loop.c (combine_movables): Earlier insns don't match later ones.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include <stdio.h>
38 #include "config.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 #ifdef HAIFA
85 /* The main output of analyze_loop_iterations is placed here */
86
87 int *loop_can_insert_bct;
88
89 /* For each loop, determines whether some of its inner loops has used
90 count register */
91
92 int *loop_used_count_register;
93
94 /* For each loop, remember its unrolling factor (if at all).
95 contents of the array:
96 0/1: not unrolled.
97 -1: completely unrolled - no further instrumentation is needed.
98 >1: holds the exact amount of unrolling. */
99
100 int *loop_unroll_factor;
101 int *loop_unroll_iter;
102
103 /* loop parameters for arithmetic loops. These loops have a loop variable
104 which is initialized to loop_start_value, incremented in each iteration
105 by "loop_increment". At the end of the iteration the loop variable is
106 compared to the loop_comparison_value (using loop_comparison_code). */
107
108 rtx *loop_increment;
109 rtx *loop_comparison_value;
110 rtx *loop_start_value;
111 enum rtx_code *loop_comparison_code;
112
113 /* for debugging: selects sub-range of loops for which the bct optimization
114 is invoked. The numbering is per compilation-unit. */
115 int dbg_bct_min = -1;
116 int dbg_bct_max = -1;
117 #endif /* HAIFA */
118
119
120 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
121 really a loop (an insn outside the loop branches into it). */
122
123 static char *loop_invalid;
124
125 /* Indexed by loop number, links together all LABEL_REFs which refer to
126 code labels outside the loop. Used by routines that need to know all
127 loop exits, such as final_biv_value and final_giv_value.
128
129 This does not include loop exits due to return instructions. This is
130 because all bivs and givs are pseudos, and hence must be dead after a
131 return, so the presense of a return does not affect any of the
132 optimizations that use this info. It is simpler to just not include return
133 instructions on this list. */
134
135 rtx *loop_number_exit_labels;
136
137 /* Indexed by loop number, counts the number of LABEL_REFs on
138 loop_number_exit_labels for this loop and all loops nested inside it. */
139
140 int *loop_number_exit_count;
141
142 /* Holds the number of loop iterations. It is zero if the number could not be
143 calculated. Must be unsigned since the number of iterations can
144 be as high as 2^wordsize-1. For loops with a wider iterator, this number
145 will will be zero if the number of loop iterations is too large for an
146 unsigned integer to hold. */
147
148 unsigned HOST_WIDE_INT loop_n_iterations;
149
150 /* Nonzero if there is a subroutine call in the current loop. */
151
152 static int loop_has_call;
153
154 /* Nonzero if there is a volatile memory reference in the current
155 loop. */
156
157 static int loop_has_volatile;
158
159 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
160 current loop. A continue statement will generate a branch to
161 NEXT_INSN (loop_continue). */
162
163 static rtx loop_continue;
164
165 /* Indexed by register number, contains the number of times the reg
166 is set during the loop being scanned.
167 During code motion, a negative value indicates a reg that has been
168 made a candidate; in particular -2 means that it is an candidate that
169 we know is equal to a constant and -1 means that it is an candidate
170 not known equal to a constant.
171 After code motion, regs moved have 0 (which is accurate now)
172 while the failed candidates have the original number of times set.
173
174 Therefore, at all times, == 0 indicates an invariant register;
175 < 0 a conditionally invariant one. */
176
177 static int *n_times_set;
178
179 /* Original value of n_times_set; same except that this value
180 is not set negative for a reg whose sets have been made candidates
181 and not set to 0 for a reg that is moved. */
182
183 static int *n_times_used;
184
185 /* Index by register number, 1 indicates that the register
186 cannot be moved or strength reduced. */
187
188 static char *may_not_optimize;
189
190 /* Nonzero means reg N has already been moved out of one loop.
191 This reduces the desire to move it out of another. */
192
193 static char *moved_once;
194
195 /* Array of MEMs that are stored in this loop. If there are too many to fit
196 here, we just turn on unknown_address_altered. */
197
198 #define NUM_STORES 30
199 static rtx loop_store_mems[NUM_STORES];
200
201 /* Index of first available slot in above array. */
202 static int loop_store_mems_idx;
203
204 /* Nonzero if we don't know what MEMs were changed in the current loop.
205 This happens if the loop contains a call (in which case `loop_has_call'
206 will also be set) or if we store into more than NUM_STORES MEMs. */
207
208 static int unknown_address_altered;
209
210 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
211 static int num_movables;
212
213 /* Count of memory write instructions discovered in the loop. */
214 static int num_mem_sets;
215
216 /* Number of loops contained within the current one, including itself. */
217 static int loops_enclosed;
218
219 /* Bound on pseudo register number before loop optimization.
220 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
221 int max_reg_before_loop;
222
223 /* This obstack is used in product_cheap_p to allocate its rtl. It
224 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
225 If we used the same obstack that it did, we would be deallocating
226 that array. */
227
228 static struct obstack temp_obstack;
229
230 /* This is where the pointer to the obstack being used for RTL is stored. */
231
232 extern struct obstack *rtl_obstack;
233
234 #define obstack_chunk_alloc xmalloc
235 #define obstack_chunk_free free
236
237 extern char *oballoc ();
238 \f
239 /* During the analysis of a loop, a chain of `struct movable's
240 is made to record all the movable insns found.
241 Then the entire chain can be scanned to decide which to move. */
242
243 struct movable
244 {
245 rtx insn; /* A movable insn */
246 rtx set_src; /* The expression this reg is set from. */
247 rtx set_dest; /* The destination of this SET. */
248 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
249 of any registers used within the LIBCALL. */
250 int consec; /* Number of consecutive following insns
251 that must be moved with this one. */
252 int regno; /* The register it sets */
253 short lifetime; /* lifetime of that register;
254 may be adjusted when matching movables
255 that load the same value are found. */
256 short savings; /* Number of insns we can move for this reg,
257 including other movables that force this
258 or match this one. */
259 unsigned int cond : 1; /* 1 if only conditionally movable */
260 unsigned int force : 1; /* 1 means MUST move this insn */
261 unsigned int global : 1; /* 1 means reg is live outside this loop */
262 /* If PARTIAL is 1, GLOBAL means something different:
263 that the reg is live outside the range from where it is set
264 to the following label. */
265 unsigned int done : 1; /* 1 inhibits further processing of this */
266
267 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
268 In particular, moving it does not make it
269 invariant. */
270 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
271 load SRC, rather than copying INSN. */
272 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
273 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
274 that we should avoid changing when clearing
275 the rest of the reg. */
276 struct movable *match; /* First entry for same value */
277 struct movable *forces; /* An insn that must be moved if this is */
278 struct movable *next;
279 };
280
281 FILE *loop_dump_stream;
282
283 /* Forward declarations. */
284
285 static void find_and_verify_loops ();
286 static void mark_loop_jump ();
287 static void prescan_loop ();
288 static int reg_in_basic_block_p ();
289 static int consec_sets_invariant_p ();
290 static rtx libcall_other_reg ();
291 static int labels_in_range_p ();
292 static void count_loop_regs_set ();
293 static void note_addr_stored ();
294 static int loop_reg_used_before_p ();
295 static void scan_loop ();
296 static void replace_call_address ();
297 static rtx skip_consec_insns ();
298 static int libcall_benefit ();
299 static void ignore_some_movables ();
300 static void force_movables ();
301 static void combine_movables ();
302 static int rtx_equal_for_loop_p ();
303 static void move_movables ();
304 static void strength_reduce ();
305 static int valid_initial_value_p ();
306 static void find_mem_givs ();
307 static void record_biv ();
308 static void check_final_value ();
309 static void record_giv ();
310 static void update_giv_derive ();
311 static int basic_induction_var ();
312 static rtx simplify_giv_expr ();
313 static int general_induction_var ();
314 static int consec_sets_giv ();
315 static int check_dbra_loop ();
316 static rtx express_from ();
317 static int combine_givs_p ();
318 static void combine_givs ();
319 static int product_cheap_p ();
320 static int maybe_eliminate_biv ();
321 static int maybe_eliminate_biv_1 ();
322 static int last_use_this_basic_block ();
323 static void record_initial ();
324 static void update_reg_last_use ();
325
326 #ifdef HAIFA
327 /* This is extern from unroll.c */
328 void iteration_info ();
329
330 /* Two main functions for implementing bct:
331 first - to be called before loop unrolling, and the second - after */
332 static void analyze_loop_iterations ();
333 static void insert_bct ();
334
335 /* Auxiliary function that inserts the bct pattern into the loop */
336 static void instrument_loop_bct ();
337
338 /* Indirect_jump_in_function is computed once per function. */
339 int indirect_jump_in_function = 0;
340 static int indirect_jump_in_function_p ();
341
342 int loop_number ();
343
344 /* Debugging functions. */
345 int fix_bct_param ();
346 static int check_bct_param ();
347 #endif /* HAIFA */
348
349 \f
350 /* Relative gain of eliminating various kinds of operations. */
351 int add_cost;
352 #if 0
353 int shift_cost;
354 int mult_cost;
355 #endif
356
357 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
358 copy the value of the strength reduced giv to its original register. */
359 int copy_cost;
360
361 void
362 init_loop ()
363 {
364 char *free_point = (char *) oballoc (1);
365 rtx reg = gen_rtx (REG, word_mode, LAST_VIRTUAL_REGISTER + 1);
366
367 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
368
369 /* We multiply by 2 to reconcile the difference in scale between
370 these two ways of computing costs. Otherwise the cost of a copy
371 will be far less than the cost of an add. */
372
373 copy_cost = 2 * 2;
374
375 /* Free the objects we just allocated. */
376 obfree (free_point);
377
378 /* Initialize the obstack used for rtl in product_cheap_p. */
379 gcc_obstack_init (&temp_obstack);
380 }
381 \f
382 /* Entry point of this file. Perform loop optimization
383 on the current function. F is the first insn of the function
384 and DUMPFILE is a stream for output of a trace of actions taken
385 (or 0 if none should be output). */
386
387 void
388 loop_optimize (f, dumpfile)
389 /* f is the first instruction of a chain of insns for one function */
390 rtx f;
391 FILE *dumpfile;
392 {
393 register rtx insn;
394 register int i;
395 rtx last_insn;
396
397 loop_dump_stream = dumpfile;
398
399 init_recog_no_volatile ();
400 init_alias_analysis ();
401
402 max_reg_before_loop = max_reg_num ();
403
404 moved_once = (char *) alloca (max_reg_before_loop);
405 bzero (moved_once, max_reg_before_loop);
406
407 regs_may_share = 0;
408
409 /* Count the number of loops. */
410
411 max_loop_num = 0;
412 for (insn = f; insn; insn = NEXT_INSN (insn))
413 {
414 if (GET_CODE (insn) == NOTE
415 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
416 max_loop_num++;
417 }
418
419 /* Don't waste time if no loops. */
420 if (max_loop_num == 0)
421 return;
422
423 /* Get size to use for tables indexed by uids.
424 Leave some space for labels allocated by find_and_verify_loops. */
425 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
426
427 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
428 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
429
430 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
431 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
432
433 /* Allocate tables for recording each loop. We set each entry, so they need
434 not be zeroed. */
435 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
436 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
437 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
438 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
439 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
440 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
441
442 #ifdef HAIFA
443 /* Allocate for BCT optimization */
444 loop_can_insert_bct = (int *) alloca (max_loop_num * sizeof (int));
445 bzero ((char *) loop_can_insert_bct, max_loop_num * sizeof (int));
446
447 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
448 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
449
450 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
451 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
452
453 loop_unroll_iter = (int *) alloca (max_loop_num *sizeof (int));
454 bzero ((char *) loop_unroll_iter, max_loop_num * sizeof (int));
455
456 loop_increment = (rtx *) alloca (max_loop_num * sizeof (rtx));
457 loop_comparison_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
458 loop_start_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
459 bzero ((char *) loop_increment, max_loop_num * sizeof (rtx));
460 bzero ((char *) loop_comparison_value, max_loop_num * sizeof (rtx));
461 bzero ((char *) loop_start_value, max_loop_num * sizeof (rtx));
462
463 loop_comparison_code
464 = (enum rtx_code *) alloca (max_loop_num * sizeof (enum rtx_code));
465 bzero ((char *) loop_comparison_code, max_loop_num * sizeof (enum rtx_code));
466 #endif /* HAIFA */
467
468 /* Find and process each loop.
469 First, find them, and record them in order of their beginnings. */
470 find_and_verify_loops (f);
471
472 /* Now find all register lifetimes. This must be done after
473 find_and_verify_loops, because it might reorder the insns in the
474 function. */
475 reg_scan (f, max_reg_num (), 1);
476
477 /* See if we went too far. */
478 if (get_max_uid () > max_uid_for_loop)
479 abort ();
480
481 /* Compute the mapping from uids to luids.
482 LUIDs are numbers assigned to insns, like uids,
483 except that luids increase monotonically through the code.
484 Don't assign luids to line-number NOTEs, so that the distance in luids
485 between two insns is not affected by -g. */
486
487 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
488 {
489 last_insn = insn;
490 if (GET_CODE (insn) != NOTE
491 || NOTE_LINE_NUMBER (insn) <= 0)
492 uid_luid[INSN_UID (insn)] = ++i;
493 else
494 /* Give a line number note the same luid as preceding insn. */
495 uid_luid[INSN_UID (insn)] = i;
496 }
497
498 max_luid = i + 1;
499
500 /* Don't leave gaps in uid_luid for insns that have been
501 deleted. It is possible that the first or last insn
502 using some register has been deleted by cross-jumping.
503 Make sure that uid_luid for that former insn's uid
504 points to the general area where that insn used to be. */
505 for (i = 0; i < max_uid_for_loop; i++)
506 {
507 uid_luid[0] = uid_luid[i];
508 if (uid_luid[0] != 0)
509 break;
510 }
511 for (i = 0; i < max_uid_for_loop; i++)
512 if (uid_luid[i] == 0)
513 uid_luid[i] = uid_luid[i - 1];
514
515 /* Create a mapping from loops to BLOCK tree nodes. */
516 if (flag_unroll_loops && write_symbols != NO_DEBUG)
517 find_loop_tree_blocks ();
518
519 #ifdef HAIFA
520 /* determine if the function has indirect jump. If it does,
521 we cannot instrument loops in this function with bct */
522 indirect_jump_in_function = indirect_jump_in_function_p (f);
523 #endif /* HAIFA */
524
525 /* Now scan the loops, last ones first, since this means inner ones are done
526 before outer ones. */
527 for (i = max_loop_num-1; i >= 0; i--)
528 if (! loop_invalid[i] && loop_number_loop_ends[i])
529 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
530 max_reg_num ());
531
532 /* If debugging and unrolling loops, we must replicate the tree nodes
533 corresponding to the blocks inside the loop, so that the original one
534 to one mapping will remain. */
535 if (flag_unroll_loops && write_symbols != NO_DEBUG)
536 unroll_block_trees ();
537 }
538 \f
539 /* Optimize one loop whose start is LOOP_START and end is END.
540 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
541 NOTE_INSN_LOOP_END. */
542
543 /* ??? Could also move memory writes out of loops if the destination address
544 is invariant, the source is invariant, the memory write is not volatile,
545 and if we can prove that no read inside the loop can read this address
546 before the write occurs. If there is a read of this address after the
547 write, then we can also mark the memory read as invariant. */
548
549 static void
550 scan_loop (loop_start, end, nregs)
551 rtx loop_start, end;
552 int nregs;
553 {
554 register int i;
555 register rtx p;
556 /* 1 if we are scanning insns that could be executed zero times. */
557 int maybe_never = 0;
558 /* 1 if we are scanning insns that might never be executed
559 due to a subroutine call which might exit before they are reached. */
560 int call_passed = 0;
561 /* For a rotated loop that is entered near the bottom,
562 this is the label at the top. Otherwise it is zero. */
563 rtx loop_top = 0;
564 /* Jump insn that enters the loop, or 0 if control drops in. */
565 rtx loop_entry_jump = 0;
566 /* Place in the loop where control enters. */
567 rtx scan_start;
568 /* Number of insns in the loop. */
569 int insn_count;
570 int in_libcall = 0;
571 int tem;
572 rtx temp;
573 /* The SET from an insn, if it is the only SET in the insn. */
574 rtx set, set1;
575 /* Chain describing insns movable in current loop. */
576 struct movable *movables = 0;
577 /* Last element in `movables' -- so we can add elements at the end. */
578 struct movable *last_movable = 0;
579 /* Ratio of extra register life span we can justify
580 for saving an instruction. More if loop doesn't call subroutines
581 since in that case saving an insn makes more difference
582 and more registers are available. */
583 int threshold;
584 /* If we have calls, contains the insn in which a register was used
585 if it was used exactly once; contains const0_rtx if it was used more
586 than once. */
587 rtx *reg_single_usage = 0;
588 /* Nonzero if we are scanning instructions in a sub-loop. */
589 int loop_depth = 0;
590
591 n_times_set = (int *) alloca (nregs * sizeof (int));
592 n_times_used = (int *) alloca (nregs * sizeof (int));
593 may_not_optimize = (char *) alloca (nregs);
594
595 /* Determine whether this loop starts with a jump down to a test at
596 the end. This will occur for a small number of loops with a test
597 that is too complex to duplicate in front of the loop.
598
599 We search for the first insn or label in the loop, skipping NOTEs.
600 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
601 (because we might have a loop executed only once that contains a
602 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
603 (in case we have a degenerate loop).
604
605 Note that if we mistakenly think that a loop is entered at the top
606 when, in fact, it is entered at the exit test, the only effect will be
607 slightly poorer optimization. Making the opposite error can generate
608 incorrect code. Since very few loops now start with a jump to the
609 exit test, the code here to detect that case is very conservative. */
610
611 for (p = NEXT_INSN (loop_start);
612 p != end
613 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
614 && (GET_CODE (p) != NOTE
615 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
616 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
617 p = NEXT_INSN (p))
618 ;
619
620 scan_start = p;
621
622 /* Set up variables describing this loop. */
623 prescan_loop (loop_start, end);
624 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
625
626 /* If loop has a jump before the first label,
627 the true entry is the target of that jump.
628 Start scan from there.
629 But record in LOOP_TOP the place where the end-test jumps
630 back to so we can scan that after the end of the loop. */
631 if (GET_CODE (p) == JUMP_INSN)
632 {
633 loop_entry_jump = p;
634
635 /* Loop entry must be unconditional jump (and not a RETURN) */
636 if (simplejump_p (p)
637 && JUMP_LABEL (p) != 0
638 /* Check to see whether the jump actually
639 jumps out of the loop (meaning it's no loop).
640 This case can happen for things like
641 do {..} while (0). If this label was generated previously
642 by loop, we can't tell anything about it and have to reject
643 the loop. */
644 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
645 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
646 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
647 {
648 loop_top = next_label (scan_start);
649 scan_start = JUMP_LABEL (p);
650 }
651 }
652
653 /* If SCAN_START was an insn created by loop, we don't know its luid
654 as required by loop_reg_used_before_p. So skip such loops. (This
655 test may never be true, but it's best to play it safe.)
656
657 Also, skip loops where we do not start scanning at a label. This
658 test also rejects loops starting with a JUMP_INSN that failed the
659 test above. */
660
661 if (INSN_UID (scan_start) >= max_uid_for_loop
662 || GET_CODE (scan_start) != CODE_LABEL)
663 {
664 if (loop_dump_stream)
665 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
666 INSN_UID (loop_start), INSN_UID (end));
667 return;
668 }
669
670 /* Count number of times each reg is set during this loop.
671 Set may_not_optimize[I] if it is not safe to move out
672 the setting of register I. If this loop has calls, set
673 reg_single_usage[I]. */
674
675 bzero ((char *) n_times_set, nregs * sizeof (int));
676 bzero (may_not_optimize, nregs);
677
678 if (loop_has_call)
679 {
680 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
681 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
682 }
683
684 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
685 may_not_optimize, reg_single_usage, &insn_count, nregs);
686
687 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
688 may_not_optimize[i] = 1, n_times_set[i] = 1;
689 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
690
691 if (loop_dump_stream)
692 {
693 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
694 INSN_UID (loop_start), INSN_UID (end), insn_count);
695 if (loop_continue)
696 fprintf (loop_dump_stream, "Continue at insn %d.\n",
697 INSN_UID (loop_continue));
698 }
699
700 /* Scan through the loop finding insns that are safe to move.
701 Set n_times_set negative for the reg being set, so that
702 this reg will be considered invariant for subsequent insns.
703 We consider whether subsequent insns use the reg
704 in deciding whether it is worth actually moving.
705
706 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
707 and therefore it is possible that the insns we are scanning
708 would never be executed. At such times, we must make sure
709 that it is safe to execute the insn once instead of zero times.
710 When MAYBE_NEVER is 0, all insns will be executed at least once
711 so that is not a problem. */
712
713 p = scan_start;
714 while (1)
715 {
716 p = NEXT_INSN (p);
717 /* At end of a straight-in loop, we are done.
718 At end of a loop entered at the bottom, scan the top. */
719 if (p == scan_start)
720 break;
721 if (p == end)
722 {
723 if (loop_top != 0)
724 p = loop_top;
725 else
726 break;
727 if (p == scan_start)
728 break;
729 }
730
731 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
732 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
733 in_libcall = 1;
734 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
735 && find_reg_note (p, REG_RETVAL, NULL_RTX))
736 in_libcall = 0;
737
738 if (GET_CODE (p) == INSN
739 && (set = single_set (p))
740 && GET_CODE (SET_DEST (set)) == REG
741 && ! may_not_optimize[REGNO (SET_DEST (set))])
742 {
743 int tem1 = 0;
744 int tem2 = 0;
745 int move_insn = 0;
746 rtx src = SET_SRC (set);
747 rtx dependencies = 0;
748
749 /* Figure out what to use as a source of this insn. If a REG_EQUIV
750 note is given or if a REG_EQUAL note with a constant operand is
751 specified, use it as the source and mark that we should move
752 this insn by calling emit_move_insn rather that duplicating the
753 insn.
754
755 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
756 is present. */
757 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
758 if (temp)
759 src = XEXP (temp, 0), move_insn = 1;
760 else
761 {
762 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
763 if (temp && CONSTANT_P (XEXP (temp, 0)))
764 src = XEXP (temp, 0), move_insn = 1;
765 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
766 {
767 src = XEXP (temp, 0);
768 /* A libcall block can use regs that don't appear in
769 the equivalent expression. To move the libcall,
770 we must move those regs too. */
771 dependencies = libcall_other_reg (p, src);
772 }
773 }
774
775 /* Don't try to optimize a register that was made
776 by loop-optimization for an inner loop.
777 We don't know its life-span, so we can't compute the benefit. */
778 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
779 ;
780 /* In order to move a register, we need to have one of three cases:
781 (1) it is used only in the same basic block as the set
782 (2) it is not a user variable and it is not used in the
783 exit test (this can cause the variable to be used
784 before it is set just like a user-variable).
785 (3) the set is guaranteed to be executed once the loop starts,
786 and the reg is not used until after that. */
787 else if (! ((! maybe_never
788 && ! loop_reg_used_before_p (set, p, loop_start,
789 scan_start, end))
790 || (! REG_USERVAR_P (SET_DEST (set))
791 && ! REG_LOOP_TEST_P (SET_DEST (set)))
792 || reg_in_basic_block_p (p, SET_DEST (set))))
793 ;
794 else if ((tem = invariant_p (src))
795 && (dependencies == 0
796 || (tem2 = invariant_p (dependencies)) != 0)
797 && (n_times_set[REGNO (SET_DEST (set))] == 1
798 || (tem1
799 = consec_sets_invariant_p (SET_DEST (set),
800 n_times_set[REGNO (SET_DEST (set))],
801 p)))
802 /* If the insn can cause a trap (such as divide by zero),
803 can't move it unless it's guaranteed to be executed
804 once loop is entered. Even a function call might
805 prevent the trap insn from being reached
806 (since it might exit!) */
807 && ! ((maybe_never || call_passed)
808 && may_trap_p (src)))
809 {
810 register struct movable *m;
811 register int regno = REGNO (SET_DEST (set));
812
813 /* A potential lossage is where we have a case where two insns
814 can be combined as long as they are both in the loop, but
815 we move one of them outside the loop. For large loops,
816 this can lose. The most common case of this is the address
817 of a function being called.
818
819 Therefore, if this register is marked as being used exactly
820 once if we are in a loop with calls (a "large loop"), see if
821 we can replace the usage of this register with the source
822 of this SET. If we can, delete this insn.
823
824 Don't do this if P has a REG_RETVAL note or if we have
825 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
826
827 if (reg_single_usage && reg_single_usage[regno] != 0
828 && reg_single_usage[regno] != const0_rtx
829 && REGNO_FIRST_UID (regno) == INSN_UID (p)
830 && (REGNO_LAST_UID (regno)
831 == INSN_UID (reg_single_usage[regno]))
832 && n_times_set[REGNO (SET_DEST (set))] == 1
833 && ! side_effects_p (SET_SRC (set))
834 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
835 #ifdef SMALL_REGISTER_CLASSES
836 && ! (SMALL_REGISTER_CLASSES
837 && GET_CODE (SET_SRC (set)) == REG
838 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
839 #endif
840 /* This test is not redundant; SET_SRC (set) might be
841 a call-clobbered register and the life of REGNO
842 might span a call. */
843 && ! modified_between_p (SET_SRC (set), p,
844 reg_single_usage[regno])
845 && no_labels_between_p (p, reg_single_usage[regno])
846 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
847 reg_single_usage[regno]))
848 {
849 /* Replace any usage in a REG_EQUAL note. Must copy the
850 new source, so that we don't get rtx sharing between the
851 SET_SOURCE and REG_NOTES of insn p. */
852 REG_NOTES (reg_single_usage[regno])
853 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
854 SET_DEST (set), copy_rtx (SET_SRC (set)));
855
856 PUT_CODE (p, NOTE);
857 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
858 NOTE_SOURCE_FILE (p) = 0;
859 n_times_set[regno] = 0;
860 continue;
861 }
862
863 m = (struct movable *) alloca (sizeof (struct movable));
864 m->next = 0;
865 m->insn = p;
866 m->set_src = src;
867 m->dependencies = dependencies;
868 m->set_dest = SET_DEST (set);
869 m->force = 0;
870 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
871 m->done = 0;
872 m->forces = 0;
873 m->partial = 0;
874 m->move_insn = move_insn;
875 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
876 m->savemode = VOIDmode;
877 m->regno = regno;
878 /* Set M->cond if either invariant_p or consec_sets_invariant_p
879 returned 2 (only conditionally invariant). */
880 m->cond = ((tem | tem1 | tem2) > 1);
881 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
882 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
883 m->match = 0;
884 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
885 - uid_luid[REGNO_FIRST_UID (regno)]);
886 m->savings = n_times_used[regno];
887 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
888 m->savings += libcall_benefit (p);
889 n_times_set[regno] = move_insn ? -2 : -1;
890 /* Add M to the end of the chain MOVABLES. */
891 if (movables == 0)
892 movables = m;
893 else
894 last_movable->next = m;
895 last_movable = m;
896
897 if (m->consec > 0)
898 {
899 /* Skip this insn, not checking REG_LIBCALL notes. */
900 p = next_nonnote_insn (p);
901 /* Skip the consecutive insns, if there are any. */
902 p = skip_consec_insns (p, m->consec);
903 /* Back up to the last insn of the consecutive group. */
904 p = prev_nonnote_insn (p);
905
906 /* We must now reset m->move_insn, m->is_equiv, and possibly
907 m->set_src to correspond to the effects of all the
908 insns. */
909 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
910 if (temp)
911 m->set_src = XEXP (temp, 0), m->move_insn = 1;
912 else
913 {
914 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
915 if (temp && CONSTANT_P (XEXP (temp, 0)))
916 m->set_src = XEXP (temp, 0), m->move_insn = 1;
917 else
918 m->move_insn = 0;
919
920 }
921 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
922 }
923 }
924 /* If this register is always set within a STRICT_LOW_PART
925 or set to zero, then its high bytes are constant.
926 So clear them outside the loop and within the loop
927 just load the low bytes.
928 We must check that the machine has an instruction to do so.
929 Also, if the value loaded into the register
930 depends on the same register, this cannot be done. */
931 else if (SET_SRC (set) == const0_rtx
932 && GET_CODE (NEXT_INSN (p)) == INSN
933 && (set1 = single_set (NEXT_INSN (p)))
934 && GET_CODE (set1) == SET
935 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
936 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
937 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
938 == SET_DEST (set))
939 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
940 {
941 register int regno = REGNO (SET_DEST (set));
942 if (n_times_set[regno] == 2)
943 {
944 register struct movable *m;
945 m = (struct movable *) alloca (sizeof (struct movable));
946 m->next = 0;
947 m->insn = p;
948 m->set_dest = SET_DEST (set);
949 m->dependencies = 0;
950 m->force = 0;
951 m->consec = 0;
952 m->done = 0;
953 m->forces = 0;
954 m->move_insn = 0;
955 m->partial = 1;
956 /* If the insn may not be executed on some cycles,
957 we can't clear the whole reg; clear just high part.
958 Not even if the reg is used only within this loop.
959 Consider this:
960 while (1)
961 while (s != t) {
962 if (foo ()) x = *s;
963 use (x);
964 }
965 Clearing x before the inner loop could clobber a value
966 being saved from the last time around the outer loop.
967 However, if the reg is not used outside this loop
968 and all uses of the register are in the same
969 basic block as the store, there is no problem.
970
971 If this insn was made by loop, we don't know its
972 INSN_LUID and hence must make a conservative
973 assumption. */
974 m->global = (INSN_UID (p) >= max_uid_for_loop
975 || (uid_luid[REGNO_LAST_UID (regno)]
976 > INSN_LUID (end))
977 || (uid_luid[REGNO_FIRST_UID (regno)]
978 < INSN_LUID (p))
979 || (labels_in_range_p
980 (p, uid_luid[REGNO_FIRST_UID (regno)])));
981 if (maybe_never && m->global)
982 m->savemode = GET_MODE (SET_SRC (set1));
983 else
984 m->savemode = VOIDmode;
985 m->regno = regno;
986 m->cond = 0;
987 m->match = 0;
988 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
989 - uid_luid[REGNO_FIRST_UID (regno)]);
990 m->savings = 1;
991 n_times_set[regno] = -1;
992 /* Add M to the end of the chain MOVABLES. */
993 if (movables == 0)
994 movables = m;
995 else
996 last_movable->next = m;
997 last_movable = m;
998 }
999 }
1000 }
1001 /* Past a call insn, we get to insns which might not be executed
1002 because the call might exit. This matters for insns that trap.
