* Integrate alias analysis changes from jfc@mit.edu
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include <stdio.h>
38 #include "config.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
85 really a loop (an insn outside the loop branches into it). */
86
87 static char *loop_invalid;
88
89 /* Indexed by loop number, links together all LABEL_REFs which refer to
90 code labels outside the loop. Used by routines that need to know all
91 loop exits, such as final_biv_value and final_giv_value.
92
93 This does not include loop exits due to return instructions. This is
94 because all bivs and givs are pseudos, and hence must be dead after a
95 return, so the presense of a return does not affect any of the
96 optimizations that use this info. It is simpler to just not include return
97 instructions on this list. */
98
99 rtx *loop_number_exit_labels;
100
101 /* Indexed by loop number, counts the number of LABEL_REFs on
102 loop_number_exit_labels for this loop and all loops nested inside it. */
103
104 int *loop_number_exit_count;
105
106 /* Holds the number of loop iterations. It is zero if the number could not be
107 calculated. Must be unsigned since the number of iterations can
108 be as high as 2^wordsize-1. For loops with a wider iterator, this number
109 will will be zero if the number of loop iterations is too large for an
110 unsigned integer to hold. */
111
112 unsigned HOST_WIDE_INT loop_n_iterations;
113
114 /* Nonzero if there is a subroutine call in the current loop. */
115
116 static int loop_has_call;
117
118 /* Nonzero if there is a volatile memory reference in the current
119 loop. */
120
121 static int loop_has_volatile;
122
123 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
124 current loop. A continue statement will generate a branch to
125 NEXT_INSN (loop_continue). */
126
127 static rtx loop_continue;
128
129 /* Indexed by register number, contains the number of times the reg
130 is set during the loop being scanned.
131 During code motion, a negative value indicates a reg that has been
132 made a candidate; in particular -2 means that it is an candidate that
133 we know is equal to a constant and -1 means that it is an candidate
134 not known equal to a constant.
135 After code motion, regs moved have 0 (which is accurate now)
136 while the failed candidates have the original number of times set.
137
138 Therefore, at all times, == 0 indicates an invariant register;
139 < 0 a conditionally invariant one. */
140
141 static int *n_times_set;
142
143 /* Original value of n_times_set; same except that this value
144 is not set negative for a reg whose sets have been made candidates
145 and not set to 0 for a reg that is moved. */
146
147 static int *n_times_used;
148
149 /* Index by register number, 1 indicates that the register
150 cannot be moved or strength reduced. */
151
152 static char *may_not_optimize;
153
154 /* Nonzero means reg N has already been moved out of one loop.
155 This reduces the desire to move it out of another. */
156
157 static char *moved_once;
158
159 /* Array of MEMs that are stored in this loop. If there are too many to fit
160 here, we just turn on unknown_address_altered. */
161
162 #define NUM_STORES 30
163 static rtx loop_store_mems[NUM_STORES];
164
165 /* Index of first available slot in above array. */
166 static int loop_store_mems_idx;
167
168 /* Nonzero if we don't know what MEMs were changed in the current loop.
169 This happens if the loop contains a call (in which case `loop_has_call'
170 will also be set) or if we store into more than NUM_STORES MEMs. */
171
172 static int unknown_address_altered;
173
174 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
175 static int num_movables;
176
177 /* Count of memory write instructions discovered in the loop. */
178 static int num_mem_sets;
179
180 /* Number of loops contained within the current one, including itself. */
181 static int loops_enclosed;
182
183 /* Bound on pseudo register number before loop optimization.
184 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
185 int max_reg_before_loop;
186
187 /* This obstack is used in product_cheap_p to allocate its rtl. It
188 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
189 If we used the same obstack that it did, we would be deallocating
190 that array. */
191
192 static struct obstack temp_obstack;
193
194 /* This is where the pointer to the obstack being used for RTL is stored. */
195
196 extern struct obstack *rtl_obstack;
197
198 #define obstack_chunk_alloc xmalloc
199 #define obstack_chunk_free free
200
201 extern char *oballoc ();
202 \f
203 /* During the analysis of a loop, a chain of `struct movable's
204 is made to record all the movable insns found.
205 Then the entire chain can be scanned to decide which to move. */
206
207 struct movable
208 {
209 rtx insn; /* A movable insn */
210 rtx set_src; /* The expression this reg is set from. */
211 rtx set_dest; /* The destination of this SET. */
212 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
213 of any registers used within the LIBCALL. */
214 int consec; /* Number of consecutive following insns
215 that must be moved with this one. */
216 int regno; /* The register it sets */
217 short lifetime; /* lifetime of that register;
218 may be adjusted when matching movables
219 that load the same value are found. */
220 short savings; /* Number of insns we can move for this reg,
221 including other movables that force this
222 or match this one. */
223 unsigned int cond : 1; /* 1 if only conditionally movable */
224 unsigned int force : 1; /* 1 means MUST move this insn */
225 unsigned int global : 1; /* 1 means reg is live outside this loop */
226 /* If PARTIAL is 1, GLOBAL means something different:
227 that the reg is live outside the range from where it is set
228 to the following label. */
229 unsigned int done : 1; /* 1 inhibits further processing of this */
230
231 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
232 In particular, moving it does not make it
233 invariant. */
234 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
235 load SRC, rather than copying INSN. */
236 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
237 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
238 that we should avoid changing when clearing
239 the rest of the reg. */
240 struct movable *match; /* First entry for same value */
241 struct movable *forces; /* An insn that must be moved if this is */
242 struct movable *next;
243 };
244
245 FILE *loop_dump_stream;
246
247 /* Forward declarations. */
248
249 static void find_and_verify_loops ();
250 static void mark_loop_jump ();
251 static void prescan_loop ();
252 static int reg_in_basic_block_p ();
253 static int consec_sets_invariant_p ();
254 static rtx libcall_other_reg ();
255 static int labels_in_range_p ();
256 static void count_loop_regs_set ();
257 static void note_addr_stored ();
258 static int loop_reg_used_before_p ();
259 static void scan_loop ();
260 static void replace_call_address ();
261 static rtx skip_consec_insns ();
262 static int libcall_benefit ();
263 static void ignore_some_movables ();
264 static void force_movables ();
265 static void combine_movables ();
266 static int rtx_equal_for_loop_p ();
267 static void move_movables ();
268 static void strength_reduce ();
269 static int valid_initial_value_p ();
270 static void find_mem_givs ();
271 static void record_biv ();
272 static void check_final_value ();
273 static void record_giv ();
274 static void update_giv_derive ();
275 static int basic_induction_var ();
276 static rtx simplify_giv_expr ();
277 static int general_induction_var ();
278 static int consec_sets_giv ();
279 static int check_dbra_loop ();
280 static rtx express_from ();
281 static int combine_givs_p ();
282 static void combine_givs ();
283 static int product_cheap_p ();
284 static int maybe_eliminate_biv ();
285 static int maybe_eliminate_biv_1 ();
286 static int last_use_this_basic_block ();
287 static void record_initial ();
288 static void update_reg_last_use ();
289 \f
290 /* Relative gain of eliminating various kinds of operations. */
291 int add_cost;
292 #if 0
293 int shift_cost;
294 int mult_cost;
295 #endif
296
297 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
298 copy the value of the strength reduced giv to its original register. */
299 int copy_cost;
300
301 void
302 init_loop ()
303 {
304 char *free_point = (char *) oballoc (1);
305 rtx reg = gen_rtx (REG, word_mode, LAST_VIRTUAL_REGISTER + 1);
306
307 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
308
309 /* We multiply by 2 to reconcile the difference in scale between
310 these two ways of computing costs. Otherwise the cost of a copy
311 will be far less than the cost of an add. */
312
313 copy_cost = 2 * 2;
314
315 /* Free the objects we just allocated. */
316 obfree (free_point);
317
318 /* Initialize the obstack used for rtl in product_cheap_p. */
319 gcc_obstack_init (&temp_obstack);
320 }
321 \f
322 /* Entry point of this file. Perform loop optimization
323 on the current function. F is the first insn of the function
324 and DUMPFILE is a stream for output of a trace of actions taken
325 (or 0 if none should be output). */
326
327 void
328 loop_optimize (f, dumpfile)
329 /* f is the first instruction of a chain of insns for one function */
330 rtx f;
331 FILE *dumpfile;
332 {
333 register rtx insn;
334 register int i;
335 rtx last_insn;
336
337 loop_dump_stream = dumpfile;
338
339 init_recog_no_volatile ();
340 init_alias_analysis ();
341
342 max_reg_before_loop = max_reg_num ();
343
344 moved_once = (char *) alloca (max_reg_before_loop);
345 bzero (moved_once, max_reg_before_loop);
346
347 regs_may_share = 0;
348
349 /* Count the number of loops. */
350
351 max_loop_num = 0;
352 for (insn = f; insn; insn = NEXT_INSN (insn))
353 {
354 if (GET_CODE (insn) == NOTE
355 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
356 max_loop_num++;
357 }
358
359 /* Don't waste time if no loops. */
360 if (max_loop_num == 0)
361 return;
362
363 /* Get size to use for tables indexed by uids.
364 Leave some space for labels allocated by find_and_verify_loops. */
365 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
366
367 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
368 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
369
370 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
371 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
372
373 /* Allocate tables for recording each loop. We set each entry, so they need
374 not be zeroed. */
375 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
376 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
377 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
378 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
379 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
380 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
381
382 /* Find and process each loop.
383 First, find them, and record them in order of their beginnings. */
384 find_and_verify_loops (f);
385
386 /* Now find all register lifetimes. This must be done after
387 find_and_verify_loops, because it might reorder the insns in the
388 function. */
389 reg_scan (f, max_reg_num (), 1);
390
391 /* See if we went too far. */
392 if (get_max_uid () > max_uid_for_loop)
393 abort ();
394
395 /* Compute the mapping from uids to luids.
396 LUIDs are numbers assigned to insns, like uids,
397 except that luids increase monotonically through the code.
398 Don't assign luids to line-number NOTEs, so that the distance in luids
399 between two insns is not affected by -g. */
400
401 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
402 {
403 last_insn = insn;
404 if (GET_CODE (insn) != NOTE
405 || NOTE_LINE_NUMBER (insn) <= 0)
406 uid_luid[INSN_UID (insn)] = ++i;
407 else
408 /* Give a line number note the same luid as preceding insn. */
409 uid_luid[INSN_UID (insn)] = i;
410 }
411
412 max_luid = i + 1;
413
414 /* Don't leave gaps in uid_luid for insns that have been
415 deleted. It is possible that the first or last insn
416 using some register has been deleted by cross-jumping.
417 Make sure that uid_luid for that former insn's uid
418 points to the general area where that insn used to be. */
419 for (i = 0; i < max_uid_for_loop; i++)
420 {
421 uid_luid[0] = uid_luid[i];
422 if (uid_luid[0] != 0)
423 break;
424 }
425 for (i = 0; i < max_uid_for_loop; i++)
426 if (uid_luid[i] == 0)
427 uid_luid[i] = uid_luid[i - 1];
428
429 /* Create a mapping from loops to BLOCK tree nodes. */
430 if (flag_unroll_loops && write_symbols != NO_DEBUG)
431 find_loop_tree_blocks ();
432
433 /* Now scan the loops, last ones first, since this means inner ones are done
434 before outer ones. */
435 for (i = max_loop_num-1; i >= 0; i--)
436 if (! loop_invalid[i] && loop_number_loop_ends[i])
437 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
438 max_reg_num ());
439
440 /* If debugging and unrolling loops, we must replicate the tree nodes
441 corresponding to the blocks inside the loop, so that the original one
442 to one mapping will remain. */
443 if (flag_unroll_loops && write_symbols != NO_DEBUG)
444 unroll_block_trees ();
445 }
446 \f
447 /* Optimize one loop whose start is LOOP_START and end is END.
448 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
449 NOTE_INSN_LOOP_END. */
450
451 /* ??? Could also move memory writes out of loops if the destination address
452 is invariant, the source is invariant, the memory write is not volatile,
453 and if we can prove that no read inside the loop can read this address
454 before the write occurs. If there is a read of this address after the
455 write, then we can also mark the memory read as invariant. */
456
457 static void
458 scan_loop (loop_start, end, nregs)
459 rtx loop_start, end;
460 int nregs;
461 {
462 register int i;
463 register rtx p;
464 /* 1 if we are scanning insns that could be executed zero times. */
465 int maybe_never = 0;
466 /* 1 if we are scanning insns that might never be executed
467 due to a subroutine call which might exit before they are reached. */
468 int call_passed = 0;
469 /* For a rotated loop that is entered near the bottom,
470 this is the label at the top. Otherwise it is zero. */
471 rtx loop_top = 0;
472 /* Jump insn that enters the loop, or 0 if control drops in. */
473 rtx loop_entry_jump = 0;
474 /* Place in the loop where control enters. */
475 rtx scan_start;
476 /* Number of insns in the loop. */
477 int insn_count;
478 int in_libcall = 0;
479 int tem;
480 rtx temp;
481 /* The SET from an insn, if it is the only SET in the insn. */
482 rtx set, set1;
483 /* Chain describing insns movable in current loop. */
484 struct movable *movables = 0;
485 /* Last element in `movables' -- so we can add elements at the end. */
486 struct movable *last_movable = 0;
487 /* Ratio of extra register life span we can justify
488 for saving an instruction. More if loop doesn't call subroutines
489 since in that case saving an insn makes more difference
490 and more registers are available. */
491 int threshold;
492 /* If we have calls, contains the insn in which a register was used
493 if it was used exactly once; contains const0_rtx if it was used more
494 than once. */
495 rtx *reg_single_usage = 0;
496 /* Nonzero if we are scanning instructions in a sub-loop. */
497 int loop_depth = 0;
498
499 n_times_set = (int *) alloca (nregs * sizeof (int));
500 n_times_used = (int *) alloca (nregs * sizeof (int));
501 may_not_optimize = (char *) alloca (nregs);
502
503 /* Determine whether this loop starts with a jump down to a test at
504 the end. This will occur for a small number of loops with a test
505 that is too complex to duplicate in front of the loop.
506
507 We search for the first insn or label in the loop, skipping NOTEs.
508 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
509 (because we might have a loop executed only once that contains a
510 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
511 (in case we have a degenerate loop).
512
513 Note that if we mistakenly think that a loop is entered at the top
514 when, in fact, it is entered at the exit test, the only effect will be
515 slightly poorer optimization. Making the opposite error can generate
516 incorrect code. Since very few loops now start with a jump to the
517 exit test, the code here to detect that case is very conservative. */
518
519 for (p = NEXT_INSN (loop_start);
520 p != end
521 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
522 && (GET_CODE (p) != NOTE
523 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
524 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
525 p = NEXT_INSN (p))
526 ;
527
528 scan_start = p;
529
530 /* Set up variables describing this loop. */
531 prescan_loop (loop_start, end);
532 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
533
534 /* If loop has a jump before the first label,
535 the true entry is the target of that jump.
536 Start scan from there.
537 But record in LOOP_TOP the place where the end-test jumps
538 back to so we can scan that after the end of the loop. */
539 if (GET_CODE (p) == JUMP_INSN)
540 {
541 loop_entry_jump = p;
542
543 /* Loop entry must be unconditional jump (and not a RETURN) */
544 if (simplejump_p (p)
545 && JUMP_LABEL (p) != 0
546 /* Check to see whether the jump actually
547 jumps out of the loop (meaning it's no loop).
548 This case can happen for things like
549 do {..} while (0). If this label was generated previously
550 by loop, we can't tell anything about it and have to reject
551 the loop. */
552 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
553 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
554 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
555 {
556 loop_top = next_label (scan_start);
557 scan_start = JUMP_LABEL (p);
558 }
559 }
560
561 /* If SCAN_START was an insn created by loop, we don't know its luid
562 as required by loop_reg_used_before_p. So skip such loops. (This
563 test may never be true, but it's best to play it safe.)
564
565 Also, skip loops where we do not start scanning at a label. This
566 test also rejects loops starting with a JUMP_INSN that failed the
567 test above. */
568
569 if (INSN_UID (scan_start) >= max_uid_for_loop
570 || GET_CODE (scan_start) != CODE_LABEL)
571 {
572 if (loop_dump_stream)
573 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
574 INSN_UID (loop_start), INSN_UID (end));
575 return;
576 }
577
578 /* Count number of times each reg is set during this loop.
579 Set may_not_optimize[I] if it is not safe to move out
580 the setting of register I. If this loop has calls, set
581 reg_single_usage[I]. */
582
583 bzero ((char *) n_times_set, nregs * sizeof (int));
584 bzero (may_not_optimize, nregs);
585
586 if (loop_has_call)
587 {
588 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
589 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
590 }
591
592 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
593 may_not_optimize, reg_single_usage, &insn_count, nregs);
594
595 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
596 may_not_optimize[i] = 1, n_times_set[i] = 1;
597 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
598
599 if (loop_dump_stream)
600 {
601 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
602 INSN_UID (loop_start), INSN_UID (end), insn_count);
603 if (loop_continue)
604 fprintf (loop_dump_stream, "Continue at insn %d.\n",
605 INSN_UID (loop_continue));
606 }
607
608 /* Scan through the loop finding insns that are safe to move.
609 Set n_times_set negative for the reg being set, so that
610 this reg will be considered invariant for subsequent insns.
611 We consider whether subsequent insns use the reg
612 in deciding whether it is worth actually moving.
613
614 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
615 and therefore it is possible that the insns we are scanning
616 would never be executed. At such times, we must make sure
617 that it is safe to execute the insn once instead of zero times.
618 When MAYBE_NEVER is 0, all insns will be executed at least once
619 so that is not a problem. */
620
621 p = scan_start;
622 while (1)
623 {
624 p = NEXT_INSN (p);
625 /* At end of a straight-in loop, we are done.
626 At end of a loop entered at the bottom, scan the top. */
627 if (p == scan_start)
628 break;
629 if (p == end)
630 {
631 if (loop_top != 0)
632 p = loop_top;
633 else
634 break;
635 if (p == scan_start)
636 break;
637 }
638
639 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
640 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
641 in_libcall = 1;
642 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
643 && find_reg_note (p, REG_RETVAL, NULL_RTX))
644 in_libcall = 0;
645
646 if (GET_CODE (p) == INSN
647 && (set = single_set (p))
648 && GET_CODE (SET_DEST (set)) == REG
649 && ! may_not_optimize[REGNO (SET_DEST (set))])
650 {
651 int tem1 = 0;
652 int tem2 = 0;
653 int move_insn = 0;
654 rtx src = SET_SRC (set);
655 rtx dependencies = 0;
656
657 /* Figure out what to use as a source of this insn. If a REG_EQUIV
658 note is given or if a REG_EQUAL note with a constant operand is
659 specified, use it as the source and mark that we should move
660 this insn by calling emit_move_insn rather that duplicating the
661 insn.
662
663 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
664 is present. */
665 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
666 if (temp)
667 src = XEXP (temp, 0), move_insn = 1;
668 else
669 {
670 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
671 if (temp && CONSTANT_P (XEXP (temp, 0)))
672 src = XEXP (temp, 0), move_insn = 1;
673 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
674 {
675 src = XEXP (temp, 0);
676 /* A libcall block can use regs that don't appear in
677 the equivalent expression. To move the libcall,
678 we must move those regs too. */
679 dependencies = libcall_other_reg (p, src);
680 }
681 }
682
683 /* Don't try to optimize a register that was made
684 by loop-optimization for an inner loop.
685 We don't know its life-span, so we can't compute the benefit. */
686 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
687 ;
688 /* In order to move a register, we need to have one of three cases:
689 (1) it is used only in the same basic block as the set
690 (2) it is not a user variable and it is not used in the
691 exit test (this can cause the variable to be used
692 before it is set just like a user-variable).
693 (3) the set is guaranteed to be executed once the loop starts,
694 and the reg is not used until after that. */
695 else if (! ((! maybe_never
696 && ! loop_reg_used_before_p (set, p, loop_start,
697 scan_start, end))
698 || (! REG_USERVAR_P (SET_DEST (set))
699 && ! REG_LOOP_TEST_P (SET_DEST (set)))
700 || reg_in_basic_block_p (p, SET_DEST (set))))
701 ;
702 else if ((tem = invariant_p (src))
703 && (dependencies == 0
704 || (tem2 = invariant_p (dependencies)) != 0)
705 && (n_times_set[REGNO (SET_DEST (set))] == 1
706 || (tem1
707 = consec_sets_invariant_p (SET_DEST (set),
708 n_times_set[REGNO (SET_DEST (set))],
709 p)))
710 /* If the insn can cause a trap (such as divide by zero),
711 can't move it unless it's guaranteed to be executed
712 once loop is entered. Even a function call might
713 prevent the trap insn from being reached
714 (since it might exit!) */
715 && ! ((maybe_never || call_passed)
716 && may_trap_p (src)))
717 {
718 register struct movable *m;
719 register int regno = REGNO (SET_DEST (set));
720
721 /* A potential lossage is where we have a case where two insns
722 can be combined as long as they are both in the loop, but
723 we move one of them outside the loop. For large loops,
724 this can lose. The most common case of this is the address
725 of a function being called.
726
727 Therefore, if this register is marked as being used exactly
728 once if we are in a loop with calls (a "large loop"), see if
729 we can replace the usage of this register with the source
730 of this SET. If we can, delete this insn.
731
732 Don't do this if P has a REG_RETVAL note or if we have
733 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
734
735 if (reg_single_usage && reg_single_usage[regno] != 0
736 && reg_single_usage[regno] != const0_rtx
737 && REGNO_FIRST_UID (regno) == INSN_UID (p)
738 && (REGNO_LAST_UID (regno)
739 == INSN_UID (reg_single_usage[regno]))
740 && n_times_set[REGNO (SET_DEST (set))] == 1
741 && ! side_effects_p (SET_SRC (set))
742 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
743 #ifdef SMALL_REGISTER_CLASSES
744 && ! (SMALL_REGISTER_CLASSES
745 && GET_CODE (SET_SRC (set)) == REG
746 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
747 #endif
748 /* This test is not redundant; SET_SRC (set) might be
749 a call-clobbered register and the life of REGNO
750 might span a call. */
751 && ! modified_between_p (SET_SRC (set), p,
752 reg_single_usage[regno])
753 && no_labels_between_p (p, reg_single_usage[regno])
754 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
755 reg_single_usage[regno]))
756 {
757 /* Replace any usage in a REG_EQUAL note. Must copy the
758 new source, so that we don't get rtx sharing between the
759 SET_SOURCE and REG_NOTES of insn p. */
760 REG_NOTES (reg_single_usage[regno])
761 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
762 SET_DEST (set), copy_rtx (SET_SRC (set)));
763
764 PUT_CODE (p, NOTE);
765 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
766 NOTE_SOURCE_FILE (p) = 0;
767 n_times_set[regno] = 0;
768 continue;
769 }
770
771 m = (struct movable *) alloca (sizeof (struct movable));
772 m->next = 0;
773 m->insn = p;
774 m->set_src = src;
775 m->dependencies = dependencies;
776 m->set_dest = SET_DEST (set);
777 m->force = 0;
778 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
779 m->done = 0;
780 m->forces = 0;
781 m->partial = 0;
782 m->move_insn = move_insn;
783 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
784 m->savemode = VOIDmode;
785 m->regno = regno;
786 /* Set M->cond if either invariant_p or consec_sets_invariant_p
787 returned 2 (only conditionally invariant). */
788 m->cond = ((tem | tem1 | tem2) > 1);
789 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
790 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
791 m->match = 0;
792 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
793 - uid_luid[REGNO_FIRST_UID (regno)]);
794 m->savings = n_times_used[regno];
795 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
796 m->savings += libcall_benefit (p);
797 n_times_set[regno] = move_insn ? -2 : -1;
798 /* Add M to the end of the chain MOVABLES. */
799 if (movables == 0)
800 movables = m;
801 else
802 last_movable->next = m;
803 last_movable = m;
804
805 if (m->consec > 0)
806 {
807 /* Skip this insn, not checking REG_LIBCALL notes. */
808 p = next_nonnote_insn (p);
809 /* Skip the consecutive insns, if there are any. */
810 p = skip_consec_insns (p, m->consec);
811 /* Back up to the last insn of the consecutive group. */
812 p = prev_nonnote_insn (p);
813
814 /* We must now reset m->move_insn, m->is_equiv, and possibly
815 m->set_src to correspond to the effects of all the
816 insns. */
817 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
818 if (temp)
819 m->set_src = XEXP (temp, 0), m->move_insn = 1;
820 else
821 {
822 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
823 if (temp && CONSTANT_P (XEXP (temp, 0)))
824 m->set_src = XEXP (temp, 0), m->move_insn = 1;
825 else
826 m->move_insn = 0;
827
828 }
829 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
830 }
831 }
832 /* If this register is always set within a STRICT_LOW_PART
833 or set to zero, then its high bytes are constant.
834 So clear them outside the loop and within the loop
835 just load the low bytes.
836 We must check that the machine has an instruction to do so.
837 Also, if the value loaded into the register
838 depends on the same register, this cannot be done. */
839 else if (SET_SRC (set) == const0_rtx
840 && GET_CODE (NEXT_INSN (p)) == INSN
841 && (set1 = single_set (NEXT_INSN (p)))
842 && GET_CODE (set1) == SET
843 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
844 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
845 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
846 == SET_DEST (set))
847 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
848 {
849 register int regno = REGNO (SET_DEST (set));
850 if (n_times_set[regno] == 2)
851 {
852 register struct movable *m;
853 m = (struct movable *) alloca (sizeof (struct movable));
854 m->next = 0;
855 m->insn = p;
856 m->set_dest = SET_DEST (set);
857 m->dependencies = 0;
858 m->force = 0;
859 m->consec = 0;
860 m->done = 0;
861 m->forces = 0;
862 m->move_insn = 0;
863 m->partial = 1;
864 /* If the insn may not be executed on some cycles,
865 we can't clear the whole reg; clear just high part.
866 Not even if the reg is used only within this loop.
867 Consider this:
868 while (1)
869 while (s != t) {
870 if (foo ()) x = *s;
871 use (x);
872 }
873 Clearing x before the inner loop could clobber a value
874 being saved from the last time around the outer loop.
875 However, if the reg is not used outside this loop
876 and all uses of the register are in the same
877 basic block as the store, there is no problem.
878
879 If this insn was made by loop, we don't know its
880 INSN_LUID and hence must make a conservative
881 assumption. */
882 m->global = (INSN_UID (p) >= max_uid_for_loop
883 || (uid_luid[REGNO_LAST_UID (regno)]
884 > INSN_LUID (end))
885 || (uid_luid[REGNO_FIRST_UID (regno)]
886 < INSN_LUID (p))
887 || (labels_in_range_p
888 (p, uid_luid[REGNO_FIRST_UID (regno)])));
889 if (maybe_never && m->global)
890 m->savemode = GET_MODE (SET_SRC (set1));
891 else
892 m->savemode = VOIDmode;
893 m->regno = regno;
894 m->cond = 0;
895 m->match = 0;
896 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
897 - uid_luid[REGNO_FIRST_UID (regno)]);
898 m->savings = 1;
899 n_times_set[regno] = -1;
900 /* Add M to the end of the chain MOVABLES. */
901 if (movables == 0)
902 movables = m;
903 else
904 last_movable->next = m;
905 last_movable = m;
906 }
907 }
908 }
909 /* Past a call insn, we get to insns which might not be executed
910 because the call might exit. This matters for insns that trap.
