal. */
1493 if (code != GET_CODE (y))
1494 return 0;
1495
1496 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1497 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1498
1499 if (GET_MODE (x) != GET_MODE (y))
1500 return 0;
1501
1502 /* These three types of rtx's can be compared nonrecursively. */
1503 if (code == REG)
1504 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1505
1506 if (code == LABEL_REF)
1507 return XEXP (x, 0) == XEXP (y, 0);
1508 if (code == SYMBOL_REF)
1509 return XSTR (x, 0) == XSTR (y, 0);
1510
1511 /* Compare the elements. If any pair of corresponding elements
1512 fail to match, return 0 for the whole things. */
1513
1514 fmt = GET_RTX_FORMAT (code);
1515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1516 {
1517 switch (fmt[i])
1518 {
1519 case 'w':
1520 if (XWINT (x, i) != XWINT (y, i))
1521 return 0;
1522 break;
1523
1524 case 'i':
1525 if (XINT (x, i) != XINT (y, i))
1526 return 0;
1527 break;
1528
1529 case 'E':
1530 /* Two vectors must have the same length. */
1531 if (XVECLEN (x, i) != XVECLEN (y, i))
1532 return 0;
1533
1534 /* And the corresponding elements must match. */
1535 for (j = 0; j < XVECLEN (x, i); j++)
1536 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1537 return 0;
1538 break;
1539
1540 case 'e':
1541 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1542 return 0;
1543 break;
1544
1545 case 's':
1546 if (strcmp (XSTR (x, i), XSTR (y, i)))
1547 return 0;
1548 break;
1549
1550 case 'u':
1551 /* These are just backpointers, so they don't matter. */
1552 break;
1553
1554 case '0':
1555 break;
1556
1557 /* It is believed that rtx's at this level will never
1558 contain anything but integers and other rtx's,
1559 except for within LABEL_REFs and SYMBOL_REFs. */
1560 default:
1561 abort ();
1562 }
1563 }
1564 return 1;
1565 }
1566 \f
1567 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1568 insns in INSNS which use thet reference. */
1569
1570 static void
1571 add_label_notes (x, insns)
1572 rtx x;
1573 rtx insns;
1574 {
1575 enum rtx_code code = GET_CODE (x);
1576 int i, j;
1577 char *fmt;
1578 rtx insn;
1579
1580 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1581 {
1582 rtx next = next_real_insn (XEXP (x, 0));
1583
1584 /* Don't record labels that refer to dispatch tables.
1585 This is not necessary, since the tablejump references the same label.
1586 And if we did record them, flow.c would make worse code. */
1587 if (next == 0
1588 || ! (GET_CODE (next) == JUMP_INSN
1589 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1590 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1591 {
1592 for (insn = insns; insn; insn = NEXT_INSN (insn))
1593 if (reg_mentioned_p (XEXP (x, 0), insn))
1594 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1595 REG_NOTES (insn));
1596 }
1597 return;
1598 }
1599
1600 fmt = GET_RTX_FORMAT (code);
1601 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1602 {
1603 if (fmt[i] == 'e')
1604 add_label_notes (XEXP (x, i), insns);
1605 else if (fmt[i] == 'E')
1606 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1607 add_label_notes (XVECEXP (x, i, j), insns);
1608 }
1609 }
1610 \f
1611 /* Scan MOVABLES, and move the insns that deserve to be moved.
1612 If two matching movables are combined, replace one reg with the
1613 other throughout. */
1614
1615 static void
1616 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1617 struct movable *movables;
1618 int threshold;
1619 int insn_count;
1620 rtx loop_start;
1621 rtx end;
1622 int nregs;
1623 {
1624 rtx new_start = 0;
1625 register struct movable *m;
1626 register rtx p;
1627 /* Map of pseudo-register replacements to handle combining
1628 when we move several insns that load the same value
1629 into different pseudo-registers. */
1630 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1631 char *already_moved = (char *) alloca (nregs);
1632
1633 bzero (already_moved, nregs);
1634 bzero ((char *) reg_map, nregs * sizeof (rtx));
1635
1636 num_movables = 0;
1637
1638 for (m = movables; m; m = m->next)
1639 {
1640 /* Describe this movable insn. */
1641
1642 if (loop_dump_stream)
1643 {
1644 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1645 INSN_UID (m->insn), m->regno, m->lifetime);
1646 if (m->consec > 0)
1647 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1648 if (m->cond)
1649 fprintf (loop_dump_stream, "cond ");
1650 if (m->force)
1651 fprintf (loop_dump_stream, "force ");
1652 if (m->global)
1653 fprintf (loop_dump_stream, "global ");
1654 if (m->done)
1655 fprintf (loop_dump_stream, "done ");
1656 if (m->move_insn)
1657 fprintf (loop_dump_stream, "move-insn ");
1658 if (m->match)
1659 fprintf (loop_dump_stream, "matches %d ",
1660 INSN_UID (m->match->insn));
1661 if (m->forces)
1662 fprintf (loop_dump_stream, "forces %d ",
1663 INSN_UID (m->forces->insn));
1664 }
1665
1666 /* Count movables. Value used in heuristics in strength_reduce. */
1667 num_movables++;
1668
1669 /* Ignore the insn if it's already done (it matched something else).
1670 Otherwise, see if it is now safe to move. */
1671
1672 if (!m->done
1673 && (! m->cond
1674 || (1 == invariant_p (m->set_src)
1675 && (m->dependencies == 0
1676 || 1 == invariant_p (m->dependencies))
1677 && (m->consec == 0
1678 || 1 == consec_sets_invariant_p (m->set_dest,
1679 m->consec + 1,
1680 m->insn))))
1681 && (! m->forces || m->forces->done))
1682 {
1683 register int regno;
1684 register rtx p;
1685 int savings = m->savings;
1686
1687 /* We have an insn that is safe to move.
1688 Compute its desirability. */
1689
1690 p = m->insn;
1691 regno = m->regno;
1692
1693 if (loop_dump_stream)
1694 fprintf (loop_dump_stream, "savings %d ", savings);
1695
1696 if (moved_once[regno])
1697 {
1698 insn_count *= 2;
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, "halved since already moved ");
1702 }
1703
1704 /* An insn MUST be moved if we already moved something else
1705 which is safe only if this one is moved too: that is,
1706 if already_moved[REGNO] is nonzero. */
1707
1708 /* An insn is desirable to move if the new lifetime of the
1709 register is no more than THRESHOLD times the old lifetime.
1710 If it's not desirable, it means the loop is so big
1711 that moving won't speed things up much,
1712 and it is liable to make register usage worse. */
1713
1714 /* It is also desirable to move if it can be moved at no
1715 extra cost because something else was already moved. */
1716
1717 if (already_moved[regno]
1718 || flag_move_all_movables
1719 || (threshold * savings * m->lifetime) >= insn_count
1720 || (m->forces && m->forces->done
1721 && n_times_used[m->forces->regno] == 1))
1722 {
1723 int count;
1724 register struct movable *m1;
1725 rtx first;
1726
1727 /* Now move the insns that set the reg. */
1728
1729 if (m->partial && m->match)
1730 {
1731 rtx newpat, i1;
1732 rtx r1, r2;
1733 /* Find the end of this chain of matching regs.
1734 Thus, we load each reg in the chain from that one reg.
1735 And that reg is loaded with 0 directly,
1736 since it has ->match == 0. */
1737 for (m1 = m; m1->match; m1 = m1->match);
1738 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1739 SET_DEST (PATTERN (m1->insn)));
1740 i1 = emit_insn_before (newpat, loop_start);
1741
1742 /* Mark the moved, invariant reg as being allowed to
1743 share a hard reg with the other matching invariant. */
1744 REG_NOTES (i1) = REG_NOTES (m->insn);
1745 r1 = SET_DEST (PATTERN (m->insn));
1746 r2 = SET_DEST (PATTERN (m1->insn));
1747 regs_may_share
1748 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1749 gen_rtx_EXPR_LIST (VOIDmode, r2,
1750 regs_may_share));
1751 delete_insn (m->insn);
1752
1753 if (new_start == 0)
1754 new_start = i1;
1755
1756 if (loop_dump_stream)
1757 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1758 }
1759 /* If we are to re-generate the item being moved with a
1760 new move insn, first delete what we have and then emit
1761 the move insn before the loop. */
1762 else if (m->move_insn)
1763 {
1764 rtx i1, temp;
1765
1766 for (count = m->consec; count >= 0; count--)
1767 {
1768 /* If this is the first insn of a library call sequence,
1769 skip to the end. */
1770 if (GET_CODE (p) != NOTE
1771 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1772 p = XEXP (temp, 0);
1773
1774 /* If this is the last insn of a libcall sequence, then
1775 delete every insn in the sequence except the last.
1776 The last insn is handled in the normal manner. */
1777 if (GET_CODE (p) != NOTE
1778 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1779 {
1780 temp = XEXP (temp, 0);
1781 while (temp != p)
1782 temp = delete_insn (temp);
1783 }
1784
1785 p = delete_insn (p);
1786 while (p && GET_CODE (p) == NOTE)
1787 p = NEXT_INSN (p);
1788 }
1789
1790 start_sequence ();
1791 emit_move_insn (m->set_dest, m->set_src);
1792 temp = get_insns ();
1793 end_sequence ();
1794
1795 add_label_notes (m->set_src, temp);
1796
1797 i1 = emit_insns_before (temp, loop_start);
1798 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1799 REG_NOTES (i1)
1800 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1801 m->set_src, REG_NOTES (i1));
1802
1803 if (loop_dump_stream)
1804 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1805
1806 /* The more regs we move, the less we like moving them. */
1807 threshold -= 3;
1808 }
1809 else
1810 {
1811 for (count = m->consec; count >= 0; count--)
1812 {
1813 rtx i1, temp;
1814
1815 /* If first insn of libcall sequence, skip to end. */
1816 /* Do this at start of loop, since p is guaranteed to
1817 be an insn here. */
1818 if (GET_CODE (p) != NOTE
1819 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1820 p = XEXP (temp, 0);
1821
1822 /* If last insn of libcall sequence, move all
1823 insns except the last before the loop. The last
1824 insn is handled in the normal manner. */
1825 if (GET_CODE (p) != NOTE
1826 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1827 {
1828 rtx fn_address = 0;
1829 rtx fn_reg = 0;
1830 rtx fn_address_insn = 0;
1831
1832 first = 0;
1833 for (temp = XEXP (temp, 0); temp != p;
1834 temp = NEXT_INSN (temp))
1835 {
1836 rtx body;
1837 rtx n;
1838 rtx next;
1839
1840 if (GET_CODE (temp) == NOTE)
1841 continue;
1842
1843 body = PATTERN (temp);
1844
1845 /* Find the next insn after TEMP,
1846 not counting USE or NOTE insns. */
1847 for (next = NEXT_INSN (temp); next != p;
1848 next = NEXT_INSN (next))
1849 if (! (GET_CODE (next) == INSN
1850 && GET_CODE (PATTERN (next)) == USE)
1851 && GET_CODE (next) != NOTE)
1852 break;
1853
1854 /* If that is the call, this may be the insn
1855 that loads the function address.
1856
1857 Extract the function address from the insn
1858 that loads it into a register.
1859 If this insn was cse'd, we get incorrect code.
1860
1861 So emit a new move insn that copies the
1862 function address into the register that the
1863 call insn will use. flow.c will delete any
1864 redundant stores that we have created. */
1865 if (GET_CODE (next) == CALL_INSN
1866 && GET_CODE (body) == SET
1867 && GET_CODE (SET_DEST (body)) == REG
1868 && (n = find_reg_note (temp, REG_EQUAL,
1869 NULL_RTX)))
1870 {
1871 fn_reg = SET_SRC (body);
1872 if (GET_CODE (fn_reg) != REG)
1873 fn_reg = SET_DEST (body);
1874 fn_address = XEXP (n, 0);
1875 fn_address_insn = temp;
1876 }
1877 /* We have the call insn.
1878 If it uses the register we suspect it might,
1879 load it with the correct address directly. */
1880 if (GET_CODE (temp) == CALL_INSN
1881 && fn_address != 0
1882 && reg_referenced_p (fn_reg, body))
1883 emit_insn_after (gen_move_insn (fn_reg,
1884 fn_address),
1885 fn_address_insn);
1886
1887 if (GET_CODE (temp) == CALL_INSN)
1888 {
1889 i1 = emit_call_insn_before (body, loop_start);
1890 /* Because the USAGE information potentially
1891 contains objects other than hard registers
1892 we need to copy it. */
1893 if (CALL_INSN_FUNCTION_USAGE (temp))
1894 CALL_INSN_FUNCTION_USAGE (i1)
1895 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1896 }
1897 else
1898 i1 = emit_insn_before (body, loop_start);
1899 if (first == 0)
1900 first = i1;
1901 if (temp == fn_address_insn)
1902 fn_address_insn = i1;
1903 REG_NOTES (i1) = REG_NOTES (temp);
1904 delete_insn (temp);
1905 }
1906 }
1907 if (m->savemode != VOIDmode)
1908 {
1909 /* P sets REG to zero; but we should clear only
1910 the bits that are not covered by the mode
1911 m->savemode. */
1912 rtx reg = m->set_dest;
1913 rtx sequence;
1914 rtx tem;
1915
1916 start_sequence ();
1917 tem = expand_binop
1918 (GET_MODE (reg), and_optab, reg,
1919 GEN_INT ((((HOST_WIDE_INT) 1
1920 << GET_MODE_BITSIZE (m->savemode)))
1921 - 1),
1922 reg, 1, OPTAB_LIB_WIDEN);
1923 if (tem == 0)
1924 abort ();
1925 if (tem != reg)
1926 emit_move_insn (reg, tem);
1927 sequence = gen_sequence ();
1928 end_sequence ();
1929 i1 = emit_insn_before (sequence, loop_start);
1930 }
1931 else if (GET_CODE (p) == CALL_INSN)
1932 {
1933 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1934 /* Because the USAGE information potentially
1935 contains objects other than hard registers
1936 we need to copy it. */
1937 if (CALL_INSN_FUNCTION_USAGE (p))
1938 CALL_INSN_FUNCTION_USAGE (i1)
1939 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1940 }
1941 else
1942 i1 = emit_insn_before (PATTERN (p), loop_start);
1943
1944 REG_NOTES (i1) = REG_NOTES (p);
1945
1946 /* If there is a REG_EQUAL note present whose value is
1947 not loop invariant, then delete it, since it may
1948 cause problems with later optimization passes.
1949 It is possible for cse to create such notes
1950 like this as a result of record_jump_cond. */
1951
1952 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1953 && ! invariant_p (XEXP (temp, 0)))
1954 remove_note (i1, temp);
1955
1956 if (new_start == 0)
1957 new_start = i1;
1958
1959 if (loop_dump_stream)
1960 fprintf (loop_dump_stream, " moved to %d",
1961 INSN_UID (i1));
1962
1963 #if 0
1964 /* This isn't needed because REG_NOTES is copied
1965 below and is wrong since P might be a PARALLEL. */
1966 if (REG_NOTES (i1) == 0
1967 && ! m->partial /* But not if it's a zero-extend clr. */
1968 && ! m->global /* and not if used outside the loop
1969 (since it might get set outside). */
1970 && CONSTANT_P (SET_SRC (PATTERN (p))))
1971 REG_NOTES (i1)
1972 = gen_rtx_EXPR_LIST (REG_EQUAL,
1973 SET_SRC (PATTERN (p)),
1974 REG_NOTES (i1));
1975 #endif
1976
1977 /* If library call, now fix the REG_NOTES that contain
1978 insn pointers, namely REG_LIBCALL on FIRST
1979 and REG_RETVAL on I1. */
1980 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1981 {
1982 XEXP (temp, 0) = first;
1983 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1984 XEXP (temp, 0) = i1;
1985 }
1986
1987 delete_insn (p);
1988 do p = NEXT_INSN (p);
1989 while (p && GET_CODE (p) == NOTE);
1990 }
1991
1992 /* The more regs we move, the less we like moving them. */
1993 threshold -= 3;
1994 }
1995
1996 /* Any other movable that loads the same register
1997 MUST be moved. */
1998 already_moved[regno] = 1;
1999
2000 /* This reg has been moved out of one loop. */
2001 moved_once[regno] = 1;
2002
2003 /* The reg set here is now invariant. */
2004 if (! m->partial)
2005 n_times_set[regno] = 0;
2006
2007 m->done = 1;
2008
2009 /* Change the length-of-life info for the register
2010 to say it lives at least the full length of this loop.
2011 This will help guide optimizations in outer loops. */
2012
2013 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2014 /* This is the old insn before all the moved insns.
2015 We can't use the moved insn because it is out of range
2016 in uid_luid. Only the old insns have luids. */
2017 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2018 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2019 REGNO_LAST_UID (regno) = INSN_UID (end);
2020
2021 /* Combine with this moved insn any other matching movables. */
2022
2023 if (! m->partial)
2024 for (m1 = movables; m1; m1 = m1->next)
2025 if (m1->match == m)
2026 {
2027 rtx temp;
2028
2029 /* Schedule the reg loaded by M1
2030 for replacement so that shares the reg of M.
2031 If the modes differ (only possible in restricted
2032 circumstances, make a SUBREG. */
2033 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2034 reg_map[m1->regno] = m->set_dest;
2035 else
2036 reg_map[m1->regno]
2037 = gen_lowpart_common (GET_MODE (m1->set_dest),
2038 m->set_dest);
2039
2040 /* Get rid of the matching insn
2041 and prevent further processing of it. */
2042 m1->done = 1;
2043
2044 /* if library call, delete all insn except last, which
2045 is deleted below */
2046 if (temp = find_reg_note (m1->insn, REG_RETVAL,
2047 NULL_RTX))
2048 {
2049 for (temp = XEXP (temp, 0); temp != m1->insn;
2050 temp = NEXT_INSN (temp))
2051 delete_insn (temp);
2052 }
2053 delete_insn (m1->insn);
2054
2055 /* Any other movable that loads the same register
2056 MUST be moved. */
2057 already_moved[m1->regno] = 1;
2058
2059 /* The reg merged here is now invariant,
2060 if the reg it matches is invariant. */
2061 if (! m->partial)
2062 n_times_set[m1->regno] = 0;
2063 }
2064 }
2065 else if (loop_dump_stream)
2066 fprintf (loop_dump_stream, "not desirable");
2067 }
2068 else if (loop_dump_stream && !m->match)
2069 fprintf (loop_dump_stream, "not safe");
2070
2071 if (loop_dump_stream)
2072 fprintf (loop_dump_stream, "\n");
2073 }
2074
2075 if (new_start == 0)
2076 new_start = loop_start;
2077
2078 /* Go through all the instructions in the loop, making
2079 all the register substitutions scheduled in REG_MAP. */
2080 for (p = new_start; p != end; p = NEXT_INSN (p))
2081 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2082 || GET_CODE (p) == CALL_INSN)
2083 {
2084 replace_regs (PATTERN (p), reg_map, nregs, 0);
2085 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2086 INSN_CODE (p) = -1;
2087 }
2088 }
2089 \f
2090 #if 0
2091 /* Scan X and replace the address of any MEM in it with ADDR.
2092 REG is the address that MEM should have before the replacement. */
2093
2094 static void
2095 replace_call_address (x, reg, addr)
2096 rtx x, reg, addr;
2097 {
2098 register enum rtx_code code;
2099 register int i;
2100 register char *fmt;
2101
2102 if (x == 0)
2103 return;
2104 code = GET_CODE (x);
2105 switch (code)
2106 {
2107 case PC:
2108 case CC0:
2109 case CONST_INT:
2110 case CONST_DOUBLE:
2111 case CONST:
2112 case SYMBOL_REF:
2113 case LABEL_REF:
2114 case REG:
2115 return;
2116
2117 case SET:
2118 /* Short cut for very common case. */
2119 replace_call_address (XEXP (x, 1), reg, addr);
2120 return;
2121
2122 case CALL:
2123 /* Short cut for very common case. */
2124 replace_call_address (XEXP (x, 0), reg, addr);
2125 return;
2126
2127 case MEM:
2128 /* If this MEM uses a reg other than the one we expected,
2129 something is wrong. */
2130 if (XEXP (x, 0) != reg)
2131 abort ();
2132 XEXP (x, 0) = addr;
2133 return;
2134
2135 default:
2136 break;
2137 }
2138
2139 fmt = GET_RTX_FORMAT (code);
2140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2141 {
2142 if (fmt[i] == 'e')
2143 replace_call_address (XEXP (x, i), reg, addr);
2144 if (fmt[i] == 'E')
2145 {
2146 register int j;
2147 for (j = 0; j < XVECLEN (x, i); j++)
2148 replace_call_address (XVECEXP (x, i, j), reg, addr);
2149 }
2150 }
2151 }
2152 #endif
2153 \f
2154 /* Return the number of memory refs to addresses that vary
2155 in the rtx X. */
2156
2157 static int
2158 count_nonfixed_reads (x)
2159 rtx x;
2160 {
2161 register enum rtx_code code;
2162 register int i;
2163 register char *fmt;
2164 int value;
2165
2166 if (x == 0)
2167 return 0;
2168
2169 code = GET_CODE (x);
2170 switch (code)
2171 {
2172 case PC:
2173 case CC0:
2174 case CONST_INT:
2175 case CONST_DOUBLE:
2176 case CONST:
2177 case SYMBOL_REF:
2178 case LABEL_REF:
2179 case REG:
2180 return 0;
2181
2182 case MEM:
2183 return ((invariant_p (XEXP (x, 0)) != 1)
2184 + count_nonfixed_reads (XEXP (x, 0)));
2185
2186 default:
2187 break;
2188 }
2189
2190 value = 0;
2191 fmt = GET_RTX_FORMAT (code);
2192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2193 {
2194 if (fmt[i] == 'e')
2195 value += count_nonfixed_reads (XEXP (x, i));
2196 if (fmt[i] == 'E')
2197 {
2198 register int j;
2199 for (j = 0; j < XVECLEN (x, i); j++)
2200 value += count_nonfixed_reads (XVECEXP (x, i, j));
2201 }
2202 }
2203 return value;
2204 }
2205
2206 \f
2207 #if 0
2208 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2209 Replace it with an instruction to load just the low bytes
2210 if the machine supports such an instruction,
2211 and insert above LOOP_START an instruction to clear the register. */
2212
2213 static void
2214 constant_high_bytes (p, loop_start)
2215 rtx p, loop_start;
2216 {
2217 register rtx new;
2218 register int insn_code_number;
2219
2220 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2221 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2222
2223 new = gen_rtx_SET (VOIDmode,
2224 gen_rtx_STRICT_LOW_PART (VOIDmode,
2225 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2226 SET_DEST (PATTERN (p)),
2227 0)),
2228 XEXP (SET_SRC (PATTERN (p)), 0));
2229 insn_code_number = recog (new, p);
2230
2231 if (insn_code_number)
2232 {
2233 register int i;
2234
2235 /* Clear destination register before the loop. */
2236 emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
2237 const0_rtx),
2238 loop_start);
2239
2240 /* Inside the loop, just load the low part. */
2241 PATTERN (p) = new;
2242 }
2243 }
2244 #endif
2245 \f
2246 /* Scan a loop setting the variables `unknown_address_altered',
2247 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2248 and `loop_has_volatile'.
2249 Also, fill in the array `loop_store_mems'. */
2250
2251 static void
2252 prescan_loop (start, end)
2253 rtx start, end;
2254 {
2255 register int level = 1;
2256 register rtx insn;
2257
2258 unknown_address_altered = 0;
2259 loop_has_call = 0;
2260 loop_has_volatile = 0;
2261 loop_store_mems_idx = 0;
2262
2263 num_mem_sets = 0;
2264 loops_enclosed = 1;
2265 loop_continue = 0;
2266
2267 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2268 insn = NEXT_INSN (insn))
2269 {
2270 if (GET_CODE (insn) == NOTE)
2271 {
2272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2273 {
2274 ++level;
2275 /* Count number of loops contained in this one. */
2276 loops_enclosed++;
2277 }
2278 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2279 {
2280 --level;
2281 if (level == 0)
2282 {
2283 end = insn;
2284 break;
2285 }
2286 }
2287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2288 {
2289 if (level == 1)
2290 loop_continue = insn;
2291 }
2292 }
2293 else if (GET_CODE (insn) == CALL_INSN)
2294 {
2295 if (! CONST_CALL_P (insn))
2296 unknown_address_altered = 1;
2297 loop_has_call = 1;
2298 }
2299 else
2300 {
2301 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2302 {
2303 if (volatile_refs_p (PATTERN (insn)))
2304 loop_has_volatile = 1;
2305
2306 note_stores (PATTERN (insn), note_addr_stored);
2307 }
2308 }
2309 }
2310 }
2311 \f
2312 /* Scan the function looking for loops. Record the start and end of each loop.