1003 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1004 so they don't count. */
1005 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1006 call_passed = 1;
1007 /* Past a label or a jump, we get to insns for which we
1008 can't count on whether or how many times they will be
1009 executed during each iteration. Therefore, we can
1010 only move out sets of trivial variables
1011 (those not used after the loop). */
1012 /* Similar code appears twice in strength_reduce. */
1013 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1014 /* If we enter the loop in the middle, and scan around to the
1015 beginning, don't set maybe_never for that. This must be an
1016 unconditional jump, otherwise the code at the top of the
1017 loop might never be executed. Unconditional jumps are
1018 followed a by barrier then loop end. */
1019 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1020 && NEXT_INSN (NEXT_INSN (p)) == end
1021 && simplejump_p (p)))
1022 maybe_never = 1;
1023 else if (GET_CODE (p) == NOTE)
1024 {
1025 /* At the virtual top of a converted loop, insns are again known to
1026 be executed: logically, the loop begins here even though the exit
1027 code has been duplicated. */
1028 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1029 maybe_never = call_passed = 0;
1030 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1031 loop_depth++;
1032 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1033 loop_depth--;
1034 }
1035 }
1036
1037 /* If one movable subsumes another, ignore that other. */
1038
1039 ignore_some_movables (movables);
1040
1041 /* For each movable insn, see if the reg that it loads
1042 leads when it dies right into another conditionally movable insn.
1043 If so, record that the second insn "forces" the first one,
1044 since the second can be moved only if the first is. */
1045
1046 force_movables (movables);
1047
1048 /* See if there are multiple movable insns that load the same value.
1049 If there are, make all but the first point at the first one
1050 through the `match' field, and add the priorities of them
1051 all together as the priority of the first. */
1052
1053 combine_movables (movables, nregs);
1054
1055 /* Now consider each movable insn to decide whether it is worth moving.
1056 Store 0 in n_times_set for each reg that is moved. */
1057
1058 move_movables (movables, threshold,
1059 insn_count, loop_start, end, nregs);
1060
1061 /* Now candidates that still are negative are those not moved.
1062 Change n_times_set to indicate that those are not actually invariant. */
1063 for (i = 0; i < nregs; i++)
1064 if (n_times_set[i] < 0)
1065 n_times_set[i] = n_times_used[i];
1066
1067 if (flag_strength_reduce)
1068 strength_reduce (scan_start, end, loop_top,
1069 insn_count, loop_start, end);
1070 }
1071 \f
1072 /* Add elements to *OUTPUT to record all the pseudo-regs
1073 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1074
1075 void
1076 record_excess_regs (in_this, not_in_this, output)
1077 rtx in_this, not_in_this;
1078 rtx *output;
1079 {
1080 enum rtx_code code;
1081 char *fmt;
1082 int i;
1083
1084 code = GET_CODE (in_this);
1085
1086 switch (code)
1087 {
1088 case PC:
1089 case CC0:
1090 case CONST_INT:
1091 case CONST_DOUBLE:
1092 case CONST:
1093 case SYMBOL_REF:
1094 case LABEL_REF:
1095 return;
1096
1097 case REG:
1098 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1099 && ! reg_mentioned_p (in_this, not_in_this))
1100 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
1101 return;
1102 }
1103
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 {
1107 int j;
1108
1109 switch (fmt[i])
1110 {
1111 case 'E':
1112 for (j = 0; j < XVECLEN (in_this, i); j++)
1113 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1114 break;
1115
1116 case 'e':
1117 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1118 break;
1119 }
1120 }
1121 }
1122 \f
1123 /* Check what regs are referred to in the libcall block ending with INSN,
1124 aside from those mentioned in the equivalent value.
1125 If there are none, return 0.
1126 If there are one or more, return an EXPR_LIST containing all of them. */
1127
1128 static rtx
1129 libcall_other_reg (insn, equiv)
1130 rtx insn, equiv;
1131 {
1132 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1133 rtx p = XEXP (note, 0);
1134 rtx output = 0;
1135
1136 /* First, find all the regs used in the libcall block
1137 that are not mentioned as inputs to the result. */
1138
1139 while (p != insn)
1140 {
1141 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1142 || GET_CODE (p) == CALL_INSN)
1143 record_excess_regs (PATTERN (p), equiv, &output);
1144 p = NEXT_INSN (p);
1145 }
1146
1147 return output;
1148 }
1149 \f
1150 /* Return 1 if all uses of REG
1151 are between INSN and the end of the basic block. */
1152
1153 static int
1154 reg_in_basic_block_p (insn, reg)
1155 rtx insn, reg;
1156 {
1157 int regno = REGNO (reg);
1158 rtx p;
1159
1160 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1161 return 0;
1162
1163 /* Search this basic block for the already recorded last use of the reg. */
1164 for (p = insn; p; p = NEXT_INSN (p))
1165 {
1166 switch (GET_CODE (p))
1167 {
1168 case NOTE:
1169 break;
1170
1171 case INSN:
1172 case CALL_INSN:
1173 /* Ordinary insn: if this is the last use, we win. */
1174 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1175 return 1;
1176 break;
1177
1178 case JUMP_INSN:
1179 /* Jump insn: if this is the last use, we win. */
1180 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1181 return 1;
1182 /* Otherwise, it's the end of the basic block, so we lose. */
1183 return 0;
1184
1185 case CODE_LABEL:
1186 case BARRIER:
1187 /* It's the end of the basic block, so we lose. */
1188 return 0;
1189 }
1190 }
1191
1192 /* The "last use" doesn't follow the "first use"?? */
1193 abort ();
1194 }
1195 \f
1196 /* Compute the benefit of eliminating the insns in the block whose
1197 last insn is LAST. This may be a group of insns used to compute a
1198 value directly or can contain a library call. */
1199
1200 static int
1201 libcall_benefit (last)
1202 rtx last;
1203 {
1204 rtx insn;
1205 int benefit = 0;
1206
1207 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1208 insn != last; insn = NEXT_INSN (insn))
1209 {
1210 if (GET_CODE (insn) == CALL_INSN)
1211 benefit += 10; /* Assume at least this many insns in a library
1212 routine. */
1213 else if (GET_CODE (insn) == INSN
1214 && GET_CODE (PATTERN (insn)) != USE
1215 && GET_CODE (PATTERN (insn)) != CLOBBER)
1216 benefit++;
1217 }
1218
1219 return benefit;
1220 }
1221 \f
1222 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1223
1224 static rtx
1225 skip_consec_insns (insn, count)
1226 rtx insn;
1227 int count;
1228 {
1229 for (; count > 0; count--)
1230 {
1231 rtx temp;
1232
1233 /* If first insn of libcall sequence, skip to end. */
1234 /* Do this at start of loop, since INSN is guaranteed to
1235 be an insn here. */
1236 if (GET_CODE (insn) != NOTE
1237 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1238 insn = XEXP (temp, 0);
1239
1240 do insn = NEXT_INSN (insn);
1241 while (GET_CODE (insn) == NOTE);
1242 }
1243
1244 return insn;
1245 }
1246
1247 /* Ignore any movable whose insn falls within a libcall
1248 which is part of another movable.
1249 We make use of the fact that the movable for the libcall value
1250 was made later and so appears later on the chain. */
1251
1252 static void
1253 ignore_some_movables (movables)
1254 struct movable *movables;
1255 {
1256 register struct movable *m, *m1;
1257
1258 for (m = movables; m; m = m->next)
1259 {
1260 /* Is this a movable for the value of a libcall? */
1261 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1262 if (note)
1263 {
1264 rtx insn;
1265 /* Check for earlier movables inside that range,
1266 and mark them invalid. We cannot use LUIDs here because
1267 insns created by loop.c for prior loops don't have LUIDs.
1268 Rather than reject all such insns from movables, we just
1269 explicitly check each insn in the libcall (since invariant
1270 libcalls aren't that common). */
1271 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1272 for (m1 = movables; m1 != m; m1 = m1->next)
1273 if (m1->insn == insn)
1274 m1->done = 1;
1275 }
1276 }
1277 }
1278
1279 /* For each movable insn, see if the reg that it loads
1280 leads when it dies right into another conditionally movable insn.
1281 If so, record that the second insn "forces" the first one,
1282 since the second can be moved only if the first is. */
1283
1284 static void
1285 force_movables (movables)
1286 struct movable *movables;
1287 {
1288 register struct movable *m, *m1;
1289 for (m1 = movables; m1; m1 = m1->next)
1290 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1291 if (!m1->partial && !m1->done)
1292 {
1293 int regno = m1->regno;
1294 for (m = m1->next; m; m = m->next)
1295 /* ??? Could this be a bug? What if CSE caused the
1296 register of M1 to be used after this insn?
1297 Since CSE does not update regno_last_uid,
1298 this insn M->insn might not be where it dies.
1299 But very likely this doesn't matter; what matters is
1300 that M's reg is computed from M1's reg. */
1301 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1302 && !m->done)
1303 break;
1304 if (m != 0 && m->set_src == m1->set_dest
1305 /* If m->consec, m->set_src isn't valid. */
1306 && m->consec == 0)
1307 m = 0;
1308
1309 /* Increase the priority of the moving the first insn
1310 since it permits the second to be moved as well. */
1311 if (m != 0)
1312 {
1313 m->forces = m1;
1314 m1->lifetime += m->lifetime;
1315 m1->savings += m1->savings;
1316 }
1317 }
1318 }
1319 \f
1320 /* Find invariant expressions that are equal and can be combined into
1321 one register. */
1322
1323 static void
1324 combine_movables (movables, nregs)
1325 struct movable *movables;
1326 int nregs;
1327 {
1328 register struct movable *m;
1329 char *matched_regs = (char *) alloca (nregs);
1330 enum machine_mode mode;
1331
1332 /* Regs that are set more than once are not allowed to match
1333 or be matched. I'm no longer sure why not. */
1334 /* Perhaps testing m->consec_sets would be more appropriate here? */
1335
1336 for (m = movables; m; m = m->next)
1337 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1338 {
1339 register struct movable *m1;
1340 int regno = m->regno;
1341
1342 bzero (matched_regs, nregs);
1343 matched_regs[regno] = 1;
1344
1345 /* We want later insns to match the first one. Don't make the first
1346 one match any later ones. So start this loop at m->next. */
1347 for (m1 = m->next; m1; m1 = m1->next)
1348 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1349 /* A reg used outside the loop mustn't be eliminated. */
1350 && !m1->global
1351 /* A reg used for zero-extending mustn't be eliminated. */
1352 && !m1->partial
1353 && (matched_regs[m1->regno]
1354 ||
1355 (
1356 /* Can combine regs with different modes loaded from the
1357 same constant only if the modes are the same or
1358 if both are integer modes with M wider or the same
1359 width as M1. The check for integer is redundant, but
1360 safe, since the only case of differing destination
1361 modes with equal sources is when both sources are
1362 VOIDmode, i.e., CONST_INT. */
1363 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1364 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1365 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1366 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1367 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1368 /* See if the source of M1 says it matches M. */
1369 && ((GET_CODE (m1->set_src) == REG
1370 && matched_regs[REGNO (m1->set_src)])
1371 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1372 movables))))
1373 && ((m->dependencies == m1->dependencies)
1374 || rtx_equal_p (m->dependencies, m1->dependencies)))
1375 {
1376 m->lifetime += m1->lifetime;
1377 m->savings += m1->savings;
1378 m1->done = 1;
1379 m1->match = m;
1380 matched_regs[m1->regno] = 1;
1381 }
1382 }
1383
1384 /* Now combine the regs used for zero-extension.
1385 This can be done for those not marked `global'
1386 provided their lives don't overlap. */
1387
1388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1389 mode = GET_MODE_WIDER_MODE (mode))
1390 {
1391 register struct movable *m0 = 0;
1392
1393 /* Combine all the registers for extension from mode MODE.
1394 Don't combine any that are used outside this loop. */
1395 for (m = movables; m; m = m->next)
1396 if (m->partial && ! m->global
1397 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1398 {
1399 register struct movable *m1;
1400 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1401 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1402
1403 if (m0 == 0)
1404 {
1405 /* First one: don't check for overlap, just record it. */
1406 m0 = m;
1407 continue;
1408 }
1409
1410 /* Make sure they extend to the same mode.
1411 (Almost always true.) */
1412 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1413 continue;
1414
1415 /* We already have one: check for overlap with those
1416 already combined together. */
1417 for (m1 = movables; m1 != m; m1 = m1->next)
1418 if (m1 == m0 || (m1->partial && m1->match == m0))
1419 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1420 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1421 goto overlap;
1422
1423 /* No overlap: we can combine this with the others. */
1424 m0->lifetime += m->lifetime;
1425 m0->savings += m->savings;
1426 m->done = 1;
1427 m->match = m0;
1428
1429 overlap: ;
1430 }
1431 }
1432 }
1433 \f
1434 /* Return 1 if regs X and Y will become the same if moved. */
1435
1436 static int
1437 regs_match_p (x, y, movables)
1438 rtx x, y;
1439 struct movable *movables;
1440 {
1441 int xn = REGNO (x);
1442 int yn = REGNO (y);
1443 struct movable *mx, *my;
1444
1445 for (mx = movables; mx; mx = mx->next)
1446 if (mx->regno == xn)
1447 break;
1448
1449 for (my = movables; my; my = my->next)
1450 if (my->regno == yn)
1451 break;
1452
1453 return (mx && my
1454 && ((mx->match == my->match && mx->match != 0)
1455 || mx->match == my
1456 || mx == my->match));
1457 }
1458
1459 /* Return 1 if X and Y are identical-looking rtx's.
1460 This is the Lisp function EQUAL for rtx arguments.
1461
1462 If two registers are matching movables or a movable register and an
1463 equivalent constant, consider them equal. */
1464
1465 static int
1466 rtx_equal_for_loop_p (x, y, movables)
1467 rtx x, y;
1468 struct movable *movables;
1469 {
1470 register int i;
1471 register int j;
1472 register struct movable *m;
1473 register enum rtx_code code;
1474 register char *fmt;
1475
1476 if (x == y)
1477 return 1;
1478 if (x == 0 || y == 0)
1479 return 0;
1480
1481 code = GET_CODE (x);
1482
1483 /* If we have a register and a constant, they may sometimes be
1484 equal. */
1485 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1486 && CONSTANT_P (y))
1487 for (m = movables; m; m = m->next)
1488 if (m->move_insn && m->regno == REGNO (x)
1489 && rtx_equal_p (m->set_src, y))
1490 return 1;
1491
1492 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1493 && CONSTANT_P (x))
1494 for (m = movables; m; m = m->next)
1495 if (m->move_insn && m->regno == REGNO (y)
1496 && rtx_equal_p (m->set_src, x))
1497 return 1;
1498
1499 /* Otherwise, rtx's of different codes cannot be equal. */
1500 if (code != GET_CODE (y))
1501 return 0;
1502
1503 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1504 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1505
1506 if (GET_MODE (x) != GET_MODE (y))
1507 return 0;
1508
1509 /* These three types of rtx's can be compared nonrecursively. */
1510 if (code == REG)
1511 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1512
1513 if (code == LABEL_REF)
1514 return XEXP (x, 0) == XEXP (y, 0);
1515 if (code == SYMBOL_REF)
1516 return XSTR (x, 0) == XSTR (y, 0);
1517
1518 /* Compare the elements. If any pair of corresponding elements
1519 fail to match, return 0 for the whole things. */
1520
1521 fmt = GET_RTX_FORMAT (code);
1522 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1523 {
1524 switch (fmt[i])
1525 {
1526 case 'w':
1527 if (XWINT (x, i) != XWINT (y, i))
1528 return 0;
1529 break;
1530
1531 case 'i':
1532 if (XINT (x, i) != XINT (y, i))
1533 return 0;
1534 break;
1535
1536 case 'E':
1537 /* Two vectors must have the same length. */
1538 if (XVECLEN (x, i) != XVECLEN (y, i))
1539 return 0;
1540
1541 /* And the corresponding elements must match. */
1542 for (j = 0; j < XVECLEN (x, i); j++)
1543 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1544 return 0;
1545 break;
1546
1547 case 'e':
1548 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1549 return 0;
1550 break;
1551
1552 case 's':
1553 if (strcmp (XSTR (x, i), XSTR (y, i)))
1554 return 0;
1555 break;
1556
1557 case 'u':
1558 /* These are just backpointers, so they don't matter. */
1559 break;
1560
1561 case '0':
1562 break;
1563
1564 /* It is believed that rtx's at this level will never
1565 contain anything but integers and other rtx's,
1566 except for within LABEL_REFs and SYMBOL_REFs. */
1567 default:
1568 abort ();
1569 }
1570 }
1571 return 1;
1572 }
1573 \f
1574 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1575 insns in INSNS which use thet reference. */
1576
1577 static void
1578 add_label_notes (x, insns)
1579 rtx x;
1580 rtx insns;
1581 {
1582 enum rtx_code code = GET_CODE (x);
1583 int i, j;
1584 char *fmt;
1585 rtx insn;
1586
1587 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1588 {
1589 rtx next = next_real_insn (XEXP (x, 0));
1590
1591 /* Don't record labels that refer to dispatch tables.
1592 This is not necessary, since the tablejump references the same label.
1593 And if we did record them, flow.c would make worse code. */
1594 if (next == 0
1595 || ! (GET_CODE (next) == JUMP_INSN
1596 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1597 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1598 {
1599 for (insn = insns; insn; insn = NEXT_INSN (insn))
1600 if (reg_mentioned_p (XEXP (x, 0), insn))
1601 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1602 REG_NOTES (insn));
1603 }
1604 return;
1605 }
1606
1607 fmt = GET_RTX_FORMAT (code);
1608 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1609 {
1610 if (fmt[i] == 'e')
1611 add_label_notes (XEXP (x, i), insns);
1612 else if (fmt[i] == 'E')
1613 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1614 add_label_notes (XVECEXP (x, i, j), insns);
1615 }
1616 }
1617 \f
1618 /* Scan MOVABLES, and move the insns that deserve to be moved.
1619 If two matching movables are combined, replace one reg with the
1620 other throughout. */
1621
1622 static void
1623 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1624 struct movable *movables;
1625 int threshold;
1626 int insn_count;
1627 rtx loop_start;
1628 rtx end;
1629 int nregs;
1630 {
1631 rtx new_start = 0;
1632 register struct movable *m;
1633 register rtx p;
1634 /* Map of pseudo-register replacements to handle combining
1635 when we move several insns that load the same value
1636 into different pseudo-registers. */
1637 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1638 char *already_moved = (char *) alloca (nregs);
1639
1640 bzero (already_moved, nregs);
1641 bzero ((char *) reg_map, nregs * sizeof (rtx));
1642
1643 num_movables = 0;
1644
1645 for (m = movables; m; m = m->next)
1646 {
1647 /* Describe this movable insn. */
1648
1649 if (loop_dump_stream)
1650 {
1651 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1652 INSN_UID (m->insn), m->regno, m->lifetime);
1653 if (m->consec > 0)
1654 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1655 if (m->cond)
1656 fprintf (loop_dump_stream, "cond ");
1657 if (m->force)
1658 fprintf (loop_dump_stream, "force ");
1659 if (m->global)
1660 fprintf (loop_dump_stream, "global ");
1661 if (m->done)
1662 fprintf (loop_dump_stream, "done ");
1663 if (m->move_insn)
1664 fprintf (loop_dump_stream, "move-insn ");
1665 if (m->match)
1666 fprintf (loop_dump_stream, "matches %d ",
1667 INSN_UID (m->match->insn));
1668 if (m->forces)
1669 fprintf (loop_dump_stream, "forces %d ",
1670 INSN_UID (m->forces->insn));
1671 }
1672
1673 /* Count movables. Value used in heuristics in strength_reduce. */
1674 num_movables++;
1675
1676 /* Ignore the insn if it's already done (it matched something else).
1677 Otherwise, see if it is now safe to move. */
1678
1679 if (!m->done
1680 && (! m->cond
1681 || (1 == invariant_p (m->set_src)
1682 && (m->dependencies == 0
1683 || 1 == invariant_p (m->dependencies))
1684 && (m->consec == 0
1685 || 1 == consec_sets_invariant_p (m->set_dest,
1686 m->consec + 1,
1687 m->insn))))
1688 && (! m->forces || m->forces->done))
1689 {
1690 register int regno;
1691 register rtx p;
1692 int savings = m->savings;
1693
1694 /* We have an insn that is safe to move.
1695 Compute its desirability. */
1696
1697 p = m->insn;
1698 regno = m->regno;
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, "savings %d ", savings);
1702
1703 if (moved_once[regno])
1704 {
1705 insn_count *= 2;
1706
1707 if (loop_dump_stream)
1708 fprintf (loop_dump_stream, "halved since already moved ");
1709 }
1710
1711 /* An insn MUST be moved if we already moved something else
1712 which is safe only if this one is moved too: that is,
1713 if already_moved[REGNO] is nonzero. */
1714
1715 /* An insn is desirable to move if the new lifetime of the
1716 register is no more than THRESHOLD times the old lifetime.
1717 If it's not desirable, it means the loop is so big
1718 that moving won't speed things up much,
1719 and it is liable to make register usage worse. */
1720
1721 /* It is also desirable to move if it can be moved at no
1722 extra cost because something else was already moved. */
1723
1724 if (already_moved[regno]
1725 || (threshold * savings * m->lifetime) >= insn_count
1726 || (m->forces && m->forces->done
1727 && n_times_used[m->forces->regno] == 1))
1728 {
1729 int count;
1730 register struct movable *m1;
1731 rtx first;
1732
1733 /* Now move the insns that set the reg. */
1734
1735 if (m->partial && m->match)
1736 {
1737 rtx newpat, i1;
1738 rtx r1, r2;
1739 /* Find the end of this chain of matching regs.
1740 Thus, we load each reg in the chain from that one reg.
1741 And that reg is loaded with 0 directly,
1742 since it has ->match == 0. */
1743 for (m1 = m; m1->match; m1 = m1->match);
1744 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1745 SET_DEST (PATTERN (m1->insn)));
1746 i1 = emit_insn_before (newpat, loop_start);
1747
1748 /* Mark the moved, invariant reg as being allowed to
1749 share a hard reg with the other matching invariant. */
1750 REG_NOTES (i1) = REG_NOTES (m->insn);
1751 r1 = SET_DEST (PATTERN (m->insn));
1752 r2 = SET_DEST (PATTERN (m1->insn));
1753 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1754 gen_rtx (EXPR_LIST, VOIDmode, r2,
1755 regs_may_share));
1756 delete_insn (m->insn);
1757
1758 if (new_start == 0)
1759 new_start = i1;
1760
1761 if (loop_dump_stream)
1762 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1763 }
1764 /* If we are to re-generate the item being moved with a
1765 new move insn, first delete what we have and then emit
1766 the move insn before the loop. */
1767 else if (m->move_insn)
1768 {
1769 rtx i1, temp;
1770
1771 for (count = m->consec; count >= 0; count--)
1772 {
1773 /* If this is the first insn of a library call sequence,
1774 skip to the end. */
1775 if (GET_CODE (p) != NOTE
1776 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1777 p = XEXP (temp, 0);
1778
1779 /* If this is the last insn of a libcall sequence, then
1780 delete every insn in the sequence except the last.
1781 The last insn is handled in the normal manner. */
1782 if (GET_CODE (p) != NOTE
1783 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1784 {
1785 temp = XEXP (temp, 0);
1786 while (temp != p)
1787 temp = delete_insn (temp);
1788 }
1789
1790 p = delete_insn (p);
1791 while (p && GET_CODE (p) == NOTE)
1792 p = NEXT_INSN (p);
1793 }
1794
1795 start_sequence ();
1796 emit_move_insn (m->set_dest, m->set_src);
1797 temp = get_insns ();
1798 end_sequence ();
1799
1800 add_label_notes (m->set_src, temp);
1801
1802 i1 = emit_insns_before (temp, loop_start);
1803 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1804 REG_NOTES (i1)
1805 = gen_rtx (EXPR_LIST,
1806 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1807 m->set_src, REG_NOTES (i1));
1808
1809 if (loop_dump_stream)
1810 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1811
1812 /* The more regs we move, the less we like moving them. */
1813 threshold -= 3;
1814 }
1815 else
1816 {
1817 for (count = m->consec; count >= 0; count--)
1818 {
1819 rtx i1, temp;
1820
1821 /* If first insn of libcall sequence, skip to end. */
1822 /* Do this at start of loop, since p is guaranteed to
1823 be an insn here. */
1824 if (GET_CODE (p) != NOTE
1825 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1826 p = XEXP (temp, 0);
1827
1828 /* If last insn of libcall sequence, move all
1829 insns except the last before the loop. The last
1830 insn is handled in the normal manner. */
1831 if (GET_CODE (p) != NOTE
1832 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1833 {
1834 rtx fn_address = 0;
1835 rtx fn_reg = 0;
1836 rtx fn_address_insn = 0;
1837
1838 first = 0;
1839 for (temp = XEXP (temp, 0); temp != p;
1840 temp = NEXT_INSN (temp))
1841 {
1842 rtx body;
1843 rtx n;
1844 rtx next;
1845
1846 if (GET_CODE (temp) == NOTE)
1847 continue;
1848
1849 body = PATTERN (temp);
1850
1851 /* Find the next insn after TEMP,
1852 not counting USE or NOTE insns. */
1853 for (next = NEXT_INSN (temp); next != p;
1854 next = NEXT_INSN (next))
1855 if (! (GET_CODE (next) == INSN
1856 && GET_CODE (PATTERN (next)) == USE)
1857 && GET_CODE (next) != NOTE)
1858 break;
1859
1860 /* If that is the call, this may be the insn
1861 that loads the function address.
1862
1863 Extract the function address from the insn
1864 that loads it into a register.
1865 If this insn was cse'd, we get incorrect code.
1866
1867 So emit a new move insn that copies the
1868 function address into the register that the
1869 call insn will use. flow.c will delete any
1870 redundant stores that we have created. */
1871 if (GET_CODE (next) == CALL_INSN
1872 && GET_CODE (body) == SET
1873 && GET_CODE (SET_DEST (body)) == REG
1874 && (n = find_reg_note (temp, REG_EQUAL,
1875 NULL_RTX)))
1876 {
1877 fn_reg = SET_SRC (body);
1878 if (GET_CODE (fn_reg) != REG)
1879 fn_reg = SET_DEST (body);
1880 fn_address = XEXP (n, 0);
1881 fn_address_insn = temp;
1882 }
1883 /* We have the call insn.
1884 If it uses the register we suspect it might,
1885 load it with the correct address directly. */
1886 if (GET_CODE (temp) == CALL_INSN
1887 && fn_address != 0
1888 && reg_referenced_p (fn_reg, body))
1889 emit_insn_after (gen_move_insn (fn_reg,
1890 fn_address),
1891 fn_address_insn);
1892
1893 if (GET_CODE (temp) == CALL_INSN)
1894 {
1895 i1 = emit_call_insn_before (body, loop_start);
1896 /* Because the USAGE information potentially
1897 contains objects other than hard registers
1898 we need to copy it. */
1899 if (CALL_INSN_FUNCTION_USAGE (temp))
1900 CALL_INSN_FUNCTION_USAGE (i1)
1901 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1902 }
1903 else
1904 i1 = emit_insn_before (body, loop_start);
1905 if (first == 0)
1906 first = i1;
1907 if (temp == fn_address_insn)
1908 fn_address_insn = i1;
1909 REG_NOTES (i1) = REG_NOTES (temp);
1910 delete_insn (temp);
1911 }
1912 }
1913 if (m->savemode != VOIDmode)
1914 {
1915 /* P sets REG to zero; but we should clear only
1916 the bits that are not covered by the mode
1917 m->savemode. */
1918 rtx reg = m->set_dest;
1919 rtx sequence;
1920 rtx tem;
1921
1922 start_sequence ();
1923 tem = expand_binop
1924 (GET_MODE (reg), and_optab, reg,
1925 GEN_INT ((((HOST_WIDE_INT) 1
1926 << GET_MODE_BITSIZE (m->savemode)))
1927 - 1),
1928 reg, 1, OPTAB_LIB_WIDEN);
1929 if (tem == 0)
1930 abort ();
1931 if (tem != reg)
1932 emit_move_insn (reg, tem);
1933 sequence = gen_sequence ();
1934 end_sequence ();
1935 i1 = emit_insn_before (sequence, loop_start);
1936 }
1937 else if (GET_CODE (p) == CALL_INSN)
1938 {
1939 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1940 /* Because the USAGE information potentially
1941 contains objects other than hard registers
1942 we need to copy it. */
1943 if (CALL_INSN_FUNCTION_USAGE (p))
1944 CALL_INSN_FUNCTION_USAGE (i1)
1945 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1946 }
1947 else
1948 i1 = emit_insn_before (PATTERN (p), loop_start);
1949
1950 REG_NOTES (i1) = REG_NOTES (p);
1951
1952 /* If there is a REG_EQUAL note present whose value is
1953 not loop invariant, then delete it, since it may
1954 cause problems with later optimization passes.
1955 It is possible for cse to create such notes
1956 like this as a result of record_jump_cond. */
1957
1958 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1959 && ! invariant_p (XEXP (temp, 0)))
1960 remove_note (i1, temp);
1961
1962 if (new_start == 0)
1963 new_start = i1;
1964
1965 if (loop_dump_stream)
1966 fprintf (loop_dump_stream, " moved to %d",
1967 INSN_UID (i1));
1968
1969 #if 0
1970 /* This isn't needed because REG_NOTES is copied
1971 below and is wrong since P might be a PARALLEL. */
1972 if (REG_NOTES (i1) == 0
1973 && ! m->partial /* But not if it's a zero-extend clr. */
1974 && ! m->global /* and not if used outside the loop
1975 (since it might get set outside). */
1976 && CONSTANT_P (SET_SRC (PATTERN (p))))
1977 REG_NOTES (i1)
1978 = gen_rtx (EXPR_LIST, REG_EQUAL,
1979 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1980 #endif
1981
1982 /* If library call, now fix the REG_NOTES that contain
1983 insn pointers, namely REG_LIBCALL on FIRST
1984 and REG_RETVAL on I1. */
1985 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1986 {
1987 XEXP (temp, 0) = first;
1988 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1989 XEXP (temp, 0) = i1;
1990 }
1991
1992 delete_insn (p);
1993 do p = NEXT_INSN (p);
1994 while (p && GET_CODE (p) == NOTE);
1995 }
1996
1997 /* The more regs we move, the less we like moving them. */
1998 threshold -= 3;
1999 }
2000
2001 /* Any other movable that loads the same register
2002 MUST be moved. */
2003 already_moved[regno] = 1;
2004
2005 /* This reg has been moved out of one loop. */
2006 moved_once[regno] = 1;
2007
2008 /* The reg set here is now invariant. */
2009 if (! m->partial)
2010 n_times_set[regno] = 0;
2011
2012 m->done = 1;
2013
2014 /* Change the length-of-life info for the register
2015 to say it lives at least the full length of this loop.