911 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
912 so they don't count. */
913 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
914 call_passed = 1;
915 /* Past a label or a jump, we get to insns for which we
916 can't count on whether or how many times they will be
917 executed during each iteration. Therefore, we can
918 only move out sets of trivial variables
919 (those not used after the loop). */
920 /* Similar code appears twice in strength_reduce. */
921 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
922 /* If we enter the loop in the middle, and scan around to the
923 beginning, don't set maybe_never for that. This must be an
924 unconditional jump, otherwise the code at the top of the
925 loop might never be executed. Unconditional jumps are
926 followed a by barrier then loop end. */
927 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
928 && NEXT_INSN (NEXT_INSN (p)) == end
929 && simplejump_p (p)))
930 maybe_never = 1;
931 else if (GET_CODE (p) == NOTE)
932 {
933 /* At the virtual top of a converted loop, insns are again known to
934 be executed: logically, the loop begins here even though the exit
935 code has been duplicated. */
936 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
937 maybe_never = call_passed = 0;
938 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
939 loop_depth++;
940 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
941 loop_depth--;
942 }
943 }
944
945 /* If one movable subsumes another, ignore that other. */
946
947 ignore_some_movables (movables);
948
949 /* For each movable insn, see if the reg that it loads
950 leads when it dies right into another conditionally movable insn.
951 If so, record that the second insn "forces" the first one,
952 since the second can be moved only if the first is. */
953
954 force_movables (movables);
955
956 /* See if there are multiple movable insns that load the same value.
957 If there are, make all but the first point at the first one
958 through the `match' field, and add the priorities of them
959 all together as the priority of the first. */
960
961 combine_movables (movables, nregs);
962
963 /* Now consider each movable insn to decide whether it is worth moving.
964 Store 0 in n_times_set for each reg that is moved. */
965
966 move_movables (movables, threshold,
967 insn_count, loop_start, end, nregs);
968
969 /* Now candidates that still are negative are those not moved.
970 Change n_times_set to indicate that those are not actually invariant. */
971 for (i = 0; i < nregs; i++)
972 if (n_times_set[i] < 0)
973 n_times_set[i] = n_times_used[i];
974
975 if (flag_strength_reduce)
976 strength_reduce (scan_start, end, loop_top,
977 insn_count, loop_start, end);
978 }
979 \f
980 /* Add elements to *OUTPUT to record all the pseudo-regs
981 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
982
983 void
984 record_excess_regs (in_this, not_in_this, output)
985 rtx in_this, not_in_this;
986 rtx *output;
987 {
988 enum rtx_code code;
989 char *fmt;
990 int i;
991
992 code = GET_CODE (in_this);
993
994 switch (code)
995 {
996 case PC:
997 case CC0:
998 case CONST_INT:
999 case CONST_DOUBLE:
1000 case CONST:
1001 case SYMBOL_REF:
1002 case LABEL_REF:
1003 return;
1004
1005 case REG:
1006 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1007 && ! reg_mentioned_p (in_this, not_in_this))
1008 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
1009 return;
1010 }
1011
1012 fmt = GET_RTX_FORMAT (code);
1013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1014 {
1015 int j;
1016
1017 switch (fmt[i])
1018 {
1019 case 'E':
1020 for (j = 0; j < XVECLEN (in_this, i); j++)
1021 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1022 break;
1023
1024 case 'e':
1025 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1026 break;
1027 }
1028 }
1029 }
1030 \f
1031 /* Check what regs are referred to in the libcall block ending with INSN,
1032 aside from those mentioned in the equivalent value.
1033 If there are none, return 0.
1034 If there are one or more, return an EXPR_LIST containing all of them. */
1035
1036 static rtx
1037 libcall_other_reg (insn, equiv)
1038 rtx insn, equiv;
1039 {
1040 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1041 rtx p = XEXP (note, 0);
1042 rtx output = 0;
1043
1044 /* First, find all the regs used in the libcall block
1045 that are not mentioned as inputs to the result. */
1046
1047 while (p != insn)
1048 {
1049 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1050 || GET_CODE (p) == CALL_INSN)
1051 record_excess_regs (PATTERN (p), equiv, &output);
1052 p = NEXT_INSN (p);
1053 }
1054
1055 return output;
1056 }
1057 \f
1058 /* Return 1 if all uses of REG
1059 are between INSN and the end of the basic block. */
1060
1061 static int
1062 reg_in_basic_block_p (insn, reg)
1063 rtx insn, reg;
1064 {
1065 int regno = REGNO (reg);
1066 rtx p;
1067
1068 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1069 return 0;
1070
1071 /* Search this basic block for the already recorded last use of the reg. */
1072 for (p = insn; p; p = NEXT_INSN (p))
1073 {
1074 switch (GET_CODE (p))
1075 {
1076 case NOTE:
1077 break;
1078
1079 case INSN:
1080 case CALL_INSN:
1081 /* Ordinary insn: if this is the last use, we win. */
1082 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1083 return 1;
1084 break;
1085
1086 case JUMP_INSN:
1087 /* Jump insn: if this is the last use, we win. */
1088 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1089 return 1;
1090 /* Otherwise, it's the end of the basic block, so we lose. */
1091 return 0;
1092
1093 case CODE_LABEL:
1094 case BARRIER:
1095 /* It's the end of the basic block, so we lose. */
1096 return 0;
1097 }
1098 }
1099
1100 /* The "last use" doesn't follow the "first use"?? */
1101 abort ();
1102 }
1103 \f
1104 /* Compute the benefit of eliminating the insns in the block whose
1105 last insn is LAST. This may be a group of insns used to compute a
1106 value directly or can contain a library call. */
1107
1108 static int
1109 libcall_benefit (last)
1110 rtx last;
1111 {
1112 rtx insn;
1113 int benefit = 0;
1114
1115 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1116 insn != last; insn = NEXT_INSN (insn))
1117 {
1118 if (GET_CODE (insn) == CALL_INSN)
1119 benefit += 10; /* Assume at least this many insns in a library
1120 routine. */
1121 else if (GET_CODE (insn) == INSN
1122 && GET_CODE (PATTERN (insn)) != USE
1123 && GET_CODE (PATTERN (insn)) != CLOBBER)
1124 benefit++;
1125 }
1126
1127 return benefit;
1128 }
1129 \f
1130 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1131
1132 static rtx
1133 skip_consec_insns (insn, count)
1134 rtx insn;
1135 int count;
1136 {
1137 for (; count > 0; count--)
1138 {
1139 rtx temp;
1140
1141 /* If first insn of libcall sequence, skip to end. */
1142 /* Do this at start of loop, since INSN is guaranteed to
1143 be an insn here. */
1144 if (GET_CODE (insn) != NOTE
1145 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1146 insn = XEXP (temp, 0);
1147
1148 do insn = NEXT_INSN (insn);
1149 while (GET_CODE (insn) == NOTE);
1150 }
1151
1152 return insn;
1153 }
1154
1155 /* Ignore any movable whose insn falls within a libcall
1156 which is part of another movable.
1157 We make use of the fact that the movable for the libcall value
1158 was made later and so appears later on the chain. */
1159
1160 static void
1161 ignore_some_movables (movables)
1162 struct movable *movables;
1163 {
1164 register struct movable *m, *m1;
1165
1166 for (m = movables; m; m = m->next)
1167 {
1168 /* Is this a movable for the value of a libcall? */
1169 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1170 if (note)
1171 {
1172 rtx insn;
1173 /* Check for earlier movables inside that range,
1174 and mark them invalid. We cannot use LUIDs here because
1175 insns created by loop.c for prior loops don't have LUIDs.
1176 Rather than reject all such insns from movables, we just
1177 explicitly check each insn in the libcall (since invariant
1178 libcalls aren't that common). */
1179 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1180 for (m1 = movables; m1 != m; m1 = m1->next)
1181 if (m1->insn == insn)
1182 m1->done = 1;
1183 }
1184 }
1185 }
1186
1187 /* For each movable insn, see if the reg that it loads
1188 leads when it dies right into another conditionally movable insn.
1189 If so, record that the second insn "forces" the first one,
1190 since the second can be moved only if the first is. */
1191
1192 static void
1193 force_movables (movables)
1194 struct movable *movables;
1195 {
1196 register struct movable *m, *m1;
1197 for (m1 = movables; m1; m1 = m1->next)
1198 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1199 if (!m1->partial && !m1->done)
1200 {
1201 int regno = m1->regno;
1202 for (m = m1->next; m; m = m->next)
1203 /* ??? Could this be a bug? What if CSE caused the
1204 register of M1 to be used after this insn?
1205 Since CSE does not update regno_last_uid,
1206 this insn M->insn might not be where it dies.
1207 But very likely this doesn't matter; what matters is
1208 that M's reg is computed from M1's reg. */
1209 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1210 && !m->done)
1211 break;
1212 if (m != 0 && m->set_src == m1->set_dest
1213 /* If m->consec, m->set_src isn't valid. */
1214 && m->consec == 0)
1215 m = 0;
1216
1217 /* Increase the priority of the moving the first insn
1218 since it permits the second to be moved as well. */
1219 if (m != 0)
1220 {
1221 m->forces = m1;
1222 m1->lifetime += m->lifetime;
1223 m1->savings += m1->savings;
1224 }
1225 }
1226 }
1227 \f
1228 /* Find invariant expressions that are equal and can be combined into
1229 one register. */
1230
1231 static void
1232 combine_movables (movables, nregs)
1233 struct movable *movables;
1234 int nregs;
1235 {
1236 register struct movable *m;
1237 char *matched_regs = (char *) alloca (nregs);
1238 enum machine_mode mode;
1239
1240 /* Regs that are set more than once are not allowed to match
1241 or be matched. I'm no longer sure why not. */
1242 /* Perhaps testing m->consec_sets would be more appropriate here? */
1243
1244 for (m = movables; m; m = m->next)
1245 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1246 {
1247 register struct movable *m1;
1248 int regno = m->regno;
1249
1250 bzero (matched_regs, nregs);
1251 matched_regs[regno] = 1;
1252
1253 for (m1 = movables; m1; m1 = m1->next)
1254 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1255 /* A reg used outside the loop mustn't be eliminated. */
1256 && !m1->global
1257 /* A reg used for zero-extending mustn't be eliminated. */
1258 && !m1->partial
1259 && (matched_regs[m1->regno]
1260 ||
1261 (
1262 /* Can combine regs with different modes loaded from the
1263 same constant only if the modes are the same or
1264 if both are integer modes with M wider or the same
1265 width as M1. The check for integer is redundant, but
1266 safe, since the only case of differing destination
1267 modes with equal sources is when both sources are
1268 VOIDmode, i.e., CONST_INT. */
1269 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1270 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1271 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1272 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1273 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1274 /* See if the source of M1 says it matches M. */
1275 && ((GET_CODE (m1->set_src) == REG
1276 && matched_regs[REGNO (m1->set_src)])
1277 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1278 movables))))
1279 && ((m->dependencies == m1->dependencies)
1280 || rtx_equal_p (m->dependencies, m1->dependencies)))
1281 {
1282 m->lifetime += m1->lifetime;
1283 m->savings += m1->savings;
1284 m1->done = 1;
1285 m1->match = m;
1286 matched_regs[m1->regno] = 1;
1287 }
1288 }
1289
1290 /* Now combine the regs used for zero-extension.
1291 This can be done for those not marked `global'
1292 provided their lives don't overlap. */
1293
1294 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1295 mode = GET_MODE_WIDER_MODE (mode))
1296 {
1297 register struct movable *m0 = 0;
1298
1299 /* Combine all the registers for extension from mode MODE.
1300 Don't combine any that are used outside this loop. */
1301 for (m = movables; m; m = m->next)
1302 if (m->partial && ! m->global
1303 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1304 {
1305 register struct movable *m1;
1306 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1307 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1308
1309 if (m0 == 0)
1310 {
1311 /* First one: don't check for overlap, just record it. */
1312 m0 = m;
1313 continue;
1314 }
1315
1316 /* Make sure they extend to the same mode.
1317 (Almost always true.) */
1318 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1319 continue;
1320
1321 /* We already have one: check for overlap with those
1322 already combined together. */
1323 for (m1 = movables; m1 != m; m1 = m1->next)
1324 if (m1 == m0 || (m1->partial && m1->match == m0))
1325 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1326 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1327 goto overlap;
1328
1329 /* No overlap: we can combine this with the others. */
1330 m0->lifetime += m->lifetime;
1331 m0->savings += m->savings;
1332 m->done = 1;
1333 m->match = m0;
1334
1335 overlap: ;
1336 }
1337 }
1338 }
1339 \f
1340 /* Return 1 if regs X and Y will become the same if moved. */
1341
1342 static int
1343 regs_match_p (x, y, movables)
1344 rtx x, y;
1345 struct movable *movables;
1346 {
1347 int xn = REGNO (x);
1348 int yn = REGNO (y);
1349 struct movable *mx, *my;
1350
1351 for (mx = movables; mx; mx = mx->next)
1352 if (mx->regno == xn)
1353 break;
1354
1355 for (my = movables; my; my = my->next)
1356 if (my->regno == yn)
1357 break;
1358
1359 return (mx && my
1360 && ((mx->match == my->match && mx->match != 0)
1361 || mx->match == my
1362 || mx == my->match));
1363 }
1364
1365 /* Return 1 if X and Y are identical-looking rtx's.
1366 This is the Lisp function EQUAL for rtx arguments.
1367
1368 If two registers are matching movables or a movable register and an
1369 equivalent constant, consider them equal. */
1370
1371 static int
1372 rtx_equal_for_loop_p (x, y, movables)
1373 rtx x, y;
1374 struct movable *movables;
1375 {
1376 register int i;
1377 register int j;
1378 register struct movable *m;
1379 register enum rtx_code code;
1380 register char *fmt;
1381
1382 if (x == y)
1383 return 1;
1384 if (x == 0 || y == 0)
1385 return 0;
1386
1387 code = GET_CODE (x);
1388
1389 /* If we have a register and a constant, they may sometimes be
1390 equal. */
1391 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1392 && CONSTANT_P (y))
1393 for (m = movables; m; m = m->next)
1394 if (m->move_insn && m->regno == REGNO (x)
1395 && rtx_equal_p (m->set_src, y))
1396 return 1;
1397
1398 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1399 && CONSTANT_P (x))
1400 for (m = movables; m; m = m->next)
1401 if (m->move_insn && m->regno == REGNO (y)
1402 && rtx_equal_p (m->set_src, x))
1403 return 1;
1404
1405 /* Otherwise, rtx's of different codes cannot be equal. */
1406 if (code != GET_CODE (y))
1407 return 0;
1408
1409 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1410 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1411
1412 if (GET_MODE (x) != GET_MODE (y))
1413 return 0;
1414
1415 /* These three types of rtx's can be compared nonrecursively. */
1416 if (code == REG)
1417 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1418
1419 if (code == LABEL_REF)
1420 return XEXP (x, 0) == XEXP (y, 0);
1421 if (code == SYMBOL_REF)
1422 return XSTR (x, 0) == XSTR (y, 0);
1423
1424 /* Compare the elements. If any pair of corresponding elements
1425 fail to match, return 0 for the whole things. */
1426
1427 fmt = GET_RTX_FORMAT (code);
1428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1429 {
1430 switch (fmt[i])
1431 {
1432 case 'w':
1433 if (XWINT (x, i) != XWINT (y, i))
1434 return 0;
1435 break;
1436
1437 case 'i':
1438 if (XINT (x, i) != XINT (y, i))
1439 return 0;
1440 break;
1441
1442 case 'E':
1443 /* Two vectors must have the same length. */
1444 if (XVECLEN (x, i) != XVECLEN (y, i))
1445 return 0;
1446
1447 /* And the corresponding elements must match. */
1448 for (j = 0; j < XVECLEN (x, i); j++)
1449 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1450 return 0;
1451 break;
1452
1453 case 'e':
1454 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1455 return 0;
1456 break;
1457
1458 case 's':
1459 if (strcmp (XSTR (x, i), XSTR (y, i)))
1460 return 0;
1461 break;
1462
1463 case 'u':
1464 /* These are just backpointers, so they don't matter. */
1465 break;
1466
1467 case '0':
1468 break;
1469
1470 /* It is believed that rtx's at this level will never
1471 contain anything but integers and other rtx's,
1472 except for within LABEL_REFs and SYMBOL_REFs. */
1473 default:
1474 abort ();
1475 }
1476 }
1477 return 1;
1478 }
1479 \f
1480 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1481 insns in INSNS which use thet reference. */
1482
1483 static void
1484 add_label_notes (x, insns)
1485 rtx x;
1486 rtx insns;
1487 {
1488 enum rtx_code code = GET_CODE (x);
1489 int i, j;
1490 char *fmt;
1491 rtx insn;
1492
1493 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1494 {
1495 rtx next = next_real_insn (XEXP (x, 0));
1496
1497 /* Don't record labels that refer to dispatch tables.
1498 This is not necessary, since the tablejump references the same label.
1499 And if we did record them, flow.c would make worse code. */
1500 if (next == 0
1501 || ! (GET_CODE (next) == JUMP_INSN
1502 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1503 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1504 {
1505 for (insn = insns; insn; insn = NEXT_INSN (insn))
1506 if (reg_mentioned_p (XEXP (x, 0), insn))
1507 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1508 REG_NOTES (insn));
1509 }
1510 return;
1511 }
1512
1513 fmt = GET_RTX_FORMAT (code);
1514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1515 {
1516 if (fmt[i] == 'e')
1517 add_label_notes (XEXP (x, i), insns);
1518 else if (fmt[i] == 'E')
1519 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1520 add_label_notes (XVECEXP (x, i, j), insns);
1521 }
1522 }
1523 \f
1524 /* Scan MOVABLES, and move the insns that deserve to be moved.
1525 If two matching movables are combined, replace one reg with the
1526 other throughout. */
1527
1528 static void
1529 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1530 struct movable *movables;
1531 int threshold;
1532 int insn_count;
1533 rtx loop_start;
1534 rtx end;
1535 int nregs;
1536 {
1537 rtx new_start = 0;
1538 register struct movable *m;
1539 register rtx p;
1540 /* Map of pseudo-register replacements to handle combining
1541 when we move several insns that load the same value
1542 into different pseudo-registers. */
1543 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1544 char *already_moved = (char *) alloca (nregs);
1545
1546 bzero (already_moved, nregs);
1547 bzero ((char *) reg_map, nregs * sizeof (rtx));
1548
1549 num_movables = 0;
1550
1551 for (m = movables; m; m = m->next)
1552 {
1553 /* Describe this movable insn. */
1554
1555 if (loop_dump_stream)
1556 {
1557 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1558 INSN_UID (m->insn), m->regno, m->lifetime);
1559 if (m->consec > 0)
1560 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1561 if (m->cond)
1562 fprintf (loop_dump_stream, "cond ");
1563 if (m->force)
1564 fprintf (loop_dump_stream, "force ");
1565 if (m->global)
1566 fprintf (loop_dump_stream, "global ");
1567 if (m->done)
1568 fprintf (loop_dump_stream, "done ");
1569 if (m->move_insn)
1570 fprintf (loop_dump_stream, "move-insn ");
1571 if (m->match)
1572 fprintf (loop_dump_stream, "matches %d ",
1573 INSN_UID (m->match->insn));
1574 if (m->forces)
1575 fprintf (loop_dump_stream, "forces %d ",
1576 INSN_UID (m->forces->insn));
1577 }
1578
1579 /* Count movables. Value used in heuristics in strength_reduce. */
1580 num_movables++;
1581
1582 /* Ignore the insn if it's already done (it matched something else).
1583 Otherwise, see if it is now safe to move. */
1584
1585 if (!m->done
1586 && (! m->cond
1587 || (1 == invariant_p (m->set_src)
1588 && (m->dependencies == 0
1589 || 1 == invariant_p (m->dependencies))
1590 && (m->consec == 0
1591 || 1 == consec_sets_invariant_p (m->set_dest,
1592 m->consec + 1,
1593 m->insn))))
1594 && (! m->forces || m->forces->done))
1595 {
1596 register int regno;
1597 register rtx p;
1598 int savings = m->savings;
1599
1600 /* We have an insn that is safe to move.
1601 Compute its desirability. */
1602
1603 p = m->insn;
1604 regno = m->regno;
1605
1606 if (loop_dump_stream)
1607 fprintf (loop_dump_stream, "savings %d ", savings);
1608
1609 if (moved_once[regno])
1610 {
1611 insn_count *= 2;
1612
1613 if (loop_dump_stream)
1614 fprintf (loop_dump_stream, "halved since already moved ");
1615 }
1616
1617 /* An insn MUST be moved if we already moved something else
1618 which is safe only if this one is moved too: that is,
1619 if already_moved[REGNO] is nonzero. */
1620
1621 /* An insn is desirable to move if the new lifetime of the
1622 register is no more than THRESHOLD times the old lifetime.
1623 If it's not desirable, it means the loop is so big
1624 that moving won't speed things up much,
1625 and it is liable to make register usage worse. */
1626
1627 /* It is also desirable to move if it can be moved at no
1628 extra cost because something else was already moved. */
1629
1630 if (already_moved[regno]
1631 || (threshold * savings * m->lifetime) >= insn_count
1632 || (m->forces && m->forces->done
1633 && n_times_used[m->forces->regno] == 1))
1634 {
1635 int count;
1636 register struct movable *m1;
1637 rtx first;
1638
1639 /* Now move the insns that set the reg. */
1640
1641 if (m->partial && m->match)
1642 {
1643 rtx newpat, i1;
1644 rtx r1, r2;
1645 /* Find the end of this chain of matching regs.
1646 Thus, we load each reg in the chain from that one reg.
1647 And that reg is loaded with 0 directly,
1648 since it has ->match == 0. */
1649 for (m1 = m; m1->match; m1 = m1->match);
1650 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1651 SET_DEST (PATTERN (m1->insn)));
1652 i1 = emit_insn_before (newpat, loop_start);
1653
1654 /* Mark the moved, invariant reg as being allowed to
1655 share a hard reg with the other matching invariant. */
1656 REG_NOTES (i1) = REG_NOTES (m->insn);
1657 r1 = SET_DEST (PATTERN (m->insn));
1658 r2 = SET_DEST (PATTERN (m1->insn));
1659 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1660 gen_rtx (EXPR_LIST, VOIDmode, r2,
1661 regs_may_share));
1662 delete_insn (m->insn);
1663
1664 if (new_start == 0)
1665 new_start = i1;
1666
1667 if (loop_dump_stream)
1668 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1669 }
1670 /* If we are to re-generate the item being moved with a
1671 new move insn, first delete what we have and then emit
1672 the move insn before the loop. */
1673 else if (m->move_insn)
1674 {
1675 rtx i1, temp;
1676
1677 for (count = m->consec; count >= 0; count--)
1678 {
1679 /* If this is the first insn of a library call sequence,
1680 skip to the end. */
1681 if (GET_CODE (p) != NOTE
1682 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1683 p = XEXP (temp, 0);
1684
1685 /* If this is the last insn of a libcall sequence, then
1686 delete every insn in the sequence except the last.
1687 The last insn is handled in the normal manner. */
1688 if (GET_CODE (p) != NOTE
1689 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1690 {
1691 temp = XEXP (temp, 0);
1692 while (temp != p)
1693 temp = delete_insn (temp);
1694 }
1695
1696 p = delete_insn (p);
1697 while (p && GET_CODE (p) == NOTE)
1698 p = NEXT_INSN (p);
1699 }
1700
1701 start_sequence ();
1702 emit_move_insn (m->set_dest, m->set_src);
1703 temp = get_insns ();
1704 end_sequence ();
1705
1706 add_label_notes (m->set_src, temp);
1707
1708 i1 = emit_insns_before (temp, loop_start);
1709 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1710 REG_NOTES (i1)
1711 = gen_rtx (EXPR_LIST,
1712 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1713 m->set_src, REG_NOTES (i1));
1714
1715 if (loop_dump_stream)
1716 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1717
1718 /* The more regs we move, the less we like moving them. */
1719 threshold -= 3;
1720 }
1721 else
1722 {
1723 for (count = m->consec; count >= 0; count--)
1724 {
1725 rtx i1, temp;
1726
1727 /* If first insn of libcall sequence, skip to end. */
1728 /* Do this at start of loop, since p is guaranteed to
1729 be an insn here. */
1730 if (GET_CODE (p) != NOTE
1731 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1732 p = XEXP (temp, 0);
1733
1734 /* If last insn of libcall sequence, move all
1735 insns except the last before the loop. The last
1736 insn is handled in the normal manner. */
1737 if (GET_CODE (p) != NOTE
1738 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1739 {
1740 rtx fn_address = 0;
1741 rtx fn_reg = 0;
1742 rtx fn_address_insn = 0;
1743
1744 first = 0;
1745 for (temp = XEXP (temp, 0); temp != p;
1746 temp = NEXT_INSN (temp))
1747 {
1748 rtx body;
1749 rtx n;
1750 rtx next;
1751
1752 if (GET_CODE (temp) == NOTE)
1753 continue;
1754
1755 body = PATTERN (temp);
1756
1757 /* Find the next insn after TEMP,
1758 not counting USE or NOTE insns. */
1759 for (next = NEXT_INSN (temp); next != p;
1760 next = NEXT_INSN (next))
1761 if (! (GET_CODE (next) == INSN
1762 && GET_CODE (PATTERN (next)) == USE)
1763 && GET_CODE (next) != NOTE)
1764 break;
1765
1766 /* If that is the call, this may be the insn
1767 that loads the function address.
1768
1769 Extract the function address from the insn
1770 that loads it into a register.
1771 If this insn was cse'd, we get incorrect code.
1772
1773 So emit a new move insn that copies the
1774 function address into the register that the
1775 call insn will use. flow.c will delete any
1776 redundant stores that we have created. */
1777 if (GET_CODE (next) == CALL_INSN
1778 && GET_CODE (body) == SET
1779 && GET_CODE (SET_DEST (body)) == REG
1780 && (n = find_reg_note (temp, REG_EQUAL,
1781 NULL_RTX)))
1782 {
1783 fn_reg = SET_SRC (body);
1784 if (GET_CODE (fn_reg) != REG)
1785 fn_reg = SET_DEST (body);
1786 fn_address = XEXP (n, 0);
1787 fn_address_insn = temp;
1788 }
1789 /* We have the call insn.
