loop.c (invariant_p): Don't test flag_rerun_loop_opt.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include <stdio.h>
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 #ifdef HAIFA
85 /* The main output of analyze_loop_iterations is placed here */
86
87 int *loop_can_insert_bct;
88
89 /* For each loop, determines whether some of its inner loops has used
90 count register */
91
92 int *loop_used_count_register;
93
94 /* loop parameters for arithmetic loops. These loops have a loop variable
95 which is initialized to loop_start_value, incremented in each iteration
96 by "loop_increment". At the end of the iteration the loop variable is
97 compared to the loop_comparison_value (using loop_comparison_code). */
98
99 rtx *loop_increment;
100 rtx *loop_comparison_value;
101 rtx *loop_start_value;
102 enum rtx_code *loop_comparison_code;
103 #endif /* HAIFA */
104
105 /* For each loop, keep track of its unrolling factor.
106 Potential values:
107 0: unrolled
108 1: not unrolled.
109 -1: completely unrolled
110 >0: holds the unroll exact factor. */
111 int *loop_unroll_factor;
112
113 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
114 really a loop (an insn outside the loop branches into it). */
115
116 static char *loop_invalid;
117
118 /* Indexed by loop number, links together all LABEL_REFs which refer to
119 code labels outside the loop. Used by routines that need to know all
120 loop exits, such as final_biv_value and final_giv_value.
121
122 This does not include loop exits due to return instructions. This is
123 because all bivs and givs are pseudos, and hence must be dead after a
124 return, so the presense of a return does not affect any of the
125 optimizations that use this info. It is simpler to just not include return
126 instructions on this list. */
127
128 rtx *loop_number_exit_labels;
129
130 /* Indexed by loop number, counts the number of LABEL_REFs on
131 loop_number_exit_labels for this loop and all loops nested inside it. */
132
133 int *loop_number_exit_count;
134
135 /* Holds the number of loop iterations. It is zero if the number could not be
136 calculated. Must be unsigned since the number of iterations can
137 be as high as 2^wordsize-1. For loops with a wider iterator, this number
138 will will be zero if the number of loop iterations is too large for an
139 unsigned integer to hold. */
140
141 unsigned HOST_WIDE_INT loop_n_iterations;
142
143 /* Nonzero if there is a subroutine call in the current loop. */
144
145 static int loop_has_call;
146
147 /* Nonzero if there is a volatile memory reference in the current
148 loop. */
149
150 static int loop_has_volatile;
151
152 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
153 current loop. A continue statement will generate a branch to
154 NEXT_INSN (loop_continue). */
155
156 static rtx loop_continue;
157
158 /* Indexed by register number, contains the number of times the reg
159 is set during the loop being scanned.
160 During code motion, a negative value indicates a reg that has been
161 made a candidate; in particular -2 means that it is an candidate that
162 we know is equal to a constant and -1 means that it is an candidate
163 not known equal to a constant.
164 After code motion, regs moved have 0 (which is accurate now)
165 while the failed candidates have the original number of times set.
166
167 Therefore, at all times, == 0 indicates an invariant register;
168 < 0 a conditionally invariant one. */
169
170 static int *n_times_set;
171
172 /* Original value of n_times_set; same except that this value
173 is not set negative for a reg whose sets have been made candidates
174 and not set to 0 for a reg that is moved. */
175
176 static int *n_times_used;
177
178 /* Index by register number, 1 indicates that the register
179 cannot be moved or strength reduced. */
180
181 static char *may_not_optimize;
182
183 /* Nonzero means reg N has already been moved out of one loop.
184 This reduces the desire to move it out of another. */
185
186 static char *moved_once;
187
188 /* Array of MEMs that are stored in this loop. If there are too many to fit
189 here, we just turn on unknown_address_altered. */
190
191 #define NUM_STORES 30
192 static rtx loop_store_mems[NUM_STORES];
193
194 /* Index of first available slot in above array. */
195 static int loop_store_mems_idx;
196
197 /* Nonzero if we don't know what MEMs were changed in the current loop.
198 This happens if the loop contains a call (in which case `loop_has_call'
199 will also be set) or if we store into more than NUM_STORES MEMs. */
200
201 static int unknown_address_altered;
202
203 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
204 static int num_movables;
205
206 /* Count of memory write instructions discovered in the loop. */
207 static int num_mem_sets;
208
209 /* Number of loops contained within the current one, including itself. */
210 static int loops_enclosed;
211
212 /* Bound on pseudo register number before loop optimization.
213 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
214 int max_reg_before_loop;
215
216 /* This obstack is used in product_cheap_p to allocate its rtl. It
217 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
218 If we used the same obstack that it did, we would be deallocating
219 that array. */
220
221 static struct obstack temp_obstack;
222
223 /* This is where the pointer to the obstack being used for RTL is stored. */
224
225 extern struct obstack *rtl_obstack;
226
227 #define obstack_chunk_alloc xmalloc
228 #define obstack_chunk_free free
229
230 extern char *oballoc ();
231 \f
232 /* During the analysis of a loop, a chain of `struct movable's
233 is made to record all the movable insns found.
234 Then the entire chain can be scanned to decide which to move. */
235
236 struct movable
237 {
238 rtx insn; /* A movable insn */
239 rtx set_src; /* The expression this reg is set from. */
240 rtx set_dest; /* The destination of this SET. */
241 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
242 of any registers used within the LIBCALL. */
243 int consec; /* Number of consecutive following insns
244 that must be moved with this one. */
245 int regno; /* The register it sets */
246 short lifetime; /* lifetime of that register;
247 may be adjusted when matching movables
248 that load the same value are found. */
249 short savings; /* Number of insns we can move for this reg,
250 including other movables that force this
251 or match this one. */
252 unsigned int cond : 1; /* 1 if only conditionally movable */
253 unsigned int force : 1; /* 1 means MUST move this insn */
254 unsigned int global : 1; /* 1 means reg is live outside this loop */
255 /* If PARTIAL is 1, GLOBAL means something different:
256 that the reg is live outside the range from where it is set
257 to the following label. */
258 unsigned int done : 1; /* 1 inhibits further processing of this */
259
260 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
261 In particular, moving it does not make it
262 invariant. */
263 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
264 load SRC, rather than copying INSN. */
265 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
266 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
267 that we should avoid changing when clearing
268 the rest of the reg. */
269 struct movable *match; /* First entry for same value */
270 struct movable *forces; /* An insn that must be moved if this is */
271 struct movable *next;
272 };
273
274 FILE *loop_dump_stream;
275
276 /* Forward declarations. */
277
278 static void find_and_verify_loops ();
279 static void mark_loop_jump ();
280 static void prescan_loop ();
281 static int reg_in_basic_block_p ();
282 static int consec_sets_invariant_p ();
283 static rtx libcall_other_reg ();
284 static int labels_in_range_p ();
285 static void count_loop_regs_set ();
286 static void note_addr_stored ();
287 static int loop_reg_used_before_p ();
288 static void scan_loop ();
289 #if 0
290 static void replace_call_address ();
291 #endif
292 static rtx skip_consec_insns ();
293 static int libcall_benefit ();
294 static void ignore_some_movables ();
295 static void force_movables ();
296 static void combine_movables ();
297 static int rtx_equal_for_loop_p ();
298 static void move_movables ();
299 static void strength_reduce ();
300 static int valid_initial_value_p ();
301 static void find_mem_givs ();
302 static void record_biv ();
303 static void check_final_value ();
304 static void record_giv ();
305 static void update_giv_derive ();
306 static int basic_induction_var ();
307 static rtx simplify_giv_expr ();
308 static int general_induction_var ();
309 static int consec_sets_giv ();
310 static int check_dbra_loop ();
311 static rtx express_from ();
312 static int combine_givs_p ();
313 static void combine_givs ();
314 static int product_cheap_p ();
315 static int maybe_eliminate_biv ();
316 static int maybe_eliminate_biv_1 ();
317 static int last_use_this_basic_block ();
318 static void record_initial ();
319 static void update_reg_last_use ();
320
321 #ifdef HAIFA
322 /* This is extern from unroll.c */
323 void iteration_info ();
324
325 /* Two main functions for implementing bct:
326 first - to be called before loop unrolling, and the second - after */
327 static void analyze_loop_iterations ();
328 static void insert_bct ();
329
330 /* Auxiliary function that inserts the bct pattern into the loop */
331 static void instrument_loop_bct ();
332 #endif /* HAIFA */
333
334 /* Indirect_jump_in_function is computed once per function. */
335 int indirect_jump_in_function = 0;
336 static int indirect_jump_in_function_p ();
337
338 \f
339 /* Relative gain of eliminating various kinds of operations. */
340 int add_cost;
341 #if 0
342 int shift_cost;
343 int mult_cost;
344 #endif
345
346 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
347 copy the value of the strength reduced giv to its original register. */
348 int copy_cost;
349
350 void
351 init_loop ()
352 {
353 char *free_point = (char *) oballoc (1);
354 rtx reg = gen_rtx (REG, word_mode, LAST_VIRTUAL_REGISTER + 1);
355
356 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
357
358 /* We multiply by 2 to reconcile the difference in scale between
359 these two ways of computing costs. Otherwise the cost of a copy
360 will be far less than the cost of an add. */
361
362 copy_cost = 2 * 2;
363
364 /* Free the objects we just allocated. */
365 obfree (free_point);
366
367 /* Initialize the obstack used for rtl in product_cheap_p. */
368 gcc_obstack_init (&temp_obstack);
369 }
370 \f
371 /* Entry point of this file. Perform loop optimization
372 on the current function. F is the first insn of the function
373 and DUMPFILE is a stream for output of a trace of actions taken
374 (or 0 if none should be output). */
375
376 void
377 loop_optimize (f, dumpfile, unroll_p)
378 /* f is the first instruction of a chain of insns for one function */
379 rtx f;
380 FILE *dumpfile;
381 int unroll_p;
382 {
383 register rtx insn;
384 register int i;
385 rtx last_insn;
386
387 loop_dump_stream = dumpfile;
388
389 init_recog_no_volatile ();
390 init_alias_analysis ();
391
392 max_reg_before_loop = max_reg_num ();
393
394 moved_once = (char *) alloca (max_reg_before_loop);
395 bzero (moved_once, max_reg_before_loop);
396
397 regs_may_share = 0;
398
399 /* Count the number of loops. */
400
401 max_loop_num = 0;
402 for (insn = f; insn; insn = NEXT_INSN (insn))
403 {
404 if (GET_CODE (insn) == NOTE
405 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
406 max_loop_num++;
407 }
408
409 /* Don't waste time if no loops. */
410 if (max_loop_num == 0)
411 return;
412
413 /* Get size to use for tables indexed by uids.
414 Leave some space for labels allocated by find_and_verify_loops. */
415 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
416
417 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
418 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
419
420 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
421 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
422
423 /* Allocate tables for recording each loop. We set each entry, so they need
424 not be zeroed. */
425 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
426 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
427 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
428 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
429 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
430 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
431
432 /* This is initialized by the unrolling code, so we go ahead
433 and clear them just in case we are not performing loop
434 unrolling. */
435 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
436 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
437
438 #ifdef HAIFA
439 /* Allocate for BCT optimization */
440 loop_can_insert_bct = (int *) alloca (max_loop_num * sizeof (int));
441 bzero ((char *) loop_can_insert_bct, max_loop_num * sizeof (int));
442
443 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
444 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
445
446 loop_increment = (rtx *) alloca (max_loop_num * sizeof (rtx));
447 loop_comparison_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
448 loop_start_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
449 bzero ((char *) loop_increment, max_loop_num * sizeof (rtx));
450 bzero ((char *) loop_comparison_value, max_loop_num * sizeof (rtx));
451 bzero ((char *) loop_start_value, max_loop_num * sizeof (rtx));
452
453 loop_comparison_code
454 = (enum rtx_code *) alloca (max_loop_num * sizeof (enum rtx_code));
455 bzero ((char *) loop_comparison_code, max_loop_num * sizeof (enum rtx_code));
456 #endif /* HAIFA */
457
458 /* Find and process each loop.
459 First, find them, and record them in order of their beginnings. */
460 find_and_verify_loops (f);
461
462 /* Now find all register lifetimes. This must be done after
463 find_and_verify_loops, because it might reorder the insns in the
464 function. */
465 reg_scan (f, max_reg_num (), 1);
466
467 /* See if we went too far. */
468 if (get_max_uid () > max_uid_for_loop)
469 abort ();
470
471 /* Compute the mapping from uids to luids.
472 LUIDs are numbers assigned to insns, like uids,
473 except that luids increase monotonically through the code.
474 Don't assign luids to line-number NOTEs, so that the distance in luids
475 between two insns is not affected by -g. */
476
477 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
478 {
479 last_insn = insn;
480 if (GET_CODE (insn) != NOTE
481 || NOTE_LINE_NUMBER (insn) <= 0)
482 uid_luid[INSN_UID (insn)] = ++i;
483 else
484 /* Give a line number note the same luid as preceding insn. */
485 uid_luid[INSN_UID (insn)] = i;
486 }
487
488 max_luid = i + 1;
489
490 /* Don't leave gaps in uid_luid for insns that have been
491 deleted. It is possible that the first or last insn
492 using some register has been deleted by cross-jumping.
493 Make sure that uid_luid for that former insn's uid
494 points to the general area where that insn used to be. */
495 for (i = 0; i < max_uid_for_loop; i++)
496 {
497 uid_luid[0] = uid_luid[i];
498 if (uid_luid[0] != 0)
499 break;
500 }
501 for (i = 0; i < max_uid_for_loop; i++)
502 if (uid_luid[i] == 0)
503 uid_luid[i] = uid_luid[i - 1];
504
505 /* Create a mapping from loops to BLOCK tree nodes. */
506 if (unroll_p && write_symbols != NO_DEBUG)
507 find_loop_tree_blocks ();
508
509 /* Determine if the function has indirect jump. On some systems
510 this prevents low overhead loop instructions from being used. */
511 indirect_jump_in_function = indirect_jump_in_function_p (f);
512
513 /* Now scan the loops, last ones first, since this means inner ones are done
514 before outer ones. */
515 for (i = max_loop_num-1; i >= 0; i--)
516 if (! loop_invalid[i] && loop_number_loop_ends[i])
517 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
518 max_reg_num (), unroll_p);
519
520 /* If debugging and unrolling loops, we must replicate the tree nodes
521 corresponding to the blocks inside the loop, so that the original one
522 to one mapping will remain. */
523 if (unroll_p && write_symbols != NO_DEBUG)
524 unroll_block_trees ();
525 }
526 \f
527 /* Optimize one loop whose start is LOOP_START and end is END.
528 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
529 NOTE_INSN_LOOP_END. */
530
531 /* ??? Could also move memory writes out of loops if the destination address
532 is invariant, the source is invariant, the memory write is not volatile,
533 and if we can prove that no read inside the loop can read this address
534 before the write occurs. If there is a read of this address after the
535 write, then we can also mark the memory read as invariant. */
536
537 static void
538 scan_loop (loop_start, end, nregs, unroll_p)
539 rtx loop_start, end;
540 int nregs;
541 int unroll_p;
542 {
543 register int i;
544 register rtx p;
545 /* 1 if we are scanning insns that could be executed zero times. */
546 int maybe_never = 0;
547 /* 1 if we are scanning insns that might never be executed
548 due to a subroutine call which might exit before they are reached. */
549 int call_passed = 0;
550 /* For a rotated loop that is entered near the bottom,
551 this is the label at the top. Otherwise it is zero. */
552 rtx loop_top = 0;
553 /* Jump insn that enters the loop, or 0 if control drops in. */
554 rtx loop_entry_jump = 0;
555 /* Place in the loop where control enters. */
556 rtx scan_start;
557 /* Number of insns in the loop. */
558 int insn_count;
559 int in_libcall = 0;
560 int tem;
561 rtx temp;
562 /* The SET from an insn, if it is the only SET in the insn. */
563 rtx set, set1;
564 /* Chain describing insns movable in current loop. */
565 struct movable *movables = 0;
566 /* Last element in `movables' -- so we can add elements at the end. */
567 struct movable *last_movable = 0;
568 /* Ratio of extra register life span we can justify
569 for saving an instruction. More if loop doesn't call subroutines
570 since in that case saving an insn makes more difference
571 and more registers are available. */
572 int threshold;
573 /* If we have calls, contains the insn in which a register was used
574 if it was used exactly once; contains const0_rtx if it was used more
575 than once. */
576 rtx *reg_single_usage = 0;
577 /* Nonzero if we are scanning instructions in a sub-loop. */
578 int loop_depth = 0;
579
580 n_times_set = (int *) alloca (nregs * sizeof (int));
581 n_times_used = (int *) alloca (nregs * sizeof (int));
582 may_not_optimize = (char *) alloca (nregs);
583
584 /* Determine whether this loop starts with a jump down to a test at
585 the end. This will occur for a small number of loops with a test
586 that is too complex to duplicate in front of the loop.
587
588 We search for the first insn or label in the loop, skipping NOTEs.
589 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
590 (because we might have a loop executed only once that contains a
591 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
592 (in case we have a degenerate loop).
593
594 Note that if we mistakenly think that a loop is entered at the top
595 when, in fact, it is entered at the exit test, the only effect will be
596 slightly poorer optimization. Making the opposite error can generate
597 incorrect code. Since very few loops now start with a jump to the
598 exit test, the code here to detect that case is very conservative. */
599
600 for (p = NEXT_INSN (loop_start);
601 p != end
602 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
603 && (GET_CODE (p) != NOTE
604 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
605 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
606 p = NEXT_INSN (p))
607 ;
608
609 scan_start = p;
610
611 /* Set up variables describing this loop. */
612 prescan_loop (loop_start, end);
613 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
614
615 /* If loop has a jump before the first label,
616 the true entry is the target of that jump.
617 Start scan from there.
618 But record in LOOP_TOP the place where the end-test jumps
619 back to so we can scan that after the end of the loop. */
620 if (GET_CODE (p) == JUMP_INSN)
621 {
622 loop_entry_jump = p;
623
624 /* Loop entry must be unconditional jump (and not a RETURN) */
625 if (simplejump_p (p)
626 && JUMP_LABEL (p) != 0
627 /* Check to see whether the jump actually
628 jumps out of the loop (meaning it's no loop).
629 This case can happen for things like
630 do {..} while (0). If this label was generated previously
631 by loop, we can't tell anything about it and have to reject
632 the loop. */
633 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
634 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
635 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
636 {
637 loop_top = next_label (scan_start);
638 scan_start = JUMP_LABEL (p);
639 }
640 }
641
642 /* If SCAN_START was an insn created by loop, we don't know its luid
643 as required by loop_reg_used_before_p. So skip such loops. (This
644 test may never be true, but it's best to play it safe.)
645
646 Also, skip loops where we do not start scanning at a label. This
647 test also rejects loops starting with a JUMP_INSN that failed the
648 test above. */
649
650 if (INSN_UID (scan_start) >= max_uid_for_loop
651 || GET_CODE (scan_start) != CODE_LABEL)
652 {
653 if (loop_dump_stream)
654 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
655 INSN_UID (loop_start), INSN_UID (end));
656 return;
657 }
658
659 /* Count number of times each reg is set during this loop.
660 Set may_not_optimize[I] if it is not safe to move out
661 the setting of register I. If this loop has calls, set
662 reg_single_usage[I]. */
663
664 bzero ((char *) n_times_set, nregs * sizeof (int));
665 bzero (may_not_optimize, nregs);
666
667 if (loop_has_call)
668 {
669 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
670 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
671 }
672
673 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
674 may_not_optimize, reg_single_usage, &insn_count, nregs);
675
676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
677 may_not_optimize[i] = 1, n_times_set[i] = 1;
678 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
679
680 if (loop_dump_stream)
681 {
682 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
683 INSN_UID (loop_start), INSN_UID (end), insn_count);
684 if (loop_continue)
685 fprintf (loop_dump_stream, "Continue at insn %d.\n",
686 INSN_UID (loop_continue));
687 }
688
689 /* Scan through the loop finding insns that are safe to move.
690 Set n_times_set negative for the reg being set, so that
691 this reg will be considered invariant for subsequent insns.
692 We consider whether subsequent insns use the reg
693 in deciding whether it is worth actually moving.
694
695 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
696 and therefore it is possible that the insns we are scanning
697 would never be executed. At such times, we must make sure
698 that it is safe to execute the insn once instead of zero times.
699 When MAYBE_NEVER is 0, all insns will be executed at least once
700 so that is not a problem. */
701
702 p = scan_start;
703 while (1)
704 {
705 p = NEXT_INSN (p);
706 /* At end of a straight-in loop, we are done.
707 At end of a loop entered at the bottom, scan the top. */
708 if (p == scan_start)
709 break;
710 if (p == end)
711 {
712 if (loop_top != 0)
713 p = loop_top;
714 else
715 break;
716 if (p == scan_start)
717 break;
718 }
719
720 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
721 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
722 in_libcall = 1;
723 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
724 && find_reg_note (p, REG_RETVAL, NULL_RTX))
725 in_libcall = 0;
726
727 if (GET_CODE (p) == INSN
728 && (set = single_set (p))
729 && GET_CODE (SET_DEST (set)) == REG
730 && ! may_not_optimize[REGNO (SET_DEST (set))])
731 {
732 int tem1 = 0;
733 int tem2 = 0;
734 int move_insn = 0;
735 rtx src = SET_SRC (set);
736 rtx dependencies = 0;
737
738 /* Figure out what to use as a source of this insn. If a REG_EQUIV
739 note is given or if a REG_EQUAL note with a constant operand is
740 specified, use it as the source and mark that we should move
741 this insn by calling emit_move_insn rather that duplicating the
742 insn.
743
744 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
745 is present. */
746 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
747 if (temp)
748 src = XEXP (temp, 0), move_insn = 1;
749 else
750 {
751 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
752 if (temp && CONSTANT_P (XEXP (temp, 0)))
753 src = XEXP (temp, 0), move_insn = 1;
754 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
755 {
756 src = XEXP (temp, 0);
757 /* A libcall block can use regs that don't appear in
758 the equivalent expression. To move the libcall,
759 we must move those regs too. */
760 dependencies = libcall_other_reg (p, src);
761 }
762 }
763
764 /* Don't try to optimize a register that was made
765 by loop-optimization for an inner loop.
766 We don't know its life-span, so we can't compute the benefit. */
767 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
768 ;
769 /* In order to move a register, we need to have one of three cases:
770 (1) it is used only in the same basic block as the set
771 (2) it is not a user variable and it is not used in the
772 exit test (this can cause the variable to be used
773 before it is set just like a user-variable).
774 (3) the set is guaranteed to be executed once the loop starts,
775 and the reg is not used until after that. */
776 else if (! ((! maybe_never
777 && ! loop_reg_used_before_p (set, p, loop_start,
778 scan_start, end))
779 || (! REG_USERVAR_P (SET_DEST (set))
780 && ! REG_LOOP_TEST_P (SET_DEST (set)))
781 || reg_in_basic_block_p (p, SET_DEST (set))))
782 ;
783 else if ((tem = invariant_p (src))
784 && (dependencies == 0
785 || (tem2 = invariant_p (dependencies)) != 0)
786 && (n_times_set[REGNO (SET_DEST (set))] == 1
787 || (tem1
788 = consec_sets_invariant_p (SET_DEST (set),
789 n_times_set[REGNO (SET_DEST (set))],
790 p)))
791 /* If the insn can cause a trap (such as divide by zero),
792 can't move it unless it's guaranteed to be executed
793 once loop is entered. Even a function call might
794 prevent the trap insn from being reached
795 (since it might exit!) */
796 && ! ((maybe_never || call_passed)
797 && may_trap_p (src)))
798 {
799 register struct movable *m;
800 register int regno = REGNO (SET_DEST (set));
801
802 /* A potential lossage is where we have a case where two insns
803 can be combined as long as they are both in the loop, but
804 we move one of them outside the loop. For large loops,
805 this can lose. The most common case of this is the address
806 of a function being called.
807
808 Therefore, if this register is marked as being used exactly
809 once if we are in a loop with calls (a "large loop"), see if
810 we can replace the usage of this register with the source
811 of this SET. If we can, delete this insn.
812
813 Don't do this if P has a REG_RETVAL note or if we have
814 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
815
816 if (reg_single_usage && reg_single_usage[regno] != 0
817 && reg_single_usage[regno] != const0_rtx
818 && REGNO_FIRST_UID (regno) == INSN_UID (p)
819 && (REGNO_LAST_UID (regno)
820 == INSN_UID (reg_single_usage[regno]))
821 && n_times_set[REGNO (SET_DEST (set))] == 1
822 && ! side_effects_p (SET_SRC (set))
823 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
824 && (! SMALL_REGISTER_CLASSES
825 || (! (GET_CODE (SET_SRC (set)) == REG
826 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
827 /* This test is not redundant; SET_SRC (set) might be
828 a call-clobbered register and the life of REGNO
829 might span a call. */
830 && ! modified_between_p (SET_SRC (set), p,
831 reg_single_usage[regno])
832 && no_labels_between_p (p, reg_single_usage[regno])
833 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
834 reg_single_usage[regno]))
835 {
836 /* Replace any usage in a REG_EQUAL note. Must copy the
837 new source, so that we don't get rtx sharing between the
838 SET_SOURCE and REG_NOTES of insn p. */
839 REG_NOTES (reg_single_usage[regno])
840 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
841 SET_DEST (set), copy_rtx (SET_SRC (set)));
842
843 PUT_CODE (p, NOTE);
844 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
845 NOTE_SOURCE_FILE (p) = 0;
846 n_times_set[regno] = 0;
847 continue;
848 }
849
850 m = (struct movable *) alloca (sizeof (struct movable));
851 m->next = 0;
852 m->insn = p;
853 m->set_src = src;
854 m->dependencies = dependencies;
855 m->set_dest = SET_DEST (set);
856 m->force = 0;
857 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
858 m->done = 0;
859 m->forces = 0;
860 m->partial = 0;
861 m->move_insn = move_insn;
862 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
863 m->savemode = VOIDmode;
864 m->regno = regno;
865 /* Set M->cond if either invariant_p or consec_sets_invariant_p
866 returned 2 (only conditionally invariant). */
867 m->cond = ((tem | tem1 | tem2) > 1);
868 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
869 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
870 m->match = 0;
871 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
872 - uid_luid[REGNO_FIRST_UID (regno)]);
873 m->savings = n_times_used[regno];
874 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
875 m->savings += libcall_benefit (p);
876 n_times_set[regno] = move_insn ? -2 : -1;
877 /* Add M to the end of the chain MOVABLES. */
878 if (movables == 0)
879 movables = m;
880 else
881 last_movable->next = m;
882 last_movable = m;
883
884 if (m->consec > 0)
885 {
886 /* Skip this insn, not checking REG_LIBCALL notes. */
887 p = next_nonnote_insn (p);
888 /* Skip the consecutive insns, if there are any. */
889 p = skip_consec_insns (p, m->consec);
890 /* Back up to the last insn of the consecutive group. */
891 p = prev_nonnote_insn (p);
892
893 /* We must now reset m->move_insn, m->is_equiv, and possibly
894 m->set_src to correspond to the effects of all the
895 insns. */
896 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
897 if (temp)
898 m->set_src = XEXP (temp, 0), m->move_insn = 1;
899 else
900 {
901 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
902 if (temp && CONSTANT_P (XEXP (temp, 0)))
903 m->set_src = XEXP (temp, 0), m->move_insn = 1;
904 else
905 m->move_insn = 0;
906
907 }
908 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
909 }
910 }
911 /* If this register is always set within a STRICT_LOW_PART
912 or set to zero, then its high bytes are constant.
913 So clear them outside the loop and within the loop
914 just load the low bytes.
915 We must check that the machine has an instruction to do so.
916 Also, if the value loaded into the register
917 depends on the same register, this cannot be done. */
918 else if (SET_SRC (set) == const0_rtx
919 && GET_CODE (NEXT_INSN (p)) == INSN
920 && (set1 = single_set (NEXT_INSN (p)))
921 && GET_CODE (set1) == SET
922 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
923 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
924 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
925 == SET_DEST (set))
926 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
927 {
928 register int regno = REGNO (SET_DEST (set));
929 if (n_times_set[regno] == 2)
930 {
931 register struct movable *m;
932 m = (struct movable *) alloca (sizeof (struct movable));
933 m->next = 0;
934 m->insn = p;
935 m->set_dest = SET_DEST (set);
936 m->dependencies = 0;
937 m->force = 0;
938 m->consec = 0;
939 m->done = 0;
940 m->forces = 0;
941 m->move_insn = 0;
942 m->partial = 1;
943 /* If the insn may not be executed on some cycles,
944 we can't clear the whole reg; clear just high part.
945 Not even if the reg is used only within this loop.
946 Consider this:
947 while (1)
948 while (s != t) {
949 if (foo ()) x = *s;
950 use (x);
951 }
952 Clearing x before the inner loop could clobber a value
953 being saved from the last time around the outer loop.
954 However, if the reg is not used outside this loop
955 and all uses of the register are in the same
956 basic block as the store, there is no problem.
957
958 If this insn was made by loop, we don't know its
959 INSN_LUID and hence must make a conservative
960 assumption. */
961 m->global = (INSN_UID (p) >= max_uid_for_loop
962 || (uid_luid[REGNO_LAST_UID (regno)]
963 > INSN_LUID (end))
964 || (uid_luid[REGNO_FIRST_UID (regno)]
965 < INSN_LUID (p))
966 || (labels_in_range_p
967 (p, uid_luid[REGNO_FIRST_UID (regno)])));
968 if (maybe_never && m->global)
969 m->savemode = GET_MODE (SET_SRC (set1));
970 else
971 m->savemode = VOIDmode;
972 m->regno = regno;
973 m->cond = 0;
974 m->match = 0;
975 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
976 - uid_luid[REGNO_FIRST_UID (regno)]);
977 m->savings = 1;
978 n_times_set[regno] = -1;
979 /* Add M to the end of the chain MOVABLES. */
980 if (movables == 0)
981 movables = m;
982 else
983 last_movable->next = m;
984 last_movable = m;
985 }
986 }
987 }
988 /* Past a call insn, we get to insns which might not be executed
989 because the call might exit. This matters for insns that trap.