2016 This will help guide optimizations in outer loops. */
2017
2018 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2019 /* This is the old insn before all the moved insns.
2020 We can't use the moved insn because it is out of range
2021 in uid_luid. Only the old insns have luids. */
2022 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2023 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2024 REGNO_LAST_UID (regno) = INSN_UID (end);
2025
2026 /* Combine with this moved insn any other matching movables. */
2027
2028 if (! m->partial)
2029 for (m1 = movables; m1; m1 = m1->next)
2030 if (m1->match == m)
2031 {
2032 rtx temp;
2033
2034 /* Schedule the reg loaded by M1
2035 for replacement so that shares the reg of M.
2036 If the modes differ (only possible in restricted
2037 circumstances, make a SUBREG. */
2038 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2039 reg_map[m1->regno] = m->set_dest;
2040 else
2041 reg_map[m1->regno]
2042 = gen_lowpart_common (GET_MODE (m1->set_dest),
2043 m->set_dest);
2044
2045 /* Get rid of the matching insn
2046 and prevent further processing of it. */
2047 m1->done = 1;
2048
2049 /* if library call, delete all insn except last, which
2050 is deleted below */
2051 if (temp = find_reg_note (m1->insn, REG_RETVAL,
2052 NULL_RTX))
2053 {
2054 for (temp = XEXP (temp, 0); temp != m1->insn;
2055 temp = NEXT_INSN (temp))
2056 delete_insn (temp);
2057 }
2058 delete_insn (m1->insn);
2059
2060 /* Any other movable that loads the same register
2061 MUST be moved. */
2062 already_moved[m1->regno] = 1;
2063
2064 /* The reg merged here is now invariant,
2065 if the reg it matches is invariant. */
2066 if (! m->partial)
2067 n_times_set[m1->regno] = 0;
2068 }
2069 }
2070 else if (loop_dump_stream)
2071 fprintf (loop_dump_stream, "not desirable");
2072 }
2073 else if (loop_dump_stream && !m->match)
2074 fprintf (loop_dump_stream, "not safe");
2075
2076 if (loop_dump_stream)
2077 fprintf (loop_dump_stream, "\n");
2078 }
2079
2080 if (new_start == 0)
2081 new_start = loop_start;
2082
2083 /* Go through all the instructions in the loop, making
2084 all the register substitutions scheduled in REG_MAP. */
2085 for (p = new_start; p != end; p = NEXT_INSN (p))
2086 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2087 || GET_CODE (p) == CALL_INSN)
2088 {
2089 replace_regs (PATTERN (p), reg_map, nregs, 0);
2090 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2091 INSN_CODE (p) = -1;
2092 }
2093 }
2094 \f
2095 #if 0
2096 /* Scan X and replace the address of any MEM in it with ADDR.
2097 REG is the address that MEM should have before the replacement. */
2098
2099 static void
2100 replace_call_address (x, reg, addr)
2101 rtx x, reg, addr;
2102 {
2103 register enum rtx_code code;
2104 register int i;
2105 register char *fmt;
2106
2107 if (x == 0)
2108 return;
2109 code = GET_CODE (x);
2110 switch (code)
2111 {
2112 case PC:
2113 case CC0:
2114 case CONST_INT:
2115 case CONST_DOUBLE:
2116 case CONST:
2117 case SYMBOL_REF:
2118 case LABEL_REF:
2119 case REG:
2120 return;
2121
2122 case SET:
2123 /* Short cut for very common case. */
2124 replace_call_address (XEXP (x, 1), reg, addr);
2125 return;
2126
2127 case CALL:
2128 /* Short cut for very common case. */
2129 replace_call_address (XEXP (x, 0), reg, addr);
2130 return;
2131
2132 case MEM:
2133 /* If this MEM uses a reg other than the one we expected,
2134 something is wrong. */
2135 if (XEXP (x, 0) != reg)
2136 abort ();
2137 XEXP (x, 0) = addr;
2138 return;
2139 }
2140
2141 fmt = GET_RTX_FORMAT (code);
2142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2143 {
2144 if (fmt[i] == 'e')
2145 replace_call_address (XEXP (x, i), reg, addr);
2146 if (fmt[i] == 'E')
2147 {
2148 register int j;
2149 for (j = 0; j < XVECLEN (x, i); j++)
2150 replace_call_address (XVECEXP (x, i, j), reg, addr);
2151 }
2152 }
2153 }
2154 #endif
2155 \f
2156 /* Return the number of memory refs to addresses that vary
2157 in the rtx X. */
2158
2159 static int
2160 count_nonfixed_reads (x)
2161 rtx x;
2162 {
2163 register enum rtx_code code;
2164 register int i;
2165 register char *fmt;
2166 int value;
2167
2168 if (x == 0)
2169 return 0;
2170
2171 code = GET_CODE (x);
2172 switch (code)
2173 {
2174 case PC:
2175 case CC0:
2176 case CONST_INT:
2177 case CONST_DOUBLE:
2178 case CONST:
2179 case SYMBOL_REF:
2180 case LABEL_REF:
2181 case REG:
2182 return 0;
2183
2184 case MEM:
2185 return ((invariant_p (XEXP (x, 0)) != 1)
2186 + count_nonfixed_reads (XEXP (x, 0)));
2187 }
2188
2189 value = 0;
2190 fmt = GET_RTX_FORMAT (code);
2191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2192 {
2193 if (fmt[i] == 'e')
2194 value += count_nonfixed_reads (XEXP (x, i));
2195 if (fmt[i] == 'E')
2196 {
2197 register int j;
2198 for (j = 0; j < XVECLEN (x, i); j++)
2199 value += count_nonfixed_reads (XVECEXP (x, i, j));
2200 }
2201 }
2202 return value;
2203 }
2204
2205 \f
2206 #if 0
2207 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2208 Replace it with an instruction to load just the low bytes
2209 if the machine supports such an instruction,
2210 and insert above LOOP_START an instruction to clear the register. */
2211
2212 static void
2213 constant_high_bytes (p, loop_start)
2214 rtx p, loop_start;
2215 {
2216 register rtx new;
2217 register int insn_code_number;
2218
2219 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2220 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2221
2222 new = gen_rtx (SET, VOIDmode,
2223 gen_rtx (STRICT_LOW_PART, VOIDmode,
2224 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2225 SET_DEST (PATTERN (p)),
2226 0)),
2227 XEXP (SET_SRC (PATTERN (p)), 0));
2228 insn_code_number = recog (new, p);
2229
2230 if (insn_code_number)
2231 {
2232 register int i;
2233
2234 /* Clear destination register before the loop. */
2235 emit_insn_before (gen_rtx (SET, VOIDmode,
2236 SET_DEST (PATTERN (p)),
2237 const0_rtx),
2238 loop_start);
2239
2240 /* Inside the loop, just load the low part. */
2241 PATTERN (p) = new;
2242 }
2243 }
2244 #endif
2245 \f
2246 /* Scan a loop setting the variables `unknown_address_altered',
2247 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2248 and `loop_has_volatile'.
2249 Also, fill in the array `loop_store_mems'. */
2250
2251 static void
2252 prescan_loop (start, end)
2253 rtx start, end;
2254 {
2255 register int level = 1;
2256 register rtx insn;
2257
2258 unknown_address_altered = 0;
2259 loop_has_call = 0;
2260 loop_has_volatile = 0;
2261 loop_store_mems_idx = 0;
2262
2263 num_mem_sets = 0;
2264 loops_enclosed = 1;
2265 loop_continue = 0;
2266
2267 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2268 insn = NEXT_INSN (insn))
2269 {
2270 if (GET_CODE (insn) == NOTE)
2271 {
2272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2273 {
2274 ++level;
2275 /* Count number of loops contained in this one. */
2276 loops_enclosed++;
2277 }
2278 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2279 {
2280 --level;
2281 if (level == 0)
2282 {
2283 end = insn;
2284 break;
2285 }
2286 }
2287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2288 {
2289 if (level == 1)
2290 loop_continue = insn;
2291 }
2292 }
2293 else if (GET_CODE (insn) == CALL_INSN)
2294 {
2295 if (! CONST_CALL_P (insn))
2296 unknown_address_altered = 1;
2297 loop_has_call = 1;
2298 }
2299 else
2300 {
2301 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2302 {
2303 if (volatile_refs_p (PATTERN (insn)))
2304 loop_has_volatile = 1;
2305
2306 note_stores (PATTERN (insn), note_addr_stored);
2307 }
2308 }
2309 }
2310 }
2311 \f
2312 /* Scan the function looking for loops. Record the start and end of each loop.
2313 Also mark as invalid loops any loops that contain a setjmp or are branched
2314 to from outside the loop. */
2315
2316 static void
2317 find_and_verify_loops (f)
2318 rtx f;
2319 {
2320 rtx insn, label;
2321 int current_loop = -1;
2322 int next_loop = -1;
2323 int loop;
2324
2325 /* If there are jumps to undefined labels,
2326 treat them as jumps out of any/all loops.
2327 This also avoids writing past end of tables when there are no loops. */
2328 uid_loop_num[0] = -1;
2329
2330 /* Find boundaries of loops, mark which loops are contained within
2331 loops, and invalidate loops that have setjmp. */
2332
2333 for (insn = f; insn; insn = NEXT_INSN (insn))
2334 {
2335 if (GET_CODE (insn) == NOTE)
2336 switch (NOTE_LINE_NUMBER (insn))
2337 {
2338 case NOTE_INSN_LOOP_BEG:
2339 loop_number_loop_starts[++next_loop] = insn;
2340 loop_number_loop_ends[next_loop] = 0;
2341 loop_outer_loop[next_loop] = current_loop;
2342 loop_invalid[next_loop] = 0;
2343 loop_number_exit_labels[next_loop] = 0;
2344 loop_number_exit_count[next_loop] = 0;
2345 current_loop = next_loop;
2346 break;
2347
2348 case NOTE_INSN_SETJMP:
2349 /* In this case, we must invalidate our current loop and any
2350 enclosing loop. */
2351 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2352 {
2353 loop_invalid[loop] = 1;
2354 if (loop_dump_stream)
2355 fprintf (loop_dump_stream,
2356 "\nLoop at %d ignored due to setjmp.\n",
2357 INSN_UID (loop_number_loop_starts[loop]));
2358 }
2359 break;
2360
2361 case NOTE_INSN_LOOP_END:
2362 if (current_loop == -1)
2363 abort ();
2364
2365 loop_number_loop_ends[current_loop] = insn;
2366 current_loop = loop_outer_loop[current_loop];
2367 break;
2368
2369 }
2370
2371 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2372 enclosing loop, but this doesn't matter. */
2373 uid_loop_num[INSN_UID (insn)] = current_loop;
2374 }
2375
2376 /* Any loop containing a label used in an initializer must be invalidated,
2377 because it can be jumped into from anywhere. */
2378
2379 for (label = forced_labels; label; label = XEXP (label, 1))
2380 {
2381 int loop_num;
2382
2383 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2384 loop_num != -1;
2385 loop_num = loop_outer_loop[loop_num])
2386 loop_invalid[loop_num] = 1;
2387 }
2388
2389 /* Any loop containing a label used for an exception handler must be
2390 invalidated, because it can be jumped into from anywhere. */
2391
2392 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2393 {
2394 int loop_num;
2395
2396 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2397 loop_num != -1;
2398 loop_num = loop_outer_loop[loop_num])
2399 loop_invalid[loop_num] = 1;
2400 }
2401
2402 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2403 loop that it is not contained within, that loop is marked invalid.
2404 If any INSN or CALL_INSN uses a label's address, then the loop containing
2405 that label is marked invalid, because it could be jumped into from
2406 anywhere.
2407
2408 Also look for blocks of code ending in an unconditional branch that
2409 exits the loop. If such a block is surrounded by a conditional
2410 branch around the block, move the block elsewhere (see below) and
2411 invert the jump to point to the code block. This may eliminate a
2412 label in our loop and will simplify processing by both us and a
2413 possible second cse pass. */
2414
2415 for (insn = f; insn; insn = NEXT_INSN (insn))
2416 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2417 {
2418 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2419
2420 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2421 {
2422 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2423 if (note)
2424 {
2425 int loop_num;
2426
2427 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2428 loop_num != -1;
2429 loop_num = loop_outer_loop[loop_num])
2430 loop_invalid[loop_num] = 1;
2431 }
2432 }
2433
2434 if (GET_CODE (insn) != JUMP_INSN)
2435 continue;
2436
2437 mark_loop_jump (PATTERN (insn), this_loop_num);
2438
2439 /* See if this is an unconditional branch outside the loop. */
2440 if (this_loop_num != -1
2441 && (GET_CODE (PATTERN (insn)) == RETURN
2442 || (simplejump_p (insn)
2443 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2444 != this_loop_num)))
2445 && get_max_uid () < max_uid_for_loop)
2446 {
2447 rtx p;
2448 rtx our_next = next_real_insn (insn);
2449 int dest_loop;
2450 int outer_loop = -1;
2451
2452 /* Go backwards until we reach the start of the loop, a label,
2453 or a JUMP_INSN. */
2454 for (p = PREV_INSN (insn);
2455 GET_CODE (p) != CODE_LABEL
2456 && ! (GET_CODE (p) == NOTE
2457 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2458 && GET_CODE (p) != JUMP_INSN;
2459 p = PREV_INSN (p))
2460 ;
2461
2462 /* Check for the case where we have a jump to an inner nested
2463 loop, and do not perform the optimization in that case. */
2464
2465 if (JUMP_LABEL (insn))
2466 {
2467 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2468 if (dest_loop != -1)
2469 {
2470 for (outer_loop = dest_loop; outer_loop != -1;
2471 outer_loop = loop_outer_loop[outer_loop])
2472 if (outer_loop == this_loop_num)
2473 break;
2474 }
2475 }
2476
2477 /* Make sure that the target of P is within the current loop. */
2478
2479 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2480 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2481 outer_loop = this_loop_num;
2482
2483 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2484 we have a block of code to try to move.
2485
2486 We look backward and then forward from the target of INSN
2487 to find a BARRIER at the same loop depth as the target.
2488 If we find such a BARRIER, we make a new label for the start
2489 of the block, invert the jump in P and point it to that label,
2490 and move the block of code to the spot we found. */
2491
2492 if (outer_loop == -1
2493 && GET_CODE (p) == JUMP_INSN
2494 && JUMP_LABEL (p) != 0
2495 /* Just ignore jumps to labels that were never emitted.
2496 These always indicate compilation errors. */
2497 && INSN_UID (JUMP_LABEL (p)) != 0
2498 && condjump_p (p)
2499 && ! simplejump_p (p)
2500 && next_real_insn (JUMP_LABEL (p)) == our_next)
2501 {
2502 rtx target
2503 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2504 int target_loop_num = uid_loop_num[INSN_UID (target)];
2505 rtx loc;
2506
2507 for (loc = target; loc; loc = PREV_INSN (loc))
2508 if (GET_CODE (loc) == BARRIER
2509 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2510 break;
2511
2512 if (loc == 0)
2513 for (loc = target; loc; loc = NEXT_INSN (loc))
2514 if (GET_CODE (loc) == BARRIER
2515 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2516 break;
2517
2518 if (loc)
2519 {
2520 rtx cond_label = JUMP_LABEL (p);
2521 rtx new_label = get_label_after (p);
2522
2523 /* Ensure our label doesn't go away. */
2524 LABEL_NUSES (cond_label)++;
2525
2526 /* Verify that uid_loop_num is large enough and that
2527 we can invert P. */
2528 if (invert_jump (p, new_label))
2529 {
2530 rtx q, r;
2531
2532 /* Include the BARRIER after INSN and copy the
2533 block after LOC. */
2534 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2535 reorder_insns (new_label, NEXT_INSN (insn), loc);
2536
2537 /* All those insns are now in TARGET_LOOP_NUM. */
2538 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2539 q = NEXT_INSN (q))
2540 uid_loop_num[INSN_UID (q)] = target_loop_num;
2541
2542 /* The label jumped to by INSN is no longer a loop exit.
2543 Unless INSN does not have a label (e.g., it is a
2544 RETURN insn), search loop_number_exit_labels to find
2545 its label_ref, and remove it. Also turn off
2546 LABEL_OUTSIDE_LOOP_P bit. */
2547 if (JUMP_LABEL (insn))
2548 {
2549 int loop_num;
2550
2551 for (q = 0,
2552 r = loop_number_exit_labels[this_loop_num];
2553 r; q = r, r = LABEL_NEXTREF (r))
2554 if (XEXP (r, 0) == JUMP_LABEL (insn))
2555 {
2556 LABEL_OUTSIDE_LOOP_P (r) = 0;
2557 if (q)
2558 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2559 else
2560 loop_number_exit_labels[this_loop_num]
2561 = LABEL_NEXTREF (r);
2562 break;
2563 }
2564
2565 for (loop_num = this_loop_num;
2566 loop_num != -1 && loop_num != target_loop_num;
2567 loop_num = loop_outer_loop[loop_num])
2568 loop_number_exit_count[loop_num]--;
2569
2570 /* If we didn't find it, then something is wrong. */
2571 if (! r)
2572 abort ();
2573 }
2574
2575 /* P is now a jump outside the loop, so it must be put
2576 in loop_number_exit_labels, and marked as such.
2577 The easiest way to do this is to just call
2578 mark_loop_jump again for P. */
2579 mark_loop_jump (PATTERN (p), this_loop_num);
2580
2581 /* If INSN now jumps to the insn after it,
2582 delete INSN. */
2583 if (JUMP_LABEL (insn) != 0
2584 && (next_real_insn (JUMP_LABEL (insn))
2585 == next_real_insn (insn)))
2586 delete_insn (insn);
2587 }
2588
2589 /* Continue the loop after where the conditional
2590 branch used to jump, since the only branch insn
2591 in the block (if it still remains) is an inter-loop
2592 branch and hence needs no processing. */
2593 insn = NEXT_INSN (cond_label);
2594
2595 if (--LABEL_NUSES (cond_label) == 0)
2596 delete_insn (cond_label);
2597
2598 /* This loop will be continued with NEXT_INSN (insn). */
2599 insn = PREV_INSN (insn);
2600 }
2601 }
2602 }
2603 }
2604 }
2605
2606 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2607 loops it is contained in, mark the target loop invalid.
2608
2609 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2610
2611 static void
2612 mark_loop_jump (x, loop_num)
2613 rtx x;
2614 int loop_num;
2615 {
2616 int dest_loop;
2617 int outer_loop;
2618 int i;
2619
2620 switch (GET_CODE (x))
2621 {
2622 case PC:
2623 case USE:
2624 case CLOBBER:
2625 case REG:
2626 case MEM:
2627 case CONST_INT:
2628 case CONST_DOUBLE:
2629 case RETURN:
2630 return;
2631
2632 case CONST:
2633 /* There could be a label reference in here. */
2634 mark_loop_jump (XEXP (x, 0), loop_num);
2635 return;
2636
2637 case PLUS:
2638 case MINUS:
2639 case MULT:
2640 mark_loop_jump (XEXP (x, 0), loop_num);
2641 mark_loop_jump (XEXP (x, 1), loop_num);
2642 return;
2643
2644 case SIGN_EXTEND:
2645 case ZERO_EXTEND:
2646 mark_loop_jump (XEXP (x, 0), loop_num);
2647 return;
2648
2649 case LABEL_REF:
2650 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2651
2652 /* Link together all labels that branch outside the loop. This
2653 is used by final_[bg]iv_value and the loop unrolling code. Also
2654 mark this LABEL_REF so we know that this branch should predict
2655 false. */
2656
2657 /* A check to make sure the label is not in an inner nested loop,
2658 since this does not count as a loop exit. */
2659 if (dest_loop != -1)
2660 {
2661 for (outer_loop = dest_loop; outer_loop != -1;
2662 outer_loop = loop_outer_loop[outer_loop])
2663 if (outer_loop == loop_num)
2664 break;
2665 }
2666 else
2667 outer_loop = -1;
2668
2669 if (loop_num != -1 && outer_loop == -1)
2670 {
2671 LABEL_OUTSIDE_LOOP_P (x) = 1;
2672 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2673 loop_number_exit_labels[loop_num] = x;
2674
2675 for (outer_loop = loop_num;
2676 outer_loop != -1 && outer_loop != dest_loop;
2677 outer_loop = loop_outer_loop[outer_loop])
2678 loop_number_exit_count[outer_loop]++;
2679 }
2680
2681 /* If this is inside a loop, but not in the current loop or one enclosed
2682 by it, it invalidates at least one loop. */
2683
2684 if (dest_loop == -1)
2685 return;
2686
2687 /* We must invalidate every nested loop containing the target of this
2688 label, except those that also contain the jump insn. */
2689
2690 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2691 {
2692 /* Stop when we reach a loop that also contains the jump insn. */
2693 for (outer_loop = loop_num; outer_loop != -1;
2694 outer_loop = loop_outer_loop[outer_loop])
2695 if (dest_loop == outer_loop)
2696 return;
2697
2698 /* If we get here, we know we need to invalidate a loop. */
2699 if (loop_dump_stream && ! loop_invalid[dest_loop])
2700 fprintf (loop_dump_stream,
2701 "\nLoop at %d ignored due to multiple entry points.\n",
2702 INSN_UID (loop_number_loop_starts[dest_loop]));
2703
2704 loop_invalid[dest_loop] = 1;
2705 }
2706 return;
2707
2708 case SET:
2709 /* If this is not setting pc, ignore. */
2710 if (SET_DEST (x) == pc_rtx)
2711 mark_loop_jump (SET_SRC (x), loop_num);
2712 return;
2713
2714 case IF_THEN_ELSE:
2715 mark_loop_jump (XEXP (x, 1), loop_num);
2716 mark_loop_jump (XEXP (x, 2), loop_num);
2717 return;
2718
2719 case PARALLEL:
2720 case ADDR_VEC:
2721 for (i = 0; i < XVECLEN (x, 0); i++)
2722 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2723 return;
2724
2725 case ADDR_DIFF_VEC:
2726 for (i = 0; i < XVECLEN (x, 1); i++)
2727 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2728 return;
2729
2730 default:
2731 /* Treat anything else (such as a symbol_ref)
2732 as a branch out of this loop, but not into any loop. */
2733
2734 if (loop_num != -1)
2735 {
2736 #ifdef HAIFA
2737 LABEL_OUTSIDE_LOOP_P (x) = 1;
2738 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2739 #endif /* HAIFA */
2740
2741 loop_number_exit_labels[loop_num] = x;
2742
2743 for (outer_loop = loop_num; outer_loop != -1;
2744 outer_loop = loop_outer_loop[outer_loop])
2745 loop_number_exit_count[outer_loop]++;
2746 }
2747 return;
2748 }
2749 }
2750 \f
2751 /* Return nonzero if there is a label in the range from
2752 insn INSN to and including the insn whose luid is END
2753 INSN must have an assigned luid (i.e., it must not have
2754 been previously created by loop.c). */
2755
2756 static int
2757 labels_in_range_p (insn, end)
2758 rtx insn;
2759 int end;
2760 {
2761 while (insn && INSN_LUID (insn) <= end)
2762 {
2763 if (GET_CODE (insn) == CODE_LABEL)
2764 return 1;
2765 insn = NEXT_INSN (insn);
2766 }
2767
2768 return 0;
2769 }
2770
2771 /* Record that a memory reference X is being set. */
2772
2773 static void
2774 note_addr_stored (x)
2775 rtx x;
2776 {
2777 register int i;
2778
2779 if (x == 0 || GET_CODE (x) != MEM)
2780 return;
2781
2782 /* Count number of memory writes.
2783 This affects heuristics in strength_reduce. */
2784 num_mem_sets++;
2785
2786 /* BLKmode MEM means all memory is clobbered. */
2787 if (GET_MODE (x) == BLKmode)
2788 unknown_address_altered = 1;
2789
2790 if (unknown_address_altered)
2791 return;
2792
2793 for (i = 0; i < loop_store_mems_idx; i++)
2794 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2795 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2796 {
2797 /* We are storing at the same address as previously noted. Save the
2798 wider reference. */
2799 if (GET_MODE_SIZE (GET_MODE (x))
2800 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2801 loop_store_mems[i] = x;
2802 break;
2803 }
2804
2805 if (i == NUM_STORES)
2806 unknown_address_altered = 1;
2807
2808 else if (i == loop_store_mems_idx)
2809 loop_store_mems[loop_store_mems_idx++] = x;
2810 }
2811 \f
2812 /* Return nonzero if the rtx X is invariant over the current loop.
2813
2814 The value is 2 if we refer to something only conditionally invariant.
2815
2816 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2817 Otherwise, a memory ref is invariant if it does not conflict with
2818 anything stored in `loop_store_mems'. */
2819
2820 int
2821 invariant_p (x)
2822 register rtx x;
2823 {
2824 register int i;
2825 register enum rtx_code code;
2826 register char *fmt;
2827 int conditional = 0;
2828
2829 if (x == 0)
2830 return 1;
2831 code = GET_CODE (x);
2832 switch (code)
2833 {
2834 case CONST_INT:
2835 case CONST_DOUBLE:
2836 case SYMBOL_REF:
2837 case CONST:
2838 return 1;
2839
2840 case LABEL_REF:
2841 /* A LABEL_REF is normally invariant, however, if we are unrolling
2842 loops, and this label is inside the loop, then it isn't invariant.
2843 This is because each unrolled copy of the loop body will have
2844 a copy of this label. If this was invariant, then an insn loading
2845 the address of this label into a register might get moved outside
2846 the loop, and then each loop body would end up using the same label.
2847
2848 We don't know the loop bounds here though, so just fail for all
2849 labels. */
2850 if (flag_unroll_loops)
2851 return 0;
2852 else
2853 return 1;
2854
2855 case PC:
2856 case CC0:
2857 case UNSPEC_VOLATILE:
2858 return 0;
2859
2860 case REG:
2861 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2862 since the reg might be set by initialization within the loop. */
2863
2864 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2865 || x == arg_pointer_rtx)
2866 && ! current_function_has_nonlocal_goto)
2867 return 1;
2868
2869 if (loop_has_call
2870 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2871 return 0;
2872
2873 if (n_times_set[REGNO (x)] < 0)
2874 return 2;
2875
2876 return n_times_set[REGNO (x)] == 0;
2877
2878 case MEM:
2879 /* Volatile memory references must be rejected. Do this before
2880 checking for read-only items, so that volatile read-only items
2881 will be rejected also. */
2882 if (MEM_VOLATILE_P (x))
2883 return 0;
2884
2885 /* Read-only items (such as constants in a constant pool) are
2886 invariant if their address is. */
2887 if (RTX_UNCHANGING_P (x))
2888 break;
2889
2890 /* If we filled the table (or had a subroutine call), any location
2891 in memory could have been clobbered. */
2892 if (unknown_address_altered)
2893 return 0;
2894
2895 /* See if there is any dependence between a store and this load. */
2896 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2897 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2898 return 0;
2899
2900 /* It's not invalidated by a store in memory
2901 but we must still verify the address is invariant. */
2902 break;
2903
2904 case ASM_OPERANDS:
2905 /* Don't mess with insns declared volatile. */
2906 if (MEM_VOLATILE_P (x))
2907 return 0;
2908 }
2909
2910 fmt = GET_RTX_FORMAT (code);
2911 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2912 {
2913 if (fmt[i] == 'e')
2914 {
2915 int tem = invariant_p (XEXP (x, i));
2916 if (tem == 0)
2917 return 0;
2918 if (tem == 2)
2919 conditional = 1;
2920 }
2921 else if (fmt[i] == 'E')
2922 {
2923 register int j;
2924 for (j = 0; j < XVECLEN (x, i); j++)
2925 {
2926 int tem = invariant_p (XVECEXP (x, i, j));
2927 if (tem == 0)
2928 return 0;
2929 if (tem == 2)
2930 conditional = 1;
2931 }
2932
2933 }
2934 }
2935
2936 return 1 + conditional;
2937 }
2938
2939 \f
2940 /* Return nonzero if all the insns in the loop that set REG
2941 are INSN and the immediately following insns,
2942 and if each of those insns sets REG in an invariant way
2943 (not counting uses of REG in them).