1790 If it uses the register we suspect it might,
1791 load it with the correct address directly. */
1792 if (GET_CODE (temp) == CALL_INSN
1793 && fn_address != 0
1794 && reg_referenced_p (fn_reg, body))
1795 emit_insn_after (gen_move_insn (fn_reg,
1796 fn_address),
1797 fn_address_insn);
1798
1799 if (GET_CODE (temp) == CALL_INSN)
1800 {
1801 i1 = emit_call_insn_before (body, loop_start);
1802 /* Because the USAGE information potentially
1803 contains objects other than hard registers
1804 we need to copy it. */
1805 if (CALL_INSN_FUNCTION_USAGE (temp))
1806 CALL_INSN_FUNCTION_USAGE (i1)
1807 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1808 }
1809 else
1810 i1 = emit_insn_before (body, loop_start);
1811 if (first == 0)
1812 first = i1;
1813 if (temp == fn_address_insn)
1814 fn_address_insn = i1;
1815 REG_NOTES (i1) = REG_NOTES (temp);
1816 delete_insn (temp);
1817 }
1818 }
1819 if (m->savemode != VOIDmode)
1820 {
1821 /* P sets REG to zero; but we should clear only
1822 the bits that are not covered by the mode
1823 m->savemode. */
1824 rtx reg = m->set_dest;
1825 rtx sequence;
1826 rtx tem;
1827
1828 start_sequence ();
1829 tem = expand_binop
1830 (GET_MODE (reg), and_optab, reg,
1831 GEN_INT ((((HOST_WIDE_INT) 1
1832 << GET_MODE_BITSIZE (m->savemode)))
1833 - 1),
1834 reg, 1, OPTAB_LIB_WIDEN);
1835 if (tem == 0)
1836 abort ();
1837 if (tem != reg)
1838 emit_move_insn (reg, tem);
1839 sequence = gen_sequence ();
1840 end_sequence ();
1841 i1 = emit_insn_before (sequence, loop_start);
1842 }
1843 else if (GET_CODE (p) == CALL_INSN)
1844 {
1845 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1846 /* Because the USAGE information potentially
1847 contains objects other than hard registers
1848 we need to copy it. */
1849 if (CALL_INSN_FUNCTION_USAGE (p))
1850 CALL_INSN_FUNCTION_USAGE (i1)
1851 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1852 }
1853 else
1854 i1 = emit_insn_before (PATTERN (p), loop_start);
1855
1856 REG_NOTES (i1) = REG_NOTES (p);
1857
1858 /* If there is a REG_EQUAL note present whose value is
1859 not loop invariant, then delete it, since it may
1860 cause problems with later optimization passes.
1861 It is possible for cse to create such notes
1862 like this as a result of record_jump_cond. */
1863
1864 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1865 && ! invariant_p (XEXP (temp, 0)))
1866 remove_note (i1, temp);
1867
1868 if (new_start == 0)
1869 new_start = i1;
1870
1871 if (loop_dump_stream)
1872 fprintf (loop_dump_stream, " moved to %d",
1873 INSN_UID (i1));
1874
1875 #if 0
1876 /* This isn't needed because REG_NOTES is copied
1877 below and is wrong since P might be a PARALLEL. */
1878 if (REG_NOTES (i1) == 0
1879 && ! m->partial /* But not if it's a zero-extend clr. */
1880 && ! m->global /* and not if used outside the loop
1881 (since it might get set outside). */
1882 && CONSTANT_P (SET_SRC (PATTERN (p))))
1883 REG_NOTES (i1)
1884 = gen_rtx (EXPR_LIST, REG_EQUAL,
1885 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1886 #endif
1887
1888 /* If library call, now fix the REG_NOTES that contain
1889 insn pointers, namely REG_LIBCALL on FIRST
1890 and REG_RETVAL on I1. */
1891 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1892 {
1893 XEXP (temp, 0) = first;
1894 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1895 XEXP (temp, 0) = i1;
1896 }
1897
1898 delete_insn (p);
1899 do p = NEXT_INSN (p);
1900 while (p && GET_CODE (p) == NOTE);
1901 }
1902
1903 /* The more regs we move, the less we like moving them. */
1904 threshold -= 3;
1905 }
1906
1907 /* Any other movable that loads the same register
1908 MUST be moved. */
1909 already_moved[regno] = 1;
1910
1911 /* This reg has been moved out of one loop. */
1912 moved_once[regno] = 1;
1913
1914 /* The reg set here is now invariant. */
1915 if (! m->partial)
1916 n_times_set[regno] = 0;
1917
1918 m->done = 1;
1919
1920 /* Change the length-of-life info for the register
1921 to say it lives at least the full length of this loop.
1922 This will help guide optimizations in outer loops. */
1923
1924 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
1925 /* This is the old insn before all the moved insns.
1926 We can't use the moved insn because it is out of range
1927 in uid_luid. Only the old insns have luids. */
1928 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
1929 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
1930 REGNO_LAST_UID (regno) = INSN_UID (end);
1931
1932 /* Combine with this moved insn any other matching movables. */
1933
1934 if (! m->partial)
1935 for (m1 = movables; m1; m1 = m1->next)
1936 if (m1->match == m)
1937 {
1938 rtx temp;
1939
1940 /* Schedule the reg loaded by M1
1941 for replacement so that shares the reg of M.
1942 If the modes differ (only possible in restricted
1943 circumstances, make a SUBREG. */
1944 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1945 reg_map[m1->regno] = m->set_dest;
1946 else
1947 reg_map[m1->regno]
1948 = gen_lowpart_common (GET_MODE (m1->set_dest),
1949 m->set_dest);
1950
1951 /* Get rid of the matching insn
1952 and prevent further processing of it. */
1953 m1->done = 1;
1954
1955 /* if library call, delete all insn except last, which
1956 is deleted below */
1957 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1958 NULL_RTX))
1959 {
1960 for (temp = XEXP (temp, 0); temp != m1->insn;
1961 temp = NEXT_INSN (temp))
1962 delete_insn (temp);
1963 }
1964 delete_insn (m1->insn);
1965
1966 /* Any other movable that loads the same register
1967 MUST be moved. */
1968 already_moved[m1->regno] = 1;
1969
1970 /* The reg merged here is now invariant,
1971 if the reg it matches is invariant. */
1972 if (! m->partial)
1973 n_times_set[m1->regno] = 0;
1974 }
1975 }
1976 else if (loop_dump_stream)
1977 fprintf (loop_dump_stream, "not desirable");
1978 }
1979 else if (loop_dump_stream && !m->match)
1980 fprintf (loop_dump_stream, "not safe");
1981
1982 if (loop_dump_stream)
1983 fprintf (loop_dump_stream, "\n");
1984 }
1985
1986 if (new_start == 0)
1987 new_start = loop_start;
1988
1989 /* Go through all the instructions in the loop, making
1990 all the register substitutions scheduled in REG_MAP. */
1991 for (p = new_start; p != end; p = NEXT_INSN (p))
1992 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1993 || GET_CODE (p) == CALL_INSN)
1994 {
1995 replace_regs (PATTERN (p), reg_map, nregs, 0);
1996 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1997 INSN_CODE (p) = -1;
1998 }
1999 }
2000 \f
2001 #if 0
2002 /* Scan X and replace the address of any MEM in it with ADDR.
2003 REG is the address that MEM should have before the replacement. */
2004
2005 static void
2006 replace_call_address (x, reg, addr)
2007 rtx x, reg, addr;
2008 {
2009 register enum rtx_code code;
2010 register int i;
2011 register char *fmt;
2012
2013 if (x == 0)
2014 return;
2015 code = GET_CODE (x);
2016 switch (code)
2017 {
2018 case PC:
2019 case CC0:
2020 case CONST_INT:
2021 case CONST_DOUBLE:
2022 case CONST:
2023 case SYMBOL_REF:
2024 case LABEL_REF:
2025 case REG:
2026 return;
2027
2028 case SET:
2029 /* Short cut for very common case. */
2030 replace_call_address (XEXP (x, 1), reg, addr);
2031 return;
2032
2033 case CALL:
2034 /* Short cut for very common case. */
2035 replace_call_address (XEXP (x, 0), reg, addr);
2036 return;
2037
2038 case MEM:
2039 /* If this MEM uses a reg other than the one we expected,
2040 something is wrong. */
2041 if (XEXP (x, 0) != reg)
2042 abort ();
2043 XEXP (x, 0) = addr;
2044 return;
2045 }
2046
2047 fmt = GET_RTX_FORMAT (code);
2048 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2049 {
2050 if (fmt[i] == 'e')
2051 replace_call_address (XEXP (x, i), reg, addr);
2052 if (fmt[i] == 'E')
2053 {
2054 register int j;
2055 for (j = 0; j < XVECLEN (x, i); j++)
2056 replace_call_address (XVECEXP (x, i, j), reg, addr);
2057 }
2058 }
2059 }
2060 #endif
2061 \f
2062 /* Return the number of memory refs to addresses that vary
2063 in the rtx X. */
2064
2065 static int
2066 count_nonfixed_reads (x)
2067 rtx x;
2068 {
2069 register enum rtx_code code;
2070 register int i;
2071 register char *fmt;
2072 int value;
2073
2074 if (x == 0)
2075 return 0;
2076
2077 code = GET_CODE (x);
2078 switch (code)
2079 {
2080 case PC:
2081 case CC0:
2082 case CONST_INT:
2083 case CONST_DOUBLE:
2084 case CONST:
2085 case SYMBOL_REF:
2086 case LABEL_REF:
2087 case REG:
2088 return 0;
2089
2090 case MEM:
2091 return ((invariant_p (XEXP (x, 0)) != 1)
2092 + count_nonfixed_reads (XEXP (x, 0)));
2093 }
2094
2095 value = 0;
2096 fmt = GET_RTX_FORMAT (code);
2097 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2098 {
2099 if (fmt[i] == 'e')
2100 value += count_nonfixed_reads (XEXP (x, i));
2101 if (fmt[i] == 'E')
2102 {
2103 register int j;
2104 for (j = 0; j < XVECLEN (x, i); j++)
2105 value += count_nonfixed_reads (XVECEXP (x, i, j));
2106 }
2107 }
2108 return value;
2109 }
2110
2111 \f
2112 #if 0
2113 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2114 Replace it with an instruction to load just the low bytes
2115 if the machine supports such an instruction,
2116 and insert above LOOP_START an instruction to clear the register. */
2117
2118 static void
2119 constant_high_bytes (p, loop_start)
2120 rtx p, loop_start;
2121 {
2122 register rtx new;
2123 register int insn_code_number;
2124
2125 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2126 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2127
2128 new = gen_rtx (SET, VOIDmode,
2129 gen_rtx (STRICT_LOW_PART, VOIDmode,
2130 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2131 SET_DEST (PATTERN (p)),
2132 0)),
2133 XEXP (SET_SRC (PATTERN (p)), 0));
2134 insn_code_number = recog (new, p);
2135
2136 if (insn_code_number)
2137 {
2138 register int i;
2139
2140 /* Clear destination register before the loop. */
2141 emit_insn_before (gen_rtx (SET, VOIDmode,
2142 SET_DEST (PATTERN (p)),
2143 const0_rtx),
2144 loop_start);
2145
2146 /* Inside the loop, just load the low part. */
2147 PATTERN (p) = new;
2148 }
2149 }
2150 #endif
2151 \f
2152 /* Scan a loop setting the variables `unknown_address_altered',
2153 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2154 and `loop_has_volatile'.
2155 Also, fill in the array `loop_store_mems'. */
2156
2157 static void
2158 prescan_loop (start, end)
2159 rtx start, end;
2160 {
2161 register int level = 1;
2162 register rtx insn;
2163
2164 unknown_address_altered = 0;
2165 loop_has_call = 0;
2166 loop_has_volatile = 0;
2167 loop_store_mems_idx = 0;
2168
2169 num_mem_sets = 0;
2170 loops_enclosed = 1;
2171 loop_continue = 0;
2172
2173 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2174 insn = NEXT_INSN (insn))
2175 {
2176 if (GET_CODE (insn) == NOTE)
2177 {
2178 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2179 {
2180 ++level;
2181 /* Count number of loops contained in this one. */
2182 loops_enclosed++;
2183 }
2184 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2185 {
2186 --level;
2187 if (level == 0)
2188 {
2189 end = insn;
2190 break;
2191 }
2192 }
2193 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2194 {
2195 if (level == 1)
2196 loop_continue = insn;
2197 }
2198 }
2199 else if (GET_CODE (insn) == CALL_INSN)
2200 {
2201 if (! CONST_CALL_P (insn))
2202 unknown_address_altered = 1;
2203 loop_has_call = 1;
2204 }
2205 else
2206 {
2207 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2208 {
2209 if (volatile_refs_p (PATTERN (insn)))
2210 loop_has_volatile = 1;
2211
2212 note_stores (PATTERN (insn), note_addr_stored);
2213 }
2214 }
2215 }
2216 }
2217 \f
2218 /* Scan the function looking for loops. Record the start and end of each loop.
2219 Also mark as invalid loops any loops that contain a setjmp or are branched
2220 to from outside the loop. */
2221
2222 static void
2223 find_and_verify_loops (f)
2224 rtx f;
2225 {
2226 rtx insn, label;
2227 int current_loop = -1;
2228 int next_loop = -1;
2229 int loop;
2230
2231 /* If there are jumps to undefined labels,
2232 treat them as jumps out of any/all loops.
2233 This also avoids writing past end of tables when there are no loops. */
2234 uid_loop_num[0] = -1;
2235
2236 /* Find boundaries of loops, mark which loops are contained within
2237 loops, and invalidate loops that have setjmp. */
2238
2239 for (insn = f; insn; insn = NEXT_INSN (insn))
2240 {
2241 if (GET_CODE (insn) == NOTE)
2242 switch (NOTE_LINE_NUMBER (insn))
2243 {
2244 case NOTE_INSN_LOOP_BEG:
2245 loop_number_loop_starts[++next_loop] = insn;
2246 loop_number_loop_ends[next_loop] = 0;
2247 loop_outer_loop[next_loop] = current_loop;
2248 loop_invalid[next_loop] = 0;
2249 loop_number_exit_labels[next_loop] = 0;
2250 loop_number_exit_count[next_loop] = 0;
2251 current_loop = next_loop;
2252 break;
2253
2254 case NOTE_INSN_SETJMP:
2255 /* In this case, we must invalidate our current loop and any
2256 enclosing loop. */
2257 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2258 {
2259 loop_invalid[loop] = 1;
2260 if (loop_dump_stream)
2261 fprintf (loop_dump_stream,
2262 "\nLoop at %d ignored due to setjmp.\n",
2263 INSN_UID (loop_number_loop_starts[loop]));
2264 }
2265 break;
2266
2267 case NOTE_INSN_LOOP_END:
2268 if (current_loop == -1)
2269 abort ();
2270
2271 loop_number_loop_ends[current_loop] = insn;
2272 current_loop = loop_outer_loop[current_loop];
2273 break;
2274
2275 }
2276
2277 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2278 enclosing loop, but this doesn't matter. */
2279 uid_loop_num[INSN_UID (insn)] = current_loop;
2280 }
2281
2282 /* Any loop containing a label used in an initializer must be invalidated,
2283 because it can be jumped into from anywhere. */
2284
2285 for (label = forced_labels; label; label = XEXP (label, 1))
2286 {
2287 int loop_num;
2288
2289 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2290 loop_num != -1;
2291 loop_num = loop_outer_loop[loop_num])
2292 loop_invalid[loop_num] = 1;
2293 }
2294
2295 /* Any loop containing a label used for an exception handler must be
2296 invalidated, because it can be jumped into from anywhere. */
2297
2298 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2299 {
2300 int loop_num;
2301
2302 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2303 loop_num != -1;
2304 loop_num = loop_outer_loop[loop_num])
2305 loop_invalid[loop_num] = 1;
2306 }
2307
2308 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2309 loop that it is not contained within, that loop is marked invalid.
2310 If any INSN or CALL_INSN uses a label's address, then the loop containing
2311 that label is marked invalid, because it could be jumped into from
2312 anywhere.
2313
2314 Also look for blocks of code ending in an unconditional branch that
2315 exits the loop. If such a block is surrounded by a conditional
2316 branch around the block, move the block elsewhere (see below) and
2317 invert the jump to point to the code block. This may eliminate a
2318 label in our loop and will simplify processing by both us and a
2319 possible second cse pass. */
2320
2321 for (insn = f; insn; insn = NEXT_INSN (insn))
2322 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2323 {
2324 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2325
2326 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2327 {
2328 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2329 if (note)
2330 {
2331 int loop_num;
2332
2333 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2334 loop_num != -1;
2335 loop_num = loop_outer_loop[loop_num])
2336 loop_invalid[loop_num] = 1;
2337 }
2338 }
2339
2340 if (GET_CODE (insn) != JUMP_INSN)
2341 continue;
2342
2343 mark_loop_jump (PATTERN (insn), this_loop_num);
2344
2345 /* See if this is an unconditional branch outside the loop. */
2346 if (this_loop_num != -1
2347 && (GET_CODE (PATTERN (insn)) == RETURN
2348 || (simplejump_p (insn)
2349 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2350 != this_loop_num)))
2351 && get_max_uid () < max_uid_for_loop)
2352 {
2353 rtx p;
2354 rtx our_next = next_real_insn (insn);
2355 int dest_loop;
2356 int outer_loop = -1;
2357
2358 /* Go backwards until we reach the start of the loop, a label,
2359 or a JUMP_INSN. */
2360 for (p = PREV_INSN (insn);
2361 GET_CODE (p) != CODE_LABEL
2362 && ! (GET_CODE (p) == NOTE
2363 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2364 && GET_CODE (p) != JUMP_INSN;
2365 p = PREV_INSN (p))
2366 ;
2367
2368 /* Check for the case where we have a jump to an inner nested
2369 loop, and do not perform the optimization in that case. */
2370
2371 if (JUMP_LABEL (insn))
2372 {
2373 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2374 if (dest_loop != -1)
2375 {
2376 for (outer_loop = dest_loop; outer_loop != -1;
2377 outer_loop = loop_outer_loop[outer_loop])
2378 if (outer_loop == this_loop_num)
2379 break;
2380 }
2381 }
2382
2383 /* Make sure that the target of P is within the current loop. */
2384
2385 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2386 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2387 outer_loop = this_loop_num;
2388
2389 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2390 we have a block of code to try to move.
2391
2392 We look backward and then forward from the target of INSN
2393 to find a BARRIER at the same loop depth as the target.
2394 If we find such a BARRIER, we make a new label for the start
2395 of the block, invert the jump in P and point it to that label,
2396 and move the block of code to the spot we found. */
2397
2398 if (outer_loop == -1
2399 && GET_CODE (p) == JUMP_INSN
2400 && JUMP_LABEL (p) != 0
2401 /* Just ignore jumps to labels that were never emitted.
2402 These always indicate compilation errors. */
2403 && INSN_UID (JUMP_LABEL (p)) != 0
2404 && condjump_p (p)
2405 && ! simplejump_p (p)
2406 && next_real_insn (JUMP_LABEL (p)) == our_next)
2407 {
2408 rtx target
2409 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2410 int target_loop_num = uid_loop_num[INSN_UID (target)];
2411 rtx loc;
2412
2413 for (loc = target; loc; loc = PREV_INSN (loc))
2414 if (GET_CODE (loc) == BARRIER
2415 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2416 break;
2417
2418 if (loc == 0)
2419 for (loc = target; loc; loc = NEXT_INSN (loc))
2420 if (GET_CODE (loc) == BARRIER
2421 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2422 break;
2423
2424 if (loc)
2425 {
2426 rtx cond_label = JUMP_LABEL (p);
2427 rtx new_label = get_label_after (p);
2428
2429 /* Ensure our label doesn't go away. */
2430 LABEL_NUSES (cond_label)++;
2431
2432 /* Verify that uid_loop_num is large enough and that
2433 we can invert P. */
2434 if (invert_jump (p, new_label))
2435 {
2436 rtx q, r;
2437
2438 /* Include the BARRIER after INSN and copy the
2439 block after LOC. */
2440 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2441 reorder_insns (new_label, NEXT_INSN (insn), loc);
2442
2443 /* All those insns are now in TARGET_LOOP_NUM. */
2444 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2445 q = NEXT_INSN (q))
2446 uid_loop_num[INSN_UID (q)] = target_loop_num;
2447
2448 /* The label jumped to by INSN is no longer a loop exit.
2449 Unless INSN does not have a label (e.g., it is a
2450 RETURN insn), search loop_number_exit_labels to find
2451 its label_ref, and remove it. Also turn off
2452 LABEL_OUTSIDE_LOOP_P bit. */
2453 if (JUMP_LABEL (insn))
2454 {
2455 int loop_num;
2456
2457 for (q = 0,
2458 r = loop_number_exit_labels[this_loop_num];
2459 r; q = r, r = LABEL_NEXTREF (r))
2460 if (XEXP (r, 0) == JUMP_LABEL (insn))
2461 {
2462 LABEL_OUTSIDE_LOOP_P (r) = 0;
2463 if (q)
2464 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2465 else
2466 loop_number_exit_labels[this_loop_num]
2467 = LABEL_NEXTREF (r);
2468 break;
2469 }
2470
2471 for (loop_num = this_loop_num;
2472 loop_num != -1 && loop_num != target_loop_num;
2473 loop_num = loop_outer_loop[loop_num])
2474 loop_number_exit_count[loop_num]--;
2475
2476 /* If we didn't find it, then something is wrong. */
2477 if (! r)
2478 abort ();
2479 }
2480
2481 /* P is now a jump outside the loop, so it must be put
2482 in loop_number_exit_labels, and marked as such.
2483 The easiest way to do this is to just call
2484 mark_loop_jump again for P. */
2485 mark_loop_jump (PATTERN (p), this_loop_num);
2486
2487 /* If INSN now jumps to the insn after it,
2488 delete INSN. */
2489 if (JUMP_LABEL (insn) != 0
2490 && (next_real_insn (JUMP_LABEL (insn))
2491 == next_real_insn (insn)))
2492 delete_insn (insn);
2493 }
2494
2495 /* Continue the loop after where the conditional
2496 branch used to jump, since the only branch insn
2497 in the block (if it still remains) is an inter-loop
2498 branch and hence needs no processing. */
2499 insn = NEXT_INSN (cond_label);
2500
2501 if (--LABEL_NUSES (cond_label) == 0)
2502 delete_insn (cond_label);
2503
2504 /* This loop will be continued with NEXT_INSN (insn). */
2505 insn = PREV_INSN (insn);
2506 }
2507 }
2508 }
2509 }
2510 }
2511
2512 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2513 loops it is contained in, mark the target loop invalid.
2514
2515 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2516
2517 static void
2518 mark_loop_jump (x, loop_num)
2519 rtx x;
2520 int loop_num;
2521 {
2522 int dest_loop;
2523 int outer_loop;
2524 int i;
2525
2526 switch (GET_CODE (x))
2527 {
2528 case PC:
2529 case USE:
2530 case CLOBBER:
2531 case REG:
2532 case MEM:
2533 case CONST_INT:
2534 case CONST_DOUBLE:
2535 case RETURN:
2536 return;
2537
2538 case CONST:
2539 /* There could be a label reference in here. */
2540 mark_loop_jump (XEXP (x, 0), loop_num);
2541 return;
2542
2543 case PLUS:
2544 case MINUS:
2545 case MULT:
2546 mark_loop_jump (XEXP (x, 0), loop_num);
2547 mark_loop_jump (XEXP (x, 1), loop_num);
2548 return;
2549
2550 case SIGN_EXTEND:
2551 case ZERO_EXTEND:
2552 mark_loop_jump (XEXP (x, 0), loop_num);
2553 return;
2554
2555 case LABEL_REF:
2556 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2557
2558 /* Link together all labels that branch outside the loop. This
2559 is used by final_[bg]iv_value and the loop unrolling code. Also
2560 mark this LABEL_REF so we know that this branch should predict
2561 false. */
2562
2563 /* A check to make sure the label is not in an inner nested loop,
2564 since this does not count as a loop exit. */
2565 if (dest_loop != -1)
2566 {
2567 for (outer_loop = dest_loop; outer_loop != -1;
2568 outer_loop = loop_outer_loop[outer_loop])
2569 if (outer_loop == loop_num)
2570 break;
2571 }
2572 else
2573 outer_loop = -1;
2574
2575 if (loop_num != -1 && outer_loop == -1)
2576 {
2577 LABEL_OUTSIDE_LOOP_P (x) = 1;
2578 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2579 loop_number_exit_labels[loop_num] = x;
2580
2581 for (outer_loop = loop_num;
2582 outer_loop != -1 && outer_loop != dest_loop;
2583 outer_loop = loop_outer_loop[outer_loop])
2584 loop_number_exit_count[outer_loop]++;
2585 }
2586
2587 /* If this is inside a loop, but not in the current loop or one enclosed
2588 by it, it invalidates at least one loop. */
2589
2590 if (dest_loop == -1)
2591 return;
2592
2593 /* We must invalidate every nested loop containing the target of this
2594 label, except those that also contain the jump insn. */
2595
2596 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2597 {
2598 /* Stop when we reach a loop that also contains the jump insn. */
2599 for (outer_loop = loop_num; outer_loop != -1;
2600 outer_loop = loop_outer_loop[outer_loop])
2601 if (dest_loop == outer_loop)
2602 return;
2603
2604 /* If we get here, we know we need to invalidate a loop. */
2605 if (loop_dump_stream && ! loop_invalid[dest_loop])
2606 fprintf (loop_dump_stream,
2607 "\nLoop at %d ignored due to multiple entry points.\n",
2608 INSN_UID (loop_number_loop_starts[dest_loop]));
2609
2610 loop_invalid[dest_loop] = 1;
2611 }
2612 return;
2613
2614 case SET:
2615 /* If this is not setting pc, ignore. */
2616 if (SET_DEST (x) == pc_rtx)
2617 mark_loop_jump (SET_SRC (x), loop_num);
2618 return;
2619
2620 case IF_THEN_ELSE:
2621 mark_loop_jump (XEXP (x, 1), loop_num);
2622 mark_loop_jump (XEXP (x, 2), loop_num);
2623 return;
2624
2625 case PARALLEL:
2626 case ADDR_VEC:
2627 for (i = 0; i < XVECLEN (x, 0); i++)
2628 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2629 return;
2630
2631 case ADDR_DIFF_VEC:
2632 for (i = 0; i < XVECLEN (x, 1); i++)
2633 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2634 return;
2635
2636 default:
2637 /* Treat anything else (such as a symbol_ref)
2638 as a branch out of this loop, but not into any loop. */
2639
2640 if (loop_num != -1)
2641 {
2642 loop_number_exit_labels[loop_num] = x;
2643
2644 for (outer_loop = loop_num; outer_loop != -1;
2645 outer_loop = loop_outer_loop[outer_loop])
2646 loop_number_exit_count[outer_loop]++;
2647 }
2648 return;
2649 }
2650 }
2651 \f
2652 /* Return nonzero if there is a label in the range from
2653 insn INSN to and including the insn whose luid is END
2654 INSN must have an assigned luid (i.e., it must not have
2655 been previously created by loop.c). */
2656
2657 static int
2658 labels_in_range_p (insn, end)
2659 rtx insn;
2660 int end;
2661 {
2662 while (insn && INSN_LUID (insn) <= end)
2663 {
2664 if (GET_CODE (insn) == CODE_LABEL)
2665 return 1;
2666 insn = NEXT_INSN (insn);
2667 }
2668
2669 return 0;
2670 }
2671
2672 /* Record that a memory reference X is being set. */
2673
2674 static void
2675 note_addr_stored (x)
2676 rtx x;
2677 {
2678 register int i;
2679
2680 if (x == 0 || GET_CODE (x) != MEM)
2681 return;
2682
2683 /* Count number of memory writes.