990 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
991 so they don't count. */
992 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
993 call_passed = 1;
994 /* Past a label or a jump, we get to insns for which we
995 can't count on whether or how many times they will be
996 executed during each iteration. Therefore, we can
997 only move out sets of trivial variables
998 (those not used after the loop). */
999 /* Similar code appears twice in strength_reduce. */
1000 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1001 /* If we enter the loop in the middle, and scan around to the
1002 beginning, don't set maybe_never for that. This must be an
1003 unconditional jump, otherwise the code at the top of the
1004 loop might never be executed. Unconditional jumps are
1005 followed a by barrier then loop end. */
1006 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1007 && NEXT_INSN (NEXT_INSN (p)) == end
1008 && simplejump_p (p)))
1009 maybe_never = 1;
1010 else if (GET_CODE (p) == NOTE)
1011 {
1012 /* At the virtual top of a converted loop, insns are again known to
1013 be executed: logically, the loop begins here even though the exit
1014 code has been duplicated. */
1015 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1016 maybe_never = call_passed = 0;
1017 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1018 loop_depth++;
1019 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1020 loop_depth--;
1021 }
1022 }
1023
1024 /* If one movable subsumes another, ignore that other. */
1025
1026 ignore_some_movables (movables);
1027
1028 /* For each movable insn, see if the reg that it loads
1029 leads when it dies right into another conditionally movable insn.
1030 If so, record that the second insn "forces" the first one,
1031 since the second can be moved only if the first is. */
1032
1033 force_movables (movables);
1034
1035 /* See if there are multiple movable insns that load the same value.
1036 If there are, make all but the first point at the first one
1037 through the `match' field, and add the priorities of them
1038 all together as the priority of the first. */
1039
1040 combine_movables (movables, nregs);
1041
1042 /* Now consider each movable insn to decide whether it is worth moving.
1043 Store 0 in n_times_set for each reg that is moved. */
1044
1045 move_movables (movables, threshold,
1046 insn_count, loop_start, end, nregs);
1047
1048 /* Now candidates that still are negative are those not moved.
1049 Change n_times_set to indicate that those are not actually invariant. */
1050 for (i = 0; i < nregs; i++)
1051 if (n_times_set[i] < 0)
1052 n_times_set[i] = n_times_used[i];
1053
1054 if (flag_strength_reduce)
1055 strength_reduce (scan_start, end, loop_top,
1056 insn_count, loop_start, end, unroll_p);
1057 }
1058 \f
1059 /* Add elements to *OUTPUT to record all the pseudo-regs
1060 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1061
1062 void
1063 record_excess_regs (in_this, not_in_this, output)
1064 rtx in_this, not_in_this;
1065 rtx *output;
1066 {
1067 enum rtx_code code;
1068 char *fmt;
1069 int i;
1070
1071 code = GET_CODE (in_this);
1072
1073 switch (code)
1074 {
1075 case PC:
1076 case CC0:
1077 case CONST_INT:
1078 case CONST_DOUBLE:
1079 case CONST:
1080 case SYMBOL_REF:
1081 case LABEL_REF:
1082 return;
1083
1084 case REG:
1085 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1086 && ! reg_mentioned_p (in_this, not_in_this))
1087 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
1088 return;
1089
1090 default:
1091 break;
1092 }
1093
1094 fmt = GET_RTX_FORMAT (code);
1095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1096 {
1097 int j;
1098
1099 switch (fmt[i])
1100 {
1101 case 'E':
1102 for (j = 0; j < XVECLEN (in_this, i); j++)
1103 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1104 break;
1105
1106 case 'e':
1107 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1108 break;
1109 }
1110 }
1111 }
1112 \f
1113 /* Check what regs are referred to in the libcall block ending with INSN,
1114 aside from those mentioned in the equivalent value.
1115 If there are none, return 0.
1116 If there are one or more, return an EXPR_LIST containing all of them. */
1117
1118 static rtx
1119 libcall_other_reg (insn, equiv)
1120 rtx insn, equiv;
1121 {
1122 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1123 rtx p = XEXP (note, 0);
1124 rtx output = 0;
1125
1126 /* First, find all the regs used in the libcall block
1127 that are not mentioned as inputs to the result. */
1128
1129 while (p != insn)
1130 {
1131 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1132 || GET_CODE (p) == CALL_INSN)
1133 record_excess_regs (PATTERN (p), equiv, &output);
1134 p = NEXT_INSN (p);
1135 }
1136
1137 return output;
1138 }
1139 \f
1140 /* Return 1 if all uses of REG
1141 are between INSN and the end of the basic block. */
1142
1143 static int
1144 reg_in_basic_block_p (insn, reg)
1145 rtx insn, reg;
1146 {
1147 int regno = REGNO (reg);
1148 rtx p;
1149
1150 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1151 return 0;
1152
1153 /* Search this basic block for the already recorded last use of the reg. */
1154 for (p = insn; p; p = NEXT_INSN (p))
1155 {
1156 switch (GET_CODE (p))
1157 {
1158 case NOTE:
1159 break;
1160
1161 case INSN:
1162 case CALL_INSN:
1163 /* Ordinary insn: if this is the last use, we win. */
1164 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1165 return 1;
1166 break;
1167
1168 case JUMP_INSN:
1169 /* Jump insn: if this is the last use, we win. */
1170 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1171 return 1;
1172 /* Otherwise, it's the end of the basic block, so we lose. */
1173 return 0;
1174
1175 case CODE_LABEL:
1176 case BARRIER:
1177 /* It's the end of the basic block, so we lose. */
1178 return 0;
1179
1180 default:
1181 break;
1182 }
1183 }
1184
1185 /* The "last use" doesn't follow the "first use"?? */
1186 abort ();
1187 }
1188 \f
1189 /* Compute the benefit of eliminating the insns in the block whose
1190 last insn is LAST. This may be a group of insns used to compute a
1191 value directly or can contain a library call. */
1192
1193 static int
1194 libcall_benefit (last)
1195 rtx last;
1196 {
1197 rtx insn;
1198 int benefit = 0;
1199
1200 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1201 insn != last; insn = NEXT_INSN (insn))
1202 {
1203 if (GET_CODE (insn) == CALL_INSN)
1204 benefit += 10; /* Assume at least this many insns in a library
1205 routine. */
1206 else if (GET_CODE (insn) == INSN
1207 && GET_CODE (PATTERN (insn)) != USE
1208 && GET_CODE (PATTERN (insn)) != CLOBBER)
1209 benefit++;
1210 }
1211
1212 return benefit;
1213 }
1214 \f
1215 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1216
1217 static rtx
1218 skip_consec_insns (insn, count)
1219 rtx insn;
1220 int count;
1221 {
1222 for (; count > 0; count--)
1223 {
1224 rtx temp;
1225
1226 /* If first insn of libcall sequence, skip to end. */
1227 /* Do this at start of loop, since INSN is guaranteed to
1228 be an insn here. */
1229 if (GET_CODE (insn) != NOTE
1230 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1231 insn = XEXP (temp, 0);
1232
1233 do insn = NEXT_INSN (insn);
1234 while (GET_CODE (insn) == NOTE);
1235 }
1236
1237 return insn;
1238 }
1239
1240 /* Ignore any movable whose insn falls within a libcall
1241 which is part of another movable.
1242 We make use of the fact that the movable for the libcall value
1243 was made later and so appears later on the chain. */
1244
1245 static void
1246 ignore_some_movables (movables)
1247 struct movable *movables;
1248 {
1249 register struct movable *m, *m1;
1250
1251 for (m = movables; m; m = m->next)
1252 {
1253 /* Is this a movable for the value of a libcall? */
1254 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1255 if (note)
1256 {
1257 rtx insn;
1258 /* Check for earlier movables inside that range,
1259 and mark them invalid. We cannot use LUIDs here because
1260 insns created by loop.c for prior loops don't have LUIDs.
1261 Rather than reject all such insns from movables, we just
1262 explicitly check each insn in the libcall (since invariant
1263 libcalls aren't that common). */
1264 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1265 for (m1 = movables; m1 != m; m1 = m1->next)
1266 if (m1->insn == insn)
1267 m1->done = 1;
1268 }
1269 }
1270 }
1271
1272 /* For each movable insn, see if the reg that it loads
1273 leads when it dies right into another conditionally movable insn.
1274 If so, record that the second insn "forces" the first one,
1275 since the second can be moved only if the first is. */
1276
1277 static void
1278 force_movables (movables)
1279 struct movable *movables;
1280 {
1281 register struct movable *m, *m1;
1282 for (m1 = movables; m1; m1 = m1->next)
1283 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1284 if (!m1->partial && !m1->done)
1285 {
1286 int regno = m1->regno;
1287 for (m = m1->next; m; m = m->next)
1288 /* ??? Could this be a bug? What if CSE caused the
1289 register of M1 to be used after this insn?
1290 Since CSE does not update regno_last_uid,
1291 this insn M->insn might not be where it dies.
1292 But very likely this doesn't matter; what matters is
1293 that M's reg is computed from M1's reg. */
1294 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1295 && !m->done)
1296 break;
1297 if (m != 0 && m->set_src == m1->set_dest
1298 /* If m->consec, m->set_src isn't valid. */
1299 && m->consec == 0)
1300 m = 0;
1301
1302 /* Increase the priority of the moving the first insn
1303 since it permits the second to be moved as well. */
1304 if (m != 0)
1305 {
1306 m->forces = m1;
1307 m1->lifetime += m->lifetime;
1308 m1->savings += m1->savings;
1309 }
1310 }
1311 }
1312 \f
1313 /* Find invariant expressions that are equal and can be combined into
1314 one register. */
1315
1316 static void
1317 combine_movables (movables, nregs)
1318 struct movable *movables;
1319 int nregs;
1320 {
1321 register struct movable *m;
1322 char *matched_regs = (char *) alloca (nregs);
1323 enum machine_mode mode;
1324
1325 /* Regs that are set more than once are not allowed to match
1326 or be matched. I'm no longer sure why not. */
1327 /* Perhaps testing m->consec_sets would be more appropriate here? */
1328
1329 for (m = movables; m; m = m->next)
1330 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1331 {
1332 register struct movable *m1;
1333 int regno = m->regno;
1334
1335 bzero (matched_regs, nregs);
1336 matched_regs[regno] = 1;
1337
1338 /* We want later insns to match the first one. Don't make the first
1339 one match any later ones. So start this loop at m->next. */
1340 for (m1 = m->next; m1; m1 = m1->next)
1341 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1342 /* A reg used outside the loop mustn't be eliminated. */
1343 && !m1->global
1344 /* A reg used for zero-extending mustn't be eliminated. */
1345 && !m1->partial
1346 && (matched_regs[m1->regno]
1347 ||
1348 (
1349 /* Can combine regs with different modes loaded from the
1350 same constant only if the modes are the same or
1351 if both are integer modes with M wider or the same
1352 width as M1. The check for integer is redundant, but
1353 safe, since the only case of differing destination
1354 modes with equal sources is when both sources are
1355 VOIDmode, i.e., CONST_INT. */
1356 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1357 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1358 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1359 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1360 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1361 /* See if the source of M1 says it matches M. */
1362 && ((GET_CODE (m1->set_src) == REG
1363 && matched_regs[REGNO (m1->set_src)])
1364 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1365 movables))))
1366 && ((m->dependencies == m1->dependencies)
1367 || rtx_equal_p (m->dependencies, m1->dependencies)))
1368 {
1369 m->lifetime += m1->lifetime;
1370 m->savings += m1->savings;
1371 m1->done = 1;
1372 m1->match = m;
1373 matched_regs[m1->regno] = 1;
1374 }
1375 }
1376
1377 /* Now combine the regs used for zero-extension.
1378 This can be done for those not marked `global'
1379 provided their lives don't overlap. */
1380
1381 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1382 mode = GET_MODE_WIDER_MODE (mode))
1383 {
1384 register struct movable *m0 = 0;
1385
1386 /* Combine all the registers for extension from mode MODE.
1387 Don't combine any that are used outside this loop. */
1388 for (m = movables; m; m = m->next)
1389 if (m->partial && ! m->global
1390 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1391 {
1392 register struct movable *m1;
1393 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1394 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1395
1396 if (m0 == 0)
1397 {
1398 /* First one: don't check for overlap, just record it. */
1399 m0 = m;
1400 continue;
1401 }
1402
1403 /* Make sure they extend to the same mode.
1404 (Almost always true.) */
1405 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1406 continue;
1407
1408 /* We already have one: check for overlap with those
1409 already combined together. */
1410 for (m1 = movables; m1 != m; m1 = m1->next)
1411 if (m1 == m0 || (m1->partial && m1->match == m0))
1412 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1413 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1414 goto overlap;
1415
1416 /* No overlap: we can combine this with the others. */
1417 m0->lifetime += m->lifetime;
1418 m0->savings += m->savings;
1419 m->done = 1;
1420 m->match = m0;
1421
1422 overlap: ;
1423 }
1424 }
1425 }
1426 \f
1427 /* Return 1 if regs X and Y will become the same if moved. */
1428
1429 static int
1430 regs_match_p (x, y, movables)
1431 rtx x, y;
1432 struct movable *movables;
1433 {
1434 int xn = REGNO (x);
1435 int yn = REGNO (y);
1436 struct movable *mx, *my;
1437
1438 for (mx = movables; mx; mx = mx->next)
1439 if (mx->regno == xn)
1440 break;
1441
1442 for (my = movables; my; my = my->next)
1443 if (my->regno == yn)
1444 break;
1445
1446 return (mx && my
1447 && ((mx->match == my->match && mx->match != 0)
1448 || mx->match == my
1449 || mx == my->match));
1450 }
1451
1452 /* Return 1 if X and Y are identical-looking rtx's.
1453 This is the Lisp function EQUAL for rtx arguments.
1454
1455 If two registers are matching movables or a movable register and an
1456 equivalent constant, consider them equal. */
1457
1458 static int
1459 rtx_equal_for_loop_p (x, y, movables)
1460 rtx x, y;
1461 struct movable *movables;
1462 {
1463 register int i;
1464 register int j;
1465 register struct movable *m;
1466 register enum rtx_code code;
1467 register char *fmt;
1468
1469 if (x == y)
1470 return 1;
1471 if (x == 0 || y == 0)
1472 return 0;
1473
1474 code = GET_CODE (x);
1475
1476 /* If we have a register and a constant, they may sometimes be
1477 equal. */
1478 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1479 && CONSTANT_P (y))
1480 for (m = movables; m; m = m->next)
1481 if (m->move_insn && m->regno == REGNO (x)
1482 && rtx_equal_p (m->set_src, y))
1483 return 1;
1484
1485 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1486 && CONSTANT_P (x))
1487 for (m = movables; m; m = m->next)
1488 if (m->move_insn && m->regno == REGNO (y)
1489 && rtx_equal_p (m->set_src, x))
1490 return 1;
1491
1492 /* Otherwise, rtx's of different codes cannot be equal. */
1493 if (code != GET_CODE (y))
1494 return 0;
1495
1496 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1497 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1498
1499 if (GET_MODE (x) != GET_MODE (y))
1500 return 0;
1501
1502 /* These three types of rtx's can be compared nonrecursively. */
1503 if (code == REG)
1504 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1505
1506 if (code == LABEL_REF)
1507 return XEXP (x, 0) == XEXP (y, 0);
1508 if (code == SYMBOL_REF)
1509 return XSTR (x, 0) == XSTR (y, 0);
1510
1511 /* Compare the elements. If any pair of corresponding elements
1512 fail to match, return 0 for the whole things. */
1513
1514 fmt = GET_RTX_FORMAT (code);
1515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1516 {
1517 switch (fmt[i])
1518 {
1519 case 'w':
1520 if (XWINT (x, i) != XWINT (y, i))
1521 return 0;
1522 break;
1523
1524 case 'i':
1525 if (XINT (x, i) != XINT (y, i))
1526 return 0;
1527 break;
1528
1529 case 'E':
1530 /* Two vectors must have the same length. */
1531 if (XVECLEN (x, i) != XVECLEN (y, i))
1532 return 0;
1533
1534 /* And the corresponding elements must match. */
1535 for (j = 0; j < XVECLEN (x, i); j++)
1536 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1537 return 0;
1538 break;
1539
1540 case 'e':
1541 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1542 return 0;
1543 break;
1544
1545 case 's':
1546 if (strcmp (XSTR (x, i), XSTR (y, i)))
1547 return 0;
1548 break;
1549
1550 case 'u':
1551 /* These are just backpointers, so they don't matter. */
1552 break;
1553
1554 case '0':
1555 break;
1556
1557 /* It is believed that rtx's at this level will never
1558 contain anything but integers and other rtx's,
1559 except for within LABEL_REFs and SYMBOL_REFs. */
1560 default:
1561 abort ();
1562 }
1563 }
1564 return 1;
1565 }
1566 \f
1567 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1568 insns in INSNS which use thet reference. */
1569
1570 static void
1571 add_label_notes (x, insns)
1572 rtx x;
1573 rtx insns;
1574 {
1575 enum rtx_code code = GET_CODE (x);
1576 int i, j;
1577 char *fmt;
1578 rtx insn;
1579
1580 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1581 {
1582 rtx next = next_real_insn (XEXP (x, 0));
1583
1584 /* Don't record labels that refer to dispatch tables.
1585 This is not necessary, since the tablejump references the same label.
1586 And if we did record them, flow.c would make worse code. */
1587 if (next == 0
1588 || ! (GET_CODE (next) == JUMP_INSN
1589 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1590 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1591 {
1592 for (insn = insns; insn; insn = NEXT_INSN (insn))
1593 if (reg_mentioned_p (XEXP (x, 0), insn))
1594 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1595 REG_NOTES (insn));
1596 }
1597 return;
1598 }
1599
1600 fmt = GET_RTX_FORMAT (code);
1601 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1602 {
1603 if (fmt[i] == 'e')
1604 add_label_notes (XEXP (x, i), insns);
1605 else if (fmt[i] == 'E')
1606 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1607 add_label_notes (XVECEXP (x, i, j), insns);
1608 }
1609 }
1610 \f
1611 /* Scan MOVABLES, and move the insns that deserve to be moved.
1612 If two matching movables are combined, replace one reg with the
1613 other throughout. */
1614
1615 static void
1616 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1617 struct movable *movables;
1618 int threshold;
1619 int insn_count;
1620 rtx loop_start;
1621 rtx end;
1622 int nregs;
1623 {
1624 rtx new_start = 0;
1625 register struct movable *m;
1626 register rtx p;
1627 /* Map of pseudo-register replacements to handle combining
1628 when we move several insns that load the same value
1629 into different pseudo-registers. */
1630 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1631 char *already_moved = (char *) alloca (nregs);
1632
1633 bzero (already_moved, nregs);
1634 bzero ((char *) reg_map, nregs * sizeof (rtx));
1635
1636 num_movables = 0;
1637
1638 for (m = movables; m; m = m->next)
1639 {
1640 /* Describe this movable insn. */
1641
1642 if (loop_dump_stream)
1643 {
1644 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1645 INSN_UID (m->insn), m->regno, m->lifetime);
1646 if (m->consec > 0)
1647 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1648 if (m->cond)
1649 fprintf (loop_dump_stream, "cond ");
1650 if (m->force)
1651 fprintf (loop_dump_stream, "force ");
1652 if (m->global)
1653 fprintf (loop_dump_stream, "global ");
1654 if (m->done)
1655 fprintf (loop_dump_stream, "done ");
1656 if (m->move_insn)
1657 fprintf (loop_dump_stream, "move-insn ");
1658 if (m->match)
1659 fprintf (loop_dump_stream, "matches %d ",
1660 INSN_UID (m->match->insn));
1661 if (m->forces)
1662 fprintf (loop_dump_stream, "forces %d ",
1663 INSN_UID (m->forces->insn));
1664 }
1665
1666 /* Count movables. Value used in heuristics in strength_reduce. */
1667 num_movables++;
1668
1669 /* Ignore the insn if it's already done (it matched something else).
1670 Otherwise, see if it is now safe to move. */
1671
1672 if (!m->done
1673 && (! m->cond
1674 || (1 == invariant_p (m->set_src)
1675 && (m->dependencies == 0
1676 || 1 == invariant_p (m->dependencies))
1677 && (m->consec == 0
1678 || 1 == consec_sets_invariant_p (m->set_dest,
1679 m->consec + 1,
1680 m->insn))))
1681 && (! m->forces || m->forces->done))
1682 {
1683 register int regno;
1684 register rtx p;
1685 int savings = m->savings;
1686
1687 /* We have an insn that is safe to move.
1688 Compute its desirability. */
1689
1690 p = m->insn;
1691 regno = m->regno;
1692
1693 if (loop_dump_stream)
1694 fprintf (loop_dump_stream, "savings %d ", savings);
1695
1696 if (moved_once[regno])
1697 {
1698 insn_count *= 2;
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, "halved since already moved ");
1702 }
1703
1704 /* An insn MUST be moved if we already moved something else
1705 which is safe only if this one is moved too: that is,
1706 if already_moved[REGNO] is nonzero. */
1707
1708 /* An insn is desirable to move if the new lifetime of the
1709 register is no more than THRESHOLD times the old lifetime.
1710 If it's not desirable, it means the loop is so big
1711 that moving won't speed things up much,
1712 and it is liable to make register usage worse. */
1713
1714 /* It is also desirable to move if it can be moved at no
1715 extra cost because something else was already moved. */
1716
1717 if (already_moved[regno]
1718 || flag_move_all_movables
1719 || (threshold * savings * m->lifetime) >= insn_count
1720 || (m->forces && m->forces->done
1721 && n_times_used[m->forces->regno] == 1))
1722 {
1723 int count;
1724 register struct movable *m1;
1725 rtx first;
1726
1727 /* Now move the insns that set the reg. */
1728
1729 if (m->partial && m->match)
1730 {
1731 rtx newpat, i1;
1732 rtx r1, r2;
1733 /* Find the end of this chain of matching regs.
1734 Thus, we load each reg in the chain from that one reg.
1735 And that reg is loaded with 0 directly,
1736 since it has ->match == 0. */
1737 for (m1 = m; m1->match; m1 = m1->match);
1738 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1739 SET_DEST (PATTERN (m1->insn)));
1740 i1 = emit_insn_before (newpat, loop_start);
1741
1742 /* Mark the moved, invariant reg as being allowed to
1743 share a hard reg with the other matching invariant. */
1744 REG_NOTES (i1) = REG_NOTES (m->insn);
1745 r1 = SET_DEST (PATTERN (m->insn));
1746 r2 = SET_DEST (PATTERN (m1->insn));
1747 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1748 gen_rtx (EXPR_LIST, VOIDmode, r2,
1749 regs_may_share));
1750 delete_insn (m->insn);
1751
1752 if (new_start == 0)
1753 new_start = i1;
1754
1755 if (loop_dump_stream)
1756 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1757 }
1758 /* If we are to re-generate the item being moved with a
1759 new move insn, first delete what we have and then emit
1760 the move insn before the loop. */
1761 else if (m->move_insn)
1762 {
1763 rtx i1, temp;
1764
1765 for (count = m->consec; count >= 0; count--)
1766 {
1767 /* If this is the first insn of a library call sequence,
1768 skip to the end. */
1769 if (GET_CODE (p) != NOTE
1770 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1771 p = XEXP (temp, 0);
1772
1773 /* If this is the last insn of a libcall sequence, then
1774 delete every insn in the sequence except the last.
1775 The last insn is handled in the normal manner. */
1776 if (GET_CODE (p) != NOTE
1777 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1778 {
1779 temp = XEXP (temp, 0);
1780 while (temp != p)
1781 temp = delete_insn (temp);
1782 }
1783
1784 p = delete_insn (p);
1785 while (p && GET_CODE (p) == NOTE)
1786 p = NEXT_INSN (p);
1787 }
1788
1789 start_sequence ();
1790 emit_move_insn (m->set_dest, m->set_src);
1791 temp = get_insns ();
1792 end_sequence ();
1793
1794 add_label_notes (m->set_src, temp);
1795
1796 i1 = emit_insns_before (temp, loop_start);
1797 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1798 REG_NOTES (i1)
1799 = gen_rtx (EXPR_LIST,
1800 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1801 m->set_src, REG_NOTES (i1));
1802
1803 if (loop_dump_stream)
1804 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1805
1806 /* The more regs we move, the less we like moving them. */
1807 threshold -= 3;
1808 }
1809 else
1810 {
1811 for (count = m->consec; count >= 0; count--)
1812 {
1813 rtx i1, temp;
1814
1815 /* If first insn of libcall sequence, skip to end. */
1816 /* Do this at start of loop, since p is guaranteed to
1817 be an insn here. */
1818 if (GET_CODE (p) != NOTE
1819 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1820 p = XEXP (temp, 0);
1821
1822 /* If last insn of libcall sequence, move all
1823 insns except the last before the loop. The last
1824 insn is handled in the normal manner. */
1825 if (GET_CODE (p) != NOTE
1826 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1827 {
1828 rtx fn_address = 0;
1829 rtx fn_reg = 0;
1830 rtx fn_address_insn = 0;
1831
1832 first = 0;
1833 for (temp = XEXP (temp, 0); temp != p;
1834 temp = NEXT_INSN (temp))
1835 {
1836 rtx body;
1837 rtx n;
1838 rtx next;
1839
1840 if (GET_CODE (temp) == NOTE)
1841 continue;
1842
1843 body = PATTERN (temp);
1844
1845 /* Find the next insn after TEMP,
1846 not counting USE or NOTE insns. */
1847 for (next = NEXT_INSN (temp); next != p;
1848 next = NEXT_INSN (next))
1849 if (! (GET_CODE (next) == INSN
1850 && GET_CODE (PATTERN (next)) == USE)
1851 && GET_CODE (next) != NOTE)
1852 break;
1853
1854 /* If that is the call, this may be the insn
1855 that loads the function address.
1856
1857 Extract the function address from the insn
1858 that loads it into a register.
1859 If this insn was cse'd, we get incorrect code.
1860
1861 So emit a new move insn that copies the
1862 function address into the register that the
1863 call insn will use. flow.c will delete any
1864 redundant stores that we have created. */
1865 if (GET_CODE (next) == CALL_INSN
1866 && GET_CODE (body) == SET
1867 && GET_CODE (SET_DEST (body)) == REG
1868 && (n = find_reg_note (temp, REG_EQUAL,
1869 NULL_RTX)))
1870 {
1871 fn_reg = SET_SRC (body);
1872 if (GET_CODE (fn_reg) != REG)
1873 fn_reg = SET_DEST (body);
1874 fn_address = XEXP (n, 0);
1875 fn_address_insn = temp;
1876 }
1877 /* We have the call insn.
1878 If it uses the register we suspect it might,
1879 load it with the correct address directly. */
1880 if (GET_CODE (temp) == CALL_INSN
1881 && fn_address != 0
1882 && reg_referenced_p (fn_reg, body))
1883 emit_insn_after (gen_move_insn (fn_reg,
1884 fn_address),
1885 fn_address_insn);
1886
1887 if (GET_CODE (temp) == CALL_INSN)
1888 {
1889 i1 = emit_call_insn_before (body, loop_start);
1890 /* Because the USAGE information potentially
1891 contains objects other than hard registers
1892 we need to copy it. */
1893 if (CALL_INSN_FUNCTION_USAGE (temp))
1894 CALL_INSN_FUNCTION_USAGE (i1)
1895 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1896 }
1897 else
1898 i1 = emit_insn_before (body, loop_start);
1899 if (first == 0)
1900 first = i1;
1901 if (temp == fn_address_insn)
1902 fn_address_insn = i1;
1903 REG_NOTES (i1) = REG_NOTES (temp);
1904 delete_insn (temp);
1905 }
1906 }
1907 if (m->savemode != VOIDmode)
1908 {
1909 /* P sets REG to zero; but we should clear only
1910 the bits that are not covered by the mode
1911 m->savemode. */
1912 rtx reg = m->set_dest;
1913 rtx sequence;
1914 rtx tem;
1915
1916 start_sequence ();
1917 tem = expand_binop
1918 (GET_MODE (reg), and_optab, reg,
1919 GEN_INT ((((HOST_WIDE_INT) 1
1920 << GET_MODE_BITSIZE (m->savemode)))
1921 - 1),
1922 reg, 1, OPTAB_LIB_WIDEN);
1923 if (tem == 0)
1924 abort ();
1925 if (tem != reg)
1926 emit_move_insn (reg, tem);
1927 sequence = gen_sequence ();
1928 end_sequence ();
1929 i1 = emit_insn_before (sequence, loop_start);
1930 }
1931 else if (GET_CODE (p) == CALL_INSN)
1932 {
1933 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1934 /* Because the USAGE information potentially
1935 contains objects other than hard registers
1936 we need to copy it. */
1937 if (CALL_INSN_FUNCTION_USAGE (p))
1938 CALL_INSN_FUNCTION_USAGE (i1)
1939 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1940 }
1941 else
1942 i1 = emit_insn_before (PATTERN (p), loop_start);
1943
1944 REG_NOTES (i1) = REG_NOTES (p);
1945
1946 /* If there is a REG_EQUAL note present whose value is
1947 not loop invariant, then delete it, since it may
1948 cause problems with later optimization passes.
1949 It is possible for cse to create such notes
1950 like this as a result of record_jump_cond. */
1951
1952 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1953 && ! invariant_p (XEXP (temp, 0)))
1954 remove_note (i1, temp);
1955
1956 if (new_start == 0)
1957 new_start = i1;
1958
1959 if (loop_dump_stream)
1960 fprintf (loop_dump_stream, " moved to %d",
1961 INSN_UID (i1));
1962
1963 #if 0
1964 /* This isn't needed because REG_NOTES is copied
1965 below and is wrong since P might be a PARALLEL. */
1966 if (REG_NOTES (i1) == 0
1967 && ! m->partial /* But not if it's a zero-extend clr. */
1968 && ! m->global /* and not if used outside the loop
1969 (since it might get set outside). */
1970 && CONSTANT_P (SET_SRC (PATTERN (p))))
1971 REG_NOTES (i1)
1972 = gen_rtx (EXPR_LIST, REG_EQUAL,
1973 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1974 #endif
1975
1976 /* If library call, now fix the REG_NOTES that contain
1977 insn pointers, namely REG_LIBCALL on FIRST
1978 and REG_RETVAL on I1. */
1979 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1980 {
1981 XEXP (temp, 0) = first;
1982 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1983 XEXP (temp, 0) = i1;
1984 }
1985
1986 delete_insn (p);
1987 do p = NEXT_INSN (p);
1988 while (p && GET_CODE (p) == NOTE);
1989 }
1990
1991 /* The more regs we move, the less we like moving them. */
1992 threshold -= 3;
1993 }
1994
1995 /* Any other movable that loads the same register
1996 MUST be moved. */
1997 already_moved[regno] = 1;
1998
1999 /* This reg has been moved out of one loop. */
2000 moved_once[regno] = 1;
2001
2002 /* The reg set here is now invariant. */
2003 if (! m->partial)
2004 n_times_set[regno] = 0;
2005
2006 m->done = 1;
2007
2008 /* Change the length-of-life info for the register
2009 to say it lives at least the full length of this loop.