2944
2945 The value is 2 if some of these insns are only conditionally invariant.
2946
2947 We assume that INSN itself is the first set of REG
2948 and that its source is invariant. */
2949
2950 static int
2951 consec_sets_invariant_p (reg, n_sets, insn)
2952 int n_sets;
2953 rtx reg, insn;
2954 {
2955 register rtx p = insn;
2956 register int regno = REGNO (reg);
2957 rtx temp;
2958 /* Number of sets we have to insist on finding after INSN. */
2959 int count = n_sets - 1;
2960 int old = n_times_set[regno];
2961 int value = 0;
2962 int this;
2963
2964 /* If N_SETS hit the limit, we can't rely on its value. */
2965 if (n_sets == 127)
2966 return 0;
2967
2968 n_times_set[regno] = 0;
2969
2970 while (count > 0)
2971 {
2972 register enum rtx_code code;
2973 rtx set;
2974
2975 p = NEXT_INSN (p);
2976 code = GET_CODE (p);
2977
2978 /* If library call, skip to end of of it. */
2979 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2980 p = XEXP (temp, 0);
2981
2982 this = 0;
2983 if (code == INSN
2984 && (set = single_set (p))
2985 && GET_CODE (SET_DEST (set)) == REG
2986 && REGNO (SET_DEST (set)) == regno)
2987 {
2988 this = invariant_p (SET_SRC (set));
2989 if (this != 0)
2990 value |= this;
2991 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2992 {
2993 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2994 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2995 notes are OK. */
2996 this = (CONSTANT_P (XEXP (temp, 0))
2997 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2998 && invariant_p (XEXP (temp, 0))));
2999 if (this != 0)
3000 value |= this;
3001 }
3002 }
3003 if (this != 0)
3004 count--;
3005 else if (code != NOTE)
3006 {
3007 n_times_set[regno] = old;
3008 return 0;
3009 }
3010 }
3011
3012 n_times_set[regno] = old;
3013 /* If invariant_p ever returned 2, we return 2. */
3014 return 1 + (value & 2);
3015 }
3016
3017 #if 0
3018 /* I don't think this condition is sufficient to allow INSN
3019 to be moved, so we no longer test it. */
3020
3021 /* Return 1 if all insns in the basic block of INSN and following INSN
3022 that set REG are invariant according to TABLE. */
3023
3024 static int
3025 all_sets_invariant_p (reg, insn, table)
3026 rtx reg, insn;
3027 short *table;
3028 {
3029 register rtx p = insn;
3030 register int regno = REGNO (reg);
3031
3032 while (1)
3033 {
3034 register enum rtx_code code;
3035 p = NEXT_INSN (p);
3036 code = GET_CODE (p);
3037 if (code == CODE_LABEL || code == JUMP_INSN)
3038 return 1;
3039 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3040 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3041 && REGNO (SET_DEST (PATTERN (p))) == regno)
3042 {
3043 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3044 return 0;
3045 }
3046 }
3047 }
3048 #endif /* 0 */
3049 \f
3050 /* Look at all uses (not sets) of registers in X. For each, if it is
3051 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3052 a different insn, set USAGE[REGNO] to const0_rtx. */
3053
3054 static void
3055 find_single_use_in_loop (insn, x, usage)
3056 rtx insn;
3057 rtx x;
3058 rtx *usage;
3059 {
3060 enum rtx_code code = GET_CODE (x);
3061 char *fmt = GET_RTX_FORMAT (code);
3062 int i, j;
3063
3064 if (code == REG)
3065 usage[REGNO (x)]
3066 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
3067 ? const0_rtx : insn;
3068
3069 else if (code == SET)
3070 {
3071 /* Don't count SET_DEST if it is a REG; otherwise count things
3072 in SET_DEST because if a register is partially modified, it won't
3073 show up as a potential movable so we don't care how USAGE is set
3074 for it. */
3075 if (GET_CODE (SET_DEST (x)) != REG)
3076 find_single_use_in_loop (insn, SET_DEST (x), usage);
3077 find_single_use_in_loop (insn, SET_SRC (x), usage);
3078 }
3079 else
3080 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3081 {
3082 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3083 find_single_use_in_loop (insn, XEXP (x, i), usage);
3084 else if (fmt[i] == 'E')
3085 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3086 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3087 }
3088 }
3089 \f
3090 /* Increment N_TIMES_SET at the index of each register
3091 that is modified by an insn between FROM and TO.
3092 If the value of an element of N_TIMES_SET becomes 127 or more,
3093 stop incrementing it, to avoid overflow.
3094
3095 Store in SINGLE_USAGE[I] the single insn in which register I is
3096 used, if it is only used once. Otherwise, it is set to 0 (for no
3097 uses) or const0_rtx for more than one use. This parameter may be zero,
3098 in which case this processing is not done.
3099
3100 Store in *COUNT_PTR the number of actual instruction
3101 in the loop. We use this to decide what is worth moving out. */
3102
3103 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3104 In that case, it is the insn that last set reg n. */
3105
3106 static void
3107 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3108 register rtx from, to;
3109 char *may_not_move;
3110 rtx *single_usage;
3111 int *count_ptr;
3112 int nregs;
3113 {
3114 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3115 register rtx insn;
3116 register int count = 0;
3117 register rtx dest;
3118
3119 bzero ((char *) last_set, nregs * sizeof (rtx));
3120 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3121 {
3122 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3123 {
3124 ++count;
3125
3126 /* If requested, record registers that have exactly one use. */
3127 if (single_usage)
3128 {
3129 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3130
3131 /* Include uses in REG_EQUAL notes. */
3132 if (REG_NOTES (insn))
3133 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3134 }
3135
3136 if (GET_CODE (PATTERN (insn)) == CLOBBER
3137 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3138 /* Don't move a reg that has an explicit clobber.
3139 We might do so sometimes, but it's not worth the pain. */
3140 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3141
3142 if (GET_CODE (PATTERN (insn)) == SET
3143 || GET_CODE (PATTERN (insn)) == CLOBBER)
3144 {
3145 dest = SET_DEST (PATTERN (insn));
3146 while (GET_CODE (dest) == SUBREG
3147 || GET_CODE (dest) == ZERO_EXTRACT
3148 || GET_CODE (dest) == SIGN_EXTRACT
3149 || GET_CODE (dest) == STRICT_LOW_PART)
3150 dest = XEXP (dest, 0);
3151 if (GET_CODE (dest) == REG)
3152 {
3153 register int regno = REGNO (dest);
3154 /* If this is the first setting of this reg
3155 in current basic block, and it was set before,
3156 it must be set in two basic blocks, so it cannot
3157 be moved out of the loop. */
3158 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3159 may_not_move[regno] = 1;
3160 /* If this is not first setting in current basic block,
3161 see if reg was used in between previous one and this.
3162 If so, neither one can be moved. */
3163 if (last_set[regno] != 0
3164 && reg_used_between_p (dest, last_set[regno], insn))
3165 may_not_move[regno] = 1;
3166 if (n_times_set[regno] < 127)
3167 ++n_times_set[regno];
3168 last_set[regno] = insn;
3169 }
3170 }
3171 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3172 {
3173 register int i;
3174 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3175 {
3176 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3177 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3178 /* Don't move a reg that has an explicit clobber.
3179 It's not worth the pain to try to do it correctly. */
3180 may_not_move[REGNO (XEXP (x, 0))] = 1;
3181
3182 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3183 {
3184 dest = SET_DEST (x);
3185 while (GET_CODE (dest) == SUBREG
3186 || GET_CODE (dest) == ZERO_EXTRACT
3187 || GET_CODE (dest) == SIGN_EXTRACT
3188 || GET_CODE (dest) == STRICT_LOW_PART)
3189 dest = XEXP (dest, 0);
3190 if (GET_CODE (dest) == REG)
3191 {
3192 register int regno = REGNO (dest);
3193 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3194 may_not_move[regno] = 1;
3195 if (last_set[regno] != 0
3196 && reg_used_between_p (dest, last_set[regno], insn))
3197 may_not_move[regno] = 1;
3198 if (n_times_set[regno] < 127)
3199 ++n_times_set[regno];
3200 last_set[regno] = insn;
3201 }
3202 }
3203 }
3204 }
3205 }
3206
3207 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3208 bzero ((char *) last_set, nregs * sizeof (rtx));
3209 }
3210 *count_ptr = count;
3211 }
3212 \f
3213 /* Given a loop that is bounded by LOOP_START and LOOP_END
3214 and that is entered at SCAN_START,
3215 return 1 if the register set in SET contained in insn INSN is used by
3216 any insn that precedes INSN in cyclic order starting
3217 from the loop entry point.
3218
3219 We don't want to use INSN_LUID here because if we restrict INSN to those
3220 that have a valid INSN_LUID, it means we cannot move an invariant out
3221 from an inner loop past two loops. */
3222
3223 static int
3224 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3225 rtx set, insn, loop_start, scan_start, loop_end;
3226 {
3227 rtx reg = SET_DEST (set);
3228 rtx p;
3229
3230 /* Scan forward checking for register usage. If we hit INSN, we
3231 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3232 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3233 {
3234 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3235 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3236 return 1;
3237
3238 if (p == loop_end)
3239 p = loop_start;
3240 }
3241
3242 return 0;
3243 }
3244 \f
3245 /* A "basic induction variable" or biv is a pseudo reg that is set
3246 (within this loop) only by incrementing or decrementing it. */
3247 /* A "general induction variable" or giv is a pseudo reg whose
3248 value is a linear function of a biv. */
3249
3250 /* Bivs are recognized by `basic_induction_var';
3251 Givs by `general_induct_var'. */
3252
3253 /* Indexed by register number, indicates whether or not register is an
3254 induction variable, and if so what type. */
3255
3256 enum iv_mode *reg_iv_type;
3257
3258 /* Indexed by register number, contains pointer to `struct induction'
3259 if register is an induction variable. This holds general info for
3260 all induction variables. */
3261
3262 struct induction **reg_iv_info;
3263
3264 /* Indexed by register number, contains pointer to `struct iv_class'
3265 if register is a basic induction variable. This holds info describing
3266 the class (a related group) of induction variables that the biv belongs
3267 to. */
3268
3269 struct iv_class **reg_biv_class;
3270
3271 /* The head of a list which links together (via the next field)
3272 every iv class for the current loop. */
3273
3274 struct iv_class *loop_iv_list;
3275
3276 /* Communication with routines called via `note_stores'. */
3277
3278 static rtx note_insn;
3279
3280 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3281
3282 static rtx addr_placeholder;
3283
3284 /* ??? Unfinished optimizations, and possible future optimizations,
3285 for the strength reduction code. */
3286
3287 /* ??? There is one more optimization you might be interested in doing: to
3288 allocate pseudo registers for frequently-accessed memory locations.
3289 If the same memory location is referenced each time around, it might
3290 be possible to copy it into a register before and out after.
3291 This is especially useful when the memory location is a variable which
3292 is in a stack slot because somewhere its address is taken. If the
3293 loop doesn't contain a function call and the variable isn't volatile,
3294 it is safe to keep the value in a register for the duration of the
3295 loop. One tricky thing is that the copying of the value back from the
3296 register has to be done on all exits from the loop. You need to check that
3297 all the exits from the loop go to the same place. */
3298
3299 /* ??? The interaction of biv elimination, and recognition of 'constant'
3300 bivs, may cause problems. */
3301
3302 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3303 performance problems.
3304
3305 Perhaps don't eliminate things that can be combined with an addressing
3306 mode. Find all givs that have the same biv, mult_val, and add_val;
3307 then for each giv, check to see if its only use dies in a following
3308 memory address. If so, generate a new memory address and check to see
3309 if it is valid. If it is valid, then store the modified memory address,
3310 otherwise, mark the giv as not done so that it will get its own iv. */
3311
3312 /* ??? Could try to optimize branches when it is known that a biv is always
3313 positive. */
3314
3315 /* ??? When replace a biv in a compare insn, we should replace with closest
3316 giv so that an optimized branch can still be recognized by the combiner,
3317 e.g. the VAX acb insn. */
3318
3319 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3320 was rerun in loop_optimize whenever a register was added or moved.
3321 Also, some of the optimizations could be a little less conservative. */
3322 \f
3323 /* Perform strength reduction and induction variable elimination. */
3324
3325 /* Pseudo registers created during this function will be beyond the last
3326 valid index in several tables including n_times_set and regno_last_uid.
3327 This does not cause a problem here, because the added registers cannot be
3328 givs outside of their loop, and hence will never be reconsidered.
3329 But scan_loop must check regnos to make sure they are in bounds. */
3330
3331 static void
3332 strength_reduce (scan_start, end, loop_top, insn_count,
3333 loop_start, loop_end)
3334 rtx scan_start;
3335 rtx end;
3336 rtx loop_top;
3337 int insn_count;
3338 rtx loop_start;
3339 rtx loop_end;
3340 {
3341 rtx p;
3342 rtx set;
3343 rtx inc_val;
3344 rtx mult_val;
3345 rtx dest_reg;
3346 /* This is 1 if current insn is not executed at least once for every loop
3347 iteration. */
3348 int not_every_iteration = 0;
3349 /* This is 1 if current insn may be executed more than once for every
3350 loop iteration. */
3351 int maybe_multiple = 0;
3352 /* Temporary list pointers for traversing loop_iv_list. */
3353 struct iv_class *bl, **backbl;
3354 /* Ratio of extra register life span we can justify
3355 for saving an instruction. More if loop doesn't call subroutines
3356 since in that case saving an insn makes more difference
3357 and more registers are available. */
3358 /* ??? could set this to last value of threshold in move_movables */
3359 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3360 /* Map of pseudo-register replacements. */
3361 rtx *reg_map;
3362 int call_seen;
3363 rtx test;
3364 rtx end_insert_before;
3365 int loop_depth = 0;
3366
3367 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3368 * sizeof (enum iv_mode *));
3369 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3370 reg_iv_info = (struct induction **)
3371 alloca (max_reg_before_loop * sizeof (struct induction *));
3372 bzero ((char *) reg_iv_info, (max_reg_before_loop
3373 * sizeof (struct induction *)));
3374 reg_biv_class = (struct iv_class **)
3375 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3376 bzero ((char *) reg_biv_class, (max_reg_before_loop
3377 * sizeof (struct iv_class *)));
3378
3379 loop_iv_list = 0;
3380 addr_placeholder = gen_reg_rtx (Pmode);
3381
3382 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3383 must be put before this insn, so that they will appear in the right
3384 order (i.e. loop order).
3385
3386 If loop_end is the end of the current function, then emit a
3387 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3388 dummy note insn. */
3389 if (NEXT_INSN (loop_end) != 0)
3390 end_insert_before = NEXT_INSN (loop_end);
3391 else
3392 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3393
3394 /* Scan through loop to find all possible bivs. */
3395
3396 p = scan_start;
3397 while (1)
3398 {
3399 p = NEXT_INSN (p);
3400 /* At end of a straight-in loop, we are done.
3401 At end of a loop entered at the bottom, scan the top. */
3402 if (p == scan_start)
3403 break;
3404 if (p == end)
3405 {
3406 if (loop_top != 0)
3407 p = loop_top;
3408 else
3409 break;
3410 if (p == scan_start)
3411 break;
3412 }
3413
3414 if (GET_CODE (p) == INSN
3415 && (set = single_set (p))
3416 && GET_CODE (SET_DEST (set)) == REG)
3417 {
3418 dest_reg = SET_DEST (set);
3419 if (REGNO (dest_reg) < max_reg_before_loop
3420 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3421 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3422 {
3423 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3424 dest_reg, p, &inc_val, &mult_val))
3425 {
3426 /* It is a possible basic induction variable.
3427 Create and initialize an induction structure for it. */
3428
3429 struct induction *v
3430 = (struct induction *) alloca (sizeof (struct induction));
3431
3432 record_biv (v, p, dest_reg, inc_val, mult_val,
3433 not_every_iteration, maybe_multiple);
3434 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3435 }
3436 else if (REGNO (dest_reg) < max_reg_before_loop)
3437 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3438 }
3439 }
3440
3441 /* Past CODE_LABEL, we get to insns that may be executed multiple
3442 times. The only way we can be sure that they can't is if every
3443 every jump insn between here and the end of the loop either
3444 returns, exits the loop, is a forward jump, or is a jump
3445 to the loop start. */
3446
3447 if (GET_CODE (p) == CODE_LABEL)
3448 {
3449 rtx insn = p;
3450
3451 maybe_multiple = 0;
3452
3453 while (1)
3454 {
3455 insn = NEXT_INSN (insn);
3456 if (insn == scan_start)
3457 break;
3458 if (insn == end)
3459 {
3460 if (loop_top != 0)
3461 insn = loop_top;
3462 else
3463 break;
3464 if (insn == scan_start)
3465 break;
3466 }
3467
3468 if (GET_CODE (insn) == JUMP_INSN
3469 && GET_CODE (PATTERN (insn)) != RETURN
3470 && (! condjump_p (insn)
3471 || (JUMP_LABEL (insn) != 0
3472 && JUMP_LABEL (insn) != scan_start
3473 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3474 || INSN_UID (insn) >= max_uid_for_loop
3475 || (INSN_LUID (JUMP_LABEL (insn))
3476 < INSN_LUID (insn))))))
3477 {
3478 maybe_multiple = 1;
3479 break;
3480 }
3481 }
3482 }
3483
3484 /* Past a jump, we get to insns for which we can't count
3485 on whether they will be executed during each iteration. */
3486 /* This code appears twice in strength_reduce. There is also similar
3487 code in scan_loop. */
3488 if (GET_CODE (p) == JUMP_INSN
3489 /* If we enter the loop in the middle, and scan around to the
3490 beginning, don't set not_every_iteration for that.
3491 This can be any kind of jump, since we want to know if insns
3492 will be executed if the loop is executed. */
3493 && ! (JUMP_LABEL (p) == loop_top
3494 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3495 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3496 {
3497 rtx label = 0;
3498
3499 /* If this is a jump outside the loop, then it also doesn't
3500 matter. Check to see if the target of this branch is on the
3501 loop_number_exits_labels list. */
3502
3503 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3504 label;
3505 label = LABEL_NEXTREF (label))
3506 if (XEXP (label, 0) == JUMP_LABEL (p))
3507 break;
3508
3509 if (! label)
3510 not_every_iteration = 1;
3511 }
3512
3513 else if (GET_CODE (p) == NOTE)
3514 {
3515 /* At the virtual top of a converted loop, insns are again known to
3516 be executed each iteration: logically, the loop begins here
3517 even though the exit code has been duplicated. */
3518 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3519 not_every_iteration = 0;
3520 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3521 loop_depth++;
3522 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3523 loop_depth--;
3524 }
3525
3526 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3527 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3528 or not an insn is known to be executed each iteration of the
3529 loop, whether or not any iterations are known to occur.
3530
3531 Therefore, if we have just passed a label and have no more labels
3532 between here and the test insn of the loop, we know these insns
3533 will be executed each iteration. */
3534
3535 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3536 && no_labels_between_p (p, loop_end))
3537 not_every_iteration = 0;
3538 }
3539
3540 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3541 Make a sanity check against n_times_set. */
3542 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3543 {
3544 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3545 /* Above happens if register modified by subreg, etc. */
3546 /* Make sure it is not recognized as a basic induction var: */
3547 || n_times_set[bl->regno] != bl->biv_count
3548 /* If never incremented, it is invariant that we decided not to
3549 move. So leave it alone. */
3550 || ! bl->incremented)
3551 {
3552 if (loop_dump_stream)
3553 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3554 bl->regno,
3555 (reg_iv_type[bl->regno] != BASIC_INDUCT
3556 ? "not induction variable"
3557 : (! bl->incremented ? "never incremented"
3558 : "count error")));
3559
3560 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3561 *backbl = bl->next;
3562 }
3563 else
3564 {
3565 backbl = &bl->next;
3566
3567 if (loop_dump_stream)
3568 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3569 }
3570 }
3571
3572 /* Exit if there are no bivs. */
3573 if (! loop_iv_list)
3574 {
3575 /* Can still unroll the loop anyways, but indicate that there is no
3576 strength reduction info available. */
3577 if (flag_unroll_loops)
3578 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3579
3580 return;
3581 }
3582
3583 /* Find initial value for each biv by searching backwards from loop_start,
3584 halting at first label. Also record any test condition. */
3585
3586 call_seen = 0;
3587 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3588 {
3589 note_insn = p;
3590
3591 if (GET_CODE (p) == CALL_INSN)
3592 call_seen = 1;
3593
3594 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3595 || GET_CODE (p) == CALL_INSN)
3596 note_stores (PATTERN (p), record_initial);
3597
3598 /* Record any test of a biv that branches around the loop if no store
3599 between it and the start of loop. We only care about tests with
3600 constants and registers and only certain of those. */
3601 if (GET_CODE (p) == JUMP_INSN
3602 && JUMP_LABEL (p) != 0
3603 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3604 && (test = get_condition_for_loop (p)) != 0
3605 && GET_CODE (XEXP (test, 0)) == REG
3606 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3607 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3608 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3609 && bl->init_insn == 0)
3610 {
3611 /* If an NE test, we have an initial value! */
3612 if (GET_CODE (test) == NE)
3613 {
3614 bl->init_insn = p;
3615 bl->init_set = gen_rtx (SET, VOIDmode,
3616 XEXP (test, 0), XEXP (test, 1));
3617 }
3618 else
3619 bl->initial_test = test;
3620 }
3621 }
3622
3623 /* Look at the each biv and see if we can say anything better about its
3624 initial value from any initializing insns set up above. (This is done
3625 in two passes to avoid missing SETs in a PARALLEL.) */
3626 for (bl = loop_iv_list; bl; bl = bl->next)
3627 {
3628 rtx src;
3629
3630 if (! bl->init_insn)
3631 continue;
3632
3633 src = SET_SRC (bl->init_set);
3634
3635 if (loop_dump_stream)
3636 fprintf (loop_dump_stream,
3637 "Biv %d initialized at insn %d: initial value ",
3638 bl->regno, INSN_UID (bl->init_insn));
3639
3640 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3641 || GET_MODE (src) == VOIDmode)
3642 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3643 {
3644 bl->initial_value = src;
3645
3646 if (loop_dump_stream)
3647 {
3648 if (GET_CODE (src) == CONST_INT)
3649 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3650 else
3651 {
3652 print_rtl (loop_dump_stream, src);
3653 fprintf (loop_dump_stream, "\n");
3654 }
3655 }
3656 }
3657 else
3658 {
3659 /* Biv initial value is not simple move,
3660 so let it keep initial value of "itself". */
3661
3662 if (loop_dump_stream)
3663 fprintf (loop_dump_stream, "is complex\n");
3664 }
3665 }
3666
3667 /* Search the loop for general induction variables. */
3668
3669 /* A register is a giv if: it is only set once, it is a function of a
3670 biv and a constant (or invariant), and it is not a biv. */
3671
3672 not_every_iteration = 0;
3673 loop_depth = 0;
3674 p = scan_start;
3675 while (1)
3676 {
3677 p = NEXT_INSN (p);
3678 /* At end of a straight-in loop, we are done.
3679 At end of a loop entered at the bottom, scan the top. */
3680 if (p == scan_start)
3681 break;
3682 if (p == end)
3683 {
3684 if (loop_top != 0)
3685 p = loop_top;
3686 else
3687 break;
3688 if (p == scan_start)
3689 break;
3690 }
3691
3692 /* Look for a general induction variable in a register. */
3693 if (GET_CODE (p) == INSN
3694 && (set = single_set (p))
3695 && GET_CODE (SET_DEST (set)) == REG
3696 && ! may_not_optimize[REGNO (SET_DEST (set))])
3697 {
3698 rtx src_reg;
3699 rtx add_val;
3700 rtx mult_val;
3701 int benefit;
3702 rtx regnote = 0;
3703
3704 dest_reg = SET_DEST (set);
3705 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3706 continue;
3707
3708 if (/* SET_SRC is a giv. */
3709 ((benefit = general_induction_var (SET_SRC (set),
3710 &src_reg, &add_val,
3711 &mult_val))
3712 /* Equivalent expression is a giv. */
3713 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3714 && (benefit = general_induction_var (XEXP (regnote, 0),
3715 &src_reg,
3716 &add_val, &mult_val))))
3717 /* Don't try to handle any regs made by loop optimization.
3718 We have nothing on them in regno_first_uid, etc. */
3719 && REGNO (dest_reg) < max_reg_before_loop
3720 /* Don't recognize a BASIC_INDUCT_VAR here. */
3721 && dest_reg != src_reg
3722 /* This must be the only place where the register is set. */
3723 && (n_times_set[REGNO (dest_reg)] == 1
3724 /* or all sets must be consecutive and make a giv. */
3725 || (benefit = consec_sets_giv (benefit, p,
3726 src_reg, dest_reg,
3727 &add_val, &mult_val))))
3728 {
3729 int count;
3730 struct induction *v
3731 = (struct induction *) alloca (sizeof (struct induction));
3732 rtx temp;
3733
3734 /* If this is a library call, increase benefit. */
3735 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3736 benefit += libcall_benefit (p);
3737
3738 /* Skip the consecutive insns, if there are any. */
3739 for (count = n_times_set[REGNO (dest_reg)] - 1;
3740 count > 0; count--)
3741 {
3742 /* If first insn of libcall sequence, skip to end.
3743 Do this at start of loop, since INSN is guaranteed to
3744 be an insn here. */
3745 if (GET_CODE (p) != NOTE
3746 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3747 p = XEXP (temp, 0);
3748
3749 do p = NEXT_INSN (p);
3750 while (GET_CODE (p) == NOTE);
3751 }
3752
3753 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3754 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3755 loop_end);
3756
3757 }
3758 }
3759
3760 #ifndef DONT_REDUCE_ADDR
3761 /* Look for givs which are memory addresses. */
3762 /* This resulted in worse code on a VAX 8600. I wonder if it
3763 still does. */
3764 if (GET_CODE (p) == INSN)
3765 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3766 loop_end);
3767 #endif
3768
3769 /* Update the status of whether giv can derive other givs. This can
3770 change when we pass a label or an insn that updates a biv. */
3771 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3772 || GET_CODE (p) == CODE_LABEL)
3773 update_giv_derive (p);
3774
3775 /* Past a jump, we get to insns for which we can't count
3776 on whether they will be executed during each iteration. */
3777 /* This code appears twice in strength_reduce. There is also similar
3778 code in scan_loop. */
3779 if (GET_CODE (p) == JUMP_INSN
3780 /* If we enter the loop in the middle, and scan around to the
3781 beginning, don't set not_every_iteration for that.
3782 This can be any kind of jump, since we want to know if insns
3783 will be executed if the loop is executed. */
3784 && ! (JUMP_LABEL (p) == loop_top
3785 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3786 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3787 {
3788 rtx label = 0;
3789
3790 /* If this is a jump outside the loop, then it also doesn't
3791 matter. Check to see if the target of this branch is on the
3792 loop_number_exits_labels list. */
3793
3794 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3795 label;
3796 label = LABEL_NEXTREF (label))
3797 if (XEXP (label, 0) == JUMP_LABEL (p))
3798 break;
3799
3800 if (! label)
3801 not_every_iteration = 1;
3802 }
3803
3804 else if (GET_CODE (p) == NOTE)
3805 {
3806 /* At the virtual top of a converted loop, insns are again known to
3807 be executed each iteration: logically, the loop begins here
3808 even though the exit code has been duplicated. */
3809 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3810 not_every_iteration = 0;
3811 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3812 loop_depth++;
3813 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3814 loop_depth--;
3815 }
3816
3817 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3818 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3819 or not an insn is known to be executed each iteration of the
3820 loop, whether or not any iterations are known to occur.
3821
3822 Therefore, if we have just passed a label and have no more labels
3823 between here and the test insn of the loop, we know these insns
3824 will be executed each iteration. */
3825
3826 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3827 && no_labels_between_p (p, loop_end))
3828 not_every_iteration = 0;
3829 }
3830
3831 /* Try to calculate and save the number of loop iterations. This is
3832 set to zero if the actual number can not be calculated. This must
3833 be called after all giv's have been identified, since otherwise it may
3834 fail if the iteration variable is a giv. */
3835
3836 loop_n_iterations = loop_iterations (loop_start, loop_end);
3837
3838 /* Now for each giv for which we still don't know whether or not it is
3839 replaceable, check to see if it is replaceable because its final value
3840 can be calculated. This must be done after loop_iterations is called,
3841 so that final_giv_value will work correctly. */
3842
3843 for (bl = loop_iv_list; bl; bl = bl->next)
3844 {
3845 struct induction *v;
3846
3847 for (v = bl->giv; v; v = v->next_iv)
3848 if (! v->replaceable && ! v->not_replaceable)
3849 check_final_value (v, loop_start, loop_end);
3850 }
3851
3852 /* Try to prove that the loop counter variable (if any) is always
3853 nonnegative; if so, record that fact with a REG_NONNEG note
3854 so that "decrement and branch until zero" insn can be used. */
3855 check_dbra_loop (loop_end, insn_count, loop_start);
3856
3857 #ifdef HAIFA
3858 /* record loop-variables relevant for BCT optimization before unrolling
3859 the loop. Unrolling may update part of this information, and the
3860 correct data will be used for generating the BCT. */
3861 #ifdef HAVE_decrement_and_branch_on_count
3862 if (HAVE_decrement_and_branch_on_count)
3863 analyze_loop_iterations (loop_start, loop_end);
3864 #endif
3865 #endif /* HAIFA */
3866
3867 /* Create reg_map to hold substitutions for replaceable giv regs. */
3868 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3869 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3870
3871 /* Examine each iv class for feasibility of strength reduction/induction
3872 variable elimination. */
3873
3874 for (bl = loop_iv_list; bl; bl = bl->next)
3875 {
3876 struct induction *v;
3877 int benefit;
3878 int all_reduced;
3879 rtx final_value = 0;
3880
3881 /* Test whether it will be possible to eliminate this biv
3882 provided all givs are reduced. This is possible if either
3883 the reg is not used outside the loop, or we can compute
3884 what its final value will be.
3885
3886 For architectures with a decrement_and_branch_until_zero insn,
3887 don't do this if we put a REG_NONNEG note on the endtest for
3888 this biv. */
3889
3890 /* Compare against bl->init_insn rather than loop_start.
3891 We aren't concerned with any uses of the biv between
3892 init_insn and loop_start since these won't be affected
3893 by the value of the biv elsewhere in the function, so
3894 long as init_insn doesn't use the biv itself.
3895 March 14, 1989 -- self@bayes.arc.nasa.gov */
3896
3897 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3898 && bl->init_insn
3899 && INSN_UID (bl->init_insn) < max_uid_for_loop
3900 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3901 #ifdef HAVE_decrement_and_branch_until_zero
3902 && ! bl->nonneg
3903 #endif
3904 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3905 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3906 #ifdef HAVE_decrement_and_branch_until_zero
3907 && ! bl->nonneg
3908 #endif
3909 ))
3910 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3911 threshold, insn_count);
3912 else
3913 {
3914 if (loop_dump_stream)
3915 {
3916 fprintf (loop_dump_stream,
3917 "Cannot eliminate biv %d.\n",
3918 bl->regno);
3919 fprintf (loop_dump_stream,
3920 "First use: insn %d, last use: insn %d.\n",
3921 REGNO_FIRST_UID (bl->regno),
3922 REGNO_LAST_UID (bl->regno));
3923 }
3924 }
3925
3926 /* Combine all giv's for this iv_class. */
3927 combine_givs (bl);
3928
3929 /* This will be true at the end, if all givs which depend on this
3930 biv have been strength reduced.
3931 We can't (currently) eliminate the biv unless this is so. */
3932 all_reduced = 1;
3933
3934 /* Check each giv in this class to see if we will benefit by reducing
3935 it. Skip giv's combined with others. */
3936 for (v = bl->giv; v; v = v->next_iv)
3937 {
3938 struct induction *tv;
3939
3940 if (v->ignore || v->same)
3941 continue;
3942
3943 benefit = v->benefit;
3944
3945 /* Reduce benefit if not replaceable, since we will insert
3946 a move-insn to replace the insn that calculates this giv.