2684 This affects heuristics in strength_reduce. */
2685 num_mem_sets++;
2686
2687 /* BLKmode MEM means all memory is clobbered. */
2688 if (GET_MODE (x) == BLKmode)
2689 unknown_address_altered = 1;
2690
2691 if (unknown_address_altered)
2692 return;
2693
2694 for (i = 0; i < loop_store_mems_idx; i++)
2695 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2696 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2697 {
2698 /* We are storing at the same address as previously noted. Save the
2699 wider reference. */
2700 if (GET_MODE_SIZE (GET_MODE (x))
2701 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2702 loop_store_mems[i] = x;
2703 break;
2704 }
2705
2706 if (i == NUM_STORES)
2707 unknown_address_altered = 1;
2708
2709 else if (i == loop_store_mems_idx)
2710 loop_store_mems[loop_store_mems_idx++] = x;
2711 }
2712 \f
2713 /* Return nonzero if the rtx X is invariant over the current loop.
2714
2715 The value is 2 if we refer to something only conditionally invariant.
2716
2717 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2718 Otherwise, a memory ref is invariant if it does not conflict with
2719 anything stored in `loop_store_mems'. */
2720
2721 int
2722 invariant_p (x)
2723 register rtx x;
2724 {
2725 register int i;
2726 register enum rtx_code code;
2727 register char *fmt;
2728 int conditional = 0;
2729
2730 if (x == 0)
2731 return 1;
2732 code = GET_CODE (x);
2733 switch (code)
2734 {
2735 case CONST_INT:
2736 case CONST_DOUBLE:
2737 case SYMBOL_REF:
2738 case CONST:
2739 return 1;
2740
2741 case LABEL_REF:
2742 /* A LABEL_REF is normally invariant, however, if we are unrolling
2743 loops, and this label is inside the loop, then it isn't invariant.
2744 This is because each unrolled copy of the loop body will have
2745 a copy of this label. If this was invariant, then an insn loading
2746 the address of this label into a register might get moved outside
2747 the loop, and then each loop body would end up using the same label.
2748
2749 We don't know the loop bounds here though, so just fail for all
2750 labels. */
2751 if (flag_unroll_loops)
2752 return 0;
2753 else
2754 return 1;
2755
2756 case PC:
2757 case CC0:
2758 case UNSPEC_VOLATILE:
2759 return 0;
2760
2761 case REG:
2762 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2763 since the reg might be set by initialization within the loop. */
2764
2765 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2766 || x == arg_pointer_rtx)
2767 && ! current_function_has_nonlocal_goto)
2768 return 1;
2769
2770 if (loop_has_call
2771 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2772 return 0;
2773
2774 if (n_times_set[REGNO (x)] < 0)
2775 return 2;
2776
2777 return n_times_set[REGNO (x)] == 0;
2778
2779 case MEM:
2780 /* Volatile memory references must be rejected. Do this before
2781 checking for read-only items, so that volatile read-only items
2782 will be rejected also. */
2783 if (MEM_VOLATILE_P (x))
2784 return 0;
2785
2786 /* Read-only items (such as constants in a constant pool) are
2787 invariant if their address is. */
2788 if (RTX_UNCHANGING_P (x))
2789 break;
2790
2791 /* If we filled the table (or had a subroutine call), any location
2792 in memory could have been clobbered. */
2793 if (unknown_address_altered)
2794 return 0;
2795
2796 /* See if there is any dependence between a store and this load. */
2797 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2798 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2799 return 0;
2800
2801 /* It's not invalidated by a store in memory
2802 but we must still verify the address is invariant. */
2803 break;
2804
2805 case ASM_OPERANDS:
2806 /* Don't mess with insns declared volatile. */
2807 if (MEM_VOLATILE_P (x))
2808 return 0;
2809 }
2810
2811 fmt = GET_RTX_FORMAT (code);
2812 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2813 {
2814 if (fmt[i] == 'e')
2815 {
2816 int tem = invariant_p (XEXP (x, i));
2817 if (tem == 0)
2818 return 0;
2819 if (tem == 2)
2820 conditional = 1;
2821 }
2822 else if (fmt[i] == 'E')
2823 {
2824 register int j;
2825 for (j = 0; j < XVECLEN (x, i); j++)
2826 {
2827 int tem = invariant_p (XVECEXP (x, i, j));
2828 if (tem == 0)
2829 return 0;
2830 if (tem == 2)
2831 conditional = 1;
2832 }
2833
2834 }
2835 }
2836
2837 return 1 + conditional;
2838 }
2839
2840 \f
2841 /* Return nonzero if all the insns in the loop that set REG
2842 are INSN and the immediately following insns,
2843 and if each of those insns sets REG in an invariant way
2844 (not counting uses of REG in them).
2845
2846 The value is 2 if some of these insns are only conditionally invariant.
2847
2848 We assume that INSN itself is the first set of REG
2849 and that its source is invariant. */
2850
2851 static int
2852 consec_sets_invariant_p (reg, n_sets, insn)
2853 int n_sets;
2854 rtx reg, insn;
2855 {
2856 register rtx p = insn;
2857 register int regno = REGNO (reg);
2858 rtx temp;
2859 /* Number of sets we have to insist on finding after INSN. */
2860 int count = n_sets - 1;
2861 int old = n_times_set[regno];
2862 int value = 0;
2863 int this;
2864
2865 /* If N_SETS hit the limit, we can't rely on its value. */
2866 if (n_sets == 127)
2867 return 0;
2868
2869 n_times_set[regno] = 0;
2870
2871 while (count > 0)
2872 {
2873 register enum rtx_code code;
2874 rtx set;
2875
2876 p = NEXT_INSN (p);
2877 code = GET_CODE (p);
2878
2879 /* If library call, skip to end of of it. */
2880 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2881 p = XEXP (temp, 0);
2882
2883 this = 0;
2884 if (code == INSN
2885 && (set = single_set (p))
2886 && GET_CODE (SET_DEST (set)) == REG
2887 && REGNO (SET_DEST (set)) == regno)
2888 {
2889 this = invariant_p (SET_SRC (set));
2890 if (this != 0)
2891 value |= this;
2892 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2893 {
2894 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2895 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2896 notes are OK. */
2897 this = (CONSTANT_P (XEXP (temp, 0))
2898 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2899 && invariant_p (XEXP (temp, 0))));
2900 if (this != 0)
2901 value |= this;
2902 }
2903 }
2904 if (this != 0)
2905 count--;
2906 else if (code != NOTE)
2907 {
2908 n_times_set[regno] = old;
2909 return 0;
2910 }
2911 }
2912
2913 n_times_set[regno] = old;
2914 /* If invariant_p ever returned 2, we return 2. */
2915 return 1 + (value & 2);
2916 }
2917
2918 #if 0
2919 /* I don't think this condition is sufficient to allow INSN
2920 to be moved, so we no longer test it. */
2921
2922 /* Return 1 if all insns in the basic block of INSN and following INSN
2923 that set REG are invariant according to TABLE. */
2924
2925 static int
2926 all_sets_invariant_p (reg, insn, table)
2927 rtx reg, insn;
2928 short *table;
2929 {
2930 register rtx p = insn;
2931 register int regno = REGNO (reg);
2932
2933 while (1)
2934 {
2935 register enum rtx_code code;
2936 p = NEXT_INSN (p);
2937 code = GET_CODE (p);
2938 if (code == CODE_LABEL || code == JUMP_INSN)
2939 return 1;
2940 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2941 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2942 && REGNO (SET_DEST (PATTERN (p))) == regno)
2943 {
2944 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2945 return 0;
2946 }
2947 }
2948 }
2949 #endif /* 0 */
2950 \f
2951 /* Look at all uses (not sets) of registers in X. For each, if it is
2952 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2953 a different insn, set USAGE[REGNO] to const0_rtx. */
2954
2955 static void
2956 find_single_use_in_loop (insn, x, usage)
2957 rtx insn;
2958 rtx x;
2959 rtx *usage;
2960 {
2961 enum rtx_code code = GET_CODE (x);
2962 char *fmt = GET_RTX_FORMAT (code);
2963 int i, j;
2964
2965 if (code == REG)
2966 usage[REGNO (x)]
2967 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2968 ? const0_rtx : insn;
2969
2970 else if (code == SET)
2971 {
2972 /* Don't count SET_DEST if it is a REG; otherwise count things
2973 in SET_DEST because if a register is partially modified, it won't
2974 show up as a potential movable so we don't care how USAGE is set
2975 for it. */
2976 if (GET_CODE (SET_DEST (x)) != REG)
2977 find_single_use_in_loop (insn, SET_DEST (x), usage);
2978 find_single_use_in_loop (insn, SET_SRC (x), usage);
2979 }
2980 else
2981 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2982 {
2983 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2984 find_single_use_in_loop (insn, XEXP (x, i), usage);
2985 else if (fmt[i] == 'E')
2986 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2987 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2988 }
2989 }
2990 \f
2991 /* Increment N_TIMES_SET at the index of each register
2992 that is modified by an insn between FROM and TO.
2993 If the value of an element of N_TIMES_SET becomes 127 or more,
2994 stop incrementing it, to avoid overflow.
2995
2996 Store in SINGLE_USAGE[I] the single insn in which register I is
2997 used, if it is only used once. Otherwise, it is set to 0 (for no
2998 uses) or const0_rtx for more than one use. This parameter may be zero,
2999 in which case this processing is not done.
3000
3001 Store in *COUNT_PTR the number of actual instruction
3002 in the loop. We use this to decide what is worth moving out. */
3003
3004 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3005 In that case, it is the insn that last set reg n. */
3006
3007 static void
3008 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3009 register rtx from, to;
3010 char *may_not_move;
3011 rtx *single_usage;
3012 int *count_ptr;
3013 int nregs;
3014 {
3015 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3016 register rtx insn;
3017 register int count = 0;
3018 register rtx dest;
3019
3020 bzero ((char *) last_set, nregs * sizeof (rtx));
3021 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3022 {
3023 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3024 {
3025 ++count;
3026
3027 /* If requested, record registers that have exactly one use. */
3028 if (single_usage)
3029 {
3030 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3031
3032 /* Include uses in REG_EQUAL notes. */
3033 if (REG_NOTES (insn))
3034 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3035 }
3036
3037 if (GET_CODE (PATTERN (insn)) == CLOBBER
3038 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3039 /* Don't move a reg that has an explicit clobber.
3040 We might do so sometimes, but it's not worth the pain. */
3041 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3042
3043 if (GET_CODE (PATTERN (insn)) == SET
3044 || GET_CODE (PATTERN (insn)) == CLOBBER)
3045 {
3046 dest = SET_DEST (PATTERN (insn));
3047 while (GET_CODE (dest) == SUBREG
3048 || GET_CODE (dest) == ZERO_EXTRACT
3049 || GET_CODE (dest) == SIGN_EXTRACT
3050 || GET_CODE (dest) == STRICT_LOW_PART)
3051 dest = XEXP (dest, 0);
3052 if (GET_CODE (dest) == REG)
3053 {
3054 register int regno = REGNO (dest);
3055 /* If this is the first setting of this reg
3056 in current basic block, and it was set before,
3057 it must be set in two basic blocks, so it cannot
3058 be moved out of the loop. */
3059 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3060 may_not_move[regno] = 1;
3061 /* If this is not first setting in current basic block,
3062 see if reg was used in between previous one and this.
3063 If so, neither one can be moved. */
3064 if (last_set[regno] != 0
3065 && reg_used_between_p (dest, last_set[regno], insn))
3066 may_not_move[regno] = 1;
3067 if (n_times_set[regno] < 127)
3068 ++n_times_set[regno];
3069 last_set[regno] = insn;
3070 }
3071 }
3072 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3073 {
3074 register int i;
3075 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3076 {
3077 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3078 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3079 /* Don't move a reg that has an explicit clobber.
3080 It's not worth the pain to try to do it correctly. */
3081 may_not_move[REGNO (XEXP (x, 0))] = 1;
3082
3083 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3084 {
3085 dest = SET_DEST (x);
3086 while (GET_CODE (dest) == SUBREG
3087 || GET_CODE (dest) == ZERO_EXTRACT
3088 || GET_CODE (dest) == SIGN_EXTRACT
3089 || GET_CODE (dest) == STRICT_LOW_PART)
3090 dest = XEXP (dest, 0);
3091 if (GET_CODE (dest) == REG)
3092 {
3093 register int regno = REGNO (dest);
3094 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3095 may_not_move[regno] = 1;
3096 if (last_set[regno] != 0
3097 && reg_used_between_p (dest, last_set[regno], insn))
3098 may_not_move[regno] = 1;
3099 if (n_times_set[regno] < 127)
3100 ++n_times_set[regno];
3101 last_set[regno] = insn;
3102 }
3103 }
3104 }
3105 }
3106 }
3107
3108 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3109 bzero ((char *) last_set, nregs * sizeof (rtx));
3110 }
3111 *count_ptr = count;
3112 }
3113 \f
3114 /* Given a loop that is bounded by LOOP_START and LOOP_END
3115 and that is entered at SCAN_START,
3116 return 1 if the register set in SET contained in insn INSN is used by
3117 any insn that precedes INSN in cyclic order starting
3118 from the loop entry point.
3119
3120 We don't want to use INSN_LUID here because if we restrict INSN to those
3121 that have a valid INSN_LUID, it means we cannot move an invariant out
3122 from an inner loop past two loops. */
3123
3124 static int
3125 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3126 rtx set, insn, loop_start, scan_start, loop_end;
3127 {
3128 rtx reg = SET_DEST (set);
3129 rtx p;
3130
3131 /* Scan forward checking for register usage. If we hit INSN, we
3132 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3133 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3134 {
3135 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3136 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3137 return 1;
3138
3139 if (p == loop_end)
3140 p = loop_start;
3141 }
3142
3143 return 0;
3144 }
3145 \f
3146 /* A "basic induction variable" or biv is a pseudo reg that is set
3147 (within this loop) only by incrementing or decrementing it. */
3148 /* A "general induction variable" or giv is a pseudo reg whose
3149 value is a linear function of a biv. */
3150
3151 /* Bivs are recognized by `basic_induction_var';
3152 Givs by `general_induct_var'. */
3153
3154 /* Indexed by register number, indicates whether or not register is an
3155 induction variable, and if so what type. */
3156
3157 enum iv_mode *reg_iv_type;
3158
3159 /* Indexed by register number, contains pointer to `struct induction'
3160 if register is an induction variable. This holds general info for
3161 all induction variables. */
3162
3163 struct induction **reg_iv_info;
3164
3165 /* Indexed by register number, contains pointer to `struct iv_class'
3166 if register is a basic induction variable. This holds info describing
3167 the class (a related group) of induction variables that the biv belongs
3168 to. */
3169
3170 struct iv_class **reg_biv_class;
3171
3172 /* The head of a list which links together (via the next field)
3173 every iv class for the current loop. */
3174
3175 struct iv_class *loop_iv_list;
3176
3177 /* Communication with routines called via `note_stores'. */
3178
3179 static rtx note_insn;
3180
3181 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3182
3183 static rtx addr_placeholder;
3184
3185 /* ??? Unfinished optimizations, and possible future optimizations,
3186 for the strength reduction code. */
3187
3188 /* ??? There is one more optimization you might be interested in doing: to
3189 allocate pseudo registers for frequently-accessed memory locations.
3190 If the same memory location is referenced each time around, it might
3191 be possible to copy it into a register before and out after.
3192 This is especially useful when the memory location is a variable which
3193 is in a stack slot because somewhere its address is taken. If the
3194 loop doesn't contain a function call and the variable isn't volatile,
3195 it is safe to keep the value in a register for the duration of the
3196 loop. One tricky thing is that the copying of the value back from the
3197 register has to be done on all exits from the loop. You need to check that
3198 all the exits from the loop go to the same place. */
3199
3200 /* ??? The interaction of biv elimination, and recognition of 'constant'
3201 bivs, may cause problems. */
3202
3203 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3204 performance problems.
3205
3206 Perhaps don't eliminate things that can be combined with an addressing
3207 mode. Find all givs that have the same biv, mult_val, and add_val;
3208 then for each giv, check to see if its only use dies in a following
3209 memory address. If so, generate a new memory address and check to see
3210 if it is valid. If it is valid, then store the modified memory address,
3211 otherwise, mark the giv as not done so that it will get its own iv. */
3212
3213 /* ??? Could try to optimize branches when it is known that a biv is always
3214 positive. */
3215
3216 /* ??? When replace a biv in a compare insn, we should replace with closest
3217 giv so that an optimized branch can still be recognized by the combiner,
3218 e.g. the VAX acb insn. */
3219
3220 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3221 was rerun in loop_optimize whenever a register was added or moved.
3222 Also, some of the optimizations could be a little less conservative. */
3223 \f
3224 /* Perform strength reduction and induction variable elimination. */
3225
3226 /* Pseudo registers created during this function will be beyond the last
3227 valid index in several tables including n_times_set and regno_last_uid.
3228 This does not cause a problem here, because the added registers cannot be
3229 givs outside of their loop, and hence will never be reconsidered.
3230 But scan_loop must check regnos to make sure they are in bounds. */
3231
3232 static void
3233 strength_reduce (scan_start, end, loop_top, insn_count,
3234 loop_start, loop_end)
3235 rtx scan_start;
3236 rtx end;
3237 rtx loop_top;
3238 int insn_count;
3239 rtx loop_start;
3240 rtx loop_end;
3241 {
3242 rtx p;
3243 rtx set;
3244 rtx inc_val;
3245 rtx mult_val;
3246 rtx dest_reg;
3247 /* This is 1 if current insn is not executed at least once for every loop
3248 iteration. */
3249 int not_every_iteration = 0;
3250 /* This is 1 if current insn may be executed more than once for every
3251 loop iteration. */
3252 int maybe_multiple = 0;
3253 /* Temporary list pointers for traversing loop_iv_list. */
3254 struct iv_class *bl, **backbl;
3255 /* Ratio of extra register life span we can justify
3256 for saving an instruction. More if loop doesn't call subroutines
3257 since in that case saving an insn makes more difference
3258 and more registers are available. */
3259 /* ??? could set this to last value of threshold in move_movables */
3260 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3261 /* Map of pseudo-register replacements. */
3262 rtx *reg_map;
3263 int call_seen;
3264 rtx test;
3265 rtx end_insert_before;
3266 int loop_depth = 0;
3267
3268 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3269 * sizeof (enum iv_mode *));
3270 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3271 reg_iv_info = (struct induction **)
3272 alloca (max_reg_before_loop * sizeof (struct induction *));
3273 bzero ((char *) reg_iv_info, (max_reg_before_loop
3274 * sizeof (struct induction *)));
3275 reg_biv_class = (struct iv_class **)
3276 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3277 bzero ((char *) reg_biv_class, (max_reg_before_loop
3278 * sizeof (struct iv_class *)));
3279
3280 loop_iv_list = 0;
3281 addr_placeholder = gen_reg_rtx (Pmode);
3282
3283 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3284 must be put before this insn, so that they will appear in the right
3285 order (i.e. loop order).
3286
3287 If loop_end is the end of the current function, then emit a
3288 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3289 dummy note insn. */
3290 if (NEXT_INSN (loop_end) != 0)
3291 end_insert_before = NEXT_INSN (loop_end);
3292 else
3293 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3294
3295 /* Scan through loop to find all possible bivs. */
3296
3297 p = scan_start;
3298 while (1)
3299 {
3300 p = NEXT_INSN (p);
3301 /* At end of a straight-in loop, we are done.
3302 At end of a loop entered at the bottom, scan the top. */
3303 if (p == scan_start)
3304 break;
3305 if (p == end)
3306 {
3307 if (loop_top != 0)
3308 p = loop_top;
3309 else
3310 break;
3311 if (p == scan_start)
3312 break;
3313 }
3314
3315 if (GET_CODE (p) == INSN
3316 && (set = single_set (p))
3317 && GET_CODE (SET_DEST (set)) == REG)
3318 {
3319 dest_reg = SET_DEST (set);
3320 if (REGNO (dest_reg) < max_reg_before_loop
3321 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3322 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3323 {
3324 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3325 dest_reg, p, &inc_val, &mult_val))
3326 {
3327 /* It is a possible basic induction variable.
3328 Create and initialize an induction structure for it. */
3329
3330 struct induction *v
3331 = (struct induction *) alloca (sizeof (struct induction));
3332
3333 record_biv (v, p, dest_reg, inc_val, mult_val,
3334 not_every_iteration, maybe_multiple);
3335 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3336 }
3337 else if (REGNO (dest_reg) < max_reg_before_loop)
3338 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3339 }
3340 }
3341
3342 /* Past CODE_LABEL, we get to insns that may be executed multiple
3343 times. The only way we can be sure that they can't is if every
3344 every jump insn between here and the end of the loop either
3345 returns, exits the loop, is a forward jump, or is a jump
3346 to the loop start. */
3347
3348 if (GET_CODE (p) == CODE_LABEL)
3349 {
3350 rtx insn = p;
3351
3352 maybe_multiple = 0;
3353
3354 while (1)
3355 {
3356 insn = NEXT_INSN (insn);
3357 if (insn == scan_start)
3358 break;
3359 if (insn == end)
3360 {
3361 if (loop_top != 0)
3362 insn = loop_top;
3363 else
3364 break;
3365 if (insn == scan_start)
3366 break;
3367 }
3368
3369 if (GET_CODE (insn) == JUMP_INSN
3370 && GET_CODE (PATTERN (insn)) != RETURN
3371 && (! condjump_p (insn)
3372 || (JUMP_LABEL (insn) != 0
3373 && JUMP_LABEL (insn) != scan_start
3374 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3375 || INSN_UID (insn) >= max_uid_for_loop
3376 || (INSN_LUID (JUMP_LABEL (insn))
3377 < INSN_LUID (insn))))))
3378 {
3379 maybe_multiple = 1;
3380 break;
3381 }
3382 }
3383 }
3384
3385 /* Past a jump, we get to insns for which we can't count
3386 on whether they will be executed during each iteration. */
3387 /* This code appears twice in strength_reduce. There is also similar
3388 code in scan_loop. */
3389 if (GET_CODE (p) == JUMP_INSN
3390 /* If we enter the loop in the middle, and scan around to the
3391 beginning, don't set not_every_iteration for that.
3392 This can be any kind of jump, since we want to know if insns
3393 will be executed if the loop is executed. */
3394 && ! (JUMP_LABEL (p) == loop_top
3395 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3396 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3397 {
3398 rtx label = 0;
3399
3400 /* If this is a jump outside the loop, then it also doesn't
3401 matter. Check to see if the target of this branch is on the
3402 loop_number_exits_labels list. */
3403
3404 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3405 label;
3406 label = LABEL_NEXTREF (label))
3407 if (XEXP (label, 0) == JUMP_LABEL (p))
3408 break;
3409
3410 if (! label)
3411 not_every_iteration = 1;
3412 }
3413
3414 else if (GET_CODE (p) == NOTE)
3415 {
3416 /* At the virtual top of a converted loop, insns are again known to
3417 be executed each iteration: logically, the loop begins here
3418 even though the exit code has been duplicated. */
3419 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3420 not_every_iteration = 0;
3421 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3422 loop_depth++;
3423 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3424 loop_depth--;
3425 }
3426
3427 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3428 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3429 or not an insn is known to be executed each iteration of the
3430 loop, whether or not any iterations are known to occur.
3431
3432 Therefore, if we have just passed a label and have no more labels
3433 between here and the test insn of the loop, we know these insns
3434 will be executed each iteration. */
3435
3436 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3437 && no_labels_between_p (p, loop_end))
3438 not_every_iteration = 0;
3439 }
3440
3441 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3442 Make a sanity check against n_times_set. */
3443 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3444 {
3445 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3446 /* Above happens if register modified by subreg, etc. */
3447 /* Make sure it is not recognized as a basic induction var: */
3448 || n_times_set[bl->regno] != bl->biv_count
3449 /* If never incremented, it is invariant that we decided not to
3450 move. So leave it alone. */
3451 || ! bl->incremented)
3452 {
3453 if (loop_dump_stream)
3454 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3455 bl->regno,
3456 (reg_iv_type[bl->regno] != BASIC_INDUCT
3457 ? "not induction variable"
3458 : (! bl->incremented ? "never incremented"
3459 : "count error")));
3460
3461 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3462 *backbl = bl->next;
3463 }
3464 else
3465 {
3466 backbl = &bl->next;
3467
3468 if (loop_dump_stream)
3469 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3470 }
3471 }
3472
3473 /* Exit if there are no bivs. */
3474 if (! loop_iv_list)
3475 {
3476 /* Can still unroll the loop anyways, but indicate that there is no
3477 strength reduction info available. */
3478 if (flag_unroll_loops)
3479 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3480
3481 return;
3482 }
3483
3484 /* Find initial value for each biv by searching backwards from loop_start,
3485 halting at first label. Also record any test condition. */
3486
3487 call_seen = 0;
3488 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3489 {
3490 note_insn = p;
3491
3492 if (GET_CODE (p) == CALL_INSN)
3493 call_seen = 1;
3494
3495 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3496 || GET_CODE (p) == CALL_INSN)
3497 note_stores (PATTERN (p), record_initial);
3498
3499 /* Record any test of a biv that branches around the loop if no store
3500 between it and the start of loop. We only care about tests with
3501 constants and registers and only certain of those. */
3502 if (GET_CODE (p) == JUMP_INSN
3503 && JUMP_LABEL (p) != 0
3504 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3505 && (test = get_condition_for_loop (p)) != 0
3506 && GET_CODE (XEXP (test, 0)) == REG
3507 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3508 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3509 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3510 && bl->init_insn == 0)
3511 {
3512 /* If an NE test, we have an initial value! */
3513 if (GET_CODE (test) == NE)
3514 {
3515 bl->init_insn = p;
3516 bl->init_set = gen_rtx (SET, VOIDmode,
3517 XEXP (test, 0), XEXP (test, 1));
3518 }
3519 else
3520 bl->initial_test = test;
3521 }
3522 }
3523
3524 /* Look at the each biv and see if we can say anything better about its
3525 initial value from any initializing insns set up above. (This is done
3526 in two passes to avoid missing SETs in a PARALLEL.) */
3527 for (bl = loop_iv_list; bl; bl = bl->next)
3528 {
3529 rtx src;
3530
3531 if (! bl->init_insn)
3532 continue;
3533
3534 src = SET_SRC (bl->init_set);
3535
3536 if (loop_dump_stream)
3537 fprintf (loop_dump_stream,
3538 "Biv %d initialized at insn %d: initial value ",
3539 bl->regno, INSN_UID (bl->init_insn));
3540
3541 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3542 || GET_MODE (src) == VOIDmode)
3543 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3544 {
3545 bl->initial_value = src;
3546
3547 if (loop_dump_stream)
3548 {
3549 if (GET_CODE (src) == CONST_INT)
3550 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3551 else
3552 {
3553 print_rtl (loop_dump_stream, src);
3554 fprintf (loop_dump_stream, "\n");
3555 }
3556 }
3557 }
3558 else
3559 {
3560 /* Biv initial value is not simple move,
3561 so let it keep initial value of "itself". */
3562
3563 if (loop_dump_stream)
3564 fprintf (loop_dump_stream, "is complex\n");
3565 }
3566 }
3567
3568 /* Search the loop for general induction variables. */
3569
3570 /* A register is a giv if: it is only set once, it is a function of a
3571 biv and a constant (or invariant), and it is not a biv. */
3572
3573 not_every_iteration = 0;
3574 loop_depth = 0;
3575 p = scan_start;
3576 while (1)
3577 {
3578 p = NEXT_INSN (p);
3579 /* At end of a straight-in loop, we are done.