2010 This will help guide optimizations in outer loops. */
2011
2012 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2013 /* This is the old insn before all the moved insns.
2014 We can't use the moved insn because it is out of range
2015 in uid_luid. Only the old insns have luids. */
2016 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2017 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2018 REGNO_LAST_UID (regno) = INSN_UID (end);
2019
2020 /* Combine with this moved insn any other matching movables. */
2021
2022 if (! m->partial)
2023 for (m1 = movables; m1; m1 = m1->next)
2024 if (m1->match == m)
2025 {
2026 rtx temp;
2027
2028 /* Schedule the reg loaded by M1
2029 for replacement so that shares the reg of M.
2030 If the modes differ (only possible in restricted
2031 circumstances, make a SUBREG. */
2032 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2033 reg_map[m1->regno] = m->set_dest;
2034 else
2035 reg_map[m1->regno]
2036 = gen_lowpart_common (GET_MODE (m1->set_dest),
2037 m->set_dest);
2038
2039 /* Get rid of the matching insn
2040 and prevent further processing of it. */
2041 m1->done = 1;
2042
2043 /* if library call, delete all insn except last, which
2044 is deleted below */
2045 if (temp = find_reg_note (m1->insn, REG_RETVAL,
2046 NULL_RTX))
2047 {
2048 for (temp = XEXP (temp, 0); temp != m1->insn;
2049 temp = NEXT_INSN (temp))
2050 delete_insn (temp);
2051 }
2052 delete_insn (m1->insn);
2053
2054 /* Any other movable that loads the same register
2055 MUST be moved. */
2056 already_moved[m1->regno] = 1;
2057
2058 /* The reg merged here is now invariant,
2059 if the reg it matches is invariant. */
2060 if (! m->partial)
2061 n_times_set[m1->regno] = 0;
2062 }
2063 }
2064 else if (loop_dump_stream)
2065 fprintf (loop_dump_stream, "not desirable");
2066 }
2067 else if (loop_dump_stream && !m->match)
2068 fprintf (loop_dump_stream, "not safe");
2069
2070 if (loop_dump_stream)
2071 fprintf (loop_dump_stream, "\n");
2072 }
2073
2074 if (new_start == 0)
2075 new_start = loop_start;
2076
2077 /* Go through all the instructions in the loop, making
2078 all the register substitutions scheduled in REG_MAP. */
2079 for (p = new_start; p != end; p = NEXT_INSN (p))
2080 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2081 || GET_CODE (p) == CALL_INSN)
2082 {
2083 replace_regs (PATTERN (p), reg_map, nregs, 0);
2084 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2085 INSN_CODE (p) = -1;
2086 }
2087 }
2088 \f
2089 #if 0
2090 /* Scan X and replace the address of any MEM in it with ADDR.
2091 REG is the address that MEM should have before the replacement. */
2092
2093 static void
2094 replace_call_address (x, reg, addr)
2095 rtx x, reg, addr;
2096 {
2097 register enum rtx_code code;
2098 register int i;
2099 register char *fmt;
2100
2101 if (x == 0)
2102 return;
2103 code = GET_CODE (x);
2104 switch (code)
2105 {
2106 case PC:
2107 case CC0:
2108 case CONST_INT:
2109 case CONST_DOUBLE:
2110 case CONST:
2111 case SYMBOL_REF:
2112 case LABEL_REF:
2113 case REG:
2114 return;
2115
2116 case SET:
2117 /* Short cut for very common case. */
2118 replace_call_address (XEXP (x, 1), reg, addr);
2119 return;
2120
2121 case CALL:
2122 /* Short cut for very common case. */
2123 replace_call_address (XEXP (x, 0), reg, addr);
2124 return;
2125
2126 case MEM:
2127 /* If this MEM uses a reg other than the one we expected,
2128 something is wrong. */
2129 if (XEXP (x, 0) != reg)
2130 abort ();
2131 XEXP (x, 0) = addr;
2132 return;
2133
2134 default:
2135 break;
2136 }
2137
2138 fmt = GET_RTX_FORMAT (code);
2139 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2140 {
2141 if (fmt[i] == 'e')
2142 replace_call_address (XEXP (x, i), reg, addr);
2143 if (fmt[i] == 'E')
2144 {
2145 register int j;
2146 for (j = 0; j < XVECLEN (x, i); j++)
2147 replace_call_address (XVECEXP (x, i, j), reg, addr);
2148 }
2149 }
2150 }
2151 #endif
2152 \f
2153 /* Return the number of memory refs to addresses that vary
2154 in the rtx X. */
2155
2156 static int
2157 count_nonfixed_reads (x)
2158 rtx x;
2159 {
2160 register enum rtx_code code;
2161 register int i;
2162 register char *fmt;
2163 int value;
2164
2165 if (x == 0)
2166 return 0;
2167
2168 code = GET_CODE (x);
2169 switch (code)
2170 {
2171 case PC:
2172 case CC0:
2173 case CONST_INT:
2174 case CONST_DOUBLE:
2175 case CONST:
2176 case SYMBOL_REF:
2177 case LABEL_REF:
2178 case REG:
2179 return 0;
2180
2181 case MEM:
2182 return ((invariant_p (XEXP (x, 0)) != 1)
2183 + count_nonfixed_reads (XEXP (x, 0)));
2184
2185 default:
2186 break;
2187 }
2188
2189 value = 0;
2190 fmt = GET_RTX_FORMAT (code);
2191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2192 {
2193 if (fmt[i] == 'e')
2194 value += count_nonfixed_reads (XEXP (x, i));
2195 if (fmt[i] == 'E')
2196 {
2197 register int j;
2198 for (j = 0; j < XVECLEN (x, i); j++)
2199 value += count_nonfixed_reads (XVECEXP (x, i, j));
2200 }
2201 }
2202 return value;
2203 }
2204
2205 \f
2206 #if 0
2207 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2208 Replace it with an instruction to load just the low bytes
2209 if the machine supports such an instruction,
2210 and insert above LOOP_START an instruction to clear the register. */
2211
2212 static void
2213 constant_high_bytes (p, loop_start)
2214 rtx p, loop_start;
2215 {
2216 register rtx new;
2217 register int insn_code_number;
2218
2219 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2220 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2221
2222 new = gen_rtx (SET, VOIDmode,
2223 gen_rtx (STRICT_LOW_PART, VOIDmode,
2224 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2225 SET_DEST (PATTERN (p)),
2226 0)),
2227 XEXP (SET_SRC (PATTERN (p)), 0));
2228 insn_code_number = recog (new, p);
2229
2230 if (insn_code_number)
2231 {
2232 register int i;
2233
2234 /* Clear destination register before the loop. */
2235 emit_insn_before (gen_rtx (SET, VOIDmode,
2236 SET_DEST (PATTERN (p)),
2237 const0_rtx),
2238 loop_start);
2239
2240 /* Inside the loop, just load the low part. */
2241 PATTERN (p) = new;
2242 }
2243 }
2244 #endif
2245 \f
2246 /* Scan a loop setting the variables `unknown_address_altered',
2247 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2248 and `loop_has_volatile'.
2249 Also, fill in the array `loop_store_mems'. */
2250
2251 static void
2252 prescan_loop (start, end)
2253 rtx start, end;
2254 {
2255 register int level = 1;
2256 register rtx insn;
2257
2258 unknown_address_altered = 0;
2259 loop_has_call = 0;
2260 loop_has_volatile = 0;
2261 loop_store_mems_idx = 0;
2262
2263 num_mem_sets = 0;
2264 loops_enclosed = 1;
2265 loop_continue = 0;
2266
2267 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2268 insn = NEXT_INSN (insn))
2269 {
2270 if (GET_CODE (insn) == NOTE)
2271 {
2272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2273 {
2274 ++level;
2275 /* Count number of loops contained in this one. */
2276 loops_enclosed++;
2277 }
2278 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2279 {
2280 --level;
2281 if (level == 0)
2282 {
2283 end = insn;
2284 break;
2285 }
2286 }
2287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2288 {
2289 if (level == 1)
2290 loop_continue = insn;
2291 }
2292 }
2293 else if (GET_CODE (insn) == CALL_INSN)
2294 {
2295 if (! CONST_CALL_P (insn))
2296 unknown_address_altered = 1;
2297 loop_has_call = 1;
2298 }
2299 else
2300 {
2301 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2302 {
2303 if (volatile_refs_p (PATTERN (insn)))
2304 loop_has_volatile = 1;
2305
2306 note_stores (PATTERN (insn), note_addr_stored);
2307 }
2308 }
2309 }
2310 }
2311 \f
2312 /* Scan the function looking for loops. Record the start and end of each loop.
2313 Also mark as invalid loops any loops that contain a setjmp or are branched
2314 to from outside the loop. */
2315
2316 static void
2317 find_and_verify_loops (f)
2318 rtx f;
2319 {
2320 rtx insn, label;
2321 int current_loop = -1;
2322 int next_loop = -1;
2323 int loop;
2324
2325 /* If there are jumps to undefined labels,
2326 treat them as jumps out of any/all loops.
2327 This also avoids writing past end of tables when there are no loops. */
2328 uid_loop_num[0] = -1;
2329
2330 /* Find boundaries of loops, mark which loops are contained within
2331 loops, and invalidate loops that have setjmp. */
2332
2333 for (insn = f; insn; insn = NEXT_INSN (insn))
2334 {
2335 if (GET_CODE (insn) == NOTE)
2336 switch (NOTE_LINE_NUMBER (insn))
2337 {
2338 case NOTE_INSN_LOOP_BEG:
2339 loop_number_loop_starts[++next_loop] = insn;
2340 loop_number_loop_ends[next_loop] = 0;
2341 loop_outer_loop[next_loop] = current_loop;
2342 loop_invalid[next_loop] = 0;
2343 loop_number_exit_labels[next_loop] = 0;
2344 loop_number_exit_count[next_loop] = 0;
2345 current_loop = next_loop;
2346 break;
2347
2348 case NOTE_INSN_SETJMP:
2349 /* In this case, we must invalidate our current loop and any
2350 enclosing loop. */
2351 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2352 {
2353 loop_invalid[loop] = 1;
2354 if (loop_dump_stream)
2355 fprintf (loop_dump_stream,
2356 "\nLoop at %d ignored due to setjmp.\n",
2357 INSN_UID (loop_number_loop_starts[loop]));
2358 }
2359 break;
2360
2361 case NOTE_INSN_LOOP_END:
2362 if (current_loop == -1)
2363 abort ();
2364
2365 loop_number_loop_ends[current_loop] = insn;
2366 current_loop = loop_outer_loop[current_loop];
2367 break;
2368
2369 default:
2370 break;
2371 }
2372
2373 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2374 enclosing loop, but this doesn't matter. */
2375 uid_loop_num[INSN_UID (insn)] = current_loop;
2376 }
2377
2378 /* Any loop containing a label used in an initializer must be invalidated,
2379 because it can be jumped into from anywhere. */
2380
2381 for (label = forced_labels; label; label = XEXP (label, 1))
2382 {
2383 int loop_num;
2384
2385 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2386 loop_num != -1;
2387 loop_num = loop_outer_loop[loop_num])
2388 loop_invalid[loop_num] = 1;
2389 }
2390
2391 /* Any loop containing a label used for an exception handler must be
2392 invalidated, because it can be jumped into from anywhere. */
2393
2394 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2395 {
2396 int loop_num;
2397
2398 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2399 loop_num != -1;
2400 loop_num = loop_outer_loop[loop_num])
2401 loop_invalid[loop_num] = 1;
2402 }
2403
2404 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2405 loop that it is not contained within, that loop is marked invalid.
2406 If any INSN or CALL_INSN uses a label's address, then the loop containing
2407 that label is marked invalid, because it could be jumped into from
2408 anywhere.
2409
2410 Also look for blocks of code ending in an unconditional branch that
2411 exits the loop. If such a block is surrounded by a conditional
2412 branch around the block, move the block elsewhere (see below) and
2413 invert the jump to point to the code block. This may eliminate a
2414 label in our loop and will simplify processing by both us and a
2415 possible second cse pass. */
2416
2417 for (insn = f; insn; insn = NEXT_INSN (insn))
2418 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2419 {
2420 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2421
2422 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2423 {
2424 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2425 if (note)
2426 {
2427 int loop_num;
2428
2429 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2430 loop_num != -1;
2431 loop_num = loop_outer_loop[loop_num])
2432 loop_invalid[loop_num] = 1;
2433 }
2434 }
2435
2436 if (GET_CODE (insn) != JUMP_INSN)
2437 continue;
2438
2439 mark_loop_jump (PATTERN (insn), this_loop_num);
2440
2441 /* See if this is an unconditional branch outside the loop. */
2442 if (this_loop_num != -1
2443 && (GET_CODE (PATTERN (insn)) == RETURN
2444 || (simplejump_p (insn)
2445 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2446 != this_loop_num)))
2447 && get_max_uid () < max_uid_for_loop)
2448 {
2449 rtx p;
2450 rtx our_next = next_real_insn (insn);
2451 int dest_loop;
2452 int outer_loop = -1;
2453
2454 /* Go backwards until we reach the start of the loop, a label,
2455 or a JUMP_INSN. */
2456 for (p = PREV_INSN (insn);
2457 GET_CODE (p) != CODE_LABEL
2458 && ! (GET_CODE (p) == NOTE
2459 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2460 && GET_CODE (p) != JUMP_INSN;
2461 p = PREV_INSN (p))
2462 ;
2463
2464 /* Check for the case where we have a jump to an inner nested
2465 loop, and do not perform the optimization in that case. */
2466
2467 if (JUMP_LABEL (insn))
2468 {
2469 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2470 if (dest_loop != -1)
2471 {
2472 for (outer_loop = dest_loop; outer_loop != -1;
2473 outer_loop = loop_outer_loop[outer_loop])
2474 if (outer_loop == this_loop_num)
2475 break;
2476 }
2477 }
2478
2479 /* Make sure that the target of P is within the current loop. */
2480
2481 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2482 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2483 outer_loop = this_loop_num;
2484
2485 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2486 we have a block of code to try to move.
2487
2488 We look backward and then forward from the target of INSN
2489 to find a BARRIER at the same loop depth as the target.
2490 If we find such a BARRIER, we make a new label for the start
2491 of the block, invert the jump in P and point it to that label,
2492 and move the block of code to the spot we found. */
2493
2494 if (outer_loop == -1
2495 && GET_CODE (p) == JUMP_INSN
2496 && JUMP_LABEL (p) != 0
2497 /* Just ignore jumps to labels that were never emitted.
2498 These always indicate compilation errors. */
2499 && INSN_UID (JUMP_LABEL (p)) != 0
2500 && condjump_p (p)
2501 && ! simplejump_p (p)
2502 && next_real_insn (JUMP_LABEL (p)) == our_next)
2503 {
2504 rtx target
2505 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2506 int target_loop_num = uid_loop_num[INSN_UID (target)];
2507 rtx loc;
2508
2509 for (loc = target; loc; loc = PREV_INSN (loc))
2510 if (GET_CODE (loc) == BARRIER
2511 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2512 break;
2513
2514 if (loc == 0)
2515 for (loc = target; loc; loc = NEXT_INSN (loc))
2516 if (GET_CODE (loc) == BARRIER
2517 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2518 break;
2519
2520 if (loc)
2521 {
2522 rtx cond_label = JUMP_LABEL (p);
2523 rtx new_label = get_label_after (p);
2524
2525 /* Ensure our label doesn't go away. */
2526 LABEL_NUSES (cond_label)++;
2527
2528 /* Verify that uid_loop_num is large enough and that
2529 we can invert P. */
2530 if (invert_jump (p, new_label))
2531 {
2532 rtx q, r;
2533
2534 /* Include the BARRIER after INSN and copy the
2535 block after LOC. */
2536 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2537 reorder_insns (new_label, NEXT_INSN (insn), loc);
2538
2539 /* All those insns are now in TARGET_LOOP_NUM. */
2540 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2541 q = NEXT_INSN (q))
2542 uid_loop_num[INSN_UID (q)] = target_loop_num;
2543
2544 /* The label jumped to by INSN is no longer a loop exit.
2545 Unless INSN does not have a label (e.g., it is a
2546 RETURN insn), search loop_number_exit_labels to find
2547 its label_ref, and remove it. Also turn off
2548 LABEL_OUTSIDE_LOOP_P bit. */
2549 if (JUMP_LABEL (insn))
2550 {
2551 int loop_num;
2552
2553 for (q = 0,
2554 r = loop_number_exit_labels[this_loop_num];
2555 r; q = r, r = LABEL_NEXTREF (r))
2556 if (XEXP (r, 0) == JUMP_LABEL (insn))
2557 {
2558 LABEL_OUTSIDE_LOOP_P (r) = 0;
2559 if (q)
2560 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2561 else
2562 loop_number_exit_labels[this_loop_num]
2563 = LABEL_NEXTREF (r);
2564 break;
2565 }
2566
2567 for (loop_num = this_loop_num;
2568 loop_num != -1 && loop_num != target_loop_num;
2569 loop_num = loop_outer_loop[loop_num])
2570 loop_number_exit_count[loop_num]--;
2571
2572 /* If we didn't find it, then something is wrong. */
2573 if (! r)
2574 abort ();
2575 }
2576
2577 /* P is now a jump outside the loop, so it must be put
2578 in loop_number_exit_labels, and marked as such.
2579 The easiest way to do this is to just call
2580 mark_loop_jump again for P. */
2581 mark_loop_jump (PATTERN (p), this_loop_num);
2582
2583 /* If INSN now jumps to the insn after it,
2584 delete INSN. */
2585 if (JUMP_LABEL (insn) != 0
2586 && (next_real_insn (JUMP_LABEL (insn))
2587 == next_real_insn (insn)))
2588 delete_insn (insn);
2589 }
2590
2591 /* Continue the loop after where the conditional
2592 branch used to jump, since the only branch insn
2593 in the block (if it still remains) is an inter-loop
2594 branch and hence needs no processing. */
2595 insn = NEXT_INSN (cond_label);
2596
2597 if (--LABEL_NUSES (cond_label) == 0)
2598 delete_insn (cond_label);
2599
2600 /* This loop will be continued with NEXT_INSN (insn). */
2601 insn = PREV_INSN (insn);
2602 }
2603 }
2604 }
2605 }
2606 }
2607
2608 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2609 loops it is contained in, mark the target loop invalid.
2610
2611 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2612
2613 static void
2614 mark_loop_jump (x, loop_num)
2615 rtx x;
2616 int loop_num;
2617 {
2618 int dest_loop;
2619 int outer_loop;
2620 int i;
2621
2622 switch (GET_CODE (x))
2623 {
2624 case PC:
2625 case USE:
2626 case CLOBBER:
2627 case REG:
2628 case MEM:
2629 case CONST_INT:
2630 case CONST_DOUBLE:
2631 case RETURN:
2632 return;
2633
2634 case CONST:
2635 /* There could be a label reference in here. */
2636 mark_loop_jump (XEXP (x, 0), loop_num);
2637 return;
2638
2639 case PLUS:
2640 case MINUS:
2641 case MULT:
2642 mark_loop_jump (XEXP (x, 0), loop_num);
2643 mark_loop_jump (XEXP (x, 1), loop_num);
2644 return;
2645
2646 case SIGN_EXTEND:
2647 case ZERO_EXTEND:
2648 mark_loop_jump (XEXP (x, 0), loop_num);
2649 return;
2650
2651 case LABEL_REF:
2652 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2653
2654 /* Link together all labels that branch outside the loop. This
2655 is used by final_[bg]iv_value and the loop unrolling code. Also
2656 mark this LABEL_REF so we know that this branch should predict
2657 false. */
2658
2659 /* A check to make sure the label is not in an inner nested loop,
2660 since this does not count as a loop exit. */
2661 if (dest_loop != -1)
2662 {
2663 for (outer_loop = dest_loop; outer_loop != -1;
2664 outer_loop = loop_outer_loop[outer_loop])
2665 if (outer_loop == loop_num)
2666 break;
2667 }
2668 else
2669 outer_loop = -1;
2670
2671 if (loop_num != -1 && outer_loop == -1)
2672 {
2673 LABEL_OUTSIDE_LOOP_P (x) = 1;
2674 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2675 loop_number_exit_labels[loop_num] = x;
2676
2677 for (outer_loop = loop_num;
2678 outer_loop != -1 && outer_loop != dest_loop;
2679 outer_loop = loop_outer_loop[outer_loop])
2680 loop_number_exit_count[outer_loop]++;
2681 }
2682
2683 /* If this is inside a loop, but not in the current loop or one enclosed
2684 by it, it invalidates at least one loop. */
2685
2686 if (dest_loop == -1)
2687 return;
2688
2689 /* We must invalidate every nested loop containing the target of this
2690 label, except those that also contain the jump insn. */
2691
2692 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2693 {
2694 /* Stop when we reach a loop that also contains the jump insn. */
2695 for (outer_loop = loop_num; outer_loop != -1;
2696 outer_loop = loop_outer_loop[outer_loop])
2697 if (dest_loop == outer_loop)
2698 return;
2699
2700 /* If we get here, we know we need to invalidate a loop. */
2701 if (loop_dump_stream && ! loop_invalid[dest_loop])
2702 fprintf (loop_dump_stream,
2703 "\nLoop at %d ignored due to multiple entry points.\n",
2704 INSN_UID (loop_number_loop_starts[dest_loop]));
2705
2706 loop_invalid[dest_loop] = 1;
2707 }
2708 return;
2709
2710 case SET:
2711 /* If this is not setting pc, ignore. */
2712 if (SET_DEST (x) == pc_rtx)
2713 mark_loop_jump (SET_SRC (x), loop_num);
2714 return;
2715
2716 case IF_THEN_ELSE:
2717 mark_loop_jump (XEXP (x, 1), loop_num);
2718 mark_loop_jump (XEXP (x, 2), loop_num);
2719 return;
2720
2721 case PARALLEL:
2722 case ADDR_VEC:
2723 for (i = 0; i < XVECLEN (x, 0); i++)
2724 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2725 return;
2726
2727 case ADDR_DIFF_VEC:
2728 for (i = 0; i < XVECLEN (x, 1); i++)
2729 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2730 return;
2731
2732 default:
2733 /* Treat anything else (such as a symbol_ref)
2734 as a branch out of this loop, but not into any loop. */
2735
2736 if (loop_num != -1)
2737 {
2738 #ifdef HAIFA
2739 LABEL_OUTSIDE_LOOP_P (x) = 1;
2740 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2741 #endif /* HAIFA */
2742
2743 loop_number_exit_labels[loop_num] = x;
2744
2745 for (outer_loop = loop_num; outer_loop != -1;
2746 outer_loop = loop_outer_loop[outer_loop])
2747 loop_number_exit_count[outer_loop]++;
2748 }
2749 return;
2750 }
2751 }
2752 \f
2753 /* Return nonzero if there is a label in the range from
2754 insn INSN to and including the insn whose luid is END
2755 INSN must have an assigned luid (i.e., it must not have
2756 been previously created by loop.c). */
2757
2758 static int
2759 labels_in_range_p (insn, end)
2760 rtx insn;
2761 int end;
2762 {
2763 while (insn && INSN_LUID (insn) <= end)
2764 {
2765 if (GET_CODE (insn) == CODE_LABEL)
2766 return 1;
2767 insn = NEXT_INSN (insn);
2768 }
2769
2770 return 0;
2771 }
2772
2773 /* Record that a memory reference X is being set. */
2774
2775 static void
2776 note_addr_stored (x)
2777 rtx x;
2778 {
2779 register int i;
2780
2781 if (x == 0 || GET_CODE (x) != MEM)
2782 return;
2783
2784 /* Count number of memory writes.
2785 This affects heuristics in strength_reduce. */
2786 num_mem_sets++;
2787
2788 /* BLKmode MEM means all memory is clobbered. */
2789 if (GET_MODE (x) == BLKmode)
2790 unknown_address_altered = 1;
2791
2792 if (unknown_address_altered)
2793 return;
2794
2795 for (i = 0; i < loop_store_mems_idx; i++)
2796 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2797 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2798 {
2799 /* We are storing at the same address as previously noted. Save the
2800 wider reference. */
2801 if (GET_MODE_SIZE (GET_MODE (x))
2802 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2803 loop_store_mems[i] = x;
2804 break;
2805 }
2806
2807 if (i == NUM_STORES)
2808 unknown_address_altered = 1;
2809
2810 else if (i == loop_store_mems_idx)
2811 loop_store_mems[loop_store_mems_idx++] = x;
2812 }
2813 \f
2814 /* Return nonzero if the rtx X is invariant over the current loop.
2815
2816 The value is 2 if we refer to something only conditionally invariant.
2817
2818 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2819 Otherwise, a memory ref is invariant if it does not conflict with
2820 anything stored in `loop_store_mems'. */
2821
2822 int
2823 invariant_p (x)
2824 register rtx x;
2825 {
2826 register int i;
2827 register enum rtx_code code;
2828 register char *fmt;
2829 int conditional = 0;
2830
2831 if (x == 0)
2832 return 1;
2833 code = GET_CODE (x);
2834 switch (code)
2835 {
2836 case CONST_INT:
2837 case CONST_DOUBLE:
2838 case SYMBOL_REF:
2839 case CONST:
2840 return 1;
2841
2842 case LABEL_REF:
2843 /* A LABEL_REF is normally invariant, however, if we are unrolling
2844 loops, and this label is inside the loop, then it isn't invariant.
2845 This is because each unrolled copy of the loop body will have
2846 a copy of this label. If this was invariant, then an insn loading
2847 the address of this label into a register might get moved outside
2848 the loop, and then each loop body would end up using the same label.
2849
2850 We don't know the loop bounds here though, so just fail for all
2851 labels. */
2852 if (flag_unroll_loops)
2853 return 0;
2854 else
2855 return 1;
2856
2857 case PC:
2858 case CC0:
2859 case UNSPEC_VOLATILE:
2860 return 0;
2861
2862 case REG:
2863 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2864 since the reg might be set by initialization within the loop. */
2865
2866 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2867 || x == arg_pointer_rtx)
2868 && ! current_function_has_nonlocal_goto)
2869 return 1;
2870
2871 if (loop_has_call
2872 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2873 return 0;
2874
2875 if (n_times_set[REGNO (x)] < 0)
2876 return 2;
2877
2878 return n_times_set[REGNO (x)] == 0;
2879
2880 case MEM:
2881 /* Volatile memory references must be rejected. Do this before
2882 checking for read-only items, so that volatile read-only items
2883 will be rejected also. */
2884 if (MEM_VOLATILE_P (x))
2885 return 0;
2886
2887 /* Read-only items (such as constants in a constant pool) are
2888 invariant if their address is. */
2889 if (RTX_UNCHANGING_P (x))
2890 break;
2891
2892 /* If we filled the table (or had a subroutine call), any location
2893 in memory could have been clobbered. */
2894 if (unknown_address_altered)
2895 return 0;
2896
2897 /* See if there is any dependence between a store and this load. */
2898 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2899 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2900 return 0;
2901
2902 /* It's not invalidated by a store in memory
2903 but we must still verify the address is invariant. */
2904 break;
2905
2906 case ASM_OPERANDS:
2907 /* Don't mess with insns declared volatile. */
2908 if (MEM_VOLATILE_P (x))
2909 return 0;
2910 break;
2911
2912 default:
2913 break;
2914 }
2915
2916 fmt = GET_RTX_FORMAT (code);
2917 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2918 {
2919 if (fmt[i] == 'e')
2920 {
2921 int tem = invariant_p (XEXP (x, i));
2922 if (tem == 0)
2923 return 0;
2924 if (tem == 2)
2925 conditional = 1;
2926 }
2927 else if (fmt[i] == 'E')
2928 {
2929 register int j;
2930 for (j = 0; j < XVECLEN (x, i); j++)
2931 {
2932 int tem = invariant_p (XVECEXP (x, i, j));
2933 if (tem == 0)
2934 return 0;
2935 if (tem == 2)
2936 conditional = 1;
2937 }
2938
2939 }
2940 }
2941
2942 return 1 + conditional;
2943 }
2944
2945 \f
2946 /* Return nonzero if all the insns in the loop that set REG
2947 are INSN and the immediately following insns,
2948 and if each of those insns sets REG in an invariant way
2949 (not counting uses of REG in them).