3947 Don't do this unless the giv is a user variable, since it
3948 will often be marked non-replaceable because of the duplication
3949 of the exit code outside the loop. In such a case, the copies
3950 we insert are dead and will be deleted. So they don't have
3951 a cost. Similar situations exist. */
3952 /* ??? The new final_[bg]iv_value code does a much better job
3953 of finding replaceable giv's, and hence this code may no longer
3954 be necessary. */
3955 if (! v->replaceable && ! bl->eliminable
3956 && REG_USERVAR_P (v->dest_reg))
3957 benefit -= copy_cost;
3958
3959 /* Decrease the benefit to count the add-insns that we will
3960 insert to increment the reduced reg for the giv. */
3961 benefit -= add_cost * bl->biv_count;
3962
3963 /* Decide whether to strength-reduce this giv or to leave the code
3964 unchanged (recompute it from the biv each time it is used).
3965 This decision can be made independently for each giv. */
3966
3967 #ifdef AUTO_INC_DEC
3968 /* Attempt to guess whether autoincrement will handle some of the
3969 new add insns; if so, increase BENEFIT (undo the subtraction of
3970 add_cost that was done above). */
3971 if (v->giv_type == DEST_ADDR
3972 && GET_CODE (v->mult_val) == CONST_INT)
3973 {
3974 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
3975 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3976 benefit += add_cost * bl->biv_count;
3977 #endif
3978 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
3979 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3980 benefit += add_cost * bl->biv_count;
3981 #endif
3982 }
3983 #endif
3984
3985 /* If an insn is not to be strength reduced, then set its ignore
3986 flag, and clear all_reduced. */
3987
3988 /* A giv that depends on a reversed biv must be reduced if it is
3989 used after the loop exit, otherwise, it would have the wrong
3990 value after the loop exit. To make it simple, just reduce all
3991 of such giv's whether or not we know they are used after the loop
3992 exit. */
3993
3994 if (v->lifetime * threshold * benefit < insn_count
3995 && ! bl->reversed)
3996 {
3997 if (loop_dump_stream)
3998 fprintf (loop_dump_stream,
3999 "giv of insn %d not worth while, %d vs %d.\n",
4000 INSN_UID (v->insn),
4001 v->lifetime * threshold * benefit, insn_count);
4002 v->ignore = 1;
4003 all_reduced = 0;
4004 }
4005 else
4006 {
4007 /* Check that we can increment the reduced giv without a
4008 multiply insn. If not, reject it. */
4009
4010 for (tv = bl->biv; tv; tv = tv->next_iv)
4011 if (tv->mult_val == const1_rtx
4012 && ! product_cheap_p (tv->add_val, v->mult_val))
4013 {
4014 if (loop_dump_stream)
4015 fprintf (loop_dump_stream,
4016 "giv of insn %d: would need a multiply.\n",
4017 INSN_UID (v->insn));
4018 v->ignore = 1;
4019 all_reduced = 0;
4020 break;
4021 }
4022 }
4023 }
4024
4025 /* Reduce each giv that we decided to reduce. */
4026
4027 for (v = bl->giv; v; v = v->next_iv)
4028 {
4029 struct induction *tv;
4030 if (! v->ignore && v->same == 0)
4031 {
4032 int auto_inc_opt = 0;
4033
4034 v->new_reg = gen_reg_rtx (v->mode);
4035
4036 #ifdef AUTO_INC_DEC
4037 /* If the target has auto-increment addressing modes, and
4038 this is an address giv, then try to put the increment
4039 immediately after its use, so that flow can create an
4040 auto-increment addressing mode. */
4041 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4042 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4043 /* We don't handle reversed biv's because bl->biv->insn
4044 does not have a valid INSN_LUID. */
4045 && ! bl->reversed
4046 && v->always_executed && ! v->maybe_multiple)
4047 {
4048 /* If other giv's have been combined with this one, then
4049 this will work only if all uses of the other giv's occur
4050 before this giv's insn. This is difficult to check.
4051
4052 We simplify this by looking for the common case where
4053 there is one DEST_REG giv, and this giv's insn is the
4054 last use of the dest_reg of that DEST_REG giv. If the
4055 the increment occurs after the address giv, then we can
4056 perform the optimization. (Otherwise, the increment
4057 would have to go before other_giv, and we would not be
4058 able to combine it with the address giv to get an
4059 auto-inc address.) */
4060 if (v->combined_with)
4061 {
4062 struct induction *other_giv = 0;
4063
4064 for (tv = bl->giv; tv; tv = tv->next_iv)
4065 if (tv->same == v)
4066 {
4067 if (other_giv)
4068 break;
4069 else
4070 other_giv = tv;
4071 }
4072 if (! tv && other_giv
4073 && REGNO (other_giv->dest_reg) <= max_reg_before_loop
4074 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4075 == INSN_UID (v->insn))
4076 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4077 auto_inc_opt = 1;
4078 }
4079 /* Check for case where increment is before the the address
4080 giv. */
4081 else if (INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn))
4082 auto_inc_opt = -1;
4083 else
4084 auto_inc_opt = 1;
4085
4086 #ifdef HAVE_cc0
4087 {
4088 rtx prev;
4089
4090 /* We can't put an insn immediately after one setting
4091 cc0, or immediately before one using cc0. */
4092 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4093 || (auto_inc_opt == -1
4094 && (prev = prev_nonnote_insn (v->insn)) != 0
4095 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4096 && sets_cc0_p (PATTERN (prev))))
4097 auto_inc_opt = 0;
4098 }
4099 #endif
4100
4101 if (auto_inc_opt)
4102 v->auto_inc_opt = 1;
4103 }
4104 #endif
4105
4106 /* For each place where the biv is incremented, add an insn
4107 to increment the new, reduced reg for the giv. */
4108 for (tv = bl->biv; tv; tv = tv->next_iv)
4109 {
4110 rtx insert_before;
4111
4112 if (! auto_inc_opt)
4113 insert_before = tv->insn;
4114 else if (auto_inc_opt == 1)
4115 insert_before = NEXT_INSN (v->insn);
4116 else
4117 insert_before = v->insn;
4118
4119 if (tv->mult_val == const1_rtx)
4120 emit_iv_add_mult (tv->add_val, v->mult_val,
4121 v->new_reg, v->new_reg, insert_before);
4122 else /* tv->mult_val == const0_rtx */
4123 /* A multiply is acceptable here
4124 since this is presumed to be seldom executed. */
4125 emit_iv_add_mult (tv->add_val, v->mult_val,
4126 v->add_val, v->new_reg, insert_before);
4127 }
4128
4129 /* Add code at loop start to initialize giv's reduced reg. */
4130
4131 emit_iv_add_mult (bl->initial_value, v->mult_val,
4132 v->add_val, v->new_reg, loop_start);
4133 }
4134 }
4135
4136 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4137 as not reduced.
4138
4139 For each giv register that can be reduced now: if replaceable,
4140 substitute reduced reg wherever the old giv occurs;
4141 else add new move insn "giv_reg = reduced_reg".
4142
4143 Also check for givs whose first use is their definition and whose
4144 last use is the definition of another giv. If so, it is likely
4145 dead and should not be used to eliminate a biv. */
4146 for (v = bl->giv; v; v = v->next_iv)
4147 {
4148 if (v->same && v->same->ignore)
4149 v->ignore = 1;
4150
4151 if (v->ignore)
4152 continue;
4153
4154 if (v->giv_type == DEST_REG
4155 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4156 {
4157 struct induction *v1;
4158
4159 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4160 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4161 v->maybe_dead = 1;
4162 }
4163
4164 /* Update expression if this was combined, in case other giv was
4165 replaced. */
4166 if (v->same)
4167 v->new_reg = replace_rtx (v->new_reg,
4168 v->same->dest_reg, v->same->new_reg);
4169
4170 if (v->giv_type == DEST_ADDR)
4171 /* Store reduced reg as the address in the memref where we found
4172 this giv. */
4173 validate_change (v->insn, v->location, v->new_reg, 0);
4174 else if (v->replaceable)
4175 {
4176 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4177
4178 #if 0
4179 /* I can no longer duplicate the original problem. Perhaps
4180 this is unnecessary now? */
4181
4182 /* Replaceable; it isn't strictly necessary to delete the old
4183 insn and emit a new one, because v->dest_reg is now dead.
4184
4185 However, especially when unrolling loops, the special
4186 handling for (set REG0 REG1) in the second cse pass may
4187 make v->dest_reg live again. To avoid this problem, emit
4188 an insn to set the original giv reg from the reduced giv.
4189 We can not delete the original insn, since it may be part
4190 of a LIBCALL, and the code in flow that eliminates dead
4191 libcalls will fail if it is deleted. */
4192 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4193 v->insn);
4194 #endif
4195 }
4196 else
4197 {
4198 /* Not replaceable; emit an insn to set the original giv reg from
4199 the reduced giv, same as above. */
4200 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4201 v->insn);
4202 }
4203
4204 /* When a loop is reversed, givs which depend on the reversed
4205 biv, and which are live outside the loop, must be set to their
4206 correct final value. This insn is only needed if the giv is
4207 not replaceable. The correct final value is the same as the
4208 value that the giv starts the reversed loop with. */
4209 if (bl->reversed && ! v->replaceable)
4210 emit_iv_add_mult (bl->initial_value, v->mult_val,
4211 v->add_val, v->dest_reg, end_insert_before);
4212 else if (v->final_value)
4213 {
4214 rtx insert_before;
4215
4216 /* If the loop has multiple exits, emit the insn before the
4217 loop to ensure that it will always be executed no matter
4218 how the loop exits. Otherwise, emit the insn after the loop,
4219 since this is slightly more efficient. */
4220 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4221 insert_before = loop_start;
4222 else
4223 insert_before = end_insert_before;
4224 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4225 insert_before);
4226
4227 #if 0
4228 /* If the insn to set the final value of the giv was emitted
4229 before the loop, then we must delete the insn inside the loop
4230 that sets it. If this is a LIBCALL, then we must delete
4231 every insn in the libcall. Note, however, that
4232 final_giv_value will only succeed when there are multiple
4233 exits if the giv is dead at each exit, hence it does not
4234 matter that the original insn remains because it is dead
4235 anyways. */
4236 /* Delete the insn inside the loop that sets the giv since
4237 the giv is now set before (or after) the loop. */
4238 delete_insn (v->insn);
4239 #endif
4240 }
4241
4242 if (loop_dump_stream)
4243 {
4244 fprintf (loop_dump_stream, "giv at %d reduced to ",
4245 INSN_UID (v->insn));
4246 print_rtl (loop_dump_stream, v->new_reg);
4247 fprintf (loop_dump_stream, "\n");
4248 }
4249 }
4250
4251 /* All the givs based on the biv bl have been reduced if they
4252 merit it. */
4253
4254 /* For each giv not marked as maybe dead that has been combined with a
4255 second giv, clear any "maybe dead" mark on that second giv.
4256 v->new_reg will either be or refer to the register of the giv it
4257 combined with.
4258
4259 Doing this clearing avoids problems in biv elimination where a
4260 giv's new_reg is a complex value that can't be put in the insn but
4261 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4262 Since the register will be used in either case, we'd prefer it be
4263 used from the simpler giv. */
4264
4265 for (v = bl->giv; v; v = v->next_iv)
4266 if (! v->maybe_dead && v->same)
4267 v->same->maybe_dead = 0;
4268
4269 /* Try to eliminate the biv, if it is a candidate.
4270 This won't work if ! all_reduced,
4271 since the givs we planned to use might not have been reduced.
4272
4273 We have to be careful that we didn't initially think we could eliminate
4274 this biv because of a giv that we now think may be dead and shouldn't
4275 be used as a biv replacement.
4276
4277 Also, there is the possibility that we may have a giv that looks
4278 like it can be used to eliminate a biv, but the resulting insn
4279 isn't valid. This can happen, for example, on the 88k, where a
4280 JUMP_INSN can compare a register only with zero. Attempts to
4281 replace it with a compare with a constant will fail.
4282
4283 Note that in cases where this call fails, we may have replaced some
4284 of the occurrences of the biv with a giv, but no harm was done in
4285 doing so in the rare cases where it can occur. */
4286
4287 if (all_reduced == 1 && bl->eliminable
4288 && maybe_eliminate_biv (bl, loop_start, end, 1,
4289 threshold, insn_count))
4290
4291 {
4292 /* ?? If we created a new test to bypass the loop entirely,
4293 or otherwise drop straight in, based on this test, then
4294 we might want to rewrite it also. This way some later
4295 pass has more hope of removing the initialization of this
4296 biv entirely. */
4297
4298 /* If final_value != 0, then the biv may be used after loop end
4299 and we must emit an insn to set it just in case.
4300
4301 Reversed bivs already have an insn after the loop setting their
4302 value, so we don't need another one. We can't calculate the
4303 proper final value for such a biv here anyways. */
4304 if (final_value != 0 && ! bl->reversed)
4305 {
4306 rtx insert_before;
4307
4308 /* If the loop has multiple exits, emit the insn before the
4309 loop to ensure that it will always be executed no matter
4310 how the loop exits. Otherwise, emit the insn after the
4311 loop, since this is slightly more efficient. */
4312 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4313 insert_before = loop_start;
4314 else
4315 insert_before = end_insert_before;
4316
4317 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4318 end_insert_before);
4319 }
4320
4321 #if 0
4322 /* Delete all of the instructions inside the loop which set
4323 the biv, as they are all dead. If is safe to delete them,
4324 because an insn setting a biv will never be part of a libcall. */
4325 /* However, deleting them will invalidate the regno_last_uid info,
4326 so keeping them around is more convenient. Final_biv_value
4327 will only succeed when there are multiple exits if the biv
4328 is dead at each exit, hence it does not matter that the original
4329 insn remains, because it is dead anyways. */
4330 for (v = bl->biv; v; v = v->next_iv)
4331 delete_insn (v->insn);
4332 #endif
4333
4334 if (loop_dump_stream)
4335 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4336 bl->regno);
4337 }
4338 }
4339
4340 /* Go through all the instructions in the loop, making all the
4341 register substitutions scheduled in REG_MAP. */
4342
4343 for (p = loop_start; p != end; p = NEXT_INSN (p))
4344 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4345 || GET_CODE (p) == CALL_INSN)
4346 {
4347 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4348 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4349 INSN_CODE (p) = -1;
4350 }
4351
4352 /* Unroll loops from within strength reduction so that we can use the
4353 induction variable information that strength_reduce has already
4354 collected. */
4355
4356 if (flag_unroll_loops)
4357 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4358
4359 #ifdef HAIFA
4360 /* instrument the loop with bct insn */
4361 #ifdef HAVE_decrement_and_branch_on_count
4362 if (HAVE_decrement_and_branch_on_count)
4363 insert_bct (loop_start, loop_end);
4364 #endif
4365 #endif /* HAIFA */
4366
4367 if (loop_dump_stream)
4368 fprintf (loop_dump_stream, "\n");
4369 }
4370 \f
4371 /* Return 1 if X is a valid source for an initial value (or as value being
4372 compared against in an initial test).
4373
4374 X must be either a register or constant and must not be clobbered between
4375 the current insn and the start of the loop.
4376
4377 INSN is the insn containing X. */
4378
4379 static int
4380 valid_initial_value_p (x, insn, call_seen, loop_start)
4381 rtx x;
4382 rtx insn;
4383 int call_seen;
4384 rtx loop_start;
4385 {
4386 if (CONSTANT_P (x))
4387 return 1;
4388
4389 /* Only consider pseudos we know about initialized in insns whose luids
4390 we know. */
4391 if (GET_CODE (x) != REG
4392 || REGNO (x) >= max_reg_before_loop)
4393 return 0;
4394
4395 /* Don't use call-clobbered registers across a call which clobbers it. On
4396 some machines, don't use any hard registers at all. */
4397 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4398 && (
4399 #ifdef SMALL_REGISTER_CLASSES
4400 SMALL_REGISTER_CLASSES
4401 #else
4402 0
4403 #endif
4404 || (call_used_regs[REGNO (x)] && call_seen))
4405 )
4406 return 0;
4407
4408 /* Don't use registers that have been clobbered before the start of the
4409 loop. */
4410 if (reg_set_between_p (x, insn, loop_start))
4411 return 0;
4412
4413 return 1;
4414 }
4415 \f
4416 /* Scan X for memory refs and check each memory address
4417 as a possible giv. INSN is the insn whose pattern X comes from.
4418 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4419 every loop iteration. */
4420
4421 static void
4422 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4423 rtx x;
4424 rtx insn;
4425 int not_every_iteration;
4426 rtx loop_start, loop_end;
4427 {
4428 register int i, j;
4429 register enum rtx_code code;
4430 register char *fmt;
4431
4432 if (x == 0)
4433 return;
4434
4435 code = GET_CODE (x);
4436 switch (code)
4437 {
4438 case REG:
4439 case CONST_INT:
4440 case CONST:
4441 case CONST_DOUBLE:
4442 case SYMBOL_REF:
4443 case LABEL_REF:
4444 case PC:
4445 case CC0:
4446 case ADDR_VEC:
4447 case ADDR_DIFF_VEC:
4448 case USE:
4449 case CLOBBER:
4450 return;
4451
4452 case MEM:
4453 {
4454 rtx src_reg;
4455 rtx add_val;
4456 rtx mult_val;
4457 int benefit;
4458
4459 benefit = general_induction_var (XEXP (x, 0),
4460 &src_reg, &add_val, &mult_val);
4461
4462 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4463 Such a giv isn't useful. */
4464 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4465 {
4466 /* Found one; record it. */
4467 struct induction *v
4468 = (struct induction *) oballoc (sizeof (struct induction));
4469
4470 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4471 add_val, benefit, DEST_ADDR, not_every_iteration,
4472 &XEXP (x, 0), loop_start, loop_end);
4473
4474 v->mem_mode = GET_MODE (x);
4475 }
4476 return;
4477 }
4478 }
4479
4480 /* Recursively scan the subexpressions for other mem refs. */
4481
4482 fmt = GET_RTX_FORMAT (code);
4483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4484 if (fmt[i] == 'e')
4485 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4486 loop_end);
4487 else if (fmt[i] == 'E')
4488 for (j = 0; j < XVECLEN (x, i); j++)
4489 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4490 loop_start, loop_end);
4491 }
4492 \f
4493 /* Fill in the data about one biv update.
4494 V is the `struct induction' in which we record the biv. (It is
4495 allocated by the caller, with alloca.)
4496 INSN is the insn that sets it.
4497 DEST_REG is the biv's reg.
4498
4499 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4500 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4501 being set to INC_VAL.
4502
4503 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4504 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4505 can be executed more than once per iteration. If MAYBE_MULTIPLE
4506 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4507 executed exactly once per iteration. */
4508
4509 static void
4510 record_biv (v, insn, dest_reg, inc_val, mult_val,
4511 not_every_iteration, maybe_multiple)
4512 struct induction *v;
4513 rtx insn;
4514 rtx dest_reg;
4515 rtx inc_val;
4516 rtx mult_val;
4517 int not_every_iteration;
4518 int maybe_multiple;
4519 {
4520 struct iv_class *bl;
4521
4522 v->insn = insn;
4523 v->src_reg = dest_reg;
4524 v->dest_reg = dest_reg;
4525 v->mult_val = mult_val;
4526 v->add_val = inc_val;
4527 v->mode = GET_MODE (dest_reg);
4528 v->always_computable = ! not_every_iteration;
4529 v->always_executed = ! not_every_iteration;
4530 v->maybe_multiple = maybe_multiple;
4531
4532 /* Add this to the reg's iv_class, creating a class
4533 if this is the first incrementation of the reg. */
4534
4535 bl = reg_biv_class[REGNO (dest_reg)];
4536 if (bl == 0)
4537 {
4538 /* Create and initialize new iv_class. */
4539
4540 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4541
4542 bl->regno = REGNO (dest_reg);
4543 bl->biv = 0;
4544 bl->giv = 0;
4545 bl->biv_count = 0;
4546 bl->giv_count = 0;
4547
4548 /* Set initial value to the reg itself. */
4549 bl->initial_value = dest_reg;
4550 /* We haven't seen the initializing insn yet */
4551 bl->init_insn = 0;
4552 bl->init_set = 0;
4553 bl->initial_test = 0;
4554 bl->incremented = 0;
4555 bl->eliminable = 0;
4556 bl->nonneg = 0;
4557 bl->reversed = 0;
4558 bl->total_benefit = 0;
4559
4560 /* Add this class to loop_iv_list. */
4561 bl->next = loop_iv_list;
4562 loop_iv_list = bl;
4563
4564 /* Put it in the array of biv register classes. */
4565 reg_biv_class[REGNO (dest_reg)] = bl;
4566 }
4567
4568 /* Update IV_CLASS entry for this biv. */
4569 v->next_iv = bl->biv;
4570 bl->biv = v;
4571 bl->biv_count++;
4572 if (mult_val == const1_rtx)
4573 bl->incremented = 1;
4574
4575 if (loop_dump_stream)
4576 {
4577 fprintf (loop_dump_stream,
4578 "Insn %d: possible biv, reg %d,",
4579 INSN_UID (insn), REGNO (dest_reg));
4580 if (GET_CODE (inc_val) == CONST_INT)
4581 fprintf (loop_dump_stream, " const = %d\n",
4582 INTVAL (inc_val));
4583 else
4584 {
4585 fprintf (loop_dump_stream, " const = ");
4586 print_rtl (loop_dump_stream, inc_val);
4587 fprintf (loop_dump_stream, "\n");
4588 }
4589 }
4590 }
4591 \f
4592 /* Fill in the data about one giv.
4593 V is the `struct induction' in which we record the giv. (It is
4594 allocated by the caller, with alloca.)
4595 INSN is the insn that sets it.
4596 BENEFIT estimates the savings from deleting this insn.
4597 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4598 into a register or is used as a memory address.
4599
4600 SRC_REG is the biv reg which the giv is computed from.
4601 DEST_REG is the giv's reg (if the giv is stored in a reg).
4602 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4603 LOCATION points to the place where this giv's value appears in INSN. */
4604
4605 static void
4606 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4607 type, not_every_iteration, location, loop_start, loop_end)
4608 struct induction *v;
4609 rtx insn;
4610 rtx src_reg;
4611 rtx dest_reg;
4612 rtx mult_val, add_val;
4613 int benefit;
4614 enum g_types type;
4615 int not_every_iteration;
4616 rtx *location;
4617 rtx loop_start, loop_end;
4618 {
4619 struct induction *b;
4620 struct iv_class *bl;
4621 rtx set = single_set (insn);
4622 rtx p;
4623
4624 v->insn = insn;
4625 v->src_reg = src_reg;
4626 v->giv_type = type;
4627 v->dest_reg = dest_reg;
4628 v->mult_val = mult_val;
4629 v->add_val = add_val;
4630 v->benefit = benefit;
4631 v->location = location;
4632 v->cant_derive = 0;
4633 v->combined_with = 0;
4634 v->maybe_multiple = 0;
4635 v->maybe_dead = 0;
4636 v->derive_adjustment = 0;
4637 v->same = 0;
4638 v->ignore = 0;
4639 v->new_reg = 0;
4640 v->final_value = 0;
4641 v->same_insn = 0;
4642 v->auto_inc_opt = 0;
4643 v->unrolled = 0;
4644 v->shared = 0;
4645
4646 /* The v->always_computable field is used in update_giv_derive, to
4647 determine whether a giv can be used to derive another giv. For a
4648 DEST_REG giv, INSN computes a new value for the giv, so its value
4649 isn't computable if INSN insn't executed every iteration.
4650 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4651 it does not compute a new value. Hence the value is always computable
4652 regardless of whether INSN is executed each iteration. */
4653
4654 if (type == DEST_ADDR)
4655 v->always_computable = 1;
4656 else
4657 v->always_computable = ! not_every_iteration;
4658
4659 v->always_executed = ! not_every_iteration;
4660
4661 if (type == DEST_ADDR)
4662 {
4663 v->mode = GET_MODE (*location);
4664 v->lifetime = 1;
4665 v->times_used = 1;
4666 }
4667 else /* type == DEST_REG */
4668 {
4669 v->mode = GET_MODE (SET_DEST (set));
4670
4671 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4672 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4673
4674 v->times_used = n_times_used[REGNO (dest_reg)];
4675
4676 /* If the lifetime is zero, it means that this register is
4677 really a dead store. So mark this as a giv that can be
4678 ignored. This will not prevent the biv from being eliminated. */
4679 if (v->lifetime == 0)
4680 v->ignore = 1;
4681
4682 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4683 reg_iv_info[REGNO (dest_reg)] = v;
4684 }
4685
4686 /* Add the giv to the class of givs computed from one biv. */
4687
4688 bl = reg_biv_class[REGNO (src_reg)];
4689 if (bl)
4690 {
4691 v->next_iv = bl->giv;
4692 bl->giv = v;
4693 /* Don't count DEST_ADDR. This is supposed to count the number of
4694 insns that calculate givs. */
4695 if (type == DEST_REG)
4696 bl->giv_count++;
4697 bl->total_benefit += benefit;
4698 }
4699 else
4700 /* Fatal error, biv missing for this giv? */
4701 abort ();
4702
4703 if (type == DEST_ADDR)
4704 v->replaceable = 1;
4705 else
4706 {
4707 /* The giv can be replaced outright by the reduced register only if all
4708 of the following conditions are true:
4709 - the insn that sets the giv is always executed on any iteration
4710 on which the giv is used at all
4711 (there are two ways to deduce this:
4712 either the insn is executed on every iteration,
4713 or all uses follow that insn in the same basic block),
4714 - the giv is not used outside the loop
4715 - no assignments to the biv occur during the giv's lifetime. */
4716
4717 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4718 /* Previous line always fails if INSN was moved by loop opt. */
4719 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4720 && (! not_every_iteration
4721 || last_use_this_basic_block (dest_reg, insn)))
4722 {
4723 /* Now check that there are no assignments to the biv within the
4724 giv's lifetime. This requires two separate checks. */
4725
4726 /* Check each biv update, and fail if any are between the first
4727 and last use of the giv.
4728
4729 If this loop contains an inner loop that was unrolled, then
4730 the insn modifying the biv may have been emitted by the loop
4731 unrolling code, and hence does not have a valid luid. Just
4732 mark the biv as not replaceable in this case. It is not very
4733 useful as a biv, because it is used in two different loops.
4734 It is very unlikely that we would be able to optimize the giv
4735 using this biv anyways. */
4736
4737 v->replaceable = 1;
4738 for (b = bl->biv; b; b = b->next_iv)
4739 {
4740 if (INSN_UID (b->insn) >= max_uid_for_loop
4741 || ((uid_luid[INSN_UID (b->insn)]
4742 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4743 && (uid_luid[INSN_UID (b->insn)]
4744 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4745 {
4746 v->replaceable = 0;
4747 v->not_replaceable = 1;
4748 break;
4749 }
4750 }
4751
4752 /* If there are any backwards branches that go from after the
4753 biv update to before it, then this giv is not replaceable. */
4754 if (v->replaceable)
4755 for (b = bl->biv; b; b = b->next_iv)
4756 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4757 {
4758 v->replaceable = 0;
4759 v->not_replaceable = 1;
4760 break;
4761 }
4762 }
4763 else
4764 {
4765 /* May still be replaceable, we don't have enough info here to
4766 decide. */
4767 v->replaceable = 0;
4768 v->not_replaceable = 0;
4769 }
4770 }
4771
4772 if (loop_dump_stream)
4773 {
4774 if (type == DEST_REG)
4775 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4776 INSN_UID (insn), REGNO (dest_reg));
4777 else
4778 fprintf (loop_dump_stream, "Insn %d: dest address",
4779 INSN_UID (insn));
4780
4781 fprintf (loop_dump_stream, " src reg %d benefit %d",
4782 REGNO (src_reg), v->benefit);
4783 fprintf (loop_dump_stream, " used %d lifetime %d",
4784 v->times_used, v->lifetime);
4785
4786 if (v->replaceable)
4787 fprintf (loop_dump_stream, " replaceable");
4788
4789 if (GET_CODE (mult_val) == CONST_INT)
4790 fprintf (loop_dump_stream, " mult %d",
4791 INTVAL (mult_val));
4792 else
4793 {
4794 fprintf (loop_dump_stream, " mult ");
4795 print_rtl (loop_dump_stream, mult_val);
4796 }
4797
4798 if (GET_CODE (add_val) == CONST_INT)
4799 fprintf (loop_dump_stream, " add %d",
4800 INTVAL (add_val));
4801 else
4802 {
4803 fprintf (loop_dump_stream, " add ");
4804 print_rtl (loop_dump_stream, add_val);
4805 }
4806 }
4807
4808 if (loop_dump_stream)
4809 fprintf (loop_dump_stream, "\n");
4810
4811 }
4812
4813
4814 /* All this does is determine whether a giv can be made replaceable because
4815 its final value can be calculated. This code can not be part of record_giv
4816 above, because final_giv_value requires that the number of loop iterations
4817 be known, and that can not be accurately calculated until after all givs
4818 have been identified. */
4819
4820 static void
4821 check_final_value (v, loop_start, loop_end)
4822 struct induction *v;
4823 rtx loop_start, loop_end;
4824 {
4825 struct iv_class *bl;
4826 rtx final_value = 0;
4827
4828 bl = reg_biv_class[REGNO (v->src_reg)];
4829
4830 /* DEST_ADDR givs will never reach here, because they are always marked
4831 replaceable above in record_giv. */
4832
4833 /* The giv can be replaced outright by the reduced register only if all
4834 of the following conditions are true:
4835 - the insn that sets the giv is always executed on any iteration
4836 on which the giv is used at all
4837 (there are two ways to deduce this:
4838 either the insn is executed on every iteration,
4839 or all uses follow that insn in the same basic block),
4840 - its final value can be calculated (this condition is different
4841 than the one above in record_giv)
4842 - no assignments to the biv occur during the giv's lifetime. */
4843
4844 #if 0
4845 /* This is only called now when replaceable is known to be false. */
4846 /* Clear replaceable, so that it won't confuse final_giv_value. */
4847 v->replaceable = 0;
4848 #endif
4849
4850 if ((final_value = final_giv_value (v, loop_start, loop_end))
4851 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4852 {
4853 int biv_increment_seen = 0;
4854 rtx p = v->insn;
4855 rtx last_giv_use;
4856
4857 v->replaceable = 1;
4858
4859 /* When trying to determine whether or not a biv increment occurs
4860 during the lifetime of the giv, we can ignore uses of the variable
4861 outside the loop because final_value is true. Hence we can not
4862 use regno_last_uid and regno_first_uid as above in record_giv. */
4863
4864 /* Search the loop to determine whether any assignments to the
4865 biv occur during the giv's lifetime. Start with the insn
4866 that sets the giv, and search around the loop until we come
4867 back to that insn again.