3580 At end of a loop entered at the bottom, scan the top. */
3581 if (p == scan_start)
3582 break;
3583 if (p == end)
3584 {
3585 if (loop_top != 0)
3586 p = loop_top;
3587 else
3588 break;
3589 if (p == scan_start)
3590 break;
3591 }
3592
3593 /* Look for a general induction variable in a register. */
3594 if (GET_CODE (p) == INSN
3595 && (set = single_set (p))
3596 && GET_CODE (SET_DEST (set)) == REG
3597 && ! may_not_optimize[REGNO (SET_DEST (set))])
3598 {
3599 rtx src_reg;
3600 rtx add_val;
3601 rtx mult_val;
3602 int benefit;
3603 rtx regnote = 0;
3604
3605 dest_reg = SET_DEST (set);
3606 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3607 continue;
3608
3609 if (/* SET_SRC is a giv. */
3610 ((benefit = general_induction_var (SET_SRC (set),
3611 &src_reg, &add_val,
3612 &mult_val))
3613 /* Equivalent expression is a giv. */
3614 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3615 && (benefit = general_induction_var (XEXP (regnote, 0),
3616 &src_reg,
3617 &add_val, &mult_val))))
3618 /* Don't try to handle any regs made by loop optimization.
3619 We have nothing on them in regno_first_uid, etc. */
3620 && REGNO (dest_reg) < max_reg_before_loop
3621 /* Don't recognize a BASIC_INDUCT_VAR here. */
3622 && dest_reg != src_reg
3623 /* This must be the only place where the register is set. */
3624 && (n_times_set[REGNO (dest_reg)] == 1
3625 /* or all sets must be consecutive and make a giv. */
3626 || (benefit = consec_sets_giv (benefit, p,
3627 src_reg, dest_reg,
3628 &add_val, &mult_val))))
3629 {
3630 int count;
3631 struct induction *v
3632 = (struct induction *) alloca (sizeof (struct induction));
3633 rtx temp;
3634
3635 /* If this is a library call, increase benefit. */
3636 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3637 benefit += libcall_benefit (p);
3638
3639 /* Skip the consecutive insns, if there are any. */
3640 for (count = n_times_set[REGNO (dest_reg)] - 1;
3641 count > 0; count--)
3642 {
3643 /* If first insn of libcall sequence, skip to end.
3644 Do this at start of loop, since INSN is guaranteed to
3645 be an insn here. */
3646 if (GET_CODE (p) != NOTE
3647 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3648 p = XEXP (temp, 0);
3649
3650 do p = NEXT_INSN (p);
3651 while (GET_CODE (p) == NOTE);
3652 }
3653
3654 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3655 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3656 loop_end);
3657
3658 }
3659 }
3660
3661 #ifndef DONT_REDUCE_ADDR
3662 /* Look for givs which are memory addresses. */
3663 /* This resulted in worse code on a VAX 8600. I wonder if it
3664 still does. */
3665 if (GET_CODE (p) == INSN)
3666 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3667 loop_end);
3668 #endif
3669
3670 /* Update the status of whether giv can derive other givs. This can
3671 change when we pass a label or an insn that updates a biv. */
3672 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3673 || GET_CODE (p) == CODE_LABEL)
3674 update_giv_derive (p);
3675
3676 /* Past a jump, we get to insns for which we can't count
3677 on whether they will be executed during each iteration. */
3678 /* This code appears twice in strength_reduce. There is also similar
3679 code in scan_loop. */
3680 if (GET_CODE (p) == JUMP_INSN
3681 /* If we enter the loop in the middle, and scan around to the
3682 beginning, don't set not_every_iteration for that.
3683 This can be any kind of jump, since we want to know if insns
3684 will be executed if the loop is executed. */
3685 && ! (JUMP_LABEL (p) == loop_top
3686 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3687 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3688 {
3689 rtx label = 0;
3690
3691 /* If this is a jump outside the loop, then it also doesn't
3692 matter. Check to see if the target of this branch is on the
3693 loop_number_exits_labels list. */
3694
3695 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3696 label;
3697 label = LABEL_NEXTREF (label))
3698 if (XEXP (label, 0) == JUMP_LABEL (p))
3699 break;
3700
3701 if (! label)
3702 not_every_iteration = 1;
3703 }
3704
3705 else if (GET_CODE (p) == NOTE)
3706 {
3707 /* At the virtual top of a converted loop, insns are again known to
3708 be executed each iteration: logically, the loop begins here
3709 even though the exit code has been duplicated. */
3710 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3711 not_every_iteration = 0;
3712 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3713 loop_depth++;
3714 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3715 loop_depth--;
3716 }
3717
3718 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3719 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3720 or not an insn is known to be executed each iteration of the
3721 loop, whether or not any iterations are known to occur.
3722
3723 Therefore, if we have just passed a label and have no more labels
3724 between here and the test insn of the loop, we know these insns
3725 will be executed each iteration. */
3726
3727 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3728 && no_labels_between_p (p, loop_end))
3729 not_every_iteration = 0;
3730 }
3731
3732 /* Try to calculate and save the number of loop iterations. This is
3733 set to zero if the actual number can not be calculated. This must
3734 be called after all giv's have been identified, since otherwise it may
3735 fail if the iteration variable is a giv. */
3736
3737 loop_n_iterations = loop_iterations (loop_start, loop_end);
3738
3739 /* Now for each giv for which we still don't know whether or not it is
3740 replaceable, check to see if it is replaceable because its final value
3741 can be calculated. This must be done after loop_iterations is called,
3742 so that final_giv_value will work correctly. */
3743
3744 for (bl = loop_iv_list; bl; bl = bl->next)
3745 {
3746 struct induction *v;
3747
3748 for (v = bl->giv; v; v = v->next_iv)
3749 if (! v->replaceable && ! v->not_replaceable)
3750 check_final_value (v, loop_start, loop_end);
3751 }
3752
3753 /* Try to prove that the loop counter variable (if any) is always
3754 nonnegative; if so, record that fact with a REG_NONNEG note
3755 so that "decrement and branch until zero" insn can be used. */
3756 check_dbra_loop (loop_end, insn_count, loop_start);
3757
3758 /* Create reg_map to hold substitutions for replaceable giv regs. */
3759 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3760 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3761
3762 /* Examine each iv class for feasibility of strength reduction/induction
3763 variable elimination. */
3764
3765 for (bl = loop_iv_list; bl; bl = bl->next)
3766 {
3767 struct induction *v;
3768 int benefit;
3769 int all_reduced;
3770 rtx final_value = 0;
3771
3772 /* Test whether it will be possible to eliminate this biv
3773 provided all givs are reduced. This is possible if either
3774 the reg is not used outside the loop, or we can compute
3775 what its final value will be.
3776
3777 For architectures with a decrement_and_branch_until_zero insn,
3778 don't do this if we put a REG_NONNEG note on the endtest for
3779 this biv. */
3780
3781 /* Compare against bl->init_insn rather than loop_start.
3782 We aren't concerned with any uses of the biv between
3783 init_insn and loop_start since these won't be affected
3784 by the value of the biv elsewhere in the function, so
3785 long as init_insn doesn't use the biv itself.
3786 March 14, 1989 -- self@bayes.arc.nasa.gov */
3787
3788 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3789 && bl->init_insn
3790 && INSN_UID (bl->init_insn) < max_uid_for_loop
3791 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3792 #ifdef HAVE_decrement_and_branch_until_zero
3793 && ! bl->nonneg
3794 #endif
3795 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3796 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3797 #ifdef HAVE_decrement_and_branch_until_zero
3798 && ! bl->nonneg
3799 #endif
3800 ))
3801 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3802 threshold, insn_count);
3803 else
3804 {
3805 if (loop_dump_stream)
3806 {
3807 fprintf (loop_dump_stream,
3808 "Cannot eliminate biv %d.\n",
3809 bl->regno);
3810 fprintf (loop_dump_stream,
3811 "First use: insn %d, last use: insn %d.\n",
3812 REGNO_FIRST_UID (bl->regno),
3813 REGNO_LAST_UID (bl->regno));
3814 }
3815 }
3816
3817 /* Combine all giv's for this iv_class. */
3818 combine_givs (bl);
3819
3820 /* This will be true at the end, if all givs which depend on this
3821 biv have been strength reduced.
3822 We can't (currently) eliminate the biv unless this is so. */
3823 all_reduced = 1;
3824
3825 /* Check each giv in this class to see if we will benefit by reducing
3826 it. Skip giv's combined with others. */
3827 for (v = bl->giv; v; v = v->next_iv)
3828 {
3829 struct induction *tv;
3830
3831 if (v->ignore || v->same)
3832 continue;
3833
3834 benefit = v->benefit;
3835
3836 /* Reduce benefit if not replaceable, since we will insert
3837 a move-insn to replace the insn that calculates this giv.
3838 Don't do this unless the giv is a user variable, since it
3839 will often be marked non-replaceable because of the duplication
3840 of the exit code outside the loop. In such a case, the copies
3841 we insert are dead and will be deleted. So they don't have
3842 a cost. Similar situations exist. */
3843 /* ??? The new final_[bg]iv_value code does a much better job
3844 of finding replaceable giv's, and hence this code may no longer
3845 be necessary. */
3846 if (! v->replaceable && ! bl->eliminable
3847 && REG_USERVAR_P (v->dest_reg))
3848 benefit -= copy_cost;
3849
3850 /* Decrease the benefit to count the add-insns that we will
3851 insert to increment the reduced reg for the giv. */
3852 benefit -= add_cost * bl->biv_count;
3853
3854 /* Decide whether to strength-reduce this giv or to leave the code
3855 unchanged (recompute it from the biv each time it is used).
3856 This decision can be made independently for each giv. */
3857
3858 #ifdef AUTO_INC_DEC
3859 /* Attempt to guess whether autoincrement will handle some of the
3860 new add insns; if so, increase BENEFIT (undo the subtraction of
3861 add_cost that was done above). */
3862 if (v->giv_type == DEST_ADDR
3863 && GET_CODE (v->mult_val) == CONST_INT)
3864 {
3865 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
3866 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3867 benefit += add_cost * bl->biv_count;
3868 #endif
3869 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
3870 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3871 benefit += add_cost * bl->biv_count;
3872 #endif
3873 }
3874 #endif
3875
3876 /* If an insn is not to be strength reduced, then set its ignore
3877 flag, and clear all_reduced. */
3878
3879 /* A giv that depends on a reversed biv must be reduced if it is
3880 used after the loop exit, otherwise, it would have the wrong
3881 value after the loop exit. To make it simple, just reduce all
3882 of such giv's whether or not we know they are used after the loop
3883 exit. */
3884
3885 if (v->lifetime * threshold * benefit < insn_count
3886 && ! bl->reversed)
3887 {
3888 if (loop_dump_stream)
3889 fprintf (loop_dump_stream,
3890 "giv of insn %d not worth while, %d vs %d.\n",
3891 INSN_UID (v->insn),
3892 v->lifetime * threshold * benefit, insn_count);
3893 v->ignore = 1;
3894 all_reduced = 0;
3895 }
3896 else
3897 {
3898 /* Check that we can increment the reduced giv without a
3899 multiply insn. If not, reject it. */
3900
3901 for (tv = bl->biv; tv; tv = tv->next_iv)
3902 if (tv->mult_val == const1_rtx
3903 && ! product_cheap_p (tv->add_val, v->mult_val))
3904 {
3905 if (loop_dump_stream)
3906 fprintf (loop_dump_stream,
3907 "giv of insn %d: would need a multiply.\n",
3908 INSN_UID (v->insn));
3909 v->ignore = 1;
3910 all_reduced = 0;
3911 break;
3912 }
3913 }
3914 }
3915
3916 /* Reduce each giv that we decided to reduce. */
3917
3918 for (v = bl->giv; v; v = v->next_iv)
3919 {
3920 struct induction *tv;
3921 if (! v->ignore && v->same == 0)
3922 {
3923 int auto_inc_opt = 0;
3924
3925 v->new_reg = gen_reg_rtx (v->mode);
3926
3927 #ifdef AUTO_INC_DEC
3928 /* If the target has auto-increment addressing modes, and
3929 this is an address giv, then try to put the increment
3930 immediately after its use, so that flow can create an
3931 auto-increment addressing mode. */
3932 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
3933 && bl->biv->always_executed && ! bl->biv->maybe_multiple
3934 /* We don't handle reversed biv's because bl->biv->insn
3935 does not have a valid INSN_LUID. */
3936 && ! bl->reversed
3937 && v->always_executed && ! v->maybe_multiple)
3938 {
3939 /* If other giv's have been combined with this one, then
3940 this will work only if all uses of the other giv's occur
3941 before this giv's insn. This is difficult to check.
3942
3943 We simplify this by looking for the common case where
3944 there is one DEST_REG giv, and this giv's insn is the
3945 last use of the dest_reg of that DEST_REG giv. If the
3946 the increment occurs after the address giv, then we can
3947 perform the optimization. (Otherwise, the increment
3948 would have to go before other_giv, and we would not be
3949 able to combine it with the address giv to get an
3950 auto-inc address.) */
3951 if (v->combined_with)
3952 {
3953 struct induction *other_giv = 0;
3954
3955 for (tv = bl->giv; tv; tv = tv->next_iv)
3956 if (tv->same == v)
3957 {
3958 if (other_giv)
3959 break;
3960 else
3961 other_giv = tv;
3962 }
3963 if (! tv && other_giv
3964 && REGNO (other_giv->dest_reg) <= max_reg_before_loop
3965 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
3966 == INSN_UID (v->insn))
3967 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
3968 auto_inc_opt = 1;
3969 }
3970 /* Check for case where increment is before the the address
3971 giv. */
3972 else if (INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn))
3973 auto_inc_opt = -1;
3974 else
3975 auto_inc_opt = 1;
3976
3977 #ifdef HAVE_cc0
3978 {
3979 rtx prev;
3980
3981 /* We can't put an insn immediately after one setting
3982 cc0, or immediately before one using cc0. */
3983 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
3984 || (auto_inc_opt == -1
3985 && (prev = prev_nonnote_insn (v->insn)) != 0
3986 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
3987 && sets_cc0_p (PATTERN (prev))))
3988 auto_inc_opt = 0;
3989 }
3990 #endif
3991
3992 if (auto_inc_opt)
3993 v->auto_inc_opt = 1;
3994 }
3995 #endif
3996
3997 /* For each place where the biv is incremented, add an insn
3998 to increment the new, reduced reg for the giv. */
3999 for (tv = bl->biv; tv; tv = tv->next_iv)
4000 {
4001 rtx insert_before;
4002
4003 if (! auto_inc_opt)
4004 insert_before = tv->insn;
4005 else if (auto_inc_opt == 1)
4006 insert_before = NEXT_INSN (v->insn);
4007 else
4008 insert_before = v->insn;
4009
4010 if (tv->mult_val == const1_rtx)
4011 emit_iv_add_mult (tv->add_val, v->mult_val,
4012 v->new_reg, v->new_reg, insert_before);
4013 else /* tv->mult_val == const0_rtx */
4014 /* A multiply is acceptable here
4015 since this is presumed to be seldom executed. */
4016 emit_iv_add_mult (tv->add_val, v->mult_val,
4017 v->add_val, v->new_reg, insert_before);
4018 }
4019
4020 /* Add code at loop start to initialize giv's reduced reg. */
4021
4022 emit_iv_add_mult (bl->initial_value, v->mult_val,
4023 v->add_val, v->new_reg, loop_start);
4024 }
4025 }
4026
4027 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4028 as not reduced.
4029
4030 For each giv register that can be reduced now: if replaceable,
4031 substitute reduced reg wherever the old giv occurs;
4032 else add new move insn "giv_reg = reduced_reg".
4033
4034 Also check for givs whose first use is their definition and whose
4035 last use is the definition of another giv. If so, it is likely
4036 dead and should not be used to eliminate a biv. */
4037 for (v = bl->giv; v; v = v->next_iv)
4038 {
4039 if (v->same && v->same->ignore)
4040 v->ignore = 1;
4041
4042 if (v->ignore)
4043 continue;
4044
4045 if (v->giv_type == DEST_REG
4046 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4047 {
4048 struct induction *v1;
4049
4050 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4051 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4052 v->maybe_dead = 1;
4053 }
4054
4055 /* Update expression if this was combined, in case other giv was
4056 replaced. */
4057 if (v->same)
4058 v->new_reg = replace_rtx (v->new_reg,
4059 v->same->dest_reg, v->same->new_reg);
4060
4061 if (v->giv_type == DEST_ADDR)
4062 /* Store reduced reg as the address in the memref where we found
4063 this giv. */
4064 validate_change (v->insn, v->location, v->new_reg, 0);
4065 else if (v->replaceable)
4066 {
4067 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4068
4069 #if 0
4070 /* I can no longer duplicate the original problem. Perhaps
4071 this is unnecessary now? */
4072
4073 /* Replaceable; it isn't strictly necessary to delete the old
4074 insn and emit a new one, because v->dest_reg is now dead.
4075
4076 However, especially when unrolling loops, the special
4077 handling for (set REG0 REG1) in the second cse pass may
4078 make v->dest_reg live again. To avoid this problem, emit
4079 an insn to set the original giv reg from the reduced giv.
4080 We can not delete the original insn, since it may be part
4081 of a LIBCALL, and the code in flow that eliminates dead
4082 libcalls will fail if it is deleted. */
4083 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4084 v->insn);
4085 #endif
4086 }
4087 else
4088 {
4089 /* Not replaceable; emit an insn to set the original giv reg from
4090 the reduced giv, same as above. */
4091 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4092 v->insn);
4093 }
4094
4095 /* When a loop is reversed, givs which depend on the reversed
4096 biv, and which are live outside the loop, must be set to their
4097 correct final value. This insn is only needed if the giv is
4098 not replaceable. The correct final value is the same as the
4099 value that the giv starts the reversed loop with. */
4100 if (bl->reversed && ! v->replaceable)
4101 emit_iv_add_mult (bl->initial_value, v->mult_val,
4102 v->add_val, v->dest_reg, end_insert_before);
4103 else if (v->final_value)
4104 {
4105 rtx insert_before;
4106
4107 /* If the loop has multiple exits, emit the insn before the
4108 loop to ensure that it will always be executed no matter
4109 how the loop exits. Otherwise, emit the insn after the loop,
4110 since this is slightly more efficient. */
4111 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4112 insert_before = loop_start;
4113 else
4114 insert_before = end_insert_before;
4115 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4116 insert_before);
4117
4118 #if 0
4119 /* If the insn to set the final value of the giv was emitted
4120 before the loop, then we must delete the insn inside the loop
4121 that sets it. If this is a LIBCALL, then we must delete
4122 every insn in the libcall. Note, however, that
4123 final_giv_value will only succeed when there are multiple
4124 exits if the giv is dead at each exit, hence it does not
4125 matter that the original insn remains because it is dead
4126 anyways. */
4127 /* Delete the insn inside the loop that sets the giv since
4128 the giv is now set before (or after) the loop. */
4129 delete_insn (v->insn);
4130 #endif
4131 }
4132
4133 if (loop_dump_stream)
4134 {
4135 fprintf (loop_dump_stream, "giv at %d reduced to ",
4136 INSN_UID (v->insn));
4137 print_rtl (loop_dump_stream, v->new_reg);
4138 fprintf (loop_dump_stream, "\n");
4139 }
4140 }
4141
4142 /* All the givs based on the biv bl have been reduced if they
4143 merit it. */
4144
4145 /* For each giv not marked as maybe dead that has been combined with a
4146 second giv, clear any "maybe dead" mark on that second giv.
4147 v->new_reg will either be or refer to the register of the giv it
4148 combined with.
4149
4150 Doing this clearing avoids problems in biv elimination where a
4151 giv's new_reg is a complex value that can't be put in the insn but
4152 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4153 Since the register will be used in either case, we'd prefer it be
4154 used from the simpler giv. */
4155
4156 for (v = bl->giv; v; v = v->next_iv)
4157 if (! v->maybe_dead && v->same)
4158 v->same->maybe_dead = 0;
4159
4160 /* Try to eliminate the biv, if it is a candidate.
4161 This won't work if ! all_reduced,
4162 since the givs we planned to use might not have been reduced.
4163
4164 We have to be careful that we didn't initially think we could eliminate
4165 this biv because of a giv that we now think may be dead and shouldn't
4166 be used as a biv replacement.
4167
4168 Also, there is the possibility that we may have a giv that looks
4169 like it can be used to eliminate a biv, but the resulting insn
4170 isn't valid. This can happen, for example, on the 88k, where a
4171 JUMP_INSN can compare a register only with zero. Attempts to
4172 replace it with a compare with a constant will fail.
4173
4174 Note that in cases where this call fails, we may have replaced some
4175 of the occurrences of the biv with a giv, but no harm was done in
4176 doing so in the rare cases where it can occur. */
4177
4178 if (all_reduced == 1 && bl->eliminable
4179 && maybe_eliminate_biv (bl, loop_start, end, 1,
4180 threshold, insn_count))
4181
4182 {
4183 /* ?? If we created a new test to bypass the loop entirely,
4184 or otherwise drop straight in, based on this test, then
4185 we might want to rewrite it also. This way some later
4186 pass has more hope of removing the initialization of this
4187 biv entirely. */
4188
4189 /* If final_value != 0, then the biv may be used after loop end
4190 and we must emit an insn to set it just in case.
4191
4192 Reversed bivs already have an insn after the loop setting their
4193 value, so we don't need another one. We can't calculate the
4194 proper final value for such a biv here anyways. */
4195 if (final_value != 0 && ! bl->reversed)
4196 {
4197 rtx insert_before;
4198
4199 /* If the loop has multiple exits, emit the insn before the
4200 loop to ensure that it will always be executed no matter
4201 how the loop exits. Otherwise, emit the insn after the
4202 loop, since this is slightly more efficient. */
4203 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4204 insert_before = loop_start;
4205 else
4206 insert_before = end_insert_before;
4207
4208 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4209 end_insert_before);
4210 }
4211
4212 #if 0
4213 /* Delete all of the instructions inside the loop which set
4214 the biv, as they are all dead. If is safe to delete them,
4215 because an insn setting a biv will never be part of a libcall. */
4216 /* However, deleting them will invalidate the regno_last_uid info,
4217 so keeping them around is more convenient. Final_biv_value
4218 will only succeed when there are multiple exits if the biv
4219 is dead at each exit, hence it does not matter that the original
4220 insn remains, because it is dead anyways. */
4221 for (v = bl->biv; v; v = v->next_iv)
4222 delete_insn (v->insn);
4223 #endif
4224
4225 if (loop_dump_stream)
4226 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4227 bl->regno);
4228 }
4229 }
4230
4231 /* Go through all the instructions in the loop, making all the
4232 register substitutions scheduled in REG_MAP. */
4233
4234 for (p = loop_start; p != end; p = NEXT_INSN (p))
4235 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4236 || GET_CODE (p) == CALL_INSN)
4237 {
4238 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4239 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4240 INSN_CODE (p) = -1;
4241 }
4242
4243 /* Unroll loops from within strength reduction so that we can use the
4244 induction variable information that strength_reduce has already
4245 collected. */
4246
4247 if (flag_unroll_loops)
4248 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4249
4250 if (loop_dump_stream)
4251 fprintf (loop_dump_stream, "\n");
4252 }
4253 \f
4254 /* Return 1 if X is a valid source for an initial value (or as value being
4255 compared against in an initial test).
4256
4257 X must be either a register or constant and must not be clobbered between
4258 the current insn and the start of the loop.
4259
4260 INSN is the insn containing X. */
4261
4262 static int
4263 valid_initial_value_p (x, insn, call_seen, loop_start)
4264 rtx x;
4265 rtx insn;
4266 int call_seen;
4267 rtx loop_start;
4268 {
4269 if (CONSTANT_P (x))
4270 return 1;
4271
4272 /* Only consider pseudos we know about initialized in insns whose luids
4273 we know. */
4274 if (GET_CODE (x) != REG
4275 || REGNO (x) >= max_reg_before_loop)
4276 return 0;
4277
4278 /* Don't use call-clobbered registers across a call which clobbers it. On
4279 some machines, don't use any hard registers at all. */
4280 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4281 && (
4282 #ifdef SMALL_REGISTER_CLASSES
4283 SMALL_REGISTER_CLASSES
4284 #else
4285 0
4286 #endif
4287 || (call_used_regs[REGNO (x)] && call_seen))
4288 )
4289 return 0;
4290
4291 /* Don't use registers that have been clobbered before the start of the
4292 loop. */
4293 if (reg_set_between_p (x, insn, loop_start))
4294 return 0;
4295
4296 return 1;
4297 }
4298 \f
4299 /* Scan X for memory refs and check each memory address
4300 as a possible giv. INSN is the insn whose pattern X comes from.
4301 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4302 every loop iteration. */
4303
4304 static void
4305 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4306 rtx x;
4307 rtx insn;
4308 int not_every_iteration;
4309 rtx loop_start, loop_end;
4310 {
4311 register int i, j;
4312 register enum rtx_code code;
4313 register char *fmt;
4314
4315 if (x == 0)
4316 return;
4317
4318 code = GET_CODE (x);
4319 switch (code)
4320 {
4321 case REG:
4322 case CONST_INT:
4323 case CONST:
4324 case CONST_DOUBLE:
4325 case SYMBOL_REF:
4326 case LABEL_REF:
4327 case PC:
4328 case CC0:
4329 case ADDR_VEC:
4330 case ADDR_DIFF_VEC:
4331 case USE:
4332 case CLOBBER:
4333 return;
4334
4335 case MEM:
4336 {
4337 rtx src_reg;
4338 rtx add_val;
4339 rtx mult_val;
4340 int benefit;
4341
4342 benefit = general_induction_var (XEXP (x, 0),
4343 &src_reg, &add_val, &mult_val);
4344
4345 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4346 Such a giv isn't useful. */
4347 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4348 {
4349 /* Found one; record it. */
4350 struct induction *v
4351 = (struct induction *) oballoc (sizeof (struct induction));
4352
4353 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4354 add_val, benefit, DEST_ADDR, not_every_iteration,
4355 &XEXP (x, 0), loop_start, loop_end);
4356
4357 v->mem_mode = GET_MODE (x);
4358 }
4359 return;
4360 }
4361 }
4362
4363 /* Recursively scan the subexpressions for other mem refs. */
4364
4365 fmt = GET_RTX_FORMAT (code);
4366 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4367 if (fmt[i] == 'e')
4368 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4369 loop_end);
4370 else if (fmt[i] == 'E')
4371 for (j = 0; j < XVECLEN (x, i); j++)
4372 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4373 loop_start, loop_end);
4374 }
4375 \f
4376 /* Fill in the data about one biv update.