2313 Also mark as invalid loops any loops that contain a setjmp or are branched
2314 to from outside the loop. */
2315
2316 static void
2317 find_and_verify_loops (f)
2318 rtx f;
2319 {
2320 rtx insn, label;
2321 int current_loop = -1;
2322 int next_loop = -1;
2323 int loop;
2324
2325 /* If there are jumps to undefined labels,
2326 treat them as jumps out of any/all loops.
2327 This also avoids writing past end of tables when there are no loops. */
2328 uid_loop_num[0] = -1;
2329
2330 /* Find boundaries of loops, mark which loops are contained within
2331 loops, and invalidate loops that have setjmp. */
2332
2333 for (insn = f; insn; insn = NEXT_INSN (insn))
2334 {
2335 if (GET_CODE (insn) == NOTE)
2336 switch (NOTE_LINE_NUMBER (insn))
2337 {
2338 case NOTE_INSN_LOOP_BEG:
2339 loop_number_loop_starts[++next_loop] = insn;
2340 loop_number_loop_ends[next_loop] = 0;
2341 loop_outer_loop[next_loop] = current_loop;
2342 loop_invalid[next_loop] = 0;
2343 loop_number_exit_labels[next_loop] = 0;
2344 loop_number_exit_count[next_loop] = 0;
2345 current_loop = next_loop;
2346 break;
2347
2348 case NOTE_INSN_SETJMP:
2349 /* In this case, we must invalidate our current loop and any
2350 enclosing loop. */
2351 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2352 {
2353 loop_invalid[loop] = 1;
2354 if (loop_dump_stream)
2355 fprintf (loop_dump_stream,
2356 "\nLoop at %d ignored due to setjmp.\n",
2357 INSN_UID (loop_number_loop_starts[loop]));
2358 }
2359 break;
2360
2361 case NOTE_INSN_LOOP_END:
2362 if (current_loop == -1)
2363 abort ();
2364
2365 loop_number_loop_ends[current_loop] = insn;
2366 current_loop = loop_outer_loop[current_loop];
2367 break;
2368
2369 default:
2370 break;
2371 }
2372
2373 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2374 enclosing loop, but this doesn't matter. */
2375 uid_loop_num[INSN_UID (insn)] = current_loop;
2376 }
2377
2378 /* Any loop containing a label used in an initializer must be invalidated,
2379 because it can be jumped into from anywhere. */
2380
2381 for (label = forced_labels; label; label = XEXP (label, 1))
2382 {
2383 int loop_num;
2384
2385 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2386 loop_num != -1;
2387 loop_num = loop_outer_loop[loop_num])
2388 loop_invalid[loop_num] = 1;
2389 }
2390
2391 /* Any loop containing a label used for an exception handler must be
2392 invalidated, because it can be jumped into from anywhere. */
2393
2394 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2395 {
2396 int loop_num;
2397
2398 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2399 loop_num != -1;
2400 loop_num = loop_outer_loop[loop_num])
2401 loop_invalid[loop_num] = 1;
2402 }
2403
2404 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2405 loop that it is not contained within, that loop is marked invalid.
2406 If any INSN or CALL_INSN uses a label's address, then the loop containing
2407 that label is marked invalid, because it could be jumped into from
2408 anywhere.
2409
2410 Also look for blocks of code ending in an unconditional branch that
2411 exits the loop. If such a block is surrounded by a conditional
2412 branch around the block, move the block elsewhere (see below) and
2413 invert the jump to point to the code block. This may eliminate a
2414 label in our loop and will simplify processing by both us and a
2415 possible second cse pass. */
2416
2417 for (insn = f; insn; insn = NEXT_INSN (insn))
2418 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2419 {
2420 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2421
2422 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2423 {
2424 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2425 if (note)
2426 {
2427 int loop_num;
2428
2429 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2430 loop_num != -1;
2431 loop_num = loop_outer_loop[loop_num])
2432 loop_invalid[loop_num] = 1;
2433 }
2434 }
2435
2436 if (GET_CODE (insn) != JUMP_INSN)
2437 continue;
2438
2439 mark_loop_jump (PATTERN (insn), this_loop_num);
2440
2441 /* See if this is an unconditional branch outside the loop. */
2442 if (this_loop_num != -1
2443 && (GET_CODE (PATTERN (insn)) == RETURN
2444 || (simplejump_p (insn)
2445 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2446 != this_loop_num)))
2447 && get_max_uid () < max_uid_for_loop)
2448 {
2449 rtx p;
2450 rtx our_next = next_real_insn (insn);
2451 int dest_loop;
2452 int outer_loop = -1;
2453
2454 /* Go backwards until we reach the start of the loop, a label,
2455 or a JUMP_INSN. */
2456 for (p = PREV_INSN (insn);
2457 GET_CODE (p) != CODE_LABEL
2458 && ! (GET_CODE (p) == NOTE
2459 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2460 && GET_CODE (p) != JUMP_INSN;
2461 p = PREV_INSN (p))
2462 ;
2463
2464 /* Check for the case where we have a jump to an inner nested
2465 loop, and do not perform the optimization in that case. */
2466
2467 if (JUMP_LABEL (insn))
2468 {
2469 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2470 if (dest_loop != -1)
2471 {
2472 for (outer_loop = dest_loop; outer_loop != -1;
2473 outer_loop = loop_outer_loop[outer_loop])
2474 if (outer_loop == this_loop_num)
2475 break;
2476 }
2477 }
2478
2479 /* Make sure that the target of P is within the current loop. */
2480
2481 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2482 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2483 outer_loop = this_loop_num;
2484
2485 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2486 we have a block of code to try to move.
2487
2488 We look backward and then forward from the target of INSN
2489 to find a BARRIER at the same loop depth as the target.
2490 If we find such a BARRIER, we make a new label for the start
2491 of the block, invert the jump in P and point it to that label,
2492 and move the block of code to the spot we found. */
2493
2494 if (outer_loop == -1
2495 && GET_CODE (p) == JUMP_INSN
2496 && JUMP_LABEL (p) != 0
2497 /* Just ignore jumps to labels that were never emitted.
2498 These always indicate compilation errors. */
2499 && INSN_UID (JUMP_LABEL (p)) != 0
2500 && condjump_p (p)
2501 && ! simplejump_p (p)
2502 && next_real_insn (JUMP_LABEL (p)) == our_next)
2503 {
2504 rtx target
2505 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2506 int target_loop_num = uid_loop_num[INSN_UID (target)];
2507 rtx loc;
2508
2509 for (loc = target; loc; loc = PREV_INSN (loc))
2510 if (GET_CODE (loc) == BARRIER
2511 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2512 break;
2513
2514 if (loc == 0)
2515 for (loc = target; loc; loc = NEXT_INSN (loc))
2516 if (GET_CODE (loc) == BARRIER
2517 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2518 break;
2519
2520 if (loc)
2521 {
2522 rtx cond_label = JUMP_LABEL (p);
2523 rtx new_label = get_label_after (p);
2524
2525 /* Ensure our label doesn't go away. */
2526 LABEL_NUSES (cond_label)++;
2527
2528 /* Verify that uid_loop_num is large enough and that
2529 we can invert P. */
2530 if (invert_jump (p, new_label))
2531 {
2532 rtx q, r;
2533
2534 /* Include the BARRIER after INSN and copy the
2535 block after LOC. */
2536 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2537 reorder_insns (new_label, NEXT_INSN (insn), loc);
2538
2539 /* All those insns are now in TARGET_LOOP_NUM. */
2540 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2541 q = NEXT_INSN (q))
2542 uid_loop_num[INSN_UID (q)] = target_loop_num;
2543
2544 /* The label jumped to by INSN is no longer a loop exit.
2545 Unless INSN does not have a label (e.g., it is a
2546 RETURN insn), search loop_number_exit_labels to find
2547 its label_ref, and remove it. Also turn off
2548 LABEL_OUTSIDE_LOOP_P bit. */
2549 if (JUMP_LABEL (insn))
2550 {
2551 int loop_num;
2552
2553 for (q = 0,
2554 r = loop_number_exit_labels[this_loop_num];
2555 r; q = r, r = LABEL_NEXTREF (r))
2556 if (XEXP (r, 0) == JUMP_LABEL (insn))
2557 {
2558 LABEL_OUTSIDE_LOOP_P (r) = 0;
2559 if (q)
2560 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2561 else
2562 loop_number_exit_labels[this_loop_num]
2563 = LABEL_NEXTREF (r);
2564 break;
2565 }
2566
2567 for (loop_num = this_loop_num;
2568 loop_num != -1 && loop_num != target_loop_num;
2569 loop_num = loop_outer_loop[loop_num])
2570 loop_number_exit_count[loop_num]--;
2571
2572 /* If we didn't find it, then something is wrong. */
2573 if (! r)
2574 abort ();
2575 }
2576
2577 /* P is now a jump outside the loop, so it must be put
2578 in loop_number_exit_labels, and marked as such.
2579 The easiest way to do this is to just call
2580 mark_loop_jump again for P. */
2581 mark_loop_jump (PATTERN (p), this_loop_num);
2582
2583 /* If INSN now jumps to the insn after it,
2584 delete INSN. */
2585 if (JUMP_LABEL (insn) != 0
2586 && (next_real_insn (JUMP_LABEL (insn))
2587 == next_real_insn (insn)))
2588 delete_insn (insn);
2589 }
2590
2591 /* Continue the loop after where the conditional
2592 branch used to jump, since the only branch insn
2593 in the block (if it still remains) is an inter-loop
2594 branch and hence needs no processing. */
2595 insn = NEXT_INSN (cond_label);
2596
2597 if (--LABEL_NUSES (cond_label) == 0)
2598 delete_insn (cond_label);
2599
2600 /* This loop will be continued with NEXT_INSN (insn). */
2601 insn = PREV_INSN (insn);
2602 }
2603 }
2604 }
2605 }
2606 }
2607
2608 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2609 loops it is contained in, mark the target loop invalid.
2610
2611 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2612
2613 static void
2614 mark_loop_jump (x, loop_num)
2615 rtx x;
2616 int loop_num;
2617 {
2618 int dest_loop;
2619 int outer_loop;
2620 int i;
2621
2622 switch (GET_CODE (x))
2623 {
2624 case PC:
2625 case USE:
2626 case CLOBBER:
2627 case REG:
2628 case MEM:
2629 case CONST_INT:
2630 case CONST_DOUBLE:
2631 case RETURN:
2632 return;
2633
2634 case CONST:
2635 /* There could be a label reference in here. */
2636 mark_loop_jump (XEXP (x, 0), loop_num);
2637 return;
2638
2639 case PLUS:
2640 case MINUS:
2641 case MULT:
2642 mark_loop_jump (XEXP (x, 0), loop_num);
2643 mark_loop_jump (XEXP (x, 1), loop_num);
2644 return;
2645
2646 case SIGN_EXTEND:
2647 case ZERO_EXTEND:
2648 mark_loop_jump (XEXP (x, 0), loop_num);
2649 return;
2650
2651 case LABEL_REF:
2652 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2653
2654 /* Link together all labels that branch outside the loop. This
2655 is used by final_[bg]iv_value and the loop unrolling code. Also
2656 mark this LABEL_REF so we know that this branch should predict
2657 false. */
2658
2659 /* A check to make sure the label is not in an inner nested loop,
2660 since this does not count as a loop exit. */
2661 if (dest_loop != -1)
2662 {
2663 for (outer_loop = dest_loop; outer_loop != -1;
2664 outer_loop = loop_outer_loop[outer_loop])
2665 if (outer_loop == loop_num)
2666 break;
2667 }
2668 else
2669 outer_loop = -1;
2670
2671 if (loop_num != -1 && outer_loop == -1)
2672 {
2673 LABEL_OUTSIDE_LOOP_P (x) = 1;
2674 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2675 loop_number_exit_labels[loop_num] = x;
2676
2677 for (outer_loop = loop_num;
2678 outer_loop != -1 && outer_loop != dest_loop;
2679 outer_loop = loop_outer_loop[outer_loop])
2680 loop_number_exit_count[outer_loop]++;
2681 }
2682
2683 /* If this is inside a loop, but not in the current loop or one enclosed
2684 by it, it invalidates at least one loop. */
2685
2686 if (dest_loop == -1)
2687 return;
2688
2689 /* We must invalidate every nested loop containing the target of this
2690 label, except those that also contain the jump insn. */
2691
2692 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2693 {
2694 /* Stop when we reach a loop that also contains the jump insn. */
2695 for (outer_loop = loop_num; outer_loop != -1;
2696 outer_loop = loop_outer_loop[outer_loop])
2697 if (dest_loop == outer_loop)
2698 return;
2699
2700 /* If we get here, we know we need to invalidate a loop. */
2701 if (loop_dump_stream && ! loop_invalid[dest_loop])
2702 fprintf (loop_dump_stream,
2703 "\nLoop at %d ignored due to multiple entry points.\n",
2704 INSN_UID (loop_number_loop_starts[dest_loop]));
2705
2706 loop_invalid[dest_loop] = 1;
2707 }
2708 return;
2709
2710 case SET:
2711 /* If this is not setting pc, ignore. */
2712 if (SET_DEST (x) == pc_rtx)
2713 mark_loop_jump (SET_SRC (x), loop_num);
2714 return;
2715
2716 case IF_THEN_ELSE:
2717 mark_loop_jump (XEXP (x, 1), loop_num);
2718 mark_loop_jump (XEXP (x, 2), loop_num);
2719 return;
2720
2721 case PARALLEL:
2722 case ADDR_VEC:
2723 for (i = 0; i < XVECLEN (x, 0); i++)
2724 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2725 return;
2726
2727 case ADDR_DIFF_VEC:
2728 for (i = 0; i < XVECLEN (x, 1); i++)
2729 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2730 return;
2731
2732 default:
2733 /* Treat anything else (such as a symbol_ref)
2734 as a branch out of this loop, but not into any loop. */
2735
2736 if (loop_num != -1)
2737 {
2738 #ifdef HAIFA
2739 LABEL_OUTSIDE_LOOP_P (x) = 1;
2740 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2741 #endif /* HAIFA */
2742
2743 loop_number_exit_labels[loop_num] = x;
2744
2745 for (outer_loop = loop_num; outer_loop != -1;
2746 outer_loop = loop_outer_loop[outer_loop])
2747 loop_number_exit_count[outer_loop]++;
2748 }
2749 return;
2750 }
2751 }
2752 \f
2753 /* Return nonzero if there is a label in the range from
2754 insn INSN to and including the insn whose luid is END
2755 INSN must have an assigned luid (i.e., it must not have
2756 been previously created by loop.c). */
2757
2758 static int
2759 labels_in_range_p (insn, end)
2760 rtx insn;
2761 int end;
2762 {
2763 while (insn && INSN_LUID (insn) <= end)
2764 {
2765 if (GET_CODE (insn) == CODE_LABEL)
2766 return 1;
2767 insn = NEXT_INSN (insn);
2768 }
2769
2770 return 0;
2771 }
2772
2773 /* Record that a memory reference X is being set. */
2774
2775 static void
2776 note_addr_stored (x)
2777 rtx x;
2778 {
2779 register int i;
2780
2781 if (x == 0 || GET_CODE (x) != MEM)
2782 return;
2783
2784 /* Count number of memory writes.
2785 This affects heuristics in strength_reduce. */
2786 num_mem_sets++;
2787
2788 /* BLKmode MEM means all memory is clobbered. */
2789 if (GET_MODE (x) == BLKmode)
2790 unknown_address_altered = 1;
2791
2792 if (unknown_address_altered)
2793 return;
2794
2795 for (i = 0; i < loop_store_mems_idx; i++)
2796 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2797 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2798 {
2799 /* We are storing at the same address as previously noted. Save the
2800 wider reference. */
2801 if (GET_MODE_SIZE (GET_MODE (x))
2802 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2803 loop_store_mems[i] = x;
2804 break;
2805 }
2806
2807 if (i == NUM_STORES)
2808 unknown_address_altered = 1;
2809
2810 else if (i == loop_store_mems_idx)
2811 loop_store_mems[loop_store_mems_idx++] = x;
2812 }
2813 \f
2814 /* Return nonzero if the rtx X is invariant over the current loop.
2815
2816 The value is 2 if we refer to something only conditionally invariant.
2817
2818 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2819 Otherwise, a memory ref is invariant if it does not conflict with
2820 anything stored in `loop_store_mems'. */
2821
2822 int
2823 invariant_p (x)
2824 register rtx x;
2825 {
2826 register int i;
2827 register enum rtx_code code;
2828 register char *fmt;
2829 int conditional = 0;
2830
2831 if (x == 0)
2832 return 1;
2833 code = GET_CODE (x);
2834 switch (code)
2835 {
2836 case CONST_INT:
2837 case CONST_DOUBLE:
2838 case SYMBOL_REF:
2839 case CONST:
2840 return 1;
2841
2842 case LABEL_REF:
2843 /* A LABEL_REF is normally invariant, however, if we are unrolling
2844 loops, and this label is inside the loop, then it isn't invariant.
2845 This is because each unrolled copy of the loop body will have
2846 a copy of this label. If this was invariant, then an insn loading
2847 the address of this label into a register might get moved outside
2848 the loop, and then each loop body would end up using the same label.
2849
2850 We don't know the loop bounds here though, so just fail for all
2851 labels. */
2852 if (flag_unroll_loops)
2853 return 0;
2854 else
2855 return 1;
2856
2857 case PC:
2858 case CC0:
2859 case UNSPEC_VOLATILE:
2860 return 0;
2861
2862 case REG:
2863 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2864 since the reg might be set by initialization within the loop. */
2865
2866 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2867 || x == arg_pointer_rtx)
2868 && ! current_function_has_nonlocal_goto)
2869 return 1;
2870
2871 if (loop_has_call
2872 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2873 return 0;
2874
2875 if (n_times_set[REGNO (x)] < 0)
2876 return 2;
2877
2878 return n_times_set[REGNO (x)] == 0;
2879
2880 case MEM:
2881 /* Volatile memory references must be rejected. Do this before
2882 checking for read-only items, so that volatile read-only items
2883 will be rejected also. */
2884 if (MEM_VOLATILE_P (x))
2885 return 0;
2886
2887 /* Read-only items (such as constants in a constant pool) are
2888 invariant if their address is. */
2889 if (RTX_UNCHANGING_P (x))
2890 break;
2891
2892 /* If we filled the table (or had a subroutine call), any location
2893 in memory could have been clobbered. */
2894 if (unknown_address_altered)
2895 return 0;
2896
2897 /* See if there is any dependence between a store and this load. */
2898 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2899 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2900 return 0;
2901
2902 /* It's not invalidated by a store in memory
2903 but we must still verify the address is invariant. */
2904 break;
2905
2906 case ASM_OPERANDS:
2907 /* Don't mess with insns declared volatile. */
2908 if (MEM_VOLATILE_P (x))
2909 return 0;
2910 break;
2911
2912 default:
2913 break;
2914 }
2915
2916 fmt = GET_RTX_FORMAT (code);
2917 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2918 {
2919 if (fmt[i] == 'e')
2920 {
2921 int tem = invariant_p (XEXP (x, i));
2922 if (tem == 0)
2923 return 0;
2924 if (tem == 2)
2925 conditional = 1;
2926 }
2927 else if (fmt[i] == 'E')
2928 {
2929 register int j;
2930 for (j = 0; j < XVECLEN (x, i); j++)
2931 {
2932 int tem = invariant_p (XVECEXP (x, i, j));
2933 if (tem == 0)
2934 return 0;
2935 if (tem == 2)
2936 conditional = 1;
2937 }
2938
2939 }
2940 }
2941
2942 return 1 + conditional;
2943 }
2944
2945 \f
2946 /* Return nonzero if all the insns in the loop that set REG
2947 are INSN and the immediately following insns,
2948 and if each of those insns sets REG in an invariant way
2949 (not counting uses of REG in them).
2950
2951 The value is 2 if some of these insns are only conditionally invariant.
2952
2953 We assume that INSN itself is the first set of REG
2954 and that its source is invariant. */
2955
2956 static int
2957 consec_sets_invariant_p (reg, n_sets, insn)
2958 int n_sets;
2959 rtx reg, insn;
2960 {
2961 register rtx p = insn;
2962 register int regno = REGNO (reg);
2963 rtx temp;
2964 /* Number of sets we have to insist on finding after INSN. */
2965 int count = n_sets - 1;
2966 int old = n_times_set[regno];
2967 int value = 0;
2968 int this;
2969
2970 /* If N_SETS hit the limit, we can't rely on its value. */
2971 if (n_sets == 127)
2972 return 0;
2973
2974 n_times_set[regno] = 0;
2975
2976 while (count > 0)
2977 {
2978 register enum rtx_code code;
2979 rtx set;
2980
2981 p = NEXT_INSN (p);
2982 code = GET_CODE (p);
2983
2984 /* If library call, skip to end of of it. */
2985 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2986 p = XEXP (temp, 0);
2987
2988 this = 0;
2989 if (code == INSN
2990 && (set = single_set (p))
2991 && GET_CODE (SET_DEST (set)) == REG
2992 && REGNO (SET_DEST (set)) == regno)
2993 {
2994 this = invariant_p (SET_SRC (set));
2995 if (this != 0)
2996 value |= this;
2997 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2998 {
2999 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3000 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3001 notes are OK. */
3002 this = (CONSTANT_P (XEXP (temp, 0))
3003 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3004 && invariant_p (XEXP (temp, 0))));
3005 if (this != 0)
3006 value |= this;
3007 }
3008 }
3009 if (this != 0)
3010 count--;
3011 else if (code != NOTE)
3012 {
3013 n_times_set[regno] = old;
3014 return 0;
3015 }
3016 }
3017
3018 n_times_set[regno] = old;
3019 /* If invariant_p ever returned 2, we return 2. */
3020 return 1 + (value & 2);
3021 }
3022
3023 #if 0
3024 /* I don't think this condition is sufficient to allow INSN
3025 to be moved, so we no longer test it. */
3026
3027 /* Return 1 if all insns in the basic block of INSN and following INSN
3028 that set REG are invariant according to TABLE. */
3029
3030 static int
3031 all_sets_invariant_p (reg, insn, table)
3032 rtx reg, insn;
3033 short *table;
3034 {
3035 register rtx p = insn;
3036 register int regno = REGNO (reg);
3037
3038 while (1)
3039 {
3040 register enum rtx_code code;
3041 p = NEXT_INSN (p);
3042 code = GET_CODE (p);
3043 if (code == CODE_LABEL || code == JUMP_INSN)
3044 return 1;
3045 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3046 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3047 && REGNO (SET_DEST (PATTERN (p))) == regno)
3048 {
3049 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3050 return 0;
3051 }
3052 }
3053 }
3054 #endif /* 0 */
3055 \f
3056 /* Look at all uses (not sets) of registers in X. For each, if it is
3057 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3058 a different insn, set USAGE[REGNO] to const0_rtx. */
3059
3060 static void
3061 find_single_use_in_loop (insn, x, usage)
3062 rtx insn;
3063 rtx x;
3064 rtx *usage;
3065 {
3066 enum rtx_code code = GET_CODE (x);
3067 char *fmt = GET_RTX_FORMAT (code);
3068 int i, j;
3069
3070 if (code == REG)
3071 usage[REGNO (x)]
3072 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
3073 ? const0_rtx : insn;
3074
3075 else if (code == SET)
3076 {
3077 /* Don't count SET_DEST if it is a REG; otherwise count things
3078 in SET_DEST because if a register is partially modified, it won't
3079 show up as a potential movable so we don't care how USAGE is set
3080 for it. */
3081 if (GET_CODE (SET_DEST (x)) != REG)
3082 find_single_use_in_loop (insn, SET_DEST (x), usage);
3083 find_single_use_in_loop (insn, SET_SRC (x), usage);
3084 }
3085 else
3086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3087 {
3088 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3089 find_single_use_in_loop (insn, XEXP (x, i), usage);
3090 else if (fmt[i] == 'E')
3091 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3092 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3093 }
3094 }
3095 \f
3096 /* Increment N_TIMES_SET at the index of each register
3097 that is modified by an insn between FROM and TO.
3098 If the value of an element of N_TIMES_SET becomes 127 or more,
3099 stop incrementing it, to avoid overflow.
3100
3101 Store in SINGLE_USAGE[I] the single insn in which register I is
3102 used, if it is only used once. Otherwise, it is set to 0 (for no
3103 uses) or const0_rtx for more than one use. This parameter may be zero,
3104 in which case this processing is not done.