4868
4869 Also fail if there is a jump within the giv's lifetime that jumps
4870 to somewhere outside the lifetime but still within the loop. This
4871 catches spaghetti code where the execution order is not linear, and
4872 hence the above test fails. Here we assume that the giv lifetime
4873 does not extend from one iteration of the loop to the next, so as
4874 to make the test easier. Since the lifetime isn't known yet,
4875 this requires two loops. See also record_giv above. */
4876
4877 last_giv_use = v->insn;
4878
4879 while (1)
4880 {
4881 p = NEXT_INSN (p);
4882 if (p == loop_end)
4883 p = NEXT_INSN (loop_start);
4884 if (p == v->insn)
4885 break;
4886
4887 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4888 || GET_CODE (p) == CALL_INSN)
4889 {
4890 if (biv_increment_seen)
4891 {
4892 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4893 {
4894 v->replaceable = 0;
4895 v->not_replaceable = 1;
4896 break;
4897 }
4898 }
4899 else if (reg_set_p (v->src_reg, PATTERN (p)))
4900 biv_increment_seen = 1;
4901 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4902 last_giv_use = p;
4903 }
4904 }
4905
4906 /* Now that the lifetime of the giv is known, check for branches
4907 from within the lifetime to outside the lifetime if it is still
4908 replaceable. */
4909
4910 if (v->replaceable)
4911 {
4912 p = v->insn;
4913 while (1)
4914 {
4915 p = NEXT_INSN (p);
4916 if (p == loop_end)
4917 p = NEXT_INSN (loop_start);
4918 if (p == last_giv_use)
4919 break;
4920
4921 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4922 && LABEL_NAME (JUMP_LABEL (p))
4923 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4924 || (INSN_UID (v->insn) >= max_uid_for_loop)
4925 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4926 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4927 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4928 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4929 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4930 {
4931 v->replaceable = 0;
4932 v->not_replaceable = 1;
4933
4934 if (loop_dump_stream)
4935 fprintf (loop_dump_stream,
4936 "Found branch outside giv lifetime.\n");
4937
4938 break;
4939 }
4940 }
4941 }
4942
4943 /* If it is replaceable, then save the final value. */
4944 if (v->replaceable)
4945 v->final_value = final_value;
4946 }
4947
4948 if (loop_dump_stream && v->replaceable)
4949 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4950 INSN_UID (v->insn), REGNO (v->dest_reg));
4951 }
4952 \f
4953 /* Update the status of whether a giv can derive other givs.
4954
4955 We need to do something special if there is or may be an update to the biv
4956 between the time the giv is defined and the time it is used to derive
4957 another giv.
4958
4959 In addition, a giv that is only conditionally set is not allowed to
4960 derive another giv once a label has been passed.
4961
4962 The cases we look at are when a label or an update to a biv is passed. */
4963
4964 static void
4965 update_giv_derive (p)
4966 rtx p;
4967 {
4968 struct iv_class *bl;
4969 struct induction *biv, *giv;
4970 rtx tem;
4971 int dummy;
4972
4973 /* Search all IV classes, then all bivs, and finally all givs.
4974
4975 There are three cases we are concerned with. First we have the situation
4976 of a giv that is only updated conditionally. In that case, it may not
4977 derive any givs after a label is passed.
4978
4979 The second case is when a biv update occurs, or may occur, after the
4980 definition of a giv. For certain biv updates (see below) that are
4981 known to occur between the giv definition and use, we can adjust the
4982 giv definition. For others, or when the biv update is conditional,
4983 we must prevent the giv from deriving any other givs. There are two
4984 sub-cases within this case.
4985
4986 If this is a label, we are concerned with any biv update that is done
4987 conditionally, since it may be done after the giv is defined followed by
4988 a branch here (actually, we need to pass both a jump and a label, but
4989 this extra tracking doesn't seem worth it).
4990
4991 If this is a jump, we are concerned about any biv update that may be
4992 executed multiple times. We are actually only concerned about
4993 backward jumps, but it is probably not worth performing the test
4994 on the jump again here.
4995
4996 If this is a biv update, we must adjust the giv status to show that a
4997 subsequent biv update was performed. If this adjustment cannot be done,
4998 the giv cannot derive further givs. */
4999
5000 for (bl = loop_iv_list; bl; bl = bl->next)
5001 for (biv = bl->biv; biv; biv = biv->next_iv)
5002 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5003 || biv->insn == p)
5004 {
5005 for (giv = bl->giv; giv; giv = giv->next_iv)
5006 {
5007 /* If cant_derive is already true, there is no point in
5008 checking all of these conditions again. */
5009 if (giv->cant_derive)
5010 continue;
5011
5012 /* If this giv is conditionally set and we have passed a label,
5013 it cannot derive anything. */
5014 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5015 giv->cant_derive = 1;
5016
5017 /* Skip givs that have mult_val == 0, since
5018 they are really invariants. Also skip those that are
5019 replaceable, since we know their lifetime doesn't contain
5020 any biv update. */
5021 else if (giv->mult_val == const0_rtx || giv->replaceable)
5022 continue;
5023
5024 /* The only way we can allow this giv to derive another
5025 is if this is a biv increment and we can form the product
5026 of biv->add_val and giv->mult_val. In this case, we will
5027 be able to compute a compensation. */
5028 else if (biv->insn == p)
5029 {
5030 tem = 0;
5031
5032 if (biv->mult_val == const1_rtx)
5033 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
5034 biv->add_val,
5035 giv->mult_val),
5036 &dummy);
5037
5038 if (tem && giv->derive_adjustment)
5039 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
5040 giv->derive_adjustment),
5041 &dummy);
5042 if (tem)
5043 giv->derive_adjustment = tem;
5044 else
5045 giv->cant_derive = 1;
5046 }
5047 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5048 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5049 giv->cant_derive = 1;
5050 }
5051 }
5052 }
5053 \f
5054 /* Check whether an insn is an increment legitimate for a basic induction var.
5055 X is the source of insn P, or a part of it.
5056 MODE is the mode in which X should be interpreted.
5057
5058 DEST_REG is the putative biv, also the destination of the insn.
5059 We accept patterns of these forms:
5060 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5061 REG = INVARIANT + REG
5062
5063 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5064 and store the additive term into *INC_VAL.
5065
5066 If X is an assignment of an invariant into DEST_REG, we set
5067 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5068
5069 We also want to detect a BIV when it corresponds to a variable
5070 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5071 of the variable may be a PLUS that adds a SUBREG of that variable to
5072 an invariant and then sign- or zero-extends the result of the PLUS
5073 into the variable.
5074
5075 Most GIVs in such cases will be in the promoted mode, since that is the
5076 probably the natural computation mode (and almost certainly the mode
5077 used for addresses) on the machine. So we view the pseudo-reg containing
5078 the variable as the BIV, as if it were simply incremented.
5079
5080 Note that treating the entire pseudo as a BIV will result in making
5081 simple increments to any GIVs based on it. However, if the variable
5082 overflows in its declared mode but not its promoted mode, the result will
5083 be incorrect. This is acceptable if the variable is signed, since
5084 overflows in such cases are undefined, but not if it is unsigned, since
5085 those overflows are defined. So we only check for SIGN_EXTEND and
5086 not ZERO_EXTEND.
5087
5088 If we cannot find a biv, we return 0. */
5089
5090 static int
5091 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5092 register rtx x;
5093 enum machine_mode mode;
5094 rtx p;
5095 rtx dest_reg;
5096 rtx *inc_val;
5097 rtx *mult_val;
5098 {
5099 register enum rtx_code code;
5100 rtx arg;
5101 rtx insn, set = 0;
5102
5103 code = GET_CODE (x);
5104 switch (code)
5105 {
5106 case PLUS:
5107 if (XEXP (x, 0) == dest_reg
5108 || (GET_CODE (XEXP (x, 0)) == SUBREG
5109 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5110 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5111 arg = XEXP (x, 1);
5112 else if (XEXP (x, 1) == dest_reg
5113 || (GET_CODE (XEXP (x, 1)) == SUBREG
5114 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5115 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5116 arg = XEXP (x, 0);
5117 else
5118 return 0;
5119
5120 if (invariant_p (arg) != 1)
5121 return 0;
5122
5123 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5124 *mult_val = const1_rtx;
5125 return 1;
5126
5127 case SUBREG:
5128 /* If this is a SUBREG for a promoted variable, check the inner
5129 value. */
5130 if (SUBREG_PROMOTED_VAR_P (x))
5131 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5132 dest_reg, p, inc_val, mult_val);
5133 return 0;
5134
5135 case REG:
5136 /* If this register is assigned in the previous insn, look at its
5137 source, but don't go outside the loop or past a label. */
5138
5139 for (insn = PREV_INSN (p);
5140 (insn && GET_CODE (insn) == NOTE
5141 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5142 insn = PREV_INSN (insn))
5143 ;
5144
5145 if (insn)
5146 set = single_set (insn);
5147
5148 if (set != 0
5149 && (SET_DEST (set) == x
5150 || (GET_CODE (SET_DEST (set)) == SUBREG
5151 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5152 <= UNITS_PER_WORD)
5153 && SUBREG_REG (SET_DEST (set)) == x)))
5154 return basic_induction_var (SET_SRC (set),
5155 (GET_MODE (SET_SRC (set)) == VOIDmode
5156 ? GET_MODE (x)
5157 : GET_MODE (SET_SRC (set))),
5158 dest_reg, insn,
5159 inc_val, mult_val);
5160 /* ... fall through ... */
5161
5162 /* Can accept constant setting of biv only when inside inner most loop.
5163 Otherwise, a biv of an inner loop may be incorrectly recognized
5164 as a biv of the outer loop,
5165 causing code to be moved INTO the inner loop. */
5166 case MEM:
5167 if (invariant_p (x) != 1)
5168 return 0;
5169 case CONST_INT:
5170 case SYMBOL_REF:
5171 case CONST:
5172 if (loops_enclosed == 1)
5173 {
5174 /* Possible bug here? Perhaps we don't know the mode of X. */
5175 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5176 *mult_val = const0_rtx;
5177 return 1;
5178 }
5179 else
5180 return 0;
5181
5182 case SIGN_EXTEND:
5183 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5184 dest_reg, p, inc_val, mult_val);
5185 case ASHIFTRT:
5186 /* Similar, since this can be a sign extension. */
5187 for (insn = PREV_INSN (p);
5188 (insn && GET_CODE (insn) == NOTE
5189 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5190 insn = PREV_INSN (insn))
5191 ;
5192
5193 if (insn)
5194 set = single_set (insn);
5195
5196 if (set && SET_DEST (set) == XEXP (x, 0)
5197 && GET_CODE (XEXP (x, 1)) == CONST_INT
5198 && INTVAL (XEXP (x, 1)) >= 0
5199 && GET_CODE (SET_SRC (set)) == ASHIFT
5200 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5201 return basic_induction_var (XEXP (SET_SRC (set), 0),
5202 GET_MODE (XEXP (x, 0)),
5203 dest_reg, insn, inc_val, mult_val);
5204 return 0;
5205
5206 default:
5207 return 0;
5208 }
5209 }
5210 \f
5211 /* A general induction variable (giv) is any quantity that is a linear
5212 function of a basic induction variable,
5213 i.e. giv = biv * mult_val + add_val.
5214 The coefficients can be any loop invariant quantity.
5215 A giv need not be computed directly from the biv;
5216 it can be computed by way of other givs. */
5217
5218 /* Determine whether X computes a giv.
5219 If it does, return a nonzero value
5220 which is the benefit from eliminating the computation of X;
5221 set *SRC_REG to the register of the biv that it is computed from;
5222 set *ADD_VAL and *MULT_VAL to the coefficients,
5223 such that the value of X is biv * mult + add; */
5224
5225 static int
5226 general_induction_var (x, src_reg, add_val, mult_val)
5227 rtx x;
5228 rtx *src_reg;
5229 rtx *add_val;
5230 rtx *mult_val;
5231 {
5232 rtx orig_x = x;
5233 int benefit = 0;
5234 char *storage;
5235
5236 /* If this is an invariant, forget it, it isn't a giv. */
5237 if (invariant_p (x) == 1)
5238 return 0;
5239
5240 /* See if the expression could be a giv and get its form.
5241 Mark our place on the obstack in case we don't find a giv. */
5242 storage = (char *) oballoc (0);
5243 x = simplify_giv_expr (x, &benefit);
5244 if (x == 0)
5245 {
5246 obfree (storage);
5247 return 0;
5248 }
5249
5250 switch (GET_CODE (x))
5251 {
5252 case USE:
5253 case CONST_INT:
5254 /* Since this is now an invariant and wasn't before, it must be a giv
5255 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5256 with. */
5257 *src_reg = loop_iv_list->biv->dest_reg;
5258 *mult_val = const0_rtx;
5259 *add_val = x;
5260 break;
5261
5262 case REG:
5263 /* This is equivalent to a BIV. */
5264 *src_reg = x;
5265 *mult_val = const1_rtx;
5266 *add_val = const0_rtx;
5267 break;
5268
5269 case PLUS:
5270 /* Either (plus (biv) (invar)) or
5271 (plus (mult (biv) (invar_1)) (invar_2)). */
5272 if (GET_CODE (XEXP (x, 0)) == MULT)
5273 {
5274 *src_reg = XEXP (XEXP (x, 0), 0);
5275 *mult_val = XEXP (XEXP (x, 0), 1);
5276 }
5277 else
5278 {
5279 *src_reg = XEXP (x, 0);
5280 *mult_val = const1_rtx;
5281 }
5282 *add_val = XEXP (x, 1);
5283 break;
5284
5285 case MULT:
5286 /* ADD_VAL is zero. */
5287 *src_reg = XEXP (x, 0);
5288 *mult_val = XEXP (x, 1);
5289 *add_val = const0_rtx;
5290 break;
5291
5292 default:
5293 abort ();
5294 }
5295
5296 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5297 unless they are CONST_INT). */
5298 if (GET_CODE (*add_val) == USE)
5299 *add_val = XEXP (*add_val, 0);
5300 if (GET_CODE (*mult_val) == USE)
5301 *mult_val = XEXP (*mult_val, 0);
5302
5303 benefit += rtx_cost (orig_x, SET);
5304
5305 /* Always return some benefit if this is a giv so it will be detected
5306 as such. This allows elimination of bivs that might otherwise
5307 not be eliminated. */
5308 return benefit == 0 ? 1 : benefit;
5309 }
5310 \f
5311 /* Given an expression, X, try to form it as a linear function of a biv.
5312 We will canonicalize it to be of the form
5313 (plus (mult (BIV) (invar_1))
5314 (invar_2))
5315 with possible degeneracies.
5316
5317 The invariant expressions must each be of a form that can be used as a
5318 machine operand. We surround then with a USE rtx (a hack, but localized
5319 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5320 routine; it is the caller's responsibility to strip them.
5321
5322 If no such canonicalization is possible (i.e., two biv's are used or an
5323 expression that is neither invariant nor a biv or giv), this routine
5324 returns 0.
5325
5326 For a non-zero return, the result will have a code of CONST_INT, USE,
5327 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5328
5329 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5330
5331 static rtx
5332 simplify_giv_expr (x, benefit)
5333 rtx x;
5334 int *benefit;
5335 {
5336 enum machine_mode mode = GET_MODE (x);
5337 rtx arg0, arg1;
5338 rtx tem;
5339
5340 /* If this is not an integer mode, or if we cannot do arithmetic in this
5341 mode, this can't be a giv. */
5342 if (mode != VOIDmode
5343 && (GET_MODE_CLASS (mode) != MODE_INT
5344 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5345 return 0;
5346
5347 switch (GET_CODE (x))
5348 {
5349 case PLUS:
5350 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5351 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5352 if (arg0 == 0 || arg1 == 0)
5353 return 0;
5354
5355 /* Put constant last, CONST_INT last if both constant. */
5356 if ((GET_CODE (arg0) == USE
5357 || GET_CODE (arg0) == CONST_INT)
5358 && GET_CODE (arg1) != CONST_INT)
5359 tem = arg0, arg0 = arg1, arg1 = tem;
5360
5361 /* Handle addition of zero, then addition of an invariant. */
5362 if (arg1 == const0_rtx)
5363 return arg0;
5364 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5365 switch (GET_CODE (arg0))
5366 {
5367 case CONST_INT:
5368 case USE:
5369 /* Both invariant. Only valid if sum is machine operand.
5370 First strip off possible USE on first operand. */
5371 if (GET_CODE (arg0) == USE)
5372 arg0 = XEXP (arg0, 0);
5373
5374 tem = 0;
5375 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5376 {
5377 tem = plus_constant (arg0, INTVAL (arg1));
5378 if (GET_CODE (tem) != CONST_INT)
5379 tem = gen_rtx (USE, mode, tem);
5380 }
5381
5382 return tem;
5383
5384 case REG:
5385 case MULT:
5386 /* biv + invar or mult + invar. Return sum. */
5387 return gen_rtx (PLUS, mode, arg0, arg1);
5388
5389 case PLUS:
5390 /* (a + invar_1) + invar_2. Associate. */
5391 return simplify_giv_expr (gen_rtx (PLUS, mode,
5392 XEXP (arg0, 0),
5393 gen_rtx (PLUS, mode,
5394 XEXP (arg0, 1), arg1)),
5395 benefit);
5396
5397 default:
5398 abort ();
5399 }
5400
5401 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5402 MULT to reduce cases. */
5403 if (GET_CODE (arg0) == REG)
5404 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5405 if (GET_CODE (arg1) == REG)
5406 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5407
5408 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5409 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5410 Recurse to associate the second PLUS. */
5411 if (GET_CODE (arg1) == MULT)
5412 tem = arg0, arg0 = arg1, arg1 = tem;
5413
5414 if (GET_CODE (arg1) == PLUS)
5415 return simplify_giv_expr (gen_rtx (PLUS, mode,
5416 gen_rtx (PLUS, mode,
5417 arg0, XEXP (arg1, 0)),
5418 XEXP (arg1, 1)),
5419 benefit);
5420
5421 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5422 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5423 abort ();
5424
5425 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5426 return 0;
5427
5428 return simplify_giv_expr (gen_rtx (MULT, mode,
5429 XEXP (arg0, 0),
5430 gen_rtx (PLUS, mode,
5431 XEXP (arg0, 1),
5432 XEXP (arg1, 1))),
5433 benefit);
5434
5435 case MINUS:
5436 /* Handle "a - b" as "a + b * (-1)". */
5437 return simplify_giv_expr (gen_rtx (PLUS, mode,
5438 XEXP (x, 0),
5439 gen_rtx (MULT, mode,
5440 XEXP (x, 1), constm1_rtx)),
5441 benefit);
5442
5443 case MULT:
5444 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5445 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5446 if (arg0 == 0 || arg1 == 0)
5447 return 0;
5448
5449 /* Put constant last, CONST_INT last if both constant. */
5450 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5451 && GET_CODE (arg1) != CONST_INT)
5452 tem = arg0, arg0 = arg1, arg1 = tem;
5453
5454 /* If second argument is not now constant, not giv. */
5455 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5456 return 0;
5457
5458 /* Handle multiply by 0 or 1. */
5459 if (arg1 == const0_rtx)
5460 return const0_rtx;
5461
5462 else if (arg1 == const1_rtx)
5463 return arg0;
5464
5465 switch (GET_CODE (arg0))
5466 {
5467 case REG:
5468 /* biv * invar. Done. */
5469 return gen_rtx (MULT, mode, arg0, arg1);
5470
5471 case CONST_INT:
5472 /* Product of two constants. */
5473 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5474
5475 case USE:
5476 /* invar * invar. Not giv. */
5477 return 0;
5478
5479 case MULT:
5480 /* (a * invar_1) * invar_2. Associate. */
5481 return simplify_giv_expr (gen_rtx (MULT, mode,
5482 XEXP (arg0, 0),
5483 gen_rtx (MULT, mode,
5484 XEXP (arg0, 1), arg1)),
5485 benefit);
5486
5487 case PLUS:
5488 /* (a + invar_1) * invar_2. Distribute. */
5489 return simplify_giv_expr (gen_rtx (PLUS, mode,
5490 gen_rtx (MULT, mode,
5491 XEXP (arg0, 0), arg1),
5492 gen_rtx (MULT, mode,
5493 XEXP (arg0, 1), arg1)),
5494 benefit);
5495
5496 default:
5497 abort ();
5498 }
5499
5500 case ASHIFT:
5501 /* Shift by constant is multiply by power of two. */
5502 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5503 return 0;
5504
5505 return simplify_giv_expr (gen_rtx (MULT, mode,
5506 XEXP (x, 0),
5507 GEN_INT ((HOST_WIDE_INT) 1
5508 << INTVAL (XEXP (x, 1)))),
5509 benefit);
5510
5511 case NEG:
5512 /* "-a" is "a * (-1)" */
5513 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5514 benefit);
5515
5516 case NOT:
5517 /* "~a" is "-a - 1". Silly, but easy. */
5518 return simplify_giv_expr (gen_rtx (MINUS, mode,
5519 gen_rtx (NEG, mode, XEXP (x, 0)),
5520 const1_rtx),
5521 benefit);
5522
5523 case USE:
5524 /* Already in proper form for invariant. */
5525 return x;
5526
5527 case REG:
5528 /* If this is a new register, we can't deal with it. */
5529 if (REGNO (x) >= max_reg_before_loop)
5530 return 0;
5531
5532 /* Check for biv or giv. */
5533 switch (reg_iv_type[REGNO (x)])
5534 {
5535 case BASIC_INDUCT:
5536 return x;
5537 case GENERAL_INDUCT:
5538 {
5539 struct induction *v = reg_iv_info[REGNO (x)];
5540
5541 /* Form expression from giv and add benefit. Ensure this giv
5542 can derive another and subtract any needed adjustment if so. */
5543 *benefit += v->benefit;
5544 if (v->cant_derive)
5545 return 0;
5546
5547 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5548 v->src_reg, v->mult_val),
5549 v->add_val);
5550 if (v->derive_adjustment)
5551 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5552 return simplify_giv_expr (tem, benefit);
5553 }
5554 }
5555
5556 /* Fall through to general case. */
5557 default:
5558 /* If invariant, return as USE (unless CONST_INT).
5559 Otherwise, not giv. */
5560 if (GET_CODE (x) == USE)
5561 x = XEXP (x, 0);
5562
5563 if (invariant_p (x) == 1)
5564 {
5565 if (GET_CODE (x) == CONST_INT)
5566 return x;
5567 else
5568 return gen_rtx (USE, mode, x);
5569 }
5570 else
5571 return 0;
5572 }
5573 }
5574 \f
5575 /* Help detect a giv that is calculated by several consecutive insns;
5576 for example,
5577 giv = biv * M
5578 giv = giv + A
5579 The caller has already identified the first insn P as having a giv as dest;
5580 we check that all other insns that set the same register follow
5581 immediately after P, that they alter nothing else,
5582 and that the result of the last is still a giv.
5583
5584 The value is 0 if the reg set in P is not really a giv.
5585 Otherwise, the value is the amount gained by eliminating
5586 all the consecutive insns that compute the value.
5587
5588 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5589 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5590
5591 The coefficients of the ultimate giv value are stored in
5592 *MULT_VAL and *ADD_VAL. */
5593
5594 static int
5595 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5596 add_val, mult_val)
5597 int first_benefit;
5598 rtx p;
5599 rtx src_reg;
5600 rtx dest_reg;
5601 rtx *add_val;
5602 rtx *mult_val;
5603 {
5604 int count;
5605 enum rtx_code code;
5606 int benefit;
5607 rtx temp;
5608 rtx set;
5609
5610 /* Indicate that this is a giv so that we can update the value produced in
5611 each insn of the multi-insn sequence.
5612
5613 This induction structure will be used only by the call to
5614 general_induction_var below, so we can allocate it on our stack.
5615 If this is a giv, our caller will replace the induct var entry with
5616 a new induction structure. */
5617 struct induction *v
5618 = (struct induction *) alloca (sizeof (struct induction));
5619 v->src_reg = src_reg;
5620 v->mult_val = *mult_val;
5621 v->add_val = *add_val;
5622 v->benefit = first_benefit;
5623 v->cant_derive = 0;
5624 v->derive_adjustment = 0;
5625
5626 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5627 reg_iv_info[REGNO (dest_reg)] = v;
5628
5629 count = n_times_set[REGNO (dest_reg)] - 1;
5630
5631 while (count > 0)
5632 {
5633 p = NEXT_INSN (p);
5634 code = GET_CODE (p);
5635
5636 /* If libcall, skip to end of call sequence. */
5637 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5638 p = XEXP (temp, 0);
5639
5640 if (code == INSN
5641 && (set = single_set (p))
5642 && GET_CODE (SET_DEST (set)) == REG
5643 && SET_DEST (set) == dest_reg
5644 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5645 add_val, mult_val))
5646 /* Giv created by equivalent expression. */
5647 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5648 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5649 add_val, mult_val))))
5650 && src_reg == v->src_reg)
5651 {
5652 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5653 benefit += libcall_benefit (p);
5654
5655 count--;
5656 v->mult_val = *mult_val;
5657 v->add_val = *add_val;
5658 v->benefit = benefit;
5659 }
5660 else if (code != NOTE)
5661 {
5662 /* Allow insns that set something other than this giv to a
5663 constant. Such insns are needed on machines which cannot
5664 include long constants and should not disqualify a giv. */
5665 if (code == INSN
5666 && (set = single_set (p))
5667 && SET_DEST (set) != dest_reg
5668 && CONSTANT_P (SET_SRC (set)))
5669 continue;
5670
5671 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5672 return 0;
5673 }
5674 }
5675
5676 return v->benefit;
5677 }
5678 \f
5679 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5680 represented by G1. If no such expression can be found, or it is clear that
5681 it cannot possibly be a valid address, 0 is returned.
5682
5683 To perform the computation, we note that
5684 G1 = a * v + b and
5685 G2 = c * v + d
5686 where `v' is the biv.
5687
5688 So G2 = (c/a) * G1 + (d - b*c/a) */
5689
5690 #ifdef ADDRESS_COST
5691 static rtx
5692 express_from (g1, g2)
5693 struct induction *g1, *g2;
5694 {
5695 rtx mult, add;
5696
5697 /* The value that G1 will be multiplied by must be a constant integer. Also,
5698 the only chance we have of getting a valid address is if b*c/a (see above
5699 for notation) is also an integer. */
5700 if (GET_CODE (g1->mult_val) != CONST_INT
5701 || GET_CODE (g2->mult_val) != CONST_INT
5702 || GET_CODE (g1->add_val) != CONST_INT
5703 || g1->mult_val == const0_rtx
5704 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5705 return 0;
5706
5707 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5708 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5709
5710 /* Form simplified final result. */
5711 if (mult == const0_rtx)
5712 return add;
5713 else if (mult == const1_rtx)
5714 mult = g1->dest_reg;
5715 else
5716 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5717
5718 if (add == const0_rtx)
5719 return mult;
5720 else
5721 return gen_rtx (PLUS, g2->mode, mult, add);
5722 }
5723 #endif
5724 \f
5725 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5726 (either directly or via an address expression) a register used to represent
5727 G1. Set g2->new_reg to a represtation of G1 (normally just
5728 g1->dest_reg). */
5729
5730 static int
5731 combine_givs_p (g1, g2)
5732 struct induction *g1, *g2;
5733 {
5734 rtx tem;
5735
5736 /* If these givs are identical, they can be combined. */
5737 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5738 && rtx_equal_p (g1->add_val, g2->add_val))
5739 {
5740 g2->new_reg = g1->dest_reg;
5741 return 1;
5742 }
5743
5744 #ifdef ADDRESS_COST
5745 /* If G2 can be expressed as a function of G1 and that function is valid
5746 as an address and no more expensive than using a register for G2,
5747 the expression of G2 in terms of G1 can be used. */
5748 if (g2->giv_type == DEST_ADDR
5749 && (tem = express_from (g1, g2)) != 0
5750 && memory_address_p (g2->mem_mode, tem)
5751 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5752 {
5753 g2->new_reg = tem;
5754 return 1;
5755 }
5756 #endif
5757
5758 return 0;
5759 }
5760 \f
5761 #ifdef GIV_SORT_CRITERION
5762 /* Compare two givs and sort the most desirable one for combinations first.
5763 This is used only in one qsort call below. */
5764
5765 static int
5766 giv_sort (x, y)
5767 struct induction **x, **y;
5768 {
5769 GIV_SORT_CRITERION (*x, *y);
5770
5771 return 0;
5772 }
5773 #endif
5774
5775 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5776 any other. If so, point SAME to the giv combined with and set NEW_REG to
5777 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5778 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5779
5780 static void
5781 combine_givs (bl)
5782 struct iv_class *bl;
5783 {
5784 struct induction *g1, *g2, **giv_array, *temp_iv;
5785 int i, j, giv_count, pass;
5786
5787 /* Count givs, because bl->giv_count is incorrect here. */
5788 giv_count = 0;
5789 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5790 giv_count++;
5791
5792 giv_array
5793 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5794 i = 0;
5795 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5796 giv_array[i++] = g1;
5797
5798 #ifdef GIV_SORT_CRITERION
5799 /* Sort the givs if GIV_SORT_CRITERION is defined.
5800 This is usually defined for processors which lack
5801 negative register offsets so more givs may be combined. */
5802
5803 if (loop_dump_stream)
5804 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5805
5806 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5807 #endif
5808
5809 for (i = 0; i < giv_count; i++)
5810 {
5811 g1 = giv_array[i];
5812 for (pass = 0; pass <= 1; pass++)
5813 for (j = 0; j < giv_count; j++)
5814 {
5815 g2 = giv_array[j];
5816 if (g1 != g2
5817 /* First try to combine with replaceable givs, then all givs. */
5818 && (g1->replaceable || pass == 1)
5819 /* If either has already been combined or is to be ignored, can't
5820 combine. */
5821 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5822 /* If something has been based on G2, G2 cannot itself be based
5823 on something else. */
5824 && ! g2->combined_with
5825 && combine_givs_p (g1, g2))
5826 {
5827 /* g2->new_reg set by `combine_givs_p' */
5828 g2->same = g1;
5829 g1->combined_with = 1;
5830
5831 /* If one of these givs is a DEST_REG that was only used
5832 once, by the other giv, this is actually a single use.