4377 V is the `struct induction' in which we record the biv. (It is
4378 allocated by the caller, with alloca.)
4379 INSN is the insn that sets it.
4380 DEST_REG is the biv's reg.
4381
4382 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4383 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4384 being set to INC_VAL.
4385
4386 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4387 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4388 can be executed more than once per iteration. If MAYBE_MULTIPLE
4389 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4390 executed exactly once per iteration. */
4391
4392 static void
4393 record_biv (v, insn, dest_reg, inc_val, mult_val,
4394 not_every_iteration, maybe_multiple)
4395 struct induction *v;
4396 rtx insn;
4397 rtx dest_reg;
4398 rtx inc_val;
4399 rtx mult_val;
4400 int not_every_iteration;
4401 int maybe_multiple;
4402 {
4403 struct iv_class *bl;
4404
4405 v->insn = insn;
4406 v->src_reg = dest_reg;
4407 v->dest_reg = dest_reg;
4408 v->mult_val = mult_val;
4409 v->add_val = inc_val;
4410 v->mode = GET_MODE (dest_reg);
4411 v->always_computable = ! not_every_iteration;
4412 v->always_executed = ! not_every_iteration;
4413 v->maybe_multiple = maybe_multiple;
4414
4415 /* Add this to the reg's iv_class, creating a class
4416 if this is the first incrementation of the reg. */
4417
4418 bl = reg_biv_class[REGNO (dest_reg)];
4419 if (bl == 0)
4420 {
4421 /* Create and initialize new iv_class. */
4422
4423 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4424
4425 bl->regno = REGNO (dest_reg);
4426 bl->biv = 0;
4427 bl->giv = 0;
4428 bl->biv_count = 0;
4429 bl->giv_count = 0;
4430
4431 /* Set initial value to the reg itself. */
4432 bl->initial_value = dest_reg;
4433 /* We haven't seen the initializing insn yet */
4434 bl->init_insn = 0;
4435 bl->init_set = 0;
4436 bl->initial_test = 0;
4437 bl->incremented = 0;
4438 bl->eliminable = 0;
4439 bl->nonneg = 0;
4440 bl->reversed = 0;
4441 bl->total_benefit = 0;
4442
4443 /* Add this class to loop_iv_list. */
4444 bl->next = loop_iv_list;
4445 loop_iv_list = bl;
4446
4447 /* Put it in the array of biv register classes. */
4448 reg_biv_class[REGNO (dest_reg)] = bl;
4449 }
4450
4451 /* Update IV_CLASS entry for this biv. */
4452 v->next_iv = bl->biv;
4453 bl->biv = v;
4454 bl->biv_count++;
4455 if (mult_val == const1_rtx)
4456 bl->incremented = 1;
4457
4458 if (loop_dump_stream)
4459 {
4460 fprintf (loop_dump_stream,
4461 "Insn %d: possible biv, reg %d,",
4462 INSN_UID (insn), REGNO (dest_reg));
4463 if (GET_CODE (inc_val) == CONST_INT)
4464 fprintf (loop_dump_stream, " const = %d\n",
4465 INTVAL (inc_val));
4466 else
4467 {
4468 fprintf (loop_dump_stream, " const = ");
4469 print_rtl (loop_dump_stream, inc_val);
4470 fprintf (loop_dump_stream, "\n");
4471 }
4472 }
4473 }
4474 \f
4475 /* Fill in the data about one giv.
4476 V is the `struct induction' in which we record the giv. (It is
4477 allocated by the caller, with alloca.)
4478 INSN is the insn that sets it.
4479 BENEFIT estimates the savings from deleting this insn.
4480 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4481 into a register or is used as a memory address.
4482
4483 SRC_REG is the biv reg which the giv is computed from.
4484 DEST_REG is the giv's reg (if the giv is stored in a reg).
4485 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4486 LOCATION points to the place where this giv's value appears in INSN. */
4487
4488 static void
4489 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4490 type, not_every_iteration, location, loop_start, loop_end)
4491 struct induction *v;
4492 rtx insn;
4493 rtx src_reg;
4494 rtx dest_reg;
4495 rtx mult_val, add_val;
4496 int benefit;
4497 enum g_types type;
4498 int not_every_iteration;
4499 rtx *location;
4500 rtx loop_start, loop_end;
4501 {
4502 struct induction *b;
4503 struct iv_class *bl;
4504 rtx set = single_set (insn);
4505 rtx p;
4506
4507 v->insn = insn;
4508 v->src_reg = src_reg;
4509 v->giv_type = type;
4510 v->dest_reg = dest_reg;
4511 v->mult_val = mult_val;
4512 v->add_val = add_val;
4513 v->benefit = benefit;
4514 v->location = location;
4515 v->cant_derive = 0;
4516 v->combined_with = 0;
4517 v->maybe_multiple = 0;
4518 v->maybe_dead = 0;
4519 v->derive_adjustment = 0;
4520 v->same = 0;
4521 v->ignore = 0;
4522 v->new_reg = 0;
4523 v->final_value = 0;
4524 v->same_insn = 0;
4525 v->auto_inc_opt = 0;
4526 v->unrolled = 0;
4527 v->shared = 0;
4528
4529 /* The v->always_computable field is used in update_giv_derive, to
4530 determine whether a giv can be used to derive another giv. For a
4531 DEST_REG giv, INSN computes a new value for the giv, so its value
4532 isn't computable if INSN insn't executed every iteration.
4533 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4534 it does not compute a new value. Hence the value is always computable
4535 regardless of whether INSN is executed each iteration. */
4536
4537 if (type == DEST_ADDR)
4538 v->always_computable = 1;
4539 else
4540 v->always_computable = ! not_every_iteration;
4541
4542 v->always_executed = ! not_every_iteration;
4543
4544 if (type == DEST_ADDR)
4545 {
4546 v->mode = GET_MODE (*location);
4547 v->lifetime = 1;
4548 v->times_used = 1;
4549 }
4550 else /* type == DEST_REG */
4551 {
4552 v->mode = GET_MODE (SET_DEST (set));
4553
4554 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4555 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4556
4557 v->times_used = n_times_used[REGNO (dest_reg)];
4558
4559 /* If the lifetime is zero, it means that this register is
4560 really a dead store. So mark this as a giv that can be
4561 ignored. This will not prevent the biv from being eliminated. */
4562 if (v->lifetime == 0)
4563 v->ignore = 1;
4564
4565 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4566 reg_iv_info[REGNO (dest_reg)] = v;
4567 }
4568
4569 /* Add the giv to the class of givs computed from one biv. */
4570
4571 bl = reg_biv_class[REGNO (src_reg)];
4572 if (bl)
4573 {
4574 v->next_iv = bl->giv;
4575 bl->giv = v;
4576 /* Don't count DEST_ADDR. This is supposed to count the number of
4577 insns that calculate givs. */
4578 if (type == DEST_REG)
4579 bl->giv_count++;
4580 bl->total_benefit += benefit;
4581 }
4582 else
4583 /* Fatal error, biv missing for this giv? */
4584 abort ();
4585
4586 if (type == DEST_ADDR)
4587 v->replaceable = 1;
4588 else
4589 {
4590 /* The giv can be replaced outright by the reduced register only if all
4591 of the following conditions are true:
4592 - the insn that sets the giv is always executed on any iteration
4593 on which the giv is used at all
4594 (there are two ways to deduce this:
4595 either the insn is executed on every iteration,
4596 or all uses follow that insn in the same basic block),
4597 - the giv is not used outside the loop
4598 - no assignments to the biv occur during the giv's lifetime. */
4599
4600 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4601 /* Previous line always fails if INSN was moved by loop opt. */
4602 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4603 && (! not_every_iteration
4604 || last_use_this_basic_block (dest_reg, insn)))
4605 {
4606 /* Now check that there are no assignments to the biv within the
4607 giv's lifetime. This requires two separate checks. */
4608
4609 /* Check each biv update, and fail if any are between the first
4610 and last use of the giv.
4611
4612 If this loop contains an inner loop that was unrolled, then
4613 the insn modifying the biv may have been emitted by the loop
4614 unrolling code, and hence does not have a valid luid. Just
4615 mark the biv as not replaceable in this case. It is not very
4616 useful as a biv, because it is used in two different loops.
4617 It is very unlikely that we would be able to optimize the giv
4618 using this biv anyways. */
4619
4620 v->replaceable = 1;
4621 for (b = bl->biv; b; b = b->next_iv)
4622 {
4623 if (INSN_UID (b->insn) >= max_uid_for_loop
4624 || ((uid_luid[INSN_UID (b->insn)]
4625 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4626 && (uid_luid[INSN_UID (b->insn)]
4627 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4628 {
4629 v->replaceable = 0;
4630 v->not_replaceable = 1;
4631 break;
4632 }
4633 }
4634
4635 /* If there are any backwards branches that go from after the
4636 biv update to before it, then this giv is not replaceable. */
4637 if (v->replaceable)
4638 for (b = bl->biv; b; b = b->next_iv)
4639 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4640 {
4641 v->replaceable = 0;
4642 v->not_replaceable = 1;
4643 break;
4644 }
4645 }
4646 else
4647 {
4648 /* May still be replaceable, we don't have enough info here to
4649 decide. */
4650 v->replaceable = 0;
4651 v->not_replaceable = 0;
4652 }
4653 }
4654
4655 if (loop_dump_stream)
4656 {
4657 if (type == DEST_REG)
4658 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4659 INSN_UID (insn), REGNO (dest_reg));
4660 else
4661 fprintf (loop_dump_stream, "Insn %d: dest address",
4662 INSN_UID (insn));
4663
4664 fprintf (loop_dump_stream, " src reg %d benefit %d",
4665 REGNO (src_reg), v->benefit);
4666 fprintf (loop_dump_stream, " used %d lifetime %d",
4667 v->times_used, v->lifetime);
4668
4669 if (v->replaceable)
4670 fprintf (loop_dump_stream, " replaceable");
4671
4672 if (GET_CODE (mult_val) == CONST_INT)
4673 fprintf (loop_dump_stream, " mult %d",
4674 INTVAL (mult_val));
4675 else
4676 {
4677 fprintf (loop_dump_stream, " mult ");
4678 print_rtl (loop_dump_stream, mult_val);
4679 }
4680
4681 if (GET_CODE (add_val) == CONST_INT)
4682 fprintf (loop_dump_stream, " add %d",
4683 INTVAL (add_val));
4684 else
4685 {
4686 fprintf (loop_dump_stream, " add ");
4687 print_rtl (loop_dump_stream, add_val);
4688 }
4689 }
4690
4691 if (loop_dump_stream)
4692 fprintf (loop_dump_stream, "\n");
4693
4694 }
4695
4696
4697 /* All this does is determine whether a giv can be made replaceable because
4698 its final value can be calculated. This code can not be part of record_giv
4699 above, because final_giv_value requires that the number of loop iterations
4700 be known, and that can not be accurately calculated until after all givs
4701 have been identified. */
4702
4703 static void
4704 check_final_value (v, loop_start, loop_end)
4705 struct induction *v;
4706 rtx loop_start, loop_end;
4707 {
4708 struct iv_class *bl;
4709 rtx final_value = 0;
4710
4711 bl = reg_biv_class[REGNO (v->src_reg)];
4712
4713 /* DEST_ADDR givs will never reach here, because they are always marked
4714 replaceable above in record_giv. */
4715
4716 /* The giv can be replaced outright by the reduced register only if all
4717 of the following conditions are true:
4718 - the insn that sets the giv is always executed on any iteration
4719 on which the giv is used at all
4720 (there are two ways to deduce this:
4721 either the insn is executed on every iteration,
4722 or all uses follow that insn in the same basic block),
4723 - its final value can be calculated (this condition is different
4724 than the one above in record_giv)
4725 - no assignments to the biv occur during the giv's lifetime. */
4726
4727 #if 0
4728 /* This is only called now when replaceable is known to be false. */
4729 /* Clear replaceable, so that it won't confuse final_giv_value. */
4730 v->replaceable = 0;
4731 #endif
4732
4733 if ((final_value = final_giv_value (v, loop_start, loop_end))
4734 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4735 {
4736 int biv_increment_seen = 0;
4737 rtx p = v->insn;
4738 rtx last_giv_use;
4739
4740 v->replaceable = 1;
4741
4742 /* When trying to determine whether or not a biv increment occurs
4743 during the lifetime of the giv, we can ignore uses of the variable
4744 outside the loop because final_value is true. Hence we can not
4745 use regno_last_uid and regno_first_uid as above in record_giv. */
4746
4747 /* Search the loop to determine whether any assignments to the
4748 biv occur during the giv's lifetime. Start with the insn
4749 that sets the giv, and search around the loop until we come
4750 back to that insn again.
4751
4752 Also fail if there is a jump within the giv's lifetime that jumps
4753 to somewhere outside the lifetime but still within the loop. This
4754 catches spaghetti code where the execution order is not linear, and
4755 hence the above test fails. Here we assume that the giv lifetime
4756 does not extend from one iteration of the loop to the next, so as
4757 to make the test easier. Since the lifetime isn't known yet,
4758 this requires two loops. See also record_giv above. */
4759
4760 last_giv_use = v->insn;
4761
4762 while (1)
4763 {
4764 p = NEXT_INSN (p);
4765 if (p == loop_end)
4766 p = NEXT_INSN (loop_start);
4767 if (p == v->insn)
4768 break;
4769
4770 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4771 || GET_CODE (p) == CALL_INSN)
4772 {
4773 if (biv_increment_seen)
4774 {
4775 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4776 {
4777 v->replaceable = 0;
4778 v->not_replaceable = 1;
4779 break;
4780 }
4781 }
4782 else if (GET_CODE (PATTERN (p)) == SET
4783 && SET_DEST (PATTERN (p)) == v->src_reg)
4784 biv_increment_seen = 1;
4785 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4786 last_giv_use = p;
4787 }
4788 }
4789
4790 /* Now that the lifetime of the giv is known, check for branches
4791 from within the lifetime to outside the lifetime if it is still
4792 replaceable. */
4793
4794 if (v->replaceable)
4795 {
4796 p = v->insn;
4797 while (1)
4798 {
4799 p = NEXT_INSN (p);
4800 if (p == loop_end)
4801 p = NEXT_INSN (loop_start);
4802 if (p == last_giv_use)
4803 break;
4804
4805 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4806 && LABEL_NAME (JUMP_LABEL (p))
4807 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4808 || (INSN_UID (v->insn) >= max_uid_for_loop)
4809 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4810 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4811 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4812 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4813 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4814 {
4815 v->replaceable = 0;
4816 v->not_replaceable = 1;
4817
4818 if (loop_dump_stream)
4819 fprintf (loop_dump_stream,
4820 "Found branch outside giv lifetime.\n");
4821
4822 break;
4823 }
4824 }
4825 }
4826
4827 /* If it is replaceable, then save the final value. */
4828 if (v->replaceable)
4829 v->final_value = final_value;
4830 }
4831
4832 if (loop_dump_stream && v->replaceable)
4833 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4834 INSN_UID (v->insn), REGNO (v->dest_reg));
4835 }
4836 \f
4837 /* Update the status of whether a giv can derive other givs.
4838
4839 We need to do something special if there is or may be an update to the biv
4840 between the time the giv is defined and the time it is used to derive
4841 another giv.
4842
4843 In addition, a giv that is only conditionally set is not allowed to
4844 derive another giv once a label has been passed.
4845
4846 The cases we look at are when a label or an update to a biv is passed. */
4847
4848 static void
4849 update_giv_derive (p)
4850 rtx p;
4851 {
4852 struct iv_class *bl;
4853 struct induction *biv, *giv;
4854 rtx tem;
4855 int dummy;
4856
4857 /* Search all IV classes, then all bivs, and finally all givs.
4858
4859 There are three cases we are concerned with. First we have the situation
4860 of a giv that is only updated conditionally. In that case, it may not
4861 derive any givs after a label is passed.
4862
4863 The second case is when a biv update occurs, or may occur, after the
4864 definition of a giv. For certain biv updates (see below) that are
4865 known to occur between the giv definition and use, we can adjust the
4866 giv definition. For others, or when the biv update is conditional,
4867 we must prevent the giv from deriving any other givs. There are two
4868 sub-cases within this case.
4869
4870 If this is a label, we are concerned with any biv update that is done
4871 conditionally, since it may be done after the giv is defined followed by
4872 a branch here (actually, we need to pass both a jump and a label, but
4873 this extra tracking doesn't seem worth it).
4874
4875 If this is a jump, we are concerned about any biv update that may be
4876 executed multiple times. We are actually only concerned about
4877 backward jumps, but it is probably not worth performing the test
4878 on the jump again here.
4879
4880 If this is a biv update, we must adjust the giv status to show that a
4881 subsequent biv update was performed. If this adjustment cannot be done,
4882 the giv cannot derive further givs. */
4883
4884 for (bl = loop_iv_list; bl; bl = bl->next)
4885 for (biv = bl->biv; biv; biv = biv->next_iv)
4886 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4887 || biv->insn == p)
4888 {
4889 for (giv = bl->giv; giv; giv = giv->next_iv)
4890 {
4891 /* If cant_derive is already true, there is no point in
4892 checking all of these conditions again. */
4893 if (giv->cant_derive)
4894 continue;
4895
4896 /* If this giv is conditionally set and we have passed a label,
4897 it cannot derive anything. */
4898 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4899 giv->cant_derive = 1;
4900
4901 /* Skip givs that have mult_val == 0, since
4902 they are really invariants. Also skip those that are
4903 replaceable, since we know their lifetime doesn't contain
4904 any biv update. */
4905 else if (giv->mult_val == const0_rtx || giv->replaceable)
4906 continue;
4907
4908 /* The only way we can allow this giv to derive another
4909 is if this is a biv increment and we can form the product
4910 of biv->add_val and giv->mult_val. In this case, we will
4911 be able to compute a compensation. */
4912 else if (biv->insn == p)
4913 {
4914 tem = 0;
4915
4916 if (biv->mult_val == const1_rtx)
4917 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4918 biv->add_val,
4919 giv->mult_val),
4920 &dummy);
4921
4922 if (tem && giv->derive_adjustment)
4923 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4924 giv->derive_adjustment),
4925 &dummy);
4926 if (tem)
4927 giv->derive_adjustment = tem;
4928 else
4929 giv->cant_derive = 1;
4930 }
4931 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4932 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4933 giv->cant_derive = 1;
4934 }
4935 }
4936 }
4937 \f
4938 /* Check whether an insn is an increment legitimate for a basic induction var.
4939 X is the source of insn P, or a part of it.
4940 MODE is the mode in which X should be interpreted.
4941
4942 DEST_REG is the putative biv, also the destination of the insn.
4943 We accept patterns of these forms:
4944 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4945 REG = INVARIANT + REG
4946
4947 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4948 and store the additive term into *INC_VAL.
4949
4950 If X is an assignment of an invariant into DEST_REG, we set
4951 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4952
4953 We also want to detect a BIV when it corresponds to a variable
4954 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4955 of the variable may be a PLUS that adds a SUBREG of that variable to
4956 an invariant and then sign- or zero-extends the result of the PLUS
4957 into the variable.
4958
4959 Most GIVs in such cases will be in the promoted mode, since that is the
4960 probably the natural computation mode (and almost certainly the mode
4961 used for addresses) on the machine. So we view the pseudo-reg containing
4962 the variable as the BIV, as if it were simply incremented.
4963
4964 Note that treating the entire pseudo as a BIV will result in making
4965 simple increments to any GIVs based on it. However, if the variable
4966 overflows in its declared mode but not its promoted mode, the result will
4967 be incorrect. This is acceptable if the variable is signed, since
4968 overflows in such cases are undefined, but not if it is unsigned, since
4969 those overflows are defined. So we only check for SIGN_EXTEND and
4970 not ZERO_EXTEND.
4971
4972 If we cannot find a biv, we return 0. */
4973
4974 static int
4975 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
4976 register rtx x;
4977 enum machine_mode mode;
4978 rtx p;
4979 rtx dest_reg;
4980 rtx *inc_val;
4981 rtx *mult_val;
4982 {
4983 register enum rtx_code code;
4984 rtx arg;
4985 rtx insn, set = 0;
4986
4987 code = GET_CODE (x);
4988 switch (code)
4989 {
4990 case PLUS:
4991 if (XEXP (x, 0) == dest_reg
4992 || (GET_CODE (XEXP (x, 0)) == SUBREG
4993 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4994 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4995 arg = XEXP (x, 1);
4996 else if (XEXP (x, 1) == dest_reg
4997 || (GET_CODE (XEXP (x, 1)) == SUBREG
4998 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4999 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5000 arg = XEXP (x, 0);
5001 else
5002 return 0;
5003
5004 if (invariant_p (arg) != 1)
5005 return 0;
5006
5007 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5008 *mult_val = const1_rtx;
5009 return 1;
5010
5011 case SUBREG:
5012 /* If this is a SUBREG for a promoted variable, check the inner
5013 value. */
5014 if (SUBREG_PROMOTED_VAR_P (x))
5015 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5016 dest_reg, p, inc_val, mult_val);
5017 return 0;
5018
5019 case REG:
5020 /* If this register is assigned in the previous insn, look at its
5021 source, but don't go outside the loop or past a label. */
5022
5023 for (insn = PREV_INSN (p);
5024 (insn && GET_CODE (insn) == NOTE
5025 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5026 insn = PREV_INSN (insn))
5027 ;
5028
5029 if (insn)
5030 set = single_set (insn);
5031
5032 if (set != 0
5033 && (SET_DEST (set) == x
5034 || (GET_CODE (SET_DEST (set)) == SUBREG
5035 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5036 <= UNITS_PER_WORD)
5037 && SUBREG_REG (SET_DEST (set)) == x)))
5038 return basic_induction_var (SET_SRC (set),
5039 (GET_MODE (SET_SRC (set)) == VOIDmode
5040 ? GET_MODE (x)
5041 : GET_MODE (SET_SRC (set))),
5042 dest_reg, insn,
5043 inc_val, mult_val);
5044 /* ... fall through ... */
5045
5046 /* Can accept constant setting of biv only when inside inner most loop.
5047 Otherwise, a biv of an inner loop may be incorrectly recognized
5048 as a biv of the outer loop,
5049 causing code to be moved INTO the inner loop. */
5050 case MEM:
5051 if (invariant_p (x) != 1)
5052 return 0;
5053 case CONST_INT:
5054 case SYMBOL_REF:
5055 case CONST:
5056 if (loops_enclosed == 1)
5057 {
5058 /* Possible bug here? Perhaps we don't know the mode of X. */
5059 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5060 *mult_val = const0_rtx;
5061 return 1;
5062 }
5063 else
5064 return 0;
5065
5066 case SIGN_EXTEND:
5067 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5068 dest_reg, p, inc_val, mult_val);
5069 case ASHIFTRT:
5070 /* Similar, since this can be a sign extension. */
5071 for (insn = PREV_INSN (p);
5072 (insn && GET_CODE (insn) == NOTE
5073 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5074 insn = PREV_INSN (insn))
5075 ;
5076
5077 if (insn)
5078 set = single_set (insn);
5079
5080 if (set && SET_DEST (set) == XEXP (x, 0)
5081 && GET_CODE (XEXP (x, 1)) == CONST_INT
5082 && INTVAL (XEXP (x, 1)) >= 0
5083 && GET_CODE (SET_SRC (set)) == ASHIFT
5084 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5085 return basic_induction_var (XEXP (SET_SRC (set), 0),
5086 GET_MODE (XEXP (x, 0)),
5087 dest_reg, insn, inc_val, mult_val);
5088 return 0;
5089
5090 default:
5091 return 0;
5092 }
5093 }
5094 \f
5095 /* A general induction variable (giv) is any quantity that is a linear
5096 function of a basic induction variable,
5097 i.e. giv = biv * mult_val + add_val.
5098 The coefficients can be any loop invariant quantity.
5099 A giv need not be computed directly from the biv;
5100 it can be computed by way of other givs. */
5101
5102 /* Determine whether X computes a giv.
5103 If it does, return a nonzero value
5104 which is the benefit from eliminating the computation of X;
5105 set *SRC_REG to the register of the biv that it is computed from;
5106 set *ADD_VAL and *MULT_VAL to the coefficients,
5107 such that the value of X is biv * mult + add; */
5108
5109 static int
5110 general_induction_var (x, src_reg, add_val, mult_val)
5111 rtx x;
5112 rtx *src_reg;
5113 rtx *add_val;
5114 rtx *mult_val;
5115 {
5116 rtx orig_x = x;
5117 int benefit = 0;
5118 char *storage;
5119
5120 /* If this is an invariant, forget it, it isn't a giv. */
5121 if (invariant_p (x) == 1)
5122 return 0;
5123
5124 /* See if the expression could be a giv and get its form.
5125 Mark our place on the obstack in case we don't find a giv. */
5126 storage = (char *) oballoc (0);
5127 x = simplify_giv_expr (x, &benefit);
5128 if (x == 0)
5129 {
5130 obfree (storage);
5131 return 0;
5132 }
5133
5134 switch (GET_CODE (x))
5135 {
5136 case USE:
5137 case CONST_INT:
5138 /* Since this is now an invariant and wasn't before, it must be a giv
5139 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5140 with. */
5141 *src_reg = loop_iv_list->biv->dest_reg;
5142 *mult_val = const0_rtx;
5143 *add_val = x;
5144 break;
5145
5146 case REG:
5147 /* This is equivalent to a BIV. */
5148 *src_reg = x;
5149 *mult_val = const1_rtx;
5150 *add_val = const0_rtx;
5151 break;
5152
5153 case PLUS:
5154 /* Either (plus (biv) (invar)) or
5155 (plus (mult (biv) (invar_1)) (invar_2)). */
5156 if (GET_CODE (XEXP (x, 0)) == MULT)
5157 {
5158 *src_reg = XEXP (XEXP (x, 0), 0);
5159 *mult_val = XEXP (XEXP (x, 0), 1);
5160 }
5161 else
5162 {
5163 *src_reg = XEXP (x, 0);
5164 *mult_val = const1_rtx;
5165 }
5166 *add_val = XEXP (x, 1);
5167 break;
5168
5169 case MULT:
5170 /* ADD_VAL is zero. */
5171 *src_reg = XEXP (x, 0);
5172 *mult_val = XEXP (x, 1);
5173 *add_val = const0_rtx;
5174 break;
5175
5176 default:
5177 abort ();
5178 }
5179
5180 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5181 unless they are CONST_INT). */
5182 if (GET_CODE (*add_val) == USE)
5183 *add_val = XEXP (*add_val, 0);
5184 if (GET_CODE (*mult_val) == USE)
5185 *mult_val = XEXP (*mult_val, 0);
5186
5187 benefit += rtx_cost (orig_x, SET);
5188
5189 /* Always return some benefit if this is a giv so it will be detected
5190 as such. This allows elimination of bivs that might otherwise
5191 not be eliminated. */
5192 return benefit == 0 ? 1 : benefit;
5193 }
5194 \f
5195 /* Given an expression, X, try to form it as a linear function of a biv.