3105
3106 Store in *COUNT_PTR the number of actual instruction
3107 in the loop. We use this to decide what is worth moving out. */
3108
3109 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3110 In that case, it is the insn that last set reg n. */
3111
3112 static void
3113 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3114 register rtx from, to;
3115 char *may_not_move;
3116 rtx *single_usage;
3117 int *count_ptr;
3118 int nregs;
3119 {
3120 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3121 register rtx insn;
3122 register int count = 0;
3123 register rtx dest;
3124
3125 bzero ((char *) last_set, nregs * sizeof (rtx));
3126 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3127 {
3128 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3129 {
3130 ++count;
3131
3132 /* If requested, record registers that have exactly one use. */
3133 if (single_usage)
3134 {
3135 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3136
3137 /* Include uses in REG_EQUAL notes. */
3138 if (REG_NOTES (insn))
3139 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3140 }
3141
3142 if (GET_CODE (PATTERN (insn)) == CLOBBER
3143 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3144 /* Don't move a reg that has an explicit clobber.
3145 We might do so sometimes, but it's not worth the pain. */
3146 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3147
3148 if (GET_CODE (PATTERN (insn)) == SET
3149 || GET_CODE (PATTERN (insn)) == CLOBBER)
3150 {
3151 dest = SET_DEST (PATTERN (insn));
3152 while (GET_CODE (dest) == SUBREG
3153 || GET_CODE (dest) == ZERO_EXTRACT
3154 || GET_CODE (dest) == SIGN_EXTRACT
3155 || GET_CODE (dest) == STRICT_LOW_PART)
3156 dest = XEXP (dest, 0);
3157 if (GET_CODE (dest) == REG)
3158 {
3159 register int regno = REGNO (dest);
3160 /* If this is the first setting of this reg
3161 in current basic block, and it was set before,
3162 it must be set in two basic blocks, so it cannot
3163 be moved out of the loop. */
3164 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3165 may_not_move[regno] = 1;
3166 /* If this is not first setting in current basic block,
3167 see if reg was used in between previous one and this.
3168 If so, neither one can be moved. */
3169 if (last_set[regno] != 0
3170 && reg_used_between_p (dest, last_set[regno], insn))
3171 may_not_move[regno] = 1;
3172 if (n_times_set[regno] < 127)
3173 ++n_times_set[regno];
3174 last_set[regno] = insn;
3175 }
3176 }
3177 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3178 {
3179 register int i;
3180 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3181 {
3182 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3183 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3184 /* Don't move a reg that has an explicit clobber.
3185 It's not worth the pain to try to do it correctly. */
3186 may_not_move[REGNO (XEXP (x, 0))] = 1;
3187
3188 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3189 {
3190 dest = SET_DEST (x);
3191 while (GET_CODE (dest) == SUBREG
3192 || GET_CODE (dest) == ZERO_EXTRACT
3193 || GET_CODE (dest) == SIGN_EXTRACT
3194 || GET_CODE (dest) == STRICT_LOW_PART)
3195 dest = XEXP (dest, 0);
3196 if (GET_CODE (dest) == REG)
3197 {
3198 register int regno = REGNO (dest);
3199 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3200 may_not_move[regno] = 1;
3201 if (last_set[regno] != 0
3202 && reg_used_between_p (dest, last_set[regno], insn))
3203 may_not_move[regno] = 1;
3204 if (n_times_set[regno] < 127)
3205 ++n_times_set[regno];
3206 last_set[regno] = insn;
3207 }
3208 }
3209 }
3210 }
3211 }
3212
3213 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3214 bzero ((char *) last_set, nregs * sizeof (rtx));
3215 }
3216 *count_ptr = count;
3217 }
3218 \f
3219 /* Given a loop that is bounded by LOOP_START and LOOP_END
3220 and that is entered at SCAN_START,
3221 return 1 if the register set in SET contained in insn INSN is used by
3222 any insn that precedes INSN in cyclic order starting
3223 from the loop entry point.
3224
3225 We don't want to use INSN_LUID here because if we restrict INSN to those
3226 that have a valid INSN_LUID, it means we cannot move an invariant out
3227 from an inner loop past two loops. */
3228
3229 static int
3230 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3231 rtx set, insn, loop_start, scan_start, loop_end;
3232 {
3233 rtx reg = SET_DEST (set);
3234 rtx p;
3235
3236 /* Scan forward checking for register usage. If we hit INSN, we
3237 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3238 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3239 {
3240 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3241 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3242 return 1;
3243
3244 if (p == loop_end)
3245 p = loop_start;
3246 }
3247
3248 return 0;
3249 }
3250 \f
3251 /* A "basic induction variable" or biv is a pseudo reg that is set
3252 (within this loop) only by incrementing or decrementing it. */
3253 /* A "general induction variable" or giv is a pseudo reg whose
3254 value is a linear function of a biv. */
3255
3256 /* Bivs are recognized by `basic_induction_var';
3257 Givs by `general_induct_var'. */
3258
3259 /* Indexed by register number, indicates whether or not register is an
3260 induction variable, and if so what type. */
3261
3262 enum iv_mode *reg_iv_type;
3263
3264 /* Indexed by register number, contains pointer to `struct induction'
3265 if register is an induction variable. This holds general info for
3266 all induction variables. */
3267
3268 struct induction **reg_iv_info;
3269
3270 /* Indexed by register number, contains pointer to `struct iv_class'
3271 if register is a basic induction variable. This holds info describing
3272 the class (a related group) of induction variables that the biv belongs
3273 to. */
3274
3275 struct iv_class **reg_biv_class;
3276
3277 /* The head of a list which links together (via the next field)
3278 every iv class for the current loop. */
3279
3280 struct iv_class *loop_iv_list;
3281
3282 /* Communication with routines called via `note_stores'. */
3283
3284 static rtx note_insn;
3285
3286 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3287
3288 static rtx addr_placeholder;
3289
3290 /* ??? Unfinished optimizations, and possible future optimizations,
3291 for the strength reduction code. */
3292
3293 /* ??? There is one more optimization you might be interested in doing: to
3294 allocate pseudo registers for frequently-accessed memory locations.
3295 If the same memory location is referenced each time around, it might
3296 be possible to copy it into a register before and out after.
3297 This is especially useful when the memory location is a variable which
3298 is in a stack slot because somewhere its address is taken. If the
3299 loop doesn't contain a function call and the variable isn't volatile,
3300 it is safe to keep the value in a register for the duration of the
3301 loop. One tricky thing is that the copying of the value back from the
3302 register has to be done on all exits from the loop. You need to check that
3303 all the exits from the loop go to the same place. */
3304
3305 /* ??? The interaction of biv elimination, and recognition of 'constant'
3306 bivs, may cause problems. */
3307
3308 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3309 performance problems.
3310
3311 Perhaps don't eliminate things that can be combined with an addressing
3312 mode. Find all givs that have the same biv, mult_val, and add_val;
3313 then for each giv, check to see if its only use dies in a following
3314 memory address. If so, generate a new memory address and check to see
3315 if it is valid. If it is valid, then store the modified memory address,
3316 otherwise, mark the giv as not done so that it will get its own iv. */
3317
3318 /* ??? Could try to optimize branches when it is known that a biv is always
3319 positive. */
3320
3321 /* ??? When replace a biv in a compare insn, we should replace with closest
3322 giv so that an optimized branch can still be recognized by the combiner,
3323 e.g. the VAX acb insn. */
3324
3325 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3326 was rerun in loop_optimize whenever a register was added or moved.
3327 Also, some of the optimizations could be a little less conservative. */
3328 \f
3329 /* Perform strength reduction and induction variable elimination. */
3330
3331 /* Pseudo registers created during this function will be beyond the last
3332 valid index in several tables including n_times_set and regno_last_uid.
3333 This does not cause a problem here, because the added registers cannot be
3334 givs outside of their loop, and hence will never be reconsidered.
3335 But scan_loop must check regnos to make sure they are in bounds. */
3336
3337 static void
3338 strength_reduce (scan_start, end, loop_top, insn_count,
3339 loop_start, loop_end, unroll_p)
3340 rtx scan_start;
3341 rtx end;
3342 rtx loop_top;
3343 int insn_count;
3344 rtx loop_start;
3345 rtx loop_end;
3346 int unroll_p;
3347 {
3348 rtx p;
3349 rtx set;
3350 rtx inc_val;
3351 rtx mult_val;
3352 rtx dest_reg;
3353 /* This is 1 if current insn is not executed at least once for every loop
3354 iteration. */
3355 int not_every_iteration = 0;
3356 /* This is 1 if current insn may be executed more than once for every
3357 loop iteration. */
3358 int maybe_multiple = 0;
3359 /* Temporary list pointers for traversing loop_iv_list. */
3360 struct iv_class *bl, **backbl;
3361 /* Ratio of extra register life span we can justify
3362 for saving an instruction. More if loop doesn't call subroutines
3363 since in that case saving an insn makes more difference
3364 and more registers are available. */
3365 /* ??? could set this to last value of threshold in move_movables */
3366 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3367 /* Map of pseudo-register replacements. */
3368 rtx *reg_map;
3369 int call_seen;
3370 rtx test;
3371 rtx end_insert_before;
3372 int loop_depth = 0;
3373
3374 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3375 * sizeof (enum iv_mode *));
3376 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3377 reg_iv_info = (struct induction **)
3378 alloca (max_reg_before_loop * sizeof (struct induction *));
3379 bzero ((char *) reg_iv_info, (max_reg_before_loop
3380 * sizeof (struct induction *)));
3381 reg_biv_class = (struct iv_class **)
3382 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3383 bzero ((char *) reg_biv_class, (max_reg_before_loop
3384 * sizeof (struct iv_class *)));
3385
3386 loop_iv_list = 0;
3387 addr_placeholder = gen_reg_rtx (Pmode);
3388
3389 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3390 must be put before this insn, so that they will appear in the right
3391 order (i.e. loop order).
3392
3393 If loop_end is the end of the current function, then emit a
3394 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3395 dummy note insn. */
3396 if (NEXT_INSN (loop_end) != 0)
3397 end_insert_before = NEXT_INSN (loop_end);
3398 else
3399 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3400
3401 /* Scan through loop to find all possible bivs. */
3402
3403 p = scan_start;
3404 while (1)
3405 {
3406 p = NEXT_INSN (p);
3407 /* At end of a straight-in loop, we are done.
3408 At end of a loop entered at the bottom, scan the top. */
3409 if (p == scan_start)
3410 break;
3411 if (p == end)
3412 {
3413 if (loop_top != 0)
3414 p = loop_top;
3415 else
3416 break;
3417 if (p == scan_start)
3418 break;
3419 }
3420
3421 if (GET_CODE (p) == INSN
3422 && (set = single_set (p))
3423 && GET_CODE (SET_DEST (set)) == REG)
3424 {
3425 dest_reg = SET_DEST (set);
3426 if (REGNO (dest_reg) < max_reg_before_loop
3427 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3428 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3429 {
3430 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3431 dest_reg, p, &inc_val, &mult_val))
3432 {
3433 /* It is a possible basic induction variable.
3434 Create and initialize an induction structure for it. */
3435
3436 struct induction *v
3437 = (struct induction *) alloca (sizeof (struct induction));
3438
3439 record_biv (v, p, dest_reg, inc_val, mult_val,
3440 not_every_iteration, maybe_multiple);
3441 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3442 }
3443 else if (REGNO (dest_reg) < max_reg_before_loop)
3444 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3445 }
3446 }
3447
3448 /* Past CODE_LABEL, we get to insns that may be executed multiple
3449 times. The only way we can be sure that they can't is if every
3450 every jump insn between here and the end of the loop either
3451 returns, exits the loop, is a forward jump, or is a jump
3452 to the loop start. */
3453
3454 if (GET_CODE (p) == CODE_LABEL)
3455 {
3456 rtx insn = p;
3457
3458 maybe_multiple = 0;
3459
3460 while (1)
3461 {
3462 insn = NEXT_INSN (insn);
3463 if (insn == scan_start)
3464 break;
3465 if (insn == end)
3466 {
3467 if (loop_top != 0)
3468 insn = loop_top;
3469 else
3470 break;
3471 if (insn == scan_start)
3472 break;
3473 }
3474
3475 if (GET_CODE (insn) == JUMP_INSN
3476 && GET_CODE (PATTERN (insn)) != RETURN
3477 && (! condjump_p (insn)
3478 || (JUMP_LABEL (insn) != 0
3479 && JUMP_LABEL (insn) != scan_start
3480 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3481 || INSN_UID (insn) >= max_uid_for_loop
3482 || (INSN_LUID (JUMP_LABEL (insn))
3483 < INSN_LUID (insn))))))
3484 {
3485 maybe_multiple = 1;
3486 break;
3487 }
3488 }
3489 }
3490
3491 /* Past a jump, we get to insns for which we can't count
3492 on whether they will be executed during each iteration. */
3493 /* This code appears twice in strength_reduce. There is also similar
3494 code in scan_loop. */
3495 if (GET_CODE (p) == JUMP_INSN
3496 /* If we enter the loop in the middle, and scan around to the
3497 beginning, don't set not_every_iteration for that.
3498 This can be any kind of jump, since we want to know if insns
3499 will be executed if the loop is executed. */
3500 && ! (JUMP_LABEL (p) == loop_top
3501 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3502 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3503 {
3504 rtx label = 0;
3505
3506 /* If this is a jump outside the loop, then it also doesn't
3507 matter. Check to see if the target of this branch is on the
3508 loop_number_exits_labels list. */
3509
3510 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3511 label;
3512 label = LABEL_NEXTREF (label))
3513 if (XEXP (label, 0) == JUMP_LABEL (p))
3514 break;
3515
3516 if (! label)
3517 not_every_iteration = 1;
3518 }
3519
3520 else if (GET_CODE (p) == NOTE)
3521 {
3522 /* At the virtual top of a converted loop, insns are again known to
3523 be executed each iteration: logically, the loop begins here
3524 even though the exit code has been duplicated. */
3525 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3526 not_every_iteration = 0;
3527 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3528 loop_depth++;
3529 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3530 loop_depth--;
3531 }
3532
3533 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3534 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3535 or not an insn is known to be executed each iteration of the
3536 loop, whether or not any iterations are known to occur.
3537
3538 Therefore, if we have just passed a label and have no more labels
3539 between here and the test insn of the loop, we know these insns
3540 will be executed each iteration. */
3541
3542 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3543 && no_labels_between_p (p, loop_end))
3544 not_every_iteration = 0;
3545 }
3546
3547 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3548 Make a sanity check against n_times_set. */
3549 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3550 {
3551 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3552 /* Above happens if register modified by subreg, etc. */
3553 /* Make sure it is not recognized as a basic induction var: */
3554 || n_times_set[bl->regno] != bl->biv_count
3555 /* If never incremented, it is invariant that we decided not to
3556 move. So leave it alone. */
3557 || ! bl->incremented)
3558 {
3559 if (loop_dump_stream)
3560 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3561 bl->regno,
3562 (reg_iv_type[bl->regno] != BASIC_INDUCT
3563 ? "not induction variable"
3564 : (! bl->incremented ? "never incremented"
3565 : "count error")));
3566
3567 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3568 *backbl = bl->next;
3569 }
3570 else
3571 {
3572 backbl = &bl->next;
3573
3574 if (loop_dump_stream)
3575 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3576 }
3577 }
3578
3579 /* Exit if there are no bivs. */
3580 if (! loop_iv_list)
3581 {
3582 /* Can still unroll the loop anyways, but indicate that there is no
3583 strength reduction info available. */
3584 if (unroll_p)
3585 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3586
3587 return;
3588 }
3589
3590 /* Find initial value for each biv by searching backwards from loop_start,
3591 halting at first label. Also record any test condition. */
3592
3593 call_seen = 0;
3594 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3595 {
3596 note_insn = p;
3597
3598 if (GET_CODE (p) == CALL_INSN)
3599 call_seen = 1;
3600
3601 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3602 || GET_CODE (p) == CALL_INSN)
3603 note_stores (PATTERN (p), record_initial);
3604
3605 /* Record any test of a biv that branches around the loop if no store
3606 between it and the start of loop. We only care about tests with
3607 constants and registers and only certain of those. */
3608 if (GET_CODE (p) == JUMP_INSN
3609 && JUMP_LABEL (p) != 0
3610 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3611 && (test = get_condition_for_loop (p)) != 0
3612 && GET_CODE (XEXP (test, 0)) == REG
3613 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3614 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3615 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3616 && bl->init_insn == 0)
3617 {
3618 /* If an NE test, we have an initial value! */
3619 if (GET_CODE (test) == NE)
3620 {
3621 bl->init_insn = p;
3622 bl->init_set = gen_rtx_SET (VOIDmode,
3623 XEXP (test, 0), XEXP (test, 1));
3624 }
3625 else
3626 bl->initial_test = test;
3627 }
3628 }
3629
3630 /* Look at the each biv and see if we can say anything better about its
3631 initial value from any initializing insns set up above. (This is done
3632 in two passes to avoid missing SETs in a PARALLEL.) */
3633 for (bl = loop_iv_list; bl; bl = bl->next)
3634 {
3635 rtx src;
3636 rtx note;
3637
3638 if (! bl->init_insn)
3639 continue;
3640
3641 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3642 is a constant, use the value of that. */
3643 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3644 && CONSTANT_P (XEXP (note, 0)))
3645 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3646 && CONSTANT_P (XEXP (note, 0))))
3647 src = XEXP (note, 0);
3648 else
3649 src = SET_SRC (bl->init_set);
3650
3651 if (loop_dump_stream)
3652 fprintf (loop_dump_stream,
3653 "Biv %d initialized at insn %d: initial value ",
3654 bl->regno, INSN_UID (bl->init_insn));
3655
3656 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3657 || GET_MODE (src) == VOIDmode)
3658 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3659 {
3660 bl->initial_value = src;
3661
3662 if (loop_dump_stream)
3663 {
3664 if (GET_CODE (src) == CONST_INT)
3665 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3666 else
3667 {
3668 print_rtl (loop_dump_stream, src);
3669 fprintf (loop_dump_stream, "\n");
3670 }
3671 }
3672 }
3673 else
3674 {
3675 /* Biv initial value is not simple move,
3676 so let it keep initial value of "itself". */
3677
3678 if (loop_dump_stream)
3679 fprintf (loop_dump_stream, "is complex\n");
3680 }
3681 }
3682
3683 /* Search the loop for general induction variables. */
3684
3685 /* A register is a giv if: it is only set once, it is a function of a
3686 biv and a constant (or invariant), and it is not a biv. */
3687
3688 not_every_iteration = 0;
3689 loop_depth = 0;
3690 p = scan_start;
3691 while (1)
3692 {
3693 p = NEXT_INSN (p);
3694 /* At end of a straight-in loop, we are done.
3695 At end of a loop entered at the bottom, scan the top. */
3696 if (p == scan_start)
3697 break;
3698 if (p == end)
3699 {
3700 if (loop_top != 0)
3701 p = loop_top;
3702 else
3703 break;
3704 if (p == scan_start)
3705 break;
3706 }
3707
3708 /* Look for a general induction variable in a register. */
3709 if (GET_CODE (p) == INSN
3710 && (set = single_set (p))
3711 && GET_CODE (SET_DEST (set)) == REG
3712 && ! may_not_optimize[REGNO (SET_DEST (set))])
3713 {
3714 rtx src_reg;
3715 rtx add_val;
3716 rtx mult_val;
3717 int benefit;
3718 rtx regnote = 0;
3719
3720 dest_reg = SET_DEST (set);
3721 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3722 continue;
3723
3724 if (/* SET_SRC is a giv. */
3725 ((benefit = general_induction_var (SET_SRC (set),
3726 &src_reg, &add_val,
3727 &mult_val))
3728 /* Equivalent expression is a giv. */
3729 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3730 && (benefit = general_induction_var (XEXP (regnote, 0),
3731 &src_reg,
3732 &add_val, &mult_val))))
3733 /* Don't try to handle any regs made by loop optimization.
3734 We have nothing on them in regno_first_uid, etc. */
3735 && REGNO (dest_reg) < max_reg_before_loop
3736 /* Don't recognize a BASIC_INDUCT_VAR here. */
3737 && dest_reg != src_reg
3738 /* This must be the only place where the register is set. */
3739 && (n_times_set[REGNO (dest_reg)] == 1
3740 /* or all sets must be consecutive and make a giv. */
3741 || (benefit = consec_sets_giv (benefit, p,
3742 src_reg, dest_reg,
3743 &add_val, &mult_val))))
3744 {
3745 int count;
3746 struct induction *v
3747 = (struct induction *) alloca (sizeof (struct induction));
3748 rtx temp;
3749
3750 /* If this is a library call, increase benefit. */
3751 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3752 benefit += libcall_benefit (p);
3753
3754 /* Skip the consecutive insns, if there are any. */
3755 for (count = n_times_set[REGNO (dest_reg)] - 1;
3756 count > 0; count--)
3757 {
3758 /* If first insn of libcall sequence, skip to end.
3759 Do this at start of loop, since INSN is guaranteed to
3760 be an insn here. */
3761 if (GET_CODE (p) != NOTE
3762 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3763 p = XEXP (temp, 0);
3764
3765 do p = NEXT_INSN (p);
3766 while (GET_CODE (p) == NOTE);
3767 }
3768
3769 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3770 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3771 loop_end);
3772
3773 }
3774 }
3775
3776 #ifndef DONT_REDUCE_ADDR
3777 /* Look for givs which are memory addresses. */
3778 /* This resulted in worse code on a VAX 8600. I wonder if it
3779 still does. */
3780 if (GET_CODE (p) == INSN)
3781 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3782 loop_end);
3783 #endif
3784
3785 /* Update the status of whether giv can derive other givs. This can
3786 change when we pass a label or an insn that updates a biv. */
3787 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3788 || GET_CODE (p) == CODE_LABEL)
3789 update_giv_derive (p);
3790
3791 /* Past a jump, we get to insns for which we can't count
3792 on whether they will be executed during each iteration. */
3793 /* This code appears twice in strength_reduce. There is also similar
3794 code in scan_loop. */
3795 if (GET_CODE (p) == JUMP_INSN
3796 /* If we enter the loop in the middle, and scan around to the
3797 beginning, don't set not_every_iteration for that.
3798 This can be any kind of jump, since we want to know if insns
3799 will be executed if the loop is executed. */
3800 && ! (JUMP_LABEL (p) == loop_top
3801 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3802 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3803 {
3804 rtx label = 0;
3805
3806 /* If this is a jump outside the loop, then it also doesn't
3807 matter. Check to see if the target of this branch is on the
3808 loop_number_exits_labels list. */
3809
3810 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3811 label;
3812 label = LABEL_NEXTREF (label))
3813 if (XEXP (label, 0) == JUMP_LABEL (p))
3814 break;
3815
3816 if (! label)
3817 not_every_iteration = 1;
3818 }
3819
3820 else if (GET_CODE (p) == NOTE)
3821 {
3822 /* At the virtual top of a converted loop, insns are again known to
3823 be executed each iteration: logically, the loop begins here
3824 even though the exit code has been duplicated. */
3825 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3826 not_every_iteration = 0;
3827 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3828 loop_depth++;
3829 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3830 loop_depth--;
3831 }
3832
3833 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3834 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3835 or not an insn is known to be executed each iteration of the
3836 loop, whether or not any iterations are known to occur.
3837
3838 Therefore, if we have just passed a label and have no more labels
3839 between here and the test insn of the loop, we know these insns
3840 will be executed each iteration. */
3841
3842 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3843 && no_labels_between_p (p, loop_end))
3844 not_every_iteration = 0;
3845 }
3846
3847 /* Try to calculate and save the number of loop iterations. This is
3848 set to zero if the actual number can not be calculated. This must
3849 be called after all giv's have been identified, since otherwise it may
3850 fail if the iteration variable is a giv. */
3851
3852 loop_n_iterations = loop_iterations (loop_start, loop_end);
3853
3854 /* Now for each giv for which we still don't know whether or not it is
3855 replaceable, check to see if it is replaceable because its final value
3856 can be calculated. This must be done after loop_iterations is called,
3857 so that final_giv_value will work correctly. */
3858
3859 for (bl = loop_iv_list; bl; bl = bl->next)
3860 {
3861 struct induction *v;
3862
3863 for (v = bl->giv; v; v = v->next_iv)
3864 if (! v->replaceable && ! v->not_replaceable)
3865 check_final_value (v, loop_start, loop_end);
3866 }
3867
3868 /* Try to prove that the loop counter variable (if any) is always
3869 nonnegative; if so, record that fact with a REG_NONNEG note
3870 so that "decrement and branch until zero" insn can be used. */
3871 check_dbra_loop (loop_end, insn_count, loop_start);
3872
3873 #ifdef HAIFA
3874 /* record loop-variables relevant for BCT optimization before unrolling
3875 the loop. Unrolling may update part of this information, and the
3876 correct data will be used for generating the BCT. */
3877 #ifdef HAVE_decrement_and_branch_on_count
3878 if (HAVE_decrement_and_branch_on_count)
3879 analyze_loop_iterations (loop_start, loop_end);
3880 #endif
3881 #endif /* HAIFA */
3882
3883 /* Create reg_map to hold substitutions for replaceable giv regs. */
3884 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3885 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3886
3887 /* Examine each iv class for feasibility of strength reduction/induction
3888 variable elimination. */
3889
3890 for (bl = loop_iv_list; bl; bl = bl->next)
3891 {
3892 struct induction *v;
3893 int benefit;
3894 int all_reduced;
3895 rtx final_value = 0;
3896
3897 /* Test whether it will be possible to eliminate this biv
3898 provided all givs are reduced. This is possible if either
3899 the reg is not used outside the loop, or we can compute
3900 what its final value will be.