2950
2951 The value is 2 if some of these insns are only conditionally invariant.
2952
2953 We assume that INSN itself is the first set of REG
2954 and that its source is invariant. */
2955
2956 static int
2957 consec_sets_invariant_p (reg, n_sets, insn)
2958 int n_sets;
2959 rtx reg, insn;
2960 {
2961 register rtx p = insn;
2962 register int regno = REGNO (reg);
2963 rtx temp;
2964 /* Number of sets we have to insist on finding after INSN. */
2965 int count = n_sets - 1;
2966 int old = n_times_set[regno];
2967 int value = 0;
2968 int this;
2969
2970 /* If N_SETS hit the limit, we can't rely on its value. */
2971 if (n_sets == 127)
2972 return 0;
2973
2974 n_times_set[regno] = 0;
2975
2976 while (count > 0)
2977 {
2978 register enum rtx_code code;
2979 rtx set;
2980
2981 p = NEXT_INSN (p);
2982 code = GET_CODE (p);
2983
2984 /* If library call, skip to end of of it. */
2985 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2986 p = XEXP (temp, 0);
2987
2988 this = 0;
2989 if (code == INSN
2990 && (set = single_set (p))
2991 && GET_CODE (SET_DEST (set)) == REG
2992 && REGNO (SET_DEST (set)) == regno)
2993 {
2994 this = invariant_p (SET_SRC (set));
2995 if (this != 0)
2996 value |= this;
2997 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2998 {
2999 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3000 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3001 notes are OK. */
3002 this = (CONSTANT_P (XEXP (temp, 0))
3003 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3004 && invariant_p (XEXP (temp, 0))));
3005 if (this != 0)
3006 value |= this;
3007 }
3008 }
3009 if (this != 0)
3010 count--;
3011 else if (code != NOTE)
3012 {
3013 n_times_set[regno] = old;
3014 return 0;
3015 }
3016 }
3017
3018 n_times_set[regno] = old;
3019 /* If invariant_p ever returned 2, we return 2. */
3020 return 1 + (value & 2);
3021 }
3022
3023 #if 0
3024 /* I don't think this condition is sufficient to allow INSN
3025 to be moved, so we no longer test it. */
3026
3027 /* Return 1 if all insns in the basic block of INSN and following INSN
3028 that set REG are invariant according to TABLE. */
3029
3030 static int
3031 all_sets_invariant_p (reg, insn, table)
3032 rtx reg, insn;
3033 short *table;
3034 {
3035 register rtx p = insn;
3036 register int regno = REGNO (reg);
3037
3038 while (1)
3039 {
3040 register enum rtx_code code;
3041 p = NEXT_INSN (p);
3042 code = GET_CODE (p);
3043 if (code == CODE_LABEL || code == JUMP_INSN)
3044 return 1;
3045 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3046 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3047 && REGNO (SET_DEST (PATTERN (p))) == regno)
3048 {
3049 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3050 return 0;
3051 }
3052 }
3053 }
3054 #endif /* 0 */
3055 \f
3056 /* Look at all uses (not sets) of registers in X. For each, if it is
3057 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3058 a different insn, set USAGE[REGNO] to const0_rtx. */
3059
3060 static void
3061 find_single_use_in_loop (insn, x, usage)
3062 rtx insn;
3063 rtx x;
3064 rtx *usage;
3065 {
3066 enum rtx_code code = GET_CODE (x);
3067 char *fmt = GET_RTX_FORMAT (code);
3068 int i, j;
3069
3070 if (code == REG)
3071 usage[REGNO (x)]
3072 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
3073 ? const0_rtx : insn;
3074
3075 else if (code == SET)
3076 {
3077 /* Don't count SET_DEST if it is a REG; otherwise count things
3078 in SET_DEST because if a register is partially modified, it won't
3079 show up as a potential movable so we don't care how USAGE is set
3080 for it. */
3081 if (GET_CODE (SET_DEST (x)) != REG)
3082 find_single_use_in_loop (insn, SET_DEST (x), usage);
3083 find_single_use_in_loop (insn, SET_SRC (x), usage);
3084 }
3085 else
3086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3087 {
3088 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3089 find_single_use_in_loop (insn, XEXP (x, i), usage);
3090 else if (fmt[i] == 'E')
3091 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3092 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3093 }
3094 }
3095 \f
3096 /* Increment N_TIMES_SET at the index of each register
3097 that is modified by an insn between FROM and TO.
3098 If the value of an element of N_TIMES_SET becomes 127 or more,
3099 stop incrementing it, to avoid overflow.
3100
3101 Store in SINGLE_USAGE[I] the single insn in which register I is
3102 used, if it is only used once. Otherwise, it is set to 0 (for no
3103 uses) or const0_rtx for more than one use. This parameter may be zero,
3104 in which case this processing is not done.
3105
3106 Store in *COUNT_PTR the number of actual instruction
3107 in the loop. We use this to decide what is worth moving out. */
3108
3109 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3110 In that case, it is the insn that last set reg n. */
3111
3112 static void
3113 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3114 register rtx from, to;
3115 char *may_not_move;
3116 rtx *single_usage;
3117 int *count_ptr;
3118 int nregs;
3119 {
3120 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3121 register rtx insn;
3122 register int count = 0;
3123 register rtx dest;
3124
3125 bzero ((char *) last_set, nregs * sizeof (rtx));
3126 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3127 {
3128 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3129 {
3130 ++count;
3131
3132 /* If requested, record registers that have exactly one use. */
3133 if (single_usage)
3134 {
3135 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3136
3137 /* Include uses in REG_EQUAL notes. */
3138 if (REG_NOTES (insn))
3139 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3140 }
3141
3142 if (GET_CODE (PATTERN (insn)) == CLOBBER
3143 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3144 /* Don't move a reg that has an explicit clobber.
3145 We might do so sometimes, but it's not worth the pain. */
3146 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3147
3148 if (GET_CODE (PATTERN (insn)) == SET
3149 || GET_CODE (PATTERN (insn)) == CLOBBER)
3150 {
3151 dest = SET_DEST (PATTERN (insn));
3152 while (GET_CODE (dest) == SUBREG
3153 || GET_CODE (dest) == ZERO_EXTRACT
3154 || GET_CODE (dest) == SIGN_EXTRACT
3155 || GET_CODE (dest) == STRICT_LOW_PART)
3156 dest = XEXP (dest, 0);
3157 if (GET_CODE (dest) == REG)
3158 {
3159 register int regno = REGNO (dest);
3160 /* If this is the first setting of this reg
3161 in current basic block, and it was set before,
3162 it must be set in two basic blocks, so it cannot
3163 be moved out of the loop. */
3164 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3165 may_not_move[regno] = 1;
3166 /* If this is not first setting in current basic block,
3167 see if reg was used in between previous one and this.
3168 If so, neither one can be moved. */
3169 if (last_set[regno] != 0
3170 && reg_used_between_p (dest, last_set[regno], insn))
3171 may_not_move[regno] = 1;
3172 if (n_times_set[regno] < 127)
3173 ++n_times_set[regno];
3174 last_set[regno] = insn;
3175 }
3176 }
3177 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3178 {
3179 register int i;
3180 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3181 {
3182 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3183 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3184 /* Don't move a reg that has an explicit clobber.
3185 It's not worth the pain to try to do it correctly. */
3186 may_not_move[REGNO (XEXP (x, 0))] = 1;
3187
3188 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3189 {
3190 dest = SET_DEST (x);
3191 while (GET_CODE (dest) == SUBREG
3192 || GET_CODE (dest) == ZERO_EXTRACT
3193 || GET_CODE (dest) == SIGN_EXTRACT
3194 || GET_CODE (dest) == STRICT_LOW_PART)
3195 dest = XEXP (dest, 0);
3196 if (GET_CODE (dest) == REG)
3197 {
3198 register int regno = REGNO (dest);
3199 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3200 may_not_move[regno] = 1;
3201 if (last_set[regno] != 0
3202 && reg_used_between_p (dest, last_set[regno], insn))
3203 may_not_move[regno] = 1;
3204 if (n_times_set[regno] < 127)
3205 ++n_times_set[regno];
3206 last_set[regno] = insn;
3207 }
3208 }
3209 }
3210 }
3211 }
3212
3213 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3214 bzero ((char *) last_set, nregs * sizeof (rtx));
3215 }
3216 *count_ptr = count;
3217 }
3218 \f
3219 /* Given a loop that is bounded by LOOP_START and LOOP_END
3220 and that is entered at SCAN_START,
3221 return 1 if the register set in SET contained in insn INSN is used by
3222 any insn that precedes INSN in cyclic order starting
3223 from the loop entry point.
3224
3225 We don't want to use INSN_LUID here because if we restrict INSN to those
3226 that have a valid INSN_LUID, it means we cannot move an invariant out
3227 from an inner loop past two loops. */
3228
3229 static int
3230 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3231 rtx set, insn, loop_start, scan_start, loop_end;
3232 {
3233 rtx reg = SET_DEST (set);
3234 rtx p;
3235
3236 /* Scan forward checking for register usage. If we hit INSN, we
3237 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3238 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3239 {
3240 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3241 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3242 return 1;
3243
3244 if (p == loop_end)
3245 p = loop_start;
3246 }
3247
3248 return 0;
3249 }
3250 \f
3251 /* A "basic induction variable" or biv is a pseudo reg that is set
3252 (within this loop) only by incrementing or decrementing it. */
3253 /* A "general induction variable" or giv is a pseudo reg whose
3254 value is a linear function of a biv. */
3255
3256 /* Bivs are recognized by `basic_induction_var';
3257 Givs by `general_induct_var'. */
3258
3259 /* Indexed by register number, indicates whether or not register is an
3260 induction variable, and if so what type. */
3261
3262 enum iv_mode *reg_iv_type;
3263
3264 /* Indexed by register number, contains pointer to `struct induction'
3265 if register is an induction variable. This holds general info for
3266 all induction variables. */
3267
3268 struct induction **reg_iv_info;
3269
3270 /* Indexed by register number, contains pointer to `struct iv_class'
3271 if register is a basic induction variable. This holds info describing
3272 the class (a related group) of induction variables that the biv belongs
3273 to. */
3274
3275 struct iv_class **reg_biv_class;
3276
3277 /* The head of a list which links together (via the next field)
3278 every iv class for the current loop. */
3279
3280 struct iv_class *loop_iv_list;
3281
3282 /* Communication with routines called via `note_stores'. */
3283
3284 static rtx note_insn;
3285
3286 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3287
3288 static rtx addr_placeholder;
3289
3290 /* ??? Unfinished optimizations, and possible future optimizations,
3291 for the strength reduction code. */
3292
3293 /* ??? There is one more optimization you might be interested in doing: to
3294 allocate pseudo registers for frequently-accessed memory locations.
3295 If the same memory location is referenced each time around, it might
3296 be possible to copy it into a register before and out after.
3297 This is especially useful when the memory location is a variable which
3298 is in a stack slot because somewhere its address is taken. If the
3299 loop doesn't contain a function call and the variable isn't volatile,
3300 it is safe to keep the value in a register for the duration of the
3301 loop. One tricky thing is that the copying of the value back from the
3302 register has to be done on all exits from the loop. You need to check that
3303 all the exits from the loop go to the same place. */
3304
3305 /* ??? The interaction of biv elimination, and recognition of 'constant'
3306 bivs, may cause problems. */
3307
3308 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3309 performance problems.
3310
3311 Perhaps don't eliminate things that can be combined with an addressing
3312 mode. Find all givs that have the same biv, mult_val, and add_val;
3313 then for each giv, check to see if its only use dies in a following
3314 memory address. If so, generate a new memory address and check to see
3315 if it is valid. If it is valid, then store the modified memory address,
3316 otherwise, mark the giv as not done so that it will get its own iv. */
3317
3318 /* ??? Could try to optimize branches when it is known that a biv is always
3319 positive. */
3320
3321 /* ??? When replace a biv in a compare insn, we should replace with closest
3322 giv so that an optimized branch can still be recognized by the combiner,
3323 e.g. the VAX acb insn. */
3324
3325 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3326 was rerun in loop_optimize whenever a register was added or moved.
3327 Also, some of the optimizations could be a little less conservative. */
3328 \f
3329 /* Perform strength reduction and induction variable elimination. */
3330
3331 /* Pseudo registers created during this function will be beyond the last
3332 valid index in several tables including n_times_set and regno_last_uid.
3333 This does not cause a problem here, because the added registers cannot be
3334 givs outside of their loop, and hence will never be reconsidered.
3335 But scan_loop must check regnos to make sure they are in bounds. */
3336
3337 static void
3338 strength_reduce (scan_start, end, loop_top, insn_count,
3339 loop_start, loop_end, unroll_p)
3340 rtx scan_start;
3341 rtx end;
3342 rtx loop_top;
3343 int insn_count;
3344 rtx loop_start;
3345 rtx loop_end;
3346 int unroll_p;
3347 {
3348 rtx p;
3349 rtx set;
3350 rtx inc_val;
3351 rtx mult_val;
3352 rtx dest_reg;
3353 /* This is 1 if current insn is not executed at least once for every loop
3354 iteration. */
3355 int not_every_iteration = 0;
3356 /* This is 1 if current insn may be executed more than once for every
3357 loop iteration. */
3358 int maybe_multiple = 0;
3359 /* Temporary list pointers for traversing loop_iv_list. */
3360 struct iv_class *bl, **backbl;
3361 /* Ratio of extra register life span we can justify
3362 for saving an instruction. More if loop doesn't call subroutines
3363 since in that case saving an insn makes more difference
3364 and more registers are available. */
3365 /* ??? could set this to last value of threshold in move_movables */
3366 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3367 /* Map of pseudo-register replacements. */
3368 rtx *reg_map;
3369 int call_seen;
3370 rtx test;
3371 rtx end_insert_before;
3372 int loop_depth = 0;
3373
3374 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3375 * sizeof (enum iv_mode *));
3376 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3377 reg_iv_info = (struct induction **)
3378 alloca (max_reg_before_loop * sizeof (struct induction *));
3379 bzero ((char *) reg_iv_info, (max_reg_before_loop
3380 * sizeof (struct induction *)));
3381 reg_biv_class = (struct iv_class **)
3382 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3383 bzero ((char *) reg_biv_class, (max_reg_before_loop
3384 * sizeof (struct iv_class *)));
3385
3386 loop_iv_list = 0;
3387 addr_placeholder = gen_reg_rtx (Pmode);
3388
3389 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3390 must be put before this insn, so that they will appear in the right
3391 order (i.e. loop order).
3392
3393 If loop_end is the end of the current function, then emit a
3394 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3395 dummy note insn. */
3396 if (NEXT_INSN (loop_end) != 0)
3397 end_insert_before = NEXT_INSN (loop_end);
3398 else
3399 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3400
3401 /* Scan through loop to find all possible bivs. */
3402
3403 p = scan_start;
3404 while (1)
3405 {
3406 p = NEXT_INSN (p);
3407 /* At end of a straight-in loop, we are done.
3408 At end of a loop entered at the bottom, scan the top. */
3409 if (p == scan_start)
3410 break;
3411 if (p == end)
3412 {
3413 if (loop_top != 0)
3414 p = loop_top;
3415 else
3416 break;
3417 if (p == scan_start)
3418 break;
3419 }
3420
3421 if (GET_CODE (p) == INSN
3422 && (set = single_set (p))
3423 && GET_CODE (SET_DEST (set)) == REG)
3424 {
3425 dest_reg = SET_DEST (set);
3426 if (REGNO (dest_reg) < max_reg_before_loop
3427 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3428 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3429 {
3430 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3431 dest_reg, p, &inc_val, &mult_val))
3432 {
3433 /* It is a possible basic induction variable.
3434 Create and initialize an induction structure for it. */
3435
3436 struct induction *v
3437 = (struct induction *) alloca (sizeof (struct induction));
3438
3439 record_biv (v, p, dest_reg, inc_val, mult_val,
3440 not_every_iteration, maybe_multiple);
3441 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3442 }
3443 else if (REGNO (dest_reg) < max_reg_before_loop)
3444 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3445 }
3446 }
3447
3448 /* Past CODE_LABEL, we get to insns that may be executed multiple
3449 times. The only way we can be sure that they can't is if every
3450 every jump insn between here and the end of the loop either
3451 returns, exits the loop, is a forward jump, or is a jump
3452 to the loop start. */
3453
3454 if (GET_CODE (p) == CODE_LABEL)
3455 {
3456 rtx insn = p;
3457
3458 maybe_multiple = 0;
3459
3460 while (1)
3461 {
3462 insn = NEXT_INSN (insn);
3463 if (insn == scan_start)
3464 break;
3465 if (insn == end)
3466 {
3467 if (loop_top != 0)
3468 insn = loop_top;
3469 else
3470 break;
3471 if (insn == scan_start)
3472 break;
3473 }
3474
3475 if (GET_CODE (insn) == JUMP_INSN
3476 && GET_CODE (PATTERN (insn)) != RETURN
3477 && (! condjump_p (insn)
3478 || (JUMP_LABEL (insn) != 0
3479 && JUMP_LABEL (insn) != scan_start
3480 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3481 || INSN_UID (insn) >= max_uid_for_loop
3482 || (INSN_LUID (JUMP_LABEL (insn))
3483 < INSN_LUID (insn))))))
3484 {
3485 maybe_multiple = 1;
3486 break;
3487 }
3488 }
3489 }
3490
3491 /* Past a jump, we get to insns for which we can't count
3492 on whether they will be executed during each iteration. */
3493 /* This code appears twice in strength_reduce. There is also similar
3494 code in scan_loop. */
3495 if (GET_CODE (p) == JUMP_INSN
3496 /* If we enter the loop in the middle, and scan around to the
3497 beginning, don't set not_every_iteration for that.
3498 This can be any kind of jump, since we want to know if insns
3499 will be executed if the loop is executed. */
3500 && ! (JUMP_LABEL (p) == loop_top
3501 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3502 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3503 {
3504 rtx label = 0;
3505
3506 /* If this is a jump outside the loop, then it also doesn't
3507 matter. Check to see if the target of this branch is on the
3508 loop_number_exits_labels list. */
3509
3510 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3511 label;
3512 label = LABEL_NEXTREF (label))
3513 if (XEXP (label, 0) == JUMP_LABEL (p))
3514 break;
3515
3516 if (! label)
3517 not_every_iteration = 1;
3518 }
3519
3520 else if (GET_CODE (p) == NOTE)
3521 {
3522 /* At the virtual top of a converted loop, insns are again known to
3523 be executed each iteration: logically, the loop begins here
3524 even though the exit code has been duplicated. */
3525 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3526 not_every_iteration = 0;
3527 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3528 loop_depth++;
3529 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3530 loop_depth--;
3531 }
3532
3533 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3534 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3535 or not an insn is known to be executed each iteration of the
3536 loop, whether or not any iterations are known to occur.
3537
3538 Therefore, if we have just passed a label and have no more labels
3539 between here and the test insn of the loop, we know these insns
3540 will be executed each iteration. */
3541
3542 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3543 && no_labels_between_p (p, loop_end))
3544 not_every_iteration = 0;
3545 }
3546
3547 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3548 Make a sanity check against n_times_set. */
3549 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3550 {
3551 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3552 /* Above happens if register modified by subreg, etc. */
3553 /* Make sure it is not recognized as a basic induction var: */
3554 || n_times_set[bl->regno] != bl->biv_count
3555 /* If never incremented, it is invariant that we decided not to
3556 move. So leave it alone. */
3557 || ! bl->incremented)
3558 {
3559 if (loop_dump_stream)
3560 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3561 bl->regno,
3562 (reg_iv_type[bl->regno] != BASIC_INDUCT
3563 ? "not induction variable"
3564 : (! bl->incremented ? "never incremented"
3565 : "count error")));
3566
3567 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3568 *backbl = bl->next;
3569 }
3570 else
3571 {
3572 backbl = &bl->next;
3573
3574 if (loop_dump_stream)
3575 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3576 }
3577 }
3578
3579 /* Exit if there are no bivs. */
3580 if (! loop_iv_list)
3581 {
3582 /* Can still unroll the loop anyways, but indicate that there is no
3583 strength reduction info available. */
3584 if (unroll_p)
3585 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3586
3587 return;
3588 }
3589
3590 /* Find initial value for each biv by searching backwards from loop_start,
3591 halting at first label. Also record any test condition. */
3592
3593 call_seen = 0;
3594 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3595 {
3596 note_insn = p;
3597
3598 if (GET_CODE (p) == CALL_INSN)
3599 call_seen = 1;
3600
3601 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3602 || GET_CODE (p) == CALL_INSN)
3603 note_stores (PATTERN (p), record_initial);
3604
3605 /* Record any test of a biv that branches around the loop if no store
3606 between it and the start of loop. We only care about tests with
3607 constants and registers and only certain of those. */
3608 if (GET_CODE (p) == JUMP_INSN
3609 && JUMP_LABEL (p) != 0
3610 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3611 && (test = get_condition_for_loop (p)) != 0
3612 && GET_CODE (XEXP (test, 0)) == REG
3613 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3614 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3615 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3616 && bl->init_insn == 0)
3617 {
3618 /* If an NE test, we have an initial value! */
3619 if (GET_CODE (test) == NE)
3620 {
3621 bl->init_insn = p;
3622 bl->init_set = gen_rtx (SET, VOIDmode,
3623 XEXP (test, 0), XEXP (test, 1));
3624 }
3625 else
3626 bl->initial_test = test;
3627 }
3628 }
3629
3630 /* Look at the each biv and see if we can say anything better about its
3631 initial value from any initializing insns set up above. (This is done
3632 in two passes to avoid missing SETs in a PARALLEL.) */
3633 for (bl = loop_iv_list; bl; bl = bl->next)
3634 {
3635 rtx src;
3636
3637 if (! bl->init_insn)
3638 continue;
3639
3640 src = SET_SRC (bl->init_set);
3641
3642 if (loop_dump_stream)
3643 fprintf (loop_dump_stream,
3644 "Biv %d initialized at insn %d: initial value ",
3645 bl->regno, INSN_UID (bl->init_insn));
3646
3647 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3648 || GET_MODE (src) == VOIDmode)
3649 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3650 {
3651 bl->initial_value = src;
3652
3653 if (loop_dump_stream)
3654 {
3655 if (GET_CODE (src) == CONST_INT)
3656 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3657 else
3658 {
3659 print_rtl (loop_dump_stream, src);
3660 fprintf (loop_dump_stream, "\n");
3661 }
3662 }
3663 }
3664 else
3665 {
3666 /* Biv initial value is not simple move,
3667 so let it keep initial value of "itself". */
3668
3669 if (loop_dump_stream)
3670 fprintf (loop_dump_stream, "is complex\n");
3671 }
3672 }
3673
3674 /* Search the loop for general induction variables. */
3675
3676 /* A register is a giv if: it is only set once, it is a function of a
3677 biv and a constant (or invariant), and it is not a biv. */
3678
3679 not_every_iteration = 0;
3680 loop_depth = 0;
3681 p = scan_start;
3682 while (1)
3683 {
3684 p = NEXT_INSN (p);
3685 /* At end of a straight-in loop, we are done.
3686 At end of a loop entered at the bottom, scan the top. */
3687 if (p == scan_start)
3688 break;
3689 if (p == end)
3690 {
3691 if (loop_top != 0)
3692 p = loop_top;
3693 else
3694 break;
3695 if (p == scan_start)
3696 break;
3697 }
3698
3699 /* Look for a general induction variable in a register. */
3700 if (GET_CODE (p) == INSN
3701 && (set = single_set (p))
3702 && GET_CODE (SET_DEST (set)) == REG
3703 && ! may_not_optimize[REGNO (SET_DEST (set))])
3704 {
3705 rtx src_reg;
3706 rtx add_val;
3707 rtx mult_val;
3708 int benefit;
3709 rtx regnote = 0;
3710
3711 dest_reg = SET_DEST (set);
3712 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3713 continue;
3714
3715 if (/* SET_SRC is a giv. */
3716 ((benefit = general_induction_var (SET_SRC (set),
3717 &src_reg, &add_val,
3718 &mult_val))
3719 /* Equivalent expression is a giv. */
3720 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3721 && (benefit = general_induction_var (XEXP (regnote, 0),
3722 &src_reg,
3723 &add_val, &mult_val))))
3724 /* Don't try to handle any regs made by loop optimization.
3725 We have nothing on them in regno_first_uid, etc. */
3726 && REGNO (dest_reg) < max_reg_before_loop
3727 /* Don't recognize a BASIC_INDUCT_VAR here. */
3728 && dest_reg != src_reg
3729 /* This must be the only place where the register is set. */
3730 && (n_times_set[REGNO (dest_reg)] == 1
3731 /* or all sets must be consecutive and make a giv. */
3732 || (benefit = consec_sets_giv (benefit, p,
3733 src_reg, dest_reg,
3734 &add_val, &mult_val))))
3735 {
3736 int count;
3737 struct induction *v
3738 = (struct induction *) alloca (sizeof (struct induction));
3739 rtx temp;
3740
3741 /* If this is a library call, increase benefit. */
3742 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3743 benefit += libcall_benefit (p);
3744
3745 /* Skip the consecutive insns, if there are any. */
3746 for (count = n_times_set[REGNO (dest_reg)] - 1;
3747 count > 0; count--)
3748 {
3749 /* If first insn of libcall sequence, skip to end.
3750 Do this at start of loop, since INSN is guaranteed to
3751 be an insn here. */
3752 if (GET_CODE (p) != NOTE
3753 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3754 p = XEXP (temp, 0);
3755
3756 do p = NEXT_INSN (p);
3757 while (GET_CODE (p) == NOTE);
3758 }
3759
3760 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3761 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3762 loop_end);
3763
3764 }
3765 }
3766
3767 #ifndef DONT_REDUCE_ADDR
3768 /* Look for givs which are memory addresses. */
3769 /* This resulted in worse code on a VAX 8600. I wonder if it
3770 still does. */
3771 if (GET_CODE (p) == INSN)
3772 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3773 loop_end);
3774 #endif
3775
3776 /* Update the status of whether giv can derive other givs. This can
3777 change when we pass a label or an insn that updates a biv. */
3778 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3779 || GET_CODE (p) == CODE_LABEL)
3780 update_giv_derive (p);
3781
3782 /* Past a jump, we get to insns for which we can't count
3783 on whether they will be executed during each iteration. */
3784 /* This code appears twice in strength_reduce. There is also similar
3785 code in scan_loop. */
3786 if (GET_CODE (p) == JUMP_INSN
3787 /* If we enter the loop in the middle, and scan around to the
3788 beginning, don't set not_every_iteration for that.
3789 This can be any kind of jump, since we want to know if insns
3790 will be executed if the loop is executed. */
3791 && ! (JUMP_LABEL (p) == loop_top
3792 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3793 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3794 {
3795 rtx label = 0;
3796
3797 /* If this is a jump outside the loop, then it also doesn't
3798 matter. Check to see if the target of this branch is on the
3799 loop_number_exits_labels list. */
3800
3801 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3802 label;
3803 label = LABEL_NEXTREF (label))
3804 if (XEXP (label, 0) == JUMP_LABEL (p))
3805 break;
3806
3807 if (! label)
3808 not_every_iteration = 1;
3809 }
3810
3811 else if (GET_CODE (p) == NOTE)
3812 {
3813 /* At the virtual top of a converted loop, insns are again known to
3814 be executed each iteration: logically, the loop begins here
3815 even though the exit code has been duplicated. */
3816 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3817 not_every_iteration = 0;
3818 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3819 loop_depth++;
3820 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3821 loop_depth--;
3822 }
3823
3824 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3825 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3826 or not an insn is known to be executed each iteration of the
3827 loop, whether or not any iterations are known to occur.
3828
3829 Therefore, if we have just passed a label and have no more labels
3830 between here and the test insn of the loop, we know these insns
3831 will be executed each iteration. */
3832
3833 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3834 && no_labels_between_p (p, loop_end))
3835 not_every_iteration = 0;
3836 }
3837
3838 /* Try to calculate and save the number of loop iterations. This is
3839 set to zero if the actual number can not be calculated. This must
3840 be called after all giv's have been identified, since otherwise it may
3841 fail if the iteration variable is a giv. */
3842
3843 loop_n_iterations = loop_iterations (loop_start, loop_end);
3844
3845 /* Now for each giv for which we still don't know whether or not it is
3846 replaceable, check to see if it is replaceable because its final value
3847 can be calculated. This must be done after loop_iterations is called,
3848 so that final_giv_value will work correctly. */
3849
3850 for (bl = loop_iv_list; bl; bl = bl->next)
3851 {
3852 struct induction *v;
3853
3854 for (v = bl->giv; v; v = v->next_iv)
3855 if (! v->replaceable && ! v->not_replaceable)
3856 check_final_value (v, loop_start, loop_end);
3857 }
3858
3859 /* Try to prove that the loop counter variable (if any) is always
3860 nonnegative; if so, record that fact with a REG_NONNEG note
3861 so that "decrement and branch until zero" insn can be used. */
3862 check_dbra_loop (loop_end, insn_count, loop_start);
3863
3864 #ifdef HAIFA
3865 /* record loop-variables relevant for BCT optimization before unrolling
3866 the loop. Unrolling may update part of this information, and the
3867 correct data will be used for generating the BCT. */
3868 #ifdef HAVE_decrement_and_branch_on_count
3869 if (HAVE_decrement_and_branch_on_count)
3870 analyze_loop_iterations (loop_start, loop_end);
3871 #endif
3872 #endif /* HAIFA */
3873
3874 /* Create reg_map to hold substitutions for replaceable giv regs. */
3875 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3876 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3877
3878 /* Examine each iv class for feasibility of strength reduction/induction
3879 variable elimination. */
3880
3881 for (bl = loop_iv_list; bl; bl = bl->next)
3882 {
3883 struct induction *v;
3884 int benefit;
3885 int all_reduced;
3886 rtx final_value = 0;
3887
3888 /* Test whether it will be possible to eliminate this biv
3889 provided all givs are reduced. This is possible if either
3890 the reg is not used outside the loop, or we can compute
3891 what its final value will be.
3892
3893 For architectures with a decrement_and_branch_until_zero insn,
3894 don't do this if we put a REG_NONNEG note on the endtest for
3895 this biv. */
3896
3897 /* Compare against bl->init_insn rather than loop_start.
3898 We aren't concerned with any uses of the biv between
3899 init_insn and loop_start since these won't be affected
3900 by the value of the biv elsewhere in the function, so
3901 long as init_insn doesn't use the biv itself.
3902 March 14, 1989 -- self@bayes.arc.nasa.gov */
3903
3904 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3905 && bl->init_insn
3906 && INSN_UID (bl->init_insn) < max_uid_for_loop
3907 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3908 #ifdef HAVE_decrement_and_branch_until_zero
3909 && ! bl->nonneg
3910 #endif
3911 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3912 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3913 #ifdef HAVE_decrement_and_branch_until_zero
3914 && ! bl->nonneg
3915 #endif
3916 ))
3917 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3918 threshold, insn_count);
3919 else
3920 {
3921 if (loop_dump_stream)
3922 {
3923 fprintf (loop_dump_stream,
3924 "Cannot eliminate biv %d.\n",
3925 bl->regno);
3926 fprintf (loop_dump_stream,
3927 "First use: insn %d, last use: insn %d.\n",
3928 REGNO_FIRST_UID (bl->regno),
3929 REGNO_LAST_UID (bl->regno));
3930 }
3931 }
3932
3933 /* Combine all giv's for this iv_class. */
3934 combine_givs (bl);
3935
3936 /* This will be true at the end, if all givs which depend on this
3937 biv have been strength reduced.