5196 We will canonicalize it to be of the form
5197 (plus (mult (BIV) (invar_1))
5198 (invar_2))
5199 with possible degeneracies.
5200
5201 The invariant expressions must each be of a form that can be used as a
5202 machine operand. We surround then with a USE rtx (a hack, but localized
5203 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5204 routine; it is the caller's responsibility to strip them.
5205
5206 If no such canonicalization is possible (i.e., two biv's are used or an
5207 expression that is neither invariant nor a biv or giv), this routine
5208 returns 0.
5209
5210 For a non-zero return, the result will have a code of CONST_INT, USE,
5211 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5212
5213 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5214
5215 static rtx
5216 simplify_giv_expr (x, benefit)
5217 rtx x;
5218 int *benefit;
5219 {
5220 enum machine_mode mode = GET_MODE (x);
5221 rtx arg0, arg1;
5222 rtx tem;
5223
5224 /* If this is not an integer mode, or if we cannot do arithmetic in this
5225 mode, this can't be a giv. */
5226 if (mode != VOIDmode
5227 && (GET_MODE_CLASS (mode) != MODE_INT
5228 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5229 return 0;
5230
5231 switch (GET_CODE (x))
5232 {
5233 case PLUS:
5234 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5235 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5236 if (arg0 == 0 || arg1 == 0)
5237 return 0;
5238
5239 /* Put constant last, CONST_INT last if both constant. */
5240 if ((GET_CODE (arg0) == USE
5241 || GET_CODE (arg0) == CONST_INT)
5242 && GET_CODE (arg1) != CONST_INT)
5243 tem = arg0, arg0 = arg1, arg1 = tem;
5244
5245 /* Handle addition of zero, then addition of an invariant. */
5246 if (arg1 == const0_rtx)
5247 return arg0;
5248 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5249 switch (GET_CODE (arg0))
5250 {
5251 case CONST_INT:
5252 case USE:
5253 /* Both invariant. Only valid if sum is machine operand.
5254 First strip off possible USE on first operand. */
5255 if (GET_CODE (arg0) == USE)
5256 arg0 = XEXP (arg0, 0);
5257
5258 tem = 0;
5259 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5260 {
5261 tem = plus_constant (arg0, INTVAL (arg1));
5262 if (GET_CODE (tem) != CONST_INT)
5263 tem = gen_rtx (USE, mode, tem);
5264 }
5265
5266 return tem;
5267
5268 case REG:
5269 case MULT:
5270 /* biv + invar or mult + invar. Return sum. */
5271 return gen_rtx (PLUS, mode, arg0, arg1);
5272
5273 case PLUS:
5274 /* (a + invar_1) + invar_2. Associate. */
5275 return simplify_giv_expr (gen_rtx (PLUS, mode,
5276 XEXP (arg0, 0),
5277 gen_rtx (PLUS, mode,
5278 XEXP (arg0, 1), arg1)),
5279 benefit);
5280
5281 default:
5282 abort ();
5283 }
5284
5285 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5286 MULT to reduce cases. */
5287 if (GET_CODE (arg0) == REG)
5288 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5289 if (GET_CODE (arg1) == REG)
5290 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5291
5292 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5293 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5294 Recurse to associate the second PLUS. */
5295 if (GET_CODE (arg1) == MULT)
5296 tem = arg0, arg0 = arg1, arg1 = tem;
5297
5298 if (GET_CODE (arg1) == PLUS)
5299 return simplify_giv_expr (gen_rtx (PLUS, mode,
5300 gen_rtx (PLUS, mode,
5301 arg0, XEXP (arg1, 0)),
5302 XEXP (arg1, 1)),
5303 benefit);
5304
5305 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5306 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5307 abort ();
5308
5309 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5310 return 0;
5311
5312 return simplify_giv_expr (gen_rtx (MULT, mode,
5313 XEXP (arg0, 0),
5314 gen_rtx (PLUS, mode,
5315 XEXP (arg0, 1),
5316 XEXP (arg1, 1))),
5317 benefit);
5318
5319 case MINUS:
5320 /* Handle "a - b" as "a + b * (-1)". */
5321 return simplify_giv_expr (gen_rtx (PLUS, mode,
5322 XEXP (x, 0),
5323 gen_rtx (MULT, mode,
5324 XEXP (x, 1), constm1_rtx)),
5325 benefit);
5326
5327 case MULT:
5328 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5329 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5330 if (arg0 == 0 || arg1 == 0)
5331 return 0;
5332
5333 /* Put constant last, CONST_INT last if both constant. */
5334 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5335 && GET_CODE (arg1) != CONST_INT)
5336 tem = arg0, arg0 = arg1, arg1 = tem;
5337
5338 /* If second argument is not now constant, not giv. */
5339 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5340 return 0;
5341
5342 /* Handle multiply by 0 or 1. */
5343 if (arg1 == const0_rtx)
5344 return const0_rtx;
5345
5346 else if (arg1 == const1_rtx)
5347 return arg0;
5348
5349 switch (GET_CODE (arg0))
5350 {
5351 case REG:
5352 /* biv * invar. Done. */
5353 return gen_rtx (MULT, mode, arg0, arg1);
5354
5355 case CONST_INT:
5356 /* Product of two constants. */
5357 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5358
5359 case USE:
5360 /* invar * invar. Not giv. */
5361 return 0;
5362
5363 case MULT:
5364 /* (a * invar_1) * invar_2. Associate. */
5365 return simplify_giv_expr (gen_rtx (MULT, mode,
5366 XEXP (arg0, 0),
5367 gen_rtx (MULT, mode,
5368 XEXP (arg0, 1), arg1)),
5369 benefit);
5370
5371 case PLUS:
5372 /* (a + invar_1) * invar_2. Distribute. */
5373 return simplify_giv_expr (gen_rtx (PLUS, mode,
5374 gen_rtx (MULT, mode,
5375 XEXP (arg0, 0), arg1),
5376 gen_rtx (MULT, mode,
5377 XEXP (arg0, 1), arg1)),
5378 benefit);
5379
5380 default:
5381 abort ();
5382 }
5383
5384 case ASHIFT:
5385 /* Shift by constant is multiply by power of two. */
5386 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5387 return 0;
5388
5389 return simplify_giv_expr (gen_rtx (MULT, mode,
5390 XEXP (x, 0),
5391 GEN_INT ((HOST_WIDE_INT) 1
5392 << INTVAL (XEXP (x, 1)))),
5393 benefit);
5394
5395 case NEG:
5396 /* "-a" is "a * (-1)" */
5397 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5398 benefit);
5399
5400 case NOT:
5401 /* "~a" is "-a - 1". Silly, but easy. */
5402 return simplify_giv_expr (gen_rtx (MINUS, mode,
5403 gen_rtx (NEG, mode, XEXP (x, 0)),
5404 const1_rtx),
5405 benefit);
5406
5407 case USE:
5408 /* Already in proper form for invariant. */
5409 return x;
5410
5411 case REG:
5412 /* If this is a new register, we can't deal with it. */
5413 if (REGNO (x) >= max_reg_before_loop)
5414 return 0;
5415
5416 /* Check for biv or giv. */
5417 switch (reg_iv_type[REGNO (x)])
5418 {
5419 case BASIC_INDUCT:
5420 return x;
5421 case GENERAL_INDUCT:
5422 {
5423 struct induction *v = reg_iv_info[REGNO (x)];
5424
5425 /* Form expression from giv and add benefit. Ensure this giv
5426 can derive another and subtract any needed adjustment if so. */
5427 *benefit += v->benefit;
5428 if (v->cant_derive)
5429 return 0;
5430
5431 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5432 v->src_reg, v->mult_val),
5433 v->add_val);
5434 if (v->derive_adjustment)
5435 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5436 return simplify_giv_expr (tem, benefit);
5437 }
5438 }
5439
5440 /* Fall through to general case. */
5441 default:
5442 /* If invariant, return as USE (unless CONST_INT).
5443 Otherwise, not giv. */
5444 if (GET_CODE (x) == USE)
5445 x = XEXP (x, 0);
5446
5447 if (invariant_p (x) == 1)
5448 {
5449 if (GET_CODE (x) == CONST_INT)
5450 return x;
5451 else
5452 return gen_rtx (USE, mode, x);
5453 }
5454 else
5455 return 0;
5456 }
5457 }
5458 \f
5459 /* Help detect a giv that is calculated by several consecutive insns;
5460 for example,
5461 giv = biv * M
5462 giv = giv + A
5463 The caller has already identified the first insn P as having a giv as dest;
5464 we check that all other insns that set the same register follow
5465 immediately after P, that they alter nothing else,
5466 and that the result of the last is still a giv.
5467
5468 The value is 0 if the reg set in P is not really a giv.
5469 Otherwise, the value is the amount gained by eliminating
5470 all the consecutive insns that compute the value.
5471
5472 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5473 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5474
5475 The coefficients of the ultimate giv value are stored in
5476 *MULT_VAL and *ADD_VAL. */
5477
5478 static int
5479 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5480 add_val, mult_val)
5481 int first_benefit;
5482 rtx p;
5483 rtx src_reg;
5484 rtx dest_reg;
5485 rtx *add_val;
5486 rtx *mult_val;
5487 {
5488 int count;
5489 enum rtx_code code;
5490 int benefit;
5491 rtx temp;
5492 rtx set;
5493
5494 /* Indicate that this is a giv so that we can update the value produced in
5495 each insn of the multi-insn sequence.
5496
5497 This induction structure will be used only by the call to
5498 general_induction_var below, so we can allocate it on our stack.
5499 If this is a giv, our caller will replace the induct var entry with
5500 a new induction structure. */
5501 struct induction *v
5502 = (struct induction *) alloca (sizeof (struct induction));
5503 v->src_reg = src_reg;
5504 v->mult_val = *mult_val;
5505 v->add_val = *add_val;
5506 v->benefit = first_benefit;
5507 v->cant_derive = 0;
5508 v->derive_adjustment = 0;
5509
5510 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5511 reg_iv_info[REGNO (dest_reg)] = v;
5512
5513 count = n_times_set[REGNO (dest_reg)] - 1;
5514
5515 while (count > 0)
5516 {
5517 p = NEXT_INSN (p);
5518 code = GET_CODE (p);
5519
5520 /* If libcall, skip to end of call sequence. */
5521 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5522 p = XEXP (temp, 0);
5523
5524 if (code == INSN
5525 && (set = single_set (p))
5526 && GET_CODE (SET_DEST (set)) == REG
5527 && SET_DEST (set) == dest_reg
5528 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5529 add_val, mult_val))
5530 /* Giv created by equivalent expression. */
5531 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5532 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5533 add_val, mult_val))))
5534 && src_reg == v->src_reg)
5535 {
5536 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5537 benefit += libcall_benefit (p);
5538
5539 count--;
5540 v->mult_val = *mult_val;
5541 v->add_val = *add_val;
5542 v->benefit = benefit;
5543 }
5544 else if (code != NOTE)
5545 {
5546 /* Allow insns that set something other than this giv to a
5547 constant. Such insns are needed on machines which cannot
5548 include long constants and should not disqualify a giv. */
5549 if (code == INSN
5550 && (set = single_set (p))
5551 && SET_DEST (set) != dest_reg
5552 && CONSTANT_P (SET_SRC (set)))
5553 continue;
5554
5555 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5556 return 0;
5557 }
5558 }
5559
5560 return v->benefit;
5561 }
5562 \f
5563 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5564 represented by G1. If no such expression can be found, or it is clear that
5565 it cannot possibly be a valid address, 0 is returned.
5566
5567 To perform the computation, we note that
5568 G1 = a * v + b and
5569 G2 = c * v + d
5570 where `v' is the biv.
5571
5572 So G2 = (c/a) * G1 + (d - b*c/a) */
5573
5574 #ifdef ADDRESS_COST
5575 static rtx
5576 express_from (g1, g2)
5577 struct induction *g1, *g2;
5578 {
5579 rtx mult, add;
5580
5581 /* The value that G1 will be multiplied by must be a constant integer. Also,
5582 the only chance we have of getting a valid address is if b*c/a (see above
5583 for notation) is also an integer. */
5584 if (GET_CODE (g1->mult_val) != CONST_INT
5585 || GET_CODE (g2->mult_val) != CONST_INT
5586 || GET_CODE (g1->add_val) != CONST_INT
5587 || g1->mult_val == const0_rtx
5588 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5589 return 0;
5590
5591 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5592 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5593
5594 /* Form simplified final result. */
5595 if (mult == const0_rtx)
5596 return add;
5597 else if (mult == const1_rtx)
5598 mult = g1->dest_reg;
5599 else
5600 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5601
5602 if (add == const0_rtx)
5603 return mult;
5604 else
5605 return gen_rtx (PLUS, g2->mode, mult, add);
5606 }
5607 #endif
5608 \f
5609 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5610 (either directly or via an address expression) a register used to represent
5611 G1. Set g2->new_reg to a represtation of G1 (normally just
5612 g1->dest_reg). */
5613
5614 static int
5615 combine_givs_p (g1, g2)
5616 struct induction *g1, *g2;
5617 {
5618 rtx tem;
5619
5620 /* If these givs are identical, they can be combined. */
5621 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5622 && rtx_equal_p (g1->add_val, g2->add_val))
5623 {
5624 g2->new_reg = g1->dest_reg;
5625 return 1;
5626 }
5627
5628 #ifdef ADDRESS_COST
5629 /* If G2 can be expressed as a function of G1 and that function is valid
5630 as an address and no more expensive than using a register for G2,
5631 the expression of G2 in terms of G1 can be used. */
5632 if (g2->giv_type == DEST_ADDR
5633 && (tem = express_from (g1, g2)) != 0
5634 && memory_address_p (g2->mem_mode, tem)
5635 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5636 {
5637 g2->new_reg = tem;
5638 return 1;
5639 }
5640 #endif
5641
5642 return 0;
5643 }
5644 \f
5645 #ifdef GIV_SORT_CRITERION
5646 /* Compare two givs and sort the most desirable one for combinations first.
5647 This is used only in one qsort call below. */
5648
5649 static int
5650 giv_sort (x, y)
5651 struct induction **x, **y;
5652 {
5653 GIV_SORT_CRITERION (*x, *y);
5654
5655 return 0;
5656 }
5657 #endif
5658
5659 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5660 any other. If so, point SAME to the giv combined with and set NEW_REG to
5661 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5662 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5663
5664 static void
5665 combine_givs (bl)
5666 struct iv_class *bl;
5667 {
5668 struct induction *g1, *g2, **giv_array, *temp_iv;
5669 int i, j, giv_count, pass;
5670
5671 /* Count givs, because bl->giv_count is incorrect here. */
5672 giv_count = 0;
5673 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5674 giv_count++;
5675
5676 giv_array
5677 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5678 i = 0;
5679 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5680 giv_array[i++] = g1;
5681
5682 #ifdef GIV_SORT_CRITERION
5683 /* Sort the givs if GIV_SORT_CRITERION is defined.
5684 This is usually defined for processors which lack
5685 negative register offsets so more givs may be combined. */
5686
5687 if (loop_dump_stream)
5688 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5689
5690 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5691 #endif
5692
5693 for (i = 0; i < giv_count; i++)
5694 {
5695 g1 = giv_array[i];
5696 for (pass = 0; pass <= 1; pass++)
5697 for (j = 0; j < giv_count; j++)
5698 {
5699 g2 = giv_array[j];
5700 if (g1 != g2
5701 /* First try to combine with replaceable givs, then all givs. */
5702 && (g1->replaceable || pass == 1)
5703 /* If either has already been combined or is to be ignored, can't
5704 combine. */
5705 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5706 /* If something has been based on G2, G2 cannot itself be based
5707 on something else. */
5708 && ! g2->combined_with
5709 && combine_givs_p (g1, g2))
5710 {
5711 /* g2->new_reg set by `combine_givs_p' */
5712 g2->same = g1;
5713 g1->combined_with = 1;
5714
5715 /* If one of these givs is a DEST_REG that was only used
5716 once, by the other giv, this is actually a single use.
5717 The DEST_REG has the correct cost, while the other giv
5718 counts the REG use too often. */
5719 if (g2->giv_type == DEST_REG
5720 && n_times_used[REGNO (g2->dest_reg)] == 1
5721 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5722 g1->benefit = g2->benefit;
5723 else if (g1->giv_type != DEST_REG
5724 || n_times_used[REGNO (g1->dest_reg)] != 1
5725 || ! reg_mentioned_p (g1->dest_reg,
5726 PATTERN (g2->insn)))
5727 {
5728 g1->benefit += g2->benefit;
5729 g1->times_used += g2->times_used;
5730 }
5731 /* ??? The new final_[bg]iv_value code does a much better job
5732 of finding replaceable giv's, and hence this code may no
5733 longer be necessary. */
5734 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5735 g1->benefit -= copy_cost;
5736 g1->lifetime += g2->lifetime;
5737
5738 if (loop_dump_stream)
5739 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5740 INSN_UID (g2->insn), INSN_UID (g1->insn));
5741 }
5742 }
5743 }
5744 }
5745 \f
5746 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5747
5748 void
5749 emit_iv_add_mult (b, m, a, reg, insert_before)
5750 rtx b; /* initial value of basic induction variable */
5751 rtx m; /* multiplicative constant */
5752 rtx a; /* additive constant */
5753 rtx reg; /* destination register */
5754 rtx insert_before;
5755 {
5756 rtx seq;
5757 rtx result;
5758
5759 /* Prevent unexpected sharing of these rtx. */
5760 a = copy_rtx (a);
5761 b = copy_rtx (b);
5762
5763 /* Increase the lifetime of any invariants moved further in code. */
5764 update_reg_last_use (a, insert_before);
5765 update_reg_last_use (b, insert_before);
5766 update_reg_last_use (m, insert_before);
5767
5768 start_sequence ();
5769 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5770 if (reg != result)
5771 emit_move_insn (reg, result);
5772 seq = gen_sequence ();
5773 end_sequence ();
5774
5775 emit_insn_before (seq, insert_before);
5776
5777 record_base_value (REGNO (reg), b);
5778 }
5779 \f
5780 /* Test whether A * B can be computed without
5781 an actual multiply insn. Value is 1 if so. */
5782
5783 static int
5784 product_cheap_p (a, b)
5785 rtx a;
5786 rtx b;
5787 {
5788 int i;
5789 rtx tmp;
5790 struct obstack *old_rtl_obstack = rtl_obstack;
5791 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5792 int win = 1;
5793
5794 /* If only one is constant, make it B. */
5795 if (GET_CODE (a) == CONST_INT)
5796 tmp = a, a = b, b = tmp;
5797
5798 /* If first constant, both constant, so don't need multiply. */
5799 if (GET_CODE (a) == CONST_INT)
5800 return 1;
5801
5802 /* If second not constant, neither is constant, so would need multiply. */
5803 if (GET_CODE (b) != CONST_INT)
5804 return 0;
5805
5806 /* One operand is constant, so might not need multiply insn. Generate the
5807 code for the multiply and see if a call or multiply, or long sequence
5808 of insns is generated. */
5809
5810 rtl_obstack = &temp_obstack;
5811 start_sequence ();
5812 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5813 tmp = gen_sequence ();
5814 end_sequence ();
5815
5816 if (GET_CODE (tmp) == SEQUENCE)
5817 {
5818 if (XVEC (tmp, 0) == 0)
5819 win = 1;
5820 else if (XVECLEN (tmp, 0) > 3)
5821 win = 0;
5822 else
5823 for (i = 0; i < XVECLEN (tmp, 0); i++)
5824 {
5825 rtx insn = XVECEXP (tmp, 0, i);
5826
5827 if (GET_CODE (insn) != INSN
5828 || (GET_CODE (PATTERN (insn)) == SET
5829 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5830 || (GET_CODE (PATTERN (insn)) == PARALLEL
5831 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5832 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5833 {
5834 win = 0;
5835 break;
5836 }
5837 }
5838 }
5839 else if (GET_CODE (tmp) == SET
5840 && GET_CODE (SET_SRC (tmp)) == MULT)
5841 win = 0;
5842 else if (GET_CODE (tmp) == PARALLEL
5843 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5844 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5845 win = 0;
5846
5847 /* Free any storage we obtained in generating this multiply and restore rtl
5848 allocation to its normal obstack. */
5849 obstack_free (&temp_obstack, storage);
5850 rtl_obstack = old_rtl_obstack;
5851
5852 return win;
5853 }
5854 \f
5855 /* Check to see if loop can be terminated by a "decrement and branch until
5856 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5857 Also try reversing an increment loop to a decrement loop
5858 to see if the optimization can be performed.
5859 Value is nonzero if optimization was performed. */
5860
5861 /* This is useful even if the architecture doesn't have such an insn,
5862 because it might change a loops which increments from 0 to n to a loop
5863 which decrements from n to 0. A loop that decrements to zero is usually
5864 faster than one that increments from zero. */
5865
5866 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5867 such as approx_final_value, biv_total_increment, loop_iterations, and
5868 final_[bg]iv_value. */
5869
5870 static int
5871 check_dbra_loop (loop_end, insn_count, loop_start)
5872 rtx loop_end;
5873 int insn_count;
5874 rtx loop_start;
5875 {
5876 struct iv_class *bl;
5877 rtx reg;
5878 rtx jump_label;
5879 rtx final_value;
5880 rtx start_value;
5881 rtx new_add_val;
5882 rtx comparison;
5883 rtx before_comparison;
5884 rtx p;
5885
5886 /* If last insn is a conditional branch, and the insn before tests a
5887 register value, try to optimize it. Otherwise, we can't do anything. */
5888
5889 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5890 if (comparison == 0)
5891 return 0;
5892
5893 /* Check all of the bivs to see if the compare uses one of them.
5894 Skip biv's set more than once because we can't guarantee that
5895 it will be zero on the last iteration. Also skip if the biv is
5896 used between its update and the test insn. */
5897
5898 for (bl = loop_iv_list; bl; bl = bl->next)
5899 {
5900 if (bl->biv_count == 1
5901 && bl->biv->dest_reg == XEXP (comparison, 0)
5902 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5903 PREV_INSN (PREV_INSN (loop_end))))
5904 break;
5905 }
5906
5907 if (! bl)
5908 return 0;
5909
5910 /* Look for the case where the basic induction variable is always
5911 nonnegative, and equals zero on the last iteration.
5912 In this case, add a reg_note REG_NONNEG, which allows the
5913 m68k DBRA instruction to be used. */
5914
5915 if (((GET_CODE (comparison) == GT
5916 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5917 && INTVAL (XEXP (comparison, 1)) == -1)
5918 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5919 && GET_CODE (bl->biv->add_val) == CONST_INT
5920 && INTVAL (bl->biv->add_val) < 0)
5921 {
5922 /* Initial value must be greater than 0,
5923 init_val % -dec_value == 0 to ensure that it equals zero on
5924 the last iteration */
5925
5926 if (GET_CODE (bl->initial_value) == CONST_INT
5927 && INTVAL (bl->initial_value) > 0
5928 && (INTVAL (bl->initial_value)
5929 % (-INTVAL (bl->biv->add_val))) == 0)
5930 {
5931 /* register always nonnegative, add REG_NOTE to branch */
5932 REG_NOTES (PREV_INSN (loop_end))
5933 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5934 REG_NOTES (PREV_INSN (loop_end)));
5935 bl->nonneg = 1;
5936
5937 return 1;
5938 }
5939
5940 /* If the decrement is 1 and the value was tested as >= 0 before
5941 the loop, then we can safely optimize. */
5942 for (p = loop_start; p; p = PREV_INSN (p))
5943 {
5944 if (GET_CODE (p) == CODE_LABEL)
5945 break;
5946 if (GET_CODE (p) != JUMP_INSN)
5947 continue;
5948
5949 before_comparison = get_condition_for_loop (p);
5950 if (before_comparison
5951 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5952 && GET_CODE (before_comparison) == LT
5953 && XEXP (before_comparison, 1) == const0_rtx
5954 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5955 && INTVAL (bl->biv->add_val) == -1)
5956 {
5957 REG_NOTES (PREV_INSN (loop_end))
5958 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5959 REG_NOTES (PREV_INSN (loop_end)));
5960 bl->nonneg = 1;
5961
5962 return 1;
5963 }
5964 }
5965 }
5966 else if (num_mem_sets <= 1)
5967 {
5968 /* Try to change inc to dec, so can apply above optimization. */
5969 /* Can do this if:
5970 all registers modified are induction variables or invariant,
5971 all memory references have non-overlapping addresses
5972 (obviously true if only one write)
5973 allow 2 insns for the compare/jump at the end of the loop. */
5974 /* Also, we must avoid any instructions which use both the reversed
5975 biv and another biv. Such instructions will fail if the loop is
5976 reversed. We meet this condition by requiring that either
5977 no_use_except_counting is true, or else that there is only
5978 one biv. */
5979 int num_nonfixed_reads = 0;
5980 /* 1 if the iteration var is used only to count iterations. */
5981 int no_use_except_counting = 0;
5982 /* 1 if the loop has no memory store, or it has a single memory store
5983 which is reversible. */
5984 int reversible_mem_store = 1;
5985
5986 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5987 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5988 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5989
5990 if (bl->giv_count == 0
5991 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
5992 {
5993 rtx bivreg = regno_reg_rtx[bl->regno];
5994
5995 /* If there are no givs for this biv, and the only exit is the
5996 fall through at the end of the the loop, then
5997 see if perhaps there are no uses except to count. */
5998 no_use_except_counting = 1;
5999 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6000 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6001 {
6002 rtx set = single_set (p);
6003
6004 if (set && GET_CODE (SET_DEST (set)) == REG
6005 && REGNO (SET_DEST (set)) == bl->regno)
6006 /* An insn that sets the biv is okay. */
6007 ;
6008 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6009 || p == prev_nonnote_insn (loop_end))
6010 /* Don't bother about the end test. */
6011 ;
6012 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6013 /* Any other use of the biv is no good. */
6014 {
6015 no_use_except_counting = 0;
6016 break;
6017 }
6018 }
6019 }
6020
6021 /* If the loop has a single store, and the destination address is
6022 invariant, then we can't reverse the loop, because this address
6023 might then have the wrong value at loop exit.
6024 This would work if the source was invariant also, however, in that
6025 case, the insn should have been moved out of the loop. */
6026
6027 if (num_mem_sets == 1)
6028 reversible_mem_store
6029 = (! unknown_address_altered
6030 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6031
6032 /* This code only acts for innermost loops. Also it simplifies
6033 the memory address check by only reversing loops with
6034 zero or one memory access.