3901
3902 For architectures with a decrement_and_branch_until_zero insn,
3903 don't do this if we put a REG_NONNEG note on the endtest for
3904 this biv. */
3905
3906 /* Compare against bl->init_insn rather than loop_start.
3907 We aren't concerned with any uses of the biv between
3908 init_insn and loop_start since these won't be affected
3909 by the value of the biv elsewhere in the function, so
3910 long as init_insn doesn't use the biv itself.
3911 March 14, 1989 -- self@bayes.arc.nasa.gov */
3912
3913 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3914 && bl->init_insn
3915 && INSN_UID (bl->init_insn) < max_uid_for_loop
3916 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3917 #ifdef HAVE_decrement_and_branch_until_zero
3918 && ! bl->nonneg
3919 #endif
3920 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3921 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3922 #ifdef HAVE_decrement_and_branch_until_zero
3923 && ! bl->nonneg
3924 #endif
3925 ))
3926 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3927 threshold, insn_count);
3928 else
3929 {
3930 if (loop_dump_stream)
3931 {
3932 fprintf (loop_dump_stream,
3933 "Cannot eliminate biv %d.\n",
3934 bl->regno);
3935 fprintf (loop_dump_stream,
3936 "First use: insn %d, last use: insn %d.\n",
3937 REGNO_FIRST_UID (bl->regno),
3938 REGNO_LAST_UID (bl->regno));
3939 }
3940 }
3941
3942 /* Combine all giv's for this iv_class. */
3943 combine_givs (bl);
3944
3945 /* This will be true at the end, if all givs which depend on this
3946 biv have been strength reduced.
3947 We can't (currently) eliminate the biv unless this is so. */
3948 all_reduced = 1;
3949
3950 /* Check each giv in this class to see if we will benefit by reducing
3951 it. Skip giv's combined with others. */
3952 for (v = bl->giv; v; v = v->next_iv)
3953 {
3954 struct induction *tv;
3955
3956 if (v->ignore || v->same)
3957 continue;
3958
3959 benefit = v->benefit;
3960
3961 /* Reduce benefit if not replaceable, since we will insert
3962 a move-insn to replace the insn that calculates this giv.
3963 Don't do this unless the giv is a user variable, since it
3964 will often be marked non-replaceable because of the duplication
3965 of the exit code outside the loop. In such a case, the copies
3966 we insert are dead and will be deleted. So they don't have
3967 a cost. Similar situations exist. */
3968 /* ??? The new final_[bg]iv_value code does a much better job
3969 of finding replaceable giv's, and hence this code may no longer
3970 be necessary. */
3971 if (! v->replaceable && ! bl->eliminable
3972 && REG_USERVAR_P (v->dest_reg))
3973 benefit -= copy_cost;
3974
3975 /* Decrease the benefit to count the add-insns that we will
3976 insert to increment the reduced reg for the giv. */
3977 benefit -= add_cost * bl->biv_count;
3978
3979 /* Decide whether to strength-reduce this giv or to leave the code
3980 unchanged (recompute it from the biv each time it is used).
3981 This decision can be made independently for each giv. */
3982
3983 #ifdef AUTO_INC_DEC
3984 /* Attempt to guess whether autoincrement will handle some of the
3985 new add insns; if so, increase BENEFIT (undo the subtraction of
3986 add_cost that was done above). */
3987 if (v->giv_type == DEST_ADDR
3988 && GET_CODE (v->mult_val) == CONST_INT)
3989 {
3990 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
3991 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3992 benefit += add_cost * bl->biv_count;
3993 #endif
3994 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
3995 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3996 benefit += add_cost * bl->biv_count;
3997 #endif
3998 }
3999 #endif
4000
4001 /* If an insn is not to be strength reduced, then set its ignore
4002 flag, and clear all_reduced. */
4003
4004 /* A giv that depends on a reversed biv must be reduced if it is
4005 used after the loop exit, otherwise, it would have the wrong
4006 value after the loop exit. To make it simple, just reduce all
4007 of such giv's whether or not we know they are used after the loop
4008 exit. */
4009
4010 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4011 && ! bl->reversed )
4012 {
4013 if (loop_dump_stream)
4014 fprintf (loop_dump_stream,
4015 "giv of insn %d not worth while, %d vs %d.\n",
4016 INSN_UID (v->insn),
4017 v->lifetime * threshold * benefit, insn_count);
4018 v->ignore = 1;
4019 all_reduced = 0;
4020 }
4021 else
4022 {
4023 /* Check that we can increment the reduced giv without a
4024 multiply insn. If not, reject it. */
4025
4026 for (tv = bl->biv; tv; tv = tv->next_iv)
4027 if (tv->mult_val == const1_rtx
4028 && ! product_cheap_p (tv->add_val, v->mult_val))
4029 {
4030 if (loop_dump_stream)
4031 fprintf (loop_dump_stream,
4032 "giv of insn %d: would need a multiply.\n",
4033 INSN_UID (v->insn));
4034 v->ignore = 1;
4035 all_reduced = 0;
4036 break;
4037 }
4038 }
4039 }
4040
4041 /* Reduce each giv that we decided to reduce. */
4042
4043 for (v = bl->giv; v; v = v->next_iv)
4044 {
4045 struct induction *tv;
4046 if (! v->ignore && v->same == 0)
4047 {
4048 int auto_inc_opt = 0;
4049
4050 v->new_reg = gen_reg_rtx (v->mode);
4051
4052 #ifdef AUTO_INC_DEC
4053 /* If the target has auto-increment addressing modes, and
4054 this is an address giv, then try to put the increment
4055 immediately after its use, so that flow can create an
4056 auto-increment addressing mode. */
4057 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4058 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4059 /* We don't handle reversed biv's because bl->biv->insn
4060 does not have a valid INSN_LUID. */
4061 && ! bl->reversed
4062 && v->always_executed && ! v->maybe_multiple)
4063 {
4064 /* If other giv's have been combined with this one, then
4065 this will work only if all uses of the other giv's occur
4066 before this giv's insn. This is difficult to check.
4067
4068 We simplify this by looking for the common case where
4069 there is one DEST_REG giv, and this giv's insn is the
4070 last use of the dest_reg of that DEST_REG giv. If the
4071 the increment occurs after the address giv, then we can
4072 perform the optimization. (Otherwise, the increment
4073 would have to go before other_giv, and we would not be
4074 able to combine it with the address giv to get an
4075 auto-inc address.) */
4076 if (v->combined_with)
4077 {
4078 struct induction *other_giv = 0;
4079
4080 for (tv = bl->giv; tv; tv = tv->next_iv)
4081 if (tv->same == v)
4082 {
4083 if (other_giv)
4084 break;
4085 else
4086 other_giv = tv;
4087 }
4088 if (! tv && other_giv
4089 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4090 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4091 == INSN_UID (v->insn))
4092 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4093 auto_inc_opt = 1;
4094 }
4095 /* Check for case where increment is before the the address
4096 giv. */
4097 else if (INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn))
4098 auto_inc_opt = -1;
4099 else
4100 auto_inc_opt = 1;
4101
4102 #ifdef HAVE_cc0
4103 {
4104 rtx prev;
4105
4106 /* We can't put an insn immediately after one setting
4107 cc0, or immediately before one using cc0. */
4108 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4109 || (auto_inc_opt == -1
4110 && (prev = prev_nonnote_insn (v->insn)) != 0
4111 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4112 && sets_cc0_p (PATTERN (prev))))
4113 auto_inc_opt = 0;
4114 }
4115 #endif
4116
4117 if (auto_inc_opt)
4118 v->auto_inc_opt = 1;
4119 }
4120 #endif
4121
4122 /* For each place where the biv is incremented, add an insn
4123 to increment the new, reduced reg for the giv. */
4124 for (tv = bl->biv; tv; tv = tv->next_iv)
4125 {
4126 rtx insert_before;
4127
4128 if (! auto_inc_opt)
4129 insert_before = tv->insn;
4130 else if (auto_inc_opt == 1)
4131 insert_before = NEXT_INSN (v->insn);
4132 else
4133 insert_before = v->insn;
4134
4135 if (tv->mult_val == const1_rtx)
4136 emit_iv_add_mult (tv->add_val, v->mult_val,
4137 v->new_reg, v->new_reg, insert_before);
4138 else /* tv->mult_val == const0_rtx */
4139 /* A multiply is acceptable here
4140 since this is presumed to be seldom executed. */
4141 emit_iv_add_mult (tv->add_val, v->mult_val,
4142 v->add_val, v->new_reg, insert_before);
4143 }
4144
4145 /* Add code at loop start to initialize giv's reduced reg. */
4146
4147 emit_iv_add_mult (bl->initial_value, v->mult_val,
4148 v->add_val, v->new_reg, loop_start);
4149 }
4150 }
4151
4152 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4153 as not reduced.
4154
4155 For each giv register that can be reduced now: if replaceable,
4156 substitute reduced reg wherever the old giv occurs;
4157 else add new move insn "giv_reg = reduced_reg".
4158
4159 Also check for givs whose first use is their definition and whose
4160 last use is the definition of another giv. If so, it is likely
4161 dead and should not be used to eliminate a biv. */
4162 for (v = bl->giv; v; v = v->next_iv)
4163 {
4164 if (v->same && v->same->ignore)
4165 v->ignore = 1;
4166
4167 if (v->ignore)
4168 continue;
4169
4170 if (v->giv_type == DEST_REG
4171 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4172 {
4173 struct induction *v1;
4174
4175 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4176 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4177 v->maybe_dead = 1;
4178 }
4179
4180 /* Update expression if this was combined, in case other giv was
4181 replaced. */
4182 if (v->same)
4183 v->new_reg = replace_rtx (v->new_reg,
4184 v->same->dest_reg, v->same->new_reg);
4185
4186 if (v->giv_type == DEST_ADDR)
4187 /* Store reduced reg as the address in the memref where we found
4188 this giv. */
4189 validate_change (v->insn, v->location, v->new_reg, 0);
4190 else if (v->replaceable)
4191 {
4192 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4193
4194 #if 0
4195 /* I can no longer duplicate the original problem. Perhaps
4196 this is unnecessary now? */
4197
4198 /* Replaceable; it isn't strictly necessary to delete the old
4199 insn and emit a new one, because v->dest_reg is now dead.
4200
4201 However, especially when unrolling loops, the special
4202 handling for (set REG0 REG1) in the second cse pass may
4203 make v->dest_reg live again. To avoid this problem, emit
4204 an insn to set the original giv reg from the reduced giv.
4205 We can not delete the original insn, since it may be part
4206 of a LIBCALL, and the code in flow that eliminates dead
4207 libcalls will fail if it is deleted. */
4208 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4209 v->insn);
4210 #endif
4211 }
4212 else
4213 {
4214 /* Not replaceable; emit an insn to set the original giv reg from
4215 the reduced giv, same as above. */
4216 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4217 v->insn);
4218 }
4219
4220 /* When a loop is reversed, givs which depend on the reversed
4221 biv, and which are live outside the loop, must be set to their
4222 correct final value. This insn is only needed if the giv is
4223 not replaceable. The correct final value is the same as the
4224 value that the giv starts the reversed loop with. */
4225 if (bl->reversed && ! v->replaceable)
4226 emit_iv_add_mult (bl->initial_value, v->mult_val,
4227 v->add_val, v->dest_reg, end_insert_before);
4228 else if (v->final_value)
4229 {
4230 rtx insert_before;
4231
4232 /* If the loop has multiple exits, emit the insn before the
4233 loop to ensure that it will always be executed no matter
4234 how the loop exits. Otherwise, emit the insn after the loop,
4235 since this is slightly more efficient. */
4236 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4237 insert_before = loop_start;
4238 else
4239 insert_before = end_insert_before;
4240 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4241 insert_before);
4242
4243 #if 0
4244 /* If the insn to set the final value of the giv was emitted
4245 before the loop, then we must delete the insn inside the loop
4246 that sets it. If this is a LIBCALL, then we must delete
4247 every insn in the libcall. Note, however, that
4248 final_giv_value will only succeed when there are multiple
4249 exits if the giv is dead at each exit, hence it does not
4250 matter that the original insn remains because it is dead
4251 anyways. */
4252 /* Delete the insn inside the loop that sets the giv since
4253 the giv is now set before (or after) the loop. */
4254 delete_insn (v->insn);
4255 #endif
4256 }
4257
4258 if (loop_dump_stream)
4259 {
4260 fprintf (loop_dump_stream, "giv at %d reduced to ",
4261 INSN_UID (v->insn));
4262 print_rtl (loop_dump_stream, v->new_reg);
4263 fprintf (loop_dump_stream, "\n");
4264 }
4265 }
4266
4267 /* All the givs based on the biv bl have been reduced if they
4268 merit it. */
4269
4270 /* For each giv not marked as maybe dead that has been combined with a
4271 second giv, clear any "maybe dead" mark on that second giv.
4272 v->new_reg will either be or refer to the register of the giv it
4273 combined with.
4274
4275 Doing this clearing avoids problems in biv elimination where a
4276 giv's new_reg is a complex value that can't be put in the insn but
4277 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4278 Since the register will be used in either case, we'd prefer it be
4279 used from the simpler giv. */
4280
4281 for (v = bl->giv; v; v = v->next_iv)
4282 if (! v->maybe_dead && v->same)
4283 v->same->maybe_dead = 0;
4284
4285 /* Try to eliminate the biv, if it is a candidate.
4286 This won't work if ! all_reduced,
4287 since the givs we planned to use might not have been reduced.
4288
4289 We have to be careful that we didn't initially think we could eliminate
4290 this biv because of a giv that we now think may be dead and shouldn't
4291 be used as a biv replacement.
4292
4293 Also, there is the possibility that we may have a giv that looks
4294 like it can be used to eliminate a biv, but the resulting insn
4295 isn't valid. This can happen, for example, on the 88k, where a
4296 JUMP_INSN can compare a register only with zero. Attempts to
4297 replace it with a compare with a constant will fail.
4298
4299 Note that in cases where this call fails, we may have replaced some
4300 of the occurrences of the biv with a giv, but no harm was done in
4301 doing so in the rare cases where it can occur. */
4302
4303 if (all_reduced == 1 && bl->eliminable
4304 && maybe_eliminate_biv (bl, loop_start, end, 1,
4305 threshold, insn_count))
4306
4307 {
4308 /* ?? If we created a new test to bypass the loop entirely,
4309 or otherwise drop straight in, based on this test, then
4310 we might want to rewrite it also. This way some later
4311 pass has more hope of removing the initialization of this
4312 biv entirely. */
4313
4314 /* If final_value != 0, then the biv may be used after loop end
4315 and we must emit an insn to set it just in case.
4316
4317 Reversed bivs already have an insn after the loop setting their
4318 value, so we don't need another one. We can't calculate the
4319 proper final value for such a biv here anyways. */
4320 if (final_value != 0 && ! bl->reversed)
4321 {
4322 rtx insert_before;
4323
4324 /* If the loop has multiple exits, emit the insn before the
4325 loop to ensure that it will always be executed no matter
4326 how the loop exits. Otherwise, emit the insn after the
4327 loop, since this is slightly more efficient. */
4328 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4329 insert_before = loop_start;
4330 else
4331 insert_before = end_insert_before;
4332
4333 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4334 end_insert_before);
4335 }
4336
4337 #if 0
4338 /* Delete all of the instructions inside the loop which set
4339 the biv, as they are all dead. If is safe to delete them,
4340 because an insn setting a biv will never be part of a libcall. */
4341 /* However, deleting them will invalidate the regno_last_uid info,
4342 so keeping them around is more convenient. Final_biv_value
4343 will only succeed when there are multiple exits if the biv
4344 is dead at each exit, hence it does not matter that the original
4345 insn remains, because it is dead anyways. */
4346 for (v = bl->biv; v; v = v->next_iv)
4347 delete_insn (v->insn);
4348 #endif
4349
4350 if (loop_dump_stream)
4351 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4352 bl->regno);
4353 }
4354 }
4355
4356 /* Go through all the instructions in the loop, making all the
4357 register substitutions scheduled in REG_MAP. */
4358
4359 for (p = loop_start; p != end; p = NEXT_INSN (p))
4360 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4361 || GET_CODE (p) == CALL_INSN)
4362 {
4363 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4364 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4365 INSN_CODE (p) = -1;
4366 }
4367
4368 /* Unroll loops from within strength reduction so that we can use the
4369 induction variable information that strength_reduce has already
4370 collected. */
4371
4372 if (unroll_p)
4373 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4374
4375 #ifdef HAIFA
4376 /* instrument the loop with bct insn */
4377 #ifdef HAVE_decrement_and_branch_on_count
4378 if (HAVE_decrement_and_branch_on_count)
4379 insert_bct (loop_start, loop_end);
4380 #endif
4381 #endif /* HAIFA */
4382
4383 if (loop_dump_stream)
4384 fprintf (loop_dump_stream, "\n");
4385 }
4386 \f
4387 /* Return 1 if X is a valid source for an initial value (or as value being
4388 compared against in an initial test).
4389
4390 X must be either a register or constant and must not be clobbered between
4391 the current insn and the start of the loop.
4392
4393 INSN is the insn containing X. */
4394
4395 static int
4396 valid_initial_value_p (x, insn, call_seen, loop_start)
4397 rtx x;
4398 rtx insn;
4399 int call_seen;
4400 rtx loop_start;
4401 {
4402 if (CONSTANT_P (x))
4403 return 1;
4404
4405 /* Only consider pseudos we know about initialized in insns whose luids
4406 we know. */
4407 if (GET_CODE (x) != REG
4408 || REGNO (x) >= max_reg_before_loop)
4409 return 0;
4410
4411 /* Don't use call-clobbered registers across a call which clobbers it. On
4412 some machines, don't use any hard registers at all. */
4413 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4414 && (SMALL_REGISTER_CLASSES
4415 || (call_used_regs[REGNO (x)] && call_seen)))
4416 return 0;
4417
4418 /* Don't use registers that have been clobbered before the start of the
4419 loop. */
4420 if (reg_set_between_p (x, insn, loop_start))
4421 return 0;
4422
4423 return 1;
4424 }
4425 \f
4426 /* Scan X for memory refs and check each memory address
4427 as a possible giv. INSN is the insn whose pattern X comes from.
4428 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4429 every loop iteration. */
4430
4431 static void
4432 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4433 rtx x;
4434 rtx insn;
4435 int not_every_iteration;
4436 rtx loop_start, loop_end;
4437 {
4438 register int i, j;
4439 register enum rtx_code code;
4440 register char *fmt;
4441
4442 if (x == 0)
4443 return;
4444
4445 code = GET_CODE (x);
4446 switch (code)
4447 {
4448 case REG:
4449 case CONST_INT:
4450 case CONST:
4451 case CONST_DOUBLE:
4452 case SYMBOL_REF:
4453 case LABEL_REF:
4454 case PC:
4455 case CC0:
4456 case ADDR_VEC:
4457 case ADDR_DIFF_VEC:
4458 case USE:
4459 case CLOBBER:
4460 return;
4461
4462 case MEM:
4463 {
4464 rtx src_reg;
4465 rtx add_val;
4466 rtx mult_val;
4467 int benefit;
4468
4469 benefit = general_induction_var (XEXP (x, 0),
4470 &src_reg, &add_val, &mult_val);
4471
4472 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4473 Such a giv isn't useful. */
4474 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4475 {
4476 /* Found one; record it. */
4477 struct induction *v
4478 = (struct induction *) oballoc (sizeof (struct induction));
4479
4480 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4481 add_val, benefit, DEST_ADDR, not_every_iteration,
4482 &XEXP (x, 0), loop_start, loop_end);
4483
4484 v->mem_mode = GET_MODE (x);
4485 }
4486 }
4487 return;
4488
4489 default:
4490 break;
4491 }
4492
4493 /* Recursively scan the subexpressions for other mem refs. */
4494
4495 fmt = GET_RTX_FORMAT (code);
4496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4497 if (fmt[i] == 'e')
4498 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4499 loop_end);
4500 else if (fmt[i] == 'E')
4501 for (j = 0; j < XVECLEN (x, i); j++)
4502 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4503 loop_start, loop_end);
4504 }
4505 \f
4506 /* Fill in the data about one biv update.
4507 V is the `struct induction' in which we record the biv. (It is
4508 allocated by the caller, with alloca.)
4509 INSN is the insn that sets it.
4510 DEST_REG is the biv's reg.
4511
4512 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4513 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4514 being set to INC_VAL.
4515
4516 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4517 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4518 can be executed more than once per iteration. If MAYBE_MULTIPLE
4519 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4520 executed exactly once per iteration. */
4521
4522 static void
4523 record_biv (v, insn, dest_reg, inc_val, mult_val,
4524 not_every_iteration, maybe_multiple)
4525 struct induction *v;
4526 rtx insn;
4527 rtx dest_reg;
4528 rtx inc_val;
4529 rtx mult_val;
4530 int not_every_iteration;
4531 int maybe_multiple;
4532 {
4533 struct iv_class *bl;
4534
4535 v->insn = insn;
4536 v->src_reg = dest_reg;
4537 v->dest_reg = dest_reg;
4538 v->mult_val = mult_val;
4539 v->add_val = inc_val;
4540 v->mode = GET_MODE (dest_reg);
4541 v->always_computable = ! not_every_iteration;
4542 v->always_executed = ! not_every_iteration;
4543 v->maybe_multiple = maybe_multiple;
4544
4545 /* Add this to the reg's iv_class, creating a class
4546 if this is the first incrementation of the reg. */
4547
4548 bl = reg_biv_class[REGNO (dest_reg)];
4549 if (bl == 0)
4550 {
4551 /* Create and initialize new iv_class. */
4552
4553 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4554
4555 bl->regno = REGNO (dest_reg);
4556 bl->biv = 0;
4557 bl->giv = 0;
4558 bl->biv_count = 0;
4559 bl->giv_count = 0;
4560
4561 /* Set initial value to the reg itself. */
4562 bl->initial_value = dest_reg;
4563 /* We haven't seen the initializing insn yet */
4564 bl->init_insn = 0;
4565 bl->init_set = 0;
4566 bl->initial_test = 0;
4567 bl->incremented = 0;
4568 bl->eliminable = 0;
4569 bl->nonneg = 0;
4570 bl->reversed = 0;
4571 bl->total_benefit = 0;
4572
4573 /* Add this class to loop_iv_list. */
4574 bl->next = loop_iv_list;
4575 loop_iv_list = bl;
4576
4577 /* Put it in the array of biv register classes. */
4578 reg_biv_class[REGNO (dest_reg)] = bl;
4579 }
4580
4581 /* Update IV_CLASS entry for this biv. */
4582 v->next_iv = bl->biv;
4583 bl->biv = v;
4584 bl->biv_count++;
4585 if (mult_val == const1_rtx)
4586 bl->incremented = 1;
4587
4588 if (loop_dump_stream)
4589 {
4590 fprintf (loop_dump_stream,
4591 "Insn %d: possible biv, reg %d,",
4592 INSN_UID (insn), REGNO (dest_reg));
4593 if (GET_CODE (inc_val) == CONST_INT)
4594 fprintf (loop_dump_stream, " const = %d\n",
4595 INTVAL (inc_val));
4596 else
4597 {
4598 fprintf (loop_dump_stream, " const = ");
4599 print_rtl (loop_dump_stream, inc_val);
4600 fprintf (loop_dump_stream, "\n");
4601 }
4602 }
4603 }
4604 \f
4605 /* Fill in the data about one giv.
4606 V is the `struct induction' in which we record the giv. (It is
4607 allocated by the caller, with alloca.)
4608 INSN is the insn that sets it.
4609 BENEFIT estimates the savings from deleting this insn.
4610 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4611 into a register or is used as a memory address.