3938 We can't (currently) eliminate the biv unless this is so. */
3939 all_reduced = 1;
3940
3941 /* Check each giv in this class to see if we will benefit by reducing
3942 it. Skip giv's combined with others. */
3943 for (v = bl->giv; v; v = v->next_iv)
3944 {
3945 struct induction *tv;
3946
3947 if (v->ignore || v->same)
3948 continue;
3949
3950 benefit = v->benefit;
3951
3952 /* Reduce benefit if not replaceable, since we will insert
3953 a move-insn to replace the insn that calculates this giv.
3954 Don't do this unless the giv is a user variable, since it
3955 will often be marked non-replaceable because of the duplication
3956 of the exit code outside the loop. In such a case, the copies
3957 we insert are dead and will be deleted. So they don't have
3958 a cost. Similar situations exist. */
3959 /* ??? The new final_[bg]iv_value code does a much better job
3960 of finding replaceable giv's, and hence this code may no longer
3961 be necessary. */
3962 if (! v->replaceable && ! bl->eliminable
3963 && REG_USERVAR_P (v->dest_reg))
3964 benefit -= copy_cost;
3965
3966 /* Decrease the benefit to count the add-insns that we will
3967 insert to increment the reduced reg for the giv. */
3968 benefit -= add_cost * bl->biv_count;
3969
3970 /* Decide whether to strength-reduce this giv or to leave the code
3971 unchanged (recompute it from the biv each time it is used).
3972 This decision can be made independently for each giv. */
3973
3974 #ifdef AUTO_INC_DEC
3975 /* Attempt to guess whether autoincrement will handle some of the
3976 new add insns; if so, increase BENEFIT (undo the subtraction of
3977 add_cost that was done above). */
3978 if (v->giv_type == DEST_ADDR
3979 && GET_CODE (v->mult_val) == CONST_INT)
3980 {
3981 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
3982 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3983 benefit += add_cost * bl->biv_count;
3984 #endif
3985 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
3986 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3987 benefit += add_cost * bl->biv_count;
3988 #endif
3989 }
3990 #endif
3991
3992 /* If an insn is not to be strength reduced, then set its ignore
3993 flag, and clear all_reduced. */
3994
3995 /* A giv that depends on a reversed biv must be reduced if it is
3996 used after the loop exit, otherwise, it would have the wrong
3997 value after the loop exit. To make it simple, just reduce all
3998 of such giv's whether or not we know they are used after the loop
3999 exit. */
4000
4001 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4002 && ! bl->reversed )
4003 {
4004 if (loop_dump_stream)
4005 fprintf (loop_dump_stream,
4006 "giv of insn %d not worth while, %d vs %d.\n",
4007 INSN_UID (v->insn),
4008 v->lifetime * threshold * benefit, insn_count);
4009 v->ignore = 1;
4010 all_reduced = 0;
4011 }
4012 else
4013 {
4014 /* Check that we can increment the reduced giv without a
4015 multiply insn. If not, reject it. */
4016
4017 for (tv = bl->biv; tv; tv = tv->next_iv)
4018 if (tv->mult_val == const1_rtx
4019 && ! product_cheap_p (tv->add_val, v->mult_val))
4020 {
4021 if (loop_dump_stream)
4022 fprintf (loop_dump_stream,
4023 "giv of insn %d: would need a multiply.\n",
4024 INSN_UID (v->insn));
4025 v->ignore = 1;
4026 all_reduced = 0;
4027 break;
4028 }
4029 }
4030 }
4031
4032 /* Reduce each giv that we decided to reduce. */
4033
4034 for (v = bl->giv; v; v = v->next_iv)
4035 {
4036 struct induction *tv;
4037 if (! v->ignore && v->same == 0)
4038 {
4039 int auto_inc_opt = 0;
4040
4041 v->new_reg = gen_reg_rtx (v->mode);
4042
4043 #ifdef AUTO_INC_DEC
4044 /* If the target has auto-increment addressing modes, and
4045 this is an address giv, then try to put the increment
4046 immediately after its use, so that flow can create an
4047 auto-increment addressing mode. */
4048 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4049 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4050 /* We don't handle reversed biv's because bl->biv->insn
4051 does not have a valid INSN_LUID. */
4052 && ! bl->reversed
4053 && v->always_executed && ! v->maybe_multiple)
4054 {
4055 /* If other giv's have been combined with this one, then
4056 this will work only if all uses of the other giv's occur
4057 before this giv's insn. This is difficult to check.
4058
4059 We simplify this by looking for the common case where
4060 there is one DEST_REG giv, and this giv's insn is the
4061 last use of the dest_reg of that DEST_REG giv. If the
4062 the increment occurs after the address giv, then we can
4063 perform the optimization. (Otherwise, the increment
4064 would have to go before other_giv, and we would not be
4065 able to combine it with the address giv to get an
4066 auto-inc address.) */
4067 if (v->combined_with)
4068 {
4069 struct induction *other_giv = 0;
4070
4071 for (tv = bl->giv; tv; tv = tv->next_iv)
4072 if (tv->same == v)
4073 {
4074 if (other_giv)
4075 break;
4076 else
4077 other_giv = tv;
4078 }
4079 if (! tv && other_giv
4080 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4081 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4082 == INSN_UID (v->insn))
4083 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4084 auto_inc_opt = 1;
4085 }
4086 /* Check for case where increment is before the the address
4087 giv. */
4088 else if (INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn))
4089 auto_inc_opt = -1;
4090 else
4091 auto_inc_opt = 1;
4092
4093 #ifdef HAVE_cc0
4094 {
4095 rtx prev;
4096
4097 /* We can't put an insn immediately after one setting
4098 cc0, or immediately before one using cc0. */
4099 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4100 || (auto_inc_opt == -1
4101 && (prev = prev_nonnote_insn (v->insn)) != 0
4102 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4103 && sets_cc0_p (PATTERN (prev))))
4104 auto_inc_opt = 0;
4105 }
4106 #endif
4107
4108 if (auto_inc_opt)
4109 v->auto_inc_opt = 1;
4110 }
4111 #endif
4112
4113 /* For each place where the biv is incremented, add an insn
4114 to increment the new, reduced reg for the giv. */
4115 for (tv = bl->biv; tv; tv = tv->next_iv)
4116 {
4117 rtx insert_before;
4118
4119 if (! auto_inc_opt)
4120 insert_before = tv->insn;
4121 else if (auto_inc_opt == 1)
4122 insert_before = NEXT_INSN (v->insn);
4123 else
4124 insert_before = v->insn;
4125
4126 if (tv->mult_val == const1_rtx)
4127 emit_iv_add_mult (tv->add_val, v->mult_val,
4128 v->new_reg, v->new_reg, insert_before);
4129 else /* tv->mult_val == const0_rtx */
4130 /* A multiply is acceptable here
4131 since this is presumed to be seldom executed. */
4132 emit_iv_add_mult (tv->add_val, v->mult_val,
4133 v->add_val, v->new_reg, insert_before);
4134 }
4135
4136 /* Add code at loop start to initialize giv's reduced reg. */
4137
4138 emit_iv_add_mult (bl->initial_value, v->mult_val,
4139 v->add_val, v->new_reg, loop_start);
4140 }
4141 }
4142
4143 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4144 as not reduced.
4145
4146 For each giv register that can be reduced now: if replaceable,
4147 substitute reduced reg wherever the old giv occurs;
4148 else add new move insn "giv_reg = reduced_reg".
4149
4150 Also check for givs whose first use is their definition and whose
4151 last use is the definition of another giv. If so, it is likely
4152 dead and should not be used to eliminate a biv. */
4153 for (v = bl->giv; v; v = v->next_iv)
4154 {
4155 if (v->same && v->same->ignore)
4156 v->ignore = 1;
4157
4158 if (v->ignore)
4159 continue;
4160
4161 if (v->giv_type == DEST_REG
4162 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4163 {
4164 struct induction *v1;
4165
4166 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4167 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4168 v->maybe_dead = 1;
4169 }
4170
4171 /* Update expression if this was combined, in case other giv was
4172 replaced. */
4173 if (v->same)
4174 v->new_reg = replace_rtx (v->new_reg,
4175 v->same->dest_reg, v->same->new_reg);
4176
4177 if (v->giv_type == DEST_ADDR)
4178 /* Store reduced reg as the address in the memref where we found
4179 this giv. */
4180 validate_change (v->insn, v->location, v->new_reg, 0);
4181 else if (v->replaceable)
4182 {
4183 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4184
4185 #if 0
4186 /* I can no longer duplicate the original problem. Perhaps
4187 this is unnecessary now? */
4188
4189 /* Replaceable; it isn't strictly necessary to delete the old
4190 insn and emit a new one, because v->dest_reg is now dead.
4191
4192 However, especially when unrolling loops, the special
4193 handling for (set REG0 REG1) in the second cse pass may
4194 make v->dest_reg live again. To avoid this problem, emit
4195 an insn to set the original giv reg from the reduced giv.
4196 We can not delete the original insn, since it may be part
4197 of a LIBCALL, and the code in flow that eliminates dead
4198 libcalls will fail if it is deleted. */
4199 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4200 v->insn);
4201 #endif
4202 }
4203 else
4204 {
4205 /* Not replaceable; emit an insn to set the original giv reg from
4206 the reduced giv, same as above. */
4207 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4208 v->insn);
4209 }
4210
4211 /* When a loop is reversed, givs which depend on the reversed
4212 biv, and which are live outside the loop, must be set to their
4213 correct final value. This insn is only needed if the giv is
4214 not replaceable. The correct final value is the same as the
4215 value that the giv starts the reversed loop with. */
4216 if (bl->reversed && ! v->replaceable)
4217 emit_iv_add_mult (bl->initial_value, v->mult_val,
4218 v->add_val, v->dest_reg, end_insert_before);
4219 else if (v->final_value)
4220 {
4221 rtx insert_before;
4222
4223 /* If the loop has multiple exits, emit the insn before the
4224 loop to ensure that it will always be executed no matter
4225 how the loop exits. Otherwise, emit the insn after the loop,
4226 since this is slightly more efficient. */
4227 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4228 insert_before = loop_start;
4229 else
4230 insert_before = end_insert_before;
4231 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4232 insert_before);
4233
4234 #if 0
4235 /* If the insn to set the final value of the giv was emitted
4236 before the loop, then we must delete the insn inside the loop
4237 that sets it. If this is a LIBCALL, then we must delete
4238 every insn in the libcall. Note, however, that
4239 final_giv_value will only succeed when there are multiple
4240 exits if the giv is dead at each exit, hence it does not
4241 matter that the original insn remains because it is dead
4242 anyways. */
4243 /* Delete the insn inside the loop that sets the giv since
4244 the giv is now set before (or after) the loop. */
4245 delete_insn (v->insn);
4246 #endif
4247 }
4248
4249 if (loop_dump_stream)
4250 {
4251 fprintf (loop_dump_stream, "giv at %d reduced to ",
4252 INSN_UID (v->insn));
4253 print_rtl (loop_dump_stream, v->new_reg);
4254 fprintf (loop_dump_stream, "\n");
4255 }
4256 }
4257
4258 /* All the givs based on the biv bl have been reduced if they
4259 merit it. */
4260
4261 /* For each giv not marked as maybe dead that has been combined with a
4262 second giv, clear any "maybe dead" mark on that second giv.
4263 v->new_reg will either be or refer to the register of the giv it
4264 combined with.
4265
4266 Doing this clearing avoids problems in biv elimination where a
4267 giv's new_reg is a complex value that can't be put in the insn but
4268 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4269 Since the register will be used in either case, we'd prefer it be
4270 used from the simpler giv. */
4271
4272 for (v = bl->giv; v; v = v->next_iv)
4273 if (! v->maybe_dead && v->same)
4274 v->same->maybe_dead = 0;
4275
4276 /* Try to eliminate the biv, if it is a candidate.
4277 This won't work if ! all_reduced,
4278 since the givs we planned to use might not have been reduced.
4279
4280 We have to be careful that we didn't initially think we could eliminate
4281 this biv because of a giv that we now think may be dead and shouldn't
4282 be used as a biv replacement.
4283
4284 Also, there is the possibility that we may have a giv that looks
4285 like it can be used to eliminate a biv, but the resulting insn
4286 isn't valid. This can happen, for example, on the 88k, where a
4287 JUMP_INSN can compare a register only with zero. Attempts to
4288 replace it with a compare with a constant will fail.
4289
4290 Note that in cases where this call fails, we may have replaced some
4291 of the occurrences of the biv with a giv, but no harm was done in
4292 doing so in the rare cases where it can occur. */
4293
4294 if (all_reduced == 1 && bl->eliminable
4295 && maybe_eliminate_biv (bl, loop_start, end, 1,
4296 threshold, insn_count))
4297
4298 {
4299 /* ?? If we created a new test to bypass the loop entirely,
4300 or otherwise drop straight in, based on this test, then
4301 we might want to rewrite it also. This way some later
4302 pass has more hope of removing the initialization of this
4303 biv entirely. */
4304
4305 /* If final_value != 0, then the biv may be used after loop end
4306 and we must emit an insn to set it just in case.
4307
4308 Reversed bivs already have an insn after the loop setting their
4309 value, so we don't need another one. We can't calculate the
4310 proper final value for such a biv here anyways. */
4311 if (final_value != 0 && ! bl->reversed)
4312 {
4313 rtx insert_before;
4314
4315 /* If the loop has multiple exits, emit the insn before the
4316 loop to ensure that it will always be executed no matter
4317 how the loop exits. Otherwise, emit the insn after the
4318 loop, since this is slightly more efficient. */
4319 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4320 insert_before = loop_start;
4321 else
4322 insert_before = end_insert_before;
4323
4324 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4325 end_insert_before);
4326 }
4327
4328 #if 0
4329 /* Delete all of the instructions inside the loop which set
4330 the biv, as they are all dead. If is safe to delete them,
4331 because an insn setting a biv will never be part of a libcall. */
4332 /* However, deleting them will invalidate the regno_last_uid info,
4333 so keeping them around is more convenient. Final_biv_value
4334 will only succeed when there are multiple exits if the biv
4335 is dead at each exit, hence it does not matter that the original
4336 insn remains, because it is dead anyways. */
4337 for (v = bl->biv; v; v = v->next_iv)
4338 delete_insn (v->insn);
4339 #endif
4340
4341 if (loop_dump_stream)
4342 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4343 bl->regno);
4344 }
4345 }
4346
4347 /* Go through all the instructions in the loop, making all the
4348 register substitutions scheduled in REG_MAP. */
4349
4350 for (p = loop_start; p != end; p = NEXT_INSN (p))
4351 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4352 || GET_CODE (p) == CALL_INSN)
4353 {
4354 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4355 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4356 INSN_CODE (p) = -1;
4357 }
4358
4359 /* Unroll loops from within strength reduction so that we can use the
4360 induction variable information that strength_reduce has already
4361 collected. */
4362
4363 if (unroll_p)
4364 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4365
4366 #ifdef HAIFA
4367 /* instrument the loop with bct insn */
4368 #ifdef HAVE_decrement_and_branch_on_count
4369 if (HAVE_decrement_and_branch_on_count)
4370 insert_bct (loop_start, loop_end);
4371 #endif
4372 #endif /* HAIFA */
4373
4374 if (loop_dump_stream)
4375 fprintf (loop_dump_stream, "\n");
4376 }
4377 \f
4378 /* Return 1 if X is a valid source for an initial value (or as value being
4379 compared against in an initial test).
4380
4381 X must be either a register or constant and must not be clobbered between
4382 the current insn and the start of the loop.
4383
4384 INSN is the insn containing X. */
4385
4386 static int
4387 valid_initial_value_p (x, insn, call_seen, loop_start)
4388 rtx x;
4389 rtx insn;
4390 int call_seen;
4391 rtx loop_start;
4392 {
4393 if (CONSTANT_P (x))
4394 return 1;
4395
4396 /* Only consider pseudos we know about initialized in insns whose luids
4397 we know. */
4398 if (GET_CODE (x) != REG
4399 || REGNO (x) >= max_reg_before_loop)
4400 return 0;
4401
4402 /* Don't use call-clobbered registers across a call which clobbers it. On
4403 some machines, don't use any hard registers at all. */
4404 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4405 && (SMALL_REGISTER_CLASSES
4406 || (call_used_regs[REGNO (x)] && call_seen)))
4407 return 0;
4408
4409 /* Don't use registers that have been clobbered before the start of the
4410 loop. */
4411 if (reg_set_between_p (x, insn, loop_start))
4412 return 0;
4413
4414 return 1;
4415 }
4416 \f
4417 /* Scan X for memory refs and check each memory address
4418 as a possible giv. INSN is the insn whose pattern X comes from.
4419 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4420 every loop iteration. */
4421
4422 static void
4423 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4424 rtx x;
4425 rtx insn;
4426 int not_every_iteration;
4427 rtx loop_start, loop_end;
4428 {
4429 register int i, j;
4430 register enum rtx_code code;
4431 register char *fmt;
4432
4433 if (x == 0)
4434 return;
4435
4436 code = GET_CODE (x);
4437 switch (code)
4438 {
4439 case REG:
4440 case CONST_INT:
4441 case CONST:
4442 case CONST_DOUBLE:
4443 case SYMBOL_REF:
4444 case LABEL_REF:
4445 case PC:
4446 case CC0:
4447 case ADDR_VEC:
4448 case ADDR_DIFF_VEC:
4449 case USE:
4450 case CLOBBER:
4451 return;
4452
4453 case MEM:
4454 {
4455 rtx src_reg;
4456 rtx add_val;
4457 rtx mult_val;
4458 int benefit;
4459
4460 benefit = general_induction_var (XEXP (x, 0),
4461 &src_reg, &add_val, &mult_val);
4462
4463 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4464 Such a giv isn't useful. */
4465 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4466 {
4467 /* Found one; record it. */
4468 struct induction *v
4469 = (struct induction *) oballoc (sizeof (struct induction));
4470
4471 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4472 add_val, benefit, DEST_ADDR, not_every_iteration,
4473 &XEXP (x, 0), loop_start, loop_end);
4474
4475 v->mem_mode = GET_MODE (x);
4476 }
4477 }
4478 return;
4479
4480 default:
4481 break;
4482 }
4483
4484 /* Recursively scan the subexpressions for other mem refs. */
4485
4486 fmt = GET_RTX_FORMAT (code);
4487 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4488 if (fmt[i] == 'e')
4489 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4490 loop_end);
4491 else if (fmt[i] == 'E')
4492 for (j = 0; j < XVECLEN (x, i); j++)
4493 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4494 loop_start, loop_end);
4495 }
4496 \f
4497 /* Fill in the data about one biv update.
4498 V is the `struct induction' in which we record the biv. (It is
4499 allocated by the caller, with alloca.)
4500 INSN is the insn that sets it.
4501 DEST_REG is the biv's reg.
4502
4503 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4504 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4505 being set to INC_VAL.
4506
4507 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4508 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4509 can be executed more than once per iteration. If MAYBE_MULTIPLE
4510 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4511 executed exactly once per iteration. */
4512
4513 static void
4514 record_biv (v, insn, dest_reg, inc_val, mult_val,
4515 not_every_iteration, maybe_multiple)
4516 struct induction *v;
4517 rtx insn;
4518 rtx dest_reg;
4519 rtx inc_val;
4520 rtx mult_val;
4521 int not_every_iteration;
4522 int maybe_multiple;
4523 {
4524 struct iv_class *bl;
4525
4526 v->insn = insn;
4527 v->src_reg = dest_reg;
4528 v->dest_reg = dest_reg;
4529 v->mult_val = mult_val;
4530 v->add_val = inc_val;
4531 v->mode = GET_MODE (dest_reg);
4532 v->always_computable = ! not_every_iteration;
4533 v->always_executed = ! not_every_iteration;
4534 v->maybe_multiple = maybe_multiple;
4535
4536 /* Add this to the reg's iv_class, creating a class
4537 if this is the first incrementation of the reg. */
4538
4539 bl = reg_biv_class[REGNO (dest_reg)];
4540 if (bl == 0)
4541 {
4542 /* Create and initialize new iv_class. */
4543
4544 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4545
4546 bl->regno = REGNO (dest_reg);
4547 bl->biv = 0;
4548 bl->giv = 0;
4549 bl->biv_count = 0;
4550 bl->giv_count = 0;
4551
4552 /* Set initial value to the reg itself. */
4553 bl->initial_value = dest_reg;
4554 /* We haven't seen the initializing insn yet */
4555 bl->init_insn = 0;
4556 bl->init_set = 0;
4557 bl->initial_test = 0;
4558 bl->incremented = 0;
4559 bl->eliminable = 0;
4560 bl->nonneg = 0;
4561 bl->reversed = 0;
4562 bl->total_benefit = 0;
4563
4564 /* Add this class to loop_iv_list. */
4565 bl->next = loop_iv_list;
4566 loop_iv_list = bl;
4567
4568 /* Put it in the array of biv register classes. */
4569 reg_biv_class[REGNO (dest_reg)] = bl;
4570 }
4571
4572 /* Update IV_CLASS entry for this biv. */
4573 v->next_iv = bl->biv;
4574 bl->biv = v;
4575 bl->biv_count++;
4576 if (mult_val == const1_rtx)
4577 bl->incremented = 1;
4578
4579 if (loop_dump_stream)
4580 {
4581 fprintf (loop_dump_stream,
4582 "Insn %d: possible biv, reg %d,",
4583 INSN_UID (insn), REGNO (dest_reg));
4584 if (GET_CODE (inc_val) == CONST_INT)
4585 fprintf (loop_dump_stream, " const = %d\n",
4586 INTVAL (inc_val));
4587 else
4588 {
4589 fprintf (loop_dump_stream, " const = ");
4590 print_rtl (loop_dump_stream, inc_val);
4591 fprintf (loop_dump_stream, "\n");
4592 }
4593 }
4594 }
4595 \f
4596 /* Fill in the data about one giv.
4597 V is the `struct induction' in which we record the giv. (It is
4598 allocated by the caller, with alloca.)
4599 INSN is the insn that sets it.
4600 BENEFIT estimates the savings from deleting this insn.
4601 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4602 into a register or is used as a memory address.
4603
4604 SRC_REG is the biv reg which the giv is computed from.
4605 DEST_REG is the giv's reg (if the giv is stored in a reg).
4606 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4607 LOCATION points to the place where this giv's value appears in INSN. */
4608
4609 static void
4610 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4611 type, not_every_iteration, location, loop_start, loop_end)
4612 struct induction *v;
4613 rtx insn;
4614 rtx src_reg;
4615 rtx dest_reg;
4616 rtx mult_val, add_val;
4617 int benefit;
4618 enum g_types type;
4619 int not_every_iteration;
4620 rtx *location;
4621 rtx loop_start, loop_end;
4622 {
4623 struct induction *b;
4624 struct iv_class *bl;
4625 rtx set = single_set (insn);
4626 rtx p;
4627
4628 v->insn = insn;
4629 v->src_reg = src_reg;
4630 v->giv_type = type;
4631 v->dest_reg = dest_reg;
4632 v->mult_val = mult_val;
4633 v->add_val = add_val;
4634 v->benefit = benefit;
4635 v->location = location;
4636 v->cant_derive = 0;
4637 v->combined_with = 0;
4638 v->maybe_multiple = 0;
4639 v->maybe_dead = 0;
4640 v->derive_adjustment = 0;
4641 v->same = 0;
4642 v->ignore = 0;
4643 v->new_reg = 0;
4644 v->final_value = 0;
4645 v->same_insn = 0;
4646 v->auto_inc_opt = 0;
4647 v->unrolled = 0;
4648 v->shared = 0;
4649
4650 /* The v->always_computable field is used in update_giv_derive, to
4651 determine whether a giv can be used to derive another giv. For a
4652 DEST_REG giv, INSN computes a new value for the giv, so its value
4653 isn't computable if INSN insn't executed every iteration.
4654 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4655 it does not compute a new value. Hence the value is always computable
4656 regardless of whether INSN is executed each iteration. */
4657
4658 if (type == DEST_ADDR)
4659 v->always_computable = 1;
4660 else
4661 v->always_computable = ! not_every_iteration;
4662
4663 v->always_executed = ! not_every_iteration;
4664
4665 if (type == DEST_ADDR)
4666 {
4667 v->mode = GET_MODE (*location);
4668 v->lifetime = 1;
4669 v->times_used = 1;
4670 }
4671 else /* type == DEST_REG */
4672 {
4673 v->mode = GET_MODE (SET_DEST (set));
4674
4675 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4676 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4677
4678 v->times_used = n_times_used[REGNO (dest_reg)];
4679
4680 /* If the lifetime is zero, it means that this register is
4681 really a dead store. So mark this as a giv that can be
4682 ignored. This will not prevent the biv from being eliminated. */
4683 if (v->lifetime == 0)
4684 v->ignore = 1;
4685
4686 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4687 reg_iv_info[REGNO (dest_reg)] = v;
4688 }
4689
4690 /* Add the giv to the class of givs computed from one biv. */
4691
4692 bl = reg_biv_class[REGNO (src_reg)];
4693 if (bl)
4694 {
4695 v->next_iv = bl->giv;
4696 bl->giv = v;
4697 /* Don't count DEST_ADDR. This is supposed to count the number of
4698 insns that calculate givs. */
4699 if (type == DEST_REG)
4700 bl->giv_count++;
4701 bl->total_benefit += benefit;
4702 }
4703 else
4704 /* Fatal error, biv missing for this giv? */
4705 abort ();
4706
4707 if (type == DEST_ADDR)
4708 v->replaceable = 1;
4709 else
4710 {
4711 /* The giv can be replaced outright by the reduced register only if all
4712 of the following conditions are true:
4713 - the insn that sets the giv is always executed on any iteration
4714 on which the giv is used at all
4715 (there are two ways to deduce this:
4716 either the insn is executed on every iteration,
4717 or all uses follow that insn in the same basic block),
4718 - the giv is not used outside the loop
4719 - no assignments to the biv occur during the giv's lifetime. */
4720
4721 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4722 /* Previous line always fails if INSN was moved by loop opt. */
4723 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4724 && (! not_every_iteration
4725 || last_use_this_basic_block (dest_reg, insn)))
4726 {
4727 /* Now check that there are no assignments to the biv within the
4728 giv's lifetime. This requires two separate checks. */
4729
4730 /* Check each biv update, and fail if any are between the first
4731 and last use of the giv.
4732
4733 If this loop contains an inner loop that was unrolled, then
4734 the insn modifying the biv may have been emitted by the loop
4735 unrolling code, and hence does not have a valid luid. Just
4736 mark the biv as not replaceable in this case. It is not very
4737 useful as a biv, because it is used in two different loops.
4738 It is very unlikely that we would be able to optimize the giv
4739 using this biv anyways. */
4740
4741 v->replaceable = 1;
4742 for (b = bl->biv; b; b = b->next_iv)
4743 {
4744 if (INSN_UID (b->insn) >= max_uid_for_loop
4745 || ((uid_luid[INSN_UID (b->insn)]
4746 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4747 && (uid_luid[INSN_UID (b->insn)]
4748 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4749 {
4750 v->replaceable = 0;
4751 v->not_replaceable = 1;
4752 break;
4753 }
4754 }
4755
4756 /* If there are any backwards branches that go from after the
4757 biv update to before it, then this giv is not replaceable. */
4758 if (v->replaceable)
4759 for (b = bl->biv; b; b = b->next_iv)
4760 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4761 {
4762 v->replaceable = 0;
4763 v->not_replaceable = 1;
4764 break;
4765 }
4766 }
4767 else
4768 {
4769 /* May still be replaceable, we don't have enough info here to
4770 decide. */
4771 v->replaceable = 0;
4772 v->not_replaceable = 0;
4773 }
4774 }
4775
4776 if (loop_dump_stream)
4777 {
4778 if (type == DEST_REG)
4779 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4780 INSN_UID (insn), REGNO (dest_reg));
4781 else
4782 fprintf (loop_dump_stream, "Insn %d: dest address",
4783 INSN_UID (insn));
4784
4785 fprintf (loop_dump_stream, " src reg %d benefit %d",
4786 REGNO (src_reg), v->benefit);
4787 fprintf (loop_dump_stream, " used %d lifetime %d",
4788 v->times_used, v->lifetime);
4789
4790 if (v->replaceable)
4791 fprintf (loop_dump_stream, " replaceable");
4792
4793 if (GET_CODE (mult_val) == CONST_INT)
4794 fprintf (loop_dump_stream, " mult %d",
4795 INTVAL (mult_val));
4796 else
4797 {
4798 fprintf (loop_dump_stream, " mult ");
4799 print_rtl (loop_dump_stream, mult_val);
4800 }
4801
4802 if (GET_CODE (add_val) == CONST_INT)
4803 fprintf (loop_dump_stream, " add %d",
4804 INTVAL (add_val));
4805 else
4806 {
4807 fprintf (loop_dump_stream, " add ");
4808 print_rtl (loop_dump_stream, add_val);
4809 }
4810 }
4811
4812 if (loop_dump_stream)
4813 fprintf (loop_dump_stream, "\n");
4814
4815 }
4816
4817
4818 /* All this does is determine whether a giv can be made replaceable because
4819 its final value can be calculated. This code can not be part of record_giv
4820 above, because final_giv_value requires that the number of loop iterations
4821 be known, and that can not be accurately calculated until after all givs
4822 have been identified. */
4823
4824 static void
4825 check_final_value (v, loop_start, loop_end)
4826 struct induction *v;
4827 rtx loop_start, loop_end;
4828 {
4829 struct iv_class *bl;
4830 rtx final_value = 0;
4831
4832 bl = reg_biv_class[REGNO (v->src_reg)];
4833
4834 /* DEST_ADDR givs will never reach here, because they are always marked
4835 replaceable above in record_giv. */
4836
4837 /* The giv can be replaced outright by the reduced register only if all
4838 of the following conditions are true:
4839 - the insn that sets the giv is always executed on any iteration
4840 on which the giv is used at all
4841 (there are two ways to deduce this:
4842 either the insn is executed on every iteration,
4843 or all uses follow that insn in the same basic block),
4844 - its final value can be calculated (this condition is different
4845 than the one above in record_giv)
4846 - no assignments to the biv occur during the giv's lifetime. */
4847
4848 #if 0
4849 /* This is only called now when replaceable is known to be false. */
4850 /* Clear replaceable, so that it won't confuse final_giv_value. */
4851 v->replaceable = 0;
4852 #endif
4853
4854 if ((final_value = final_giv_value (v, loop_start, loop_end))
4855 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4856 {
4857 int biv_increment_seen = 0;
4858 rtx p = v->insn;
4859 rtx last_giv_use;
4860
4861 v->replaceable = 1;
4862
4863 /* When trying to determine whether or not a biv increment occurs
4864 during the lifetime of the giv, we can ignore uses of the variable
4865 outside the loop because final_value is true. Hence we can not
4866 use regno_last_uid and regno_first_uid as above in record_giv. */
4867
4868 /* Search the loop to determine whether any assignments to the
4869 biv occur during the giv's lifetime. Start with the insn
4870 that sets the giv, and search around the loop until we come
4871 back to that insn again.