5833 The DEST_REG has the correct cost, while the other giv
5834 counts the REG use too often. */
5835 if (g2->giv_type == DEST_REG
5836 && n_times_used[REGNO (g2->dest_reg)] == 1
5837 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5838 g1->benefit = g2->benefit;
5839 else if (g1->giv_type != DEST_REG
5840 || n_times_used[REGNO (g1->dest_reg)] != 1
5841 || ! reg_mentioned_p (g1->dest_reg,
5842 PATTERN (g2->insn)))
5843 {
5844 g1->benefit += g2->benefit;
5845 g1->times_used += g2->times_used;
5846 }
5847 /* ??? The new final_[bg]iv_value code does a much better job
5848 of finding replaceable giv's, and hence this code may no
5849 longer be necessary. */
5850 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5851 g1->benefit -= copy_cost;
5852 g1->lifetime += g2->lifetime;
5853
5854 if (loop_dump_stream)
5855 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5856 INSN_UID (g2->insn), INSN_UID (g1->insn));
5857 }
5858 }
5859 }
5860 }
5861 \f
5862 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5863
5864 void
5865 emit_iv_add_mult (b, m, a, reg, insert_before)
5866 rtx b; /* initial value of basic induction variable */
5867 rtx m; /* multiplicative constant */
5868 rtx a; /* additive constant */
5869 rtx reg; /* destination register */
5870 rtx insert_before;
5871 {
5872 rtx seq;
5873 rtx result;
5874
5875 /* Prevent unexpected sharing of these rtx. */
5876 a = copy_rtx (a);
5877 b = copy_rtx (b);
5878
5879 /* Increase the lifetime of any invariants moved further in code. */
5880 update_reg_last_use (a, insert_before);
5881 update_reg_last_use (b, insert_before);
5882 update_reg_last_use (m, insert_before);
5883
5884 start_sequence ();
5885 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5886 if (reg != result)
5887 emit_move_insn (reg, result);
5888 seq = gen_sequence ();
5889 end_sequence ();
5890
5891 emit_insn_before (seq, insert_before);
5892
5893 record_base_value (REGNO (reg), b);
5894 }
5895 \f
5896 /* Test whether A * B can be computed without
5897 an actual multiply insn. Value is 1 if so. */
5898
5899 static int
5900 product_cheap_p (a, b)
5901 rtx a;
5902 rtx b;
5903 {
5904 int i;
5905 rtx tmp;
5906 struct obstack *old_rtl_obstack = rtl_obstack;
5907 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5908 int win = 1;
5909
5910 /* If only one is constant, make it B. */
5911 if (GET_CODE (a) == CONST_INT)
5912 tmp = a, a = b, b = tmp;
5913
5914 /* If first constant, both constant, so don't need multiply. */
5915 if (GET_CODE (a) == CONST_INT)
5916 return 1;
5917
5918 /* If second not constant, neither is constant, so would need multiply. */
5919 if (GET_CODE (b) != CONST_INT)
5920 return 0;
5921
5922 /* One operand is constant, so might not need multiply insn. Generate the
5923 code for the multiply and see if a call or multiply, or long sequence
5924 of insns is generated. */
5925
5926 rtl_obstack = &temp_obstack;
5927 start_sequence ();
5928 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5929 tmp = gen_sequence ();
5930 end_sequence ();
5931
5932 if (GET_CODE (tmp) == SEQUENCE)
5933 {
5934 if (XVEC (tmp, 0) == 0)
5935 win = 1;
5936 else if (XVECLEN (tmp, 0) > 3)
5937 win = 0;
5938 else
5939 for (i = 0; i < XVECLEN (tmp, 0); i++)
5940 {
5941 rtx insn = XVECEXP (tmp, 0, i);
5942
5943 if (GET_CODE (insn) != INSN
5944 || (GET_CODE (PATTERN (insn)) == SET
5945 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5946 || (GET_CODE (PATTERN (insn)) == PARALLEL
5947 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5948 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5949 {
5950 win = 0;
5951 break;
5952 }
5953 }
5954 }
5955 else if (GET_CODE (tmp) == SET
5956 && GET_CODE (SET_SRC (tmp)) == MULT)
5957 win = 0;
5958 else if (GET_CODE (tmp) == PARALLEL
5959 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5960 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5961 win = 0;
5962
5963 /* Free any storage we obtained in generating this multiply and restore rtl
5964 allocation to its normal obstack. */
5965 obstack_free (&temp_obstack, storage);
5966 rtl_obstack = old_rtl_obstack;
5967
5968 return win;
5969 }
5970 \f
5971 /* Check to see if loop can be terminated by a "decrement and branch until
5972 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5973 Also try reversing an increment loop to a decrement loop
5974 to see if the optimization can be performed.
5975 Value is nonzero if optimization was performed. */
5976
5977 /* This is useful even if the architecture doesn't have such an insn,
5978 because it might change a loops which increments from 0 to n to a loop
5979 which decrements from n to 0. A loop that decrements to zero is usually
5980 faster than one that increments from zero. */
5981
5982 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5983 such as approx_final_value, biv_total_increment, loop_iterations, and
5984 final_[bg]iv_value. */
5985
5986 static int
5987 check_dbra_loop (loop_end, insn_count, loop_start)
5988 rtx loop_end;
5989 int insn_count;
5990 rtx loop_start;
5991 {
5992 struct iv_class *bl;
5993 rtx reg;
5994 rtx jump_label;
5995 rtx final_value;
5996 rtx start_value;
5997 rtx new_add_val;
5998 rtx comparison;
5999 rtx before_comparison;
6000 rtx p;
6001
6002 /* If last insn is a conditional branch, and the insn before tests a
6003 register value, try to optimize it. Otherwise, we can't do anything. */
6004
6005 comparison = get_condition_for_loop (PREV_INSN (loop_end));
6006 if (comparison == 0)
6007 return 0;
6008
6009 /* Check all of the bivs to see if the compare uses one of them.
6010 Skip biv's set more than once because we can't guarantee that
6011 it will be zero on the last iteration. Also skip if the biv is
6012 used between its update and the test insn. */
6013
6014 for (bl = loop_iv_list; bl; bl = bl->next)
6015 {
6016 if (bl->biv_count == 1
6017 && bl->biv->dest_reg == XEXP (comparison, 0)
6018 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6019 PREV_INSN (PREV_INSN (loop_end))))
6020 break;
6021 }
6022
6023 if (! bl)
6024 return 0;
6025
6026 /* Look for the case where the basic induction variable is always
6027 nonnegative, and equals zero on the last iteration.
6028 In this case, add a reg_note REG_NONNEG, which allows the
6029 m68k DBRA instruction to be used. */
6030
6031 if (((GET_CODE (comparison) == GT
6032 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6033 && INTVAL (XEXP (comparison, 1)) == -1)
6034 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6035 && GET_CODE (bl->biv->add_val) == CONST_INT
6036 && INTVAL (bl->biv->add_val) < 0)
6037 {
6038 /* Initial value must be greater than 0,
6039 init_val % -dec_value == 0 to ensure that it equals zero on
6040 the last iteration */
6041
6042 if (GET_CODE (bl->initial_value) == CONST_INT
6043 && INTVAL (bl->initial_value) > 0
6044 && (INTVAL (bl->initial_value)
6045 % (-INTVAL (bl->biv->add_val))) == 0)
6046 {
6047 /* register always nonnegative, add REG_NOTE to branch */
6048 REG_NOTES (PREV_INSN (loop_end))
6049 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6050 REG_NOTES (PREV_INSN (loop_end)));
6051 bl->nonneg = 1;
6052
6053 return 1;
6054 }
6055
6056 /* If the decrement is 1 and the value was tested as >= 0 before
6057 the loop, then we can safely optimize. */
6058 for (p = loop_start; p; p = PREV_INSN (p))
6059 {
6060 if (GET_CODE (p) == CODE_LABEL)
6061 break;
6062 if (GET_CODE (p) != JUMP_INSN)
6063 continue;
6064
6065 before_comparison = get_condition_for_loop (p);
6066 if (before_comparison
6067 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6068 && GET_CODE (before_comparison) == LT
6069 && XEXP (before_comparison, 1) == const0_rtx
6070 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6071 && INTVAL (bl->biv->add_val) == -1)
6072 {
6073 REG_NOTES (PREV_INSN (loop_end))
6074 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6075 REG_NOTES (PREV_INSN (loop_end)));
6076 bl->nonneg = 1;
6077
6078 return 1;
6079 }
6080 }
6081 }
6082 else if (num_mem_sets <= 1)
6083 {
6084 /* Try to change inc to dec, so can apply above optimization. */
6085 /* Can do this if:
6086 all registers modified are induction variables or invariant,
6087 all memory references have non-overlapping addresses
6088 (obviously true if only one write)
6089 allow 2 insns for the compare/jump at the end of the loop. */
6090 /* Also, we must avoid any instructions which use both the reversed
6091 biv and another biv. Such instructions will fail if the loop is
6092 reversed. We meet this condition by requiring that either
6093 no_use_except_counting is true, or else that there is only
6094 one biv. */
6095 int num_nonfixed_reads = 0;
6096 /* 1 if the iteration var is used only to count iterations. */
6097 int no_use_except_counting = 0;
6098 /* 1 if the loop has no memory store, or it has a single memory store
6099 which is reversible. */
6100 int reversible_mem_store = 1;
6101
6102 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6103 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6104 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6105
6106 if (bl->giv_count == 0
6107 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6108 {
6109 rtx bivreg = regno_reg_rtx[bl->regno];
6110
6111 /* If there are no givs for this biv, and the only exit is the
6112 fall through at the end of the the loop, then
6113 see if perhaps there are no uses except to count. */
6114 no_use_except_counting = 1;
6115 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6116 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6117 {
6118 rtx set = single_set (p);
6119
6120 if (set && GET_CODE (SET_DEST (set)) == REG
6121 && REGNO (SET_DEST (set)) == bl->regno)
6122 /* An insn that sets the biv is okay. */
6123 ;
6124 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6125 || p == prev_nonnote_insn (loop_end))
6126 /* Don't bother about the end test. */
6127 ;
6128 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6129 /* Any other use of the biv is no good. */
6130 {
6131 no_use_except_counting = 0;
6132 break;
6133 }
6134 }
6135 }
6136
6137 /* If the loop has a single store, and the destination address is
6138 invariant, then we can't reverse the loop, because this address
6139 might then have the wrong value at loop exit.
6140 This would work if the source was invariant also, however, in that
6141 case, the insn should have been moved out of the loop. */
6142
6143 if (num_mem_sets == 1)
6144 reversible_mem_store
6145 = (! unknown_address_altered
6146 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6147
6148 /* This code only acts for innermost loops. Also it simplifies
6149 the memory address check by only reversing loops with
6150 zero or one memory access.
6151 Two memory accesses could involve parts of the same array,
6152 and that can't be reversed. */
6153
6154 if (num_nonfixed_reads <= 1
6155 && !loop_has_call
6156 && !loop_has_volatile
6157 && reversible_mem_store
6158 && (no_use_except_counting
6159 || ((bl->giv_count + bl->biv_count + num_mem_sets
6160 + num_movables + 2 == insn_count)
6161 && (bl == loop_iv_list && bl->next == 0))))
6162 {
6163 rtx tem;
6164
6165 /* Loop can be reversed. */
6166 if (loop_dump_stream)
6167 fprintf (loop_dump_stream, "Can reverse loop\n");
6168
6169 /* Now check other conditions:
6170 initial_value must be zero,
6171 final_value % add_val == 0, so that when reversed, the
6172 biv will be zero on the last iteration.
6173
6174 This test can probably be improved since +/- 1 in the constant
6175 can be obtained by changing LT to LE and vice versa; this is
6176 confusing. */
6177
6178 if (comparison && bl->initial_value == const0_rtx
6179 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6180 /* LE gets turned into LT */
6181 && GET_CODE (comparison) == LT
6182 && (INTVAL (XEXP (comparison, 1))
6183 % INTVAL (bl->biv->add_val)) == 0)
6184 {
6185 /* Register will always be nonnegative, with value
6186 0 on last iteration if loop reversed */
6187
6188 /* Save some info needed to produce the new insns. */
6189 reg = bl->biv->dest_reg;
6190 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6191 if (jump_label == pc_rtx)
6192 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6193 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6194
6195 final_value = XEXP (comparison, 1);
6196 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6197 - INTVAL (bl->biv->add_val));
6198
6199 /* Initialize biv to start_value before loop start.
6200 The old initializing insn will be deleted as a
6201 dead store by flow.c. */
6202 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6203
6204 /* Add insn to decrement register, and delete insn
6205 that incremented the register. */
6206 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6207 bl->biv->insn);
6208 delete_insn (bl->biv->insn);
6209
6210 /* Update biv info to reflect its new status. */
6211 bl->biv->insn = p;
6212 bl->initial_value = start_value;
6213 bl->biv->add_val = new_add_val;
6214
6215 /* Inc LABEL_NUSES so that delete_insn will
6216 not delete the label. */
6217 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6218
6219 /* Emit an insn after the end of the loop to set the biv's
6220 proper exit value if it is used anywhere outside the loop. */
6221 if ((REGNO_LAST_UID (bl->regno)
6222 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6223 || ! bl->init_insn
6224 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6225 emit_insn_after (gen_move_insn (reg, final_value),
6226 loop_end);
6227
6228 /* Delete compare/branch at end of loop. */
6229 delete_insn (PREV_INSN (loop_end));
6230 delete_insn (PREV_INSN (loop_end));
6231
6232 /* Add new compare/branch insn at end of loop. */
6233 start_sequence ();
6234 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6235 GET_MODE (reg), 0, 0);
6236 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6237 tem = gen_sequence ();
6238 end_sequence ();
6239 emit_jump_insn_before (tem, loop_end);
6240
6241 for (tem = PREV_INSN (loop_end);
6242 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6243 ;
6244 if (tem)
6245 {
6246 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6247
6248 /* Increment of LABEL_NUSES done above. */
6249 /* Register is now always nonnegative,
6250 so add REG_NONNEG note to the branch. */
6251 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6252 REG_NOTES (tem));
6253 }
6254
6255 bl->nonneg = 1;
6256
6257 /* Mark that this biv has been reversed. Each giv which depends
6258 on this biv, and which is also live past the end of the loop
6259 will have to be fixed up. */
6260
6261 bl->reversed = 1;
6262
6263 if (loop_dump_stream)
6264 fprintf (loop_dump_stream,
6265 "Reversed loop and added reg_nonneg\n");
6266
6267 return 1;
6268 }
6269 }
6270 }
6271
6272 return 0;
6273 }
6274 \f
6275 /* Verify whether the biv BL appears to be eliminable,
6276 based on the insns in the loop that refer to it.
6277 LOOP_START is the first insn of the loop, and END is the end insn.
6278
6279 If ELIMINATE_P is non-zero, actually do the elimination.
6280
6281 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6282 determine whether invariant insns should be placed inside or at the
6283 start of the loop. */
6284
6285 static int
6286 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6287 struct iv_class *bl;
6288 rtx loop_start;
6289 rtx end;
6290 int eliminate_p;
6291 int threshold, insn_count;
6292 {
6293 rtx reg = bl->biv->dest_reg;
6294 rtx p;
6295
6296 /* Scan all insns in the loop, stopping if we find one that uses the
6297 biv in a way that we cannot eliminate. */
6298
6299 for (p = loop_start; p != end; p = NEXT_INSN (p))
6300 {
6301 enum rtx_code code = GET_CODE (p);
6302 rtx where = threshold >= insn_count ? loop_start : p;
6303
6304 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6305 && reg_mentioned_p (reg, PATTERN (p))
6306 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6307 {
6308 if (loop_dump_stream)
6309 fprintf (loop_dump_stream,
6310 "Cannot eliminate biv %d: biv used in insn %d.\n",
6311 bl->regno, INSN_UID (p));
6312 break;
6313 }
6314 }
6315
6316 if (p == end)
6317 {
6318 if (loop_dump_stream)
6319 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6320 bl->regno, eliminate_p ? "was" : "can be");
6321 return 1;
6322 }
6323
6324 return 0;
6325 }
6326 \f
6327 /* If BL appears in X (part of the pattern of INSN), see if we can
6328 eliminate its use. If so, return 1. If not, return 0.
6329
6330 If BIV does not appear in X, return 1.
6331
6332 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6333 where extra insns should be added. Depending on how many items have been
6334 moved out of the loop, it will either be before INSN or at the start of
6335 the loop. */
6336
6337 static int
6338 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6339 rtx x, insn;
6340 struct iv_class *bl;
6341 int eliminate_p;
6342 rtx where;
6343 {
6344 enum rtx_code code = GET_CODE (x);
6345 rtx reg = bl->biv->dest_reg;
6346 enum machine_mode mode = GET_MODE (reg);
6347 struct induction *v;
6348 rtx arg, new, tem;
6349 int arg_operand;
6350 char *fmt;
6351 int i, j;
6352
6353 switch (code)
6354 {
6355 case REG:
6356 /* If we haven't already been able to do something with this BIV,
6357 we can't eliminate it. */
6358 if (x == reg)
6359 return 0;
6360 return 1;
6361
6362 case SET:
6363 /* If this sets the BIV, it is not a problem. */
6364 if (SET_DEST (x) == reg)
6365 return 1;
6366
6367 /* If this is an insn that defines a giv, it is also ok because
6368 it will go away when the giv is reduced. */
6369 for (v = bl->giv; v; v = v->next_iv)
6370 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6371 return 1;
6372
6373 #ifdef HAVE_cc0
6374 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6375 {
6376 /* Can replace with any giv that was reduced and
6377 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6378 Require a constant for MULT_VAL, so we know it's nonzero.
6379 ??? We disable this optimization to avoid potential
6380 overflows. */
6381
6382 for (v = bl->giv; v; v = v->next_iv)
6383 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6384 && v->add_val == const0_rtx
6385 && ! v->ignore && ! v->maybe_dead && v->always_computable
6386 && v->mode == mode
6387 && 0)
6388 {
6389 /* If the giv V had the auto-inc address optimization applied
6390 to it, and INSN occurs between the giv insn and the biv
6391 insn, then we must adjust the value used here.
6392 This is rare, so we don't bother to do so. */
6393 if (v->auto_inc_opt
6394 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6395 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6396 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6397 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6398 continue;
6399
6400 if (! eliminate_p)
6401 return 1;
6402
6403 /* If the giv has the opposite direction of change,
6404 then reverse the comparison. */
6405 if (INTVAL (v->mult_val) < 0)
6406 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
6407 const0_rtx, v->new_reg);
6408 else
6409 new = v->new_reg;
6410
6411 /* We can probably test that giv's reduced reg. */
6412 if (validate_change (insn, &SET_SRC (x), new, 0))
6413 return 1;
6414 }
6415
6416 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6417 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6418 Require a constant for MULT_VAL, so we know it's nonzero.
6419 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6420 overflow problem. */
6421
6422 for (v = bl->giv; v; v = v->next_iv)
6423 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6424 && ! v->ignore && ! v->maybe_dead && v->always_computable
6425 && v->mode == mode
6426 && (GET_CODE (v->add_val) == SYMBOL_REF
6427 || GET_CODE (v->add_val) == LABEL_REF
6428 || GET_CODE (v->add_val) == CONST
6429 || (GET_CODE (v->add_val) == REG
6430 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6431 {
6432 /* If the giv V had the auto-inc address optimization applied
6433 to it, and INSN occurs between the giv insn and the biv
6434 insn, then we must adjust the value used here.
6435 This is rare, so we don't bother to do so. */
6436 if (v->auto_inc_opt
6437 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6438 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6439 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6440 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6441 continue;
6442
6443 if (! eliminate_p)
6444 return 1;
6445
6446 /* If the giv has the opposite direction of change,
6447 then reverse the comparison. */
6448 if (INTVAL (v->mult_val) < 0)
6449 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
6450 v->new_reg);
6451 else
6452 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
6453 copy_rtx (v->add_val));
6454
6455 /* Replace biv with the giv's reduced register. */
6456 update_reg_last_use (v->add_val, insn);
6457 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6458 return 1;
6459
6460 /* Insn doesn't support that constant or invariant. Copy it
6461 into a register (it will be a loop invariant.) */
6462 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6463
6464 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6465 where);
6466
6467 /* Substitute the new register for its invariant value in
6468 the compare expression. */
6469 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6470 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6471 return 1;
6472 }
6473 }
6474 #endif
6475 break;
6476
6477 case COMPARE:
6478 case EQ: case NE:
6479 case GT: case GE: case GTU: case GEU:
6480 case LT: case LE: case LTU: case LEU:
6481 /* See if either argument is the biv. */
6482 if (XEXP (x, 0) == reg)
6483 arg = XEXP (x, 1), arg_operand = 1;
6484 else if (XEXP (x, 1) == reg)
6485 arg = XEXP (x, 0), arg_operand = 0;
6486 else
6487 break;
6488
6489 if (CONSTANT_P (arg))
6490 {
6491 /* First try to replace with any giv that has constant positive
6492 mult_val and constant add_val. We might be able to support
6493 negative mult_val, but it seems complex to do it in general. */
6494
6495 for (v = bl->giv; v; v = v->next_iv)
6496 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6497 && (GET_CODE (v->add_val) == SYMBOL_REF
6498 || GET_CODE (v->add_val) == LABEL_REF
6499 || GET_CODE (v->add_val) == CONST
6500 || (GET_CODE (v->add_val) == REG
6501 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6502 && ! v->ignore && ! v->maybe_dead && v->always_computable
6503 && v->mode == mode)
6504 {
6505 /* If the giv V had the auto-inc address optimization applied
6506 to it, and INSN occurs between the giv insn and the biv
6507 insn, then we must adjust the value used here.
6508 This is rare, so we don't bother to do so. */
6509 if (v->auto_inc_opt
6510 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6511 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6512 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6513 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6514 continue;
6515
6516 if (! eliminate_p)
6517 return 1;
6518
6519 /* Replace biv with the giv's reduced reg. */
6520 XEXP (x, 1-arg_operand) = v->new_reg;
6521
6522 /* If all constants are actually constant integers and
6523 the derived constant can be directly placed in the COMPARE,
6524 do so. */
6525 if (GET_CODE (arg) == CONST_INT
6526 && GET_CODE (v->mult_val) == CONST_INT
6527 && GET_CODE (v->add_val) == CONST_INT
6528 && validate_change (insn, &XEXP (x, arg_operand),
6529 GEN_INT (INTVAL (arg)
6530 * INTVAL (v->mult_val)
6531 + INTVAL (v->add_val)), 0))
6532 return 1;
6533
6534 /* Otherwise, load it into a register. */
6535 tem = gen_reg_rtx (mode);
6536 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6537 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6538 return 1;
6539
6540 /* If that failed, put back the change we made above. */
6541 XEXP (x, 1-arg_operand) = reg;
6542 }
6543
6544 /* Look for giv with positive constant mult_val and nonconst add_val.
6545 Insert insns to calculate new compare value.
6546 ??? Turn this off due to possible overflow. */
6547
6548 for (v = bl->giv; v; v = v->next_iv)
6549 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6550 && ! v->ignore && ! v->maybe_dead && v->always_computable
6551 && v->mode == mode
6552 && 0)
6553 {
6554 rtx tem;
6555
6556 /* If the giv V had the auto-inc address optimization applied
6557 to it, and INSN occurs between the giv insn and the biv
6558 insn, then we must adjust the value used here.
6559 This is rare, so we don't bother to do so. */
6560 if (v->auto_inc_opt
6561 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6562 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6563 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6564 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6565 continue;
6566
6567 if (! eliminate_p)
6568 return 1;
6569
6570 tem = gen_reg_rtx (mode);
6571
6572 /* Replace biv with giv's reduced register. */
6573 validate_change (insn, &XEXP (x, 1 - arg_operand),
6574 v->new_reg, 1);
6575
6576 /* Compute value to compare against. */
6577 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6578 /* Use it in this insn. */
6579 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6580 if (apply_change_group ())
6581 return 1;
6582 }
6583 }
6584 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6585 {
6586 if (invariant_p (arg) == 1)
6587 {
6588 /* Look for giv with constant positive mult_val and nonconst
6589 add_val. Insert insns to compute new compare value.
6590 ??? Turn this off due to possible overflow. */
6591
6592 for (v = bl->giv; v; v = v->next_iv)
6593 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6594 && ! v->ignore && ! v->maybe_dead && v->always_computable
6595 && v->mode == mode
6596 && 0)
6597 {
6598 rtx tem;
6599
6600 /* If the giv V had the auto-inc address optimization applied
6601 to it, and INSN occurs between the giv insn and the biv
6602 insn, then we must adjust the value used here.
6603 This is rare, so we don't bother to do so. */
6604 if (v->auto_inc_opt
6605 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6606 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6607 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6608 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6609 continue;
6610
6611 if (! eliminate_p)
6612 return 1;
6613
6614 tem = gen_reg_rtx (mode);
6615
6616 /* Replace biv with giv's reduced register. */
6617 validate_change (insn, &XEXP (x, 1 - arg_operand),
6618 v->new_reg, 1);
6619
6620 /* Compute value to compare against. */
6621 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6622 tem, where);
6623 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6624 if (apply_change_group ())
6625 return 1;
6626 }
6627 }
6628
6629 /* This code has problems. Basically, you can't know when
6630 seeing if we will eliminate BL, whether a particular giv
6631 of ARG will be reduced. If it isn't going to be reduced,
6632 we can't eliminate BL. We can try forcing it to be reduced,
6633 but that can generate poor code.
6634
6635 The problem is that the benefit of reducing TV, below should
6636 be increased if BL can actually be eliminated, but this means
6637 we might have to do a topological sort of the order in which
6638 we try to process biv. It doesn't seem worthwhile to do
6639 this sort of thing now. */
6640
6641 #if 0
6642 /* Otherwise the reg compared with had better be a biv. */
6643 if (GET_CODE (arg) != REG
6644 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6645 return 0;
6646
6647 /* Look for a pair of givs, one for each biv,
6648 with identical coefficients. */
6649 for (v = bl->giv; v; v = v->next_iv)
6650 {
6651 struct induction *tv;
6652
6653 if (v->ignore || v->maybe_dead || v->mode != mode)
6654 continue;
6655
6656 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6657 if (! tv->ignore && ! tv->maybe_dead
6658 && rtx_equal_p (tv->mult_val, v->mult_val)
6659 && rtx_equal_p (tv->add_val, v->add_val)
6660 && tv->mode == mode)
6661 {
6662 /* If the giv V had the auto-inc address optimization applied
6663 to it, and INSN occurs between the giv insn and the biv
6664 insn, then we must adjust the value used here.
6665 This is rare, so we don't bother to do so. */
6666 if (v->auto_inc_opt
6667 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6668 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6669 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6670 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6671 continue;
6672
6673 if (! eliminate_p)
6674 return 1;
6675
6676 /* Replace biv with its giv's reduced reg. */
6677 XEXP (x, 1-arg_operand) = v->new_reg;
6678 /* Replace other operand with the other giv's
6679 reduced reg. */
6680 XEXP (x, arg_operand) = tv->new_reg;
6681 return 1;
6682 }
6683 }
6684 #endif
6685 }
6686
6687 /* If we get here, the biv can't be eliminated. */
6688 return 0;
6689
6690 case MEM:
6691 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6692 biv is used in it, since it will be replaced. */
6693 for (v = bl->giv; v; v = v->next_iv)
6694 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6695 return 1;
6696 break;
6697 }
6698
6699 /* See if any subexpression fails elimination. */
6700 fmt = GET_RTX_FORMAT (code);
6701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6702 {
6703 switch (fmt[i])
6704 {
6705 case 'e':
6706 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6707 eliminate_p, where))
6708 return 0;
6709 break;
6710
6711 case 'E':
6712 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6713 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6714 eliminate_p, where))
6715 return 0;
6716 break;
6717 }
6718 }
6719
6720 return 1;
6721 }
6722 \f
6723 /* Return nonzero if the last use of REG
6724 is in an insn following INSN in the same basic block. */
6725
6726 static int
6727 last_use_this_basic_block (reg, insn)
6728 rtx reg;
6729 rtx insn;
6730 {
6731 rtx n;
6732 for (n = insn;
6733 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6734 n = NEXT_INSN (n))
6735 {
6736 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6737 return 1;
6738 }
6739 return 0;
6740 }
6741 \f
6742 /* Called via `note_stores' to record the initial value of a biv. Here we
6743 just record the location of the set and process it later. */
6744
6745 static void
6746 record_initial (dest, set)
6747 rtx dest;
6748 rtx set;
6749 {
6750 struct iv_class *bl;
6751
6752 if (GET_CODE (dest) != REG
6753 || REGNO (dest) >= max_reg_before_loop
6754 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6755 return;
6756
6757 bl = reg_biv_class[REGNO (dest)];
6758
6759 /* If this is the first set found, record it. */
6760 if (bl->init_insn == 0)
6761 {
6762 bl->init_insn = note_insn;
6763 bl->init_set = set;
6764 }
6765 }
6766 \f
6767 /* If any of the registers in X are "old" and currently have a last use earlier
6768 than INSN, update them to have a last use of INSN. Their actual last use
6769 will be the previous insn but it will not have a valid uid_luid so we can't
6770 use it. */
6771
6772 static void
6773 update_reg_last_use (x, insn)
6774 rtx x;
6775 rtx insn;
6776 {
6777 /* Check for the case where INSN does not have a valid luid. In this case,
6778 there is no need to modify the regno_last_uid, as this can only happen
6779 when code is inserted after the loop_end to set a pseudo's final value,
6780 and hence this insn will never be the last use of x. */
6781 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6782 && INSN_UID (insn) < max_uid_for_loop
6783 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6784 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6785 else
6786 {
6787 register int i, j;
6788 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6789 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6790 {
6791 if (fmt[i] == 'e')
6792 update_reg_last_use (XEXP (x, i), insn);
6793 else if (fmt[i] == 'E')
6794 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6795 update_reg_last_use (XVECEXP (x, i, j), insn);
6796 }
6797 }
6798 }
6799 \f
6800 /* Given a jump insn JUMP, return the condition that will cause it to branch
6801 to its JUMP_LABEL. If the condition cannot be understood, or is an
6802 inequality floating-point comparison which needs to be reversed, 0 will
6803 be returned.
6804
6805 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6806 insn used in locating the condition was found. If a replacement test
6807 of the condition is desired, it should be placed in front of that
6808 insn and we will be sure that the inputs are still valid.
6809
6810 The condition will be returned in a canonical form to simplify testing by
6811 callers. Specifically:
6812
6813 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6814 (2) Both operands will be machine operands; (cc0) will have been replaced.
6815 (3) If an operand is a constant, it will be the second operand.