4612
4613 SRC_REG is the biv reg which the giv is computed from.
4614 DEST_REG is the giv's reg (if the giv is stored in a reg).
4615 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4616 LOCATION points to the place where this giv's value appears in INSN. */
4617
4618 static void
4619 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4620 type, not_every_iteration, location, loop_start, loop_end)
4621 struct induction *v;
4622 rtx insn;
4623 rtx src_reg;
4624 rtx dest_reg;
4625 rtx mult_val, add_val;
4626 int benefit;
4627 enum g_types type;
4628 int not_every_iteration;
4629 rtx *location;
4630 rtx loop_start, loop_end;
4631 {
4632 struct induction *b;
4633 struct iv_class *bl;
4634 rtx set = single_set (insn);
4635 rtx p;
4636
4637 v->insn = insn;
4638 v->src_reg = src_reg;
4639 v->giv_type = type;
4640 v->dest_reg = dest_reg;
4641 v->mult_val = mult_val;
4642 v->add_val = add_val;
4643 v->benefit = benefit;
4644 v->location = location;
4645 v->cant_derive = 0;
4646 v->combined_with = 0;
4647 v->maybe_multiple = 0;
4648 v->maybe_dead = 0;
4649 v->derive_adjustment = 0;
4650 v->same = 0;
4651 v->ignore = 0;
4652 v->new_reg = 0;
4653 v->final_value = 0;
4654 v->same_insn = 0;
4655 v->auto_inc_opt = 0;
4656 v->unrolled = 0;
4657 v->shared = 0;
4658
4659 /* The v->always_computable field is used in update_giv_derive, to
4660 determine whether a giv can be used to derive another giv. For a
4661 DEST_REG giv, INSN computes a new value for the giv, so its value
4662 isn't computable if INSN insn't executed every iteration.
4663 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4664 it does not compute a new value. Hence the value is always computable
4665 regardless of whether INSN is executed each iteration. */
4666
4667 if (type == DEST_ADDR)
4668 v->always_computable = 1;
4669 else
4670 v->always_computable = ! not_every_iteration;
4671
4672 v->always_executed = ! not_every_iteration;
4673
4674 if (type == DEST_ADDR)
4675 {
4676 v->mode = GET_MODE (*location);
4677 v->lifetime = 1;
4678 v->times_used = 1;
4679 }
4680 else /* type == DEST_REG */
4681 {
4682 v->mode = GET_MODE (SET_DEST (set));
4683
4684 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4685 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4686
4687 v->times_used = n_times_used[REGNO (dest_reg)];
4688
4689 /* If the lifetime is zero, it means that this register is
4690 really a dead store. So mark this as a giv that can be
4691 ignored. This will not prevent the biv from being eliminated. */
4692 if (v->lifetime == 0)
4693 v->ignore = 1;
4694
4695 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4696 reg_iv_info[REGNO (dest_reg)] = v;
4697 }
4698
4699 /* Add the giv to the class of givs computed from one biv. */
4700
4701 bl = reg_biv_class[REGNO (src_reg)];
4702 if (bl)
4703 {
4704 v->next_iv = bl->giv;
4705 bl->giv = v;
4706 /* Don't count DEST_ADDR. This is supposed to count the number of
4707 insns that calculate givs. */
4708 if (type == DEST_REG)
4709 bl->giv_count++;
4710 bl->total_benefit += benefit;
4711 }
4712 else
4713 /* Fatal error, biv missing for this giv? */
4714 abort ();
4715
4716 if (type == DEST_ADDR)
4717 v->replaceable = 1;
4718 else
4719 {
4720 /* The giv can be replaced outright by the reduced register only if all
4721 of the following conditions are true:
4722 - the insn that sets the giv is always executed on any iteration
4723 on which the giv is used at all
4724 (there are two ways to deduce this:
4725 either the insn is executed on every iteration,
4726 or all uses follow that insn in the same basic block),
4727 - the giv is not used outside the loop
4728 - no assignments to the biv occur during the giv's lifetime. */
4729
4730 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4731 /* Previous line always fails if INSN was moved by loop opt. */
4732 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4733 && (! not_every_iteration
4734 || last_use_this_basic_block (dest_reg, insn)))
4735 {
4736 /* Now check that there are no assignments to the biv within the
4737 giv's lifetime. This requires two separate checks. */
4738
4739 /* Check each biv update, and fail if any are between the first
4740 and last use of the giv.
4741
4742 If this loop contains an inner loop that was unrolled, then
4743 the insn modifying the biv may have been emitted by the loop
4744 unrolling code, and hence does not have a valid luid. Just
4745 mark the biv as not replaceable in this case. It is not very
4746 useful as a biv, because it is used in two different loops.
4747 It is very unlikely that we would be able to optimize the giv
4748 using this biv anyways. */
4749
4750 v->replaceable = 1;
4751 for (b = bl->biv; b; b = b->next_iv)
4752 {
4753 if (INSN_UID (b->insn) >= max_uid_for_loop
4754 || ((uid_luid[INSN_UID (b->insn)]
4755 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4756 && (uid_luid[INSN_UID (b->insn)]
4757 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4758 {
4759 v->replaceable = 0;
4760 v->not_replaceable = 1;
4761 break;
4762 }
4763 }
4764
4765 /* If there are any backwards branches that go from after the
4766 biv update to before it, then this giv is not replaceable. */
4767 if (v->replaceable)
4768 for (b = bl->biv; b; b = b->next_iv)
4769 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4770 {
4771 v->replaceable = 0;
4772 v->not_replaceable = 1;
4773 break;
4774 }
4775 }
4776 else
4777 {
4778 /* May still be replaceable, we don't have enough info here to
4779 decide. */
4780 v->replaceable = 0;
4781 v->not_replaceable = 0;
4782 }
4783 }
4784
4785 if (loop_dump_stream)
4786 {
4787 if (type == DEST_REG)
4788 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4789 INSN_UID (insn), REGNO (dest_reg));
4790 else
4791 fprintf (loop_dump_stream, "Insn %d: dest address",
4792 INSN_UID (insn));
4793
4794 fprintf (loop_dump_stream, " src reg %d benefit %d",
4795 REGNO (src_reg), v->benefit);
4796 fprintf (loop_dump_stream, " used %d lifetime %d",
4797 v->times_used, v->lifetime);
4798
4799 if (v->replaceable)
4800 fprintf (loop_dump_stream, " replaceable");
4801
4802 if (GET_CODE (mult_val) == CONST_INT)
4803 fprintf (loop_dump_stream, " mult %d",
4804 INTVAL (mult_val));
4805 else
4806 {
4807 fprintf (loop_dump_stream, " mult ");
4808 print_rtl (loop_dump_stream, mult_val);
4809 }
4810
4811 if (GET_CODE (add_val) == CONST_INT)
4812 fprintf (loop_dump_stream, " add %d",
4813 INTVAL (add_val));
4814 else
4815 {
4816 fprintf (loop_dump_stream, " add ");
4817 print_rtl (loop_dump_stream, add_val);
4818 }
4819 }
4820
4821 if (loop_dump_stream)
4822 fprintf (loop_dump_stream, "\n");
4823
4824 }
4825
4826
4827 /* All this does is determine whether a giv can be made replaceable because
4828 its final value can be calculated. This code can not be part of record_giv
4829 above, because final_giv_value requires that the number of loop iterations
4830 be known, and that can not be accurately calculated until after all givs
4831 have been identified. */
4832
4833 static void
4834 check_final_value (v, loop_start, loop_end)
4835 struct induction *v;
4836 rtx loop_start, loop_end;
4837 {
4838 struct iv_class *bl;
4839 rtx final_value = 0;
4840
4841 bl = reg_biv_class[REGNO (v->src_reg)];
4842
4843 /* DEST_ADDR givs will never reach here, because they are always marked
4844 replaceable above in record_giv. */
4845
4846 /* The giv can be replaced outright by the reduced register only if all
4847 of the following conditions are true:
4848 - the insn that sets the giv is always executed on any iteration
4849 on which the giv is used at all
4850 (there are two ways to deduce this:
4851 either the insn is executed on every iteration,
4852 or all uses follow that insn in the same basic block),
4853 - its final value can be calculated (this condition is different
4854 than the one above in record_giv)
4855 - no assignments to the biv occur during the giv's lifetime. */
4856
4857 #if 0
4858 /* This is only called now when replaceable is known to be false. */
4859 /* Clear replaceable, so that it won't confuse final_giv_value. */
4860 v->replaceable = 0;
4861 #endif
4862
4863 if ((final_value = final_giv_value (v, loop_start, loop_end))
4864 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4865 {
4866 int biv_increment_seen = 0;
4867 rtx p = v->insn;
4868 rtx last_giv_use;
4869
4870 v->replaceable = 1;
4871
4872 /* When trying to determine whether or not a biv increment occurs
4873 during the lifetime of the giv, we can ignore uses of the variable
4874 outside the loop because final_value is true. Hence we can not
4875 use regno_last_uid and regno_first_uid as above in record_giv. */
4876
4877 /* Search the loop to determine whether any assignments to the
4878 biv occur during the giv's lifetime. Start with the insn
4879 that sets the giv, and search around the loop until we come
4880 back to that insn again.
4881
4882 Also fail if there is a jump within the giv's lifetime that jumps
4883 to somewhere outside the lifetime but still within the loop. This
4884 catches spaghetti code where the execution order is not linear, and
4885 hence the above test fails. Here we assume that the giv lifetime
4886 does not extend from one iteration of the loop to the next, so as
4887 to make the test easier. Since the lifetime isn't known yet,
4888 this requires two loops. See also record_giv above. */
4889
4890 last_giv_use = v->insn;
4891
4892 while (1)
4893 {
4894 p = NEXT_INSN (p);
4895 if (p == loop_end)
4896 p = NEXT_INSN (loop_start);
4897 if (p == v->insn)
4898 break;
4899
4900 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4901 || GET_CODE (p) == CALL_INSN)
4902 {
4903 if (biv_increment_seen)
4904 {
4905 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4906 {
4907 v->replaceable = 0;
4908 v->not_replaceable = 1;
4909 break;
4910 }
4911 }
4912 else if (reg_set_p (v->src_reg, PATTERN (p)))
4913 biv_increment_seen = 1;
4914 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4915 last_giv_use = p;
4916 }
4917 }
4918
4919 /* Now that the lifetime of the giv is known, check for branches
4920 from within the lifetime to outside the lifetime if it is still
4921 replaceable. */
4922
4923 if (v->replaceable)
4924 {
4925 p = v->insn;
4926 while (1)
4927 {
4928 p = NEXT_INSN (p);
4929 if (p == loop_end)
4930 p = NEXT_INSN (loop_start);
4931 if (p == last_giv_use)
4932 break;
4933
4934 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4935 && LABEL_NAME (JUMP_LABEL (p))
4936 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4937 || (INSN_UID (v->insn) >= max_uid_for_loop)
4938 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4939 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4940 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4941 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4942 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4943 {
4944 v->replaceable = 0;
4945 v->not_replaceable = 1;
4946
4947 if (loop_dump_stream)
4948 fprintf (loop_dump_stream,
4949 "Found branch outside giv lifetime.\n");
4950
4951 break;
4952 }
4953 }
4954 }
4955
4956 /* If it is replaceable, then save the final value. */
4957 if (v->replaceable)
4958 v->final_value = final_value;
4959 }
4960
4961 if (loop_dump_stream && v->replaceable)
4962 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4963 INSN_UID (v->insn), REGNO (v->dest_reg));
4964 }
4965 \f
4966 /* Update the status of whether a giv can derive other givs.
4967
4968 We need to do something special if there is or may be an update to the biv
4969 between the time the giv is defined and the time it is used to derive
4970 another giv.
4971
4972 In addition, a giv that is only conditionally set is not allowed to
4973 derive another giv once a label has been passed.
4974
4975 The cases we look at are when a label or an update to a biv is passed. */
4976
4977 static void
4978 update_giv_derive (p)
4979 rtx p;
4980 {
4981 struct iv_class *bl;
4982 struct induction *biv, *giv;
4983 rtx tem;
4984 int dummy;
4985
4986 /* Search all IV classes, then all bivs, and finally all givs.
4987
4988 There are three cases we are concerned with. First we have the situation
4989 of a giv that is only updated conditionally. In that case, it may not
4990 derive any givs after a label is passed.
4991
4992 The second case is when a biv update occurs, or may occur, after the
4993 definition of a giv. For certain biv updates (see below) that are
4994 known to occur between the giv definition and use, we can adjust the
4995 giv definition. For others, or when the biv update is conditional,
4996 we must prevent the giv from deriving any other givs. There are two
4997 sub-cases within this case.
4998
4999 If this is a label, we are concerned with any biv update that is done
5000 conditionally, since it may be done after the giv is defined followed by
5001 a branch here (actually, we need to pass both a jump and a label, but
5002 this extra tracking doesn't seem worth it).
5003
5004 If this is a jump, we are concerned about any biv update that may be
5005 executed multiple times. We are actually only concerned about
5006 backward jumps, but it is probably not worth performing the test
5007 on the jump again here.
5008
5009 If this is a biv update, we must adjust the giv status to show that a
5010 subsequent biv update was performed. If this adjustment cannot be done,
5011 the giv cannot derive further givs. */
5012
5013 for (bl = loop_iv_list; bl; bl = bl->next)
5014 for (biv = bl->biv; biv; biv = biv->next_iv)
5015 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5016 || biv->insn == p)
5017 {
5018 for (giv = bl->giv; giv; giv = giv->next_iv)
5019 {
5020 /* If cant_derive is already true, there is no point in
5021 checking all of these conditions again. */
5022 if (giv->cant_derive)
5023 continue;
5024
5025 /* If this giv is conditionally set and we have passed a label,
5026 it cannot derive anything. */
5027 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5028 giv->cant_derive = 1;
5029
5030 /* Skip givs that have mult_val == 0, since
5031 they are really invariants. Also skip those that are
5032 replaceable, since we know their lifetime doesn't contain
5033 any biv update. */
5034 else if (giv->mult_val == const0_rtx || giv->replaceable)
5035 continue;
5036
5037 /* The only way we can allow this giv to derive another
5038 is if this is a biv increment and we can form the product
5039 of biv->add_val and giv->mult_val. In this case, we will
5040 be able to compute a compensation. */
5041 else if (biv->insn == p)
5042 {
5043 tem = 0;
5044
5045 if (biv->mult_val == const1_rtx)
5046 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5047 biv->add_val,
5048 giv->mult_val),
5049 &dummy);
5050
5051 if (tem && giv->derive_adjustment)
5052 tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
5053 giv->derive_adjustment),
5054 &dummy);
5055 if (tem)
5056 giv->derive_adjustment = tem;
5057 else
5058 giv->cant_derive = 1;
5059 }
5060 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5061 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5062 giv->cant_derive = 1;
5063 }
5064 }
5065 }
5066 \f
5067 /* Check whether an insn is an increment legitimate for a basic induction var.
5068 X is the source of insn P, or a part of it.
5069 MODE is the mode in which X should be interpreted.
5070
5071 DEST_REG is the putative biv, also the destination of the insn.
5072 We accept patterns of these forms:
5073 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5074 REG = INVARIANT + REG
5075
5076 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5077 and store the additive term into *INC_VAL.
5078
5079 If X is an assignment of an invariant into DEST_REG, we set
5080 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5081
5082 We also want to detect a BIV when it corresponds to a variable
5083 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5084 of the variable may be a PLUS that adds a SUBREG of that variable to
5085 an invariant and then sign- or zero-extends the result of the PLUS
5086 into the variable.
5087
5088 Most GIVs in such cases will be in the promoted mode, since that is the
5089 probably the natural computation mode (and almost certainly the mode
5090 used for addresses) on the machine. So we view the pseudo-reg containing
5091 the variable as the BIV, as if it were simply incremented.
5092
5093 Note that treating the entire pseudo as a BIV will result in making
5094 simple increments to any GIVs based on it. However, if the variable
5095 overflows in its declared mode but not its promoted mode, the result will
5096 be incorrect. This is acceptable if the variable is signed, since
5097 overflows in such cases are undefined, but not if it is unsigned, since
5098 those overflows are defined. So we only check for SIGN_EXTEND and
5099 not ZERO_EXTEND.
5100
5101 If we cannot find a biv, we return 0. */
5102
5103 static int
5104 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5105 register rtx x;
5106 enum machine_mode mode;
5107 rtx p;
5108 rtx dest_reg;
5109 rtx *inc_val;
5110 rtx *mult_val;
5111 {
5112 register enum rtx_code code;
5113 rtx arg;
5114 rtx insn, set = 0;
5115
5116 code = GET_CODE (x);
5117 switch (code)
5118 {
5119 case PLUS:
5120 if (XEXP (x, 0) == dest_reg
5121 || (GET_CODE (XEXP (x, 0)) == SUBREG
5122 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5123 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5124 arg = XEXP (x, 1);
5125 else if (XEXP (x, 1) == dest_reg
5126 || (GET_CODE (XEXP (x, 1)) == SUBREG
5127 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5128 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5129 arg = XEXP (x, 0);
5130 else
5131 return 0;
5132
5133 if (invariant_p (arg) != 1)
5134 return 0;
5135
5136 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5137 *mult_val = const1_rtx;
5138 return 1;
5139
5140 case SUBREG:
5141 /* If this is a SUBREG for a promoted variable, check the inner
5142 value. */
5143 if (SUBREG_PROMOTED_VAR_P (x))
5144 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5145 dest_reg, p, inc_val, mult_val);
5146 return 0;
5147
5148 case REG:
5149 /* If this register is assigned in the previous insn, look at its
5150 source, but don't go outside the loop or past a label. */
5151
5152 for (insn = PREV_INSN (p);
5153 (insn && GET_CODE (insn) == NOTE
5154 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5155 insn = PREV_INSN (insn))
5156 ;
5157
5158 if (insn)
5159 set = single_set (insn);
5160
5161 if (set != 0
5162 && (SET_DEST (set) == x
5163 || (GET_CODE (SET_DEST (set)) == SUBREG
5164 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5165 <= UNITS_PER_WORD)
5166 && SUBREG_REG (SET_DEST (set)) == x)))
5167 return basic_induction_var (SET_SRC (set),
5168 (GET_MODE (SET_SRC (set)) == VOIDmode
5169 ? GET_MODE (x)
5170 : GET_MODE (SET_SRC (set))),
5171 dest_reg, insn,
5172 inc_val, mult_val);
5173 /* ... fall through ... */
5174
5175 /* Can accept constant setting of biv only when inside inner most loop.
5176 Otherwise, a biv of an inner loop may be incorrectly recognized
5177 as a biv of the outer loop,
5178 causing code to be moved INTO the inner loop. */
5179 case MEM:
5180 if (invariant_p (x) != 1)
5181 return 0;
5182 case CONST_INT:
5183 case SYMBOL_REF:
5184 case CONST:
5185 if (loops_enclosed == 1)
5186 {
5187 /* Possible bug here? Perhaps we don't know the mode of X. */
5188 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5189 *mult_val = const0_rtx;
5190 return 1;
5191 }
5192 else
5193 return 0;
5194
5195 case SIGN_EXTEND:
5196 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5197 dest_reg, p, inc_val, mult_val);
5198 case ASHIFTRT:
5199 /* Similar, since this can be a sign extension. */
5200 for (insn = PREV_INSN (p);
5201 (insn && GET_CODE (insn) == NOTE
5202 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5203 insn = PREV_INSN (insn))
5204 ;
5205
5206 if (insn)
5207 set = single_set (insn);
5208
5209 if (set && SET_DEST (set) == XEXP (x, 0)
5210 && GET_CODE (XEXP (x, 1)) == CONST_INT
5211 && INTVAL (XEXP (x, 1)) >= 0
5212 && GET_CODE (SET_SRC (set)) == ASHIFT
5213 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5214 return basic_induction_var (XEXP (SET_SRC (set), 0),
5215 GET_MODE (XEXP (x, 0)),
5216 dest_reg, insn, inc_val, mult_val);
5217 return 0;
5218
5219 default:
5220 return 0;
5221 }
5222 }
5223 \f
5224 /* A general induction variable (giv) is any quantity that is a linear
5225 function of a basic induction variable,
5226 i.e. giv = biv * mult_val + add_val.
5227 The coefficients can be any loop invariant quantity.
5228 A giv need not be computed directly from the biv;
5229 it can be computed by way of other givs. */
5230
5231 /* Determine whether X computes a giv.
5232 If it does, return a nonzero value
5233 which is the benefit from eliminating the computation of X;
5234 set *SRC_REG to the register of the biv that it is computed from;
5235 set *ADD_VAL and *MULT_VAL to the coefficients,
5236 such that the value of X is biv * mult + add; */
5237
5238 static int
5239 general_induction_var (x, src_reg, add_val, mult_val)
5240 rtx x;
5241 rtx *src_reg;
5242 rtx *add_val;
5243 rtx *mult_val;
5244 {
5245 rtx orig_x = x;
5246 int benefit = 0;
5247 char *storage;
5248
5249 /* If this is an invariant, forget it, it isn't a giv. */
5250 if (invariant_p (x) == 1)
5251 return 0;
5252
5253 /* See if the expression could be a giv and get its form.
5254 Mark our place on the obstack in case we don't find a giv. */
5255 storage = (char *) oballoc (0);
5256 x = simplify_giv_expr (x, &benefit);
5257 if (x == 0)
5258 {
5259 obfree (storage);
5260 return 0;
5261 }
5262
5263 switch (GET_CODE (x))
5264 {
5265 case USE:
5266 case CONST_INT:
5267 /* Since this is now an invariant and wasn't before, it must be a giv
5268 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5269 with. */
5270 *src_reg = loop_iv_list->biv->dest_reg;
5271 *mult_val = const0_rtx;
5272 *add_val = x;
5273 break;
5274
5275 case REG:
5276 /* This is equivalent to a BIV. */
5277 *src_reg = x;
5278 *mult_val = const1_rtx;
5279 *add_val = const0_rtx;
5280 break;
5281
5282 case PLUS:
5283 /* Either (plus (biv) (invar)) or
5284 (plus (mult (biv) (invar_1)) (invar_2)). */
5285 if (GET_CODE (XEXP (x, 0)) == MULT)
5286 {
5287 *src_reg = XEXP (XEXP (x, 0), 0);
5288 *mult_val = XEXP (XEXP (x, 0), 1);
5289 }
5290 else
5291 {
5292 *src_reg = XEXP (x, 0);
5293 *mult_val = const1_rtx;
5294 }
5295 *add_val = XEXP (x, 1);
5296 break;
5297
5298 case MULT:
5299 /* ADD_VAL is zero. */
5300 *src_reg = XEXP (x, 0);
5301 *mult_val = XEXP (x, 1);
5302 *add_val = const0_rtx;
5303 break;
5304
5305 default:
5306 abort ();
5307 }
5308
5309 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5310 unless they are CONST_INT). */
5311 if (GET_CODE (*add_val) == USE)
5312 *add_val = XEXP (*add_val, 0);
5313 if (GET_CODE (*mult_val) == USE)
5314 *mult_val = XEXP (*mult_val, 0);
5315
5316 benefit += rtx_cost (orig_x, SET);
5317
5318 /* Always return some benefit if this is a giv so it will be detected
5319 as such. This allows elimination of bivs that might otherwise
5320 not be eliminated. */
5321 return benefit == 0 ? 1 : benefit;
5322 }
5323 \f
5324 /* Given an expression, X, try to form it as a linear function of a biv.
5325 We will canonicalize it to be of the form
5326 (plus (mult (BIV) (invar_1))
5327 (invar_2))
5328 with possible degeneracies.
5329
5330 The invariant expressions must each be of a form that can be used as a
5331 machine operand. We surround then with a USE rtx (a hack, but localized
5332 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5333 routine; it is the caller's responsibility to strip them.
5334
5335 If no such canonicalization is possible (i.e., two biv's are used or an
5336 expression that is neither invariant nor a biv or giv), this routine
5337 returns 0.
5338
5339 For a non-zero return, the result will have a code of CONST_INT, USE,
5340 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5341
5342 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5343
5344 static rtx
5345 simplify_giv_expr (x, benefit)
5346 rtx x;
5347 int *benefit;
5348 {
5349 enum machine_mode mode = GET_MODE (x);
5350 rtx arg0, arg1;
5351 rtx tem;
5352
5353 /* If this is not an integer mode, or if we cannot do arithmetic in this
5354 mode, this can't be a giv. */
5355 if (mode != VOIDmode
5356 && (GET_MODE_CLASS (mode) != MODE_INT
5357 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5358 return 0;
5359
5360 switch (GET_CODE (x))
5361 {
5362 case PLUS:
5363 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5364 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5365 if (arg0 == 0 || arg1 == 0)
5366 return 0;
5367
5368 /* Put constant last, CONST_INT last if both constant. */
5369 if ((GET_CODE (arg0) == USE
5370 || GET_CODE (arg0) == CONST_INT)
5371 && GET_CODE (arg1) != CONST_INT)
5372 tem = arg0, arg0 = arg1, arg1 = tem;
5373
5374 /* Handle addition of zero, then addition of an invariant. */
5375 if (arg1 == const0_rtx)
5376 return arg0;
5377 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5378 switch (GET_CODE (arg0))
5379 {
5380 case CONST_INT:
5381 case USE:
5382 /* Both invariant. Only valid if sum is machine operand.