4872
4873 Also fail if there is a jump within the giv's lifetime that jumps
4874 to somewhere outside the lifetime but still within the loop. This
4875 catches spaghetti code where the execution order is not linear, and
4876 hence the above test fails. Here we assume that the giv lifetime
4877 does not extend from one iteration of the loop to the next, so as
4878 to make the test easier. Since the lifetime isn't known yet,
4879 this requires two loops. See also record_giv above. */
4880
4881 last_giv_use = v->insn;
4882
4883 while (1)
4884 {
4885 p = NEXT_INSN (p);
4886 if (p == loop_end)
4887 p = NEXT_INSN (loop_start);
4888 if (p == v->insn)
4889 break;
4890
4891 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4892 || GET_CODE (p) == CALL_INSN)
4893 {
4894 if (biv_increment_seen)
4895 {
4896 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4897 {
4898 v->replaceable = 0;
4899 v->not_replaceable = 1;
4900 break;
4901 }
4902 }
4903 else if (reg_set_p (v->src_reg, PATTERN (p)))
4904 biv_increment_seen = 1;
4905 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4906 last_giv_use = p;
4907 }
4908 }
4909
4910 /* Now that the lifetime of the giv is known, check for branches
4911 from within the lifetime to outside the lifetime if it is still
4912 replaceable. */
4913
4914 if (v->replaceable)
4915 {
4916 p = v->insn;
4917 while (1)
4918 {
4919 p = NEXT_INSN (p);
4920 if (p == loop_end)
4921 p = NEXT_INSN (loop_start);
4922 if (p == last_giv_use)
4923 break;
4924
4925 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4926 && LABEL_NAME (JUMP_LABEL (p))
4927 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4928 || (INSN_UID (v->insn) >= max_uid_for_loop)
4929 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4930 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4931 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4932 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4933 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4934 {
4935 v->replaceable = 0;
4936 v->not_replaceable = 1;
4937
4938 if (loop_dump_stream)
4939 fprintf (loop_dump_stream,
4940 "Found branch outside giv lifetime.\n");
4941
4942 break;
4943 }
4944 }
4945 }
4946
4947 /* If it is replaceable, then save the final value. */
4948 if (v->replaceable)
4949 v->final_value = final_value;
4950 }
4951
4952 if (loop_dump_stream && v->replaceable)
4953 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4954 INSN_UID (v->insn), REGNO (v->dest_reg));
4955 }
4956 \f
4957 /* Update the status of whether a giv can derive other givs.
4958
4959 We need to do something special if there is or may be an update to the biv
4960 between the time the giv is defined and the time it is used to derive
4961 another giv.
4962
4963 In addition, a giv that is only conditionally set is not allowed to
4964 derive another giv once a label has been passed.
4965
4966 The cases we look at are when a label or an update to a biv is passed. */
4967
4968 static void
4969 update_giv_derive (p)
4970 rtx p;
4971 {
4972 struct iv_class *bl;
4973 struct induction *biv, *giv;
4974 rtx tem;
4975 int dummy;
4976
4977 /* Search all IV classes, then all bivs, and finally all givs.
4978
4979 There are three cases we are concerned with. First we have the situation
4980 of a giv that is only updated conditionally. In that case, it may not
4981 derive any givs after a label is passed.
4982
4983 The second case is when a biv update occurs, or may occur, after the
4984 definition of a giv. For certain biv updates (see below) that are
4985 known to occur between the giv definition and use, we can adjust the
4986 giv definition. For others, or when the biv update is conditional,
4987 we must prevent the giv from deriving any other givs. There are two
4988 sub-cases within this case.
4989
4990 If this is a label, we are concerned with any biv update that is done
4991 conditionally, since it may be done after the giv is defined followed by
4992 a branch here (actually, we need to pass both a jump and a label, but
4993 this extra tracking doesn't seem worth it).
4994
4995 If this is a jump, we are concerned about any biv update that may be
4996 executed multiple times. We are actually only concerned about
4997 backward jumps, but it is probably not worth performing the test
4998 on the jump again here.
4999
5000 If this is a biv update, we must adjust the giv status to show that a
5001 subsequent biv update was performed. If this adjustment cannot be done,
5002 the giv cannot derive further givs. */
5003
5004 for (bl = loop_iv_list; bl; bl = bl->next)
5005 for (biv = bl->biv; biv; biv = biv->next_iv)
5006 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5007 || biv->insn == p)
5008 {
5009 for (giv = bl->giv; giv; giv = giv->next_iv)
5010 {
5011 /* If cant_derive is already true, there is no point in
5012 checking all of these conditions again. */
5013 if (giv->cant_derive)
5014 continue;
5015
5016 /* If this giv is conditionally set and we have passed a label,
5017 it cannot derive anything. */
5018 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5019 giv->cant_derive = 1;
5020
5021 /* Skip givs that have mult_val == 0, since
5022 they are really invariants. Also skip those that are
5023 replaceable, since we know their lifetime doesn't contain
5024 any biv update. */
5025 else if (giv->mult_val == const0_rtx || giv->replaceable)
5026 continue;
5027
5028 /* The only way we can allow this giv to derive another
5029 is if this is a biv increment and we can form the product
5030 of biv->add_val and giv->mult_val. In this case, we will
5031 be able to compute a compensation. */
5032 else if (biv->insn == p)
5033 {
5034 tem = 0;
5035
5036 if (biv->mult_val == const1_rtx)
5037 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
5038 biv->add_val,
5039 giv->mult_val),
5040 &dummy);
5041
5042 if (tem && giv->derive_adjustment)
5043 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
5044 giv->derive_adjustment),
5045 &dummy);
5046 if (tem)
5047 giv->derive_adjustment = tem;
5048 else
5049 giv->cant_derive = 1;
5050 }
5051 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5052 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5053 giv->cant_derive = 1;
5054 }
5055 }
5056 }
5057 \f
5058 /* Check whether an insn is an increment legitimate for a basic induction var.
5059 X is the source of insn P, or a part of it.
5060 MODE is the mode in which X should be interpreted.
5061
5062 DEST_REG is the putative biv, also the destination of the insn.
5063 We accept patterns of these forms:
5064 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5065 REG = INVARIANT + REG
5066
5067 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5068 and store the additive term into *INC_VAL.
5069
5070 If X is an assignment of an invariant into DEST_REG, we set
5071 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5072
5073 We also want to detect a BIV when it corresponds to a variable
5074 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5075 of the variable may be a PLUS that adds a SUBREG of that variable to
5076 an invariant and then sign- or zero-extends the result of the PLUS
5077 into the variable.
5078
5079 Most GIVs in such cases will be in the promoted mode, since that is the
5080 probably the natural computation mode (and almost certainly the mode
5081 used for addresses) on the machine. So we view the pseudo-reg containing
5082 the variable as the BIV, as if it were simply incremented.
5083
5084 Note that treating the entire pseudo as a BIV will result in making
5085 simple increments to any GIVs based on it. However, if the variable
5086 overflows in its declared mode but not its promoted mode, the result will
5087 be incorrect. This is acceptable if the variable is signed, since
5088 overflows in such cases are undefined, but not if it is unsigned, since
5089 those overflows are defined. So we only check for SIGN_EXTEND and
5090 not ZERO_EXTEND.
5091
5092 If we cannot find a biv, we return 0. */
5093
5094 static int
5095 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5096 register rtx x;
5097 enum machine_mode mode;
5098 rtx p;
5099 rtx dest_reg;
5100 rtx *inc_val;
5101 rtx *mult_val;
5102 {
5103 register enum rtx_code code;
5104 rtx arg;
5105 rtx insn, set = 0;
5106
5107 code = GET_CODE (x);
5108 switch (code)
5109 {
5110 case PLUS:
5111 if (XEXP (x, 0) == dest_reg
5112 || (GET_CODE (XEXP (x, 0)) == SUBREG
5113 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5114 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5115 arg = XEXP (x, 1);
5116 else if (XEXP (x, 1) == dest_reg
5117 || (GET_CODE (XEXP (x, 1)) == SUBREG
5118 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5119 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5120 arg = XEXP (x, 0);
5121 else
5122 return 0;
5123
5124 if (invariant_p (arg) != 1)
5125 return 0;
5126
5127 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5128 *mult_val = const1_rtx;
5129 return 1;
5130
5131 case SUBREG:
5132 /* If this is a SUBREG for a promoted variable, check the inner
5133 value. */
5134 if (SUBREG_PROMOTED_VAR_P (x))
5135 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5136 dest_reg, p, inc_val, mult_val);
5137 return 0;
5138
5139 case REG:
5140 /* If this register is assigned in the previous insn, look at its
5141 source, but don't go outside the loop or past a label. */
5142
5143 for (insn = PREV_INSN (p);
5144 (insn && GET_CODE (insn) == NOTE
5145 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5146 insn = PREV_INSN (insn))
5147 ;
5148
5149 if (insn)
5150 set = single_set (insn);
5151
5152 if (set != 0
5153 && (SET_DEST (set) == x
5154 || (GET_CODE (SET_DEST (set)) == SUBREG
5155 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5156 <= UNITS_PER_WORD)
5157 && SUBREG_REG (SET_DEST (set)) == x)))
5158 return basic_induction_var (SET_SRC (set),
5159 (GET_MODE (SET_SRC (set)) == VOIDmode
5160 ? GET_MODE (x)
5161 : GET_MODE (SET_SRC (set))),
5162 dest_reg, insn,
5163 inc_val, mult_val);
5164 /* ... fall through ... */
5165
5166 /* Can accept constant setting of biv only when inside inner most loop.
5167 Otherwise, a biv of an inner loop may be incorrectly recognized
5168 as a biv of the outer loop,
5169 causing code to be moved INTO the inner loop. */
5170 case MEM:
5171 if (invariant_p (x) != 1)
5172 return 0;
5173 case CONST_INT:
5174 case SYMBOL_REF:
5175 case CONST:
5176 if (loops_enclosed == 1)
5177 {
5178 /* Possible bug here? Perhaps we don't know the mode of X. */
5179 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5180 *mult_val = const0_rtx;
5181 return 1;
5182 }
5183 else
5184 return 0;
5185
5186 case SIGN_EXTEND:
5187 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5188 dest_reg, p, inc_val, mult_val);
5189 case ASHIFTRT:
5190 /* Similar, since this can be a sign extension. */
5191 for (insn = PREV_INSN (p);
5192 (insn && GET_CODE (insn) == NOTE
5193 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5194 insn = PREV_INSN (insn))
5195 ;
5196
5197 if (insn)
5198 set = single_set (insn);
5199
5200 if (set && SET_DEST (set) == XEXP (x, 0)
5201 && GET_CODE (XEXP (x, 1)) == CONST_INT
5202 && INTVAL (XEXP (x, 1)) >= 0
5203 && GET_CODE (SET_SRC (set)) == ASHIFT
5204 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5205 return basic_induction_var (XEXP (SET_SRC (set), 0),
5206 GET_MODE (XEXP (x, 0)),
5207 dest_reg, insn, inc_val, mult_val);
5208 return 0;
5209
5210 default:
5211 return 0;
5212 }
5213 }
5214 \f
5215 /* A general induction variable (giv) is any quantity that is a linear
5216 function of a basic induction variable,
5217 i.e. giv = biv * mult_val + add_val.
5218 The coefficients can be any loop invariant quantity.
5219 A giv need not be computed directly from the biv;
5220 it can be computed by way of other givs. */
5221
5222 /* Determine whether X computes a giv.
5223 If it does, return a nonzero value
5224 which is the benefit from eliminating the computation of X;
5225 set *SRC_REG to the register of the biv that it is computed from;
5226 set *ADD_VAL and *MULT_VAL to the coefficients,
5227 such that the value of X is biv * mult + add; */
5228
5229 static int
5230 general_induction_var (x, src_reg, add_val, mult_val)
5231 rtx x;
5232 rtx *src_reg;
5233 rtx *add_val;
5234 rtx *mult_val;
5235 {
5236 rtx orig_x = x;
5237 int benefit = 0;
5238 char *storage;
5239
5240 /* If this is an invariant, forget it, it isn't a giv. */
5241 if (invariant_p (x) == 1)
5242 return 0;
5243
5244 /* See if the expression could be a giv and get its form.
5245 Mark our place on the obstack in case we don't find a giv. */
5246 storage = (char *) oballoc (0);
5247 x = simplify_giv_expr (x, &benefit);
5248 if (x == 0)
5249 {
5250 obfree (storage);
5251 return 0;
5252 }
5253
5254 switch (GET_CODE (x))
5255 {
5256 case USE:
5257 case CONST_INT:
5258 /* Since this is now an invariant and wasn't before, it must be a giv
5259 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5260 with. */
5261 *src_reg = loop_iv_list->biv->dest_reg;
5262 *mult_val = const0_rtx;
5263 *add_val = x;
5264 break;
5265
5266 case REG:
5267 /* This is equivalent to a BIV. */
5268 *src_reg = x;
5269 *mult_val = const1_rtx;
5270 *add_val = const0_rtx;
5271 break;
5272
5273 case PLUS:
5274 /* Either (plus (biv) (invar)) or
5275 (plus (mult (biv) (invar_1)) (invar_2)). */
5276 if (GET_CODE (XEXP (x, 0)) == MULT)
5277 {
5278 *src_reg = XEXP (XEXP (x, 0), 0);
5279 *mult_val = XEXP (XEXP (x, 0), 1);
5280 }
5281 else
5282 {
5283 *src_reg = XEXP (x, 0);
5284 *mult_val = const1_rtx;
5285 }
5286 *add_val = XEXP (x, 1);
5287 break;
5288
5289 case MULT:
5290 /* ADD_VAL is zero. */
5291 *src_reg = XEXP (x, 0);
5292 *mult_val = XEXP (x, 1);
5293 *add_val = const0_rtx;
5294 break;
5295
5296 default:
5297 abort ();
5298 }
5299
5300 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5301 unless they are CONST_INT). */
5302 if (GET_CODE (*add_val) == USE)
5303 *add_val = XEXP (*add_val, 0);
5304 if (GET_CODE (*mult_val) == USE)
5305 *mult_val = XEXP (*mult_val, 0);
5306
5307 benefit += rtx_cost (orig_x, SET);
5308
5309 /* Always return some benefit if this is a giv so it will be detected
5310 as such. This allows elimination of bivs that might otherwise
5311 not be eliminated. */
5312 return benefit == 0 ? 1 : benefit;
5313 }
5314 \f
5315 /* Given an expression, X, try to form it as a linear function of a biv.
5316 We will canonicalize it to be of the form
5317 (plus (mult (BIV) (invar_1))
5318 (invar_2))
5319 with possible degeneracies.
5320
5321 The invariant expressions must each be of a form that can be used as a
5322 machine operand. We surround then with a USE rtx (a hack, but localized
5323 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5324 routine; it is the caller's responsibility to strip them.
5325
5326 If no such canonicalization is possible (i.e., two biv's are used or an
5327 expression that is neither invariant nor a biv or giv), this routine
5328 returns 0.
5329
5330 For a non-zero return, the result will have a code of CONST_INT, USE,
5331 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5332
5333 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5334
5335 static rtx
5336 simplify_giv_expr (x, benefit)
5337 rtx x;
5338 int *benefit;
5339 {
5340 enum machine_mode mode = GET_MODE (x);
5341 rtx arg0, arg1;
5342 rtx tem;
5343
5344 /* If this is not an integer mode, or if we cannot do arithmetic in this
5345 mode, this can't be a giv. */
5346 if (mode != VOIDmode
5347 && (GET_MODE_CLASS (mode) != MODE_INT
5348 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5349 return 0;
5350
5351 switch (GET_CODE (x))
5352 {
5353 case PLUS:
5354 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5355 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5356 if (arg0 == 0 || arg1 == 0)
5357 return 0;
5358
5359 /* Put constant last, CONST_INT last if both constant. */
5360 if ((GET_CODE (arg0) == USE
5361 || GET_CODE (arg0) == CONST_INT)
5362 && GET_CODE (arg1) != CONST_INT)
5363 tem = arg0, arg0 = arg1, arg1 = tem;
5364
5365 /* Handle addition of zero, then addition of an invariant. */
5366 if (arg1 == const0_rtx)
5367 return arg0;
5368 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5369 switch (GET_CODE (arg0))
5370 {
5371 case CONST_INT:
5372 case USE:
5373 /* Both invariant. Only valid if sum is machine operand.
5374 First strip off possible USE on the operands. */
5375 if (GET_CODE (arg0) == USE)
5376 arg0 = XEXP (arg0, 0);
5377
5378 if (GET_CODE (arg1) == USE)
5379 arg1 = XEXP (arg1, 0);
5380
5381 tem = 0;
5382 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5383 {
5384 tem = plus_constant (arg0, INTVAL (arg1));
5385 if (GET_CODE (tem) != CONST_INT)
5386 tem = gen_rtx (USE, mode, tem);
5387 }
5388 else
5389 {
5390 /* Adding two invariants must result in an invariant,
5391 so enclose addition operation inside a USE and
5392 return it. */
5393 tem = gen_rtx (USE, mode, gen_rtx (PLUS, mode, arg0, arg1));
5394 }
5395
5396 return tem;
5397
5398 case REG:
5399 case MULT:
5400 /* biv + invar or mult + invar. Return sum. */
5401 return gen_rtx (PLUS, mode, arg0, arg1);
5402
5403 case PLUS:
5404 /* (a + invar_1) + invar_2. Associate. */
5405 return simplify_giv_expr (gen_rtx (PLUS, mode,
5406 XEXP (arg0, 0),
5407 gen_rtx (PLUS, mode,
5408 XEXP (arg0, 1), arg1)),
5409 benefit);
5410
5411 default:
5412 abort ();
5413 }
5414
5415 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5416 MULT to reduce cases. */
5417 if (GET_CODE (arg0) == REG)
5418 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5419 if (GET_CODE (arg1) == REG)
5420 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5421
5422 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5423 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5424 Recurse to associate the second PLUS. */
5425 if (GET_CODE (arg1) == MULT)
5426 tem = arg0, arg0 = arg1, arg1 = tem;
5427
5428 if (GET_CODE (arg1) == PLUS)
5429 return simplify_giv_expr (gen_rtx (PLUS, mode,
5430 gen_rtx (PLUS, mode,
5431 arg0, XEXP (arg1, 0)),
5432 XEXP (arg1, 1)),
5433 benefit);
5434
5435 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5436 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5437 abort ();
5438
5439 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5440 return 0;
5441
5442 return simplify_giv_expr (gen_rtx (MULT, mode,
5443 XEXP (arg0, 0),
5444 gen_rtx (PLUS, mode,
5445 XEXP (arg0, 1),
5446 XEXP (arg1, 1))),
5447 benefit);
5448
5449 case MINUS:
5450 /* Handle "a - b" as "a + b * (-1)". */
5451 return simplify_giv_expr (gen_rtx (PLUS, mode,
5452 XEXP (x, 0),
5453 gen_rtx (MULT, mode,
5454 XEXP (x, 1), constm1_rtx)),
5455 benefit);
5456
5457 case MULT:
5458 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5459 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5460 if (arg0 == 0 || arg1 == 0)
5461 return 0;
5462
5463 /* Put constant last, CONST_INT last if both constant. */
5464 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5465 && GET_CODE (arg1) != CONST_INT)
5466 tem = arg0, arg0 = arg1, arg1 = tem;
5467
5468 /* If second argument is not now constant, not giv. */
5469 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5470 return 0;
5471
5472 /* Handle multiply by 0 or 1. */
5473 if (arg1 == const0_rtx)
5474 return const0_rtx;
5475
5476 else if (arg1 == const1_rtx)
5477 return arg0;
5478
5479 switch (GET_CODE (arg0))
5480 {
5481 case REG:
5482 /* biv * invar. Done. */
5483 return gen_rtx (MULT, mode, arg0, arg1);
5484
5485 case CONST_INT:
5486 /* Product of two constants. */
5487 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5488
5489 case USE:
5490 /* invar * invar. Not giv. */
5491 return 0;
5492
5493 case MULT:
5494 /* (a * invar_1) * invar_2. Associate. */
5495 return simplify_giv_expr (gen_rtx (MULT, mode,
5496 XEXP (arg0, 0),
5497 gen_rtx (MULT, mode,
5498 XEXP (arg0, 1), arg1)),
5499 benefit);
5500
5501 case PLUS:
5502 /* (a + invar_1) * invar_2. Distribute. */
5503 return simplify_giv_expr (gen_rtx (PLUS, mode,
5504 gen_rtx (MULT, mode,
5505 XEXP (arg0, 0), arg1),
5506 gen_rtx (MULT, mode,
5507 XEXP (arg0, 1), arg1)),
5508 benefit);
5509
5510 default:
5511 abort ();
5512 }
5513
5514 case ASHIFT:
5515 /* Shift by constant is multiply by power of two. */
5516 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5517 return 0;
5518
5519 return simplify_giv_expr (gen_rtx (MULT, mode,
5520 XEXP (x, 0),
5521 GEN_INT ((HOST_WIDE_INT) 1
5522 << INTVAL (XEXP (x, 1)))),
5523 benefit);
5524
5525 case NEG:
5526 /* "-a" is "a * (-1)" */
5527 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5528 benefit);
5529
5530 case NOT:
5531 /* "~a" is "-a - 1". Silly, but easy. */
5532 return simplify_giv_expr (gen_rtx (MINUS, mode,
5533 gen_rtx (NEG, mode, XEXP (x, 0)),
5534 const1_rtx),
5535 benefit);
5536
5537 case USE:
5538 /* Already in proper form for invariant. */
5539 return x;
5540
5541 case REG:
5542 /* If this is a new register, we can't deal with it. */
5543 if (REGNO (x) >= max_reg_before_loop)
5544 return 0;
5545
5546 /* Check for biv or giv. */
5547 switch (reg_iv_type[REGNO (x)])
5548 {
5549 case BASIC_INDUCT:
5550 return x;
5551 case GENERAL_INDUCT:
5552 {
5553 struct induction *v = reg_iv_info[REGNO (x)];
5554
5555 /* Form expression from giv and add benefit. Ensure this giv
5556 can derive another and subtract any needed adjustment if so. */
5557 *benefit += v->benefit;
5558 if (v->cant_derive)
5559 return 0;
5560
5561 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5562 v->src_reg, v->mult_val),
5563 v->add_val);
5564 if (v->derive_adjustment)
5565 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5566 return simplify_giv_expr (tem, benefit);
5567 }
5568
5569 default:
5570 break;
5571 }
5572
5573 /* Fall through to general case. */
5574 default:
5575 /* If invariant, return as USE (unless CONST_INT).
5576 Otherwise, not giv. */
5577 if (GET_CODE (x) == USE)
5578 x = XEXP (x, 0);
5579
5580 if (invariant_p (x) == 1)
5581 {
5582 if (GET_CODE (x) == CONST_INT)
5583 return x;
5584 else
5585 return gen_rtx (USE, mode, x);
5586 }
5587 else
5588 return 0;
5589 }
5590 }
5591 \f
5592 /* Help detect a giv that is calculated by several consecutive insns;
5593 for example,
5594 giv = biv * M
5595 giv = giv + A
5596 The caller has already identified the first insn P as having a giv as dest;
5597 we check that all other insns that set the same register follow
5598 immediately after P, that they alter nothing else,
5599 and that the result of the last is still a giv.
5600
5601 The value is 0 if the reg set in P is not really a giv.
5602 Otherwise, the value is the amount gained by eliminating
5603 all the consecutive insns that compute the value.
5604
5605 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5606 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5607
5608 The coefficients of the ultimate giv value are stored in
5609 *MULT_VAL and *ADD_VAL. */
5610
5611 static int
5612 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5613 add_val, mult_val)
5614 int first_benefit;
5615 rtx p;
5616 rtx src_reg;
5617 rtx dest_reg;
5618 rtx *add_val;
5619 rtx *mult_val;
5620 {
5621 int count;
5622 enum rtx_code code;
5623 int benefit;
5624 rtx temp;
5625 rtx set;
5626
5627 /* Indicate that this is a giv so that we can update the value produced in
5628 each insn of the multi-insn sequence.
5629
5630 This induction structure will be used only by the call to
5631 general_induction_var below, so we can allocate it on our stack.
5632 If this is a giv, our caller will replace the induct var entry with
5633 a new induction structure. */
5634 struct induction *v
5635 = (struct induction *) alloca (sizeof (struct induction));
5636 v->src_reg = src_reg;
5637 v->mult_val = *mult_val;
5638 v->add_val = *add_val;
5639 v->benefit = first_benefit;
5640 v->cant_derive = 0;
5641 v->derive_adjustment = 0;
5642
5643 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5644 reg_iv_info[REGNO (dest_reg)] = v;
5645
5646 count = n_times_set[REGNO (dest_reg)] - 1;
5647
5648 while (count > 0)
5649 {
5650 p = NEXT_INSN (p);
5651 code = GET_CODE (p);
5652
5653 /* If libcall, skip to end of call sequence. */
5654 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5655 p = XEXP (temp, 0);
5656
5657 if (code == INSN
5658 && (set = single_set (p))
5659 && GET_CODE (SET_DEST (set)) == REG
5660 && SET_DEST (set) == dest_reg
5661 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5662 add_val, mult_val))
5663 /* Giv created by equivalent expression. */
5664 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5665 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5666 add_val, mult_val))))
5667 && src_reg == v->src_reg)
5668 {
5669 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5670 benefit += libcall_benefit (p);
5671
5672 count--;
5673 v->mult_val = *mult_val;
5674 v->add_val = *add_val;
5675 v->benefit = benefit;
5676 }
5677 else if (code != NOTE)
5678 {
5679 /* Allow insns that set something other than this giv to a
5680 constant. Such insns are needed on machines which cannot
5681 include long constants and should not disqualify a giv. */
5682 if (code == INSN
5683 && (set = single_set (p))
5684 && SET_DEST (set) != dest_reg
5685 && CONSTANT_P (SET_SRC (set)))
5686 continue;
5687
5688 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5689 return 0;
5690 }
5691 }
5692
5693 return v->benefit;
5694 }
5695 \f
5696 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5697 represented by G1. If no such expression can be found, or it is clear that
5698 it cannot possibly be a valid address, 0 is returned.
5699
5700 To perform the computation, we note that
5701 G1 = a * v + b and
5702 G2 = c * v + d
5703 where `v' is the biv.
5704
5705 So G2 = (c/a) * G1 + (d - b*c/a) */
5706
5707 #ifdef ADDRESS_COST
5708 static rtx
5709 express_from (g1, g2)
5710 struct induction *g1, *g2;
5711 {
5712 rtx mult, add;
5713
5714 /* The value that G1 will be multiplied by must be a constant integer. Also,
5715 the only chance we have of getting a valid address is if b*c/a (see above
5716 for notation) is also an integer. */
5717 if (GET_CODE (g1->mult_val) != CONST_INT
5718 || GET_CODE (g2->mult_val) != CONST_INT
5719 || GET_CODE (g1->add_val) != CONST_INT
5720 || g1->mult_val == const0_rtx
5721 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5722 return 0;
5723
5724 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5725 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5726
5727 /* Form simplified final result. */
5728 if (mult == const0_rtx)
5729 return add;
5730 else if (mult == const1_rtx)
5731 mult = g1->dest_reg;
5732 else
5733 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5734
5735 if (add == const0_rtx)
5736 return mult;
5737 else
5738 return gen_rtx (PLUS, g2->mode, mult, add);
5739 }
5740 #endif
5741 \f
5742 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5743 (either directly or via an address expression) a register used to represent
5744 G1. Set g2->new_reg to a represtation of G1 (normally just
5745 g1->dest_reg). */
5746
5747 static int
5748 combine_givs_p (g1, g2)
5749 struct induction *g1, *g2;
5750 {
5751 rtx tem;
5752
5753 /* If these givs are identical, they can be combined. */
5754 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5755 && rtx_equal_p (g1->add_val, g2->add_val))
5756 {
5757 g2->new_reg = g1->dest_reg;
5758 return 1;
5759 }
5760
5761 #ifdef ADDRESS_COST
5762 /* If G2 can be expressed as a function of G1 and that function is valid
5763 as an address and no more expensive than using a register for G2,
5764 the expression of G2 in terms of G1 can be used. */
5765 if (g2->giv_type == DEST_ADDR
5766 && (tem = express_from (g1, g2)) != 0
5767 && memory_address_p (g2->mem_mode, tem)
5768 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5769 {
5770 g2->new_reg = tem;
5771 return 1;
5772 }
5773 #endif
5774
5775 return 0;
5776 }
5777 \f
5778 #ifdef GIV_SORT_CRITERION
5779 /* Compare two givs and sort the most desirable one for combinations first.
5780 This is used only in one qsort call below. */
5781
5782 static int
5783 giv_sort (x, y)
5784 struct induction **x, **y;
5785 {
5786 GIV_SORT_CRITERION (*x, *y);
5787
5788 return 0;
5789 }
5790 #endif
5791
5792 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5793 any other. If so, point SAME to the giv combined with and set NEW_REG to
5794 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5795 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5796
5797 static void
5798 combine_givs (bl)
5799 struct iv_class *bl;
5800 {
5801 struct induction *g1, *g2, **giv_array, *temp_iv;
5802 int i, j, giv_count, pass;
5803
5804 /* Count givs, because bl->giv_count is incorrect here. */
5805 giv_count = 0;
5806 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5807 giv_count++;
5808
5809 giv_array
5810 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5811 i = 0;
5812 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5813 giv_array[i++] = g1;
5814
5815 #ifdef GIV_SORT_CRITERION
5816 /* Sort the givs if GIV_SORT_CRITERION is defined.