6035 Two memory accesses could involve parts of the same array,
6036 and that can't be reversed. */
6037
6038 if (num_nonfixed_reads <= 1
6039 && !loop_has_call
6040 && !loop_has_volatile
6041 && reversible_mem_store
6042 && (no_use_except_counting
6043 || ((bl->giv_count + bl->biv_count + num_mem_sets
6044 + num_movables + 2 == insn_count)
6045 && (bl == loop_iv_list && bl->next == 0))))
6046 {
6047 rtx tem;
6048
6049 /* Loop can be reversed. */
6050 if (loop_dump_stream)
6051 fprintf (loop_dump_stream, "Can reverse loop\n");
6052
6053 /* Now check other conditions:
6054 initial_value must be zero,
6055 final_value % add_val == 0, so that when reversed, the
6056 biv will be zero on the last iteration.
6057
6058 This test can probably be improved since +/- 1 in the constant
6059 can be obtained by changing LT to LE and vice versa; this is
6060 confusing. */
6061
6062 if (comparison && bl->initial_value == const0_rtx
6063 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6064 /* LE gets turned into LT */
6065 && GET_CODE (comparison) == LT
6066 && (INTVAL (XEXP (comparison, 1))
6067 % INTVAL (bl->biv->add_val)) == 0)
6068 {
6069 /* Register will always be nonnegative, with value
6070 0 on last iteration if loop reversed */
6071
6072 /* Save some info needed to produce the new insns. */
6073 reg = bl->biv->dest_reg;
6074 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6075 if (jump_label == pc_rtx)
6076 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6077 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6078
6079 final_value = XEXP (comparison, 1);
6080 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6081 - INTVAL (bl->biv->add_val));
6082
6083 /* Initialize biv to start_value before loop start.
6084 The old initializing insn will be deleted as a
6085 dead store by flow.c. */
6086 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6087
6088 /* Add insn to decrement register, and delete insn
6089 that incremented the register. */
6090 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6091 bl->biv->insn);
6092 delete_insn (bl->biv->insn);
6093
6094 /* Update biv info to reflect its new status. */
6095 bl->biv->insn = p;
6096 bl->initial_value = start_value;
6097 bl->biv->add_val = new_add_val;
6098
6099 /* Inc LABEL_NUSES so that delete_insn will
6100 not delete the label. */
6101 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6102
6103 /* Emit an insn after the end of the loop to set the biv's
6104 proper exit value if it is used anywhere outside the loop. */
6105 if ((REGNO_LAST_UID (bl->regno)
6106 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6107 || ! bl->init_insn
6108 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6109 emit_insn_after (gen_move_insn (reg, final_value),
6110 loop_end);
6111
6112 /* Delete compare/branch at end of loop. */
6113 delete_insn (PREV_INSN (loop_end));
6114 delete_insn (PREV_INSN (loop_end));
6115
6116 /* Add new compare/branch insn at end of loop. */
6117 start_sequence ();
6118 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6119 GET_MODE (reg), 0, 0);
6120 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6121 tem = gen_sequence ();
6122 end_sequence ();
6123 emit_jump_insn_before (tem, loop_end);
6124
6125 for (tem = PREV_INSN (loop_end);
6126 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6127 ;
6128 if (tem)
6129 {
6130 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6131
6132 /* Increment of LABEL_NUSES done above. */
6133 /* Register is now always nonnegative,
6134 so add REG_NONNEG note to the branch. */
6135 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6136 REG_NOTES (tem));
6137 }
6138
6139 bl->nonneg = 1;
6140
6141 /* Mark that this biv has been reversed. Each giv which depends
6142 on this biv, and which is also live past the end of the loop
6143 will have to be fixed up. */
6144
6145 bl->reversed = 1;
6146
6147 if (loop_dump_stream)
6148 fprintf (loop_dump_stream,
6149 "Reversed loop and added reg_nonneg\n");
6150
6151 return 1;
6152 }
6153 }
6154 }
6155
6156 return 0;
6157 }
6158 \f
6159 /* Verify whether the biv BL appears to be eliminable,
6160 based on the insns in the loop that refer to it.
6161 LOOP_START is the first insn of the loop, and END is the end insn.
6162
6163 If ELIMINATE_P is non-zero, actually do the elimination.
6164
6165 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6166 determine whether invariant insns should be placed inside or at the
6167 start of the loop. */
6168
6169 static int
6170 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6171 struct iv_class *bl;
6172 rtx loop_start;
6173 rtx end;
6174 int eliminate_p;
6175 int threshold, insn_count;
6176 {
6177 rtx reg = bl->biv->dest_reg;
6178 rtx p;
6179
6180 /* Scan all insns in the loop, stopping if we find one that uses the
6181 biv in a way that we cannot eliminate. */
6182
6183 for (p = loop_start; p != end; p = NEXT_INSN (p))
6184 {
6185 enum rtx_code code = GET_CODE (p);
6186 rtx where = threshold >= insn_count ? loop_start : p;
6187
6188 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6189 && reg_mentioned_p (reg, PATTERN (p))
6190 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6191 {
6192 if (loop_dump_stream)
6193 fprintf (loop_dump_stream,
6194 "Cannot eliminate biv %d: biv used in insn %d.\n",
6195 bl->regno, INSN_UID (p));
6196 break;
6197 }
6198 }
6199
6200 if (p == end)
6201 {
6202 if (loop_dump_stream)
6203 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6204 bl->regno, eliminate_p ? "was" : "can be");
6205 return 1;
6206 }
6207
6208 return 0;
6209 }
6210 \f
6211 /* If BL appears in X (part of the pattern of INSN), see if we can
6212 eliminate its use. If so, return 1. If not, return 0.
6213
6214 If BIV does not appear in X, return 1.
6215
6216 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6217 where extra insns should be added. Depending on how many items have been
6218 moved out of the loop, it will either be before INSN or at the start of
6219 the loop. */
6220
6221 static int
6222 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6223 rtx x, insn;
6224 struct iv_class *bl;
6225 int eliminate_p;
6226 rtx where;
6227 {
6228 enum rtx_code code = GET_CODE (x);
6229 rtx reg = bl->biv->dest_reg;
6230 enum machine_mode mode = GET_MODE (reg);
6231 struct induction *v;
6232 rtx arg, new, tem;
6233 int arg_operand;
6234 char *fmt;
6235 int i, j;
6236
6237 switch (code)
6238 {
6239 case REG:
6240 /* If we haven't already been able to do something with this BIV,
6241 we can't eliminate it. */
6242 if (x == reg)
6243 return 0;
6244 return 1;
6245
6246 case SET:
6247 /* If this sets the BIV, it is not a problem. */
6248 if (SET_DEST (x) == reg)
6249 return 1;
6250
6251 /* If this is an insn that defines a giv, it is also ok because
6252 it will go away when the giv is reduced. */
6253 for (v = bl->giv; v; v = v->next_iv)
6254 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6255 return 1;
6256
6257 #ifdef HAVE_cc0
6258 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6259 {
6260 /* Can replace with any giv that was reduced and
6261 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6262 Require a constant for MULT_VAL, so we know it's nonzero.
6263 ??? We disable this optimization to avoid potential
6264 overflows. */
6265
6266 for (v = bl->giv; v; v = v->next_iv)
6267 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6268 && v->add_val == const0_rtx
6269 && ! v->ignore && ! v->maybe_dead && v->always_computable
6270 && v->mode == mode
6271 && 0)
6272 {
6273 /* If the giv V had the auto-inc address optimization applied
6274 to it, and INSN occurs between the giv insn and the biv
6275 insn, then we must adjust the value used here.
6276 This is rare, so we don't bother to do so. */
6277 if (v->auto_inc_opt
6278 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6279 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6280 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6281 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6282 continue;
6283
6284 if (! eliminate_p)
6285 return 1;
6286
6287 /* If the giv has the opposite direction of change,
6288 then reverse the comparison. */
6289 if (INTVAL (v->mult_val) < 0)
6290 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
6291 const0_rtx, v->new_reg);
6292 else
6293 new = v->new_reg;
6294
6295 /* We can probably test that giv's reduced reg. */
6296 if (validate_change (insn, &SET_SRC (x), new, 0))
6297 return 1;
6298 }
6299
6300 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6301 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6302 Require a constant for MULT_VAL, so we know it's nonzero.
6303 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6304 overflow problem. */
6305
6306 for (v = bl->giv; v; v = v->next_iv)
6307 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6308 && ! v->ignore && ! v->maybe_dead && v->always_computable
6309 && v->mode == mode
6310 && (GET_CODE (v->add_val) == SYMBOL_REF
6311 || GET_CODE (v->add_val) == LABEL_REF
6312 || GET_CODE (v->add_val) == CONST
6313 || (GET_CODE (v->add_val) == REG
6314 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6315 {
6316 /* If the giv V had the auto-inc address optimization applied
6317 to it, and INSN occurs between the giv insn and the biv
6318 insn, then we must adjust the value used here.
6319 This is rare, so we don't bother to do so. */
6320 if (v->auto_inc_opt
6321 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6322 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6323 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6324 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6325 continue;
6326
6327 if (! eliminate_p)
6328 return 1;
6329
6330 /* If the giv has the opposite direction of change,
6331 then reverse the comparison. */
6332 if (INTVAL (v->mult_val) < 0)
6333 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
6334 v->new_reg);
6335 else
6336 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
6337 copy_rtx (v->add_val));
6338
6339 /* Replace biv with the giv's reduced register. */
6340 update_reg_last_use (v->add_val, insn);
6341 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6342 return 1;
6343
6344 /* Insn doesn't support that constant or invariant. Copy it
6345 into a register (it will be a loop invariant.) */
6346 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6347
6348 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6349 where);
6350
6351 /* Substitute the new register for its invariant value in
6352 the compare expression. */
6353 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6354 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6355 return 1;
6356 }
6357 }
6358 #endif
6359 break;
6360
6361 case COMPARE:
6362 case EQ: case NE:
6363 case GT: case GE: case GTU: case GEU:
6364 case LT: case LE: case LTU: case LEU:
6365 /* See if either argument is the biv. */
6366 if (XEXP (x, 0) == reg)
6367 arg = XEXP (x, 1), arg_operand = 1;
6368 else if (XEXP (x, 1) == reg)
6369 arg = XEXP (x, 0), arg_operand = 0;
6370 else
6371 break;
6372
6373 if (CONSTANT_P (arg))
6374 {
6375 /* First try to replace with any giv that has constant positive
6376 mult_val and constant add_val. We might be able to support
6377 negative mult_val, but it seems complex to do it in general. */
6378
6379 for (v = bl->giv; v; v = v->next_iv)
6380 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6381 && (GET_CODE (v->add_val) == SYMBOL_REF
6382 || GET_CODE (v->add_val) == LABEL_REF
6383 || GET_CODE (v->add_val) == CONST
6384 || (GET_CODE (v->add_val) == REG
6385 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6386 && ! v->ignore && ! v->maybe_dead && v->always_computable
6387 && v->mode == mode)
6388 {
6389 /* If the giv V had the auto-inc address optimization applied
6390 to it, and INSN occurs between the giv insn and the biv
6391 insn, then we must adjust the value used here.
6392 This is rare, so we don't bother to do so. */
6393 if (v->auto_inc_opt
6394 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6395 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6396 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6397 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6398 continue;
6399
6400 if (! eliminate_p)
6401 return 1;
6402
6403 /* Replace biv with the giv's reduced reg. */
6404 XEXP (x, 1-arg_operand) = v->new_reg;
6405
6406 /* If all constants are actually constant integers and
6407 the derived constant can be directly placed in the COMPARE,
6408 do so. */
6409 if (GET_CODE (arg) == CONST_INT
6410 && GET_CODE (v->mult_val) == CONST_INT
6411 && GET_CODE (v->add_val) == CONST_INT
6412 && validate_change (insn, &XEXP (x, arg_operand),
6413 GEN_INT (INTVAL (arg)
6414 * INTVAL (v->mult_val)
6415 + INTVAL (v->add_val)), 0))
6416 return 1;
6417
6418 /* Otherwise, load it into a register. */
6419 tem = gen_reg_rtx (mode);
6420 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6421 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6422 return 1;
6423
6424 /* If that failed, put back the change we made above. */
6425 XEXP (x, 1-arg_operand) = reg;
6426 }
6427
6428 /* Look for giv with positive constant mult_val and nonconst add_val.
6429 Insert insns to calculate new compare value.
6430 ??? Turn this off due to possible overflow. */
6431
6432 for (v = bl->giv; v; v = v->next_iv)
6433 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6434 && ! v->ignore && ! v->maybe_dead && v->always_computable
6435 && v->mode == mode
6436 && 0)
6437 {
6438 rtx tem;
6439
6440 /* If the giv V had the auto-inc address optimization applied
6441 to it, and INSN occurs between the giv insn and the biv
6442 insn, then we must adjust the value used here.
6443 This is rare, so we don't bother to do so. */
6444 if (v->auto_inc_opt
6445 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6446 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6447 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6448 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6449 continue;
6450
6451 if (! eliminate_p)
6452 return 1;
6453
6454 tem = gen_reg_rtx (mode);
6455
6456 /* Replace biv with giv's reduced register. */
6457 validate_change (insn, &XEXP (x, 1 - arg_operand),
6458 v->new_reg, 1);
6459
6460 /* Compute value to compare against. */
6461 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6462 /* Use it in this insn. */
6463 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6464 if (apply_change_group ())
6465 return 1;
6466 }
6467 }
6468 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6469 {
6470 if (invariant_p (arg) == 1)
6471 {
6472 /* Look for giv with constant positive mult_val and nonconst
6473 add_val. Insert insns to compute new compare value.
6474 ??? Turn this off due to possible overflow. */
6475
6476 for (v = bl->giv; v; v = v->next_iv)
6477 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6478 && ! v->ignore && ! v->maybe_dead && v->always_computable
6479 && v->mode == mode
6480 && 0)
6481 {
6482 rtx tem;
6483
6484 /* If the giv V had the auto-inc address optimization applied
6485 to it, and INSN occurs between the giv insn and the biv
6486 insn, then we must adjust the value used here.
6487 This is rare, so we don't bother to do so. */
6488 if (v->auto_inc_opt
6489 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6490 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6491 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6492 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6493 continue;
6494
6495 if (! eliminate_p)
6496 return 1;
6497
6498 tem = gen_reg_rtx (mode);
6499
6500 /* Replace biv with giv's reduced register. */
6501 validate_change (insn, &XEXP (x, 1 - arg_operand),
6502 v->new_reg, 1);
6503
6504 /* Compute value to compare against. */
6505 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6506 tem, where);
6507 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6508 if (apply_change_group ())
6509 return 1;
6510 }
6511 }
6512
6513 /* This code has problems. Basically, you can't know when
6514 seeing if we will eliminate BL, whether a particular giv
6515 of ARG will be reduced. If it isn't going to be reduced,
6516 we can't eliminate BL. We can try forcing it to be reduced,
6517 but that can generate poor code.
6518
6519 The problem is that the benefit of reducing TV, below should
6520 be increased if BL can actually be eliminated, but this means
6521 we might have to do a topological sort of the order in which
6522 we try to process biv. It doesn't seem worthwhile to do
6523 this sort of thing now. */
6524
6525 #if 0
6526 /* Otherwise the reg compared with had better be a biv. */
6527 if (GET_CODE (arg) != REG
6528 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6529 return 0;
6530
6531 /* Look for a pair of givs, one for each biv,
6532 with identical coefficients. */
6533 for (v = bl->giv; v; v = v->next_iv)
6534 {
6535 struct induction *tv;
6536
6537 if (v->ignore || v->maybe_dead || v->mode != mode)
6538 continue;
6539
6540 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6541 if (! tv->ignore && ! tv->maybe_dead
6542 && rtx_equal_p (tv->mult_val, v->mult_val)
6543 && rtx_equal_p (tv->add_val, v->add_val)
6544 && tv->mode == mode)
6545 {
6546 /* If the giv V had the auto-inc address optimization applied
6547 to it, and INSN occurs between the giv insn and the biv
6548 insn, then we must adjust the value used here.
6549 This is rare, so we don't bother to do so. */
6550 if (v->auto_inc_opt
6551 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6552 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6553 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6554 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6555 continue;
6556
6557 if (! eliminate_p)
6558 return 1;
6559
6560 /* Replace biv with its giv's reduced reg. */
6561 XEXP (x, 1-arg_operand) = v->new_reg;
6562 /* Replace other operand with the other giv's
6563 reduced reg. */
6564 XEXP (x, arg_operand) = tv->new_reg;
6565 return 1;
6566 }
6567 }
6568 #endif
6569 }
6570
6571 /* If we get here, the biv can't be eliminated. */
6572 return 0;
6573
6574 case MEM:
6575 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6576 biv is used in it, since it will be replaced. */
6577 for (v = bl->giv; v; v = v->next_iv)
6578 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6579 return 1;
6580 break;
6581 }
6582
6583 /* See if any subexpression fails elimination. */
6584 fmt = GET_RTX_FORMAT (code);
6585 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6586 {
6587 switch (fmt[i])
6588 {
6589 case 'e':
6590 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6591 eliminate_p, where))
6592 return 0;
6593 break;
6594
6595 case 'E':
6596 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6597 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6598 eliminate_p, where))
6599 return 0;
6600 break;
6601 }
6602 }
6603
6604 return 1;
6605 }
6606 \f
6607 /* Return nonzero if the last use of REG
6608 is in an insn following INSN in the same basic block. */
6609
6610 static int
6611 last_use_this_basic_block (reg, insn)
6612 rtx reg;
6613 rtx insn;
6614 {
6615 rtx n;
6616 for (n = insn;
6617 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6618 n = NEXT_INSN (n))
6619 {
6620 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6621 return 1;
6622 }
6623 return 0;
6624 }
6625 \f
6626 /* Called via `note_stores' to record the initial value of a biv. Here we
6627 just record the location of the set and process it later. */
6628
6629 static void
6630 record_initial (dest, set)
6631 rtx dest;
6632 rtx set;
6633 {
6634 struct iv_class *bl;
6635
6636 if (GET_CODE (dest) != REG
6637 || REGNO (dest) >= max_reg_before_loop
6638 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6639 return;
6640
6641 bl = reg_biv_class[REGNO (dest)];
6642
6643 /* If this is the first set found, record it. */
6644 if (bl->init_insn == 0)
6645 {
6646 bl->init_insn = note_insn;
6647 bl->init_set = set;
6648 }
6649 }
6650 \f
6651 /* If any of the registers in X are "old" and currently have a last use earlier
6652 than INSN, update them to have a last use of INSN. Their actual last use
6653 will be the previous insn but it will not have a valid uid_luid so we can't
6654 use it. */
6655
6656 static void
6657 update_reg_last_use (x, insn)
6658 rtx x;
6659 rtx insn;
6660 {
6661 /* Check for the case where INSN does not have a valid luid. In this case,
6662 there is no need to modify the regno_last_uid, as this can only happen
6663 when code is inserted after the loop_end to set a pseudo's final value,
6664 and hence this insn will never be the last use of x. */
6665 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6666 && INSN_UID (insn) < max_uid_for_loop
6667 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6668 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6669 else
6670 {
6671 register int i, j;
6672 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6673 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6674 {
6675 if (fmt[i] == 'e')
6676 update_reg_last_use (XEXP (x, i), insn);
6677 else if (fmt[i] == 'E')
6678 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6679 update_reg_last_use (XVECEXP (x, i, j), insn);
6680 }
6681 }
6682 }
6683 \f
6684 /* Given a jump insn JUMP, return the condition that will cause it to branch
6685 to its JUMP_LABEL. If the condition cannot be understood, or is an
6686 inequality floating-point comparison which needs to be reversed, 0 will
6687 be returned.
6688
6689 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6690 insn used in locating the condition was found. If a replacement test
6691 of the condition is desired, it should be placed in front of that
6692 insn and we will be sure that the inputs are still valid.
6693
6694 The condition will be returned in a canonical form to simplify testing by
6695 callers. Specifically:
6696
6697 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6698 (2) Both operands will be machine operands; (cc0) will have been replaced.
6699 (3) If an operand is a constant, it will be the second operand.
6700 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6701 for GE, GEU, and LEU. */
6702
6703 rtx
6704 get_condition (jump, earliest)
6705 rtx jump;
6706 rtx *earliest;
6707 {
6708 enum rtx_code code;
6709 rtx prev = jump;
6710 rtx set;
6711 rtx tem;
6712 rtx op0, op1;
6713 int reverse_code = 0;
6714 int did_reverse_condition = 0;
6715
6716 /* If this is not a standard conditional jump, we can't parse it. */
6717 if (GET_CODE (jump) != JUMP_INSN
6718 || ! condjump_p (jump) || simplejump_p (jump))
6719 return 0;
6720
6721 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6722 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6723 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6724
6725 if (earliest)
6726 *earliest = jump;
6727
6728 /* If this branches to JUMP_LABEL when the condition is false, reverse
6729 the condition. */
6730 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6731 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6732 code = reverse_condition (code), did_reverse_condition ^= 1;
6733
6734 /* If we are comparing a register with zero, see if the register is set
6735 in the previous insn to a COMPARE or a comparison operation. Perform
6736 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6737 in cse.c */
6738
6739 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6740 {
6741 /* Set non-zero when we find something of interest. */
6742 rtx x = 0;
6743
6744 #ifdef HAVE_cc0
6745 /* If comparison with cc0, import actual comparison from compare
6746 insn. */
6747 if (op0 == cc0_rtx)
6748 {
6749 if ((prev = prev_nonnote_insn (prev)) == 0
6750 || GET_CODE (prev) != INSN
6751 || (set = single_set (prev)) == 0
6752 || SET_DEST (set) != cc0_rtx)
6753 return 0;
6754
6755 op0 = SET_SRC (set);
6756 op1 = CONST0_RTX (GET_MODE (op0));
6757 if (earliest)
6758 *earliest = prev;
6759 }
6760 #endif
6761
6762 /* If this is a COMPARE, pick up the two things being compared. */
6763 if (GET_CODE (op0) == COMPARE)
6764 {
6765 op1 = XEXP (op0, 1);
6766 op0 = XEXP (op0, 0);
6767 continue;
6768 }
6769 else if (GET_CODE (op0) != REG)
6770 break;
6771
6772 /* Go back to the previous insn. Stop if it is not an INSN. We also
6773 stop if it isn't a single set or if it has a REG_INC note because
6774 we don't want to bother dealing with it. */
6775
6776 if ((prev = prev_nonnote_insn (prev)) == 0
6777 || GET_CODE (prev) != INSN
6778 || FIND_REG_INC_NOTE (prev, 0)
6779 || (set = single_set (prev)) == 0)
6780 break;
6781
6782 /* If this is setting OP0, get what it sets it to if it looks
6783 relevant. */
6784 if (rtx_equal_p (SET_DEST (set), op0))
6785 {
6786 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6787
6788 if ((GET_CODE (SET_SRC (set)) == COMPARE
6789 || (((code == NE
6790 || (code == LT
6791 && GET_MODE_CLASS (inner_mode) == MODE_INT
6792 && (GET_MODE_BITSIZE (inner_mode)
6793 <= HOST_BITS_PER_WIDE_INT)
6794 && (STORE_FLAG_VALUE
6795 & ((HOST_WIDE_INT) 1
6796 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6797 #ifdef FLOAT_STORE_FLAG_VALUE
6798 || (code == LT
6799 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6800 && FLOAT_STORE_FLAG_VALUE < 0)
6801 #endif
6802 ))
6803 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6804 x = SET_SRC (set);
6805 else if (((code == EQ
6806 || (code == GE
6807 && (GET_MODE_BITSIZE (inner_mode)
6808 <= HOST_BITS_PER_WIDE_INT)
6809 && GET_MODE_CLASS (inner_mode) == MODE_INT
6810 && (STORE_FLAG_VALUE
6811 & ((HOST_WIDE_INT) 1
6812 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6813 #ifdef FLOAT_STORE_FLAG_VALUE
6814 || (code == GE
6815 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6816 && FLOAT_STORE_FLAG_VALUE < 0)
6817 #endif
6818 ))
6819 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6820 {
6821 /* We might have reversed a LT to get a GE here. But this wasn't
6822 actually the comparison of data, so we don't flag that we
6823 have had to reverse the condition. */
6824 did_reverse_condition ^= 1;
6825 reverse_code = 1;
6826 x = SET_SRC (set);
6827 }
6828 else
6829 break;
6830 }
6831
6832 else if (reg_set_p (op0, prev))
6833 /* If this sets OP0, but not directly, we have to give up. */
6834 break;
6835
6836 if (x)
6837 {
6838 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6839 code = GET_CODE (x);
6840 if (reverse_code)
6841 {
6842 code = reverse_condition (code);
6843 did_reverse_condition ^= 1;
6844 reverse_code = 0;
6845 }
6846
6847 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6848 if (earliest)
6849 *earliest = prev;
6850 }
6851 }
6852
6853 /* If constant is first, put it last. */
6854 if (CONSTANT_P (op0))
6855 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6856
6857 /* If OP0 is the result of a comparison, we weren't able to find what
6858 was really being compared, so fail. */
6859 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6860 return 0;
6861
6862 /* Canonicalize any ordered comparison with integers involving equality
6863 if we can do computations in the relevant mode and we do not
6864 overflow. */
6865
6866 if (GET_CODE (op1) == CONST_INT
6867 && GET_MODE (op0) != VOIDmode
6868 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6869 {
6870 HOST_WIDE_INT const_val = INTVAL (op1);
6871 unsigned HOST_WIDE_INT uconst_val = const_val;
6872 unsigned HOST_WIDE_INT max_val
6873 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6874
6875 switch (code)
6876 {
6877 case LE:
6878 if (const_val != max_val >> 1)
6879 code = LT, op1 = GEN_INT (const_val + 1);
6880 break;
6881
6882 case GE:
6883 if (const_val
6884 != (((HOST_WIDE_INT) 1
6885 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6886 code = GT, op1 = GEN_INT (const_val - 1);
6887 break;
6888
6889 case LEU:
6890 if (uconst_val != max_val)
6891 code = LTU, op1 = GEN_INT (uconst_val + 1);
6892 break;
6893
6894 case GEU:
6895 if (uconst_val != 0)
6896 code = GTU, op1 = GEN_INT (uconst_val - 1);
6897 break;
6898 }
6899 }
6900
6901 /* If this was floating-point and we reversed anything other than an
6902 EQ or NE, return zero. */
6903 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6904 && did_reverse_condition && code != NE && code != EQ
6905 && ! flag_fast_math
6906 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6907 return 0;
6908
6909 #ifdef HAVE_cc0
6910 /* Never return CC0; return zero instead. */
6911 if (op0 == cc0_rtx)
6912 return 0;
6913 #endif
6914
6915 return gen_rtx (code, VOIDmode, op0, op1);
6916 }
6917
6918 /* Similar to above routine, except that we also put an invariant last
6919 unless both operands are invariants. */
6920
6921 rtx
6922 get_condition_for_loop (x)
6923 rtx x;
6924 {
6925 rtx comparison = get_condition (x, NULL_PTR);
6926
6927 if (comparison == 0
6928 || ! invariant_p (XEXP (comparison, 0))
6929 || invariant_p (XEXP (comparison, 1)))
6930 return comparison;
6931
6932 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6933 XEXP (comparison, 1), XEXP (comparison, 0));
6934 }