5383 First strip off possible USE on the operands. */
5384 if (GET_CODE (arg0) == USE)
5385 arg0 = XEXP (arg0, 0);
5386
5387 if (GET_CODE (arg1) == USE)
5388 arg1 = XEXP (arg1, 0);
5389
5390 tem = 0;
5391 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5392 {
5393 tem = plus_constant (arg0, INTVAL (arg1));
5394 if (GET_CODE (tem) != CONST_INT)
5395 tem = gen_rtx_USE (mode, tem);
5396 }
5397 else
5398 {
5399 /* Adding two invariants must result in an invariant,
5400 so enclose addition operation inside a USE and
5401 return it. */
5402 tem = gen_rtx_USE (mode, gen_rtx_PLUS (mode, arg0, arg1));
5403 }
5404
5405 return tem;
5406
5407 case REG:
5408 case MULT:
5409 /* biv + invar or mult + invar. Return sum. */
5410 return gen_rtx_PLUS (mode, arg0, arg1);
5411
5412 case PLUS:
5413 /* (a + invar_1) + invar_2. Associate. */
5414 return simplify_giv_expr (gen_rtx_PLUS (mode,
5415 XEXP (arg0, 0),
5416 gen_rtx_PLUS (mode,
5417 XEXP (arg0, 1), arg1)),
5418 benefit);
5419
5420 default:
5421 abort ();
5422 }
5423
5424 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5425 MULT to reduce cases. */
5426 if (GET_CODE (arg0) == REG)
5427 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
5428 if (GET_CODE (arg1) == REG)
5429 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
5430
5431 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5432 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5433 Recurse to associate the second PLUS. */
5434 if (GET_CODE (arg1) == MULT)
5435 tem = arg0, arg0 = arg1, arg1 = tem;
5436
5437 if (GET_CODE (arg1) == PLUS)
5438 return simplify_giv_expr (gen_rtx_PLUS (mode,
5439 gen_rtx_PLUS (mode, arg0,
5440 XEXP (arg1, 0)),
5441 XEXP (arg1, 1)),
5442 benefit);
5443
5444 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5445 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5446 abort ();
5447
5448 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5449 return 0;
5450
5451 return simplify_giv_expr (gen_rtx_MULT (mode,
5452 XEXP (arg0, 0),
5453 gen_rtx_PLUS (mode,
5454 XEXP (arg0, 1),
5455 XEXP (arg1, 1))),
5456 benefit);
5457
5458 case MINUS:
5459 /* Handle "a - b" as "a + b * (-1)". */
5460 return simplify_giv_expr (gen_rtx_PLUS (mode,
5461 XEXP (x, 0),
5462 gen_rtx_MULT (mode, XEXP (x, 1),
5463 constm1_rtx)),
5464 benefit);
5465
5466 case MULT:
5467 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5468 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5469 if (arg0 == 0 || arg1 == 0)
5470 return 0;
5471
5472 /* Put constant last, CONST_INT last if both constant. */
5473 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5474 && GET_CODE (arg1) != CONST_INT)
5475 tem = arg0, arg0 = arg1, arg1 = tem;
5476
5477 /* If second argument is not now constant, not giv. */
5478 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5479 return 0;
5480
5481 /* Handle multiply by 0 or 1. */
5482 if (arg1 == const0_rtx)
5483 return const0_rtx;
5484
5485 else if (arg1 == const1_rtx)
5486 return arg0;
5487
5488 switch (GET_CODE (arg0))
5489 {
5490 case REG:
5491 /* biv * invar. Done. */
5492 return gen_rtx_MULT (mode, arg0, arg1);
5493
5494 case CONST_INT:
5495 /* Product of two constants. */
5496 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5497
5498 case USE:
5499 /* invar * invar. Not giv. */
5500 return 0;
5501
5502 case MULT:
5503 /* (a * invar_1) * invar_2. Associate. */
5504 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
5505 gen_rtx_MULT (mode,
5506 XEXP (arg0, 1),
5507 arg1)),
5508 benefit);
5509
5510 case PLUS:
5511 /* (a + invar_1) * invar_2. Distribute. */
5512 return simplify_giv_expr (gen_rtx_PLUS (mode,
5513 gen_rtx_MULT (mode,
5514 XEXP (arg0, 0),
5515 arg1),
5516 gen_rtx_MULT (mode,
5517 XEXP (arg0, 1),
5518 arg1)),
5519 benefit);
5520
5521 default:
5522 abort ();
5523 }
5524
5525 case ASHIFT:
5526 /* Shift by constant is multiply by power of two. */
5527 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5528 return 0;
5529
5530 return simplify_giv_expr (gen_rtx_MULT (mode,
5531 XEXP (x, 0),
5532 GEN_INT ((HOST_WIDE_INT) 1
5533 << INTVAL (XEXP (x, 1)))),
5534 benefit);
5535
5536 case NEG:
5537 /* "-a" is "a * (-1)" */
5538 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
5539 benefit);
5540
5541 case NOT:
5542 /* "~a" is "-a - 1". Silly, but easy. */
5543 return simplify_giv_expr (gen_rtx_MINUS (mode,
5544 gen_rtx_NEG (mode, XEXP (x, 0)),
5545 const1_rtx),
5546 benefit);
5547
5548 case USE:
5549 /* Already in proper form for invariant. */
5550 return x;
5551
5552 case REG:
5553 /* If this is a new register, we can't deal with it. */
5554 if (REGNO (x) >= max_reg_before_loop)
5555 return 0;
5556
5557 /* Check for biv or giv. */
5558 switch (reg_iv_type[REGNO (x)])
5559 {
5560 case BASIC_INDUCT:
5561 return x;
5562 case GENERAL_INDUCT:
5563 {
5564 struct induction *v = reg_iv_info[REGNO (x)];
5565
5566 /* Form expression from giv and add benefit. Ensure this giv
5567 can derive another and subtract any needed adjustment if so. */
5568 *benefit += v->benefit;
5569 if (v->cant_derive)
5570 return 0;
5571
5572 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
5573 v->mult_val),
5574 v->add_val);
5575 if (v->derive_adjustment)
5576 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
5577 return simplify_giv_expr (tem, benefit);
5578 }
5579
5580 default:
5581 break;
5582 }
5583
5584 /* Fall through to general case. */
5585 default:
5586 /* If invariant, return as USE (unless CONST_INT).
5587 Otherwise, not giv. */
5588 if (GET_CODE (x) == USE)
5589 x = XEXP (x, 0);
5590
5591 if (invariant_p (x) == 1)
5592 {
5593 if (GET_CODE (x) == CONST_INT)
5594 return x;
5595 else
5596 return gen_rtx_USE (mode, x);
5597 }
5598 else
5599 return 0;
5600 }
5601 }
5602 \f
5603 /* Help detect a giv that is calculated by several consecutive insns;
5604 for example,
5605 giv = biv * M
5606 giv = giv + A
5607 The caller has already identified the first insn P as having a giv as dest;
5608 we check that all other insns that set the same register follow
5609 immediately after P, that they alter nothing else,
5610 and that the result of the last is still a giv.
5611
5612 The value is 0 if the reg set in P is not really a giv.
5613 Otherwise, the value is the amount gained by eliminating
5614 all the consecutive insns that compute the value.
5615
5616 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5617 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5618
5619 The coefficients of the ultimate giv value are stored in
5620 *MULT_VAL and *ADD_VAL. */
5621
5622 static int
5623 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5624 add_val, mult_val)
5625 int first_benefit;
5626 rtx p;
5627 rtx src_reg;
5628 rtx dest_reg;
5629 rtx *add_val;
5630 rtx *mult_val;
5631 {
5632 int count;
5633 enum rtx_code code;
5634 int benefit;
5635 rtx temp;
5636 rtx set;
5637
5638 /* Indicate that this is a giv so that we can update the value produced in
5639 each insn of the multi-insn sequence.
5640
5641 This induction structure will be used only by the call to
5642 general_induction_var below, so we can allocate it on our stack.
5643 If this is a giv, our caller will replace the induct var entry with
5644 a new induction structure. */
5645 struct induction *v
5646 = (struct induction *) alloca (sizeof (struct induction));
5647 v->src_reg = src_reg;
5648 v->mult_val = *mult_val;
5649 v->add_val = *add_val;
5650 v->benefit = first_benefit;
5651 v->cant_derive = 0;
5652 v->derive_adjustment = 0;
5653
5654 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5655 reg_iv_info[REGNO (dest_reg)] = v;
5656
5657 count = n_times_set[REGNO (dest_reg)] - 1;
5658
5659 while (count > 0)
5660 {
5661 p = NEXT_INSN (p);
5662 code = GET_CODE (p);
5663
5664 /* If libcall, skip to end of call sequence. */
5665 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5666 p = XEXP (temp, 0);
5667
5668 if (code == INSN
5669 && (set = single_set (p))
5670 && GET_CODE (SET_DEST (set)) == REG
5671 && SET_DEST (set) == dest_reg
5672 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5673 add_val, mult_val))
5674 /* Giv created by equivalent expression. */
5675 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5676 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5677 add_val, mult_val))))
5678 && src_reg == v->src_reg)
5679 {
5680 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5681 benefit += libcall_benefit (p);
5682
5683 count--;
5684 v->mult_val = *mult_val;
5685 v->add_val = *add_val;
5686 v->benefit = benefit;
5687 }
5688 else if (code != NOTE)
5689 {
5690 /* Allow insns that set something other than this giv to a
5691 constant. Such insns are needed on machines which cannot
5692 include long constants and should not disqualify a giv. */
5693 if (code == INSN
5694 && (set = single_set (p))
5695 && SET_DEST (set) != dest_reg
5696 && CONSTANT_P (SET_SRC (set)))
5697 continue;
5698
5699 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5700 return 0;
5701 }
5702 }
5703
5704 return v->benefit;
5705 }
5706 \f
5707 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5708 represented by G1. If no such expression can be found, or it is clear that
5709 it cannot possibly be a valid address, 0 is returned.
5710
5711 To perform the computation, we note that
5712 G1 = a * v + b and
5713 G2 = c * v + d
5714 where `v' is the biv.
5715
5716 So G2 = (c/a) * G1 + (d - b*c/a) */
5717
5718 #ifdef ADDRESS_COST
5719 static rtx
5720 express_from (g1, g2)
5721 struct induction *g1, *g2;
5722 {
5723 rtx mult, add;
5724
5725 /* The value that G1 will be multiplied by must be a constant integer. Also,
5726 the only chance we have of getting a valid address is if b*c/a (see above
5727 for notation) is also an integer. */
5728 if (GET_CODE (g1->mult_val) != CONST_INT
5729 || GET_CODE (g2->mult_val) != CONST_INT
5730 || GET_CODE (g1->add_val) != CONST_INT
5731 || g1->mult_val == const0_rtx
5732 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5733 return 0;
5734
5735 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5736 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5737
5738 /* Form simplified final result. */
5739 if (mult == const0_rtx)
5740 return add;
5741 else if (mult == const1_rtx)
5742 mult = g1->dest_reg;
5743 else
5744 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
5745
5746 if (add == const0_rtx)
5747 return mult;
5748 else
5749 return gen_rtx_PLUS (g2->mode, mult, add);
5750 }
5751 #endif
5752 \f
5753 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5754 (either directly or via an address expression) a register used to represent
5755 G1. Set g2->new_reg to a represtation of G1 (normally just
5756 g1->dest_reg). */
5757
5758 static int
5759 combine_givs_p (g1, g2)
5760 struct induction *g1, *g2;
5761 {
5762 rtx tem;
5763
5764 /* If these givs are identical, they can be combined. */
5765 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5766 && rtx_equal_p (g1->add_val, g2->add_val))
5767 {
5768 g2->new_reg = g1->dest_reg;
5769 return 1;
5770 }
5771
5772 #ifdef ADDRESS_COST
5773 /* If G2 can be expressed as a function of G1 and that function is valid
5774 as an address and no more expensive than using a register for G2,
5775 the expression of G2 in terms of G1 can be used. */
5776 if (g2->giv_type == DEST_ADDR
5777 && (tem = express_from (g1, g2)) != 0
5778 && memory_address_p (g2->mem_mode, tem)
5779 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5780 {
5781 g2->new_reg = tem;
5782 return 1;
5783 }
5784 #endif
5785
5786 return 0;
5787 }
5788 \f
5789 #ifdef GIV_SORT_CRITERION
5790 /* Compare two givs and sort the most desirable one for combinations first.
5791 This is used only in one qsort call below. */
5792
5793 static int
5794 giv_sort (x, y)
5795 struct induction **x, **y;
5796 {
5797 GIV_SORT_CRITERION (*x, *y);
5798
5799 return 0;
5800 }
5801 #endif
5802
5803 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5804 any other. If so, point SAME to the giv combined with and set NEW_REG to
5805 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5806 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5807
5808 static void
5809 combine_givs (bl)
5810 struct iv_class *bl;
5811 {
5812 struct induction *g1, *g2, **giv_array, *temp_iv;
5813 int i, j, giv_count, pass;
5814
5815 /* Count givs, because bl->giv_count is incorrect here. */
5816 giv_count = 0;
5817 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5818 giv_count++;
5819
5820 giv_array
5821 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5822 i = 0;
5823 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5824 giv_array[i++] = g1;
5825
5826 #ifdef GIV_SORT_CRITERION
5827 /* Sort the givs if GIV_SORT_CRITERION is defined.
5828 This is usually defined for processors which lack
5829 negative register offsets so more givs may be combined. */
5830
5831 if (loop_dump_stream)
5832 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5833
5834 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5835 #endif
5836
5837 for (i = 0; i < giv_count; i++)
5838 {
5839 g1 = giv_array[i];
5840 for (pass = 0; pass <= 1; pass++)
5841 for (j = 0; j < giv_count; j++)
5842 {
5843 g2 = giv_array[j];
5844 if (g1 != g2
5845 /* First try to combine with replaceable givs, then all givs. */
5846 && (g1->replaceable || pass == 1)
5847 /* If either has already been combined or is to be ignored, can't
5848 combine. */
5849 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5850 /* If something has been based on G2, G2 cannot itself be based
5851 on something else. */
5852 && ! g2->combined_with
5853 && combine_givs_p (g1, g2))
5854 {
5855 /* g2->new_reg set by `combine_givs_p' */
5856 g2->same = g1;
5857 g1->combined_with = 1;
5858
5859 /* If one of these givs is a DEST_REG that was only used
5860 once, by the other giv, this is actually a single use.
5861 The DEST_REG has the correct cost, while the other giv
5862 counts the REG use too often. */
5863 if (g2->giv_type == DEST_REG
5864 && n_times_used[REGNO (g2->dest_reg)] == 1
5865 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5866 g1->benefit = g2->benefit;
5867 else if (g1->giv_type != DEST_REG
5868 || n_times_used[REGNO (g1->dest_reg)] != 1
5869 || ! reg_mentioned_p (g1->dest_reg,
5870 PATTERN (g2->insn)))
5871 {
5872 g1->benefit += g2->benefit;
5873 g1->times_used += g2->times_used;
5874 }
5875 /* ??? The new final_[bg]iv_value code does a much better job
5876 of finding replaceable giv's, and hence this code may no
5877 longer be necessary. */
5878 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5879 g1->benefit -= copy_cost;
5880 g1->lifetime += g2->lifetime;
5881
5882 if (loop_dump_stream)
5883 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5884 INSN_UID (g2->insn), INSN_UID (g1->insn));
5885 }
5886 }
5887 }
5888 }
5889 \f
5890 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5891
5892 void
5893 emit_iv_add_mult (b, m, a, reg, insert_before)
5894 rtx b; /* initial value of basic induction variable */
5895 rtx m; /* multiplicative constant */
5896 rtx a; /* additive constant */
5897 rtx reg; /* destination register */
5898 rtx insert_before;
5899 {
5900 rtx seq;
5901 rtx result;
5902
5903 /* Prevent unexpected sharing of these rtx. */
5904 a = copy_rtx (a);
5905 b = copy_rtx (b);
5906
5907 /* Increase the lifetime of any invariants moved further in code. */
5908 update_reg_last_use (a, insert_before);
5909 update_reg_last_use (b, insert_before);
5910 update_reg_last_use (m, insert_before);
5911
5912 start_sequence ();
5913 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5914 if (reg != result)
5915 emit_move_insn (reg, result);
5916 seq = gen_sequence ();
5917 end_sequence ();
5918
5919 emit_insn_before (seq, insert_before);
5920
5921 record_base_value (REGNO (reg), b);
5922 }
5923 \f
5924 /* Test whether A * B can be computed without
5925 an actual multiply insn. Value is 1 if so. */
5926
5927 static int
5928 product_cheap_p (a, b)
5929 rtx a;
5930 rtx b;
5931 {
5932 int i;
5933 rtx tmp;
5934 struct obstack *old_rtl_obstack = rtl_obstack;
5935 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5936 int win = 1;
5937
5938 /* If only one is constant, make it B. */
5939 if (GET_CODE (a) == CONST_INT)
5940 tmp = a, a = b, b = tmp;
5941
5942 /* If first constant, both constant, so don't need multiply. */
5943 if (GET_CODE (a) == CONST_INT)
5944 return 1;
5945
5946 /* If second not constant, neither is constant, so would need multiply. */
5947 if (GET_CODE (b) != CONST_INT)
5948 return 0;
5949
5950 /* One operand is constant, so might not need multiply insn. Generate the
5951 code for the multiply and see if a call or multiply, or long sequence
5952 of insns is generated. */
5953
5954 rtl_obstack = &temp_obstack;
5955 start_sequence ();
5956 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5957 tmp = gen_sequence ();
5958 end_sequence ();
5959
5960 if (GET_CODE (tmp) == SEQUENCE)
5961 {
5962 if (XVEC (tmp, 0) == 0)
5963 win = 1;
5964 else if (XVECLEN (tmp, 0) > 3)
5965 win = 0;
5966 else
5967 for (i = 0; i < XVECLEN (tmp, 0); i++)
5968 {
5969 rtx insn = XVECEXP (tmp, 0, i);
5970
5971 if (GET_CODE (insn) != INSN
5972 || (GET_CODE (PATTERN (insn)) == SET
5973 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5974 || (GET_CODE (PATTERN (insn)) == PARALLEL
5975 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5976 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5977 {
5978 win = 0;
5979 break;
5980 }
5981 }
5982 }
5983 else if (GET_CODE (tmp) == SET
5984 && GET_CODE (SET_SRC (tmp)) == MULT)
5985 win = 0;
5986 else if (GET_CODE (tmp) == PARALLEL
5987 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5988 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5989 win = 0;
5990
5991 /* Free any storage we obtained in generating this multiply and restore rtl
5992 allocation to its normal obstack. */
5993 obstack_free (&temp_obstack, storage);
5994 rtl_obstack = old_rtl_obstack;
5995
5996 return win;
5997 }
5998 \f
5999 /* Check to see if loop can be terminated by a "decrement and branch until
6000 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
6001 Also try reversing an increment loop to a decrement loop
6002 to see if the optimization can be performed.
6003 Value is nonzero if optimization was performed. */
6004
6005 /* This is useful even if the architecture doesn't have such an insn,
6006 because it might change a loops which increments from 0 to n to a loop
6007 which decrements from n to 0. A loop that decrements to zero is usually
6008 faster than one that increments from zero. */
6009
6010 /* ??? This could be rewritten to use some of the loop unrolling procedures,
6011 such as approx_final_value, biv_total_increment, loop_iterations, and
6012 final_[bg]iv_value. */
6013
6014 static int
6015 check_dbra_loop (loop_end, insn_count, loop_start)
6016 rtx loop_end;
6017 int insn_count;
6018 rtx loop_start;
6019 {
6020 struct iv_class *bl;
6021 rtx reg;
6022 rtx jump_label;
6023 rtx final_value;
6024 rtx start_value;
6025 rtx new_add_val;
6026 rtx comparison;
6027 rtx before_comparison;
6028 rtx p;
6029
6030 /* If last insn is a conditional branch, and the insn before tests a
6031 register value, try to optimize it. Otherwise, we can't do anything. */
6032
6033 comparison = get_condition_for_loop (PREV_INSN (loop_end));
6034 if (comparison == 0)
6035 return 0;
6036
6037 /* Check all of the bivs to see if the compare uses one of them.
6038 Skip biv's set more than once because we can't guarantee that
6039 it will be zero on the last iteration. Also skip if the biv is
6040 used between its update and the test insn. */
6041
6042 for (bl = loop_iv_list; bl; bl = bl->next)
6043 {
6044 if (bl->biv_count == 1
6045 && bl->biv->dest_reg == XEXP (comparison, 0)
6046 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6047 PREV_INSN (PREV_INSN (loop_end))))
6048 break;
6049 }
6050
6051 if (! bl)
6052 return 0;
6053
6054 /* Look for the case where the basic induction variable is always
6055 nonnegative, and equals zero on the last iteration.
6056 In this case, add a reg_note REG_NONNEG, which allows the
6057 m68k DBRA instruction to be used. */
6058
6059 if (((GET_CODE (comparison) == GT
6060 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6061 && INTVAL (XEXP (comparison, 1)) == -1)
6062 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6063 && GET_CODE (bl->biv->add_val) == CONST_INT
6064 && INTVAL (bl->biv->add_val) < 0)
6065 {
6066 /* Initial value must be greater than 0,
6067 init_val % -dec_value == 0 to ensure that it equals zero on
6068 the last iteration */
6069
6070 if (GET_CODE (bl->initial_value) == CONST_INT
6071 && INTVAL (bl->initial_value) > 0
6072 && (INTVAL (bl->initial_value)
6073 % (-INTVAL (bl->biv->add_val))) == 0)
6074 {
6075 /* register always nonnegative, add REG_NOTE to branch */
6076 REG_NOTES (PREV_INSN (loop_end))
6077 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6078 REG_NOTES (PREV_INSN (loop_end)));
6079 bl->nonneg = 1;
6080
6081 return 1;
6082 }
6083
6084 /* If the decrement is 1 and the value was tested as >= 0 before
6085 the loop, then we can safely optimize. */
6086 for (p = loop_start; p; p = PREV_INSN (p))
6087 {
6088 if (GET_CODE (p) == CODE_LABEL)
6089 break;
6090 if (GET_CODE (p) != JUMP_INSN)
6091 continue;
6092
6093 before_comparison = get_condition_for_loop (p);
6094 if (before_comparison
6095 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6096 && GET_CODE (before_comparison) == LT
6097 && XEXP (before_comparison, 1) == const0_rtx
6098 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6099 && INTVAL (bl->biv->add_val) == -1)
6100 {
6101 REG_NOTES (PREV_INSN (loop_end))
6102 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6103 REG_NOTES (PREV_INSN (loop_end)));
6104 bl->nonneg = 1;
6105
6106 return 1;
6107 }
6108 }
6109 }
6110 else if (num_mem_sets <= 1)
6111 {
6112 /* Try to change inc to dec, so can apply above optimization. */
6113 /* Can do this if:
6114 all registers modified are induction variables or invariant,
6115 all memory references have non-overlapping addresses
6116 (obviously true if only one write)
6117 allow 2 insns for the compare/jump at the end of the loop. */
6118 /* Also, we must avoid any instructions which use both the reversed
6119 biv and another biv. Such instructions will fail if the loop is
6120 reversed. We meet this condition by requiring that either
6121 no_use_except_counting is true, or else that there is only
6122 one biv. */
6123 int num_nonfixed_reads = 0;
6124 /* 1 if the iteration var is used only to count iterations. */
6125 int no_use_except_counting = 0;
6126 /* 1 if the loop has no memory store, or it has a single memory store
6127 which is reversible. */
6128 int reversible_mem_store = 1;
6129
6130 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6131 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6132 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6133
6134 if (bl->giv_count == 0
6135 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6136 {
6137 rtx bivreg = regno_reg_rtx[bl->regno];
6138
6139 /* If there are no givs for this biv, and the only exit is the
6140 fall through at the end of the the loop, then
6141 see if perhaps there are no uses except to count. */
6142 no_use_except_counting = 1;
6143 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6144 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6145 {
6146 rtx set = single_set (p);
6147
6148 if (set && GET_CODE (SET_DEST (set)) == REG
6149 && REGNO (SET_DEST (set)) == bl->regno)
6150 /* An insn that sets the biv is okay. */
6151 ;
6152 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6153 || p == prev_nonnote_insn (loop_end))
6154 /* Don't bother about the end test. */
6155 ;
6156 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6157 /* Any other use of the biv is no good. */
6158 {
6159 no_use_except_counting = 0;
6160 break;
6161 }
6162 }
6163 }
6164
6165 /* If the loop has a single store, and the destination address is
6166 invariant, then we can't reverse the loop, because this address
6167 might then have the wrong value at loop exit.