5817 This is usually defined for processors which lack
5818 negative register offsets so more givs may be combined. */
5819
5820 if (loop_dump_stream)
5821 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5822
5823 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5824 #endif
5825
5826 for (i = 0; i < giv_count; i++)
5827 {
5828 g1 = giv_array[i];
5829 for (pass = 0; pass <= 1; pass++)
5830 for (j = 0; j < giv_count; j++)
5831 {
5832 g2 = giv_array[j];
5833 if (g1 != g2
5834 /* First try to combine with replaceable givs, then all givs. */
5835 && (g1->replaceable || pass == 1)
5836 /* If either has already been combined or is to be ignored, can't
5837 combine. */
5838 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5839 /* If something has been based on G2, G2 cannot itself be based
5840 on something else. */
5841 && ! g2->combined_with
5842 && combine_givs_p (g1, g2))
5843 {
5844 /* g2->new_reg set by `combine_givs_p' */
5845 g2->same = g1;
5846 g1->combined_with = 1;
5847
5848 /* If one of these givs is a DEST_REG that was only used
5849 once, by the other giv, this is actually a single use.
5850 The DEST_REG has the correct cost, while the other giv
5851 counts the REG use too often. */
5852 if (g2->giv_type == DEST_REG
5853 && n_times_used[REGNO (g2->dest_reg)] == 1
5854 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5855 g1->benefit = g2->benefit;
5856 else if (g1->giv_type != DEST_REG
5857 || n_times_used[REGNO (g1->dest_reg)] != 1
5858 || ! reg_mentioned_p (g1->dest_reg,
5859 PATTERN (g2->insn)))
5860 {
5861 g1->benefit += g2->benefit;
5862 g1->times_used += g2->times_used;
5863 }
5864 /* ??? The new final_[bg]iv_value code does a much better job
5865 of finding replaceable giv's, and hence this code may no
5866 longer be necessary. */
5867 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5868 g1->benefit -= copy_cost;
5869 g1->lifetime += g2->lifetime;
5870
5871 if (loop_dump_stream)
5872 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5873 INSN_UID (g2->insn), INSN_UID (g1->insn));
5874 }
5875 }
5876 }
5877 }
5878 \f
5879 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5880
5881 void
5882 emit_iv_add_mult (b, m, a, reg, insert_before)
5883 rtx b; /* initial value of basic induction variable */
5884 rtx m; /* multiplicative constant */
5885 rtx a; /* additive constant */
5886 rtx reg; /* destination register */
5887 rtx insert_before;
5888 {
5889 rtx seq;
5890 rtx result;
5891
5892 /* Prevent unexpected sharing of these rtx. */
5893 a = copy_rtx (a);
5894 b = copy_rtx (b);
5895
5896 /* Increase the lifetime of any invariants moved further in code. */
5897 update_reg_last_use (a, insert_before);
5898 update_reg_last_use (b, insert_before);
5899 update_reg_last_use (m, insert_before);
5900
5901 start_sequence ();
5902 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5903 if (reg != result)
5904 emit_move_insn (reg, result);
5905 seq = gen_sequence ();
5906 end_sequence ();
5907
5908 emit_insn_before (seq, insert_before);
5909
5910 record_base_value (REGNO (reg), b);
5911 }
5912 \f
5913 /* Test whether A * B can be computed without
5914 an actual multiply insn. Value is 1 if so. */
5915
5916 static int
5917 product_cheap_p (a, b)
5918 rtx a;
5919 rtx b;
5920 {
5921 int i;
5922 rtx tmp;
5923 struct obstack *old_rtl_obstack = rtl_obstack;
5924 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5925 int win = 1;
5926
5927 /* If only one is constant, make it B. */
5928 if (GET_CODE (a) == CONST_INT)
5929 tmp = a, a = b, b = tmp;
5930
5931 /* If first constant, both constant, so don't need multiply. */
5932 if (GET_CODE (a) == CONST_INT)
5933 return 1;
5934
5935 /* If second not constant, neither is constant, so would need multiply. */
5936 if (GET_CODE (b) != CONST_INT)
5937 return 0;
5938
5939 /* One operand is constant, so might not need multiply insn. Generate the
5940 code for the multiply and see if a call or multiply, or long sequence
5941 of insns is generated. */
5942
5943 rtl_obstack = &temp_obstack;
5944 start_sequence ();
5945 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5946 tmp = gen_sequence ();
5947 end_sequence ();
5948
5949 if (GET_CODE (tmp) == SEQUENCE)
5950 {
5951 if (XVEC (tmp, 0) == 0)
5952 win = 1;
5953 else if (XVECLEN (tmp, 0) > 3)
5954 win = 0;
5955 else
5956 for (i = 0; i < XVECLEN (tmp, 0); i++)
5957 {
5958 rtx insn = XVECEXP (tmp, 0, i);
5959
5960 if (GET_CODE (insn) != INSN
5961 || (GET_CODE (PATTERN (insn)) == SET
5962 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5963 || (GET_CODE (PATTERN (insn)) == PARALLEL
5964 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5965 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5966 {
5967 win = 0;
5968 break;
5969 }
5970 }
5971 }
5972 else if (GET_CODE (tmp) == SET
5973 && GET_CODE (SET_SRC (tmp)) == MULT)
5974 win = 0;
5975 else if (GET_CODE (tmp) == PARALLEL
5976 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5977 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5978 win = 0;
5979
5980 /* Free any storage we obtained in generating this multiply and restore rtl
5981 allocation to its normal obstack. */
5982 obstack_free (&temp_obstack, storage);
5983 rtl_obstack = old_rtl_obstack;
5984
5985 return win;
5986 }
5987 \f
5988 /* Check to see if loop can be terminated by a "decrement and branch until
5989 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5990 Also try reversing an increment loop to a decrement loop
5991 to see if the optimization can be performed.
5992 Value is nonzero if optimization was performed. */
5993
5994 /* This is useful even if the architecture doesn't have such an insn,
5995 because it might change a loops which increments from 0 to n to a loop
5996 which decrements from n to 0. A loop that decrements to zero is usually
5997 faster than one that increments from zero. */
5998
5999 /* ??? This could be rewritten to use some of the loop unrolling procedures,
6000 such as approx_final_value, biv_total_increment, loop_iterations, and
6001 final_[bg]iv_value. */
6002
6003 static int
6004 check_dbra_loop (loop_end, insn_count, loop_start)
6005 rtx loop_end;
6006 int insn_count;
6007 rtx loop_start;
6008 {
6009 struct iv_class *bl;
6010 rtx reg;
6011 rtx jump_label;
6012 rtx final_value;
6013 rtx start_value;
6014 rtx new_add_val;
6015 rtx comparison;
6016 rtx before_comparison;
6017 rtx p;
6018
6019 /* If last insn is a conditional branch, and the insn before tests a
6020 register value, try to optimize it. Otherwise, we can't do anything. */
6021
6022 comparison = get_condition_for_loop (PREV_INSN (loop_end));
6023 if (comparison == 0)
6024 return 0;
6025
6026 /* Check all of the bivs to see if the compare uses one of them.
6027 Skip biv's set more than once because we can't guarantee that
6028 it will be zero on the last iteration. Also skip if the biv is
6029 used between its update and the test insn. */
6030
6031 for (bl = loop_iv_list; bl; bl = bl->next)
6032 {
6033 if (bl->biv_count == 1
6034 && bl->biv->dest_reg == XEXP (comparison, 0)
6035 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6036 PREV_INSN (PREV_INSN (loop_end))))
6037 break;
6038 }
6039
6040 if (! bl)
6041 return 0;
6042
6043 /* Look for the case where the basic induction variable is always
6044 nonnegative, and equals zero on the last iteration.
6045 In this case, add a reg_note REG_NONNEG, which allows the
6046 m68k DBRA instruction to be used. */
6047
6048 if (((GET_CODE (comparison) == GT
6049 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6050 && INTVAL (XEXP (comparison, 1)) == -1)
6051 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6052 && GET_CODE (bl->biv->add_val) == CONST_INT
6053 && INTVAL (bl->biv->add_val) < 0)
6054 {
6055 /* Initial value must be greater than 0,
6056 init_val % -dec_value == 0 to ensure that it equals zero on
6057 the last iteration */
6058
6059 if (GET_CODE (bl->initial_value) == CONST_INT
6060 && INTVAL (bl->initial_value) > 0
6061 && (INTVAL (bl->initial_value)
6062 % (-INTVAL (bl->biv->add_val))) == 0)
6063 {
6064 /* register always nonnegative, add REG_NOTE to branch */
6065 REG_NOTES (PREV_INSN (loop_end))
6066 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6067 REG_NOTES (PREV_INSN (loop_end)));
6068 bl->nonneg = 1;
6069
6070 return 1;
6071 }
6072
6073 /* If the decrement is 1 and the value was tested as >= 0 before
6074 the loop, then we can safely optimize. */
6075 for (p = loop_start; p; p = PREV_INSN (p))
6076 {
6077 if (GET_CODE (p) == CODE_LABEL)
6078 break;
6079 if (GET_CODE (p) != JUMP_INSN)
6080 continue;
6081
6082 before_comparison = get_condition_for_loop (p);
6083 if (before_comparison
6084 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6085 && GET_CODE (before_comparison) == LT
6086 && XEXP (before_comparison, 1) == const0_rtx
6087 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6088 && INTVAL (bl->biv->add_val) == -1)
6089 {
6090 REG_NOTES (PREV_INSN (loop_end))
6091 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6092 REG_NOTES (PREV_INSN (loop_end)));
6093 bl->nonneg = 1;
6094
6095 return 1;
6096 }
6097 }
6098 }
6099 else if (num_mem_sets <= 1)
6100 {
6101 /* Try to change inc to dec, so can apply above optimization. */
6102 /* Can do this if:
6103 all registers modified are induction variables or invariant,
6104 all memory references have non-overlapping addresses
6105 (obviously true if only one write)
6106 allow 2 insns for the compare/jump at the end of the loop. */
6107 /* Also, we must avoid any instructions which use both the reversed
6108 biv and another biv. Such instructions will fail if the loop is
6109 reversed. We meet this condition by requiring that either
6110 no_use_except_counting is true, or else that there is only
6111 one biv. */
6112 int num_nonfixed_reads = 0;
6113 /* 1 if the iteration var is used only to count iterations. */
6114 int no_use_except_counting = 0;
6115 /* 1 if the loop has no memory store, or it has a single memory store
6116 which is reversible. */
6117 int reversible_mem_store = 1;
6118
6119 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6120 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6121 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6122
6123 if (bl->giv_count == 0
6124 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6125 {
6126 rtx bivreg = regno_reg_rtx[bl->regno];
6127
6128 /* If there are no givs for this biv, and the only exit is the
6129 fall through at the end of the the loop, then
6130 see if perhaps there are no uses except to count. */
6131 no_use_except_counting = 1;
6132 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6133 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6134 {
6135 rtx set = single_set (p);
6136
6137 if (set && GET_CODE (SET_DEST (set)) == REG
6138 && REGNO (SET_DEST (set)) == bl->regno)
6139 /* An insn that sets the biv is okay. */
6140 ;
6141 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6142 || p == prev_nonnote_insn (loop_end))
6143 /* Don't bother about the end test. */
6144 ;
6145 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6146 /* Any other use of the biv is no good. */
6147 {
6148 no_use_except_counting = 0;
6149 break;
6150 }
6151 }
6152 }
6153
6154 /* If the loop has a single store, and the destination address is
6155 invariant, then we can't reverse the loop, because this address
6156 might then have the wrong value at loop exit.
6157 This would work if the source was invariant also, however, in that
6158 case, the insn should have been moved out of the loop. */
6159
6160 if (num_mem_sets == 1)
6161 reversible_mem_store
6162 = (! unknown_address_altered
6163 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6164
6165 /* This code only acts for innermost loops. Also it simplifies
6166 the memory address check by only reversing loops with
6167 zero or one memory access.
6168 Two memory accesses could involve parts of the same array,
6169 and that can't be reversed. */
6170
6171 if (num_nonfixed_reads <= 1
6172 && !loop_has_call
6173 && !loop_has_volatile
6174 && reversible_mem_store
6175 && (no_use_except_counting
6176 || ((bl->giv_count + bl->biv_count + num_mem_sets
6177 + num_movables + 2 == insn_count)
6178 && (bl == loop_iv_list && bl->next == 0))))
6179 {
6180 rtx tem;
6181
6182 /* Loop can be reversed. */
6183 if (loop_dump_stream)
6184 fprintf (loop_dump_stream, "Can reverse loop\n");
6185
6186 /* Now check other conditions:
6187
6188 The increment must be a constant and the comparison code
6189 must be LT.
6190
6191 This test can probably be improved since +/- 1 in the constant
6192 can be obtained by changing LT to LE and vice versa; this is
6193 confusing. */
6194
6195 if (comparison
6196 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6197 /* LE gets turned into LT */
6198 && GET_CODE (comparison) == LT)
6199 {
6200 HOST_WIDE_INT add_val, comparison_val;
6201 rtx initial_value;
6202
6203 add_val = INTVAL (bl->biv->add_val);
6204 comparison_val = INTVAL (XEXP (comparison, 1));
6205 initial_value = bl->initial_value;
6206
6207 /* Normalize the initial value if it has no other use
6208 except as a counter. This will allow a few more loops
6209 to be reversed. */
6210 if (no_use_except_counting)
6211 {
6212 comparison_val = comparison_val - INTVAL (bl->initial_value);
6213 initial_value = const0_rtx;
6214 }
6215
6216 /* If the initial value is not zero, or if the comparison
6217 value is not an exact multiple of the increment, then we
6218 can not reverse this loop. */
6219 if (initial_value != const0_rtx
6220 || (comparison_val % add_val) != 0)
6221 return 0;
6222
6223 /* Reset these in case we normalized the initial value
6224 and comparison value above. */
6225 bl->initial_value = initial_value;
6226 XEXP (comparison, 1) = GEN_INT (comparison_val);
6227
6228 /* Register will always be nonnegative, with value
6229 0 on last iteration if loop reversed */
6230
6231 /* Save some info needed to produce the new insns. */
6232 reg = bl->biv->dest_reg;
6233 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6234 if (jump_label == pc_rtx)
6235 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6236 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6237
6238 final_value = XEXP (comparison, 1);
6239 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6240 - INTVAL (bl->biv->add_val));
6241
6242 /* Initialize biv to start_value before loop start.
6243 The old initializing insn will be deleted as a
6244 dead store by flow.c. */
6245 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6246
6247 /* Add insn to decrement register, and delete insn
6248 that incremented the register. */
6249 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6250 bl->biv->insn);
6251 delete_insn (bl->biv->insn);
6252
6253 /* Update biv info to reflect its new status. */
6254 bl->biv->insn = p;
6255 bl->initial_value = start_value;
6256 bl->biv->add_val = new_add_val;
6257
6258 /* Inc LABEL_NUSES so that delete_insn will
6259 not delete the label. */
6260 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6261
6262 /* Emit an insn after the end of the loop to set the biv's
6263 proper exit value if it is used anywhere outside the loop. */
6264 if ((REGNO_LAST_UID (bl->regno)
6265 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6266 || ! bl->init_insn
6267 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6268 emit_insn_after (gen_move_insn (reg, final_value),
6269 loop_end);
6270
6271 /* Delete compare/branch at end of loop. */
6272 delete_insn (PREV_INSN (loop_end));
6273 delete_insn (PREV_INSN (loop_end));
6274
6275 /* Add new compare/branch insn at end of loop. */
6276 start_sequence ();
6277 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6278 GET_MODE (reg), 0, 0);
6279 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6280 tem = gen_sequence ();
6281 end_sequence ();
6282 emit_jump_insn_before (tem, loop_end);
6283
6284 for (tem = PREV_INSN (loop_end);
6285 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6286 ;
6287 if (tem)
6288 {
6289 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6290
6291 /* Increment of LABEL_NUSES done above. */
6292 /* Register is now always nonnegative,
6293 so add REG_NONNEG note to the branch. */
6294 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6295 REG_NOTES (tem));
6296 }
6297
6298 bl->nonneg = 1;
6299
6300 /* Mark that this biv has been reversed. Each giv which depends
6301 on this biv, and which is also live past the end of the loop
6302 will have to be fixed up. */
6303
6304 bl->reversed = 1;
6305
6306 if (loop_dump_stream)
6307 fprintf (loop_dump_stream,
6308 "Reversed loop and added reg_nonneg\n");
6309
6310 return 1;
6311 }
6312 }
6313 }
6314
6315 return 0;
6316 }
6317 \f
6318 /* Verify whether the biv BL appears to be eliminable,
6319 based on the insns in the loop that refer to it.
6320 LOOP_START is the first insn of the loop, and END is the end insn.
6321
6322 If ELIMINATE_P is non-zero, actually do the elimination.
6323
6324 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6325 determine whether invariant insns should be placed inside or at the
6326 start of the loop. */
6327
6328 static int
6329 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6330 struct iv_class *bl;
6331 rtx loop_start;
6332 rtx end;
6333 int eliminate_p;
6334 int threshold, insn_count;
6335 {
6336 rtx reg = bl->biv->dest_reg;
6337 rtx p;
6338
6339 /* Scan all insns in the loop, stopping if we find one that uses the
6340 biv in a way that we cannot eliminate. */
6341
6342 for (p = loop_start; p != end; p = NEXT_INSN (p))
6343 {
6344 enum rtx_code code = GET_CODE (p);
6345 rtx where = threshold >= insn_count ? loop_start : p;
6346
6347 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6348 && reg_mentioned_p (reg, PATTERN (p))
6349 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6350 {
6351 if (loop_dump_stream)
6352 fprintf (loop_dump_stream,
6353 "Cannot eliminate biv %d: biv used in insn %d.\n",
6354 bl->regno, INSN_UID (p));
6355 break;
6356 }
6357 }
6358
6359 if (p == end)
6360 {
6361 if (loop_dump_stream)
6362 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6363 bl->regno, eliminate_p ? "was" : "can be");
6364 return 1;
6365 }
6366
6367 return 0;
6368 }
6369 \f
6370 /* If BL appears in X (part of the pattern of INSN), see if we can
6371 eliminate its use. If so, return 1. If not, return 0.
6372
6373 If BIV does not appear in X, return 1.
6374
6375 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6376 where extra insns should be added. Depending on how many items have been
6377 moved out of the loop, it will either be before INSN or at the start of
6378 the loop. */
6379
6380 static int
6381 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6382 rtx x, insn;
6383 struct iv_class *bl;
6384 int eliminate_p;
6385 rtx where;
6386 {
6387 enum rtx_code code = GET_CODE (x);
6388 rtx reg = bl->biv->dest_reg;
6389 enum machine_mode mode = GET_MODE (reg);
6390 struct induction *v;
6391 rtx arg, new, tem;
6392 int arg_operand;
6393 char *fmt;
6394 int i, j;
6395
6396 switch (code)
6397 {
6398 case REG:
6399 /* If we haven't already been able to do something with this BIV,
6400 we can't eliminate it. */
6401 if (x == reg)
6402 return 0;
6403 return 1;
6404
6405 case SET:
6406 /* If this sets the BIV, it is not a problem. */
6407 if (SET_DEST (x) == reg)
6408 return 1;
6409
6410 /* If this is an insn that defines a giv, it is also ok because
6411 it will go away when the giv is reduced. */
6412 for (v = bl->giv; v; v = v->next_iv)
6413 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6414 return 1;
6415
6416 #ifdef HAVE_cc0
6417 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6418 {
6419 /* Can replace with any giv that was reduced and
6420 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6421 Require a constant for MULT_VAL, so we know it's nonzero.
6422 ??? We disable this optimization to avoid potential
6423 overflows. */
6424
6425 for (v = bl->giv; v; v = v->next_iv)
6426 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6427 && v->add_val == const0_rtx
6428 && ! v->ignore && ! v->maybe_dead && v->always_computable
6429 && v->mode == mode
6430 && 0)
6431 {
6432 /* If the giv V had the auto-inc address optimization applied
6433 to it, and INSN occurs between the giv insn and the biv
6434 insn, then we must adjust the value used here.
6435 This is rare, so we don't bother to do so. */
6436 if (v->auto_inc_opt
6437 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6438 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6439 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6440 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6441 continue;
6442
6443 if (! eliminate_p)
6444 return 1;
6445
6446 /* If the giv has the opposite direction of change,
6447 then reverse the comparison. */
6448 if (INTVAL (v->mult_val) < 0)
6449 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
6450 const0_rtx, v->new_reg);
6451 else
6452 new = v->new_reg;
6453
6454 /* We can probably test that giv's reduced reg. */
6455 if (validate_change (insn, &SET_SRC (x), new, 0))
6456 return 1;
6457 }
6458
6459 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6460 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6461 Require a constant for MULT_VAL, so we know it's nonzero.
6462 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6463 overflow problem. */
6464
6465 for (v = bl->giv; v; v = v->next_iv)
6466 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6467 && ! v->ignore && ! v->maybe_dead && v->always_computable
6468 && v->mode == mode
6469 && (GET_CODE (v->add_val) == SYMBOL_REF
6470 || GET_CODE (v->add_val) == LABEL_REF
6471 || GET_CODE (v->add_val) == CONST
6472 || (GET_CODE (v->add_val) == REG
6473 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6474 {
6475 /* If the giv V had the auto-inc address optimization applied
6476 to it, and INSN occurs between the giv insn and the biv
6477 insn, then we must adjust the value used here.
6478 This is rare, so we don't bother to do so. */
6479 if (v->auto_inc_opt
6480 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6481 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6482 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6483 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6484 continue;
6485
6486 if (! eliminate_p)
6487 return 1;
6488
6489 /* If the giv has the opposite direction of change,
6490 then reverse the comparison. */
6491 if (INTVAL (v->mult_val) < 0)
6492 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
6493 v->new_reg);
6494 else
6495 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
6496 copy_rtx (v->add_val));
6497
6498 /* Replace biv with the giv's reduced register. */
6499 update_reg_last_use (v->add_val, insn);
6500 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6501 return 1;
6502
6503 /* Insn doesn't support that constant or invariant. Copy it
6504 into a register (it will be a loop invariant.) */
6505 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6506
6507 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6508 where);
6509
6510 /* Substitute the new register for its invariant value in
6511 the compare expression. */
6512 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6513 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6514 return 1;
6515 }
6516 }
6517 #endif
6518 break;
6519
6520 case COMPARE:
6521 case EQ: case NE:
6522 case GT: case GE: case GTU: case GEU:
6523 case LT: case LE: case LTU: case LEU:
6524 /* See if either argument is the biv. */
6525 if (XEXP (x, 0) == reg)
6526 arg = XEXP (x, 1), arg_operand = 1;
6527 else if (XEXP (x, 1) == reg)
6528 arg = XEXP (x, 0), arg_operand = 0;
6529 else
6530 break;
6531
6532 if (CONSTANT_P (arg))
6533 {
6534 /* First try to replace with any giv that has constant positive
6535 mult_val and constant add_val. We might be able to support
6536 negative mult_val, but it seems complex to do it in general. */
6537
6538 for (v = bl->giv; v; v = v->next_iv)
6539 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6540 && (GET_CODE (v->add_val) == SYMBOL_REF
6541 || GET_CODE (v->add_val) == LABEL_REF
6542 || GET_CODE (v->add_val) == CONST
6543 || (GET_CODE (v->add_val) == REG
6544 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6545 && ! v->ignore && ! v->maybe_dead && v->always_computable
6546 && v->mode == mode)
6547 {
6548 /* If the giv V had the auto-inc address optimization applied
6549 to it, and INSN occurs between the giv insn and the biv
6550 insn, then we must adjust the value used here.
6551 This is rare, so we don't bother to do so. */
6552 if (v->auto_inc_opt
6553 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6554 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6555 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6556 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6557 continue;
6558
6559 if (! eliminate_p)
6560 return 1;
6561
6562 /* Replace biv with the giv's reduced reg. */
6563 XEXP (x, 1-arg_operand) = v->new_reg;
6564
6565 /* If all constants are actually constant integers and
6566 the derived constant can be directly placed in the COMPARE,
6567 do so. */
6568 if (GET_CODE (arg) == CONST_INT
6569 && GET_CODE (v->mult_val) == CONST_INT
6570 && GET_CODE (v->add_val) == CONST_INT
6571 && validate_change (insn, &XEXP (x, arg_operand),
6572 GEN_INT (INTVAL (arg)
6573 * INTVAL (v->mult_val)
6574 + INTVAL (v->add_val)), 0))
6575 return 1;
6576
6577 /* Otherwise, load it into a register. */
6578 tem = gen_reg_rtx (mode);
6579 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6580 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6581 return 1;
6582
6583 /* If that failed, put back the change we made above. */
6584 XEXP (x, 1-arg_operand) = reg;
6585 }
6586
6587 /* Look for giv with positive constant mult_val and nonconst add_val.
6588 Insert insns to calculate new compare value.
6589 ??? Turn this off due to possible overflow. */
6590
6591 for (v = bl->giv; v; v = v->next_iv)
6592 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6593 && ! v->ignore && ! v->maybe_dead && v->always_computable
6594 && v->mode == mode
6595 && 0)
6596 {
6597 rtx tem;
6598
6599 /* If the giv V had the auto-inc address optimization applied
6600 to it, and INSN occurs between the giv insn and the biv
6601 insn, then we must adjust the value used here.
6602 This is rare, so we don't bother to do so. */
6603 if (v->auto_inc_opt
6604 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6605 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6606 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6607 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6608 continue;
6609
6610 if (! eliminate_p)
6611 return 1;
6612
6613 tem = gen_reg_rtx (mode);
6614
6615 /* Replace biv with giv's reduced register. */
6616 validate_change (insn, &XEXP (x, 1 - arg_operand),
6617 v->new_reg, 1);
6618
6619 /* Compute value to compare against. */
6620 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6621 /* Use it in this insn. */
6622 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6623 if (apply_change_group ())
6624 return 1;
6625 }
6626 }
6627 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6628 {
6629 if (invariant_p (arg) == 1)
6630 {
6631 /* Look for giv with constant positive mult_val and nonconst
6632 add_val. Insert insns to compute new compare value.
6633 ??? Turn this off due to possible overflow. */
6634
6635 for (v = bl->giv; v; v = v->next_iv)
6636 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6637 && ! v->ignore && ! v->maybe_dead && v->always_computable
6638 && v->mode == mode
6639 && 0)
6640 {
6641 rtx tem;
6642
6643 /* If the giv V had the auto-inc address optimization applied
6644 to it, and INSN occurs between the giv insn and the biv
6645 insn, then we must adjust the value used here.
6646 This is rare, so we don't bother to do so. */
6647 if (v->auto_inc_opt
6648 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6649 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6650 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6651 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6652 continue;
6653
6654 if (! eliminate_p)
6655 return 1;
6656
6657 tem = gen_reg_rtx (mode);
6658
6659 /* Replace biv with giv's reduced register. */
6660 validate_change (insn, &XEXP (x, 1 - arg_operand),
6661 v->new_reg, 1);
6662
6663 /* Compute value to compare against. */
6664 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6665 tem, where);
6666 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6667 if (apply_change_group ())
6668 return 1;
6669 }
6670 }
6671
6672 /* This code has problems. Basically, you can't know when
6673 seeing if we will eliminate BL, whether a particular giv
6674 of ARG will be reduced. If it isn't going to be reduced,
6675 we can't eliminate BL. We can try forcing it to be reduced,
6676 but that can generate poor code.
6677
6678 The problem is that the benefit of reducing TV, below should
6679 be increased if BL can actually be eliminated, but this means
6680 we might have to do a topological sort of the order in which
6681 we try to process biv. It doesn't seem worthwhile to do
6682 this sort of thing now. */
6683
6684 #if 0
6685 /* Otherwise the reg compared with had better be a biv. */
6686 if (GET_CODE (arg) != REG
6687 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6688 return 0;
6689
6690 /* Look for a pair of givs, one for each biv,
6691 with identical coefficients. */
6692 for (v = bl->giv; v; v = v->next_iv)
6693 {
6694 struct induction *tv;
6695
6696 if (v->ignore || v->maybe_dead || v->mode != mode)
6697 continue;
6698
6699 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6700 if (! tv->ignore && ! tv->maybe_dead
6701 && rtx_equal_p (tv->mult_val, v->mult_val)
6702 && rtx_equal_p (tv->add_val, v->add_val)
6703 && tv->mode == mode)
6704 {
6705 /* If the giv V had the auto-inc address optimization applied
6706 to it, and INSN occurs between the giv insn and the biv
6707 insn, then we must adjust the value used here.
6708 This is rare, so we don't bother to do so. */
6709 if (v->auto_inc_opt
6710 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6711 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6712 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6713 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6714 continue;
6715
6716 if (! eliminate_p)
6717 return 1;
6718
6719 /* Replace biv with its giv's reduced reg. */
6720 XEXP (x, 1-arg_operand) = v->new_reg;
6721 /* Replace other operand with the other giv's
6722 reduced reg. */
6723 XEXP (x, arg_operand) = tv->new_reg;
6724 return 1;
6725 }
6726 }
6727 #endif
6728 }
6729
6730 /* If we get here, the biv can't be eliminated. */
6731 return 0;
6732
6733 case MEM:
6734 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6735 biv is used in it, since it will be replaced. */
6736 for (v = bl->giv; v; v = v->next_iv)
6737 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6738 return 1;
6739 break;
6740
6741 default:
6742 break;
6743 }
6744
6745 /* See if any subexpression fails elimination. */
6746 fmt = GET_RTX_FORMAT (code);
6747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6748 {
6749 switch (fmt[i])
6750 {
6751 case 'e':
6752 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6753 eliminate_p, where))
6754 return 0;
6755 break;
6756
6757 case 'E':
6758 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6759 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6760 eliminate_p, where))
6761 return 0;
6762 break;
6763 }
6764 }
6765
6766 return 1;
6767 }
6768 \f
6769 /* Return nonzero if the last use of REG
6770 is in an insn following INSN in the same basic block. */
6771
6772 static int
6773 last_use_this_basic_block (reg, insn)
6774 rtx reg;
6775 rtx insn;
6776 {
6777 rtx n;
6778 for (n = insn;
6779 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6780 n = NEXT_INSN (n))
6781 {
6782 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6783 return 1;
6784 }
6785 return 0;
6786 }
6787 \f
6788 /* Called via `note_stores' to record the initial value of a biv. Here we
6789 just record the location of the set and process it later. */
6790
6791 static void
6792 record_initial (dest, set)
6793 rtx dest;
6794 rtx set;
6795 {
6796 struct iv_class *bl;
6797
6798 if (GET_CODE (dest) != REG
6799 || REGNO (dest) >= max_reg_before_loop
6800 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6801 return;
6802
6803 bl = reg_biv_class[REGNO (dest)];
6804
6805 /* If this is the first set found, record it. */
6806 if (bl->init_insn == 0)
6807 {
6808 bl->init_insn = note_insn;
6809 bl->init_set = set;
6810 }
6811 }
6812 \f
6813 /* If any of the registers in X are "old" and currently have a last use earlier
6814 than INSN, update them to have a last use of INSN. Their actual last use
6815 will be the previous insn but it will not have a valid uid_luid so we can't
6816 use it. */
6817
6818 static void
6819 update_reg_last_use (x, insn)
6820 rtx x;
6821 rtx insn;
6822 {
6823 /* Check for the case where INSN does not have a valid luid. In this case,
6824 there is no need to modify the regno_last_uid, as this can only happen
6825 when code is inserted after the loop_end to set a pseudo's final value,
6826 and hence this insn will never be the last use of x. */
6827 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6828 && INSN_UID (insn) < max_uid_for_loop
6829 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6830 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6831 else
6832 {
6833 register int i, j;
6834 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6835 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6836 {
6837 if (fmt[i] == 'e')
6838 update_reg_last_use (XEXP (x, i), insn);
6839 else if (fmt[i] == 'E')
6840 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6841 update_reg_last_use (XVECEXP (x, i, j), insn);
6842 }
6843 }
6844 }
6845 \f
6846 /* Given a jump insn JUMP, return the condition that will cause it to branch
6847 to its JUMP_LABEL. If the condition cannot be understood, or is an
6848 inequality floating-point comparison which needs to be reversed, 0 will
6849 be returned.