6816 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6817 for GE, GEU, and LEU. */
6818
6819 rtx
6820 get_condition (jump, earliest)
6821 rtx jump;
6822 rtx *earliest;
6823 {
6824 enum rtx_code code;
6825 rtx prev = jump;
6826 rtx set;
6827 rtx tem;
6828 rtx op0, op1;
6829 int reverse_code = 0;
6830 int did_reverse_condition = 0;
6831
6832 /* If this is not a standard conditional jump, we can't parse it. */
6833 if (GET_CODE (jump) != JUMP_INSN
6834 || ! condjump_p (jump) || simplejump_p (jump))
6835 return 0;
6836
6837 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6838 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6839 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6840
6841 if (earliest)
6842 *earliest = jump;
6843
6844 /* If this branches to JUMP_LABEL when the condition is false, reverse
6845 the condition. */
6846 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6847 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6848 code = reverse_condition (code), did_reverse_condition ^= 1;
6849
6850 /* If we are comparing a register with zero, see if the register is set
6851 in the previous insn to a COMPARE or a comparison operation. Perform
6852 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6853 in cse.c */
6854
6855 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6856 {
6857 /* Set non-zero when we find something of interest. */
6858 rtx x = 0;
6859
6860 #ifdef HAVE_cc0
6861 /* If comparison with cc0, import actual comparison from compare
6862 insn. */
6863 if (op0 == cc0_rtx)
6864 {
6865 if ((prev = prev_nonnote_insn (prev)) == 0
6866 || GET_CODE (prev) != INSN
6867 || (set = single_set (prev)) == 0
6868 || SET_DEST (set) != cc0_rtx)
6869 return 0;
6870
6871 op0 = SET_SRC (set);
6872 op1 = CONST0_RTX (GET_MODE (op0));
6873 if (earliest)
6874 *earliest = prev;
6875 }
6876 #endif
6877
6878 /* If this is a COMPARE, pick up the two things being compared. */
6879 if (GET_CODE (op0) == COMPARE)
6880 {
6881 op1 = XEXP (op0, 1);
6882 op0 = XEXP (op0, 0);
6883 continue;
6884 }
6885 else if (GET_CODE (op0) != REG)
6886 break;
6887
6888 /* Go back to the previous insn. Stop if it is not an INSN. We also
6889 stop if it isn't a single set or if it has a REG_INC note because
6890 we don't want to bother dealing with it. */
6891
6892 if ((prev = prev_nonnote_insn (prev)) == 0
6893 || GET_CODE (prev) != INSN
6894 || FIND_REG_INC_NOTE (prev, 0)
6895 || (set = single_set (prev)) == 0)
6896 break;
6897
6898 /* If this is setting OP0, get what it sets it to if it looks
6899 relevant. */
6900 if (rtx_equal_p (SET_DEST (set), op0))
6901 {
6902 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6903
6904 if ((GET_CODE (SET_SRC (set)) == COMPARE
6905 || (((code == NE
6906 || (code == LT
6907 && GET_MODE_CLASS (inner_mode) == MODE_INT
6908 && (GET_MODE_BITSIZE (inner_mode)
6909 <= HOST_BITS_PER_WIDE_INT)
6910 && (STORE_FLAG_VALUE
6911 & ((HOST_WIDE_INT) 1
6912 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6913 #ifdef FLOAT_STORE_FLAG_VALUE
6914 || (code == LT
6915 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6916 && FLOAT_STORE_FLAG_VALUE < 0)
6917 #endif
6918 ))
6919 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6920 x = SET_SRC (set);
6921 else if (((code == EQ
6922 || (code == GE
6923 && (GET_MODE_BITSIZE (inner_mode)
6924 <= HOST_BITS_PER_WIDE_INT)
6925 && GET_MODE_CLASS (inner_mode) == MODE_INT
6926 && (STORE_FLAG_VALUE
6927 & ((HOST_WIDE_INT) 1
6928 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6929 #ifdef FLOAT_STORE_FLAG_VALUE
6930 || (code == GE
6931 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6932 && FLOAT_STORE_FLAG_VALUE < 0)
6933 #endif
6934 ))
6935 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6936 {
6937 /* We might have reversed a LT to get a GE here. But this wasn't
6938 actually the comparison of data, so we don't flag that we
6939 have had to reverse the condition. */
6940 did_reverse_condition ^= 1;
6941 reverse_code = 1;
6942 x = SET_SRC (set);
6943 }
6944 else
6945 break;
6946 }
6947
6948 else if (reg_set_p (op0, prev))
6949 /* If this sets OP0, but not directly, we have to give up. */
6950 break;
6951
6952 if (x)
6953 {
6954 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6955 code = GET_CODE (x);
6956 if (reverse_code)
6957 {
6958 code = reverse_condition (code);
6959 did_reverse_condition ^= 1;
6960 reverse_code = 0;
6961 }
6962
6963 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6964 if (earliest)
6965 *earliest = prev;
6966 }
6967 }
6968
6969 /* If constant is first, put it last. */
6970 if (CONSTANT_P (op0))
6971 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6972
6973 /* If OP0 is the result of a comparison, we weren't able to find what
6974 was really being compared, so fail. */
6975 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6976 return 0;
6977
6978 /* Canonicalize any ordered comparison with integers involving equality
6979 if we can do computations in the relevant mode and we do not
6980 overflow. */
6981
6982 if (GET_CODE (op1) == CONST_INT
6983 && GET_MODE (op0) != VOIDmode
6984 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6985 {
6986 HOST_WIDE_INT const_val = INTVAL (op1);
6987 unsigned HOST_WIDE_INT uconst_val = const_val;
6988 unsigned HOST_WIDE_INT max_val
6989 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6990
6991 switch (code)
6992 {
6993 case LE:
6994 if (const_val != max_val >> 1)
6995 code = LT, op1 = GEN_INT (const_val + 1);
6996 break;
6997
6998 case GE:
6999 if (const_val
7000 != (((HOST_WIDE_INT) 1
7001 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7002 code = GT, op1 = GEN_INT (const_val - 1);
7003 break;
7004
7005 case LEU:
7006 if (uconst_val != max_val)
7007 code = LTU, op1 = GEN_INT (uconst_val + 1);
7008 break;
7009
7010 case GEU:
7011 if (uconst_val != 0)
7012 code = GTU, op1 = GEN_INT (uconst_val - 1);
7013 break;
7014 }
7015 }
7016
7017 /* If this was floating-point and we reversed anything other than an
7018 EQ or NE, return zero. */
7019 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7020 && did_reverse_condition && code != NE && code != EQ
7021 && ! flag_fast_math
7022 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7023 return 0;
7024
7025 #ifdef HAVE_cc0
7026 /* Never return CC0; return zero instead. */
7027 if (op0 == cc0_rtx)
7028 return 0;
7029 #endif
7030
7031 return gen_rtx (code, VOIDmode, op0, op1);
7032 }
7033
7034 /* Similar to above routine, except that we also put an invariant last
7035 unless both operands are invariants. */
7036
7037 rtx
7038 get_condition_for_loop (x)
7039 rtx x;
7040 {
7041 rtx comparison = get_condition (x, NULL_PTR);
7042
7043 if (comparison == 0
7044 || ! invariant_p (XEXP (comparison, 0))
7045 || invariant_p (XEXP (comparison, 1)))
7046 return comparison;
7047
7048 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
7049 XEXP (comparison, 1), XEXP (comparison, 0));
7050 }
7051
7052 #ifdef HAIFA
7053 /* Analyze a loop in order to instrument it with the use of count register.
7054 loop_start and loop_end are the first and last insns of the loop.
7055 This function works in cooperation with insert_bct ().
7056 loop_can_insert_bct[loop_num] is set according to whether the optimization
7057 is applicable to the loop. When it is applicable, the following variables
7058 are also set:
7059 loop_start_value[loop_num]
7060 loop_comparison_value[loop_num]
7061 loop_increment[loop_num]
7062 loop_comparison_code[loop_num] */
7063
7064 static
7065 void analyze_loop_iterations (loop_start, loop_end)
7066 rtx loop_start, loop_end;
7067 {
7068 rtx comparison, comparison_value;
7069 rtx iteration_var, initial_value, increment;
7070 enum rtx_code comparison_code;
7071
7072 rtx last_loop_insn;
7073 rtx insn;
7074 int i;
7075
7076 /* loop_variable mode */
7077 enum machine_mode original_mode;
7078
7079 /* find the number of the loop */
7080 int loop_num = loop_number (loop_start, loop_end);
7081
7082 /* we change our mind only when we are sure that loop will be instrumented */
7083 loop_can_insert_bct[loop_num] = 0;
7084
7085 /* debugging: do we wish to instrument this loop? */
7086 if ( !check_bct_param () )
7087 return;
7088
7089 /* is the optimization suppressed. */
7090 if ( !flag_branch_on_count_reg )
7091 return;
7092
7093 /* make sure that count-reg is not in use */
7094 if (loop_used_count_register[loop_num]){
7095 if (loop_dump_stream)
7096 fprintf (loop_dump_stream,
7097 "analyze_loop_iterations %d: BCT instrumentation failed: count register already in use\n",
7098 loop_num);
7099 return;
7100 }
7101
7102 /* make sure that the function has no indirect jumps. */
7103 if (indirect_jump_in_function){
7104 if (loop_dump_stream)
7105 fprintf (loop_dump_stream,
7106 "analyze_loop_iterations %d: BCT instrumentation failed: indirect jump in function\n",
7107 loop_num);
7108 return;
7109 }
7110
7111 /* make sure that the last loop insn is a conditional jump */
7112 last_loop_insn = PREV_INSN (loop_end);
7113 if (GET_CODE (last_loop_insn) != JUMP_INSN || !condjump_p (last_loop_insn)) {
7114 if (loop_dump_stream)
7115 fprintf (loop_dump_stream,
7116 "analyze_loop_iterations %d: BCT instrumentation failed: invalid jump at loop end\n",
7117 loop_num);
7118 return;
7119 }
7120
7121 /* First find the iteration variable. If the last insn is a conditional
7122 branch, and the insn preceding it tests a register value, make that
7123 register the iteration variable. */
7124
7125 /* We used to use prev_nonnote_insn here, but that fails because it might
7126 accidentally get the branch for a contained loop if the branch for this
7127 loop was deleted. We can only trust branches immediately before the
7128 loop_end. */
7129
7130 comparison = get_condition_for_loop (last_loop_insn);
7131 /* ??? Get_condition may switch position of induction variable and
7132 invariant register when it canonicalizes the comparison. */
7133
7134 if (comparison == 0) {
7135 if (loop_dump_stream)
7136 fprintf (loop_dump_stream,
7137 "analyze_loop_iterations %d: BCT instrumentation failed: comparison not found\n",
7138 loop_num);
7139 return;
7140 }
7141
7142 comparison_code = GET_CODE (comparison);
7143 iteration_var = XEXP (comparison, 0);
7144 comparison_value = XEXP (comparison, 1);
7145
7146 original_mode = GET_MODE (iteration_var);
7147 if (GET_MODE_CLASS (original_mode) != MODE_INT
7148 || GET_MODE_SIZE (original_mode) != UNITS_PER_WORD) {
7149 if (loop_dump_stream)
7150 fprintf (loop_dump_stream,
7151 "analyze_loop_iterations %d: BCT Instrumentation failed: loop variable not integer\n",
7152 loop_num);
7153 return;
7154 }
7155
7156 /* get info about loop bounds and increment */
7157 iteration_info (iteration_var, &initial_value, &increment,
7158 loop_start, loop_end);
7159
7160 /* make sure that all required loop data were found */
7161 if (!(initial_value && increment && comparison_value
7162 && invariant_p (comparison_value) && invariant_p (increment)
7163 && ! indirect_jump_in_function))
7164 {
7165 if (loop_dump_stream) {
7166 fprintf (loop_dump_stream,
7167 "analyze_loop_iterations %d: BCT instrumentation failed because of wrong loop: ", loop_num);
7168 if (!(initial_value && increment && comparison_value)) {
7169 fprintf (loop_dump_stream, "\tbounds not available: ");
7170 if ( ! initial_value )
7171 fprintf (loop_dump_stream, "initial ");
7172 if ( ! increment )
7173 fprintf (loop_dump_stream, "increment ");
7174 if ( ! comparison_value )
7175 fprintf (loop_dump_stream, "comparison ");
7176 fprintf (loop_dump_stream, "\n");
7177 }
7178 if (!invariant_p (comparison_value) || !invariant_p (increment))
7179 fprintf (loop_dump_stream, "\tloop bounds not invariant\n");
7180 }
7181 return;
7182 }
7183
7184 /* make sure that the increment is constant */
7185 if (GET_CODE (increment) != CONST_INT) {
7186 if (loop_dump_stream)
7187 fprintf (loop_dump_stream,
7188 "analyze_loop_iterations %d: instrumentation failed: not arithmetic loop\n",
7189 loop_num);
7190 return;
7191 }
7192
7193 /* make sure that the loop contains neither function call, nor jump on table.
7194 (the count register might be altered by the called function, and might
7195 be used for a branch on table). */
7196 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn)) {
7197 if (GET_CODE (insn) == CALL_INSN){
7198 if (loop_dump_stream)
7199 fprintf (loop_dump_stream,
7200 "analyze_loop_iterations %d: BCT instrumentation failed: function call in the loop\n",
7201 loop_num);
7202 return;
7203 }
7204
7205 if (GET_CODE (insn) == JUMP_INSN
7206 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
7207 || GET_CODE (PATTERN (insn)) == ADDR_VEC)){
7208 if (loop_dump_stream)
7209 fprintf (loop_dump_stream,
7210 "analyze_loop_iterations %d: BCT instrumentation failed: computed branch in the loop\n",
7211 loop_num);
7212 return;
7213 }
7214 }
7215
7216 /* At this point, we are sure that the loop can be instrumented with BCT.
7217 Some of the loops, however, will not be instrumented - the final decision
7218 is taken by insert_bct () */
7219 if (loop_dump_stream)
7220 fprintf (loop_dump_stream,
7221 "analyze_loop_iterations: loop (luid =%d) can be BCT instrumented.\n",
7222 loop_num);
7223
7224 /* mark all enclosing loops that they cannot use count register */
7225 /* ???: In fact, since insert_bct may decide not to instrument this loop,
7226 marking here may prevent instrumenting an enclosing loop that could
7227 actually be instrumented. But since this is rare, it is safer to mark
7228 here in case the order of calling (analyze/insert)_bct would be changed. */
7229 for (i=loop_num; i != -1; i = loop_outer_loop[i])
7230 loop_used_count_register[i] = 1;
7231
7232 /* Set data structures which will be used by the instrumentation phase */
7233 loop_start_value[loop_num] = initial_value;
7234 loop_comparison_value[loop_num] = comparison_value;
7235 loop_increment[loop_num] = increment;
7236 loop_comparison_code[loop_num] = comparison_code;
7237 loop_can_insert_bct[loop_num] = 1;
7238 }
7239
7240
7241 /* instrument loop for insertion of bct instruction. We distinguish between
7242 loops with compile-time bounds, to those with run-time bounds. The loop
7243 behaviour is analized according to the following characteristics/variables:
7244 ; Input variables:
7245 ; comparison-value: the value to which the iteration counter is compared.
7246 ; initial-value: iteration-counter initial value.
7247 ; increment: iteration-counter increment.
7248 ; Computed variables:
7249 ; increment-direction: the sign of the increment.
7250 ; compare-direction: '1' for GT, GTE, '-1' for LT, LTE, '0' for NE.
7251 ; range-direction: sign (comparison-value - initial-value)
7252 We give up on the following cases:
7253 ; loop variable overflow.
7254 ; run-time loop bounds with comparison code NE.
7255 */
7256
7257 static void
7258 insert_bct (loop_start, loop_end)
7259 rtx loop_start, loop_end;
7260 {
7261 rtx initial_value, comparison_value, increment;
7262 enum rtx_code comparison_code;
7263
7264 int increment_direction, compare_direction;
7265 int unsigned_p = 0;
7266
7267 /* if the loop condition is <= or >=, the number of iteration
7268 is 1 more than the range of the bounds of the loop */
7269 int add_iteration = 0;
7270
7271 /* the only machine mode we work with - is the integer of the size that the
7272 machine has */
7273 enum machine_mode loop_var_mode = SImode;
7274
7275 int loop_num = loop_number (loop_start, loop_end);
7276
7277 /* get loop-variables. No need to check that these are valid - already
7278 checked in analyze_loop_iterations (). */
7279 comparison_code = loop_comparison_code[loop_num];
7280 initial_value = loop_start_value[loop_num];
7281 comparison_value = loop_comparison_value[loop_num];
7282 increment = loop_increment[loop_num];
7283
7284 /* check analyze_loop_iterations decision for this loop. */
7285 if (! loop_can_insert_bct[loop_num]){
7286 if (loop_dump_stream)
7287 fprintf (loop_dump_stream,
7288 "insert_bct: [%d] - was decided not to instrument by analyze_loop_iterations ()\n",
7289 loop_num);
7290 return;
7291 }
7292
7293 /* make sure that the loop was not fully unrolled. */
7294 if (loop_unroll_factor[loop_num] == -1){
7295 if (loop_dump_stream)
7296 fprintf (loop_dump_stream, "insert_bct %d: was completely unrolled\n", loop_num);
7297 return;
7298 }
7299
7300 /* make sure that the last loop insn is a conditional jump .
7301 This check is repeated from analyze_loop_iterations (),
7302 because unrolling might have changed that. */
7303 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7304 || !condjump_p (PREV_INSN (loop_end))) {
7305 if (loop_dump_stream)
7306 fprintf (loop_dump_stream,
7307 "insert_bct: not instrumenting BCT because of invalid branch\n");
7308 return;
7309 }
7310
7311 /* fix increment in case loop was unrolled. */
7312 if (loop_unroll_factor[loop_num] > 1)
7313 increment = GEN_INT ( INTVAL (increment) * loop_unroll_factor[loop_num] );
7314
7315 /* determine properties and directions of the loop */
7316 increment_direction = (INTVAL (increment) > 0) ? 1:-1;
7317 switch ( comparison_code ) {
7318 case LEU:
7319 unsigned_p = 1;
7320 /* fallthrough */
7321 case LE:
7322 compare_direction = 1;
7323 add_iteration = 1;
7324 break;
7325 case GEU:
7326 unsigned_p = 1;
7327 /* fallthrough */
7328 case GE:
7329 compare_direction = -1;
7330 add_iteration = 1;
7331 break;
7332 case EQ:
7333 /* in this case we cannot know the number of iterations */
7334 if (loop_dump_stream)
7335 fprintf (loop_dump_stream,
7336 "insert_bct: %d: loop cannot be instrumented: == in condition\n",
7337 loop_num);
7338 return;
7339 case LTU:
7340 unsigned_p = 1;
7341 /* fallthrough */
7342 case LT:
7343 compare_direction = 1;
7344 break;
7345 case GTU:
7346 unsigned_p = 1;
7347 /* fallthrough */
7348 case GT:
7349 compare_direction = -1;
7350 break;
7351 case NE:
7352 compare_direction = 0;
7353 break;
7354 default:
7355 abort ();
7356 }
7357
7358
7359 /* make sure that the loop does not end by an overflow */
7360 if (compare_direction != increment_direction) {
7361 if (loop_dump_stream)
7362 fprintf (loop_dump_stream,
7363 "insert_bct: %d: loop cannot be instrumented: terminated by overflow\n",
7364 loop_num);
7365 return;
7366 }
7367
7368 /* try to instrument the loop. */
7369
7370 /* Handle the simpler case, where the bounds are known at compile time. */
7371 if (GET_CODE (initial_value) == CONST_INT && GET_CODE (comparison_value) == CONST_INT)
7372 {
7373 int n_iterations;
7374 int increment_value_abs = INTVAL (increment) * increment_direction;
7375
7376 /* check the relation between compare-val and initial-val */
7377 int difference = INTVAL (comparison_value) - INTVAL (initial_value);
7378 int range_direction = (difference > 0) ? 1 : -1;
7379
7380 /* make sure the loop executes enough iterations to gain from BCT */
7381 if (difference > -3 && difference < 3) {
7382 if (loop_dump_stream)
7383 fprintf (loop_dump_stream,
7384 "insert_bct: loop %d not BCT instrumented: too small iteration count.\n",
7385 loop_num);
7386 return;
7387 }
7388
7389 /* make sure that the loop executes at least once */
7390 if ((range_direction == 1 && compare_direction == -1)
7391 || (range_direction == -1 && compare_direction == 1))
7392 {
7393 if (loop_dump_stream)
7394 fprintf (loop_dump_stream,
7395 "insert_bct: loop %d: does not iterate even once. Not instrumenting.\n",
7396 loop_num);
7397 return;
7398 }
7399
7400 /* make sure that the loop does not end by an overflow (in compile time
7401 bounds we must have an additional check for overflow, because here
7402 we also support the compare code of 'NE'. */
7403 if (comparison_code == NE
7404 && increment_direction != range_direction) {
7405 if (loop_dump_stream)
7406 fprintf (loop_dump_stream,
7407 "insert_bct (compile time bounds): %d: loop not instrumented: terminated by overflow\n",
7408 loop_num);
7409 return;
7410 }
7411
7412 /* Determine the number of iterations by:
7413 ;
7414 ; compare-val - initial-val + (increment -1) + additional-iteration
7415 ; num_iterations = -----------------------------------------------------------------
7416 ; increment
7417 */
7418 difference = (range_direction > 0) ? difference : -difference;
7419 #if 0
7420 fprintf (stderr, "difference is: %d\n", difference); /* @*/
7421 fprintf (stderr, "increment_value_abs is: %d\n", increment_value_abs); /* @*/
7422 fprintf (stderr, "add_iteration is: %d\n", add_iteration); /* @*/
7423 fprintf (stderr, "INTVAL (comparison_value) is: %d\n", INTVAL (comparison_value)); /* @*/
7424 fprintf (stderr, "INTVAL (initial_value) is: %d\n", INTVAL (initial_value)); /* @*/
7425 #endif
7426
7427 if (increment_value_abs == 0) {
7428 fprintf (stderr, "insert_bct: error: increment == 0 !!!\n");
7429 abort ();
7430 }
7431 n_iterations = (difference + increment_value_abs - 1 + add_iteration)
7432 / increment_value_abs;
7433
7434 #if 0
7435 fprintf (stderr, "number of iterations is: %d\n", n_iterations); /* @*/
7436 #endif
7437 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
7438
7439 /* Done with this loop. */
7440 return;
7441 }
7442
7443 /* Handle the more complex case, that the bounds are NOT known at compile time. */
7444 /* In this case we generate run_time calculation of the number of iterations */
7445
7446 /* With runtime bounds, if the compare is of the form '!=' we give up */
7447 if (comparison_code == NE) {
7448 if (loop_dump_stream)
7449 fprintf (loop_dump_stream,
7450 "insert_bct: fail for loop %d: runtime bounds with != comparison\n",
7451 loop_num);
7452 return;
7453 }
7454
7455 else {
7456 /* We rely on the existence of run-time guard to ensure that the
7457 loop executes at least once. */
7458 rtx sequence;
7459 rtx iterations_num_reg;
7460
7461 int increment_value_abs = INTVAL (increment) * increment_direction;
7462
7463 /* make sure that the increment is a power of two, otherwise (an
7464 expensive) divide is needed. */
7465 if (exact_log2 (increment_value_abs) == -1)
7466 {
7467 if (loop_dump_stream)
7468 fprintf (loop_dump_stream,
7469 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
7470 return;
7471 }
7472
7473 /* compute the number of iterations */
7474 start_sequence ();
7475 {
7476 /* CYGNUS LOCAL: HAIFA bug fix */
7477 rtx temp_reg;
7478
7479 /* Again, the number of iterations is calculated by:
7480 ;
7481 ; compare-val - initial-val + (increment -1) + additional-iteration
7482 ; num_iterations = -----------------------------------------------------------------
7483 ; increment
7484 */
7485 /* ??? Do we have to call copy_rtx here before passing rtx to
7486 expand_binop? */
7487 if (compare_direction > 0) {
7488 /* <, <= :the loop variable is increasing */
7489 temp_reg = expand_binop (loop_var_mode, sub_optab, comparison_value,
7490 initial_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7491 }
7492 else {
7493 temp_reg = expand_binop (loop_var_mode, sub_optab, initial_value,
7494 comparison_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7495 }
7496
7497 if (increment_value_abs - 1 + add_iteration != 0)
7498 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
7499 GEN_INT (increment_value_abs - 1 + add_iteration),
7500 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7501
7502 if (increment_value_abs != 1)
7503 {
7504 /* ??? This will generate an expensive divide instruction for
7505 most targets. The original authors apparently expected this
7506 to be a shift, since they test for power-of-2 divisors above,
7507 but just naively generating a divide instruction will not give
7508 a shift. It happens to work for the PowerPC target because
7509 the rs6000.md file has a divide pattern that emits shifts.
7510 It will probably not work for any other target. */
7511 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
7512 temp_reg,
7513 GEN_INT (increment_value_abs),
7514 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7515 }
7516 else
7517 iterations_num_reg = temp_reg;
7518 /* END CYGNUS LOCAL: HAIFA bug fix */
7519 }
7520 sequence = gen_sequence ();
7521 end_sequence ();
7522 emit_insn_before (sequence, loop_start);
7523 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
7524 }
7525 }
7526
7527 /* instrument loop by inserting a bct in it. This is done in the following way:
7528 1. A new register is created and assigned the hard register number of the count
7529 register.
7530 2. In the head of the loop the new variable is initialized by the value passed in the
7531 loop_num_iterations parameter.
7532 3. At the end of the loop, comparison of the register with 0 is generated.
7533 The created comparison follows the pattern defined for the
7534 decrement_and_branch_on_count insn, so this insn will be generated in assembly
7535 generation phase.
7536 4. The compare&branch on the old variable is deleted. So, if the loop-variable was
7537 not used elsewhere, it will be eliminated by data-flow analisys. */
7538
7539 static void
7540 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
7541 rtx loop_start, loop_end;
7542 rtx loop_num_iterations;
7543 {
7544 rtx temp_reg1, temp_reg2;
7545 rtx start_label;
7546
7547 rtx sequence;
7548 enum machine_mode loop_var_mode = SImode;
7549
7550 #ifdef HAVE_decrement_and_branch_on_count
7551 if (HAVE_decrement_and_branch_on_count)
7552 {
7553 if (loop_dump_stream)
7554 fprintf (loop_dump_stream, "Loop: Inserting BCT\n");
7555
7556 /* eliminate the check on the old variable */
7557 delete_insn (PREV_INSN (loop_end));
7558 delete_insn (PREV_INSN (loop_end));
7559
7560 /* insert the label which will delimit the start of the loop */
7561 start_label = gen_label_rtx ();
7562 emit_label_after (start_label, loop_start);
7563
7564 /* insert initialization of the count register into the loop header */
7565 start_sequence ();
7566 temp_reg1 = gen_reg_rtx (loop_var_mode);
7567 emit_insn (gen_move_insn (temp_reg1, loop_num_iterations));
7568
7569 /* this will be count register */
7570 temp_reg2 = gen_rtx (REG, loop_var_mode, COUNT_REGISTER_REGNUM);
7571 /* we have to move the value to the count register from an GPR
7572 because rtx pointed to by loop_num_iterations could contain
7573 expression which cannot be moved into count register */
7574 emit_insn (gen_move_insn (temp_reg2, temp_reg1));
7575
7576 sequence = gen_sequence ();
7577 end_sequence ();
7578 emit_insn_after (sequence, loop_start);
7579
7580 /* insert new comparison on the count register instead of the
7581 old one, generating the needed BCT pattern (that will be
7582 later recognized by assembly generation phase). */
7583 emit_jump_insn_before (gen_decrement_and_branch_on_count (temp_reg2, start_label),
7584 loop_end);
7585 LABEL_NUSES (start_label)++;
7586 }
7587
7588 #endif /* HAVE_decrement_and_branch_on_count */
7589 }
7590
7591 /* calculate the uid of the given loop */
7592 int
7593 loop_number (loop_start, loop_end)
7594 rtx loop_start, loop_end;
7595 {
7596 int loop_num = -1;
7597
7598 /* assume that this insn contains the LOOP_START
7599 note, so it will not be changed by the loop unrolling */
7600 loop_num = uid_loop_num[INSN_UID (loop_start)];
7601 /* sanity check - should never happen */
7602 if (loop_num == -1)
7603 abort ();
7604
7605 return loop_num;
7606 }
7607
7608 /* scan the function and determine whether it has indirect (computed) jump */
7609 static int
7610 indirect_jump_in_function_p (start)
7611 rtx start;
7612 {
7613 rtx insn;
7614 int is_indirect_jump = 0;
7615
7616 for (insn = start; insn; insn = NEXT_INSN (insn)) {
7617 if (GET_CODE (insn) == JUMP_INSN) {
7618 if (GET_CODE (PATTERN (insn)) == SET) {
7619 rtx insn_work_code = XEXP (PATTERN (insn), 1);
7620
7621 if (GET_CODE (insn_work_code) == LABEL_REF)
7622 continue;
7623 if (GET_CODE (insn_work_code) == IF_THEN_ELSE) {
7624 rtx jump_target = XEXP (insn_work_code, 1);
7625
7626 if (jump_target == pc_rtx
7627 || (GET_CODE (jump_target) == (enum rtx_code)LABEL_REF))
7628 continue;
7629 }
7630 }
7631 is_indirect_jump = 1;
7632 }
7633 }
7634 return is_indirect_jump;
7635 }
7636
7637 /* debugging: fix_bct_param () is called from toplev.c upon detection
7638 of the -fbct-***-N options. */
7639 int
7640 fix_bct_param (param, val)
7641 char *param, *val;
7642 {
7643 if ( !strcmp (param, "max") )
7644 dbg_bct_max = atoi (val);
7645 else if ( !strcmp (param, "min") )
7646 dbg_bct_min = atoi (val);
7647 }
7648
7649 /* debugging: return 1 if the loop should be instrumented,
7650 according to bct-min/max. */
7651 static int
7652 check_bct_param ()
7653 {
7654 static int dbg_bct_num = 0;
7655
7656 dbg_bct_num++;
7657 if (dbg_bct_num > dbg_bct_min || dbg_bct_min == -1)
7658 if (dbg_bct_num <= dbg_bct_max || dbg_bct_max == -1)
7659 return 1;
7660 return 0;
7661 }
7662 #endif /* HAIFA */
7663 /* END CYGNUS LOCAL haifa */