6168 This would work if the source was invariant also, however, in that
6169 case, the insn should have been moved out of the loop. */
6170
6171 if (num_mem_sets == 1)
6172 reversible_mem_store
6173 = (! unknown_address_altered
6174 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6175
6176 /* This code only acts for innermost loops. Also it simplifies
6177 the memory address check by only reversing loops with
6178 zero or one memory access.
6179 Two memory accesses could involve parts of the same array,
6180 and that can't be reversed. */
6181
6182 if (num_nonfixed_reads <= 1
6183 && !loop_has_call
6184 && !loop_has_volatile
6185 && reversible_mem_store
6186 && (no_use_except_counting
6187 || ((bl->giv_count + bl->biv_count + num_mem_sets
6188 + num_movables + 2 == insn_count)
6189 && (bl == loop_iv_list && bl->next == 0))))
6190 {
6191 rtx tem;
6192
6193 /* Loop can be reversed. */
6194 if (loop_dump_stream)
6195 fprintf (loop_dump_stream, "Can reverse loop\n");
6196
6197 /* Now check other conditions:
6198
6199 The increment must be a constant, as must the initial value,
6200 and the comparison code must be LT.
6201
6202 This test can probably be improved since +/- 1 in the constant
6203 can be obtained by changing LT to LE and vice versa; this is
6204 confusing. */
6205
6206 if (comparison
6207 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6208 /* LE gets turned into LT */
6209 && GET_CODE (comparison) == LT
6210 && GET_CODE (bl->initial_value) == CONST_INT)
6211 {
6212 HOST_WIDE_INT add_val, comparison_val;
6213 rtx initial_value;
6214
6215 add_val = INTVAL (bl->biv->add_val);
6216 comparison_val = INTVAL (XEXP (comparison, 1));
6217 initial_value = bl->initial_value;
6218
6219 /* Normalize the initial value if it is an integer and
6220 has no other use except as a counter. This will allow
6221 a few more loops to be reversed. */
6222 if (no_use_except_counting
6223 && GET_CODE (initial_value) == CONST_INT)
6224 {
6225 comparison_val = comparison_val - INTVAL (bl->initial_value);
6226 initial_value = const0_rtx;
6227 }
6228
6229 /* If the initial value is not zero, or if the comparison
6230 value is not an exact multiple of the increment, then we
6231 can not reverse this loop. */
6232 if (initial_value != const0_rtx
6233 || (comparison_val % add_val) != 0)
6234 return 0;
6235
6236 /* Reset these in case we normalized the initial value
6237 and comparison value above. */
6238 bl->initial_value = initial_value;
6239 XEXP (comparison, 1) = GEN_INT (comparison_val);
6240
6241 /* Register will always be nonnegative, with value
6242 0 on last iteration if loop reversed */
6243
6244 /* Save some info needed to produce the new insns. */
6245 reg = bl->biv->dest_reg;
6246 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6247 if (jump_label == pc_rtx)
6248 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6249 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6250
6251 final_value = XEXP (comparison, 1);
6252 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6253 - INTVAL (bl->biv->add_val));
6254
6255 /* Initialize biv to start_value before loop start.
6256 The old initializing insn will be deleted as a
6257 dead store by flow.c. */
6258 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6259
6260 /* Add insn to decrement register, and delete insn
6261 that incremented the register. */
6262 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6263 bl->biv->insn);
6264 delete_insn (bl->biv->insn);
6265
6266 /* Update biv info to reflect its new status. */
6267 bl->biv->insn = p;
6268 bl->initial_value = start_value;
6269 bl->biv->add_val = new_add_val;
6270
6271 /* Inc LABEL_NUSES so that delete_insn will
6272 not delete the label. */
6273 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6274
6275 /* Emit an insn after the end of the loop to set the biv's
6276 proper exit value if it is used anywhere outside the loop. */
6277 if ((REGNO_LAST_UID (bl->regno)
6278 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6279 || ! bl->init_insn
6280 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6281 emit_insn_after (gen_move_insn (reg, final_value),
6282 loop_end);
6283
6284 /* Delete compare/branch at end of loop. */
6285 delete_insn (PREV_INSN (loop_end));
6286 delete_insn (PREV_INSN (loop_end));
6287
6288 /* Add new compare/branch insn at end of loop. */
6289 start_sequence ();
6290 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6291 GET_MODE (reg), 0, 0);
6292 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6293 tem = gen_sequence ();
6294 end_sequence ();
6295 emit_jump_insn_before (tem, loop_end);
6296
6297 for (tem = PREV_INSN (loop_end);
6298 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6299 ;
6300 if (tem)
6301 {
6302 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6303
6304 /* Increment of LABEL_NUSES done above. */
6305 /* Register is now always nonnegative,
6306 so add REG_NONNEG note to the branch. */
6307 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6308 REG_NOTES (tem));
6309 }
6310
6311 bl->nonneg = 1;
6312
6313 /* Mark that this biv has been reversed. Each giv which depends
6314 on this biv, and which is also live past the end of the loop
6315 will have to be fixed up. */
6316
6317 bl->reversed = 1;
6318
6319 if (loop_dump_stream)
6320 fprintf (loop_dump_stream,
6321 "Reversed loop and added reg_nonneg\n");
6322
6323 return 1;
6324 }
6325 }
6326 }
6327
6328 return 0;
6329 }
6330 \f
6331 /* Verify whether the biv BL appears to be eliminable,
6332 based on the insns in the loop that refer to it.
6333 LOOP_START is the first insn of the loop, and END is the end insn.
6334
6335 If ELIMINATE_P is non-zero, actually do the elimination.
6336
6337 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6338 determine whether invariant insns should be placed inside or at the
6339 start of the loop. */
6340
6341 static int
6342 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6343 struct iv_class *bl;
6344 rtx loop_start;
6345 rtx end;
6346 int eliminate_p;
6347 int threshold, insn_count;
6348 {
6349 rtx reg = bl->biv->dest_reg;
6350 rtx p;
6351
6352 /* Scan all insns in the loop, stopping if we find one that uses the
6353 biv in a way that we cannot eliminate. */
6354
6355 for (p = loop_start; p != end; p = NEXT_INSN (p))
6356 {
6357 enum rtx_code code = GET_CODE (p);
6358 rtx where = threshold >= insn_count ? loop_start : p;
6359
6360 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6361 && reg_mentioned_p (reg, PATTERN (p))
6362 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6363 {
6364 if (loop_dump_stream)
6365 fprintf (loop_dump_stream,
6366 "Cannot eliminate biv %d: biv used in insn %d.\n",
6367 bl->regno, INSN_UID (p));
6368 break;
6369 }
6370 }
6371
6372 if (p == end)
6373 {
6374 if (loop_dump_stream)
6375 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6376 bl->regno, eliminate_p ? "was" : "can be");
6377 return 1;
6378 }
6379
6380 return 0;
6381 }
6382 \f
6383 /* If BL appears in X (part of the pattern of INSN), see if we can
6384 eliminate its use. If so, return 1. If not, return 0.
6385
6386 If BIV does not appear in X, return 1.
6387
6388 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6389 where extra insns should be added. Depending on how many items have been
6390 moved out of the loop, it will either be before INSN or at the start of
6391 the loop. */
6392
6393 static int
6394 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6395 rtx x, insn;
6396 struct iv_class *bl;
6397 int eliminate_p;
6398 rtx where;
6399 {
6400 enum rtx_code code = GET_CODE (x);
6401 rtx reg = bl->biv->dest_reg;
6402 enum machine_mode mode = GET_MODE (reg);
6403 struct induction *v;
6404 rtx arg, new, tem;
6405 int arg_operand;
6406 char *fmt;
6407 int i, j;
6408
6409 switch (code)
6410 {
6411 case REG:
6412 /* If we haven't already been able to do something with this BIV,
6413 we can't eliminate it. */
6414 if (x == reg)
6415 return 0;
6416 return 1;
6417
6418 case SET:
6419 /* If this sets the BIV, it is not a problem. */
6420 if (SET_DEST (x) == reg)
6421 return 1;
6422
6423 /* If this is an insn that defines a giv, it is also ok because
6424 it will go away when the giv is reduced. */
6425 for (v = bl->giv; v; v = v->next_iv)
6426 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6427 return 1;
6428
6429 #ifdef HAVE_cc0
6430 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6431 {
6432 /* Can replace with any giv that was reduced and
6433 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6434 Require a constant for MULT_VAL, so we know it's nonzero.
6435 ??? We disable this optimization to avoid potential
6436 overflows. */
6437
6438 for (v = bl->giv; v; v = v->next_iv)
6439 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6440 && v->add_val == const0_rtx
6441 && ! v->ignore && ! v->maybe_dead && v->always_computable
6442 && v->mode == mode
6443 && 0)
6444 {
6445 /* If the giv V had the auto-inc address optimization applied
6446 to it, and INSN occurs between the giv insn and the biv
6447 insn, then we must adjust the value used here.
6448 This is rare, so we don't bother to do so. */
6449 if (v->auto_inc_opt
6450 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6451 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6452 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6453 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6454 continue;
6455
6456 if (! eliminate_p)
6457 return 1;
6458
6459 /* If the giv has the opposite direction of change,
6460 then reverse the comparison. */
6461 if (INTVAL (v->mult_val) < 0)
6462 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
6463 const0_rtx, v->new_reg);
6464 else
6465 new = v->new_reg;
6466
6467 /* We can probably test that giv's reduced reg. */
6468 if (validate_change (insn, &SET_SRC (x), new, 0))
6469 return 1;
6470 }
6471
6472 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6473 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6474 Require a constant for MULT_VAL, so we know it's nonzero.
6475 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6476 overflow problem. */
6477
6478 for (v = bl->giv; v; v = v->next_iv)
6479 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6480 && ! v->ignore && ! v->maybe_dead && v->always_computable
6481 && v->mode == mode
6482 && (GET_CODE (v->add_val) == SYMBOL_REF
6483 || GET_CODE (v->add_val) == LABEL_REF
6484 || GET_CODE (v->add_val) == CONST
6485 || (GET_CODE (v->add_val) == REG
6486 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6487 {
6488 /* If the giv V had the auto-inc address optimization applied
6489 to it, and INSN occurs between the giv insn and the biv
6490 insn, then we must adjust the value used here.
6491 This is rare, so we don't bother to do so. */
6492 if (v->auto_inc_opt
6493 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6494 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6495 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6496 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6497 continue;
6498
6499 if (! eliminate_p)
6500 return 1;
6501
6502 /* If the giv has the opposite direction of change,
6503 then reverse the comparison. */
6504 if (INTVAL (v->mult_val) < 0)
6505 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
6506 v->new_reg);
6507 else
6508 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
6509 copy_rtx (v->add_val));
6510
6511 /* Replace biv with the giv's reduced register. */
6512 update_reg_last_use (v->add_val, insn);
6513 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6514 return 1;
6515
6516 /* Insn doesn't support that constant or invariant. Copy it
6517 into a register (it will be a loop invariant.) */
6518 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6519
6520 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6521 where);
6522
6523 /* Substitute the new register for its invariant value in
6524 the compare expression. */
6525 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6526 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6527 return 1;
6528 }
6529 }
6530 #endif
6531 break;
6532
6533 case COMPARE:
6534 case EQ: case NE:
6535 case GT: case GE: case GTU: case GEU:
6536 case LT: case LE: case LTU: case LEU:
6537 /* See if either argument is the biv. */
6538 if (XEXP (x, 0) == reg)
6539 arg = XEXP (x, 1), arg_operand = 1;
6540 else if (XEXP (x, 1) == reg)
6541 arg = XEXP (x, 0), arg_operand = 0;
6542 else
6543 break;
6544
6545 if (CONSTANT_P (arg))
6546 {
6547 /* First try to replace with any giv that has constant positive
6548 mult_val and constant add_val. We might be able to support
6549 negative mult_val, but it seems complex to do it in general. */
6550
6551 for (v = bl->giv; v; v = v->next_iv)
6552 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6553 && (GET_CODE (v->add_val) == SYMBOL_REF
6554 || GET_CODE (v->add_val) == LABEL_REF
6555 || GET_CODE (v->add_val) == CONST
6556 || (GET_CODE (v->add_val) == REG
6557 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6558 && ! v->ignore && ! v->maybe_dead && v->always_computable
6559 && v->mode == mode)
6560 {
6561 /* If the giv V had the auto-inc address optimization applied
6562 to it, and INSN occurs between the giv insn and the biv
6563 insn, then we must adjust the value used here.
6564 This is rare, so we don't bother to do so. */
6565 if (v->auto_inc_opt
6566 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6567 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6568 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6569 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6570 continue;
6571
6572 if (! eliminate_p)
6573 return 1;
6574
6575 /* Replace biv with the giv's reduced reg. */
6576 XEXP (x, 1-arg_operand) = v->new_reg;
6577
6578 /* If all constants are actually constant integers and
6579 the derived constant can be directly placed in the COMPARE,
6580 do so. */
6581 if (GET_CODE (arg) == CONST_INT
6582 && GET_CODE (v->mult_val) == CONST_INT
6583 && GET_CODE (v->add_val) == CONST_INT
6584 && validate_change (insn, &XEXP (x, arg_operand),
6585 GEN_INT (INTVAL (arg)
6586 * INTVAL (v->mult_val)
6587 + INTVAL (v->add_val)), 0))
6588 return 1;
6589
6590 /* Otherwise, load it into a register. */
6591 tem = gen_reg_rtx (mode);
6592 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6593 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6594 return 1;
6595
6596 /* If that failed, put back the change we made above. */
6597 XEXP (x, 1-arg_operand) = reg;
6598 }
6599
6600 /* Look for giv with positive constant mult_val and nonconst add_val.
6601 Insert insns to calculate new compare value.
6602 ??? Turn this off due to possible overflow. */
6603
6604 for (v = bl->giv; v; v = v->next_iv)
6605 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6606 && ! v->ignore && ! v->maybe_dead && v->always_computable
6607 && v->mode == mode
6608 && 0)
6609 {
6610 rtx tem;
6611
6612 /* If the giv V had the auto-inc address optimization applied
6613 to it, and INSN occurs between the giv insn and the biv
6614 insn, then we must adjust the value used here.
6615 This is rare, so we don't bother to do so. */
6616 if (v->auto_inc_opt
6617 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6618 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6619 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6620 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6621 continue;
6622
6623 if (! eliminate_p)
6624 return 1;
6625
6626 tem = gen_reg_rtx (mode);
6627
6628 /* Replace biv with giv's reduced register. */
6629 validate_change (insn, &XEXP (x, 1 - arg_operand),
6630 v->new_reg, 1);
6631
6632 /* Compute value to compare against. */
6633 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6634 /* Use it in this insn. */
6635 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6636 if (apply_change_group ())
6637 return 1;
6638 }
6639 }
6640 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6641 {
6642 if (invariant_p (arg) == 1)
6643 {
6644 /* Look for giv with constant positive mult_val and nonconst
6645 add_val. Insert insns to compute new compare value.
6646 ??? Turn this off due to possible overflow. */
6647
6648 for (v = bl->giv; v; v = v->next_iv)
6649 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6650 && ! v->ignore && ! v->maybe_dead && v->always_computable
6651 && v->mode == mode
6652 && 0)
6653 {
6654 rtx tem;
6655
6656 /* If the giv V had the auto-inc address optimization applied
6657 to it, and INSN occurs between the giv insn and the biv
6658 insn, then we must adjust the value used here.
6659 This is rare, so we don't bother to do so. */
6660 if (v->auto_inc_opt
6661 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6662 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6663 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6664 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6665 continue;
6666
6667 if (! eliminate_p)
6668 return 1;
6669
6670 tem = gen_reg_rtx (mode);
6671
6672 /* Replace biv with giv's reduced register. */
6673 validate_change (insn, &XEXP (x, 1 - arg_operand),
6674 v->new_reg, 1);
6675
6676 /* Compute value to compare against. */
6677 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6678 tem, where);
6679 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6680 if (apply_change_group ())
6681 return 1;
6682 }
6683 }
6684
6685 /* This code has problems. Basically, you can't know when
6686 seeing if we will eliminate BL, whether a particular giv
6687 of ARG will be reduced. If it isn't going to be reduced,
6688 we can't eliminate BL. We can try forcing it to be reduced,
6689 but that can generate poor code.
6690
6691 The problem is that the benefit of reducing TV, below should
6692 be increased if BL can actually be eliminated, but this means
6693 we might have to do a topological sort of the order in which
6694 we try to process biv. It doesn't seem worthwhile to do
6695 this sort of thing now. */
6696
6697 #if 0
6698 /* Otherwise the reg compared with had better be a biv. */
6699 if (GET_CODE (arg) != REG
6700 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6701 return 0;
6702
6703 /* Look for a pair of givs, one for each biv,
6704 with identical coefficients. */
6705 for (v = bl->giv; v; v = v->next_iv)
6706 {
6707 struct induction *tv;
6708
6709 if (v->ignore || v->maybe_dead || v->mode != mode)
6710 continue;
6711
6712 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6713 if (! tv->ignore && ! tv->maybe_dead
6714 && rtx_equal_p (tv->mult_val, v->mult_val)
6715 && rtx_equal_p (tv->add_val, v->add_val)
6716 && tv->mode == mode)
6717 {
6718 /* If the giv V had the auto-inc address optimization applied
6719 to it, and INSN occurs between the giv insn and the biv
6720 insn, then we must adjust the value used here.
6721 This is rare, so we don't bother to do so. */
6722 if (v->auto_inc_opt
6723 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6724 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6725 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6726 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6727 continue;
6728
6729 if (! eliminate_p)
6730 return 1;
6731
6732 /* Replace biv with its giv's reduced reg. */
6733 XEXP (x, 1-arg_operand) = v->new_reg;
6734 /* Replace other operand with the other giv's
6735 reduced reg. */
6736 XEXP (x, arg_operand) = tv->new_reg;
6737 return 1;
6738 }
6739 }
6740 #endif
6741 }
6742
6743 /* If we get here, the biv can't be eliminated. */
6744 return 0;
6745
6746 case MEM:
6747 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6748 biv is used in it, since it will be replaced. */
6749 for (v = bl->giv; v; v = v->next_iv)
6750 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6751 return 1;
6752 break;
6753
6754 default:
6755 break;
6756 }
6757
6758 /* See if any subexpression fails elimination. */
6759 fmt = GET_RTX_FORMAT (code);
6760 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6761 {
6762 switch (fmt[i])
6763 {
6764 case 'e':
6765 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6766 eliminate_p, where))
6767 return 0;
6768 break;
6769
6770 case 'E':
6771 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6772 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6773 eliminate_p, where))
6774 return 0;
6775 break;
6776 }
6777 }
6778
6779 return 1;
6780 }
6781 \f
6782 /* Return nonzero if the last use of REG
6783 is in an insn following INSN in the same basic block. */
6784
6785 static int
6786 last_use_this_basic_block (reg, insn)
6787 rtx reg;
6788 rtx insn;
6789 {
6790 rtx n;
6791 for (n = insn;
6792 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6793 n = NEXT_INSN (n))
6794 {
6795 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6796 return 1;
6797 }
6798 return 0;
6799 }
6800 \f
6801 /* Called via `note_stores' to record the initial value of a biv. Here we
6802 just record the location of the set and process it later. */
6803
6804 static void
6805 record_initial (dest, set)
6806 rtx dest;
6807 rtx set;
6808 {
6809 struct iv_class *bl;
6810
6811 if (GET_CODE (dest) != REG
6812 || REGNO (dest) >= max_reg_before_loop
6813 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6814 return;
6815
6816 bl = reg_biv_class[REGNO (dest)];
6817
6818 /* If this is the first set found, record it. */
6819 if (bl->init_insn == 0)
6820 {
6821 bl->init_insn = note_insn;
6822 bl->init_set = set;
6823 }
6824 }
6825 \f
6826 /* If any of the registers in X are "old" and currently have a last use earlier
6827 than INSN, update them to have a last use of INSN. Their actual last use
6828 will be the previous insn but it will not have a valid uid_luid so we can't
6829 use it. */
6830
6831 static void
6832 update_reg_last_use (x, insn)
6833 rtx x;
6834 rtx insn;
6835 {
6836 /* Check for the case where INSN does not have a valid luid. In this case,
6837 there is no need to modify the regno_last_uid, as this can only happen
6838 when code is inserted after the loop_end to set a pseudo's final value,
6839 and hence this insn will never be the last use of x. */
6840 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6841 && INSN_UID (insn) < max_uid_for_loop
6842 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6843 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6844 else
6845 {
6846 register int i, j;
6847 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6848 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6849 {
6850 if (fmt[i] == 'e')
6851 update_reg_last_use (XEXP (x, i), insn);
6852 else if (fmt[i] == 'E')
6853 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6854 update_reg_last_use (XVECEXP (x, i, j), insn);
6855 }
6856 }
6857 }
6858 \f
6859 /* Given a jump insn JUMP, return the condition that will cause it to branch
6860 to its JUMP_LABEL. If the condition cannot be understood, or is an
6861 inequality floating-point comparison which needs to be reversed, 0 will
6862 be returned.
6863
6864 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6865 insn used in locating the condition was found. If a replacement test
6866 of the condition is desired, it should be placed in front of that
6867 insn and we will be sure that the inputs are still valid.
6868
6869 The condition will be returned in a canonical form to simplify testing by
6870 callers. Specifically:
6871
6872 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6873 (2) Both operands will be machine operands; (cc0) will have been replaced.
6874 (3) If an operand is a constant, it will be the second operand.