6850
6851 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6852 insn used in locating the condition was found. If a replacement test
6853 of the condition is desired, it should be placed in front of that
6854 insn and we will be sure that the inputs are still valid.
6855
6856 The condition will be returned in a canonical form to simplify testing by
6857 callers. Specifically:
6858
6859 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6860 (2) Both operands will be machine operands; (cc0) will have been replaced.
6861 (3) If an operand is a constant, it will be the second operand.
6862 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6863 for GE, GEU, and LEU. */
6864
6865 rtx
6866 get_condition (jump, earliest)
6867 rtx jump;
6868 rtx *earliest;
6869 {
6870 enum rtx_code code;
6871 rtx prev = jump;
6872 rtx set;
6873 rtx tem;
6874 rtx op0, op1;
6875 int reverse_code = 0;
6876 int did_reverse_condition = 0;
6877
6878 /* If this is not a standard conditional jump, we can't parse it. */
6879 if (GET_CODE (jump) != JUMP_INSN
6880 || ! condjump_p (jump) || simplejump_p (jump))
6881 return 0;
6882
6883 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6884 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6885 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6886
6887 if (earliest)
6888 *earliest = jump;
6889
6890 /* If this branches to JUMP_LABEL when the condition is false, reverse
6891 the condition. */
6892 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6893 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6894 code = reverse_condition (code), did_reverse_condition ^= 1;
6895
6896 /* If we are comparing a register with zero, see if the register is set
6897 in the previous insn to a COMPARE or a comparison operation. Perform
6898 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6899 in cse.c */
6900
6901 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6902 {
6903 /* Set non-zero when we find something of interest. */
6904 rtx x = 0;
6905
6906 #ifdef HAVE_cc0
6907 /* If comparison with cc0, import actual comparison from compare
6908 insn. */
6909 if (op0 == cc0_rtx)
6910 {
6911 if ((prev = prev_nonnote_insn (prev)) == 0
6912 || GET_CODE (prev) != INSN
6913 || (set = single_set (prev)) == 0
6914 || SET_DEST (set) != cc0_rtx)
6915 return 0;
6916
6917 op0 = SET_SRC (set);
6918 op1 = CONST0_RTX (GET_MODE (op0));
6919 if (earliest)
6920 *earliest = prev;
6921 }
6922 #endif
6923
6924 /* If this is a COMPARE, pick up the two things being compared. */
6925 if (GET_CODE (op0) == COMPARE)
6926 {
6927 op1 = XEXP (op0, 1);
6928 op0 = XEXP (op0, 0);
6929 continue;
6930 }
6931 else if (GET_CODE (op0) != REG)
6932 break;
6933
6934 /* Go back to the previous insn. Stop if it is not an INSN. We also
6935 stop if it isn't a single set or if it has a REG_INC note because
6936 we don't want to bother dealing with it. */
6937
6938 if ((prev = prev_nonnote_insn (prev)) == 0
6939 || GET_CODE (prev) != INSN
6940 || FIND_REG_INC_NOTE (prev, 0)
6941 || (set = single_set (prev)) == 0)
6942 break;
6943
6944 /* If this is setting OP0, get what it sets it to if it looks
6945 relevant. */
6946 if (rtx_equal_p (SET_DEST (set), op0))
6947 {
6948 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6949
6950 if ((GET_CODE (SET_SRC (set)) == COMPARE
6951 || (((code == NE
6952 || (code == LT
6953 && GET_MODE_CLASS (inner_mode) == MODE_INT
6954 && (GET_MODE_BITSIZE (inner_mode)
6955 <= HOST_BITS_PER_WIDE_INT)
6956 && (STORE_FLAG_VALUE
6957 & ((HOST_WIDE_INT) 1
6958 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6959 #ifdef FLOAT_STORE_FLAG_VALUE
6960 || (code == LT
6961 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6962 && FLOAT_STORE_FLAG_VALUE < 0)
6963 #endif
6964 ))
6965 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6966 x = SET_SRC (set);
6967 else if (((code == EQ
6968 || (code == GE
6969 && (GET_MODE_BITSIZE (inner_mode)
6970 <= HOST_BITS_PER_WIDE_INT)
6971 && GET_MODE_CLASS (inner_mode) == MODE_INT
6972 && (STORE_FLAG_VALUE
6973 & ((HOST_WIDE_INT) 1
6974 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6975 #ifdef FLOAT_STORE_FLAG_VALUE
6976 || (code == GE
6977 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6978 && FLOAT_STORE_FLAG_VALUE < 0)
6979 #endif
6980 ))
6981 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6982 {
6983 /* We might have reversed a LT to get a GE here. But this wasn't
6984 actually the comparison of data, so we don't flag that we
6985 have had to reverse the condition. */
6986 did_reverse_condition ^= 1;
6987 reverse_code = 1;
6988 x = SET_SRC (set);
6989 }
6990 else
6991 break;
6992 }
6993
6994 else if (reg_set_p (op0, prev))
6995 /* If this sets OP0, but not directly, we have to give up. */
6996 break;
6997
6998 if (x)
6999 {
7000 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
7001 code = GET_CODE (x);
7002 if (reverse_code)
7003 {
7004 code = reverse_condition (code);
7005 did_reverse_condition ^= 1;
7006 reverse_code = 0;
7007 }
7008
7009 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
7010 if (earliest)
7011 *earliest = prev;
7012 }
7013 }
7014
7015 /* If constant is first, put it last. */
7016 if (CONSTANT_P (op0))
7017 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
7018
7019 /* If OP0 is the result of a comparison, we weren't able to find what
7020 was really being compared, so fail. */
7021 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
7022 return 0;
7023
7024 /* Canonicalize any ordered comparison with integers involving equality
7025 if we can do computations in the relevant mode and we do not
7026 overflow. */
7027
7028 if (GET_CODE (op1) == CONST_INT
7029 && GET_MODE (op0) != VOIDmode
7030 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
7031 {
7032 HOST_WIDE_INT const_val = INTVAL (op1);
7033 unsigned HOST_WIDE_INT uconst_val = const_val;
7034 unsigned HOST_WIDE_INT max_val
7035 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
7036
7037 switch (code)
7038 {
7039 case LE:
7040 if (const_val != max_val >> 1)
7041 code = LT, op1 = GEN_INT (const_val + 1);
7042 break;
7043
7044 case GE:
7045 if (const_val
7046 != (((HOST_WIDE_INT) 1
7047 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7048 code = GT, op1 = GEN_INT (const_val - 1);
7049 break;
7050
7051 case LEU:
7052 if (uconst_val != max_val)
7053 code = LTU, op1 = GEN_INT (uconst_val + 1);
7054 break;
7055
7056 case GEU:
7057 if (uconst_val != 0)
7058 code = GTU, op1 = GEN_INT (uconst_val - 1);
7059 break;
7060
7061 default:
7062 break;
7063 }
7064 }
7065
7066 /* If this was floating-point and we reversed anything other than an
7067 EQ or NE, return zero. */
7068 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7069 && did_reverse_condition && code != NE && code != EQ
7070 && ! flag_fast_math
7071 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7072 return 0;
7073
7074 #ifdef HAVE_cc0
7075 /* Never return CC0; return zero instead. */
7076 if (op0 == cc0_rtx)
7077 return 0;
7078 #endif
7079
7080 return gen_rtx (code, VOIDmode, op0, op1);
7081 }
7082
7083 /* Similar to above routine, except that we also put an invariant last
7084 unless both operands are invariants. */
7085
7086 rtx
7087 get_condition_for_loop (x)
7088 rtx x;
7089 {
7090 rtx comparison = get_condition (x, NULL_PTR);
7091
7092 if (comparison == 0
7093 || ! invariant_p (XEXP (comparison, 0))
7094 || invariant_p (XEXP (comparison, 1)))
7095 return comparison;
7096
7097 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
7098 XEXP (comparison, 1), XEXP (comparison, 0));
7099 }
7100
7101 #ifdef HAIFA
7102 /* Analyze a loop in order to instrument it with the use of count register.
7103 loop_start and loop_end are the first and last insns of the loop.
7104 This function works in cooperation with insert_bct ().
7105 loop_can_insert_bct[loop_num] is set according to whether the optimization
7106 is applicable to the loop. When it is applicable, the following variables
7107 are also set:
7108 loop_start_value[loop_num]
7109 loop_comparison_value[loop_num]
7110 loop_increment[loop_num]
7111 loop_comparison_code[loop_num] */
7112
7113 static
7114 void analyze_loop_iterations (loop_start, loop_end)
7115 rtx loop_start, loop_end;
7116 {
7117 rtx comparison, comparison_value;
7118 rtx iteration_var, initial_value, increment;
7119 enum rtx_code comparison_code;
7120
7121 rtx last_loop_insn;
7122 rtx insn;
7123 int i;
7124
7125 /* loop_variable mode */
7126 enum machine_mode original_mode;
7127
7128 /* find the number of the loop */
7129 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7130
7131 /* we change our mind only when we are sure that loop will be instrumented */
7132 loop_can_insert_bct[loop_num] = 0;
7133
7134 /* is the optimization suppressed. */
7135 if ( !flag_branch_on_count_reg )
7136 return;
7137
7138 /* make sure that count-reg is not in use */
7139 if (loop_used_count_register[loop_num]){
7140 if (loop_dump_stream)
7141 fprintf (loop_dump_stream,
7142 "analyze_loop_iterations %d: BCT instrumentation failed: count register already in use\n",
7143 loop_num);
7144 return;
7145 }
7146
7147 /* make sure that the function has no indirect jumps. */
7148 if (indirect_jump_in_function){
7149 if (loop_dump_stream)
7150 fprintf (loop_dump_stream,
7151 "analyze_loop_iterations %d: BCT instrumentation failed: indirect jump in function\n",
7152 loop_num);
7153 return;
7154 }
7155
7156 /* make sure that the last loop insn is a conditional jump */
7157 last_loop_insn = PREV_INSN (loop_end);
7158 if (GET_CODE (last_loop_insn) != JUMP_INSN || !condjump_p (last_loop_insn)) {
7159 if (loop_dump_stream)
7160 fprintf (loop_dump_stream,
7161 "analyze_loop_iterations %d: BCT instrumentation failed: invalid jump at loop end\n",
7162 loop_num);
7163 return;
7164 }
7165
7166 /* First find the iteration variable. If the last insn is a conditional
7167 branch, and the insn preceding it tests a register value, make that
7168 register the iteration variable. */
7169
7170 /* We used to use prev_nonnote_insn here, but that fails because it might
7171 accidentally get the branch for a contained loop if the branch for this
7172 loop was deleted. We can only trust branches immediately before the
7173 loop_end. */
7174
7175 comparison = get_condition_for_loop (last_loop_insn);
7176 /* ??? Get_condition may switch position of induction variable and
7177 invariant register when it canonicalizes the comparison. */
7178
7179 if (comparison == 0) {
7180 if (loop_dump_stream)
7181 fprintf (loop_dump_stream,
7182 "analyze_loop_iterations %d: BCT instrumentation failed: comparison not found\n",
7183 loop_num);
7184 return;
7185 }
7186
7187 comparison_code = GET_CODE (comparison);
7188 iteration_var = XEXP (comparison, 0);
7189 comparison_value = XEXP (comparison, 1);
7190
7191 original_mode = GET_MODE (iteration_var);
7192 if (GET_MODE_CLASS (original_mode) != MODE_INT
7193 || GET_MODE_SIZE (original_mode) != UNITS_PER_WORD) {
7194 if (loop_dump_stream)
7195 fprintf (loop_dump_stream,
7196 "analyze_loop_iterations %d: BCT Instrumentation failed: loop variable not integer\n",
7197 loop_num);
7198 return;
7199 }
7200
7201 /* get info about loop bounds and increment */
7202 iteration_info (iteration_var, &initial_value, &increment,
7203 loop_start, loop_end);
7204
7205 /* make sure that all required loop data were found */
7206 if (!(initial_value && increment && comparison_value
7207 && invariant_p (comparison_value) && invariant_p (increment)
7208 && ! indirect_jump_in_function))
7209 {
7210 if (loop_dump_stream) {
7211 fprintf (loop_dump_stream,
7212 "analyze_loop_iterations %d: BCT instrumentation failed because of wrong loop: ", loop_num);
7213 if (!(initial_value && increment && comparison_value)) {
7214 fprintf (loop_dump_stream, "\tbounds not available: ");
7215 if ( ! initial_value )
7216 fprintf (loop_dump_stream, "initial ");
7217 if ( ! increment )
7218 fprintf (loop_dump_stream, "increment ");
7219 if ( ! comparison_value )
7220 fprintf (loop_dump_stream, "comparison ");
7221 fprintf (loop_dump_stream, "\n");
7222 }
7223 if (!invariant_p (comparison_value) || !invariant_p (increment))
7224 fprintf (loop_dump_stream, "\tloop bounds not invariant\n");
7225 }
7226 return;
7227 }
7228
7229 /* make sure that the increment is constant */
7230 if (GET_CODE (increment) != CONST_INT) {
7231 if (loop_dump_stream)
7232 fprintf (loop_dump_stream,
7233 "analyze_loop_iterations %d: instrumentation failed: not arithmetic loop\n",
7234 loop_num);
7235 return;
7236 }
7237
7238 /* make sure that the loop contains neither function call, nor jump on table.
7239 (the count register might be altered by the called function, and might
7240 be used for a branch on table). */
7241 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn)) {
7242 if (GET_CODE (insn) == CALL_INSN){
7243 if (loop_dump_stream)
7244 fprintf (loop_dump_stream,
7245 "analyze_loop_iterations %d: BCT instrumentation failed: function call in the loop\n",
7246 loop_num);
7247 return;
7248 }
7249
7250 if (GET_CODE (insn) == JUMP_INSN
7251 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
7252 || GET_CODE (PATTERN (insn)) == ADDR_VEC)){
7253 if (loop_dump_stream)
7254 fprintf (loop_dump_stream,
7255 "analyze_loop_iterations %d: BCT instrumentation failed: computed branch in the loop\n",
7256 loop_num);
7257 return;
7258 }
7259 }
7260
7261 /* At this point, we are sure that the loop can be instrumented with BCT.
7262 Some of the loops, however, will not be instrumented - the final decision
7263 is taken by insert_bct () */
7264 if (loop_dump_stream)
7265 fprintf (loop_dump_stream,
7266 "analyze_loop_iterations: loop (luid =%d) can be BCT instrumented.\n",
7267 loop_num);
7268
7269 /* mark all enclosing loops that they cannot use count register */
7270 /* ???: In fact, since insert_bct may decide not to instrument this loop,
7271 marking here may prevent instrumenting an enclosing loop that could
7272 actually be instrumented. But since this is rare, it is safer to mark
7273 here in case the order of calling (analyze/insert)_bct would be changed. */
7274 for (i=loop_num; i != -1; i = loop_outer_loop[i])
7275 loop_used_count_register[i] = 1;
7276
7277 /* Set data structures which will be used by the instrumentation phase */
7278 loop_start_value[loop_num] = initial_value;
7279 loop_comparison_value[loop_num] = comparison_value;
7280 loop_increment[loop_num] = increment;
7281 loop_comparison_code[loop_num] = comparison_code;
7282 loop_can_insert_bct[loop_num] = 1;
7283 }
7284
7285
7286 /* instrument loop for insertion of bct instruction. We distinguish between
7287 loops with compile-time bounds, to those with run-time bounds. The loop
7288 behaviour is analized according to the following characteristics/variables:
7289 ; Input variables:
7290 ; comparison-value: the value to which the iteration counter is compared.
7291 ; initial-value: iteration-counter initial value.
7292 ; increment: iteration-counter increment.
7293 ; Computed variables:
7294 ; increment-direction: the sign of the increment.
7295 ; compare-direction: '1' for GT, GTE, '-1' for LT, LTE, '0' for NE.
7296 ; range-direction: sign (comparison-value - initial-value)
7297 We give up on the following cases:
7298 ; loop variable overflow.
7299 ; run-time loop bounds with comparison code NE.
7300 */
7301
7302 static void
7303 insert_bct (loop_start, loop_end)
7304 rtx loop_start, loop_end;
7305 {
7306 rtx initial_value, comparison_value, increment;
7307 enum rtx_code comparison_code;
7308
7309 int increment_direction, compare_direction;
7310 int unsigned_p = 0;
7311
7312 /* if the loop condition is <= or >=, the number of iteration
7313 is 1 more than the range of the bounds of the loop */
7314 int add_iteration = 0;
7315
7316 /* the only machine mode we work with - is the integer of the size that the
7317 machine has */
7318 enum machine_mode loop_var_mode = SImode;
7319
7320 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7321
7322 /* get loop-variables. No need to check that these are valid - already
7323 checked in analyze_loop_iterations (). */
7324 comparison_code = loop_comparison_code[loop_num];
7325 initial_value = loop_start_value[loop_num];
7326 comparison_value = loop_comparison_value[loop_num];
7327 increment = loop_increment[loop_num];
7328
7329 /* check analyze_loop_iterations decision for this loop. */
7330 if (! loop_can_insert_bct[loop_num]){
7331 if (loop_dump_stream)
7332 fprintf (loop_dump_stream,
7333 "insert_bct: [%d] - was decided not to instrument by analyze_loop_iterations ()\n",
7334 loop_num);
7335 return;
7336 }
7337
7338 /* It's impossible to instrument a competely unrolled loop. */
7339 if (loop_unroll_factor [loop_num] == -1)
7340 return;
7341
7342 /* make sure that the last loop insn is a conditional jump .
7343 This check is repeated from analyze_loop_iterations (),
7344 because unrolling might have changed that. */
7345 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7346 || !condjump_p (PREV_INSN (loop_end))) {
7347 if (loop_dump_stream)
7348 fprintf (loop_dump_stream,
7349 "insert_bct: not instrumenting BCT because of invalid branch\n");
7350 return;
7351 }
7352
7353 /* fix increment in case loop was unrolled. */
7354 if (loop_unroll_factor [loop_num] > 1)
7355 increment = GEN_INT ( INTVAL (increment) * loop_unroll_factor [loop_num] );
7356
7357 /* determine properties and directions of the loop */
7358 increment_direction = (INTVAL (increment) > 0) ? 1:-1;
7359 switch ( comparison_code ) {
7360 case LEU:
7361 unsigned_p = 1;
7362 /* fallthrough */
7363 case LE:
7364 compare_direction = 1;
7365 add_iteration = 1;
7366 break;
7367 case GEU:
7368 unsigned_p = 1;
7369 /* fallthrough */
7370 case GE:
7371 compare_direction = -1;
7372 add_iteration = 1;
7373 break;
7374 case EQ:
7375 /* in this case we cannot know the number of iterations */
7376 if (loop_dump_stream)
7377 fprintf (loop_dump_stream,
7378 "insert_bct: %d: loop cannot be instrumented: == in condition\n",
7379 loop_num);
7380 return;
7381 case LTU:
7382 unsigned_p = 1;
7383 /* fallthrough */
7384 case LT:
7385 compare_direction = 1;
7386 break;
7387 case GTU:
7388 unsigned_p = 1;
7389 /* fallthrough */
7390 case GT:
7391 compare_direction = -1;
7392 break;
7393 case NE:
7394 compare_direction = 0;
7395 break;
7396 default:
7397 abort ();
7398 }
7399
7400
7401 /* make sure that the loop does not end by an overflow */
7402 if (compare_direction != increment_direction) {
7403 if (loop_dump_stream)
7404 fprintf (loop_dump_stream,
7405 "insert_bct: %d: loop cannot be instrumented: terminated by overflow\n",
7406 loop_num);
7407 return;
7408 }
7409
7410 /* try to instrument the loop. */
7411
7412 /* Handle the simpler case, where the bounds are known at compile time. */
7413 if (GET_CODE (initial_value) == CONST_INT && GET_CODE (comparison_value) == CONST_INT)
7414 {
7415 int n_iterations;
7416 int increment_value_abs = INTVAL (increment) * increment_direction;
7417
7418 /* check the relation between compare-val and initial-val */
7419 int difference = INTVAL (comparison_value) - INTVAL (initial_value);
7420 int range_direction = (difference > 0) ? 1 : -1;
7421
7422 /* make sure the loop executes enough iterations to gain from BCT */
7423 if (difference > -3 && difference < 3) {
7424 if (loop_dump_stream)
7425 fprintf (loop_dump_stream,
7426 "insert_bct: loop %d not BCT instrumented: too small iteration count.\n",
7427 loop_num);
7428 return;
7429 }
7430
7431 /* make sure that the loop executes at least once */
7432 if ((range_direction == 1 && compare_direction == -1)
7433 || (range_direction == -1 && compare_direction == 1))
7434 {
7435 if (loop_dump_stream)
7436 fprintf (loop_dump_stream,
7437 "insert_bct: loop %d: does not iterate even once. Not instrumenting.\n",
7438 loop_num);
7439 return;
7440 }
7441
7442 /* make sure that the loop does not end by an overflow (in compile time
7443 bounds we must have an additional check for overflow, because here
7444 we also support the compare code of 'NE'. */
7445 if (comparison_code == NE
7446 && increment_direction != range_direction) {
7447 if (loop_dump_stream)
7448 fprintf (loop_dump_stream,
7449 "insert_bct (compile time bounds): %d: loop not instrumented: terminated by overflow\n",
7450 loop_num);
7451 return;
7452 }
7453
7454 /* Determine the number of iterations by:
7455 ;
7456 ; compare-val - initial-val + (increment -1) + additional-iteration
7457 ; num_iterations = -----------------------------------------------------------------
7458 ; increment
7459 */
7460 difference = (range_direction > 0) ? difference : -difference;
7461 #if 0
7462 fprintf (stderr, "difference is: %d\n", difference); /* @*/
7463 fprintf (stderr, "increment_value_abs is: %d\n", increment_value_abs); /* @*/
7464 fprintf (stderr, "add_iteration is: %d\n", add_iteration); /* @*/
7465 fprintf (stderr, "INTVAL (comparison_value) is: %d\n", INTVAL (comparison_value)); /* @*/
7466 fprintf (stderr, "INTVAL (initial_value) is: %d\n", INTVAL (initial_value)); /* @*/
7467 #endif
7468
7469 if (increment_value_abs == 0) {
7470 fprintf (stderr, "insert_bct: error: increment == 0 !!!\n");
7471 abort ();
7472 }
7473 n_iterations = (difference + increment_value_abs - 1 + add_iteration)
7474 / increment_value_abs;
7475
7476 #if 0
7477 fprintf (stderr, "number of iterations is: %d\n", n_iterations); /* @*/
7478 #endif
7479 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
7480
7481 /* Done with this loop. */
7482 return;
7483 }
7484
7485 /* Handle the more complex case, that the bounds are NOT known at compile time. */
7486 /* In this case we generate run_time calculation of the number of iterations */
7487
7488 /* With runtime bounds, if the compare is of the form '!=' we give up */
7489 if (comparison_code == NE) {
7490 if (loop_dump_stream)
7491 fprintf (loop_dump_stream,
7492 "insert_bct: fail for loop %d: runtime bounds with != comparison\n",
7493 loop_num);
7494 return;
7495 }
7496
7497 else {
7498 /* We rely on the existence of run-time guard to ensure that the
7499 loop executes at least once. */
7500 rtx sequence;
7501 rtx iterations_num_reg;
7502
7503 int increment_value_abs = INTVAL (increment) * increment_direction;
7504
7505 /* make sure that the increment is a power of two, otherwise (an
7506 expensive) divide is needed. */
7507 if (exact_log2 (increment_value_abs) == -1)
7508 {
7509 if (loop_dump_stream)
7510 fprintf (loop_dump_stream,
7511 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
7512 return;
7513 }
7514
7515 /* compute the number of iterations */
7516 start_sequence ();
7517 {
7518 /* CYGNUS LOCAL: HAIFA bug fix */
7519 rtx temp_reg;
7520
7521 /* Again, the number of iterations is calculated by:
7522 ;
7523 ; compare-val - initial-val + (increment -1) + additional-iteration
7524 ; num_iterations = -----------------------------------------------------------------
7525 ; increment
7526 */
7527 /* ??? Do we have to call copy_rtx here before passing rtx to
7528 expand_binop? */
7529 if (compare_direction > 0) {
7530 /* <, <= :the loop variable is increasing */
7531 temp_reg = expand_binop (loop_var_mode, sub_optab, comparison_value,
7532 initial_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7533 }
7534 else {
7535 temp_reg = expand_binop (loop_var_mode, sub_optab, initial_value,
7536 comparison_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7537 }
7538
7539 if (increment_value_abs - 1 + add_iteration != 0)
7540 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
7541 GEN_INT (increment_value_abs - 1 + add_iteration),
7542 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7543
7544 if (increment_value_abs != 1)
7545 {
7546 /* ??? This will generate an expensive divide instruction for
7547 most targets. The original authors apparently expected this
7548 to be a shift, since they test for power-of-2 divisors above,
7549 but just naively generating a divide instruction will not give
7550 a shift. It happens to work for the PowerPC target because
7551 the rs6000.md file has a divide pattern that emits shifts.
7552 It will probably not work for any other target. */
7553 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
7554 temp_reg,
7555 GEN_INT (increment_value_abs),
7556 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7557 }
7558 else
7559 iterations_num_reg = temp_reg;
7560 /* END CYGNUS LOCAL: HAIFA bug fix */
7561 }
7562 sequence = gen_sequence ();
7563 end_sequence ();
7564 emit_insn_before (sequence, loop_start);
7565 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
7566 }
7567 }
7568
7569 /* instrument loop by inserting a bct in it. This is done in the following way:
7570 1. A new register is created and assigned the hard register number of the count
7571 register.
7572 2. In the head of the loop the new variable is initialized by the value passed in the
7573 loop_num_iterations parameter.
7574 3. At the end of the loop, comparison of the register with 0 is generated.
7575 The created comparison follows the pattern defined for the
7576 decrement_and_branch_on_count insn, so this insn will be generated in assembly
7577 generation phase.
7578 4. The compare&branch on the old variable is deleted. So, if the loop-variable was
7579 not used elsewhere, it will be eliminated by data-flow analisys. */
7580
7581 static void
7582 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
7583 rtx loop_start, loop_end;
7584 rtx loop_num_iterations;
7585 {
7586 rtx temp_reg1, temp_reg2;
7587 rtx start_label;
7588
7589 rtx sequence;
7590 enum machine_mode loop_var_mode = SImode;
7591
7592 #ifdef HAVE_decrement_and_branch_on_count
7593 if (HAVE_decrement_and_branch_on_count)
7594 {
7595 if (loop_dump_stream)
7596 fprintf (loop_dump_stream, "Loop: Inserting BCT\n");
7597
7598 /* eliminate the check on the old variable */
7599 delete_insn (PREV_INSN (loop_end));
7600 delete_insn (PREV_INSN (loop_end));
7601
7602 /* insert the label which will delimit the start of the loop */
7603 start_label = gen_label_rtx ();
7604 emit_label_after (start_label, loop_start);
7605
7606 /* insert initialization of the count register into the loop header */
7607 start_sequence ();
7608 temp_reg1 = gen_reg_rtx (loop_var_mode);
7609 emit_insn (gen_move_insn (temp_reg1, loop_num_iterations));
7610
7611 /* this will be count register */
7612 temp_reg2 = gen_rtx (REG, loop_var_mode, COUNT_REGISTER_REGNUM);
7613 /* we have to move the value to the count register from an GPR
7614 because rtx pointed to by loop_num_iterations could contain
7615 expression which cannot be moved into count register */
7616 emit_insn (gen_move_insn (temp_reg2, temp_reg1));
7617
7618 sequence = gen_sequence ();
7619 end_sequence ();
7620 emit_insn_after (sequence, loop_start);
7621
7622 /* insert new comparison on the count register instead of the
7623 old one, generating the needed BCT pattern (that will be
7624 later recognized by assembly generation phase). */
7625 emit_jump_insn_before (gen_decrement_and_branch_on_count (temp_reg2, start_label),
7626 loop_end);
7627 LABEL_NUSES (start_label)++;
7628 }
7629
7630 #endif /* HAVE_decrement_and_branch_on_count */
7631 }
7632 #endif /* HAIFA */
7633
7634 /* Scan the function and determine whether it has indirect (computed) jumps.
7635
7636 This is taken mostly from flow.c; similar code exists elsewhere
7637 in the compiler. It may be useful to put this into rtlanal.c. */
7638 static int
7639 indirect_jump_in_function_p (start)
7640 rtx start;
7641 {
7642 rtx insn;
7643 int is_indirect_jump = 0;
7644
7645 for (insn = start; insn; insn = NEXT_INSN (insn))
7646 if (computed_jump_p (insn))
7647 return 1;
7648
7649 return 0;
7650 }