6875 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6876 for GE, GEU, and LEU. */
6877
6878 rtx
6879 get_condition (jump, earliest)
6880 rtx jump;
6881 rtx *earliest;
6882 {
6883 enum rtx_code code;
6884 rtx prev = jump;
6885 rtx set;
6886 rtx tem;
6887 rtx op0, op1;
6888 int reverse_code = 0;
6889 int did_reverse_condition = 0;
6890
6891 /* If this is not a standard conditional jump, we can't parse it. */
6892 if (GET_CODE (jump) != JUMP_INSN
6893 || ! condjump_p (jump) || simplejump_p (jump))
6894 return 0;
6895
6896 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6897 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6898 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6899
6900 if (earliest)
6901 *earliest = jump;
6902
6903 /* If this branches to JUMP_LABEL when the condition is false, reverse
6904 the condition. */
6905 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6906 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6907 code = reverse_condition (code), did_reverse_condition ^= 1;
6908
6909 /* If we are comparing a register with zero, see if the register is set
6910 in the previous insn to a COMPARE or a comparison operation. Perform
6911 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6912 in cse.c */
6913
6914 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6915 {
6916 /* Set non-zero when we find something of interest. */
6917 rtx x = 0;
6918
6919 #ifdef HAVE_cc0
6920 /* If comparison with cc0, import actual comparison from compare
6921 insn. */
6922 if (op0 == cc0_rtx)
6923 {
6924 if ((prev = prev_nonnote_insn (prev)) == 0
6925 || GET_CODE (prev) != INSN
6926 || (set = single_set (prev)) == 0
6927 || SET_DEST (set) != cc0_rtx)
6928 return 0;
6929
6930 op0 = SET_SRC (set);
6931 op1 = CONST0_RTX (GET_MODE (op0));
6932 if (earliest)
6933 *earliest = prev;
6934 }
6935 #endif
6936
6937 /* If this is a COMPARE, pick up the two things being compared. */
6938 if (GET_CODE (op0) == COMPARE)
6939 {
6940 op1 = XEXP (op0, 1);
6941 op0 = XEXP (op0, 0);
6942 continue;
6943 }
6944 else if (GET_CODE (op0) != REG)
6945 break;
6946
6947 /* Go back to the previous insn. Stop if it is not an INSN. We also
6948 stop if it isn't a single set or if it has a REG_INC note because
6949 we don't want to bother dealing with it. */
6950
6951 if ((prev = prev_nonnote_insn (prev)) == 0
6952 || GET_CODE (prev) != INSN
6953 || FIND_REG_INC_NOTE (prev, 0)
6954 || (set = single_set (prev)) == 0)
6955 break;
6956
6957 /* If this is setting OP0, get what it sets it to if it looks
6958 relevant. */
6959 if (rtx_equal_p (SET_DEST (set), op0))
6960 {
6961 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6962
6963 if ((GET_CODE (SET_SRC (set)) == COMPARE
6964 || (((code == NE
6965 || (code == LT
6966 && GET_MODE_CLASS (inner_mode) == MODE_INT
6967 && (GET_MODE_BITSIZE (inner_mode)
6968 <= HOST_BITS_PER_WIDE_INT)
6969 && (STORE_FLAG_VALUE
6970 & ((HOST_WIDE_INT) 1
6971 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6972 #ifdef FLOAT_STORE_FLAG_VALUE
6973 || (code == LT
6974 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6975 && FLOAT_STORE_FLAG_VALUE < 0)
6976 #endif
6977 ))
6978 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6979 x = SET_SRC (set);
6980 else if (((code == EQ
6981 || (code == GE
6982 && (GET_MODE_BITSIZE (inner_mode)
6983 <= HOST_BITS_PER_WIDE_INT)
6984 && GET_MODE_CLASS (inner_mode) == MODE_INT
6985 && (STORE_FLAG_VALUE
6986 & ((HOST_WIDE_INT) 1
6987 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6988 #ifdef FLOAT_STORE_FLAG_VALUE
6989 || (code == GE
6990 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6991 && FLOAT_STORE_FLAG_VALUE < 0)
6992 #endif
6993 ))
6994 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6995 {
6996 /* We might have reversed a LT to get a GE here. But this wasn't
6997 actually the comparison of data, so we don't flag that we
6998 have had to reverse the condition. */
6999 did_reverse_condition ^= 1;
7000 reverse_code = 1;
7001 x = SET_SRC (set);
7002 }
7003 else
7004 break;
7005 }
7006
7007 else if (reg_set_p (op0, prev))
7008 /* If this sets OP0, but not directly, we have to give up. */
7009 break;
7010
7011 if (x)
7012 {
7013 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
7014 code = GET_CODE (x);
7015 if (reverse_code)
7016 {
7017 code = reverse_condition (code);
7018 did_reverse_condition ^= 1;
7019 reverse_code = 0;
7020 }
7021
7022 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
7023 if (earliest)
7024 *earliest = prev;
7025 }
7026 }
7027
7028 /* If constant is first, put it last. */
7029 if (CONSTANT_P (op0))
7030 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
7031
7032 /* If OP0 is the result of a comparison, we weren't able to find what
7033 was really being compared, so fail. */
7034 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
7035 return 0;
7036
7037 /* Canonicalize any ordered comparison with integers involving equality
7038 if we can do computations in the relevant mode and we do not
7039 overflow. */
7040
7041 if (GET_CODE (op1) == CONST_INT
7042 && GET_MODE (op0) != VOIDmode
7043 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
7044 {
7045 HOST_WIDE_INT const_val = INTVAL (op1);
7046 unsigned HOST_WIDE_INT uconst_val = const_val;
7047 unsigned HOST_WIDE_INT max_val
7048 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
7049
7050 switch (code)
7051 {
7052 case LE:
7053 if (const_val != max_val >> 1)
7054 code = LT, op1 = GEN_INT (const_val + 1);
7055 break;
7056
7057 case GE:
7058 if (const_val
7059 != (((HOST_WIDE_INT) 1
7060 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7061 code = GT, op1 = GEN_INT (const_val - 1);
7062 break;
7063
7064 case LEU:
7065 if (uconst_val != max_val)
7066 code = LTU, op1 = GEN_INT (uconst_val + 1);
7067 break;
7068
7069 case GEU:
7070 if (uconst_val != 0)
7071 code = GTU, op1 = GEN_INT (uconst_val - 1);
7072 break;
7073
7074 default:
7075 break;
7076 }
7077 }
7078
7079 /* If this was floating-point and we reversed anything other than an
7080 EQ or NE, return zero. */
7081 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7082 && did_reverse_condition && code != NE && code != EQ
7083 && ! flag_fast_math
7084 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7085 return 0;
7086
7087 #ifdef HAVE_cc0
7088 /* Never return CC0; return zero instead. */
7089 if (op0 == cc0_rtx)
7090 return 0;
7091 #endif
7092
7093 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
7094 }
7095
7096 /* Similar to above routine, except that we also put an invariant last
7097 unless both operands are invariants. */
7098
7099 rtx
7100 get_condition_for_loop (x)
7101 rtx x;
7102 {
7103 rtx comparison = get_condition (x, NULL_PTR);
7104
7105 if (comparison == 0
7106 || ! invariant_p (XEXP (comparison, 0))
7107 || invariant_p (XEXP (comparison, 1)))
7108 return comparison;
7109
7110 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
7111 XEXP (comparison, 1), XEXP (comparison, 0));
7112 }
7113
7114 #ifdef HAIFA
7115 /* Analyze a loop in order to instrument it with the use of count register.
7116 loop_start and loop_end are the first and last insns of the loop.
7117 This function works in cooperation with insert_bct ().
7118 loop_can_insert_bct[loop_num] is set according to whether the optimization
7119 is applicable to the loop. When it is applicable, the following variables
7120 are also set:
7121 loop_start_value[loop_num]
7122 loop_comparison_value[loop_num]
7123 loop_increment[loop_num]
7124 loop_comparison_code[loop_num] */
7125
7126 static
7127 void analyze_loop_iterations (loop_start, loop_end)
7128 rtx loop_start, loop_end;
7129 {
7130 rtx comparison, comparison_value;
7131 rtx iteration_var, initial_value, increment;
7132 enum rtx_code comparison_code;
7133
7134 rtx last_loop_insn;
7135 rtx insn;
7136 int i;
7137
7138 /* loop_variable mode */
7139 enum machine_mode original_mode;
7140
7141 /* find the number of the loop */
7142 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7143
7144 /* we change our mind only when we are sure that loop will be instrumented */
7145 loop_can_insert_bct[loop_num] = 0;
7146
7147 /* is the optimization suppressed. */
7148 if ( !flag_branch_on_count_reg )
7149 return;
7150
7151 /* make sure that count-reg is not in use */
7152 if (loop_used_count_register[loop_num]){
7153 if (loop_dump_stream)
7154 fprintf (loop_dump_stream,
7155 "analyze_loop_iterations %d: BCT instrumentation failed: count register already in use\n",
7156 loop_num);
7157 return;
7158 }
7159
7160 /* make sure that the function has no indirect jumps. */
7161 if (indirect_jump_in_function){
7162 if (loop_dump_stream)
7163 fprintf (loop_dump_stream,
7164 "analyze_loop_iterations %d: BCT instrumentation failed: indirect jump in function\n",
7165 loop_num);
7166 return;
7167 }
7168
7169 /* make sure that the last loop insn is a conditional jump */
7170 last_loop_insn = PREV_INSN (loop_end);
7171 if (GET_CODE (last_loop_insn) != JUMP_INSN || !condjump_p (last_loop_insn)) {
7172 if (loop_dump_stream)
7173 fprintf (loop_dump_stream,
7174 "analyze_loop_iterations %d: BCT instrumentation failed: invalid jump at loop end\n",
7175 loop_num);
7176 return;
7177 }
7178
7179 /* First find the iteration variable. If the last insn is a conditional
7180 branch, and the insn preceding it tests a register value, make that
7181 register the iteration variable. */
7182
7183 /* We used to use prev_nonnote_insn here, but that fails because it might
7184 accidentally get the branch for a contained loop if the branch for this
7185 loop was deleted. We can only trust branches immediately before the
7186 loop_end. */
7187
7188 comparison = get_condition_for_loop (last_loop_insn);
7189 /* ??? Get_condition may switch position of induction variable and
7190 invariant register when it canonicalizes the comparison. */
7191
7192 if (comparison == 0) {
7193 if (loop_dump_stream)
7194 fprintf (loop_dump_stream,
7195 "analyze_loop_iterations %d: BCT instrumentation failed: comparison not found\n",
7196 loop_num);
7197 return;
7198 }
7199
7200 comparison_code = GET_CODE (comparison);
7201 iteration_var = XEXP (comparison, 0);
7202 comparison_value = XEXP (comparison, 1);
7203
7204 original_mode = GET_MODE (iteration_var);
7205 if (GET_MODE_CLASS (original_mode) != MODE_INT
7206 || GET_MODE_SIZE (original_mode) != UNITS_PER_WORD) {
7207 if (loop_dump_stream)
7208 fprintf (loop_dump_stream,
7209 "analyze_loop_iterations %d: BCT Instrumentation failed: loop variable not integer\n",
7210 loop_num);
7211 return;
7212 }
7213
7214 /* get info about loop bounds and increment */
7215 iteration_info (iteration_var, &initial_value, &increment,
7216 loop_start, loop_end);
7217
7218 /* make sure that all required loop data were found */
7219 if (!(initial_value && increment && comparison_value
7220 && invariant_p (comparison_value) && invariant_p (increment)
7221 && ! indirect_jump_in_function))
7222 {
7223 if (loop_dump_stream) {
7224 fprintf (loop_dump_stream,
7225 "analyze_loop_iterations %d: BCT instrumentation failed because of wrong loop: ", loop_num);
7226 if (!(initial_value && increment && comparison_value)) {
7227 fprintf (loop_dump_stream, "\tbounds not available: ");
7228 if ( ! initial_value )
7229 fprintf (loop_dump_stream, "initial ");
7230 if ( ! increment )
7231 fprintf (loop_dump_stream, "increment ");
7232 if ( ! comparison_value )
7233 fprintf (loop_dump_stream, "comparison ");
7234 fprintf (loop_dump_stream, "\n");
7235 }
7236 if (!invariant_p (comparison_value) || !invariant_p (increment))
7237 fprintf (loop_dump_stream, "\tloop bounds not invariant\n");
7238 }
7239 return;
7240 }
7241
7242 /* make sure that the increment is constant */
7243 if (GET_CODE (increment) != CONST_INT) {
7244 if (loop_dump_stream)
7245 fprintf (loop_dump_stream,
7246 "analyze_loop_iterations %d: instrumentation failed: not arithmetic loop\n",
7247 loop_num);
7248 return;
7249 }
7250
7251 /* make sure that the loop contains neither function call, nor jump on table.
7252 (the count register might be altered by the called function, and might
7253 be used for a branch on table). */
7254 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn)) {
7255 if (GET_CODE (insn) == CALL_INSN){
7256 if (loop_dump_stream)
7257 fprintf (loop_dump_stream,
7258 "analyze_loop_iterations %d: BCT instrumentation failed: function call in the loop\n",
7259 loop_num);
7260 return;
7261 }
7262
7263 if (GET_CODE (insn) == JUMP_INSN
7264 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
7265 || GET_CODE (PATTERN (insn)) == ADDR_VEC)){
7266 if (loop_dump_stream)
7267 fprintf (loop_dump_stream,
7268 "analyze_loop_iterations %d: BCT instrumentation failed: computed branch in the loop\n",
7269 loop_num);
7270 return;
7271 }
7272 }
7273
7274 /* At this point, we are sure that the loop can be instrumented with BCT.
7275 Some of the loops, however, will not be instrumented - the final decision
7276 is taken by insert_bct () */
7277 if (loop_dump_stream)
7278 fprintf (loop_dump_stream,
7279 "analyze_loop_iterations: loop (luid =%d) can be BCT instrumented.\n",
7280 loop_num);
7281
7282 /* mark all enclosing loops that they cannot use count register */
7283 /* ???: In fact, since insert_bct may decide not to instrument this loop,
7284 marking here may prevent instrumenting an enclosing loop that could
7285 actually be instrumented. But since this is rare, it is safer to mark
7286 here in case the order of calling (analyze/insert)_bct would be changed. */
7287 for (i=loop_num; i != -1; i = loop_outer_loop[i])
7288 loop_used_count_register[i] = 1;
7289
7290 /* Set data structures which will be used by the instrumentation phase */
7291 loop_start_value[loop_num] = initial_value;
7292 loop_comparison_value[loop_num] = comparison_value;
7293 loop_increment[loop_num] = increment;
7294 loop_comparison_code[loop_num] = comparison_code;
7295 loop_can_insert_bct[loop_num] = 1;
7296 }
7297
7298
7299 /* instrument loop for insertion of bct instruction. We distinguish between
7300 loops with compile-time bounds, to those with run-time bounds. The loop
7301 behaviour is analized according to the following characteristics/variables:
7302 ; Input variables:
7303 ; comparison-value: the value to which the iteration counter is compared.
7304 ; initial-value: iteration-counter initial value.
7305 ; increment: iteration-counter increment.
7306 ; Computed variables:
7307 ; increment-direction: the sign of the increment.
7308 ; compare-direction: '1' for GT, GTE, '-1' for LT, LTE, '0' for NE.
7309 ; range-direction: sign (comparison-value - initial-value)
7310 We give up on the following cases:
7311 ; loop variable overflow.
7312 ; run-time loop bounds with comparison code NE.
7313 */
7314
7315 static void
7316 insert_bct (loop_start, loop_end)
7317 rtx loop_start, loop_end;
7318 {
7319 rtx initial_value, comparison_value, increment;
7320 enum rtx_code comparison_code;
7321
7322 int increment_direction, compare_direction;
7323 int unsigned_p = 0;
7324
7325 /* if the loop condition is <= or >=, the number of iteration
7326 is 1 more than the range of the bounds of the loop */
7327 int add_iteration = 0;
7328
7329 /* the only machine mode we work with - is the integer of the size that the
7330 machine has */
7331 enum machine_mode loop_var_mode = SImode;
7332
7333 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7334
7335 /* get loop-variables. No need to check that these are valid - already
7336 checked in analyze_loop_iterations (). */
7337 comparison_code = loop_comparison_code[loop_num];
7338 initial_value = loop_start_value[loop_num];
7339 comparison_value = loop_comparison_value[loop_num];
7340 increment = loop_increment[loop_num];
7341
7342 /* check analyze_loop_iterations decision for this loop. */
7343 if (! loop_can_insert_bct[loop_num]){
7344 if (loop_dump_stream)
7345 fprintf (loop_dump_stream,
7346 "insert_bct: [%d] - was decided not to instrument by analyze_loop_iterations ()\n",
7347 loop_num);
7348 return;
7349 }
7350
7351 /* It's impossible to instrument a competely unrolled loop. */
7352 if (loop_unroll_factor [loop_num] == -1)
7353 return;
7354
7355 /* make sure that the last loop insn is a conditional jump .
7356 This check is repeated from analyze_loop_iterations (),
7357 because unrolling might have changed that. */
7358 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7359 || !condjump_p (PREV_INSN (loop_end))) {
7360 if (loop_dump_stream)
7361 fprintf (loop_dump_stream,
7362 "insert_bct: not instrumenting BCT because of invalid branch\n");
7363 return;
7364 }
7365
7366 /* fix increment in case loop was unrolled. */
7367 if (loop_unroll_factor [loop_num] > 1)
7368 increment = GEN_INT ( INTVAL (increment) * loop_unroll_factor [loop_num] );
7369
7370 /* determine properties and directions of the loop */
7371 increment_direction = (INTVAL (increment) > 0) ? 1:-1;
7372 switch ( comparison_code ) {
7373 case LEU:
7374 unsigned_p = 1;
7375 /* fallthrough */
7376 case LE:
7377 compare_direction = 1;
7378 add_iteration = 1;
7379 break;
7380 case GEU:
7381 unsigned_p = 1;
7382 /* fallthrough */
7383 case GE:
7384 compare_direction = -1;
7385 add_iteration = 1;
7386 break;
7387 case EQ:
7388 /* in this case we cannot know the number of iterations */
7389 if (loop_dump_stream)
7390 fprintf (loop_dump_stream,
7391 "insert_bct: %d: loop cannot be instrumented: == in condition\n",
7392 loop_num);
7393 return;
7394 case LTU:
7395 unsigned_p = 1;
7396 /* fallthrough */
7397 case LT:
7398 compare_direction = 1;
7399 break;
7400 case GTU:
7401 unsigned_p = 1;
7402 /* fallthrough */
7403 case GT:
7404 compare_direction = -1;
7405 break;
7406 case NE:
7407 compare_direction = 0;
7408 break;
7409 default:
7410 abort ();
7411 }
7412
7413
7414 /* make sure that the loop does not end by an overflow */
7415 if (compare_direction != increment_direction) {
7416 if (loop_dump_stream)
7417 fprintf (loop_dump_stream,
7418 "insert_bct: %d: loop cannot be instrumented: terminated by overflow\n",
7419 loop_num);
7420 return;
7421 }
7422
7423 /* try to instrument the loop. */
7424
7425 /* Handle the simpler case, where the bounds are known at compile time. */
7426 if (GET_CODE (initial_value) == CONST_INT && GET_CODE (comparison_value) == CONST_INT)
7427 {
7428 int n_iterations;
7429 int increment_value_abs = INTVAL (increment) * increment_direction;
7430
7431 /* check the relation between compare-val and initial-val */
7432 int difference = INTVAL (comparison_value) - INTVAL (initial_value);
7433 int range_direction = (difference > 0) ? 1 : -1;
7434
7435 /* make sure the loop executes enough iterations to gain from BCT */
7436 if (difference > -3 && difference < 3) {
7437 if (loop_dump_stream)
7438 fprintf (loop_dump_stream,
7439 "insert_bct: loop %d not BCT instrumented: too small iteration count.\n",
7440 loop_num);
7441 return;
7442 }
7443
7444 /* make sure that the loop executes at least once */
7445 if ((range_direction == 1 && compare_direction == -1)
7446 || (range_direction == -1 && compare_direction == 1))
7447 {
7448 if (loop_dump_stream)
7449 fprintf (loop_dump_stream,
7450 "insert_bct: loop %d: does not iterate even once. Not instrumenting.\n",
7451 loop_num);
7452 return;
7453 }
7454
7455 /* make sure that the loop does not end by an overflow (in compile time
7456 bounds we must have an additional check for overflow, because here
7457 we also support the compare code of 'NE'. */
7458 if (comparison_code == NE
7459 && increment_direction != range_direction) {
7460 if (loop_dump_stream)
7461 fprintf (loop_dump_stream,
7462 "insert_bct (compile time bounds): %d: loop not instrumented: terminated by overflow\n",
7463 loop_num);
7464 return;
7465 }
7466
7467 /* Determine the number of iterations by:
7468 ;
7469 ; compare-val - initial-val + (increment -1) + additional-iteration
7470 ; num_iterations = -----------------------------------------------------------------
7471 ; increment
7472 */
7473 difference = (range_direction > 0) ? difference : -difference;
7474 #if 0
7475 fprintf (stderr, "difference is: %d\n", difference); /* @*/
7476 fprintf (stderr, "increment_value_abs is: %d\n", increment_value_abs); /* @*/
7477 fprintf (stderr, "add_iteration is: %d\n", add_iteration); /* @*/
7478 fprintf (stderr, "INTVAL (comparison_value) is: %d\n", INTVAL (comparison_value)); /* @*/
7479 fprintf (stderr, "INTVAL (initial_value) is: %d\n", INTVAL (initial_value)); /* @*/
7480 #endif
7481
7482 if (increment_value_abs == 0) {
7483 fprintf (stderr, "insert_bct: error: increment == 0 !!!\n");
7484 abort ();
7485 }
7486 n_iterations = (difference + increment_value_abs - 1 + add_iteration)
7487 / increment_value_abs;
7488
7489 #if 0
7490 fprintf (stderr, "number of iterations is: %d\n", n_iterations); /* @*/
7491 #endif
7492 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
7493
7494 /* Done with this loop. */
7495 return;
7496 }
7497
7498 /* Handle the more complex case, that the bounds are NOT known at compile time. */
7499 /* In this case we generate run_time calculation of the number of iterations */
7500
7501 /* With runtime bounds, if the compare is of the form '!=' we give up */
7502 if (comparison_code == NE) {
7503 if (loop_dump_stream)
7504 fprintf (loop_dump_stream,
7505 "insert_bct: fail for loop %d: runtime bounds with != comparison\n",
7506 loop_num);
7507 return;
7508 }
7509
7510 else {
7511 /* We rely on the existence of run-time guard to ensure that the
7512 loop executes at least once. */
7513 rtx sequence;
7514 rtx iterations_num_reg;
7515
7516 int increment_value_abs = INTVAL (increment) * increment_direction;
7517
7518 /* make sure that the increment is a power of two, otherwise (an
7519 expensive) divide is needed. */
7520 if (exact_log2 (increment_value_abs) == -1)
7521 {
7522 if (loop_dump_stream)
7523 fprintf (loop_dump_stream,
7524 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
7525 return;
7526 }
7527
7528 /* compute the number of iterations */
7529 start_sequence ();
7530 {
7531 /* CYGNUS LOCAL: HAIFA bug fix */
7532 rtx temp_reg;
7533
7534 /* Again, the number of iterations is calculated by:
7535 ;
7536 ; compare-val - initial-val + (increment -1) + additional-iteration
7537 ; num_iterations = -----------------------------------------------------------------
7538 ; increment
7539 */
7540 /* ??? Do we have to call copy_rtx here before passing rtx to
7541 expand_binop? */
7542 if (compare_direction > 0) {
7543 /* <, <= :the loop variable is increasing */
7544 temp_reg = expand_binop (loop_var_mode, sub_optab, comparison_value,
7545 initial_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7546 }
7547 else {
7548 temp_reg = expand_binop (loop_var_mode, sub_optab, initial_value,
7549 comparison_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7550 }
7551
7552 if (increment_value_abs - 1 + add_iteration != 0)
7553 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
7554 GEN_INT (increment_value_abs - 1 + add_iteration),
7555 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7556
7557 if (increment_value_abs != 1)
7558 {
7559 /* ??? This will generate an expensive divide instruction for
7560 most targets. The original authors apparently expected this
7561 to be a shift, since they test for power-of-2 divisors above,
7562 but just naively generating a divide instruction will not give
7563 a shift. It happens to work for the PowerPC target because
7564 the rs6000.md file has a divide pattern that emits shifts.
7565 It will probably not work for any other target. */
7566 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
7567 temp_reg,
7568 GEN_INT (increment_value_abs),
7569 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7570 }
7571 else
7572 iterations_num_reg = temp_reg;
7573 /* END CYGNUS LOCAL: HAIFA bug fix */
7574 }
7575 sequence = gen_sequence ();
7576 end_sequence ();
7577 emit_insn_before (sequence, loop_start);
7578 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
7579 }
7580 }
7581
7582 /* instrument loop by inserting a bct in it. This is done in the following way:
7583 1. A new register is created and assigned the hard register number of the count
7584 register.
7585 2. In the head of the loop the new variable is initialized by the value passed in the
7586 loop_num_iterations parameter.
7587 3. At the end of the loop, comparison of the register with 0 is generated.
7588 The created comparison follows the pattern defined for the
7589 decrement_and_branch_on_count insn, so this insn will be generated in assembly
7590 generation phase.
7591 4. The compare&branch on the old variable is deleted. So, if the loop-variable was
7592 not used elsewhere, it will be eliminated by data-flow analisys. */
7593
7594 static void
7595 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
7596 rtx loop_start, loop_end;
7597 rtx loop_num_iterations;
7598 {
7599 rtx temp_reg1, temp_reg2;
7600 rtx start_label;
7601
7602 rtx sequence;
7603 enum machine_mode loop_var_mode = SImode;
7604
7605 #ifdef HAVE_decrement_and_branch_on_count
7606 if (HAVE_decrement_and_branch_on_count)
7607 {
7608 if (loop_dump_stream)
7609 fprintf (loop_dump_stream, "Loop: Inserting BCT\n");
7610
7611 /* eliminate the check on the old variable */
7612 delete_insn (PREV_INSN (loop_end));
7613 delete_insn (PREV_INSN (loop_end));
7614
7615 /* insert the label which will delimit the start of the loop */
7616 start_label = gen_label_rtx ();
7617 emit_label_after (start_label, loop_start);
7618
7619 /* insert initialization of the count register into the loop header */
7620 start_sequence ();
7621 temp_reg1 = gen_reg_rtx (loop_var_mode);
7622 emit_insn (gen_move_insn (temp_reg1, loop_num_iterations));
7623
7624 /* this will be count register */
7625 temp_reg2 = gen_rtx_REG (loop_var_mode, COUNT_REGISTER_REGNUM);
7626 /* we have to move the value to the count register from an GPR
7627 because rtx pointed to by loop_num_iterations could contain
7628 expression which cannot be moved into count register */
7629 emit_insn (gen_move_insn (temp_reg2, temp_reg1));
7630
7631 sequence = gen_sequence ();
7632 end_sequence ();
7633 emit_insn_after (sequence, loop_start);
7634
7635 /* insert new comparison on the count register instead of the
7636 old one, generating the needed BCT pattern (that will be
7637 later recognized by assembly generation phase). */
7638 emit_jump_insn_before (gen_decrement_and_branch_on_count (temp_reg2, start_label),
7639 loop_end);
7640 LABEL_NUSES (start_label)++;
7641 }
7642
7643 #endif /* HAVE_decrement_and_branch_on_count */
7644 }
7645 #endif /* HAIFA */
7646
7647 /* Scan the function and determine whether it has indirect (computed) jumps.
7648
7649 This is taken mostly from flow.c; similar code exists elsewhere
7650 in the compiler. It may be useful to put this into rtlanal.c. */
7651 static int
7652 indirect_jump_in_function_p (start)
7653 rtx start;
7654 {
7655 rtx insn;
7656 int is_indirect_jump = 0;
7657
7658 for (insn = start; insn; insn = NEXT_INSN (insn))
7659 if (computed_jump_p (insn))
7660 return 1;
7661
7662 return 0;
7663 }